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Abstract 81 

The expansion of biobanks has significantly propelled genomic discoveries yet the sheer scale of 82 
data within these repositories poses formidable computational hurdles, particularly in handling 83 
extensive matrix operations required by prevailing statistical frameworks. In this work, we 84 
introduce computational optimizations to the SAIGE (Scalable and Accurate Implementation of 85 
Generalized Mixed Model) algorithm, notably employing a GPU-based distributed computing 86 
approach to tackle these challenges. We applied these optimizations to conduct a large-scale 87 
genome-wide association study (GWAS) across 2,068 phenotypes derived from electronic health 88 
records of 635,969 diverse participants from the Veterans Affairs (VA) Million Veteran Program 89 
(MVP). Our strategies enabled scaling up the analysis to over 6,000 nodes on the Department of 90 
Energy (DOE) Oak Ridge Leadership Computing Facility (OLCF) Summit High-Performance 91 
Computer (HPC), resulting in a 20-fold acceleration compared to the baseline model. We also 92 
provide a Docker container with our optimizations that was successfully used on multiple cloud 93 
infrastructures on UK Biobank and All of Us datasets where we showed significant time and cost 94 
benefits over the baseline SAIGE model. 95 

Introduction 96 
 97 
The rapid expansion of biobanks has significantly advanced genomic discoveries, facilitating 98 
studies on the genetic basis of disease and catalyzing studies in personalized medicine. The 99 
increasing number of newly formed biobanks, alongside the continued growth of established 100 
ones, enables researchers to conduct studies with increasingly larger sample sizes, yielding more 101 
robust and generalizable findings. Furthermore, biobanks linked to electronic health records 102 
(EHR) have been instrumental in translational studies, providing data on both the genome and 103 
phenome in large populations (1-7).  104 
 105 
However, the unprecedented size of the data accessible via biobanks require researchers to 106 
consider the computational challenges arising from data complexity, analysis methodologies, 107 
statistical frameworks, and infrastructure constraints. Addressing the computational limitations 108 
requires development of innovative algorithms, optimization strategies, and adaptable computing 109 
architectures tailored to the unique requirements of biomedical research. Additionally, fostering 110 
collaboration among computational scientists, statisticians, and domain experts proves 111 
indispensable in crafting resilient computational tools and workflows capable of facilitating the 112 
efficient analysis of burgeoning biobank data. Leveraging the enhanced computational 113 
infrastructures afforded by high-performance computing (HPC) and cloud environments further 114 
augments the capacity for comprehensive analysis within the biomedical domain. 115 
  116 
One routine statistical analysis that utilizes genetic and phenotypic data available from large 117 
biobanks is the genome-wide association study (GWAS). The purpose of GWAS is to identify 118 
association between polymorphic DNA variants in the genome among biobank participants and a 119 
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phenotypic trait or disease of interest, typically extracted from EHR or clinical data from 120 
participants where the underlying computation involves millions of iterations of a generalized 121 
linear model over the available genetic exposures (8). Furthermore, the complexity of the 122 
analysis increases when state-of-the-art approaches extend the analysis to use multi-level models 123 
to better account for population architecture and relatedness, in addition to the volume of the data 124 
resulting in huge, dense matrix-matrix and matrix-vector operations that are performed as a part 125 
of statistical scaffolding (9-12). Compounding this computational complexity are data scaling 126 
challenges, including the desire to analyze the entire catalog of traits extracted from EHR data 127 
(i.e., the “phenome”, 100s-1000s of traits) and doing so across all population groups represented 128 
in order to capture the diverse representation that is increasingly available. The scale of this 129 
undertaking requires large amounts of disk space, fast processors, and innovative techniques to 130 
take advantage of the resources available.  131 
 132 
The U.S. Department of Veterans Affairs (VA) Million Veteran Program (MVP) stands as a 133 
pioneering research endeavor, continually expanding in scope and offering researchers a 134 
platform to tackle the aforementioned challenges. This biobank, aimed at advancing precision 135 
medicine and improving healthcare outcomes for Veterans, includes a large number of 136 
individuals from underrepresented populations. The VA and the Department of Energy (DOE) 137 
established an Interagency Agreement (IAA) to combine VA’s vast array of clinical and genomic 138 
data with DOE’s national computing capabilities, including the most powerful supercomputer in 139 
the Nation, to push the frontiers of precision medicine and computing with vision to improve the 140 
lives of Veterans and all Americans and support the national Precision Medicine Initiative. Its 141 
primary mission revolves around furnishing comprehensive genotype-phenotype insights into 142 
prevalent and significant health outcomes, leveraging the most extensive EHR-linked biobank in 143 
the United States. Among the formidable computational challenges encountered in this research 144 
is the task of conducting GWAS across a staggering 3.5 billion genetic variants, spanning 145 
thousands of traits gleaned from the electronic health records of 635,969 MVP participants. 146 
 147 
SAIGE (the Scalable and Accurate Implementation of Generalized Mixed Model algorithm) (10) 148 
is one such state-of-the-art multi-level modeling based GWAS approach designed to 149 
accommodate sample relatedness and manage unbalanced case-control ratios typical in biobanks 150 
like MVP. A crucial aspect of GWAS analysis entails constructing a Genetic Relationship Matrix 151 
(GRM), which measures the genetic relatedness or similarity among individuals within the study 152 
cohort. SAIGE offers users the option to generate either a sparse or a full GRM. While a sparse 153 
GRM boasts faster executions and lower memory demands, opting for a full GRM provides a 154 
more precise assessment of pairwise relatedness among all individuals, enhancing the depiction 155 
of genetic relationships. This proves invaluable for various downstream analyses, including 156 
estimating heritability, evaluating genetic correlations, and achieving a deeper understanding of 157 
the genetic architecture of the trait in question (14). To mitigate the computational burden 158 
associated with storing and inverting the full GRM, SAIGE employs the pre-conditioned 159 
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conjugate gradient (15) method to iteratively solve linear equations. Nevertheless, it still faces 160 
substantial computation challenges due to extensive matrix and vector multiplications across 161 
numerous iterations.  162 
 163 
In high-performance computing, processors face performance bottlenecks due to memory and 164 
disk input/output (I/O) operations. While processors execute computations rapidly, they depend 165 
on memory for data storage. Limited memory capacity necessitates frequent reads and writes to 166 
disk storage, slowing overall execution. Parallel processing distributes workloads across multiple 167 
compute processor units (CPU) but memory limitations persist. These bottlenecks are especially 168 
pronounced in large matrix operations. Graphics Processing Units (GPUs) provide an optimized 169 
architecture through high memory bandwidth and capacity (16), massive parallelism (17), and 170 
reduced data transfer between CPU and memory (18), particularly for large matrix operations. 171 
By leveraging these GPU attributes, computationally intensive tasks, like large matrix 172 
operations, can experience significance performance enhancements compared to CPU processing 173 
alone, mitigating memory and disk I/O bottlenecks. 174 
 175 
We adapted SAIGE, initially tailored for CPU infrastructure, to utilize both CPUs and GPUs at 176 
the DOE Oak Ridge Leadership Computing Facility (OLCF) Summit HPC. This adaptation 177 
markedly expedited the analysis process, resulting in a more than 20-fold acceleration, far 178 
surpassing what would have been attainable on a CPU-based cluster. Furthermore, our work 179 
provided a generic optimization framework for other analytical tools based on generalized linear 180 
mixed models using a full GRM. We also created a Docker container for deployment on various 181 
cloud infrastructures. We present a comparison of the time and cost between the SAIGE GPU 182 
and CPU versions. 183 
 184 
Materials and Methods 185 
 186 
Study Design, Population Groups, and Phenotypic Definitions 187 
The analysis involved a series of GWAS across 2,068 traits, covering a deep catalog of 188 
phenotypes extracted from EHR-derived diagnosis codes, clinical laboratory tests, vital signs, 189 
and survey responses. As previously described (13, 19, 20, 21, 22), the analysis was performed 190 
using data from 635,969 participants from MVP Genomics Release 4 (23) (Table 1) classified 191 
into four population groups based on genetic similarity (GIA) to the 1000 Genomes Project (24, 192 
25) African (AFR, n = 121,177), Admixed Americans (AMR, n = 59,048), East Asian (EAS, n = 193 
6,702), and European (EUR, n = 449,042) superpopulations. After imputation and quality control 194 
(QC) filtering, > 44.3M variants (minor allele count (MAC) ≥ 40) were included for analysis. For 195 
a visual representation of the analysis, please refer to Figure 1a, which illustrates the different 196 
quantities for which the analysis was conducted. After trait quality control, 1,854 binary and 214 197 
quantitative traits were included in the downstream analysis in at least one population group 198 
(Figure 1b). 199 
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 200 
Additionally, genotype data from the UK Biobank (3) and the All of Us Research Program (7) 201 
were utilized to test the software capabilities on a cloud environment. Within the UK Biobank 202 
data, we employed the European (EUR, n = 420,500) and African (AFR, n = 6,600) cohorts 203 
where PCA was used to measure the population structure (26). The All of Us cohorts included 204 
European (EUR, n = 133,000) and African (AFR, n = 55,000) population groups where PCA was 205 
used to measure the population structure (7).  206 
 207 
Biobank-scale genomic analysis across population groups  208 
In total, 4,045 GWAS SAIGE runs were needed for the GW-PheWAS analysis which resulted in 209 
over 350 billion variant-trait associations across population groups. The current implementation 210 
of the SAIGE algorithm was not analytically tractable at this scale of computation. SAIGE uses 211 
R/C++ based tools developed for CPU environments and uses the Intel Threading Building 212 
Blocks (TBB) (27) library to enable parallelization. The SAIGE method comprises two primary 213 
steps. Step one involves fitting a linear/logistic mixed model with a GRM included under the null 214 
hypothesis that no genetic variants are associated with the phenotype of interest. We note that 215 
fitting the null mixed model involves thousands of matrix-matrix and matrix-vector operations, 216 
which are best suited for a GPU environment. Step two tests each SNP at a time across the 217 
genome for their association with the phenotype with a score test using the saddlepoint 218 
approximation (SPA) (28) and Firth regression methods (29) to account for unbalanced case-219 
control sample sizes. 220 
 221 
Directly genotyped variants were used for step one of SAIGE and were filtered for pairwise 222 
correlation with a window size, number of SNPs and VIF threshold of 50, 5, and 0.2 respectively 223 
using Plink1.9 (9). Imputed genetic dosages were used for step two of SAIGE. Only variants 224 
with an imputation quality > 0.3 and MAC ≥ 40 within the relevant population groups were 225 
included in the GWAS execution. Analyses were adjusted for age, sex, and the top ten 226 
population specific genetic principal components (PC) estimated by Principal component 227 
analysis (13). 228 

Computational Infrastructures 229 
 230 
All GWAS analysis was conducted on the Summit HPC, located at DOE's OLCF. It consists of 231 
4,608 nodes, with each node featuring two IBM POWER9 processors and six NVIDIA Tesla 232 
V100 GPUs of 16 GB memory. All but 54 of the Summit nodes are equipped with 512 GB of 233 
DDR4 memory for the POWER9 processors and 96 GB of high-bandwidth memory (HBM2) for 234 
the V100 GPUs. The remaining 54 nodes in Summit HPC are high-memory nodes equipped with 235 
2 TB of DDR4 memory for the CPUs and 192 GB of HBM2 for the GPUs with 32 GB of 236 
memory per GPU. Specifically, for the GW-PheWAS analysis, we utilized the nodes on Summit 237 
with 512 GB DDR4 memory and 96 GB HBM2 memory. 238 
 239 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2024. ; https://doi.org/10.1101/2024.05.17.594583doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.17.594583
http://creativecommons.org/licenses/by/4.0/


To further advance the use of SAIGE-GPU in various research environments, we generated 240 
Docker and Singularity containers. We conducted extensive testing of this containerized solution 241 
on the GPUs available on Google Cloud Platform (GCP) and Azure Cloud Platforms. Our code 242 
for containers and optimizations is provided (Data and materials availability). 243 
 244 
Results 245 
 246 
We initially focused on optimizing step one for SAIGE as it can largely benefit by using GPUs 247 
for matrix-vector operations in the calculation of the GRM on the fly and employed MPI to 248 
distribute the data across multiple GPUs. While the standard SAIGE method on CPU-based 249 
machines was suitable for relatively small cohorts, it became impractical for larger population 250 
groups (e.g., groups similar to 1KG-European and 1KG-Africa in MVP) due to the substantial 251 
size of the matrix-vector operations involved. Employing the GPU-modified SAIGE framework, 252 
we successfully conducted a total of 4,045 independent GWAS runs. The GWAS analysis was 253 
accomplished within 14,286 GPU hours for step one, equivalent to 5 days of wall time, resulting 254 
in a 160-fold reduction in required core CPU hours in a CPU environment cluster (Table 2). Step 255 
two in SAIGE presented distinct challenges due to the need for millions of association tests for 256 
each trait, totaling over 3 billion association tests. 257 

Optimizations for SAIGE Step One Using GPUs 258 
The primary challenge we encountered when using the SAIGE algorithm on the DOE OLCF 259 
Summit HPC was the IBM POWER9 processors incompatibility with the Intel threading 260 
building block (TBB) library, which is instrumental for parallelization within step one. This issue 261 
prevented us from installing the native SAIGE version, prompting us to find alternative 262 
solutions. In addition, solving the logistic mixed model using the PCG algorithm posed 263 
challenges due to the numerous iterations and the time-consuming nature of the process. Step 264 
one's time complexity (𝑂) is O(MN!.#), where N is the sample size, and M is the number of 265 
genetic markers per sample, making the calculation of the GRM a substantial contributor to the 266 
overall computational time for this step, particularly when dealing with large sample sizes (as 267 
indicated in equations 1, 2, 3) (10). Building and storing the GRM demanded substantial memory 268 
and computational resources. SAIGE's approach addressed the memory issue by generating 269 
GRM segments on-demand, albeit at the cost of increased time requirements and the need for 270 
extensive parallelization using multiple CPUs. 271 
 272 
SAIGE models the relationship between traits (Y) and genotypes (G) while adjusting for other 273 
covariates (X) and random genetic effects (𝒃) accounting for unknown sample relatedness based 274 
on the linear and logistic mixed models (9) (equation 1):  275 
 276 

𝑙𝑜𝑔𝑖𝑡(𝒀) = 	𝑿𝛼 + 𝑮𝛽 + 𝒃 + 	𝑒                                  (1) 277 
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𝛼 and 𝛽 are the coefficient vectors of fixed effects and genetic effects, respectively and e is a 278 
random effect of residual errors. Each element in 𝒀 represents the probability for an individual 279 
being a case given the covariates and genotypes as well as the random effect. The variable b is 280 
assumed to be sampled from a normal distribution with a mean of zero, and a standard deviation 281 
of 𝜏𝝍, where 𝝍 is the GRM calculated as 282 

 𝝍 = !
$
𝑨%𝑨                                                         (2) 283 

where A is the genotype matrix of size 𝑁 ×𝑀. Optimizing a linear system solution involving the 284 
GRM (𝝍) matrix on GPUs is our focus. 285 
 286 
The model is fit under the null hypothesis of 𝛽 = 0, in which the iterative PCG method is used to 287 
obtain a solution to a linear system of equations defined by 𝝍𝒙 = 𝒃 for a given vector 𝑏. This 288 
iterative process, central to step one, was time-consuming due to multiple matrix-vector 289 
operations involving the GRM. Furthermore, building the GRM itself is increasingly memory 290 
intensive as the number of individuals and marker panels increase in size. For example, the MVP 291 
release 4 population group similar to 1KG-Europeans (N = 445,444; M = 120,000) would 292 
produce a GRM of approximately 800 gigabytes. 293 
 294 
To accelerate the computation time and reduce the memory footprint, we employed distributed 295 
computing techniques involving the use of Message Passing Interface (MPI) (30) and were able 296 
to successfully exploit the parallel computing capability of GPUs for matrix-vector 297 
multiplications. Specifically, we partition the columns of the matrix 𝐴 that are used to form the 298 
GRM and distribute them into a set of nodes on a cluster. For example, node 𝑖 contains columns 299 
𝐴:,(!:)! with 𝑠* and 𝑒* denoting the start and end indices of the columns of 𝐴 stored in node 𝑖. At 300 
each iteration of the PCG method, a matrix-vector multiplication 𝝍𝒗 for some vector 𝒗 is 301 

performed. Using the fact that 𝝍𝒗 = 𝟏
𝑴
∑ 𝑨:,𝒔𝒊:𝒆𝒊(𝑨:,𝒔𝒊:𝒆𝒊

𝑻 𝒗)𝒊 , each node computes its summand in 302 

parallel on GPUs. The results of all nodes are summed and redistributed using MPI. NVIDIA's 303 
BLAS library cublasgemv (30) is used to compute the summand to further accelerate the two 304 
matrix-vector multiplications, 𝒚𝒊: = 𝑨:,𝒔𝒊:𝒆𝒊

𝑻 𝒗 and 𝑨:,𝒔𝒊:𝒆𝒊𝒚𝒊, on GPUs (Figure 2).   305 
 306 
To deal with the large memory requirement, SAIGE relied on the Intel TBB package to 307 
parallelize this step, which was incompatible with the Summit infrastructure. We initially 308 
replaced the TBB's parallelization method with OpenMP (32) for executing the matrix-vector 309 
operations. However, the primary benefit of accelerating step one lies in the considerably faster 310 
matrix computations achieved using GPUs compared to CPUs. We compared the SAIGE version 311 
that leveraged OpenMP API for parallelization with the GPU version (Table 3) using the 312 
Varicose Veins trait (454.1 ICD-9 code). In the OpenMP version, we utilized all 42 available 313 
cores on the compute node for parallelizing the matrix calculations to generate the GRM, while 314 
for the GPU version we utilized 16 GPUs each equipped with 16 GB of memory in each GPU to 315 
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distribute subsections of the matrix with dimensions of 8,256 by 445,444. On average, a single 316 
PCG iteration on a GPU required approximately 0.069 seconds for the group similar to 1KG-317 
Europe in MVP. In contrast, the OpenMP SAIGE implementation took roughly 5.06 seconds, 318 
marking a substantial 72-fold improvement for PCG iterations to converge (Figure 3). It took 30 319 
minutes (on 3 nodes with 6 GPUs each) using the GPU-SAIGE implementation to complete step 320 
one. Conversely, the same analysis conducted with the OpenMP implementation took 4 hours 321 
and 8 minutes in a single 42-core node, representing an overall 3-fold improvement and 322 
considers other processes within step one such as processing the input data. While the OpenMP 323 
implementation successfully executed the calculations in SAIGE step one on CPUs with a low 324 
memory footprint, it required numerous CPU parallel processes to achieve convergence. The 325 
advantage of using GPUs becomes readily apparent as the genotype matrix size grows, because it 326 
takes substantially longer for CPUs to parallelize the matrix operations. The GPU capitalizes on 327 
its inherent parallelization capabilities and pre-loading contents of the matrix into memory, 328 
offering a substantial performance boost for large-scale genetic analysis. 329 
 330 
It is important to note that, due to computing the complete GRM in parallel GPUs, the memory 331 
footprint increased in comparison to the CPU-based approach which processes the GRM in small 332 
segments independent of one another. Thus, the number of nodes needed to cover the GPUs is 333 
increased per trait in larger population groups. The amount GPUs required for a run was 334 
calculated using the formula: 335 

 336 
n123 = 	ceil(4 × M × N/(GPU454 	 ∗ 	10^9))	                                   (3) 337 

This calculation factored in GPU memory capacity (GPU454), the byte size of a single precision 338 
floating-point number (4 bytes), and the conversion between bytes and gigabytes (109). This 339 
formula can be used for any cohort in additional biobanks to determine the number of GPUs to 340 
be used on other computational environments (i.e., cloud infrastructure). This estimation 341 
considered the linear relationship between the genotype matrix size, GPU memory available and 342 
the required number of nodes which can be visualized (Figures 4a, 4b).  343 
 344 
The optimizations made in step one effectively harnessed the speed of GPU matrix computation 345 
and parallelization, resulting in a significant reduction in analysis time. The GPU optimization of 346 
step one enabled the completion of the GWAS analysis for all traits and population groups 347 
within 2,381 node hours, representing a remarkable 20-fold improvement for step one in 348 
comparison to the initial native SAIGE implementation in a CPU-based cluster (as presented in 349 
Table 2). Consequently, step one was accomplished in less than 5 days through efficient 350 
utilization of node hours facilitated by high-memory Summit nodes for all MVP traits and 351 
population groups. Overall, an effective usage of 22,051 GPUs was needed to complete the 352 
analysis. 353 
 354 
SAIGE Step two Job Management 355 
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In step two of the SAIGE algorithm, millions of variant association tests were conducted 356 
independently, given the highly parallel nature of these jobs. Execution times for both the 357 
SAIGE-GPU and SAIGE-OpenMP implementations incorporated these optimizations for step 358 
two which showed an improvement of 2 to 3-fold compared to initial tests (as summarized in 359 
Table 4). To enable parallelization, the MVP genotype data files were partitioned into 219 files 360 
based on imputation analysis results. This data partitioning strategy facilitated the parallel 361 
execution of 219 jobs per trait and population group, totaling nearly 2 million independent jobs. 362 
The predominant challenge in step two revolved around managing the substantial number of jobs 363 
required for which we used the R library Tasktools (33), enabling successful submission and 364 
monitoring of the jobs. 365 
 366 
SAIGE-GPU Container on Cloud Infrastructures 367 
While the comprehensive analysis was conducted on the OLCF Summit HPC infrastructure, as 368 
the MVP cohort data was exclusively available on OLCF computational resources, we note that 369 
other cohorts, such as the United Kingdom Biobank (UKBB) (3) and All of Us Biobank (AoU) 370 
(7), can only be accessed through cloud infrastructures like the Google Cloud Platform (GCP) 371 
and Azure. In response to this demand, we have developed a specialized container image 372 
designed for versatile deployment across various cloud infrastructures. 373 

To evaluate its performance, we conducted a comparative study that pitted SAIGE-GPU against 374 
SAIGE-CPU using data from the UK and AoU Biobanks. We employed the Type 2 Diabetes 375 
(T2D) trait to assess their precision, processing speed, and cost-effectiveness within the GCP 376 
cloud environment for two of the largest genetically inferred population groups, namely African 377 
and European (Figure 5 and Table 5). For instance, a 5-fold improvement in execution time was 378 
seen when analyzing the T2D trait from AoU across the European population group (N = 379 
133,000; M = 100,000). Step one completed in 10 minutes using 1 GPU (A100 GPU, 85 GB 380 
RAM), whereas the CPU-based SAIGE version consumed 45 minutes on a 64-core virtual 381 
machine. Furthermore, the cost of utilizing 1 GPU for the EUR cohort amounted to 382 
approximately $0.42, while the cost of the 64-core VM was $3.17. A similar trend in terms of 383 
cost and time is observed for the AFR population group, which would have a smaller memory 384 
footprint due to the matrix size. 385 

This same pattern of advantages is evident when applied to UKBB traits, as exemplified in table 386 
5. Specifically, we focused on the EUR population group, which consisted of 420,500 387 
individuals, closely resembling the MVP EUR cohort in participant size. GCP infrastructure 388 
(NVIDIA Tesla A100 GPUs, 12 vCPUs, and 85GB of RAM) was employed to run the T2D trait 389 
and completed the analysis in just over 30 minutes, with an average cost of $1.45. In contrast, 390 
utilizing the CPU-based SAIGE version consumed 58 minutes and incurred a cost of $3.88 using 391 
a 96-core VM. 392 

Conclusion 393 
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 394 
We leveraged the GPU computational resources of the DOE OLCF Summit HPC address major 395 
computational challenges posed by the increasingly large datasets utilized in genomics research. 396 
In this example, we demonstrate optimization of a highly used tool for genomic analyses 397 
designed for CPUs, SAIGE. Prior to optimizing step one with GPUs, the analysis would have 398 
spanned several years for all genetically inferred population groups. The optimizations have now 399 
condensed the completion time to under a month, reducing node hours by a substantial factor. 400 
Even though we largely focused on step one of SAIGE, in Step two we showed how we executed 401 
millions of variant association tests in parallel, a highly compute-intensive task. We intend to 402 
further improve this step by parallelizing this step instead of performing each association in 403 
serial mode. 404 
 405 
In a recent article (34), the authors performed a large analysis on over 7,000 traits of the Pan-UK 406 
Biobank (35) data for multiple ancestries using hail-batch on the Google Cloud Platform. As 407 
previously mentioned, both the European population groups for UKBB and MVP are comparable 408 
in size, while the African, Admixed American and Eastern Asian population groups are larger for 409 
the MVP. The authors used the SAIGE-CPU implementation to perform close to 300 billion 410 
associations and required over 3.8 million CPU hours to complete both step one and step two in 411 
SAIGE. In comparison, the MVP analysis required 14,283 GPU hours for step one and 412 
approximately 2 million CPU hours for step two to perform over 350 billion associations. 413 
 414 
The MVP has now expanded to a million individuals (36) and plans to collect whole-genome 415 
sequencing data, likely to increase the number of low-frequency variants that will be tested in the 416 
future. Thus, it is imperative to understand approaches to efficiently optimize software already 417 
developed for these data in HPC environments. Our primary focus lay in enhancing the 418 
efficiency of SAIGE's first step since it is iteratively employed in numerous downstream SAIGE-419 
related analyses (e.g., SAIGE-GENE (37)). However, our ongoing efforts center on further 420 
streamlining SAIGE for GW-PheWAS studies across multiple biobanks such as All of Us, UK 421 
Biobank, Penn Medicine BioBank (2). 422 
 423 
The continuous evolution of GPU technology in various implementations offers a promising 424 
outlook. The Summit infrastructure currently harnesses NVIDIA CUDA libraries for these 425 
operations, but future systems may incorporate different libraries, further accelerating execution 426 
times and lowering costs. These systems are expected to feature expanded memory and storage 427 
capacities. Additionally, our GPU-based SAIGE implementation can be readily adapted for Intel 428 
GPUs using the Intel oneAPI platform and AMD GPUs using their ROCm platform. 429 
 430 
A container is available for deployment on cloud platforms equipped with GPU nodes. The code 431 
can be accessed at https://exascale-genomics.github.io/SAIGE-GPU. The significant 432 
improvements in efficiency achieved with SAIGE using GPUs demonstrate the potential for the 433 
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development of new and existing tools capable of performing population analysis at the exascale 434 
level by optimizing software for GPU usage. 435 
 436 
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 659 

 660 

Fig. 1 Overview of genomic analysis in multiple population groups. a) Schematic representation 661 
illustrating the diverse set of GIA population groups. The analysis covers a deep catalog of traits 662 
extracted from electronic health records, clinical laboratory tests, vital signs, and survey 663 
responses. b) Chart categorizing traits into binary or quantitative types across different 664 
population groups. The height of each bar corresponds to the number of traits in each category, 665 
providing an overview of the trait composition for subsequent genomic analyses. 666 
  667 
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 668 
Fig. 2 Distributed BLAS gemv(), matrix-vector multiplication, using GPUs on the cluster. The 669 
columns of matrix 𝐴 are distributed and preloaded on GPUs, with node 𝑖 having columns with 670 
indices from 𝑠* to 𝑒*, and these columns are distributed on GPUs on that node. To compute 𝑝 =671 
𝐴𝐴%𝑣, we first broadcast 𝑣 to GPUs, and each node computes a partial solution on GPUs. These 672 
partial solutions are aggregated to compute a solution 𝑝. 673 

674 

!!!" = #:,$"!"	:%"!"	
& $

%!!" = #:,$"!"	:%"!"	!!!"
GPU1

Node 1 (":,(!:)!)

GPU6

…

!!!$ = #:,$"!$	:%"!$	
& $

%!!$ = #:,$"!$	:%"!$	!!!$

!'!" = #:,$%!"	:%%!"	
& $

%'!" = #:,$%!"	:%%!"	!'!"
GPU1

Node n (":,(":)")

GPU6

…

!'!$ = #:,$%!$	:%%!$	
& $

%'!$ = #:,$%!$	:%%!$	!'!$

…

!

BLAS gemv() BLAS gemv()

!
"! ""

2. # = ∑"#

# = &&$!
1. Broadcast !

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2024. ; https://doi.org/10.1101/2024.05.17.594583doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.17.594583
http://creativecommons.org/licenses/by/4.0/


675 
Fig. 3 Comparative Performance of GPU and CPU Implementations in SAIGE Step one - This 676 
figure compares the execution time for each iteration of matrix operations in SAIGE Step one for 677 
the European population group. a) Demonstration of the time required for a single PCG iteration 678 
on a GPU, showcasing the efficient parallelization within the GPU. b) Contrast with the OpenMP 679 
implementation on CPUs, emphasizing the significant speed improvement achieved with GPU 680 
acceleration. As the genotype matrix size increases, the advantage of using the GPU version 681 
becomes more pronounced, as highlighted by the diminishing execution time on the GPU 682 
compared to the CPU.  683 
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 684 
Fig. 4 GPU Node Requirements and Memory Impact – GPU node requirement highlight the 685 
linear relationship between genotype matrix size and the required number of nodes, offering 686 
insights into efficient GPU utilization. The GPU node requirement factored in the GPU memory, 687 
the byte size of a single precision floating-point number, and the conversion between bytes and 688 
gigabytes. A) Impact of changing the memory available in the GPU. B) Impact of changing 689 
number of genotype variants in the input matrix and fixing the GPU memory to 16 gigabytes per 690 
GPU, emphasizing considerations for diverse biobank cohorts and computational environments. 691 
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 693 
Fig. 5 SAIGE step one run time for All of Us data.  The figure shows the time comparison of 694 
running SAIGE step one for the T2D phenotype on the Google Cloud Platform for the 5 695 
population groups (EUR, AFR, AMR, EAS, SAS). The analysis was executed on 4 NVIDIA T4 696 
GPUs for the SAIGE-GPU version and a 64-CPU VM for the SAIGE-CPU version. 697 
  698 
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 699 

Population Group Participants 
(Release 4) 

AFR 121,177 

AMR 59,048 

EAS 6,702 

EUR 449,042  

 700 
 701 

Table 1 Participant quantity in each grouping method per population group. Data was made 702 
available on OLCF Summit HPC to perform a GWAS analysis for all traits analysis and all 703 
population groups. 704 
  705 
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 706 

Population 
Group 

Trait 
Quantity 

Step One CPU hours 
for all traits (Projected) 

Step One GPU hours 
for all traits (Production) 

Native SAIGE SAIGE-OpenMP SAIGE-GPU 

AFR 1,760 322,768 78,266 1,336 

AMR 1,482 72,284 60,295 411 

EAS 505 27,162 12,253 116 

EUR 2,072 1,371,960 330,372 12,420 

Total 5,819 1,794,714 481,186 14,283 

 707 
Table 2 Projection times to complete GWAS for all traits (5,819) using SAIGE step one using 708 
the different implementations of SAIGE: Native, OpenMP and GPU versions on CPU and GPU 709 
environments. 710 
  711 
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  712 

Population 
Group Subjects 

Step one for Varicose Veins (hours) 

Native SAIGE SAIGE-OpenMP SAIGE-GPU 

AFR 121,725 5.10 1.06 0.38 

AMR 51,124 1.50 0.97 0.28 

EAS 8,003 0.97 0.58 0.23 

EUR 458,307 25.75 4.10 1.50  

  713 
 714 
Table 3 Execution times for SAIGE step one on Varicose Veins (ICD-9 code 454.1) using 3 715 
versions of the SAIGE algorithm on the different OLCF infrastructures. CPU environment 716 
contained 32-core nodes, while the GPU nodes contain 42-cores and GPUs with 32 GB of RAM. 717 
  718 
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 719 
 720 

Population 
Group 

Trait 
Quantity 

Step two for all traits (hours)  

CPU Environment GPU Environment 

Fold-Change Hours for a 
Single Trait 

Projection 
for all traits Single Trait Production run 

for all traits 

AFR 1,760 446 784,960 254 397,428 1.98 

AMR 1,482 228 337,896 146 214,353 1.58 

EAS 505 59 29,795 50 22,724 1.31 

EUR 2,072 1,209 2,505,048 359 1,397,606 1.79 

Total 5,819 1,942 3,657,699 809 2,032,111 1.80 

 721 
Table 4 Execution time for SAIGE step two on Varicose Veins (PheCode 454.1) using 2 722 
versions of the SAIGE algorithm on a CPU and GPU environment. 723 
  724 
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 725 

Category 

All of Us UK Biobank 

European+ African American+ European+ African+ 

Variant Size 100,000 100,000 100,000 100,000 

Sample Size 133,000 55,000 420,500 6,600 

SAIGE GPU Analysis Time 
(hours)* 0.16 0.1 0.55 0.02 

SAIGE GPU Analysis Cost $0.42 $0.26 $1.45 $0.05 

SAIGE CPU Analysis Time 
(hours)** 0.8 0.17 0.98 0.25 

SAIGE CPU Analysis Cost $3.17 $0.67 $3.88 $0.99 

 726 
* Google Cloud - A100 GPU, 85 GB RAM, $2.64/hour 727 
** Google Cloud - 96 Core VM, $3.96/hour 728 
+ Phenotype used was Type 2 Diabetes 729 
 730 
Table 5 Cost and time execution comparison using All of Us and UK Biobank data on Google 731 
Cloud Platform for SAIGE-GPU version vs the native SAIGE version. 732 
 733 
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