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Language models are thriving, powering conversational agents that assist and empower humans to solve a
number of tasks. Recently, these models were extended to support additional modalities including vision,
audio and video, demonstrating impressive capabilities across multiple domains including healthcare.
Still, conversational agents remain limited in biology as they cannot yet fully comprehend biological
sequences. On the other hand, high-performance foundation models for biological sequences have been
built through self-supervision over sequencing data, but these need to be fine-tuned for each specific
application, preventing transfer and generalization between tasks. In addition, these models are not
conversational which limits their utility to users with coding capabilities. In this paper, we propose to
bridge the gap between biology foundation models and conversational agents by introducing ChatNT, the
first multimodal conversational agent with an advanced understanding of biological sequences. ChatNT
achieves new state-of-the-art results on the Nucleotide Transformer benchmark while being able to solve
all tasks at once, in English, and to generalize to unseen questions. In addition, we have curated a new
set of more biologically relevant instructions tasks from DNA, RNA and proteins, spanning multiple
species, tissues and biological processes. ChatNT reaches performance on par with state-of-the-art
specialized methods on those tasks. We also present a novel perplexity-based technique to help calibrate
the confidence of our model predictions. Our framework for genomics instruction-tuning can be easily
extended to more tasks and biological data modalities (e.g. structure, imaging), making it a widely
applicable tool for biology. ChatNT is the first model of its kind and constitutes an initial step towards
building generally capable agents that understand biology from first principles while being accessible to
users with no coding background.

Introduction

Understanding how cells, tissues, and organisms interpret information encoded in the genome is of paramount
importance for advancing our comprehension of biology. The DNA sequence of an organism comprises all the
instructions to specify RNAs and proteins, but also when and in which cellular context these should be produced.
Since the human genome was sequenced [1], the main focus has been on identifying every genomic element,
characterizing their function, and assessing the impact of genetic variants on the different gene regulatory
and cellular processes. Given the complexity of biological sequences and processes, and the increasing volume
of genomics data, several machine learning and deep learning methods have been developed to address
these questions by predicting diverse molecular phenotypes with great accuracy [2–4]. These tasks include
predicting the binding of proteins to DNA and RNA [5, 6], DNA methylation [7], chromatin features [8–10],
regulatory elements [11], 3D genome folding [12–14], splicing [15, 16], gene expression [10, 17, 18], mRNA
properties such as stability [19] and polyadenylation [20, 21], and protein properties such as melting point [22].

While supervised deep learning models have already significantly improved the predictive capabilities on these
tasks, their performance remains often limited due to the scarcity of labeled data, given that labelling is time
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consuming and expensive. On the other hand, an exponentially increasing volume of raw genome data is
becoming available thanks to the increase in throughput and reduced cost of modern sequencing techniques,
thus creating a significant opportunity for self-supervised deep learning methods to train on such unlabeled
data. Through learning-techniques such as masked- or next-token prediction [23–25], with tokens representing
one or several consecutive nucleotides, deep learning models can build powerful foundation representations of
the genome during this "pre-training" stage, aggregating correlations between nucleotides and larger sequence
patterns into rich high-dimensional vectors that capture known genomic elements and protein binding sites
[26]. These models can later exploit these rich representations, during a "fine-tuning" stage, to learn faster
and reach better performance on supervised tasks, i.e. tasks where labels are available, despite data scarcity.
Recently, several such foundation models have been built in this fashion, showing that they can be pre-trained on
the genomes of hundreds of species before being fine-tuned to solve a large collection of molecular phenotype
prediction tasks [26–32].

This being said, the performance and application domain of current DNA foundation models remains limited.
In the current paradigm, foundation models require fine-tuning to each specific task individually to produce
accurate representations and predictions, and are thus better characterized as narrow experts on specific
tasks. This not only yields a deluge of different models as the number of tasks increases, but also prevents any
transfer between supervised tasks as well as to solve new tasks in a zero-shot setting (i.e. without the need
for further finetuning on some examples). There is therefore a need to rethink the development of genomics
Artificial Intelligence (AI) systems with the goal of establishing general, unified models that capture the intricate
relationships between all diverse biological sequences and functions. It has been shown in other fields such
as natural language processing (NLP) and computer vision that training on several tasks in parallel results
in knowledge transfer between tasks and improved accuracy and generalization [23, 24, 33–35]. In these
domains, English language has been shown to play a wider role: a universal interface for representing various
tasks and instructions and helping guide the training of end-to-end multi-task models [36, 37]. Transferring
this type of approaches to biological data is a promising approach towards developing a general model that
can solve all genomics tasks of interest simultaneously and with improved accuracy.

An additional important aspect of building a universal genomics AI system is its accessibility to different types
of users. Most biologists do not know how to use current genomics models, let alone how to program one
themselves for a given task of interest. Such models are not conversational and thus of limited utility in
practice to users with no coding capabilities. Also here, language can play an important role as a universal
interface for a general-purpose AI assistant that can solve genomics tasks through task instructions that can be
explicitly represented in English language. For example, the recent success of ChatGPT [38] and GPT-4 [39]
has demonstrated the power of large language models (LLMs) trained to follow human instructions, and how
such tools can transform several industries due to their ease of use. We envision the same paradigm shift for
genomics and biology once we have "ChatGPT-like" agents that are proficient in biological tasks.

To that end, we introduce in this work a novel approach to build foundation models for genomics. Similarly to
lines of works that emerged in NLP [24, 25, 36], and inspired by recent vision/language multimodal models
[40–46], we propose to formulate all supervised genomics prediction tasks as text-to-text tasks and to build a
multi-modal DNA/language agent, dubbed the Chat Nucleotide Transformer (or ChatNT). ChatNT can be given
one or several DNA sequences and is prompted in English to solve all those tasks. This formulation allows us to
express all tasks with the same vocabulary, being here the concatenation of the English and DNA vocabularies,
and to learn to solve them by minimizing a unified objective, similar to GPT-like models [25, 47], allowing for
seamless new task integration and generalization. Formulating tasks in English is also an easy way to provide
additional meta-data information to the model, such as the species, the chromosome or the cell type, that is
also missing in most current DNA foundation models.

ChatNT is built to act as a generalist genomics AI system - a unified model that can interpret multiple biological
sequences and handle dozens of tasks in a conversational agent setting. To the best of our knowledge, ChatNT
is the first multimodal bio-sequence/English agent. We created the first datasets of genomics instructions tasks
with curated sets of questions and instructions in English for diverse classification and regression tasks. We first
show that ChatNT achieves a new state-of-the-art on the Nucleotide Transformer benchmark [26]. We next
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evaluate ChatNT in additional biologically relevant tasks that cover DNA, RNA and protein processes. ChatNT
achieves state-of-the-art performance across all tasks, matching the performance of several specialized models,
such as APARENT2 for RNA polyadenylation [20, 21] and ESM2 for protein-related tasks [48], while being
able to solve a large collection of tasks at once and in English. Finally, its English conversational capabilities
make its use easier than other models, widening its accessibility to scientists with no machine learning or
computer science background. This framework for genomics instruction-tuning can be easily extended to new
tasks or biological data modalities (e.g. sequencing experiments, imaging) without the need for pre-training
from scratch every time, making it a widely applicable tool for biology.

Results

ChatNT: a unified framework to transform DNA foundation models into conversational agents to solve
multiple tasks.

ChatNT is the first framework for genomics instruction-tuning, extending instruction-tuning agents to the
multimodal space of biology and biological sequences. Our framework is designed to be modular and trainable
end-to-end. It combines (1) a DNA encoder model, pre-trained on raw genome sequencing data and that
provides DNA sequence representations; (2) an English decoder, typically a pre-trained GPT-style LLM, to
comprehend the user instructions and produce responses; and (3) a projection layer that projects the represen-
tations extracted by the DNA encoder into the embedding space of the input English words, such that both can
be used by the English decoder (Fig. 1c; see Methods). In contrast to most multimodal works (e.g. [40, 49]) that
would typically freeze the encoder and train only the projection, and sometimes the decoder, we decided in this
work to backpropagate the gradients in the encoder in addition to the projection to allow supervised knowledge
propagation at the DNA model level. The English decoder is kept frozen and therefore ChatNT benefits from its
entire initial conversational capabilities, ensuring these do not degrade during training. In this work, we use the
Nucleotide Transformer v2 (500M) model for the DNA encoder part [26] and Vicuna-7b (instruction-fine-tuned
LLaMA model with 7B parameters) for the English decoder part [50] in order to build the conversational agent
ChatNT. Keeping this modular architecture allows to use constantly improving encoders and decoders in the
future without changing the model architecture.

To train and evaluate ChatNT, we converted datasets of genomics tasks into instructions datasets by framing
each task in English (Fig. 2; see Methods and respective results sections). We created for every task a train
and test file each containing the respective DNA sequences combined with curated questions and answers in
English. See Figure 1c for an example of question and answer for predicting RNA degradation levels: "User:
Determine the degradation rate of the human RNA sequence @myseq.fna on a scale from -5 to 5. ChatNT: The
degradation rate for this sequence is 1.83.", where the projected embeddings of the candidate DNA sequence are
inserted at the@myseq.fna position. We keep the same train/test splits as the original sources of each task,
and use different questions for train and test to assess the English generalization capabilities of the model. This
allows to not only evaluate the agent capability to generalize between DNA sequences but also its robustness to
the English language used. We also provide a novel and flexible way to interleave English and DNA sequences
through the usage of positional tags (@myseq.fna), allowing users to refer to several sequences in the same
question.
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Figure 1 | ChatNT, a conversational agent that can be prompted to solve a variety of biological tasks. a. Illustration of
the different categories of downstream tasks included during training. b. Statistics about the number of English and DNA
tokens available for each task in our genomics instructions dataset. English question/answer instructions are tokenized
with the LLaMA tokenizer [47] while DNA sequences are tokenized using the Nucleotide Transformer tokenizer [26]. c.
ChatNT approach to build a multimodal and multi-task genomics AI system. ChatNT conversational agent can be prompted
in English to solve various tasks given an input question and nucleotide sequence. In this example, the user inputs a DNA
sequence (fasta file) and asks the agent to evaluate the degradation rate of the given RNA sequence. The question tokens
are combined with the projected DNA representations before passing through the English Language Model decoder. The
pre-trained decoder writes the answer through next-token prediction, in this case predicting the degradation rate of the
input sequence.

ChatNT is trained to solve all tasks simultaneously, with a uniform sampling over tasks per batch. Multi-tasking
is achieved by ChatNT by prompting in natural language, where the question asked by the user will guide the
agent towards the task of interest. Given a text prompt and one or multiple DNA sequences as input, ChatNT is
trained to minimize a unified objective for all tasks, which takes the form of the cross-entropy loss between
ChatNT predictions and the target answer tokens, as in other instruction-finetuning works [50–52]. This single
objective allows to learn seamlessly across tasks without introducing conflicting gradients or scale issues coming
from different objectives and loss functions (e.g. Cross-Entropy for classification versus Mean Squared Error for
regression). In addition, it allows us to extend the model with additional tasks in the future without requiring
changes in the model architecture or training it from scratch. In summary, ChatNT provides a general genomics
AI system that solves multiple tasks in a conversational manner, thus providing a new paradigm for genomics
models.
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Figure 2 | Examples of ChatNT conversations on DNA, RNA and Protein tasks. For each conversation we show the
question from the user (white) and the answer of the agent (blue). The projected embeddings of the input DNA sequences
are incorporated in the question at the position of@myseq.fna.

In addition to seamlessly integrating multiple types of labeled and experimental data into a single general
foundation model, ChatNT is designed to be conversational to enable users to easily interact with it and to use
it without requiring a programming background (see examples in Fig. 2). We rely on a frozen English language
model, Vicuna 7B [50], that has been instruction fine-tuned from LLaMA [47], ChatNT keeps all the intrinsic
conversational capabilities of the language model. Interestingly, we observed that as the training dataset used
to build LLaMA already contained a large set of life sciences papers, our agent is also capable to answer multiple
questions about genomics such as defining regulatory elements like promoters and enhancers, zero shot i.e.
without any additional training data. Additionally, ChatNT can answer numerous non-biology related questions
and solve tasks such as summarizing or writing simple programming code. As our approach is general and
builds on top of any pre-trained English language model, ChatNT capabilities can improve organically with new
and more powerful open-sourced language models. While the conversational capability is an important aspect
of ChatNT but is already provided by the respective language model, we focused in this work on demonstrating
that the conversational agent ChatNT can solve a wide range of advanced genomics tasks in English with high
accuracy.
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ChatNT is the new state-of-the-art on the Nucleotide Transformer benchmark

Figure 3 | ChatNT achieves a new state-of-the-art accuracy in the Nucleotide Transformer benchmark. a) Average
performance of ChatNT, ChatNT with no english-aware projection and 13 different genomics foundation models across all
18 tasks of the Nucleotide Transformer benchmark [26]. Bar-plots display the mean MCC over all tasks and the standard
error of the mean. b) Radar plot depicting the performance of ChatNT in each of the 18 tasks compared with specialized
NTv2 models fine-tuned individually on each task.

In order to develop ChatNT and optimize its architecture we created an instructions version of the Nucleotide
Transformer benchmark [26] (Supplementary Table 1 and Methods). This collection of genomic datasets is
suitable for fast iteration during model experimentation as it contains a varied panel of small-sized datasets
and has been extensively evaluated in multiple studies of DNA foundation models [26, 29]. We trained ChatNT
to solve all 18 tasks at once and in English and evaluated its performance on test set DNA sequences and
questions.

We first used this benchmark to systematically compare the performance of ChatNT with two different projection
architectures. The classical way of aggregating information from the encoder in previous multimodal models is
to use a trainable projection to convert the encoder embeddings into language embedding tokens, which have
the same dimensionality of the word embedding space in the language model [40–42, 49]. In ChatNT we used
the Perceiver resampler from Flamingo [41] based on gated cross-attention as projection layer (Supplementary
Fig. 1a). Using this projection layer and finetuning both the DNA encoder and the projection on all 18 tasks,
ChatNT obtained a new state-of-the-art accuracy on this benchmark with an average Matthew’s correlation
coefficient (MCC) of 0.71, 2 points above the previous state-of-the-art Nucleotide Transformer v2 (500M)
model (Fig. 3a, Supplementary Fig. 2).

However, similar to all other projection layers [40, 49, 53], the current implementation of the Perceiver
resampler generates the same fixed set of embeddings for the encoder tokens independently of the question
asked, and therefore it needs to capture in this set of embeddings all relevant information for every downstream
task. We hypothesised that this feature can create an information bottleneck in genomics when scaling the
model for multiple downstream tasks given the diversity of potential sequences, from different lengths and
species, and biological properties. Therefore, we developed an English-aware Perceiver projection that extracts
representations from the input sequence dependent on the English question asked by the user, which allows to
leverage contextual information encoded in the input DNA sequences that are relevant for the specific question
(Supplementary Fig. 1b; see Methods). We observed significantly improved performance by accounting for the
question when projecting the DNA embeddings into the English decoder space (average MCC of 0.77 vs 0.71;
Supplementary Fig. 1c,d). This can be explained by the very context- and task-specific information in DNA
sequences that we must retain in order to tackle diverse genomics tasks. Since the decoder remains frozen, the
projection layer not only needs to bring the sequence embeddings into the embedding space of the English
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decoder, but also to perform the operations to extract the relevant information from the embedding to answer
the question. Our results show that making the projection aware of the question facilitates both aspects thus
achieving a better performance and transfer across tasks.

In summary, ChatNT with an English-aware projection (from now on just called ChatNT) achieves a new
state-of-the-art accuracy on this benchmark (average MCC of 0.77) in addition to solving all 18 tasks at once
(Fig. 3a). Strikingly, ChatNT improves the average performance by 8 points over the previous state-of-the-art
Nucleotide Transformer v2 (500M) model, which was used as the DNA encoder within ChatNT (average
MCC of 0.77 vs 0.69; Fig. 3a,b). Our results demonstrate that a single unified objective formulated in natural
language triggers transfer learning betweenmultiple downstream tasks and helps deliver improved performance.

A new curated genomics instructions dataset of biologically relevant tasks

Although the Nucleotide Transformer benchmark [26] was very suitable for model experimentation and to
debug the system, it misses many tasks of great biological relevance in genomics related to more complex
biological processes as well as more recent experimental techniques and tasks that involve quantitative predic-
tions. Therefore we curated a second genomics instructions dataset containing 27 genomics tasks framed in
English derived from different studies that cover several regulatory processes (Supplementary Table 2 and
Methods). These include tasks related to DNA (21 tasks), RNA (3) and protein sequences (3) from multiple
species framed as both binary/multi-label classification and regression tasks. The final instructions dataset
contains a total of 605 million DNA tokens, i.e. 3.6 billion base pairs, and 273 million English tokens (including
an average of 1,000 question/answer pairs per task) (Figure 1b).

This collection includes a non-redundant subset of tasks from the Nucleotide Transformer [26] and the BEND
[54] benchmarks, complemented with relevant tasks from the plant AgroNT benchmark [55] and human
ChromTransfer [56]. These benchmarks have been extensively used in the literature, come from different
research groups, and represent diverse DNA processes and species. These selected tasks include binary and
multi-label classification tasks covering biological processes related to histone and chromatin features, promoter
and enhancer regulatory elements, and splicing sites.

We further added state-of-the-art and challenging regression tasks related to promoter activity [55], enhancer
activity [11], RNA polyadenylation [20, 21] and degradation [19], and multiple protein properties [57]. These
are reference datasets in the respective fields and related to very complex properties of biological DNA, RNA and
protein sequences. All RNA and protein tasks are predicted from the corresponding DNA and CDS sequences
instead of the RNA and protein sequences, respectively. Getting the matching DNA sequence is trivial for RNA
sequences but more challenging for protein sequences due to the complexity of codon usage. Therefore, we
used the CDS annotations for protein tasks curated at Boshar et al. [57].

See Figure 2 and 4 for examples of questions and answers for different types of genomics tasks used in our
dataset (see also Supplementary Fig. 3, 4, 5). For instance, a training example for an enhancer classification
task would be "User: Is there an enhancer from human cells present in this sequence @myseq.fna, and can you
characterize as weak or strong? ChatNT: Yes, a weak enhancer is present within the DNA sequence that you
provided.", where the projected embeddings of the candidate DNA sequence are inserted at the @myseq.fna
position. Regression tasks are also framed in English and the agent needs to write the digits corresponding to the
requested quantity: for example "User: Determine the degradation rate of the mouse RNA sequence @myseq.fna
on a scale from -5 to 5. ChatNT: The measured degradation rate for this sequence is 2.4." (see Methods for details
on the quantitative scale). The loss is equally computed as the cross-entropy loss between the predicted and
the target answer tokens. For performance evaluation, we extract the digits from each answer and test their
correlation with the ground-truth values.

In summary, this curated set of tasks provides a general perspective of the capabilities and usefulness of our
model in different biological sequence domains. We train ChatNT as a general agent to solve all 27 genomics
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tasks at once and in English, and compare its performance with the state-of-the-art specialized model for each
task (see Methods).

ChatNT achieves high performance on multiple tasks across different genomics processes and species
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Figure 4 | Examples of prediction performance and conversations for a subset of genomics, transcriptomics, and
proteomics tasks. a, d, e) Left: example of conversation for the respective binary or multi-label classification task. Right:
heatmap displaying the confusion matrix comparing the predicted labels of ChatNT and observed labels. The performance
metric is reported. b, c, f) Left: example of conversation for the respective regression task. Right: scatter-plot comparing
the predictions of ChatNT and observed values. Pearson correlation coefficient (PCC) is reported.

We first evaluated the performance of ChatNT on the 21 tasks related to different DNA processes from yeast,
plants, fly, mouse, and human. ChatNT is competitive with the performance of the different specialized models
that were fine-tuned directly on each of these individual tasks (Fig. 4a,b,d,e and 5a,c). In particular, we
obtained an improved performance on the detection of human enhancer types. Still, we observed significantly
reduced performance for enhancers from plant species when compared with the state-of-the-art AgroNT model
fine-tuned specifically on this task [55]. Since AgroNT was pre-trained on genomes from 48 diverse plant
species, improving the encoder used in ChatNT might lead to improved performance on this type of tasks.

As ChatNT solves the tasks in English, it can seamlessly handle binary and multi-label classification tasks. By
extracting the term predicted by ChatNT in the answer, we can quantify its predictive performance. As we show
for some examples in Fig. 4, ChatNT accurately identifies input sequences with human or mouse promoters
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(Fig. 4a), with CpG sites methylated in human embryonic stem cells (HUES64 cell line; Fig. 4d), and with
splice acceptor and donor sites (Fig. 4e).

ChatNT is also able to solve quantitative tasks by writing the digits of the predicted score. We observed
competitive performance on predicting promoter activity in plants, namely tobacco leaves (Fig. 4b) and maize
protoplasts, but significantly reduced performance on Drosophila enhancer activity over the state-of-the-art
DeepSTARR model [11] (Fig. 5a). Importantly, the distributions of the predicted digits correlate well with the
original scores (Fig. 4b). This capability to proficiently address regression tasks is of paramount importance in
biology, and is particularly significant in light of the acknowledged limitations and unreliability of numerical
processing in language models [58, 59]. Still, we observed a reduced average performance on regression tasks
over classification ones, likely due to the difference in complexity and classification tasks being more represented
in the training set. We assume that this might be solved by improving the balance between classification
and regression tasks during training, through either a weight loss or a task sampling frequencies curriculum [60].
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ChatNT solves transcriptomics and proteomics tasks

ChatNT is built with a flexible architecture that allows it to handle any type of biological sequence that can be
processed with our DNA encoder, the Nucleotide Transformer [26]. To showcase its generalization, we have
included in the new genomics instructions dataset three RNA and three protein regression tasks (Supplementary
Fig. 4, 5). These include predicting RNA polyadenylation and degradation rates as well as different protein
features. Examples of conversations used for model training are: "User: What is the measured polyadenylation
ratio of the proximal site of the RNA sequence @myseq.fna in human HEK293 cells, considering a range from 0 to
1? ChatNT: That sequence has a polyadenylation ratio of the proximal site of 0.69." and "User: Specify the melting
point of the protein with the given coding sequence (CDS) @myseq.fna within the 0 to 100 range. ChatNT: This
protein demonstrates a melting point of 80.81.". The performance of ChatNT was compared to the state-of-the-art
specialized models APARENT2 for polyadenylation [21], Saluki for RNA degradation [19], and ESM2 for the
protein tasks [48] (Supplementary Table 2).

Overall, we observed good performance for ChatNT on the test sets of the 6 RNA and protein tasks, with Pearson
correlation coefficients (PCCs) between 0.62 and 0.91 (Fig. 4c,f, 5a). ChatNT outperformed the specialized
models for the prediction of proximal polyadenylation site ratio (PCC of 0.91 vs 0.90) and protein melting
points (PCC of 0.89 vs 0.85). Regarding the RNA degradation tasks in human and mouse, ChatNT obtained a
PCC of 0.62 and 0.63, ten points below the specialized Saluki model [19] (PCC of 0.74 and 0.71). ChatNT also
obtained competitive performance with the state-of-the-art protein language model ESM2 [48] on the two
other protein tasks related to protein fluorescence and stability. Although ChatNT cannot yet outperform every
specialized model on RNA and protein tasks, we show that it can already handle such tasks and achieve high
performance using the DNA foundation model Nucleotide Transformer as a DNA encoder. ChatNT’s flexible
architecture allows to plug-in different encoders, such as language models specialized for RNA [61–64] and
protein domains [48], which should reduce the gap to specialized deep learning models in the transcriptomics
and proteomics fields and improve the capabilities and generalization of ChatNT towards a unified model of
biology.

Assessing the confidence of ChatNT answers

ChatNT is built to assist and augment scientists and researchers in their daily research. As such, its perfor-
mance and reliability are paramount. However, in contrast to standard machine learning models that return
probabilities or quantitative scores, ChatNT directly answers questions, preventing the user to get a sense of
its confidence and thus reducing its practical value for sensitive applications. This is an important challenge
and common to all current conversational agents [38–40]. To address this, we introduce a novel way to assess
the confidence of our agent for binary classification tasks. Instead of generating directly answers to the binary
classification question for a given sequence, we compute the model perplexity for that question over examples
of both positive and negative answers. We make sure that these selected answers were not included in the
model training dataset. Those perplexity values towards positive and negative answers are then used to derive
logits and probabilities for each class for the candidate question. This method allows us to derive probabilities
from ChatNT for each question example, similar to standard classifiers, and we refer to it as perplexity-based
classifier (Fig. 6a).

Computing probabilities enables us to assess the calibration of the model, i.e. the correlation between the
predicted probability, its confidence, and the accuracy of its prediction. We say that a model is well calibrated
when a prediction of a class with confidence p is correct 100p % of the time. We computed the ChatNT
perplexity-based probabilities for all binary classification tasks. In Figure 6b-d we show an example of a
calibration plot based on the predictions for the chromatin accessibility task. We observe that our model is well
calibrated for low- and high-confidence areas, but less in medium-confidence ones. For instance, examples
predicted with a probability of 0.9 are correctly predicted 90% of the time while examples predicted with
probability 0.5 are correctly predicted only 25% of the time. To improve this, we show that we can calibrate
our model by fitting on the training set a Platt’s model [65], to improve the confidence of the model across all
ranges of predictions (Fig. 6b-d). This calibration step is performed for all binary classification tasks. Overall,
we achieve the same performance for ChatNT across tasks using these perplexity-based predictions (Fig. 6e) but
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with improved calibration. As a consequence, our approach can accurately measure the predictive performance
of a language model in addition to effectively assessing its uncertainty level. This technique, while being
general, should also be beneficial to other language model fields.

Discussion

We presented ChatNT, the first multimodal conversational agent that can handle DNA, RNA and protein
sequences and solve multiple biologically relevant downstream tasks. We built and curated the first datasets
of genomics instructions tasks including binary and multi-labels classification and regression tasks spanning
different species and genomics processes. Tasks relative to transcriptomic and proteomic processes were also
included to demonstrate the versatility and generality of this approach across domains. ChatNT achieves a
new state-of-the-art on the Nucleotide Transformer benchmark [26] and demonstrates a performance on par
with specialized models on our new set of 27 tasks. Importantly, unlike conventional approaches requiring
a specialized model for each task, ChatNT solves all tasks within a unified model in addition to offering a
simple and natural chatbot interface for people to use the model. We also introduced a new technique to probe
the confidence of language models for binary classification tasks and used it to calibrate them when needed.
Altogether, ChatNT is the first proof that natural language LLMs can be extended to process bio-sequence
modalities, displaying not only conversational capabilities but also answering accurately multiple biologically
relevant questions.

To extract the complex information from DNA sequences that is needed to solve all tasks in a single unified
model, we introduced a novel architecture based on the Perceiver resampler [41] to resample and project
DNA embeddings into the natural language embedding space. We identified an information bottleneck issue
that arises from the diversity of tasks, species and biological processes encoded in DNA sequences, and we
showed how to solve it by conditioning the projection on the question asked. This conditioning allows the
projection module to extract from the DNA embeddings the right amount of information to solve the task at
hand, as we show by the improved performance over a projection module that is not conditioned on the question.

In this work, we decided to focus on situations where a user, such as a researcher or scientist, is interested in
detecting molecular phenotypes or computing quantitative properties for a given DNA sequence. While we
believe this encompasses an already significant number of practical use-cases, it would be interesting to expand
the agent capabilities to handle other typical bioinformatics pipelines. Such pipelines could include calling tools
to compute statistics about the sequences, aligning the sequences to a reference database to compute multiple
sequence alignments, query external databases for additional information about the sequences, or to recursively
call the ChatNT model over a FASTA file containing multiple sequences and generating a summarized table
results with its corresponding analysis. This is supported by the success of external tools in large language
models such as Toolformer [66], LLaVA-Plus [49], geneGPT [67] or GPT-4 [39]. Such pipelines could also
benefit from ChatNT’s capability to handle several sequences at the same time in order to reduce the inference
compute cost. Replacing ChatNT’s current English decoder by larger models and/or models fine-tuned using
Reinforcement Learning Human Feedback (RLHF) such as Llama2-chat 70B [52] could also help extending the
model capabilities in these directions as well as improving its overall usefulness.

The capabilities of ChatNT have been demonstrated for DNA sequences using a pre-trained DNA foundation
model, the Nucleotide Transformer [26]. As shown in our experiments, working with DNA sequences allows to
tackle tasks not only in genomics but also transcriptomics and proteomics, the latter using the corresponding
CDS region. However, our approach could be easily extended to integrate encoders from other omics modali-
ties such as RNA [61–64] and protein [48, 68] language models to work natively with RNA and aminoacid
sequences. Through our positional tag system that supports multiple sequences, one could simply add an
arbitrary number of encoders and train their respective projections to combine different omics and modalities
within the same questions. We envision that such approach could expand even further the capabilities and
performance of our model by achieving superior transfer learning across modalities.

12

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 11, 2024. ; https://doi.org/10.1101/2024.04.30.591835doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.30.591835
http://creativecommons.org/licenses/by-nc-nd/4.0/


ChatNT: A Multimodal Conversational Agent for DNA, RNA and Protein Tasks

This work serves as the first proof-of-concept that it is possible to build multimodal bio-sequence/ English
conversational agents that can solve advanced, biologically relevant tasks, and is meant to lay a first set of
foundations to build future highly-capable agents that understand biological sequences and principles. Similar
to the developments in NLP [52, 69–71] and multimodal models [72], we expect new capabilities such as
zero-shot performance to emerge through developments on two main fronts: (1) scaling the number of tasks
by including examples from diverse biological processes, tissues, individuals and species [73, 74]; and (2)
integrating more data modalities, such as RNA and protein sequences, imaging data and health records from
individuals. When such capabilities emerge, it will be of the highest importance to carefully assess model safety
and robustness, for instance through red teaming [75]. As such, ChatNT represents an important step along
the trajectory towards general purpose AI for biology and medicine [76].
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Methods

ChatNT model

Architecture

The ChatNT is a multimodal agent that takes as input one or multiple DNA sequences and an English prompt
and returns a distribution over English words that is used to auto-regressively produce an answer in English.
We introduce a DNA English token placeholder <DNA> that is added in the input English prompt for the user
to refer to the DNA sequence. The architecture is also extended to handle several DNA sequences. In this case,
each DNA sequence is processed independently by the DNA encoder and the input English prompt is expected
to contain as many DNA English token placeholders as sequences are inputted.

The ChatNT architecture is made of three parts: a pre-trained DNA encoder, a projection model that projects
the DNA embeddings into the English tokens embedding spaces and a pre-trained English decoder. While our
architecture is general and could work with any choice of DNA Encoder and English decoder, we decided to
use the pre-trained Nucleotide Transformer v2 (500M parameters) [26] and Vicuna-7b (instruction fine-tuned
Llama model with 7B parameters) [50] models, respectively. During training, we keep the English decoder
frozen and update only the weights of the DNA encoder and the projection model. The projection model is
initialized from scratch at the beginning of the training.

The DNA Encoder processes the DNA sequence and returns one embedding vector per input token, one token
representing a nucleotide 6-mers in the case of the Nucleotide Transformer model. We note L the number
of nucleotides in the DNA sequence and N the number of DNA tokens (with roughly 𝑁 ≈ 𝐿

6
). Every in-

put DNA sequence was padded if needed until a final length of 2, 048 tokens, representing approximately
12𝑘𝑏. As the output embedding dimension of the DNA encoder can be different from the words embedding
dimensions of the English language model we first use a dense neural network to project each DNA token
embedding to the English word dimension. In a second phase, we use a Perceiver resampler architecture [41]
that uses cross-attention between the projected DNA tokens embeddings and learnable queries, to re-sample
the 𝑁 DNA tokens embedding to 𝐾 embedding vectors (Supplementary Fig. 1a). We have adapted this
Perceiver resampler to include an additional cross-attention step between the learnable queries and the English
question in order to extract context-dependent representations from the DNA sequence (Supplementary Fig. 1b).

On the other hand, the English prompt is tokenized and English tokens embeddings are produced for each
tokens. The 𝐾 resampled DNA embedding vectors are then inserted in place of the DNA sequence placeholder
tokens in the English input sequence. In the case of multiple input DNA sequences, these operations are applied
consecutively and independently for each DNA sequence. We experimented with several values of 𝐾 in practice
and we observed that low values such as 1 or 4 are not enough for the DNA encoder to impact the behavior
of the frozen English decoder. We found 𝐾 = 64 to provide a good trade-off between the input length of the
English decoder and the performance in practice.

During inference, the DNA encoder embeddings for the DNA sequences are computed only once. The inference
is done autoregressively by predicting sequentially each new token until an end of sequence token is predicted.
The key, queries and values of the English decoder are cached during generation to avoid computing unnecessary
operations. We use temperature sampling with a temperature of 𝜏 = 0.001.

The whole codebase of the ChatNT has been developed in Jax [77] using Haiku [78] for neural networks
implementation. All trainings were performed on a cluster of 8 GPU H100 instances and evaluations of the
model can be done in a single GPU A100-80gb. All trained parameters from the DNA encoder and perceiver
projection as well as optimizer accumulators and all frozen parameters from the English decoder are stored
and updated in float32.
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Training

ChatNT was trained using Adam optimizer [79] with 𝑙𝑟 = 3𝑒−5 and default settings for other hyperparameters:
𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 1𝑒−8, 𝜖root = 0.0. We used gradient clipping of 1 and accumulated gradients over a
batch size of 65, 536 tokens, equivalent to 256 samples. We used an uniform sampling over tasks per batch
such that each batch has the same proportion of samples per task. We trained the model on the 27-task dataset
for 2B tokens (7.8M samples) on a cluster of 8 GPU H100 over 4 days.

Hyperparameters

Below we describe all hyperparameters for the different parts of ChatNT.

DNA encoder Perceiver Resampler English decoder
Number of layers 29 3 32
Number of heads 16 20 32
Embedding dimension 1024 4096 4096
Feed forward dimension 4096 11008 11008
Activation type swish GeLu swiGlu
Positional encoding type RoPe RoPe RoPe
Total number of parameters 500M 800M 7B
Input tensor shape (1, 2048) (1, 2048, 1024) (1, 1024, 4096)
Output tensor shape (1, 2048, 1024) (1, 64, 4096) (1, 1024, 32000)
Float Precision Float32 Float32 Float32
Initialization Pre-trained (NT-v2-500m) From scratch Pre-trained (vicuna-7b)
Update Updated Updated Frozen

Evaluation

Evaluating the performance of ChatNT can be done in a single GPU A100 in batches of 32 samples and takes 1:40
minutes to generate a maximum of 40 tokens per sample (13 tokens per second). For each task, we evaluated
ChatNT on upmost 5, 000 sampled test samples and report the metric used in the respective benchmark study
(Supplementary Table 1 and 2).

Genomics instructions datasets

Instructions for the Nucleotide Transformer benchmark

We created an instructions version of the Nucleotide Transformer benchmark [26] (Supplementary Table 1).
To convert the DNA sequence datasets into instructions datasets, we curated dozens of English questions and
answers for each task and sampled a question/answer pair per input DNA sequence. We used the DNA token
placeholder <DNA> in the question when referring to the input DNA sequences. The answer contains the
classification label for the respective input sequence. We converted all 18 binary/multi-label classification
datasets into diverse question/answer instructions for each DNA sequence. We provide for each task train
and test sets containing different DNA sequences as well as different questions to assess the performance and
English generalization capabilities of the model. We kept the same train and test sets as the original dataset.

New curated genomics instructions dataset of biologically relevant tasks

The new genomics instructions dataset created here contains a set of 27 tasks framed in English derived from
different studies (more details in Supplementary Table 2). It covers several regulatory processes related to
DNA (21 tasks), RNA (3) and protein sequences (3). These tasks are derived from multiple species, including
human, mouse, fly and plants. Among all tasks there are 15 binary classification, 2 multi-label classification and
10 regression tasks. The number of training examples per task ranges from 5.5𝐾 to 3𝑀 . See Supplementary
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Information for all details on the data references and processing for each specific task.

We converted the DNA sequence datasets into instructions datasets as described above for the Nucleotide
Transformer benchmark. The answer contains the classification label or regression score (up to decimal cases)
for the respective input sequence. In addition to simple examples with a single turn of question/answer with a
single sequence, we also added more complex examples with multiple turns with consecutive questions that
can be related or not, and exchanges where the question refers to multiple sequences. The final genomics
instructions dataset contains a total of 605 million DNA tokens, i.e. 3.6 billion base pairs, and 273 million
English tokens (including questions and answers).

We obtain for each task train and test sets containing different DNA sequences as well as different questions to
assess the performance and English generalization capabilities of the model.

Baselines for the genomics tasks

For each of the 27 genomics tasks, we compared the performance of ChatNT with the state-of-the-art method
for the respective dataset. These included the convolutional neural networks DeepSTARR [11], ChromTransfer
[56], APARENT2 [21] and Saluki [19]; and the fine-tuned foundation models based on Nucleotide Transformer
[26], agroNT [55], DNABERT [27] and ESM2 [48]. We used different performance metrics per task to follow
the same metric used in the respective studies. Details on the baseline method and performance metric per
task can be found in Supplementary Table 2. Most baseline performance metrics were directly retrieved from
the respective papers. Only for ESM2 we had to rerun them on the updated dataset versions.

Calibration of ChatNT predictions

We developed an approach to assess and calibrate the confidence of ChatNT answers for binary classification
tasks.

For a given binary classification task, we select 𝑁 examples of positive and negative answers each, selected
from the respective task’s test set. We note these examples respectively ypos𝑖 and yneg𝑖 where 0 ≥ 𝑖 > 𝑁 . Then,
for a given question x and DNA sequence s, we compute the average perplexity of the model over the positive
and negative examples respectively. We denote these two values as 𝑝𝑝pos𝜃 (x, s) and 𝑝𝑝neg𝜃 (x, s), respectively,
where 𝜃 represents the ChatNT weights tensor. We compute them as follow:

𝑝𝑝pos𝜃 (x, s) =
1

𝑁

𝑁−1∑︁
𝑖=0

exp

⎛⎝∑︁
𝑗

𝑝𝜃
(︀
(ypos𝑖 )𝑗 |(x, s,ypos𝑖 )

)︀
log

(︀
𝑝𝜃

(︀
(ypos𝑖 )𝑗 |(x, s,ypos𝑖 )

)︀)︀⎞⎠
where (ypos𝑖 )𝑗 denotes the j-th token of answer ypos𝑖 and 𝑝𝜃

(︀
(ypos𝑖 )𝑗 |(x, s,ypos𝑖 )

)︀ returns the probability of token
𝑗 given the question, DNA sequence and tokens from the answers up to the j-th one according to ChatNT. The
negative perplexity values are computed similarly over negative answers.

Those perplexity values towards positive and negative answers represent a measure of how well the model
aligns the question to those answers. We inerpret them directly as logits and use a softmax transformation to
compute probabilities for the respective class for the input question. This method allows to derive probabilities
from ChatNT for each question example. We applied this approach to 1, 000 test examples per task.

To calibrate those predictions, we first compute perplexity-based probabilities to 10, 000 training examples as
our calibration dataset and use them to fit a Platt’s model [65]. More specifically, we use logistic regression
from scikit-learn [80] as the calibrator model and trained it with the following parameters with an inverse
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regularization factor 𝐶 = 0.1 and with the lbfgs solver. The logistic regression model learns to map the
perplexity-based probabilities from ChatNT onto a more accurate scale. We then apply this model to calibrate
the probabilities of the 1, 000 test examples mentioned above.

As metrics, we computed both Area under the ROC Curve (AUROC) and MCCs for both the original perplexity-
based probabilities and the calibrated ones.

Data availability

All input data are freely available from public sources referenced in the respective Methods section. All genomics
instructions datasets prepared for training ChatNT are available as supplementary files, including the DNA
sequences, questions and answers of each dataset. We also provide all questions and ChatNT answers on the
test set sequences used to evaluate its performance on the different tasks.

Code availability

We provide the pseudocode of the algorithmic steps and key concepts underlying our multi-modal model in the
section Supplementary Pseudocode.
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Supplementary Information

Genomics instructions dataset

Histone modifications

As representatives for yeast histone datasets, we used as tasks the presence of H3 and H4 histones along the yeast
genome derived from Chip-Chip experiments [81]. The processed data for the yeast H3 and H4 tasks was re-
trieved from the Nucleotide Transformer benchmark [26]. We used MCC as performance metric per histone type.

As representatives for human histone datasets, we used the abundance of the histone modifications H3K4me1,
H3K4me3 and H3K27ac along the human genome in the model cell line K562. Training and test DNA sequences
and respective positive and negative labels were obtained from the BEND benchmark study [54]. Each input
sequence is of length 512bp and is assigned a positive label if a histone bound to it carries the respective mark.
We reduced the size of the dataset for practical reasons by downsampling the negative sequences to twice the
number of positive sequences. We used AUROC as performance metric per histone modification.

Chromatin accessibility

We retrieved an example of a chromatin accessibility prediction task from ChromTransfer [56], selecting data
from the cell line HepG2 since it was the most challenging task in the dataset. We used their fine-tuning dataset
based on ENCODE data with input sequences of 600bp. Positive sequences were defined as regions that were
only accessible in that cell line among the six cell lines considered in the study (n=31, 211 for HepG2), while
negatives (n=54, 995) were sampled from the positives of the other cell lines and other regulatory regions from
ENCODE. We used the F1 score as performance metric.

DNA methylation

We collected DNA methylation processed data for the human embryonic cell line HUES64 from the BEND
benchmark study [54]. Each input sequence is of length 512bp and contains a CpG site at the center that is
either methylated or not. Similarly to histone marks, we reduced the size of the dataset by downsampling the
negative sequences to twice the number of positive sequences. We used AUROC as performance metric similar
to the BEND benchmark.

Human and mouse regulatory elements

We retrieved the dataset of human and mouse promoter sequences used in the Nucleotide Transformer bench-
mark [26], originally derived from DeePromoter [82]. We considered sequences of 300bp that span 249bp
upstream and 50bp downstream of transcription start sites. This resulted in 29, 597 promoter regions, of which
3, 065 contain and 26, 532 do not contain a TATA-box motif. We used the same negative sets, ending up in a
total of 59, 194 sequences. We used these sequences for three different binary classification datasets: classifying
sequences as promoters (NT_promoter_all), promoters without a TATA-box motif (NT_promoter_no_tata), and
promoters with a TATA-box motif (NT_promoter_tata).

For human enhancer prediction tasks we used the enhancer dataset from the Nucleotide Transformer benchmark
[26], curated priory at [83]. This dataset contains enhancer (strong or weak) and non-enhancer sequences
of 200bp each. We derived two tasks from this dataset: a binary classification task for predicting enhancers
(strong and weak combined; NT_enhancers) and a multi-label classification task for classifying a sequence as a
strong enhancer, weak enhancer or not an enhancer (NT_enhancer_types). Each dataset contained 14, 968
training sequences and 400 test sequences.

Multi-species splice sites

We collected the splice site prediction tasks from the Nucleotide Transformer benchmark [26]. These were
based on two original datasets.

24

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 11, 2024. ; https://doi.org/10.1101/2024.04.30.591835doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.30.591835
http://creativecommons.org/licenses/by-nc-nd/4.0/


ChatNT: A Multimodal Conversational Agent for DNA, RNA and Protein Tasks

We used a dataset originally from SpliceFinder [84] that contains a training set (n=27, 000) of 400bp sequences
that contain donor, acceptor, or non-splice sites detected in human genes. The test set (n=3, 000) contains sim-
ilar types of sequences from human but also additional species: mouse, rat, fly and zebrafish. This dataset was
transformed in a multi-label classification task with labels being acceptor, donor or none (NT_splice_sites_all).

We used two additional binary classification tasks for the predictions of donor (NT_splice_sites_donors) or
acceptor (NT_splice_sites_acceptors) splice sites. This task was derived from the Spliceator dataset [16], based
primarily on the G3PO database, which included sequences from 147 phylogenetically diverse organisms (rang-
ing from protists to primates, including humans). All sequences were 600bp and were labeled as positive if they
included a splicing site at the center (i.e. an acceptor or donor site, respectively). The NT_splice_sites_donors
dataset contained 19, 775 training and 2, 198 test sequences while the NT_splice_sites_acceptors dataset con-
tained 19, 961 training and 2, 218 test sequences.

Plant enhancers

We retrieved the binary classification task for predicting enhancers in the cassava plant (Manihot esculenta)
seedlings from the AgroNT benchmark [55]. This is a balanced and GC-matched dataset of 1000bp sequences
that contain or do not contain enhancers. Sequences from every chromosome except 9 and 17 were used for
training (n=16, 852) while sequences from the chromosome 17 were used for testing (n=812).

Plant lncRNAs

For the binary classification task of predicting plant long non-coding RNAs (lncRNA), we used the dataset of
Sorghum bicolor from the AgroNT benchmark [55]. This dataset contains lncRNA sequences with a length
smaller than 6, 000bp labelled as positives and length- and GC-matched mRNA sequences labelled as negatives.
We used the same training (8, 654) and test (734) sets.

Plant promoter strength

The promoter strength dataset from plants was derived from the AgroNT benchmark [55]. This dataset contains
170bp promoter sequences from three different plant species whose strength was tested in tobacco leaves and
maize protoplasts. We used the resultant quantitative values for the two different promoter strength regression
tasks.

Enhancer activity

For tasks related to enhancer activity we considered the DeepSTARR dataset [11]. The dataset is composed of
484, 052 DNA sequences of length 249bp, each measured for their quantitative enhancer activity towards a
developmental or a housekeeping promoter in Drosophila melanogaster fruitfly S2 cells. We considered these
two measures as two regression tasks and used the same training (402, 304) and test (41, 184) set sequences.

RNA polyadenylation

We retrieved the data for the RNA polyadenylation task from APARENT2 [21]. This dataset was originally
derived from Bogard et al. [20] and we applied the same processing as in APARENT2 to make the training data
more uniform. It contains 185bp sequences with randomized proximal polyadenylation signal (PAS) sequences
that were tested within 12 diverse 3UTR contexts in an MPRA experiment. The objective is to predict the
total isoform proportion of a far-away competing distal PAS. This regression task contains 3.3 million training
sequences and 80, 000 sequences testing.

RNA degradation

We retrieved the data for the human and mouse RNA degradation tasks from Saluki [19]. This dataset contains
processed half-lives for different human and mouse RNA sequences. We used the cross-validation dataset from
fold 0 and removed RNA sequences longer than 12kb. This resulted in 10, 377 training and 1, 297 testing human
sequences, and 10, 989 training and 1, 374 testing mouse sequences.
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Protein tasks

We retrieved three different protein tasks related to protein fluorescence, stability and meting point, all pre-
dicted from the respective CDS sequence, from Boshar et al. [57].

Protein fluorescence: Estimating the fitness landscape of protein variants which are many mutations away from
the wildtype sequence is one of the core challenges of protein design. This task evaluates a model’s ability to
predict log-fluorescence of higher-order mutant green fluorescent protein (GFP) sequences. Original data is
from an experimental study of the GFP fitness landscape [85]. Inspired from the TAPE and PEER benchmarks
[86, 87], we restrict the training set to amino-acid sequences with three or fewer mutations from parent GFP
sequences, while the test set is all sequences with four or more mutations.

Protein stability: It is important for models trained on diverse sequences to be able to accurately predict a small
region of the fitness landscape. This task evaluates how well models predict stability around a small region
of high-fitness sequences. Coding sequences and labels were taken from the supplementary material of the
original experimental study [88]. Labels indicate a peptide’s ability to maintain structure at increasing levels
of protease, which serves as a proxy for stability.

Protein melting point: Predicting protein melting point can be a challenging task as even single residue
mutations can have large impacts [89]. Melting point prediction is a sequence-level regression task that
evaluates a model’s ability to predict a measure of melting temperature. We follow the same “mixed” splits
described in FLIP [22] which seek to avoid over-emphasis of large clusters. Sequences are clustered at 20%
identity with 80% of clusters assigned to the train dataset and 20% of clusters assigned to the test dataset.
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Supplementary Tables

Task name Biological process Species No. classes/regression Sequence length (bp) N (train/test) Dataset source
H3 histone Histones yeast 2 500 13140/1461 NT-benchmark
H4 histone Histones yeast 2 500 13468/1497 NT-benchmark
H3K4me1 Histones yeast 2 500 28509/3168 NT-benchmark
H3K4me2 Histones yeast 2 500 27614/3069 NT-benchmark
H3K4me3 Histones yeast 2 500 25953/2884 NT-benchmark
H3K9ac Histones yeast 2 500 25003/2779 NT-benchmark
H3K14ac Histones yeast 2 500 29743/3305 NT-benchmark
H3K36me3 Histones yeast 2 500 31392/3488 NT-benchmark
H3K79me3 Histones yeast 2 500 25953/2884 NT-benchmark

H4ac Histones yeast 2 500 30685/3410 NT-benchmark
Promoters Promoters human/mouse 2 300 53276/5920 NT-benchmark

TATA promoters Promoters human/mouse 2 300 5509/621 NT-benchmark
Non-TATA promoters Promoters human/mouse 2 300 47767/5299 NT-benchmark

Splice sites Splice sites human/mouse/rat/fly/zebrafish 3 400 27000/3000 NT-benchmark
Splice donors Splice sites 147 species 2 600 19775/2198 NT-benchmark

Splice acceptors Splice sites 147 species 2 600 19961/2218 NT-benchmark
Enhancers Enhancers human 2 200 14968/400 NT-benchmark

Enhancer types Enhancers human 3 200 14968/400 NT-benchmark

Supplementary Table 1 | Information about all tasks in the Nucleotide Transformer benchmark [26].
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Supplementary Figures
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Supplementary Figure 1 | Perceiver projection. a) Projection without cross-attention to English question. b) Projection with
cross-attention to english question used in final ChatNT. c) Radar plot comparing Chat-NT with the two projections on the 18
textualized tasks of the Nucleotide Transformer benchmark [26]. MCC performance per task is shown. d) Average performance
across the 18 tasks. Bar-plots display the average MCC over all tasks and the standard error of the mean.
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Supplementary Figure 2 | Performance of ChatNT, ChatNT with no english-aware projection and 13 different foundation
models on the 18 tasks from the Nucleotide Transformer benchmark [26].
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ChatNT: A Multimodal Conversational Agent for DNA, RNA and Protein Tasks

Is there a TATA promoter
in human or mouse cells
within this nucleotide
sequence @myseq.fna?

No, the promoter region of 
the sequence does not
have a TATA box motif.

AGTAAAACGATGCATCGTAGCTAGCACGATC

myseq.fna

promoter

Is there an enhancer 
active in human cells 
present in this sequence 
@myseq.fna?

No, there is no enhancer 
element in the nucleotide 
sequence.

TTCTCGGCAGGGCTCTCCGGGCGGCACTGA

myseq.fna

Enhancer

Yes, there is a donor 
splice site located in 
the sequence.

Are there any human 
acceptor or donor splice 
sites located in this 
sequence @myseq.fna?

CACTCACATCCAGGAAGGTAGTCCCATGCGT

myseq.fna

Splice Site

TCGTAAGCTAGCATCGATCGATCGATAGCATC

myseq.fna

H3K4me3

Is the @myseq.fna
associated with accessible
chromatin in human
hepatoma HepG2 cells?

No, this sequence is not in
ccessible chromatin in
hepatoma HepG2 cells.

ACTGAGTCGATCGATCGATCGATCGATCGAT

myseq.fna

closed chromatin

Can an enhancer from
cassava plant seedlings
be found within this DNA
 sequence @myseq.fna?

Yes, the sequence contains
an enhancer in cassava
plant seedlings. 

ATGCTAGCGAGGATACCAGCTACGTAGCATGC

myseq.fna

Enhancer

Is there any indication that
this sequence of Sorghum
bicolor @myseq.fna
might contain a lncRNA?

No, there is no lncRNA
within this sequence of
Sorghum bicolor.

ATCGATGCATGCTAGCTAGCATCGATCGATGC

myseq.fna

The promoter strength of
that sequence in maize
protoplasts is 2.9.

What is the promoter
strength of the sequence
@myseq.fna in plant maize
protoplasts from -10 to 10?

ATCGATGCATGCAAGCTAGCTATGCATGCAT

myseq.fna

Promoter

Within -10 to 10, what is the
measured promoter strength
of sequence @myseq.fna
in plant tobacco leaves?

The promoter strength of
that sequence is 0.3 in
plant tobacco leaves. 

GACTAACGATCGAATCGATCGATGCAATGCAT

myseq.fna

Promoter

Determine the developmental
enhancer activity score of the
given @myseq.fna sequence
from Drosophila melanogaster
S2 cells within -10 to 10.

That sequence has a
developmental enhancer
activity score of 7.8.

TTCTCGGCAGGGCTCTCCGGGCGGCACTGA

myseq.fna

Enhancer

The housekeeping
enhancer activity of that
sequence is 0.2.

What is the housekeeping
enhancer activity of the DNA
sequence @myseq.fna from
Drosophila melanogaster S2
cells, between -10 and 10?

ATCGATCGATCGTAGCATGCATGCATGCATGC

myseq.fna

Yes, this sequence is
marked by H3K4me3 
in leukemia K562 cells.

Is this sequence 
@myseq.fna marked 
by histone modification 
H3K4me3 in human 
myelogenous leukemia 
K562 cells? 

Yes, that CpG site is
methylated in human
embryonic stem cells.

Is there methylation at the
cpg site in the middle of
this sequence @myseq.fna
in human embryonic
stem cells? 

ATGCATGCTAGCATACGATCGATGCATGCATAC

myseq.fna

M

Supplementary Figure 3 | Examples of conversations included in ChatNT training data for different genomics tasks.
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This RNA sequence has
a polyadenylation ratio of
the proximal site of 0.3.

Assess the polyadenylation
ratio of the proximal site
of this RNA sequence
@myseq.fna in human
HEK293 cells on a scale
from 0 to 1.

ACGTATCGATGCTAGCTAGCTACGATTCGCTA

myseq.fna

This sequence has a
degradation rate of 4.8.

What is the degradation rate
exhibited by the given
mouse RNA sequence
@myseq.fna, measured
within the range of -5 to 5?

TTCTCGGCAGGGCTCTCCGGGCGGCACTGA

myseq.fna

The degradation rate for 
this sequence is 1.83.

Determine the degradation 
rate of the human RNA 
sequence @myseq.fna
on a scale from -5 to 5.

TTCTCGGCAGGGCTCTCCGGGCGGCACTGA

myseq.fna

Supplementary Figure 4 | Examples of conversations included in ChatNT training data for different RNA tasks, using the
respective complementary DNA sequence.

This protein demonstrates
a fluorescence level of 2.3.

What is the fluorescence
level exhibited by the
protein with this given CDS
sequence @myseq.fna,
measured within the range
of -5 to 5?

ACGTATCGATGCTAGCTAGCTACGATTCGCTA

myseq.fna

CDS

This protein exhibits a 
stability of 4.05.

What is the measured
melting point of the protein
with this CDS sequence
@myseq.fna, considering
a range from 0 to 100?

TTCTCGGCAGGGCTCTCCGGGCGGCACTGA

myseq.fna

CDS

This protein exhibits a 
stability of 4.05.

Determine the stability of 
the protein whose CDS 
sequence is @myseq.fna 
on a scale from -5 to 5.

TTCTCGGCAGGGCTCTCCGGGCGGCACTGA

myseq.fna

CDS

Supplementary Figure 5 | Examples of conversations included in ChatNT training data for different protein tasks, using
the respective CDS sequence.
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ChatNT: A Multimodal Conversational Agent for DNA, RNA and Protein Tasks

Supplementary Pseudocode

The provided pseudocode is intended for illustrative purposes only and is not meant to be executable. It outlines
the algorithmic steps and key concepts underlying our multi-modal model. In our implementation, we utilized
JAX to leverage its high-performance computing capabilities and optimization techniques. In the pseudocode
below we make the following assumptions:

• We use a Nucleotide Transformer model to transform DNA sequences into embeddings. Here the
nucleotide_transformer function returns the final embedding vector before the language model head.

• We use a Llama model to decode prompt embeddings into answers. Here the llama object can be used
either to directly generate a sentence given a prompt embedding or to compute perplexity over a candidate
answer given a prompt embedding.

• For the sake of readability and understandability we do not show code and infrastructure optimization
made, though in our implementation we relied on data parallelism, model parallelism, mixed precision,
gradient accumulation and gradient checkpointing.

• We present in the code below the English-aware projection module that led to the best results during our
experiments. This module uses a multi-modal perceiver resampler architecture and has two main goals:
(1) projecting the DNA embeddings produced by the Nucleotide Transformer into the input embedding
space of Llama and (2) resample the DNA embeddings into a fixed size embedding that does not depend
anymore of the DNA sequence length.

• We present how we parse the model’s output to compute evaluation metrics for regression and cliassifica-
tion tasks. In both cases, our code makes the assumption that the model’s output is probably structured
and that the label / floating value can be extracted directly with a regex. While there is no constraint
enforcing this in practice and that the model could produce any arbritary answer, we observed in our
experiments that after a few gradient descents only, the model outputs structured answers satisfying
these constraints. We haven’t observed counter examples so far in our experiments. However, this script
wouldn’t work to evaluate a randomly initialized model.
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1
2 import torch # assuming torch as the deep learning framework here
3
4 def encode_inputs(dna_sequence_batch: List[str], english_question_batch: List[str]) -> torch.Tensor:
5 """
6 Encode DNA and English prompts inputs in a format ready to be decoded by the English decoder model.
7
8 Args:
9 dna_sequence_batch: A list of DNA sequences (e.g., ["ATCGGCTA", "AGTTCCA"]).
10 english_question_batch: A list of English questions with "<DNA>" placeholders.
11
12 Returns:
13 Encoded batch ready to be processed by the English decoder model.
14 """
15 batch_size = len(dna_sequence_batch)
16
17 # 1. DNA Encoding
18 dna_tokens_batch = [tokenize_dna(seq) for seq in dna_sequence_batch]
19 dna_embeddings = nucleotide_transformer(dna_tokens_batch)
20 # (batch_size, dna_seq_length, dna_embed_dim)
21
22 # 2. English Question Processing
23 english_tokens_batch = [tokenize_english(question) for question in english_question_batch]
24 english_embeddings = llama.embed_tokens(english_tokens_batch)
25 # (batch_size, english_seq_length, english_embed_dim)
26
27 # 3. Perceiver Resampling - English aware projection here
28 projected_dna_embeddings = projection_module(dna_embeddings, english_embeddings)
29 # (batch_size, resampled_length, english_embed_dim)
30 # same output shape but takes only dna_embeddings as input when the projection is not English aware
31
32 # Replace "<DNA>" Placeholder Embeddings
33 for batch_idx in range(batch_size):
34 # Find placeholder index, assuming there is only one placeholder
35 placeholder_index = [token for token in english_tokens_batch[batch_idx] if token == "<DNA>"][0]
36
37 # Use the index to insert the project DNA embeddings
38 embeddings_before = english_embeddings[batch_idx, :(placeholder_index - 1)]
39
40 # Remove the embedding of the placeholder in the process
41 embeddings_after = english_embeddings[batch_idx, placeholder_index:]
42 projected_dna_embedding = projected_dna_embeddings[batch_index]
43 english_embeddings[batch_idx] = torch.cat(
44 [embeddings_before, projected_dna_embedding, embeddings_after],
45 dim=1
46 )
47
48 return english_embeddings
49
50 def multi_modal_inference(dna_sequence_batch: List[str], english_question_batch: List[str]) -> List[str]:
51 """
52 Performs inference using a multi-modal model for DNA sequence and English question batches.
53
54 Args:
55 dna_sequence_batch: A list of DNA sequences (e.g., ["ATCGGCTA", "AGTTCCA"]).
56 english_question_batch: A list of English questions with "<DNA>" placeholders.
57
58 Returns:
59 A list of generated answer strings.
60 """
61 batch_size = len(dna_sequence_batch)
62
63 # 1. inputs Encoding
64 english_embeddings = encode_inputs(dna_sequence_batch, english_question_batch)
65
66 # 2. Llama Decoding
67 answer_tokens_batch = llama.generate(english_embeddings)
68 answer_batch = [decode_tokens(tokens) for tokens in answer_tokens_batch] # List of answer strings
69
70 return answer_batch
71
72 # --- Example Usage ---
73 dna_sequence_batch = ["ATCGGCTA", "AGTTCCA"]
74 english_question_batch = [
75 "Can you find a splice site in the sequence <DNA>?",
76 "Is the <DNA> sequence likely to be a promoter?"
77 ]
78
79 answer_batch = multi_modal_inference(dna_sequence_batch, english_question_batch)
80 print(answer_batch)
81

Supplementary Pseudocode 1 | Multi-Modal Inference.
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1
2 def projection_module(dna_embeddings: torch.Tensor, question_embedding: torch.Tensor) -> torch.Tensor:
3 """
4 Projects dna embeddings into a fixed size embeddings into Llama input embedding space. This
5 projection is English aware, i.e. it projects conditionned on the question being asked to the
6 model.
7
8 Args:
9 dna_embeddings: Output of the Nucleotide Transformer, shape=(batch_size, dna_seq_length, dna_embed_dim)
10 question_embedding: Embedded question, shape=(batch_size, question_seq_length, english_embed_dim)
11
12 Returns:
13 Projected fixed size embeddings of shape=(batch_size, resamped_length, english_embed_dim)
14 """
15 queries = torch.nn.Parameter(torch.randn(resampled_length, english_embed_dim)) # Learnable queries
16 dna_embeddings = torch.nn.Linear(english_embed_dim)(dna_embeddings) # project dimension
17
18 # start perceiver resampler
19 x = queries
20 for _ in range(num_module_layers):
21 x1 = torch.cat([dna_embeddings, x], axis=-1)
22 x = cross_attention(x1, dna_embeddings) + x
23 # cross_attention includes layer normalization
24 x2 = torch.cat([question_embeddings, x], axis=-1)
25 x = cross_attention(x2, question_embeddings) + x
26 x = ffn_layer(x) # ffn module using a swiGLU activation
27 # (batch_size, resampled_length, english_embed_dim)
28
29 return x
30

Supplementary Pseudocode 2 | English-aware Projection Module.
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ChatNT: A Multimodal Conversational Agent for DNA, RNA and Protein Tasks

1
2 def train_multi_modal_model(
3 dna_sequences: List[List[str]],
4 english_questions: List[List[str]],
5 answers: List[List[str]],
6 num_epochs: int,
7 batch_size: int,
8 learning_rate: float
9 ):
10 """
11 Trains the multi-modal model on DNA-question-answer data.
12
13 Args:
14 dna_sequences: A list of batches of DNA sequences.
15 english_questions: A list of batches of English questions with "<DNA>" placeholders.
16 answers: A list of batches of corresponding answer strings.
17 num_epochs: The number of training epochs.
18 batch_size: The batch size for training.
19 learning_rate: The learning rate for the Adam optimizer.
20 """
21
22 loss_fn = nn.CrossEntropyLoss()
23 optimizer = Adam(
24 list(nucleotide_transformer.parameters()) + list(perceiver_resampler.parameters()),
25 lr=learning_rate
26 ) # Freeze Llama but train Nucleotide Transfomer and projection
27
28 for epoch in range(num_epochs):
29 total_loss = 0
30
31 for dna_batch, question_batch, answer_batch in zip(dna_sequences, english_questions, answers):
32 optimizer.zero_grad()
33
34 english_embeddings = encode_inputs(dna_sequence_batch, english_question_batch)
35 answer_tokens = [tokenize_english(answer) for answer in answer_batch]
36 predicted_answer_logits = llama.compute_logits(english_embeddings, answer_tokens)
37
38 # Calculate loss (flatten logits and answer tokens)
39 loss = loss_fn(
40 torch.flatten(predicted_answer_logits[:, :-1, :], 0, 1),
41 torch.flatten(torch.tensor(answer_tokens[:, 1:, :]), 0, 1)
42 )
43
44 total_loss += loss.item()
45 loss.backward()
46 optimizer.step()
47
48 print(f"Epoch {epoch + 1}/{num_epochs}, Loss: {total_loss / len(dna_sequences):.4f}")
49
50 # --- Example Usage ---
51
52 # Load your dataset into dna_sequences, english_questions, and answers
53 # ...
54 train_multi_modal_model(
55 dna_sequences,
56 english_questions,
57 answers,
58 num_epochs=10,
59 batch_size=256,
60 learning_rate=3e-4
61 )
62

Supplementary Pseudocode 3 | Multi-Modal Training.
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ChatNT: A Multimodal Conversational Agent for DNA, RNA and Protein Tasks

1 import torch
2 from sklearn.linear_model import LogisticRegression # For Platt scaling
3
4
5 def compute_confidence_logits(
6 dna_sequence_batch: List[str],
7 english_question_batch: List[str],
8 answers: List[str],
9 ) -> float:
10 """
11 Compute model confidence logit for binary questions given a set of possible answers.
12
13 Args:
14 dna_sequence_batch: A list of DNA sequences (e.g., ["ATCGGCTA", "AGTTCCA"]).
15 english_question_batch: A list of English binary questions with "<DNA>" placeholders.
16 answers: A list of possible answer strings.
17
18 Returns:
19 Batch of logit values.
20 """
21 english_embeddings = encode_inputs(dna_sequence_batch, english_question_batch)
22
23 # Compute Perplexity over Answers
24 logits = []
25 for answer in answers:
26 answer_tokens = tokenize_english(answer)
27 logits.append(llama.compute_perplexity(english_embeddings, answer_tokens))
28
29 logits = torch.mean(torch.tensor(logits), dim=-1).item() # Average perplexities
30 return logits
31
32
33 def calibrate_confidence(
34 dna_sequences: List[str],
35 english_questions: List[str],
36 true_labels: List[int],
37 positive_answers: List[str],
38 negative_answers: List[str]
39 ) -> LogisticRegression:
40 """
41 Calibrates confidence scores using Platt scaling on a batch of data.
42
43 Args:
44 dna_sequences: A list of DNA sequence strings.
45 english_questions: A list of binary question strings.
46 true_labels: A list of true binary labels (0 for negative, 1 for positive).
47 positive_answers: A list of possible positive answer strings.
48 negative_answers: A list of possible negative answer strings.
49
50 Returns:
51 The fitted Platt scaling (logistic regression) model.
52 """
53 logits = []
54 positive_logits = compute_confidence_logits(dna_sequences, english_questions, positive_answers)
55 negative_logits = compute_confidence_logits(dna_sequences, english_questions, negative_answers)
56 logits = torch.cat([positive_logits, negative_logits], dim=-1)
57
58 platt_scaler = LogisticRegression()
59 platt_scaler.fit(logits, true_labels)
60 return platt_scaler
61

Supplementary Pseudocode 4 | Evaluation and calibration of model’s confidence on binary classification tasks.
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ChatNT: A Multimodal Conversational Agent for DNA, RNA and Protein Tasks

1
2 import re # For regular expression matching
3 import numpy as np
4 from scipy.stats import pearsonr, spearmanr
5 from sklearn.metrics import r2_score
6
7 def evaluate_regression(
8 dna_sequences: List[str],
9 english_questions: List[str],
10 true_values: List[float]
11 ) -> Dict[str, float]:
12 """
13 Evaluates the model's performance on regression tasks using various metrics.
14
15 Args:
16 dna_sequences: A list of DNA sequence strings.
17 english_questions: A list of regression questions with "<DNA>" placeholders.
18 true_values: A list of corresponding ground truth values (floats).
19
20 Returns:
21 A dictionary containing regression metrics: R-squared, Pearson correlation, Spearman correlation.
22 """
23 predicted_values = []
24 for dna, question in zip(dna_sequences, english_questions):
25 answer = multi_modal_inference(dna, question)
26
27 # Extract numerical value using regex
28 match = re.search(r"(\d+\.?\d*)", answer)
29 if match:
30 predicted_value = float(match.group(1))
31 predicted_values.append(predicted_value)
32 else:
33 raise ValueError(f"Could not extract numerical value from answer: {answer}")
34
35 # Calculate metrics (make sure true_values and predicted_values are numpy arrays)
36 true_values = np.array(true_values)
37 predicted_values = np.array(predicted_values)
38 r2 = r2_score(true_values, predicted_values)
39 pearson_corr, _ = pearsonr(true_values, predicted_values)
40 spearman_corr, _ = spearmanr(true_values, predicted_values)
41
42 return {
43 "R-squared": r2,
44 "Pearson Correlation": pearson_corr,
45 "Spearman Correlation": spearman_corr,
46 }
47
48 # --- Example Usage ---
49 dna_sequences = ["ATCGGCTA", "AGTTCCA"]
50 english_questions = [
51 "Assess the polyadenylation ratio of the proximal site of this RNA sequence <DNA> "
52 "in human HEK293 cells on a scale from 0 to 1.",
53 "Determine the degradation rate of the human RNA sequence <DNA> on a scale from -5 to 5."
54 ]
55 true_values = [0.3, 1.83]
56 metrics = evaluate_regression(dna_sequences, english_questions, true_values)
57 print(metrics)
58

Supplementary Pseudocode 5 | Model’s evaluation for regression tasks.
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ChatNT: A Multimodal Conversational Agent for DNA, RNA and Protein Tasks

1
2 import re
3 from collections import Counter
4 from sklearn.metrics import f1_score, precision_score, matthews_corrcoef, accuracy_score
5
6 def evaluate_classification(
7 dna_sequences: List[str],
8 english_questions: List[str],
9 true_labels: List[str],
10 possible_labels: List[str]
11 ) -> Dict[str, float]:
12 """
13 Evaluates the model's performance on classification tasks using various metrics.
14
15 Args:
16 dna_sequences: A list of DNA sequence strings.
17 english_questions: A list of classification questions with "<DNA>" placeholders.
18 true_labels: A list of corresponding true labels (strings).
19 possible_labels: A list of all possible label strings for the task.
20
21 Returns:
22 A dictionary containing the classification metrics: accuracy, F1-score, precision, MCC.
23 """
24 predicted_labels = []
25 for dna, question in zip(dna_sequences, english_questions):
26 answer = multi_modal_inference(dna, question)
27
28 # Extract predicted label(s) using regex
29 extracted_labels = re.findall(rf"\b({'|'.join(possible_labels)})\b", answer, re.IGNORECASE)
30
31 # Validate predictions
32 if len(extracted_labels) != 1:
33 raise ValueError(f"Invalid number of labels predicted: {extracted_labels}")
34
35 predicted_labels.append(extracted_labels[0].lower()) # Store the predicted label
36
37 # Calculate metrics (make sure the labels are numerical for some metrics)
38 label_encoder = {label: i for i, label in enumerate(possible_labels)}
39 true_labels_encoded = [label_encoder[label] for label in true_labels]
40 predicted_labels_encoded = [label_encoder[label] for label in predicted_labels]
41
42 accuracy = accuracy_score(true_labels_encoded, predicted_labels_encoded)
43 f1 = f1_score(true_labels_encoded, predicted_labels_encoded, average='weighted') # Weighted for multi-class
44 precision = precision_score(true_labels_encoded, predicted_labels_encoded, average='weighted')
45 mcc = matthews_corrcoef(true_labels_encoded, predicted_labels_encoded)
46
47 return {
48 "Accuracy": accuracy,
49 "F1-score": f1,
50 "Precision": precision,
51 "MCC": mcc
52 }
53
54 # --- Example Usage ---
55 dna_sequences = ["ATCGGCTA", "AGTTCCA"]
56 english_questions = [
57 "Is the <DNA> associated with accessible chromatin in human hepatoma HepG2 cells?",
58 "Is this sequence <DNA> marked by histone modification H3K4me3 in human myelogenous leukemia K562 cells?"
59 ]
60 true_labels = ["no", "yes"]
61 possible_labels = ["yes", "no"] # Example for binary classification
62
63 metrics = evaluate_classification(dna_sequences, english_questions, true_labels, possible_labels)
64 print(metrics)
65

Supplementary Pseudocode 6 | Model’s evaluation for classification tasks.
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