

1 **Long title**

2 PAN deadenylase ensures proper mitosis under conditions of microtubule stress by regulating
3 spindle integrity and promoting cell survival

4 **Short title**

5 PAN deadenylase is required for mitosis in response to microtubule stress

6 **Authors**

7 Jigyasa Verma¹, Zhengcheng He², Joshua A.R. Brown³, Pamela Dean¹, Barry P. Young¹,
8 Stephane Flibotte⁴, LeAnn J. Howe³, Christopher D. Maxwell², Calvin D. Roskelley¹, and
9 Christopher J.R. Loewen^{1*}

10

11 **Author Affiliations**

12 ¹ Department of Cellular and Physiological Sciences, Life Sciences Institute, University of
13 British Columbia, Vancouver, Canada, V6T1Z3

14 ² Department of Pediatrics, British Columbia Children's Hospital, University of British
15 Columbia, Vancouver, Canada, V6H 0B3

16 ³ Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of
17 British Columbia, Vancouver, Canada, V6T1Z3

18 ⁴ Bioinformatics Facility, Life Sciences Institute, University of British Columbia, Vancouver,
19 Canada, V6T1Z3

20 * Corresponding author: Department of Cellular and Physiological Sciences, Life Sciences
21 Institute, University of British Columbia, Vancouver, Canada, V6T1Z3 cloewen@mail.ubc.ca

22 Abstract

23 The Poly(A) Tail Length (PATL) of mRNAs of certain cell-cycle regulatory genes undergo
24 significant trimming during M-phase, however the functional importance is unknown. The Ccr4-
25 Not and PAN complexes account for the majority of cytoplasmic poly(A) deadenylation,
26 however a role in M phase has not been described. We find that under conditions of microtubule
27 stress in yeast, loss of PAN deadenylase activity leads to arrest in M phase, defective spindles,
28 and increased cell death. PAN consists of the catalytic subunit Pan2 and the RNA binding
29 subunit Pan3. Consistent with a role in mitosis, *PAN2* interacts genetically with tubulin genes,
30 prefoldin complex genes and the mitotic cyclin *CLB1*. *PAN2* knockdown in human cultured cells
31 disrupts mitosis and results in spindle fragmentation leading to abnormal cell division, while
32 expression of human *PAN2* in yeast rescues *pan2Δ* cell-cycle phenotypes. Hence, we reveal an
33 important highly conserved role for PAN in ensuring proper mitosis when cells are under
34 microtubule stress. We propose PAN regulates PATLs of mRNAs of key cell-cycle/mitotic
35 proteins in response to defective spindles.

36

37 **Author Summary**

38 Proper cell division is essential for the growth and survival of all living organisms. Our study
39 investigates the role of PAN deadenylase complex in yeast and human cultured cells under
40 microtubule stress, induced by microtubule inhibitors used in cancer treatment. The PAN
41 complex, consisting of Pan2 and Pan3, trims the poly(A) tails of mRNAs. We found that loss of
42 PAN activity leads to cell cycle arrest in M-phase, spindle defects and increased cell death in
43 yeast. Similarly, *PAN2* knockdown in human cultured cells disrupts mitosis and causes abnormal
44 cell division, indicating a conserved function across species. We propose that PAN regulates
45 mRNA poly(A) tail lengths of key mitotic proteins to ensure proper mitosis under stress. This
46 regulation likely prevents faulty spindle formation by repressing translation of these mRNAs.
47 Interestingly, PAN's role is specific to stress conditions, as cells without PAN function normally
48 otherwise. Our findings highlight PAN's critical role in maintaining genomic stability and proper
49 cell division during microtubule stress, providing insights into the post-transcriptional regulation
50 of cell cycle and potential targets for cancer therapy.

51 **Introduction**

52 In eukaryotes, poly(A) tails are present on the 3' end of almost every mRNA and regulate
53 mRNA stability and translation (1–6). Poly(A) tail length (PATL) varies greatly from as short as
54 ~20 nucleotides to as long as ~250 nucleotides and is governed by poly(A) deadenylases, which
55 trim or remove the tails completely (7–10). Two protein complexes, PAN (PolyA Nuclease) and
56 Ccr4-Not, carry out the majority of deadenylation, where PAN initiates trimming of longer tails
57 while Ccr4-Not removes the remainder (11–14). Poly(A)-Binding Proteins (PABs) bind poly(A)
58 tails promoting deadenylation by recruiting PAN complex to poly(A) tails. Genes such as *CDK1*,
59 *TOP2A* and *FBXO5*, which orchestrate timing and coordination of mitotic events in somatic
60 cells, exhibit reduced PATLs specifically in M-phase (15), suggesting deadenylation of specific
61 mRNAs is important in cell-cycle regulation. However, roles for specific deadenylases in the
62 cell-cycle are poorly defined.

63

64 The structure of PAN complex is well understood. It comprises the catalytic subunit Pan2 and an
65 asymmetric homodimer of the RNA-binding regulatory subunit Pan3 (16–18). Pan2 contains a
66 C-terminal DEDD-family exoribonuclease domain that is responsible for its poly-A deadenylase
67 activity. Adjacent to the exoribonuclease domain is a ubiquitin-specific protease (USP) domain,
68 which in human cells is functional (19,20). *Saccharomyces cerevisiae* Pan2 has this domain also,
69 but it lacks critical residues in the catalytic triad indicating yeast Pan2 lacks deubiquitinase
70 activity (16,17). Pan3 contains a CCCH-type zinc finger domain and a Poly(A) interacting motif
71 2 (PAM2) motif that interacts with PABs facilitating RNA binding. Pan3 also contains a
72 pseudokinase domain (21). Pan2 is a substrate of Cdk1 phosphorylation (22). Pan3

73 phosphorylation regulates binding to PABs which regulates PAN activity (23), and Pan3 is a
74 substrate of Cdk5 phosphorylation (24,25).

75

76 The biological relevance of PANs deadenylase activity is poorly understood. In human cells,
77 knockdown of *PAN2* leads to an increase in mRNAs with long poly(A) tails ($> \sim 150$ nt), but
78 does not alter mRNA half lives (14). Deletion of either *PAN2* or *PAN3* in yeast leads to longer
79 mRNA poly(A) tails, but does not completely abolish deadenylation (11,12). This suggests that
80 PAN's role may be more specialized than regulating stability of bulk mRNAs, which has been
81 shown for *HIF1A* regulation (26). In yeast, a protein serine/threonine kinase involved in
82 replication fork protection and the DNA damage checkpoint, Dun1, interacts with Pan2 and Pan3
83 and regulates the composition and activity of post-replication repair complexes. The
84 *dun1Δpan2Δ* strain is hypersensitive to replication stress and has elevated levels of an important
85 regulator of error-free post-replication repair, Rad5 (27). This suggests PAN plays a role in post-
86 transcriptional regulation of DNA repair and replication stress although the mechanism and
87 mRNA targets are unknown.

88

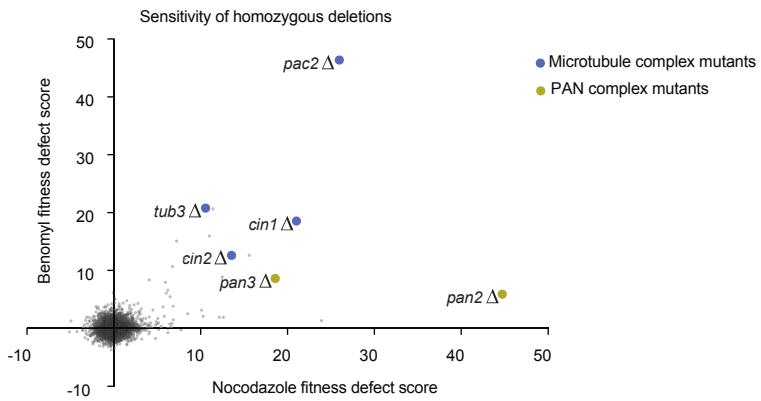
89 We have identified a previously unknown role of PAN complex in cell-cycle regulation. High
90 throughput data indicate that both yeast *PAN2* and *PAN3* exhibit strong aggravating genetic
91 interactions with genes that encode tubulin and tubulin folding proteins (28), and Δ *pan2* and
92 Δ *pan3* yeast are among the most sensitive in the yeast deletion collection to various microtubule
93 biogenesis inhibitors, including nocodazole and benomyl (29). This suggested to us an important,
94 yet uncharacterized function for PAN in mitosis in yeast in response to microtubule stress. We
95 found that nocodazole caused PAN-deficient cells to arrest in M phase, likely due to defective

96 spindle assembly, resulting in increased cell death. Transcriptional profiling of cells expressing
97 deadenylase-dead Pan2 in the presence of nocodazole revealed changes in key cell-cycle
98 regulators, further supporting a function for PAN in mitosis. We extended our findings from
99 yeast to mammalian cells by knocking down *PAN2* in human cells, which caused spindle
100 fragmentation and defective mitosis upon treatment with nocodazole and colchicine, indicating
101 this function of PAN is conserved in metazoans.

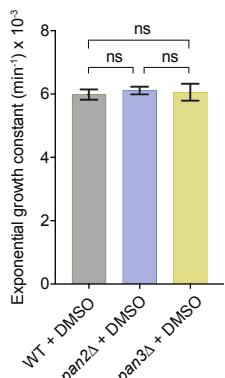
102

103 **Results**

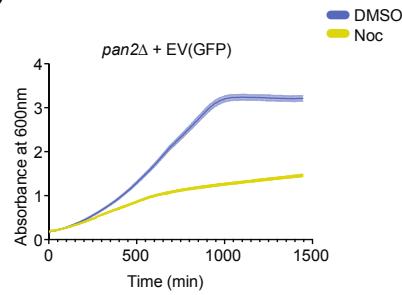
104

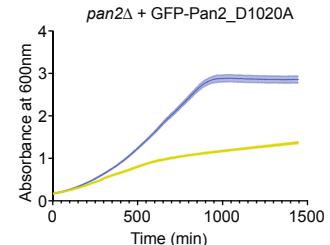
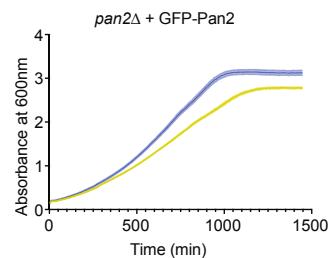
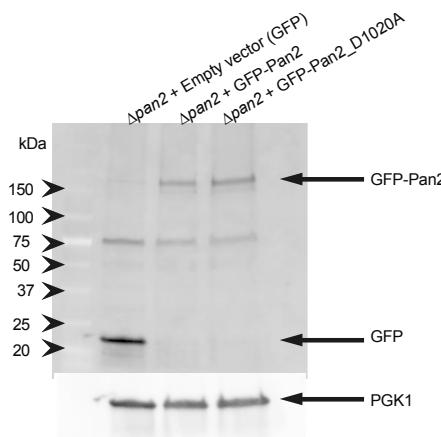

105 **Yeast deletion mutants *pan2Δ* and *pan3Δ* are sensitive to nocodazole**

106 On querying for information on the effects of small molecules on the growth of *pan2Δ* and
107 *pan3Δ* yeast deletion mutants, we noticed that homozygous deletion of *PAN2* or *PAN3* sensitizes
108 yeast to multiple drugs that disrupt tubulin biogenesis (29). These include nocodazole, benomyl,
109 and a number of other small molecules that belong to the response signature ‘tubulin folding and
110 SWR complex’. Importantly, both *pan2Δ* and *pan3Δ* are ranked in the top 20 out of over ~4,800
111 yeast deletion mutants for nocodazole and benomyl sensitivity (29) (**SFig 1A**). Other
112 homozygous deletion strains which occupied top ranks are *pac2Δ*, *cin1Δ*, *cin2Δ*, and *tub3Δ*.
113 *TUB3* encodes α-tubulin, which associates with β-tubulin (*TUB2*) to form tubulin dimers, which
114 polymerize to form microtubules. Pac2 is an alpha tubulin-binding protein, Cin1 is a beta-
115 tubulin-binding protein, and Cin2 is a GTPase activator involved in tubulin complex assembly
116 (30–33). Hence, Pac2, Cin1, and Cin2 are involved in protein folding and assembly of the
117 tubulin complex. This suggested a role for PAN complex in microtubule related functions.

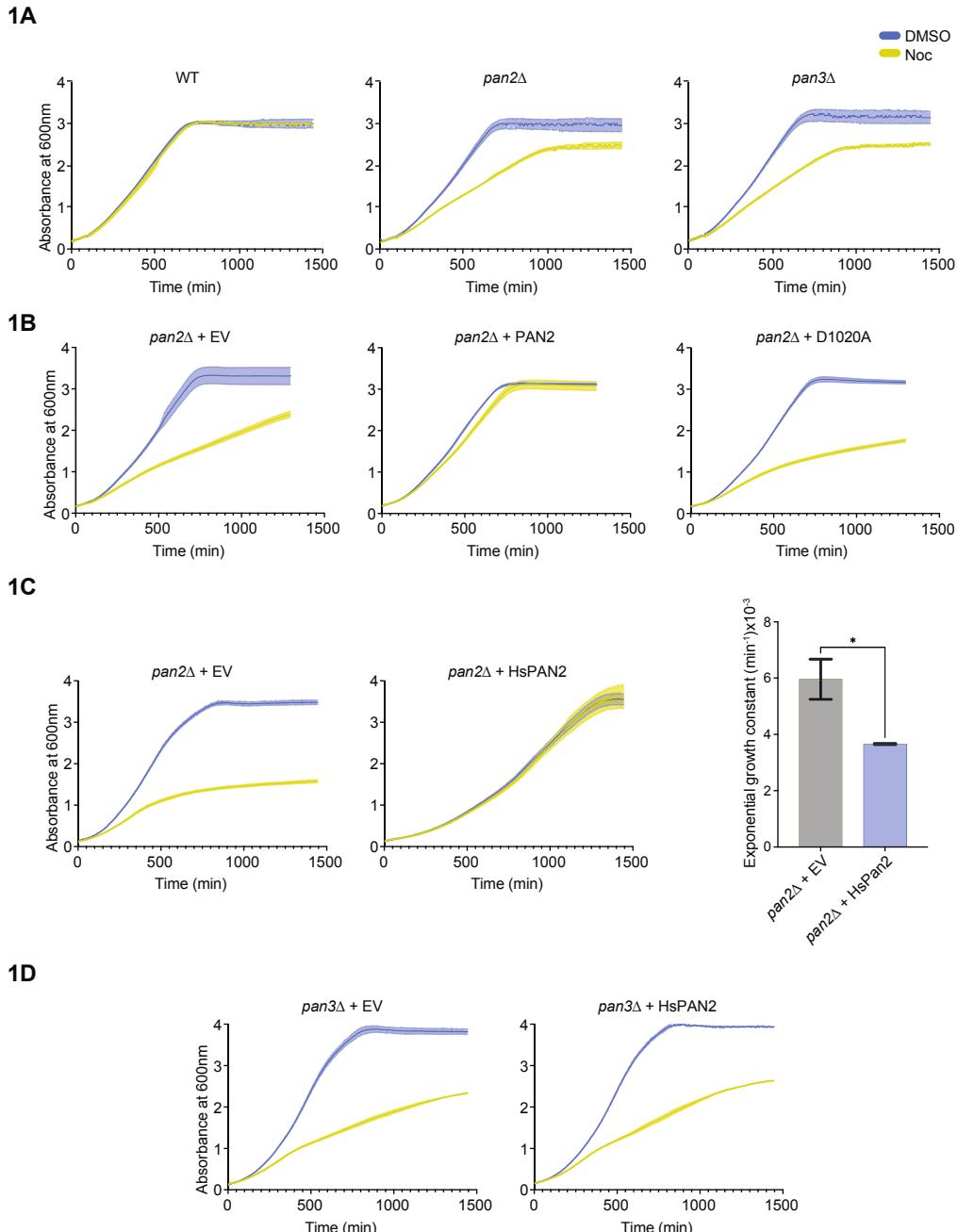

118

119 Figure S1


S1A




S1B

S1D


S1C

120

121 **Fig S1A:** Sensitivity of yeast homozygous deletion strains to nocodazole and benomyl. Ratio of
122 fitness defect scores for over ~4,800 mutants (x-axis: nocodazole; y-axis: benomyl). Blue circles:
123 microtubule complex mutants; green circles: PAN complex mutants. Data from A. Y. Lee et al.
124 2014. **Fig S1B:** Exponential growth constants for WT, *pan2Δ*, and *pan3Δ* with DMSO. Error
125 bars: +/- SD (n=6, three experiments). Paired Student's *t*-test for strain differences.
126 **Fig S1C:** GFP-Pan2 on plasmid assesses Pan2 expression in D1020A. Upper band: Pan-GFP;
127 lowermost band: free GFP. PGK1 - loading control. CEN, centromeric; GFP, green fluorescent
128 protein. **Fig S1D:** Growth curves of yeast strains with DMSO (blue) or 6 μM nocodazole
129 (yellow) at 30°C for 24 hours. Absorbance plotted with SD (n=6). min, minutes; SC, Synthetic
130 Complete media; SD, standard deviation; EV, empty vector; D1020A, deadenylase dead Pan2.
131
132 The nocodazole sensitivity screen described above was performed at 6 μM, while the typical
133 concentration used for inducing G2/M arrest is 40 μM (34). Since the screen produced a
134 phenotype at 6μM (29), we treated log phase cells of *pan2Δ*, *pan3Δ*, and their isogenic wild-type
135 strain with 6 μM nocodazole to mimic the screen and measured yeast growth. While no
136 difference in growth rate was observed for WT, *pan2Δ* and *pan3Δ* grew substantially slower in
137 the presence of nocodazole (**Fig 1A**), but not in the absence of nocodazole (**SFig 1B**). Since
138 growth dynamics were monitored immediately upon the addition of nocodazole, we observed a
139 lag period of approximately 100 minutes (~ 1 1/2 hours) before the effect of the drug was
140 noticeable. For this reason, exponential growth rates were not determined for these experiments.
141
142
143

144 Figure 1

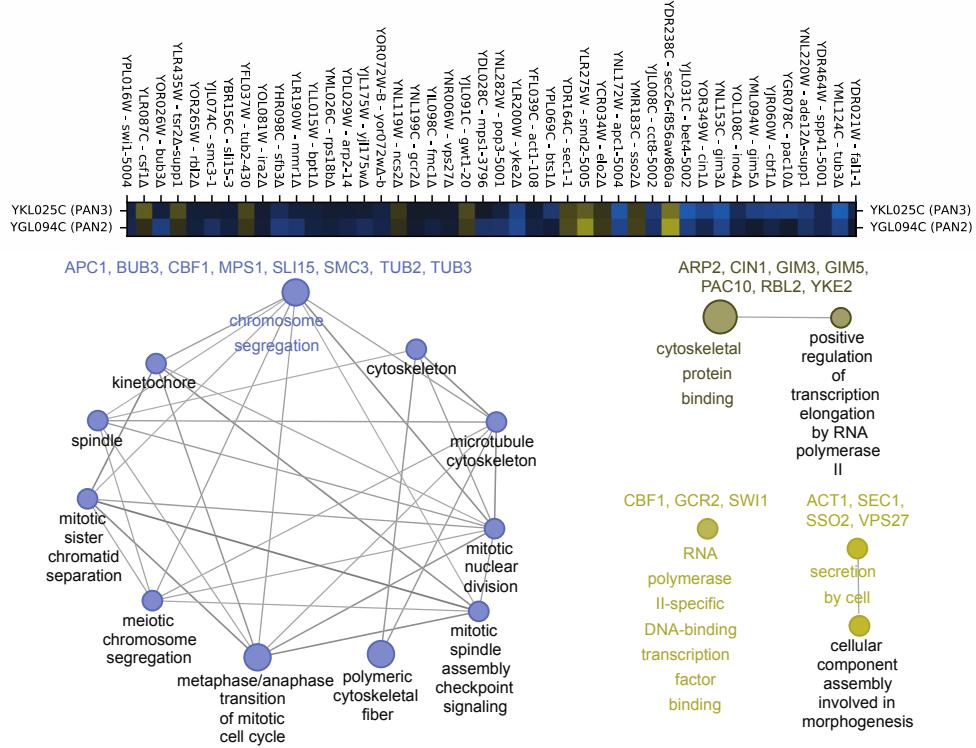
145

146 **Fig 1: Yeast deletion mutants *pan2Δ* and *pan3Δ* are sensitive to nocodazole. (A-D)** Growth
147 curves of yeast strains in SC media with DMSO (blue) or 6 μ M nocodazole (yellow) at 30°C for
148 24 hours. Absorbance plotted with SD (n=6). Normalized exponential growth constants have
149 been represented in **Fig 1C**. Error bars are +/- SD from three separate experiments (n=6).
150 Significant differences between different strains were tested using paired Student's *t*-test. WT,
151 wild type; min, minutes; SC, Synthetic Complete media; SD, standard deviation; EV, empty
152 vector; D1020A, deadenylase dead Pan2; Hs, *Homo sapiens*.
153
154 Expressing WT *PAN2* from a CEN plasmid eliminated the nocodazole sensitivity of *pan2Δ* cells
155 (**Fig 1B**). In contrast, expression of a catalytic-dead mutant of *PAN2* with a mutation within the
156 active site DEDD motif (D1020A) that is unable to perform in-vitro deadenylation on model-
157 polyA RNAs (35) was unable to eliminate the nocodazole sensitivity (**Fig 1B**). To verify that the
158 D1020A mutant was stably expressed, we tagged *PAN2* and the D1020A mutant with GFP and
159 examined protein expression and function. We found no difference in the level of GFP-Pan2 and
160 GFP-Pan2(D1020A) protein (**SFig 1C**). GFP-Pan2 largely eliminated nocodazole sensitivity of
161 *pan2Δ* cells whereas GFP-Pan2(D1020A) did not, confirming that the nocodazole sensitivity is
162 dependent upon Pan2 catalytic activity (**SFig 1D**).
163
164 To determine if the role of Pan2 in nocodazole sensitivity is conserved in mammalian cells, we
165 codon-optimized the human *PAN2* gene for expression in yeast (**SFile 1**) and expressed the gene
166 in the *pan2Δ* strain from a high copy 2-micron plasmid (2 μ -HsPan2; **Fig 1C**). As was the case
167 with the WT yeast Pan2, expression of HsPAN2 eliminated sensitivity to nocodazole (there was
168 no difference in growth with or without nocodazole in cells expressing HsPan2). Interestingly,

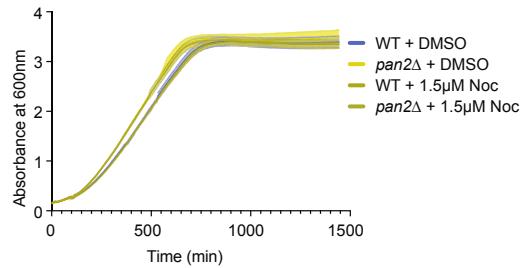
169 overexpression of HsPAN2 in the *pan2Δ* strain caused a decrease in growth rate (**Fig 1C**). We
170 hypothesized that this reduction in growth would be Pan3 dependent if this phenotype was a
171 result of PAN activity. Indeed, expression of HsPan2 in the *pan3Δ* strain did not slow growth
172 and did not prevent nocodazole sensitivity (**Fig 1D**). We found a similar slow-growth phenotype
173 with overexpression of yeast Pan2 (see **Fig 5D**). Thus, human Pan2 complemented the function
174 of yeast *pan2Δ* in response to nocodazole, indicating this function of PAN was highly conserved.

175

176 ***PAN2* and *PAN3* genetically interact with tubulin and genes governing tubulin folding**

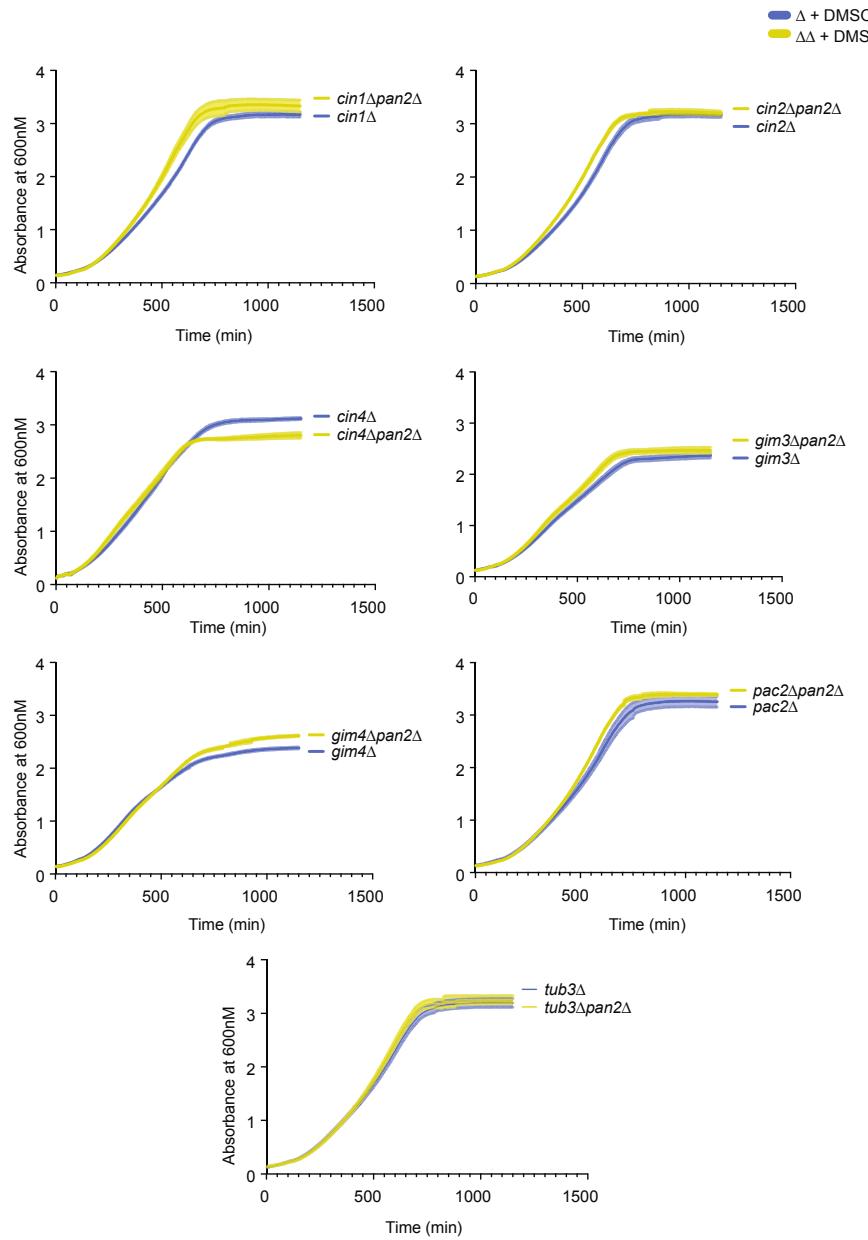

177

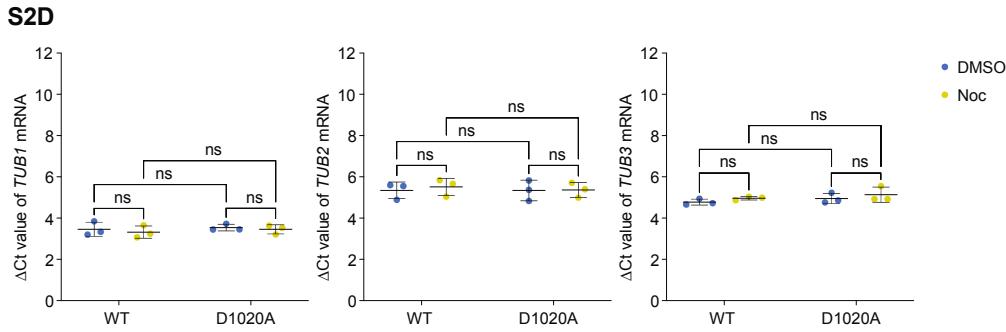
178 To better understand how PAN function was related to nocodazole sensitivity, we examined
179 known common genetic interactions of *PAN2* and *PAN3* (28) (**SFig 2A**). Gene-ontology (GO)
180 analysis indicated roles for PAN in “chromosome segregation” (*APC1*, *BUB3*, *CBF1*, *MPS1*,
181 *SLI15*, *SMC3*, *TUB2*, and *TUB3*), “cytoskeletal protein binding” (*ARP2*, *CIN1*, *GIM3*, *GIM5*,
182 *PAC10*, *RBL2*, and *YKE2*), “secretion” (*ACT1*, *SEC1*, *SSO2*, and *VPS27*), and “RNA
183 polymerase-II-specific transcription factor binding” (*CBF1*, *GCR2*, and *SWI1*) (**SFig 2A**). Within
184 the “chromosome segregation” network, multiple functions relating to microtubules were
185 identified including “spindle”, “microtubule cytoskeleton”, and “mitotic spindle assembly
186 checkpoint signaling”, consistent with a role for PAN in spindle function during mitosis.


187

188 Figure S2

S2A




S2B

189

S2C

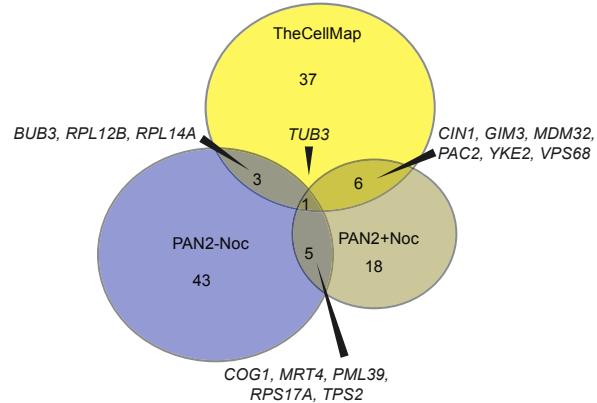
191

192 **Fig S2A:** Heatmap and Cytoscape analysis of genetic interactions of PAN2 and PAN3 by
193 Costanzo et al., 2016. In the heatmap, darker shades of blue represent strong aggravating genetic
194 interactions and darker shades of yellow represent strong alleviating genetic interactions. In the
195 functional enrichment, node size indicates statistical significance of enriched GO terms and
196 edges indicate statistically significant associations between terms. **Fig S2B-C:** Growth curves of
197 yeast strains with DMSO or 1.5 μ M nocodazole (B) and single or double knockout strains in
198 DMSO (C). Absorbance plotted with SD (n=6). **Fig S2D:** Gene expression changes in
199 *pan2Δ*+WT-PAN2 or *pan2Δ*+D1020A-PAN2 post 6 hour treatment with DMSO or 6 μ M
200 nocodazole assessed by qRT-PCRs. The ΔCt values are normalized to actin. Data are mean +/-
201 S.D. n.s., not significant. Significant differences between all pairwise combinations of groups
202 was detected using two-way ANOVA comparison. Ct, cycle threshold; μ M, micromolar; qRT,
203 quantitative reverse transcriptase; ANOVA, Analysis of Variance. min, minutes; SC, Synthetic
204 Complete media; SD, standard deviation; WT, wild type.

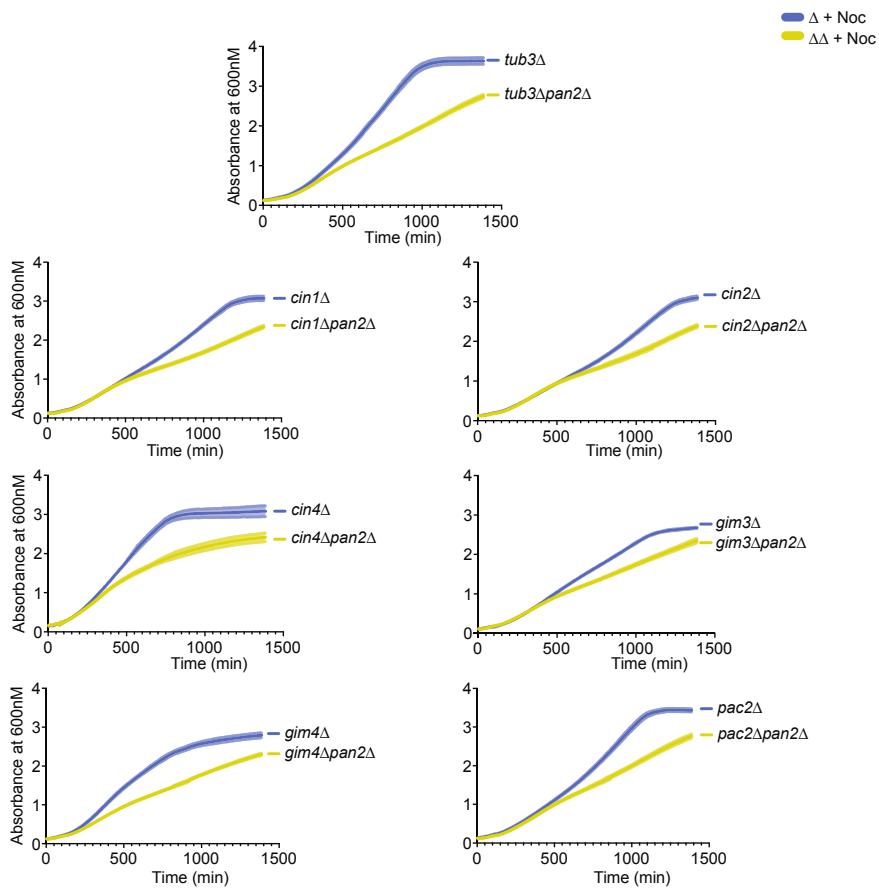
205

206 To validate the genetic interactions described above and expand the interaction landscape to
207 include microtubule stress from nocodazole treatment, we performed synthetic genetic array
208 (SGA) double mutant screens with a *pan2Δ* query and the non-essential deletion collection of
209 ~4800 strains in the absence and presence of nocodazole (1.5 μ M nocodazole as this does not
210 lead to differential growth between WT and *pan2Δ* in liquid growth assays, **SFig 2B**). In the
211 absence of nocodazole using a cut-off ratio of 0.7 for aggravating genetic interactions (three
212 standard deviations, 99.7% confidence interval) and p-value of less than 0.05 in 3/3 replicates,
213 we found a total of 52 genetic interactions. For deletion mutants in the array whose growth was
214 rescued upon deleting *PAN2* in them (referred to as alleviating genetic interactions from here
215 onwards), we chose a cut-off ratio of 1.3 and found 27 genetic interactors (**SFile 2**). The 4 genes
216 in common with the previously identified genetic interactors (28) were *TUB3*, *BUB3*, *RPL12B*,
217 and *RPL14A*. Surprisingly, all the genes with functions related to chromosome segregation were
218 not identified in the absence of nocodazole, but instead required addition of low levels of
219 nocodazole (see below).

220


221 For SGA screens in the presence of nocodazole, we used a low nocodazole concentration (1.5
222 μ M) anticipating that the genetic interactors themselves might be nocodazole sensitive, and that
223 this dose would not produce a growth phenotype in the *pan2Δ* query strain (**SFig 2B**). Using the
224 same cut-offs as the no-nocodazole screens, we identified a total of 30 aggravating and 21
225 alleviating genetic interactions (**SFile 2**). Of these, 7 genetic interactors were in common with
226 the PAN interactions from the CellMap (**Fig 2A**). These genes were *CIN1*, *GIM3*, *MDM32*,
227 *PAC2*, *TUB3*, *VPS68* and *YKE2*. *CIN1*, *GIM3*, *PAC2*, and *YKE2* are involved in tubulin folding
228 and tubulin complex assembly. *CIN1* encodes for tubulin folding factor D involved in beta-

229 tubulin (Tub2) folding (36). *GIM3*, *PAC2*, and *YKE2* encode for subunits of the prefoldin co-
230 chaperone complex involved in tubulin folding (37). *TUB3* encodes alpha-tubulin which
231 associates with beta-tubulin (Tub2) to form the tubulin dimer. It is unclear why nocodazole was
232 required to detect genetic interactions with microtubule related components in our screens, but
233 not those performed by the Boone lab (28) however, screen conditions (query strain background,
234 media composition, temperature, array density) varied between our labs, suggesting perhaps that
235 our screens had reduced microtubule stress, which prevented identification of the interactions, or
236 that their screens had increased stress mimicking nocodazole addition.


237

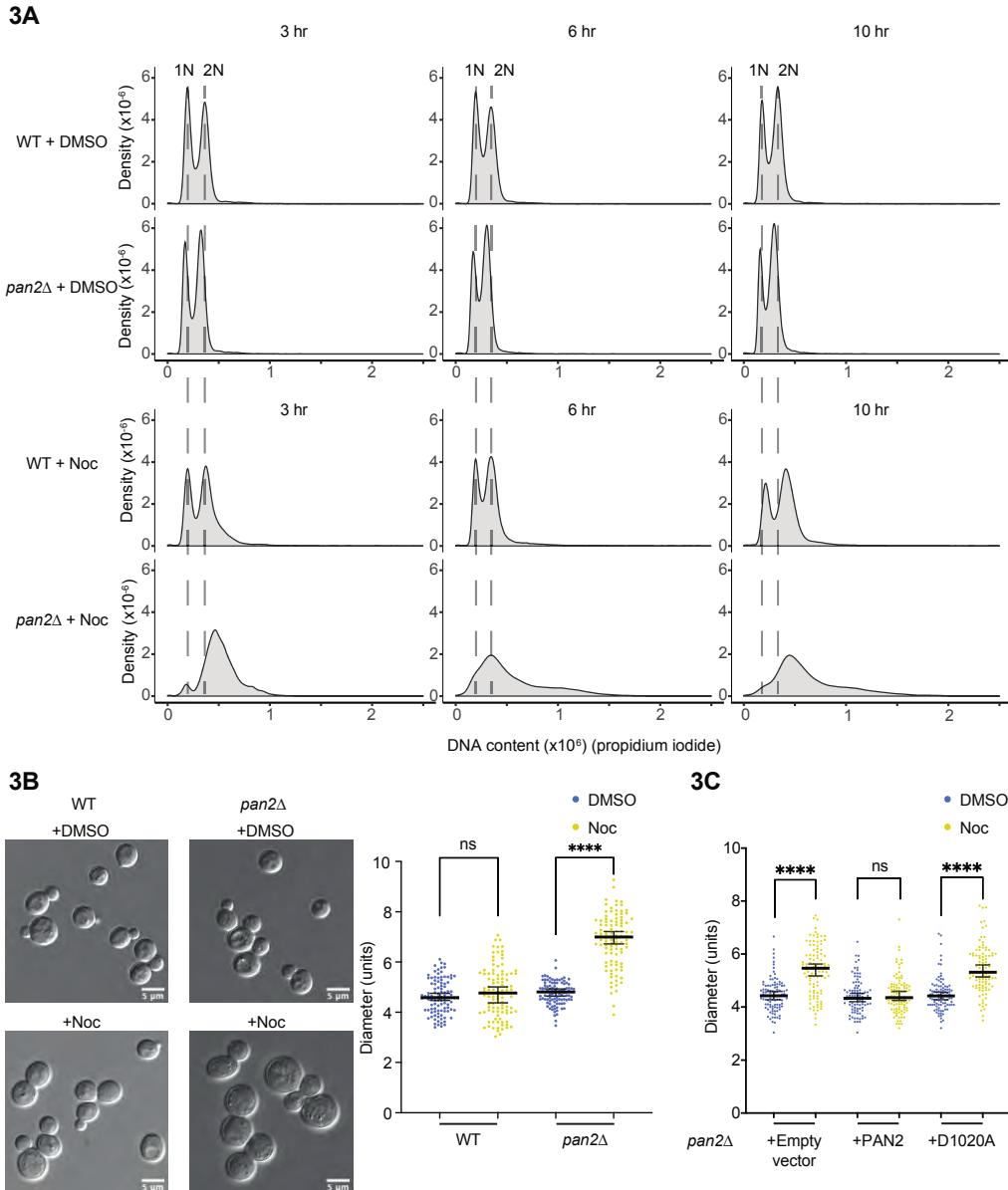
238 Figure 2

2A

2B

239

240 **Fig 2: PAN2 and PAN3 genetically interact with tubulin and genes governing tubulin**
241 **folding.** **(A)** Venn diagram shows overlap between aggravating genetic interactions for PAN2
242 according to TheCellMap (yellow), PAN2 SGA screen in either absence (blue) or presence of
243 nocodazole (light brown). **(B)** Growth curves of single knockout (blue) or double knockout
244 (yellow) yeast strains in SC media with 1.5 μ M nocodazole for 24 hours at 30°C. Absorbance
245 plotted with SD (n=6). min, minutes; SC, Synthetic Complete media; SD, standard deviation.
246
247 To confirm genetic interactions of *PAN2* with genes involved in microtubule function, we
248 assessed the sensitivities of single and double knock-out strains in liquid growth assays using the
249 same low dose of nocodazole used in our screens (1.5 μ M), which did not affect the growth of
250 *pan2 Δ* single mutant cells (**SFig 2B**). We confirmed slow growth phenotypes in double mutants
251 with *CIN1*, *GIM3*, *PAC2*, and *TUB3* in the presence of 1.5 μ M nocodazole (**Fig 2B**), indicating
252 aggravating genetic interactions with these genes. There was no difference in growth of the
253 single and double knockouts in the absence of drug (**SFig 2C**), consistent with our screen results.
254 We also expanded our test set to include other genes involved in tubulin folding including *CIN2*
255 (GTPase activating protein, tubulin folding cofactor C), *CIN4* (GTPase involved in beta-tubulin
256 folding, regulated by *CIN2*), and *GIM4* (prefoldin co-chaperone complex). These all showed
257 aggravating genetic interactions with *PAN2* in the presence of 1.5 μ M nocodazole but not in the
258 absence. Since PAN regulates mRNA stability, we were intrigued to test the mRNA levels of
259 tubulin genes *TUB1*, *TUB2*, and *TUB3*, in the presence and absence of nocodazole, but found no
260 significant changes in transcript abundance (**SFig 2D**). Thus, the genetic interactions between
261 *PAN2* and *PAN3* and genes governing tubulin folding provided strong genetic evidence for a role
262 for PAN in microtubule function.


263 **PAN2 deletion exacerbates nocodazole-induced G2/M arrest**

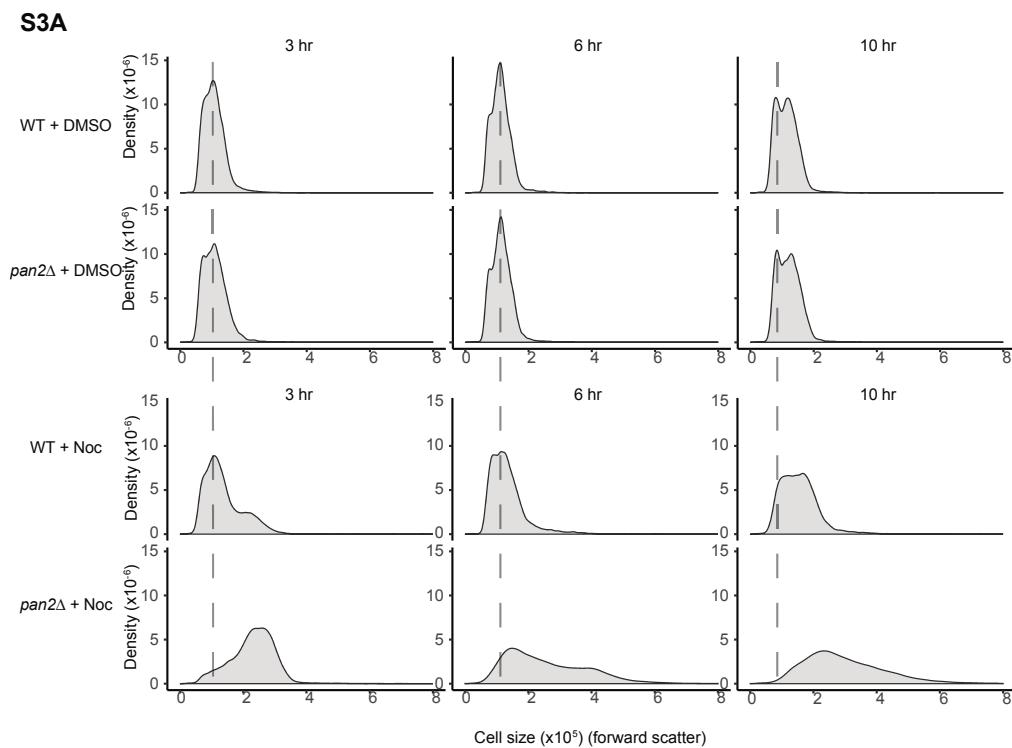
264

265 Upon establishing the nocodazole sensitivity of *pan2Δ* and *pan3Δ* and genetic interactions between
266 *PAN2* and *PAN3* and genes governing tubulin folding in yeast, we were interested in understanding
267 this phenotype further. We performed flow cytometry to determine the distribution of cells in G1/S
268 and G2/M phases. Log phase cells of *pan2Δ* and WT were treated with either DMSO or 6 μ M
269 nocodazole and collected at different time points after treatment (3, 6 and 10 hours). They were
270 fixed in ethanol and stained to analyze DNA content by flow cytometer. In the absence of drug
271 treatment, we saw that both *pan2Δ* and WT cells have typical distributions for asynchronous log
272 phase yeast cultures of 1N and 2N cells at all the time points, suggesting normal cell-cycle
273 progression (**Fig 3A**). However, upon treatment with nocodazole, we found that there was a shift
274 from 1N to 2N and a broadening of the 2N peak in *pan2Δ* as compared to WT cells at 3 hours,
275 indicating a G2/M delay (**Fig 3A**). We did not observe a discrete 1N peak and the DNA content
276 extended beyond 2N, suggesting genomic instability or an extensive G2/M arrest in *pan2Δ* cells
277 after 6 hours of treatment with nocodazole (and also at 10 hours) (**Fig 3A**).

278

279 Figure 3

280


281 **Fig 3: G2/M delay in *pan2Δ* cells treated with nocodazole. (A)** FACS profiles post treatment
282 with DMSO or 6 μ M nocodazole. 1N and 2N respectively represent DNA content. Green lines
283 represent the position of 1N and 2N DNA peaks in untreated cells. FACS, fluorescence activated
284 cell sorting; hr, hours; WT, wild type; Noc, nocodazole. **(B-C)** Live imaging of yeast cells
285 treated for 6 hours. Mother cell size quantified ($n > 100$). Scale bars: 5 μ m. Paired Student's t-
286 test for significant differences. WT, wild type; ns, not significant, ****, $p < 0.0001$.

287

288 Analysis of the gates during flow cytometry revealed that *pan2Δ* cells upon 3 hours of treatment
289 with nocodazole, had a different forward scatter than WT cells, suggesting that *pan2Δ* cells upon
290 treatment with nocodazole for 3 hours were larger than WT cells (**SFig 3A**), while there was no
291 difference in cell-size upon DMSO treatment (**SFig 3A**). This trend was consistent for the next
292 two time-points as well (6 and 10 hours post treatment with nocodazole), so we determined the
293 cell morphology of *pan2Δ* upon treatment with nocodazole. On treatment of log phase cells with
294 6 μ M nocodazole for 6 hours, *pan2Δ* exhibited a significant increase in cell diameter (~1.75
295 times), relative to the WT cells, while there was no significant difference in size upon treatment
296 with DMSO (**Fig 3B**). *pan2Δ* cells treated with nocodazole were predominantly large-budded,
297 and together with their increased cell size, were consistent with our FACS data indicating a
298 G2/M delay. Upon expression of WT *PAN2* in *pan2Δ* cells, we were able to eliminate the large
299 cell phenotype, whereas expression of deadenylase-dead *PAN2* did not, indicating the
300 deadenylase activity of Pan2 was required to prevent the G2/M delay (**Fig 3C**).

301

302 Figure S3

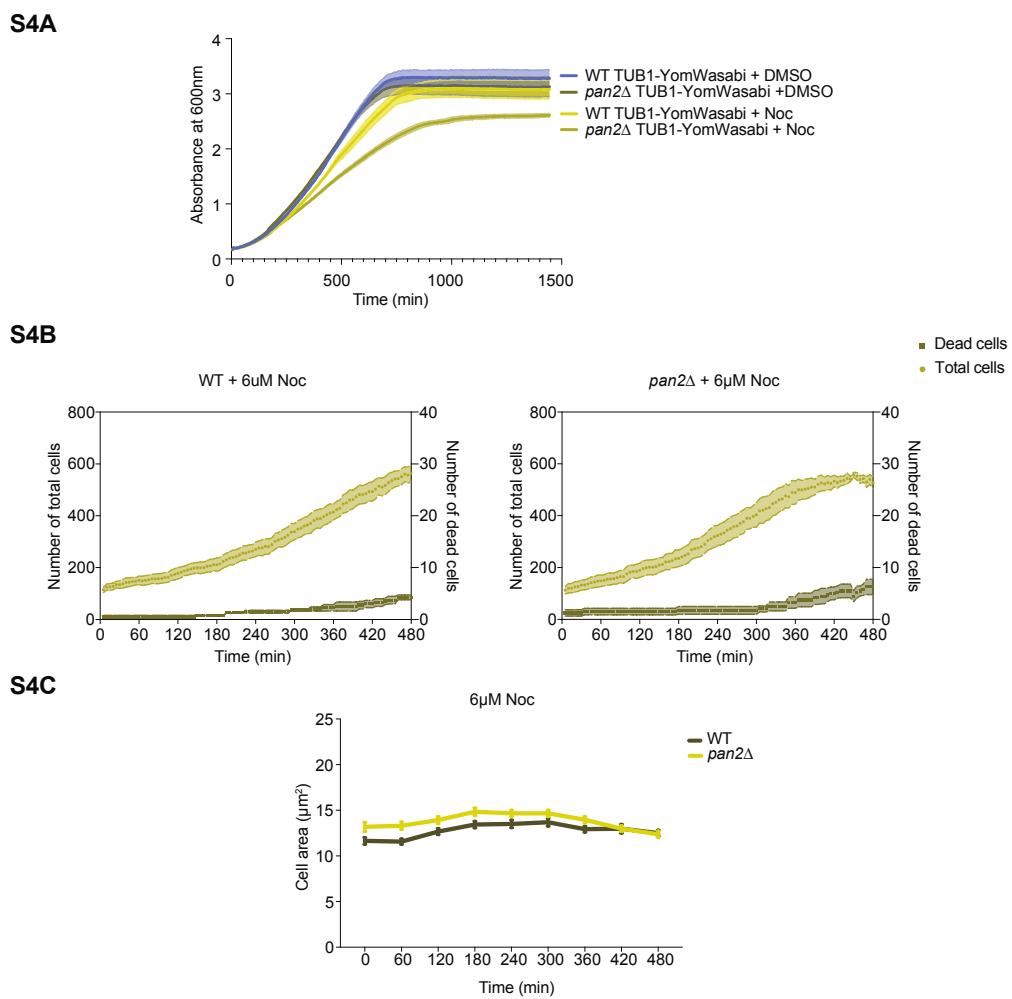
303

304 **Fig S3A:** FACS profiles post DMSO or 6 μ M nocodazole treatment. FACS, fluorescence
305 activated cell sorting; hr, hours; WT, wild type.

306

307 **Nocodazole treatment leads to increased cell-death in pan2 Δ cells due to impaired spindle
308 formation**

309

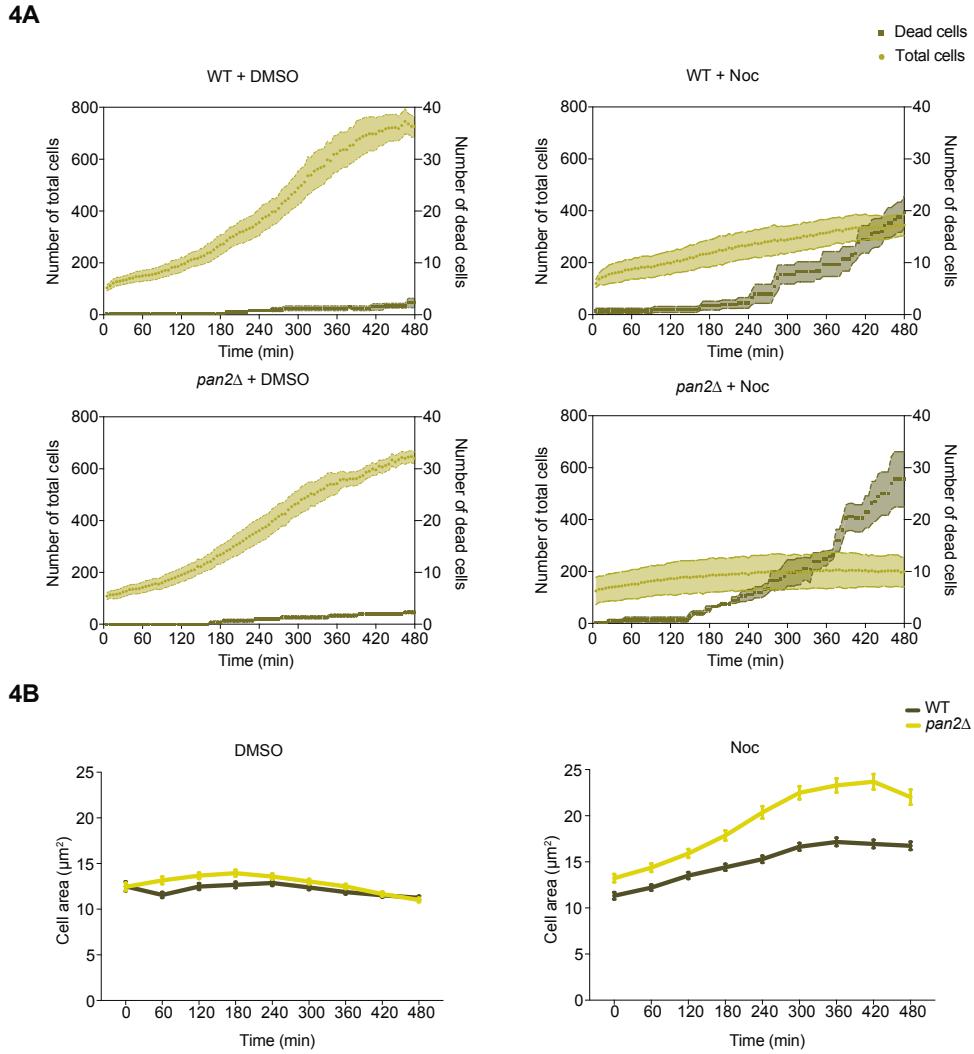

310 We were intrigued to determine if there was a difference in spindle morphology in pan2 Δ cells
311 upon nocodazole treatment. Thus, we used (Tub1+3'UTR)-yomWasabi cassette (38) to first tag

312 tubulin. Upon testing the sensitivity of *pan2Δ*-(Tub1+3'UTR)-yomWasabi yeast and WT-
313 (Tub1+3'UTR)-yomWasabi yeast, similar to *pan2Δ* yeast, we found that *pan2Δ*-(Tub1+3'UTR)-
314 yomWasabi yeast was sensitive to nocodazole, and that WT-(Tub1+3'UTR)-yomWasabi yeast
315 exhibited a mild slow-growth phenotype compared to WT (**SFig 4A**). We set up an assay to
316 observe spindle morphology as well as measure the total number of cells, dead cells and cell area
317 using live-cell imaging of yeast and analyzing the data using a machine-learning assisted
318 pipeline (see Methods). In untreated cells, cell growth appeared to be normal and we did not
319 observe significant differences in cell number or number of dead cells in WT vs *pan2Δ* cells over
320 8 h of imaging (**Fig 4A, left panels; also see movies in SFiles 4 and 6**). Cell area was largely
321 unchanged in both WT and *pan2Δ* cells over the time-course (**Fig. 4B**). Treatment with 6 μ M
322 nocodazole did not result in a significant difference in total cells or dead cells between WT and
323 *Δpan2* cells, and cell area remained largely unchanged (**SFig 4B-4C**). This was different from
324 what we observed in liquid growth assay and we suspect was due to the different growth
325 conditions during live-cell imaging (no shaking or aeration), which altered the level of effective
326 drug exposure. Hence, we tested increased drug concentrations. At 12 μ M nocodazole we
327 observed a general slowing of growth and a significant difference in total cells ($p<0.0001$) and
328 dead cells ($p<0.0001$) between WT and *pan2Δ*. For WT treated with nocodazole, the mean total
329 cell number was 120 at $t=0$ and 344.5 at $t=480$ minutes, while the mean number of dead cells
330 increased from 0.75 to 19.75 (**Fig 4A, top right panel; also see movie SFile 5**), whereas for
331 *pan2Δ* treated with nocodazole the mean total cell number was 125 at $t=0$ and 199 at $t=480$ min
332 and the mean number of dead cells increased from 0.25 to 27.75 (**Fig 4A, bottom right panel;**
333 **also see movie SFile 7**). We also observed a steady increase in cell area of both WT and *pan2Δ*
334 until \sim 360 min, which then leveled off (**Fig 4B**). This increase in cell area was much greater for

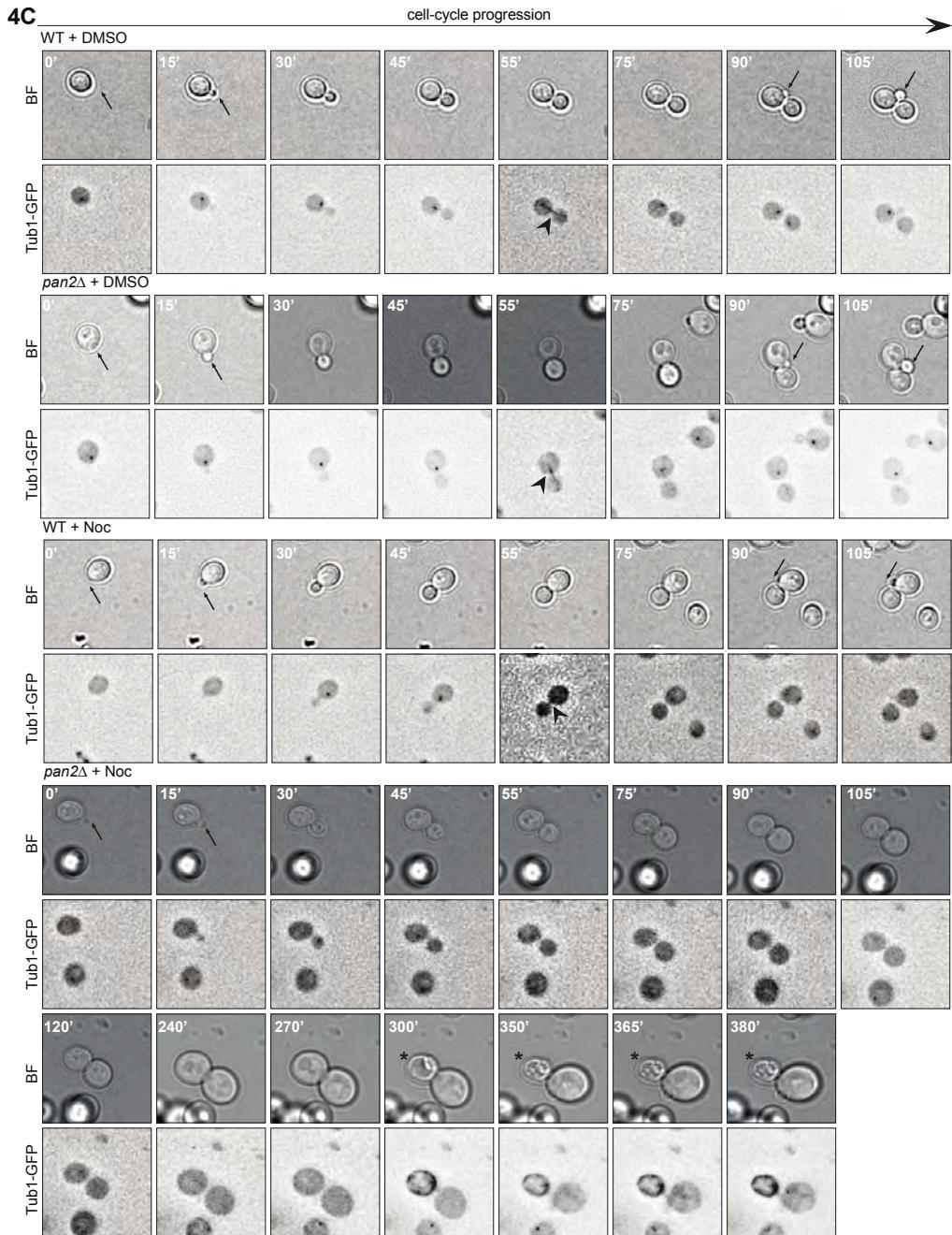
335 *pan2Δ* ($\sim 13 \mu\text{m}^2$ to $\sim 23 \mu\text{m}^2$) than for WT ($\sim 12 \mu\text{m}^2$ to $\sim 17 \mu\text{m}^2$) (Fig 4B). Taken together the
336 decreased cell growth, increased cell death and increased cell area of *pan2Δ* cells treated with
337 nocodazole were consistent with these cells having a defective cell-cycle.

338

339 Figure S4



340
341 **Fig S4A:** *pan2Δ* Tub1-yW yeast is sensitive to nocodazole and WT-Tub1-yW exhibits a mild
342 slow-growth phenotype compared to WT. Growth curves of yeast strains grown in liquid SC


343 media with or without 6 μ M nocodazole and monitored for 24 hours. An average of 6 replicates
344 has been plotted with SD. Absorbance adjusted for baseline correction. μ M, micromolar; SC,
345 Synthetic Complete media; SD, standard deviation. **Fig S4B:** Number of total cells (left y-axis)
346 and number of dead cells (right y-axis) upon treatment of WT (top) or *pan2* Δ (below) with 6 μ M
347 nocodazole for every 5-minutes over a total time interval of 480 minutes. **Fig S4C:** Cell area of
348 individual cells of WT (brown) or *pan2* Δ (yellow) is represented with 95% confidence interval
349 upon treatment with 6 μ M nocodazole over a total duration of 480 minutes. Each time point
350 represents the cell area of 500-2500 cells recognised by cell segmentation.

351

352 Figure 4

353

354

355 **Fig 4: Spindle defects in *pan2Δ* upon treatment with nocodazole. (A)** Number of total cells

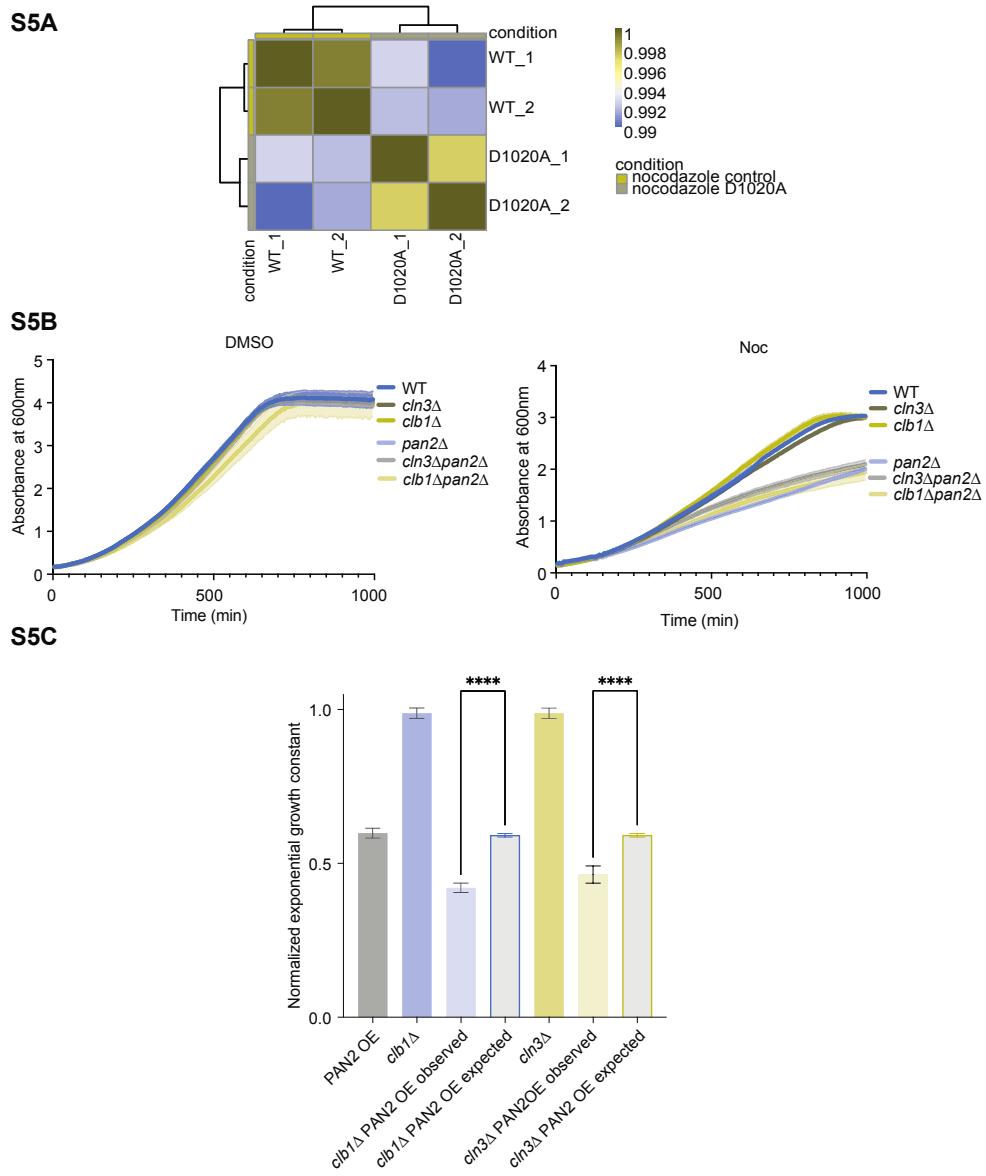
356 (left y-axis) and number of dead cells (right y-axis) upon treatment of WT or *pan2Δ* with DMSO

357 (left) or 12 μ M nocodazole (right) for every 5-minutes over a total time interval of 480 minutes
358 were calculated using machine-learning assisted pipelines. **(B)** Cell area of individual cells of
359 WT (brown) or *pan2 Δ* (yellow) is represented with 95% confidence interval upon treatment with
360 DMSO (left) or 12 μ M nocodazole (right) over a total duration of 480 minutes. Each time point
361 represents the cell area of 500-2500 cells recognised by cell segmentation. **(C)** Live imaging of
362 log phase yeast cells expressing (Tub1+3'UTR)-yom-Wasabi WT or *pan2 Δ* . The cells are treated
363 with DMSO or 12 μ M nocodazole for \sim 75 minutes prior to imaging. The time-stamps are
364 indicated on top left of each snapshot. Arrow indicates new bud, arrowhead indicates mitotic
365 spindle and asterisk indicates dead cell. WT, wild-type; DMSO, dimethyl sulfoxide; μ M,
366 microMolar; Tub1: alpha-tubulin; UTR, untranslated region.

367
368 Now next we examined cell morphology and tubulin-tagged spindles in detail. In untreated WT
369 and *pan2 Δ* cells, budding and cell division appeared normal with a cell-cycle duration of \sim 75
370 min (**Fig 4C**). Spindles appeared normal, with the spindle pole body being clearly visible at the
371 time of bud emergence (15 min, S phase) and then migrating to the bud neck (30 min, G2 phase)
372 before elongating through the neck and into the bud (55 min, M phase). For nocodazole treated
373 cells, we chose to examine cells after 75 min of treatment with 12 μ M nocodazole because this
374 time corresponded to approximately one round of cell division and there was little cell death at
375 this time point. The WT cell shown had an elongated cell-cycle of \sim 90 min (compared to \sim 75
376 min for untreated cells), however cell morphology and spindles appeared normal (**Fig 4C**; times
377 indicated are relative to the start of the cell-cycle for the given cell). This was consistent with our
378 quantification, which indicated that over this time period cell number increased, there were few
379 dead cells, and there was only a marginal increase in cell size. In contrast, the *pan2 Δ* cell shown

380 did not have clearly detectable spindle pole bodies or spindles, and although bud growth
381 progressed normally for ~90 min, cell division failed to complete and there was continued
382 mother and bud growth leading to very large cells (see 270 min). For this cell, at 300 min the
383 mother died and the now orphan “daughter” failed to grow or divide (as late as 380 min). This
384 was consistent with our quantification, which indicated that cell number did not increase
385 substantially after nocodazole addition, that the number of dead cells increased and there was a
386 substantial increase in cell size. Thus, in *pan2Δ* cells treated with nocodazole, the spindle was
387 compromised which led to defective mitosis and a failure to complete the cell-cycle.

388

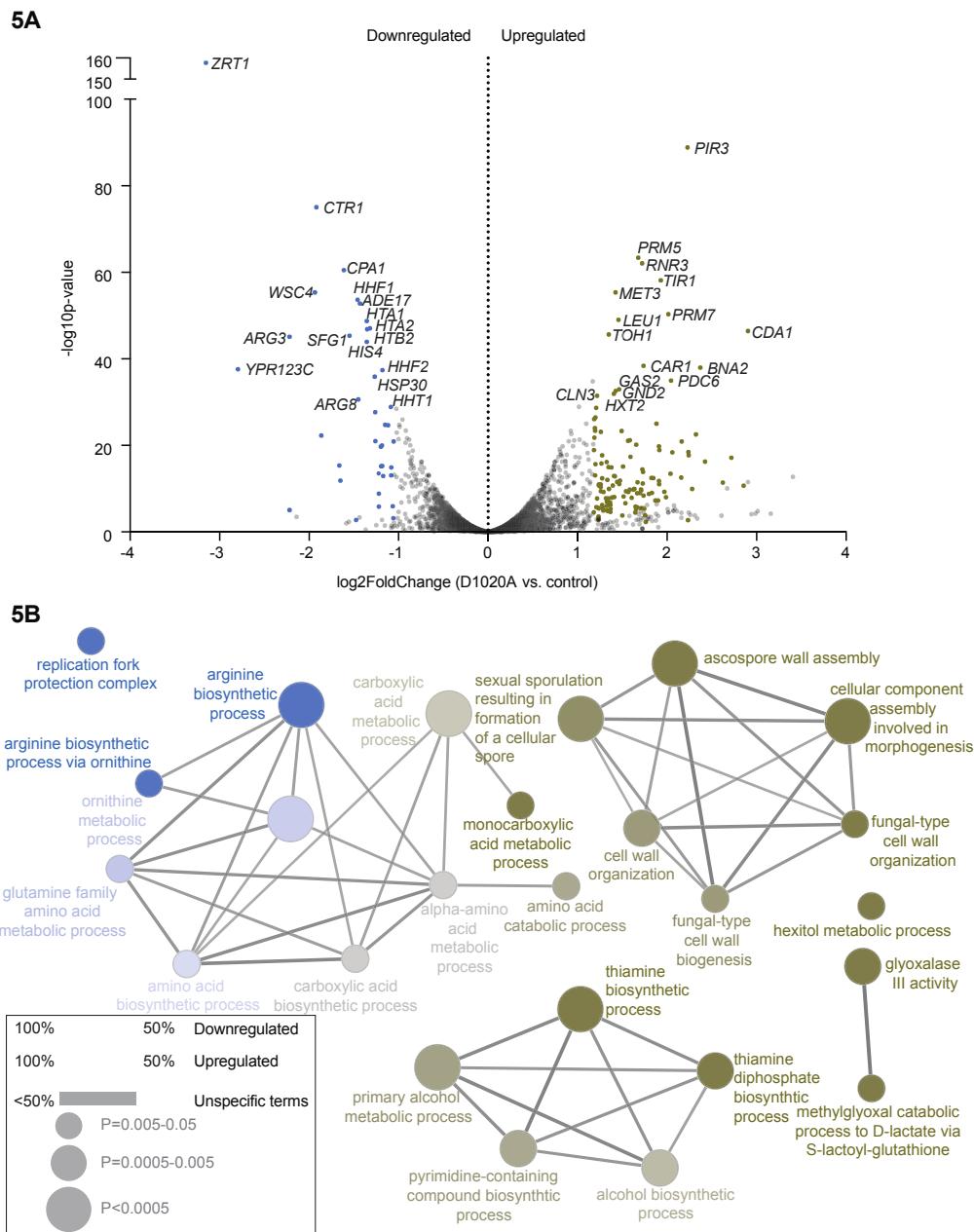

389 ***pan2Δ* cells exhibit dysregulated cell-cycle gene expression in response to nocodazole**

390

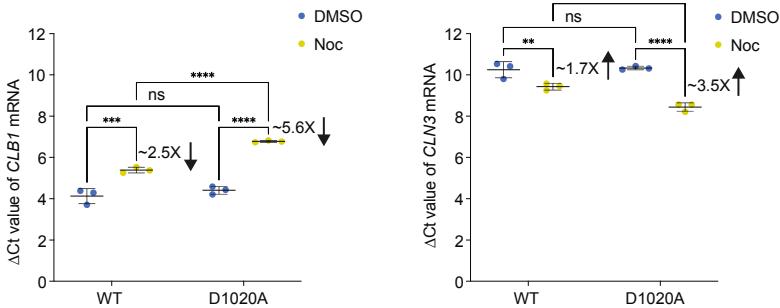
391 Because deadenylase dead PAN2 did not eliminate the nocodazole sensitivity of *pan2Δ* cells, we
392 were interested in the transcriptional profile of these cells and if there were altered expression of
393 cell-cycle genes. Therefore, we performed an RNA-sequencing experiment on nocodazole-
394 treated populations of *pan2Δ* + WT Pan2 and *pan2Δ* + D1020A Pan2 cells to identify differences
395 in the transcriptome. Log phase cultures of the above genotypes in duplicate were treated with 6
396 μM of nocodazole for 6 hours and mRNA was collected and sequenced. Spearman correlations
397 for expression of all the genes were plotted for the two replicates of the two samples (**SFig 5A**).

398

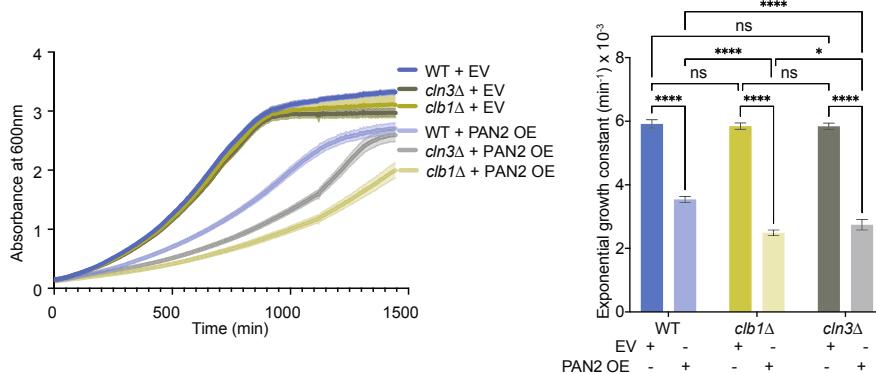
399 Figure S5


401 **Fig S5A:** Spearman correlations for expression of all the genes were plotted for the two
402 replicates per sample of nocodazole treated Control and D1020A samples. **Fig S5B:** Growth
403 curves of yeast strains in SC media with DMSO (left) or 6 μ M nocodazole (right) at 30°C for 24
404 hours. Absorbance plotted with SD (n=6). min, minutes; SC, Synthetic Complete media; SD,
405 standard deviation; WT, wild type. **Fig S5C:** Normalized exponential growth constants (data
406 from **Fig 5D**). Error bars are +/- SD from three separate experiments (n=6). Significant
407 differences between different strains were tested using paired Student's *t*-test. OE,
408 overexpression.

409
410 Out of the 6,031 ORFs analyzed, we chose an absolute z-score cutoff of 2 (equivalent to a log2
411 fold change cutoff of 1.182 and -1.0554). For a p value < 0.01 and log2 CPM > 1 (counts per
412 million), we identified 129 upregulated and 39 downregulated genes (**Fig 5A**) (**SFile 3**). These
413 genes were enriched in GO terms related to replication fork protection complex, arginine
414 biosynthetic process, carboxylic acid metabolic process, ascospore wall assembly, thiamine
415 biosynthetic process, hexitol metabolic process and glyoxalase III activity (**Fig 5B**). These
416 processes are known to be cell-cycle dependent and regulated at the transcriptional level, with
417 histone mRNAs (replication fork complex genes) being synthesized exclusively in S phase (39).
418 Hence, the change we see in the expression of these genes was consistent transcriptionally with
419 nocodazole-treated PAN-deficient cells having a G2/M arrest. The transcriptional upregulation
420 of hexitol metabolic process and glyoxalase III activity in *pan2 Δ* + D1020A Pan2 compared to
421 *pan2 Δ* + WT Pan2, indicates that the cells are likely undergoing a metabolic shift and producing
422 energy differently (hexitol metabolism) and are responding to the oxidative stress in the
423 environment (glyoxalase III activity). While ascospore wall assembly and thiamine biosynthetic


424 processes were also found to be upregulated, since these are haploid cells, it is likely that
425 upregulation of ascospore wall assembly mRNAs is consistent with increased demand for cell
426 wall synthesis during bud growth in G2/M and the increased cell-size of PAN-deficient cells.
427 Some of the genes involved in sporulation might have alternative functions in conditions of
428 nutrient limitation, environmental stress or even mutations that disrupt normal cell-cycle.

429


430 Figure 5

5C

5D

432

433 **Fig 5: mRNA levels of *CLB1* and *CLN3* are altered in deadenylase dead mutant of *PAN2* in**
 434 **nocodazole. (A)** Fold change and p-value of ~6000 ORFs analyzed in nocodazole treated
 435 Control and D1020A cells by RNA-sequencing. Each closed circle represents a single ORF,
 436 categorized into upregulated (green), downregulated (blue) or not-significantly different (gray)
 437 **(B)** Functional enrichment of the upregulated and downregulated genes identified in (A). Node
 438 size indicates statistical significance of enriched GO terms and edges indicate statistically
 439 significant associations between terms. Node color indicates the % of aggravating or alleviating
 440 interactions in each term. Unspecific terms in gray. **(C)** Gene expression changes in *pan2Δ*+WT-
 441 *PAN2* or *pan2Δ*+D1020A-*PAN2* post 6 hour treatment with DMSO or 6 μM nocodazole

442 assessed by qRT-PCRs. The ΔCt values are normalized to actin. Data mean +/- S.D. 0.4X and
443 2X indicate fold-change in *CLB1* and *CLN3* mRNA levels respectively. n.s., not significant;
444 **** p < 0.0001; *** p < 0.001; **, p < 0.01. Two-way ANOVA for significant differences. Ct,
445 cycle threshold; μ M, micromolar; qRT, quantitative reverse transcriptase; ANOVA, Analysis of
446 Variance. (D) Growth curves of yeast strains grown in liquid SC media and monitored for 24
447 hours at 30°C. Absorbance adjusted for baseline correction is plotted on the y-axis and time (in
448 minutes) is plotted on the x-axis. An average of 6 replicates have been plotted with SD. min,
449 minutes; SC, Synthetic Complete media; SD, standard deviation; WT, wild type; EV, empty
450 vector; OE, overexpression. Base 2 exponential growth constants calculated from growth of
451 different yeast strains. Error bars are +/- SD from three separate experiments. Each experiment
452 has 6 replicates. Significant differences between different strains were tested using two-way
453 ANOVA comparison.

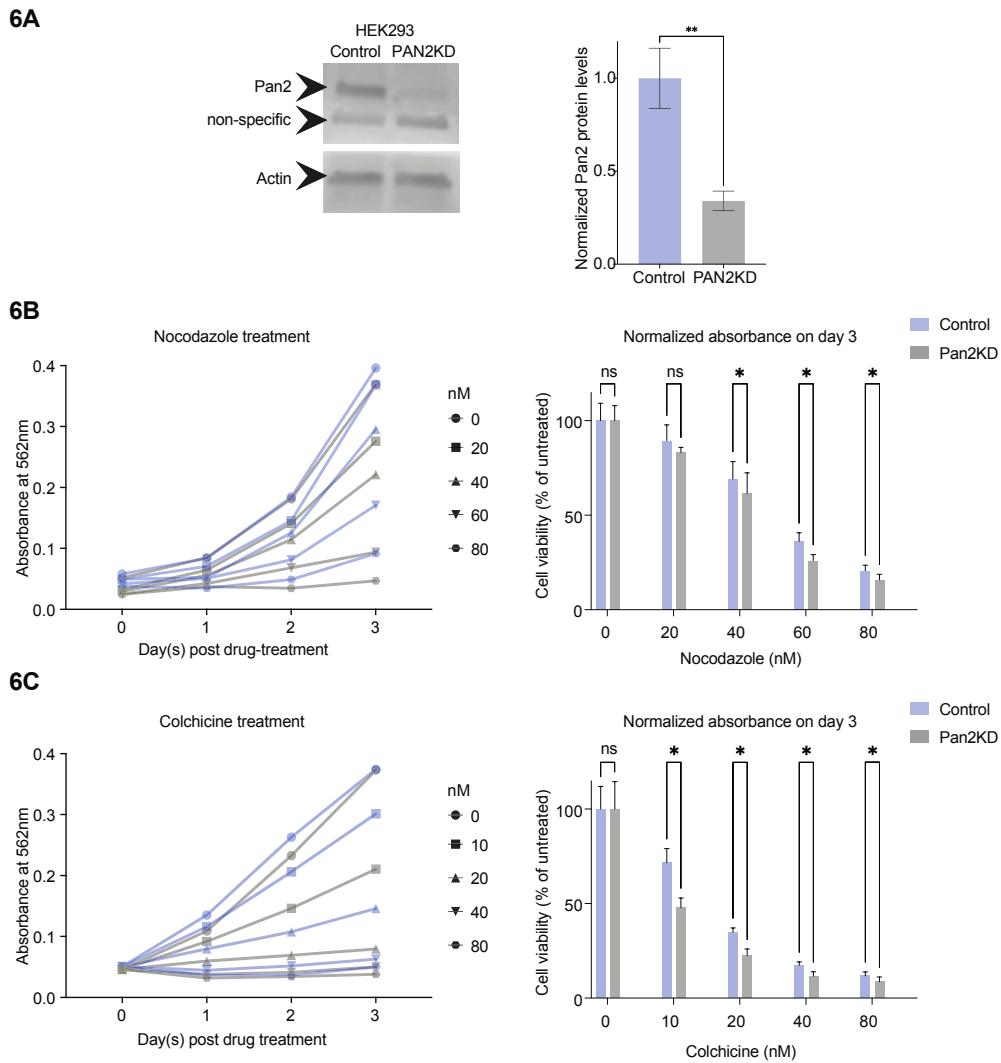
454
455 Two genes, *CLN3* and *CLB1*, with functions related to regulation of cyclin-dependent protein
456 serine/threonine kinase (CDK) activity, were significantly different between WT and D1020A
457 Pan2 treated with nocodazole. *CLN3* encodes a CDK regulatory subunit that regulates cell-cycle
458 passage through START by regulating transcription at the G1/S transition. *CLB1* encodes a B-
459 type cyclin involved in the regulation of the G2/M transition of both the mitotic cell-cycle and
460 first meiotic division (40). *CLB1* is also involved in mitotic spindle assembly and spindle pole
461 body separation through its interaction with CDK1 (41). By qPCR we found that *CLB1* mRNA
462 levels decreased ~2.5 fold in cells with WT Pan2 in response to nocodazole, whereas in cells
463 with D1020A Pan2, *CLB1* decreased ~5.6 fold (Fig 5C). There was no difference in *CLB1*
464 expression between cells with WT or D1020A Pan2 in the absence of nocodazole. Similarly, for

465 *CLN3* there was no difference between cells with WT or D1020A Pan2 in the absence of
466 nocodazole, however in the presence of nocodazole *CLN3* mRNA levels increased ~1.7 fold in
467 cells with WT Pan2 and ~3.5 fold in cells with D1020A Pan2 (**Fig 5C**). Thus, PAN was required
468 for regulation of *CLB1* and *CLN3* mRNA levels in response to nocodazole.

469

470 Given the changes we observed in *CLB1* and *CLN3* expression in cells with D1020A Pan2, we
471 tested for functional associations between PAN and *CLB1* and *CLN3*. We constructed double
472 mutants between *PAN2* and *CLB1* and *CLN3* and tested for genetic interactions in the absence
473 and presence of nocodazole. Growth of the double mutants was the same as the *PAN2* single
474 mutant both in the absence and presence of nocodazole, indicating deletion of either *CLB1* or
475 *CLN3* did not modify the Δ *pan2* nocodazole sensitivity (**Fig S5B**). Next we tested
476 overexpression of *PAN2* in the absence of *CLB1* or *CLN3*. Similar to HsPAN2, overexpression
477 of yeast *PAN2* caused a slow growth phenotype in WT yeast (**Fig 5D**). This phenotype was
478 enhanced in cells lacking *CLB1* and *CLN3* (**Fig 5D**), indicating a functional association between
479 PAN and both *CLB1* and *CLN3*. Thus, these data supported that the role for PAN in response to
480 microtubule stress involved regulation of Clb1 and Cln3 function.

481


482 **PAN2 depletion in mammalian cells increases sensitivity to microtubule destabilizing drugs**

483

484 To determine if the function of Pan2 in regulating the cell-cycle upon microtubule stress is
485 conserved from yeast to mammalian cells, we implemented a human cell culture system to
486 examine sensitivity to microtubule destabilizing drugs and spindle integrity. We generated a
487 population of HEK293 cells where Pan2 was stably knocked down using an shRNA targeting the
488 ORF of *PAN2* (see **Methods**). Specifically, we observed ~ 75% reduction in protein levels of
489 Pan2 by western blot in this population (**Fig 6A**).

490

491 Figure 6

492

493 **Fig 6: HEK293 PAN2KD cells are sensitive to nocodazole and colchicine.** (A) Cell lysates
494 from HEK293 Control and Pan2KD cells were analyzed on an SDS gel and probed for Pan2 and
495 Actin levels, quantification for which is shown on right, n=3. Significant differences between the
496 2 strains were tested using paired Student's *t*-test. **, p < 0.01. (B-C) Absorbance at 562 nm (y-

497 axis) and days post treatment (x-axis) with nocodazole (**B**) or colchicine (**C**) was plotted for
498 control (blue) and Pan2KD (gray) at various concentrations of drug. Absorbance of each treated
499 condition was normalized to the absorbance of the untreated condition for each cell line on the
500 day 3 post-treatment to plot cell viability (% of untreated). Average of 6 replicates has been
501 plotted. Mean +/- S.D. Significant differences between Control and Pan2KD cells at each
502 concentration was tested using multiple Student's *t*-test. nM, nanomolar; n.s., not significant; *,
503 p<0.05.

504
505 To determine if this reduction in Pan2 reduced viability and/or slowed the growth of cells treated
506 with the microtubule inhibitors nocodazole or colchicine, we used a colorimetric MTT (3-(4, 5-
507 dimethylthiazol-2)-2, 5-diphenyltetrazolium bromide) assay for live, metabolically active cells
508 that reads out as absorbance at 562 nm (42). We seeded wells at 1,000 cells per well, added drug
509 16 h later and at a further 0, 24, 48 and 72 h we performed MTT assay (**Fig S6A**). We observed a
510 dose-dependent decrease in cell viability as measured by A562 in both control and Pan2KD cells
511 treated with nocodazole or colchicine over the time course (**Fig 6B &C, left panels**). We
512 compared the viability of Pan2KD and control cells at the endpoint of the assay on day 3. For
513 nocodazole treatment, we observed a significant decrease in viability of Pan2KD compared to
514 control cells at 40, 60 and 80 nM nocodazole (**Fig 6B, right panel**). For colchicine we observed
515 significant decreases at all concentrations (**Fig 6C, right panel**). This suggested that, as was the
516 case in yeast, depletion of Pan2 increased the vulnerability of mammalian cells to microtubule
517 depolymerization.

518

519 Figure S6

S6A

520

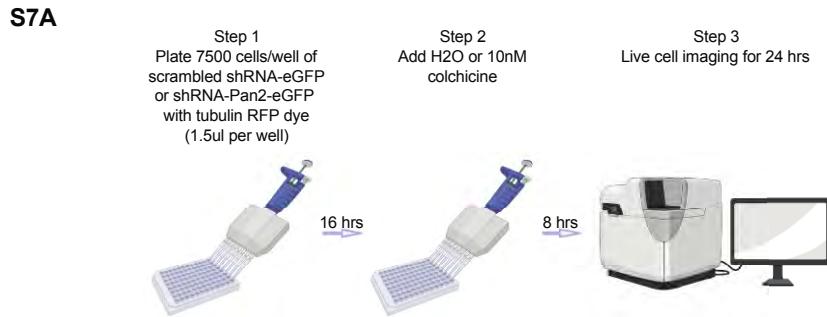
521

522

523

524 **Fig S6A:** Protocol for recording MTT activity of cells over multiple days.

525

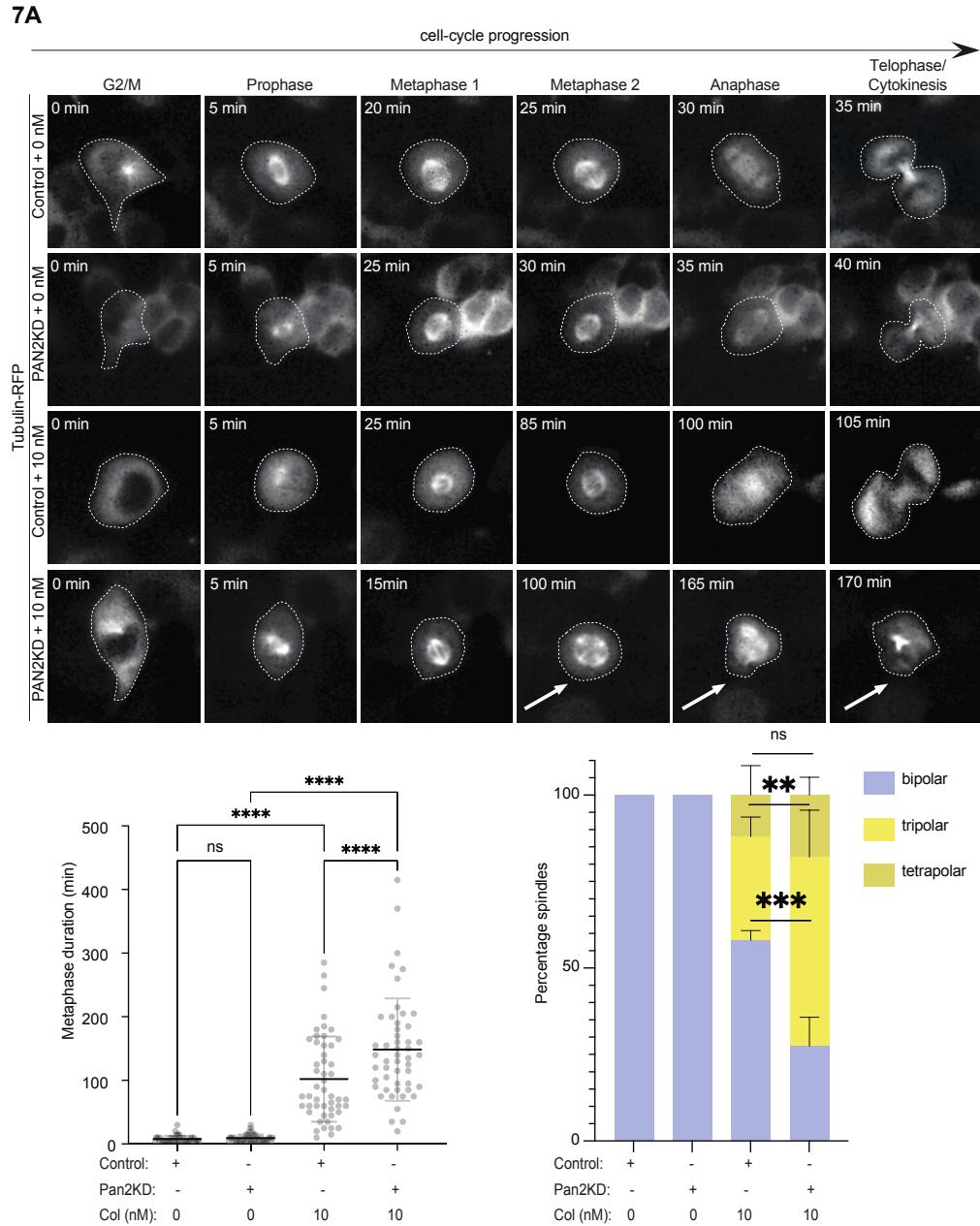

526 **PAN2KD cells exhibit extended metaphase and multipolar spindle formation upon
527 treatment with colchicine**

528

529 We were curious to determine the cause of increased sensitivity of HEK293 Pan2KD cells to
530 microtubular depolarization and how this related to the cell-cycle. Thus, we live-imaged
531 microtubules in the control and Pan2KD cells using a tubulin staining dye, CellLight™ Tubulin-
532 RFP BacMam 2.0. Upon treatment with a low dose of 10 nM of colchicine, we imaged cells for a
533 period of 24 hours to capture the spindle morphology, as well as to determine the duration of
534 different stages of mitosis (**Fig S7A**). In the absence of drug treatment, progression through the
535 cell-cycle appeared normal for both control and Pan2KD cells (**Fig 7A; also see movie SFile 8**).
536 We observed no differences in metaphase duration or spindle morphology. In contrast, upon
537 treatment with 10 nM colchicine, as compared to control cells, Pan2KD showed abnormal
538 progression through the cell-cycle (**Fig 7A; also see movie SFile 9**). Pan2KD cells spent longer
539 time in metaphase (**Fig 7A**) and had a higher propensity to form multipolar spindles (~75% in

540 Pan2KD vs ~40% in Ctrl) (**Fig 7A**; also see 100 min image in **Fig 7A**). This indicated that Pan2
541 played a role in spindle integrity during microtubule stress and was consistent with the decreased
542 viability we observed in Pan2KD cells treated with nocodazole and colchicine.

543 Figure S7



544
545

546 **Fig S7A:** Protocol for live-cell imaging of colchicine treated cells using tubulin staining dye.

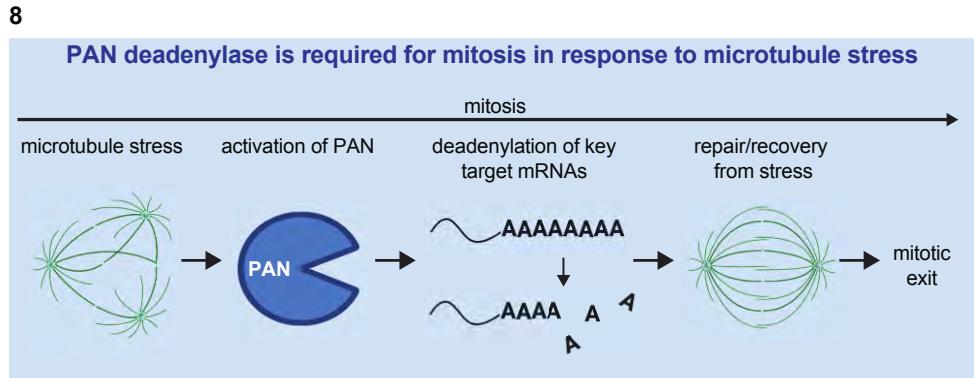
547

548 Figure 7

549

550 **Fig 7: HEK293 PAN2KD cells exhibit defective spindle phenotypes upon treatment with**
551 **colchicine (A)** Representative images of HEK293 Control and Pan2KD cells with or without
552 treatment with 10 nM colchicine. These cells are shown undergoing mitosis at the transition from
553 G2 to M and different phases of M-phase (prophase, metaphase 1, metaphase 2, anaphase and
554 telophase). The time taken for each stage of mitosis is indicated on top left of each snapshot.
555 Arrows indicate cells with multipolar spindles. Metaphase duration (in minutes) and percentage
556 of cells having 2, 3 or 4 spindles is plotted for colchicine treatment of HEK293 Control and
557 Pan2KD cells. Each closed circle represents one cell. 50 cells were counted for each condition.
558 Mean +/- S.D. has been plotted. nM, nanomolar; min, minutes; ns, not significant; **, p<0.01;
559 ***, p<0.001; ****, p<0.0001.

560


561 **Discussion**

562

563 Since the role of PAN in response to microtubule stress was dependent on its deadenylase
564 activity, we propose that PAN regulates the PATLs of mRNAs required for cellular survival of
565 microtubule stress (**Fig 8**). PAN activity during microtubule stress would lead to translational
566 repression of key proteins involved in either sensing microtubule stress and/or responding
567 to/recovering from formation of defective spindles. Some obvious targets are proteins involved
568 in the spindle assembly checkpoint, however we did not find expression of any of these to be
569 altered in our mRNA seq screen. We also did not detect altered expression of genes with
570 functions directly related to microtubule biogenesis, including the tubulin genes themselves,
571 making it unlikely that PAN regulates microtubules directly. However, it is possible that our
572 screen missed these targets because it did not identify mRNAs with altered poly-A tail lengths.

573 Altered poly-A tail length could lead to altered translation, independent of mRNA stability,
574 hence screening for altered poly-A tail length would likely produce novel insights into PAN's
575 mechanism of action (15,43). It is interesting that cells lacking PAN appear to have a normal
576 cell-cycle, normal spindles, and show no decrease in fitness under regular growth conditions.
577 This further supports a specific role for PAN in response to microtubule/spindle stress and
578 perhaps explains its elusive role in the cell-cycle until now.

579 Figure 8

580

581 **Fig 8:** Model schematic of PAN regulating the mRNA polyA tails lengths (PATLs) of mRNAs
582 required for cellular survival of microtubule stress.

583

584 We did identify a functional connection between PAN and two important cell-cycle regulators,
585 Clb1 and Cln3, although the significance remains obscure. Decreased expression of *CLB1* in
586 response to nocodazole is consistent with failure of $\Delta pan2$ cells to complete mitosis, however
587 because *CLB1* is decreased in $\Delta pan2$ cells it is unlikely to be a direct target. The fact that *CLB1*
588 expression increases in response to nocodazole in WT yeast (which complete mitosis apparently
589 normally) supports that *CLB1* is part of the microtubule stress response. This is also supported by
590 the genetic interaction we observed between PAN and *CLB1*. It is possible that the low
591 expression of *CLB1* in $\Delta pan2$ cells treated with nocodazole prevents completion of mitosis,
592 however we might have expected to see loss of *CLB1* enhance the nocodazole sensitivity of
593 $\Delta pan2$ cells, which wasn't the case. It is possible that *CLB1* expression is already limiting, in

594 which case overexpression of *CLB1* should reduce the nocodazole sensitivity of $\Delta pan2$ cells if
595 Clb1 is playing an important role in the response. *CLN3* expression was found to be upregulated
596 in response to nocodazole which was enhanced in $\Delta pan2$ cells. Since Cln3 is not known to play
597 roles in mitosis it is unclear why Cln3 is being impacted. If *CLN3* was a direct target of PAN and
598 its elevated expression was preventing completion of mitosis, we would have expected loss of
599 *CLN3* to suppress the nocodazole sensitivity of $\Delta pan2$ cells, which wasn't the case. Because we
600 identify a genetic interaction between PAN and *CLN3* it is likely Cln3 is functionally relevant,
601 perhaps indirectly by affecting cell-cycle dynamics or by regulating PAN activity outside of M
602 phase.

603

604 There is evidence for regulation of cell-cycle progression through regulation of PATLs. For
605 example, genes such as *CDK1*, *TOP2A*, *KPNA2*, *UBE2C* and *FBXO5*, which orchestrate timing
606 and coordination of mitotic events in somatic cells, have been found to have reduced PATLs in
607 M-phase (15). Transcription of these genes peaks at G2/M phase and is repressed at G1 phase
608 (44). In contrast, other well-known mitotic regulators which are also transcriptionally
609 upregulated in G2/M phase, such as *CCNA*, *CCNB*, and *CENP-E*, do not show poly(A) length
610 changes (44). This suggests that a subset of genes are selectively deadenylated to shut down once
611 cells enter M phase. Specifically, *CDK1* displayed the most extreme change, whose median
612 poly(A) tail length changed from 77 nt in S phase to 2 nt in M phase and displayed translational
613 repression (15), unlike the previous report showing translational upregulation of *CDK1* in M
614 phase (45). Analysis of gene ontology for genes exhibiting shortened poly(A) tails during the M
615 phase identified enriched terms such as “regulation of mitotic cell-cycle”, “microtubule
616 cytoskeleton”, and “regulation of ubiquitin-protein ligase activity”. This implies that

617 deadenylation during the M phase may be linked to regulatory functions within the cell cycle. It
618 is currently unknown which deadenylases are responsible for which modifications and our results
619 suggest that PAN may play an important role. Ccr4-Not may also play a role, however, the fact
620 that loss of Ccr4-Not activity in yeast does not lead to sensitivity to microtubule destabilizing
621 drugs implies a prominent function for PAN (29).

622

623 Post-transcriptional regulation of mRNAs plays a critical role during the cell cycle and can be
624 achieved through their localization to specific subcellular compartments (46–48). A high-
625 throughput smFISH (single molecule Fluorescence *In Situ* Hybridization) screen of 602 proteins
626 with centrosomal functions identified 8 human mRNAs (*NIN*, *CEP350*, *PCNT*, *BICD2*,
627 *CCDC88C*, *ASPM*, *NUMA1*, and *HMMR*) that are locally translated at the centrosome (49).
628 Seven of these are translated during mitosis (*CCDC88C* is translated only during interphase).
629 *CEP350*, *ASPM*, *NUMA1*, and *HMMR* are microtubule binding proteins with functions in
630 centrosome/spindle maturation and *NIN*, *PCNT* and *BICD* contribute to microtubule anchoring at
631 the centrosome (50–56). Hence, these proteins are potential PAN targets in response to
632 microtubule stress. However, we did not find altered levels of yeast spindle pole body mRNAs in
633 our RNA-seq screen, suggesting either we missed detecting such changes or that PAN acts via
634 other targets. Given that the yeast spindle pole body shares no structural similarity to the
635 centrosome and that RNAs have yet to be localized to spindle pole bodies further suggests that
636 PAN targets components other than the centrosome/spindle pole body in yeast and humans.

637

638 The spindle phenotypes we observed in Pan2KD cells treated with colchicine coupled with their
639 decreased cell viability suggested these cells could have undergone abnormal chromosome

640 segregation. Cells with mis-segregated chromosomes often have abnormal nuclei and have
641 increased cell death (57–59). An imaging based whole-genome siRNA screen in HeLa cells
642 found that the absence of *PAN2* led to irregular nuclear shape and chromosome mis-segregation
643 (60). Upon chromatin extraction during G2, Pan2 and Pan3 were found to be part of a soluble
644 complex containing the spindle checkpoint proteins Bub1 and Mad111, the kinetochore proteins
645 Ndc80 and Nuf2, and 265 other proteins enriched for the molecular functions poly(A)-specific
646 ribonuclease activity, poly(A) binding, translation initiation factor activity, mRNA 3'UTR
647 binding, RNA-helicase activity, ribosome binding, microtubule motor activity and gamma-
648 tubulin binding (60). Hence, this study provides evidence that PAN's role in responding to
649 microtubule stress may involve direct associations between PAN complex and key spindle
650 regulatory proteins, which is required for proper chromosome segregation.

651
652 Previous studies have shown that the PAN localizes to P-bodies in yeast cells. P-bodies serve as
653 sites of mRNA storage, decay, and translational repression. Sweet et al. find that treating yeast
654 with the microtubule depolymerizing drug benomyl induces formation of P-bodies containing
655 tubulin (61). However, according to the HIPHOP chemical genetics database (29), none of the P-
656 body protein mutants are sensitive to nocodazole or benomyl, suggesting the role for PAN in
657 microtubule stress is independent of P bodies. Additionally, many groups have reported an
658 increase in P-body numbers during S phase, the disappearance of PB structures before mitosis,
659 and their reassembly during cytokinesis in mammalian cells, further supporting a non-P body
660 role for PAN during mitosis (62,63).

661

662 Finally, if the role of PAN is restricted to responding to microtubule stress in M-phase, this raises
663 the question of whether PAN activity is regulated in a cell-cycle dependent manner and/or in
664 response to stress. Pan3 has previously been identified as a substrate of the CDK Pho85 (24).
665 Different groups have identified 9 phosphorylation sites on Pan3, one in the pseudokinase
666 domain and the rest in unstructured regions. Holt et al. identified residue 415 in the linker
667 domain of Pan2 as a substrate of CDK1 phosphorylation (22). Phosphorylation of Pan3 in
668 mammalian cells has previously been shown to decrease its interaction with PABPC1 and reduce
669 PAN activity (23). Together this suggests PAN activity is regulated by phosphorylation by CDKs
670 in a cell-cycle dependent manner. Interestingly, our SGA screen identified an alleviating genetic
671 interaction between *PAN2* and *PHO85*, supporting a functional connection between PAN and
672 this important cellular stress response regulator. The need for cell-cycle dependent regulation of
673 PAN might also explain our finding that having too much Pan2 in the cell leads to reduced cell
674 growth, although the cause of this fitness defect has yet to be elucidated.

675

676 **Materials and Methods**

677

678 **Yeast strains, growth conditions, and manipulations**

679

680 Deletion and tagged strains were constructed in JHY716 or BY4741 (derivatives of S288C)
681 backgrounds using homologous recombination of PCR-generated linear fragments amplified
682 from pKT209, pHIS3p:yomWasabi-Tub1+3'UTR::HPH, and pFA6a-kanMX6 (38,64,65), with
683 successful recombination assessed by colony PCR. All yeast strains were maintained on standard
684 yeast growth medium of either yeast extract, peptone, and dextrose (YPD) media or synthetic
685 complete (SC) media consisting of Yeast Nitrogen Base (YNB) supplemented with appropriate
686 amino acids and 2% dextrose. Yeast cultures were grown at 30°C. A complete list of all the
687 strains used in this study is provided in **Table 1**.

688

689 **Table 1: List of strains**

690

Strain	Genotype	Source	Parental strain	Notes
BY4741	MAT α ; <i>his3Δ1</i> ; <i>leu2Δ0</i> ; <i>met15Δ0</i> ; <i>ura3Δ0</i> ; S288C background	Lab collection		Wild type
BY4742	MAT α ; <i>his3Δ1</i> ; <i>leu2Δ0</i> ; <i>ura3Δ0</i> ; S288C background	Lab collection		Wild type

Y7092	MAT α ; <i>his3Δ1</i> ; <i>leu2Δ0</i> ; <i>met15Δ0</i> ; <i>ura3Δ0</i> ; LYS2+; <i>can1Δ::STE2pr-Sp_his5</i> ; <i>lypΔ1</i> ; S288C background	Kind gift from Dr. Charlie Boone		SGA query strain background
JV1	<i>pan2Δ::uraMX</i>	This study	Y7092	PCR knock-in
JV2	<i>pan3Δ::uraMX</i>	This study	Y7092	PCR knock-in
JV3	<i>HIS3pr:yomWasabi-Tub1+3'UTR::HPH</i>	This study	Y7092	PCR knock-in
JV4	<i>pan2Δ::uraMX</i> <i>HIS3pr:yomWasabi-Tub1+3'UTR::HPH</i>	This study	Y7092	PCR knock-in
JV5	<i>pan2Δ::uraMX cin1Δ::kanMX6</i>	This study	SGA background	SGA
JV6	<i>pan2Δ::uraMX cin2Δ::kanMX6</i>	This study	SGA background	SGA
JV7	<i>pan2Δ::uraMX cin4Δ::kanMX6</i>	This study	SGA background	SGA
JV8	<i>pan2Δ::uraMX gim3Δ::kanMX6</i>	This study	SGA background	SGA
JV9	<i>pan2Δ::uraMX gim4Δ::kanMX6</i>	This study	SGA background	SGA
JV10	<i>pan2Δ::uraMX pac2Δ::kanMX6</i>	This study	SGA background	SGA

JV11	<i>pan2Δ::uraMX tub3Δ::kanMX6</i>	This study	SGA background	SGA
------	-----------------------------------	------------	----------------	-----

691

692 **Plasmids and constructs**

693

694 CEN plasmids were taken from the MoBY-ORF collection (66). Galactose-driven
695 overexpression plasmids were obtained from the FLEX overexpression library (67) generously
696 provided by Tejomayee Singh from the laboratory of Dr. Phil Hieter. All plasmids were
697 sequenced to confirm their identity (Plasmidsaurus). The coding sequence of *Saccharomyces*
698 *cerevisiae* *PAN2* gene, along with its native promoter and 3'UTR sequence, and the codon
699 optimized version of *Homo sapiens* *PAN2* (sequence is provided in **SFile 1**) were purchased
700 from Twist Biosciences to insert into various plasmids for tagging or overexpression using the
701 Gateway cloning kit (ThermoFisher Scientific). These plasmids were pAG426-GAL-ccdB,
702 pAG426-GAL-GFP-ccdB, pAG425-GAL-ccdB, pAG415-GPD-ccdB, and pAG425-GPD-ccdB.
703 Details of these plasmids are provided in **Table 2**.

704

705 **Table 2: List of plasmids**

706

Plasmid name	Description	Source
pKT0209/pKT209	pFA6a-link-yEGFP-Ca <i>URA3</i> ; used for URA amplification for making gene deletion cassettes	Addgene (64)
<i>pHIS3pr:yomWasabi</i> - <i>Tub1+3'UTR::HPH</i>	<i>pHIS3pr:yomWasabi-Tub1+3'UTR::HPH</i> ; used for tagging alpha-tubulin	Addgene (38)

pFA6a-kanMX6	for one-step PCR deletion of gene of interest	Addgene (65)
pAG426-GAL-Pan2	URA3 marker, multi-copy, GAL promoter	This study
pAG426-GAL-Pan2-D1020A	URA3 marker, multi-copy, GAL promoter	This study
pAG426-GAL-GFP-Pan2	URA3 marker, multi-copy, GAL promoter, N-terminal GFP-tagging	This study
pAG426-GAL-GFP-Pan2-D1020A	URA3 marker, multi-copy, GAL promoter, N-terminal GFP-tagging	This study
pAG425-GAL-Pan2	LEU2 marker, multi-copy, GAL promoter	This study
pAG425-GAL-Pan2-D1020A	LEU2 marker, multi-copy, GAL promoter	This study
pAG425-GAL-HsPan2	LEU2 marker, multi-copy, GAL promoter	This study
pAG415-GPD-Pan2	LEU2 marker, low copy, GPD promoter	This study
pAG415-GPD-Pan2-D1020A	LEU2 marker, low copy, GPD promoter	This study
pAG425-GPD-Pan2	LEU2 marker, multi-copy, GPD promoter	This study
pAG425-GPD-Pan2-D1020A	LEU2 marker, multi-copy, GPD promoter	This study
pFLEX-Pan2	<i>GAL1-10pr, URA3</i>	A gift from Dr. Phil Hieter (67)

707

708 The deadenylase dead mutation (D1020A) in *PAN2*'s coding sequence was generated by site-
709 directed mutagenesis (Q5 Site Directed Mutagenesis Kit from NEB E0554) with primer pairs 5'
710 GGTTTGAATAATGCCTTCAAACACATTAATATTAATGTC 3' and 5'
711 ATGACCAACAAATACATTATTCAAACCATGACCAAC 3'. These PCR products were
712 recombined in DHFpir bacteria which was a generous gift from Dr. J.T. Beatty.

713

714 For tagging Tub1 with yomWasabi-Tub1+3'UTR, the strategy used has been described in
715 Markus et al., 2015 (38). Briefly, the yomWasabi-Tub1 tagging plasmid was altered by adding
716 an additional 618 nucleotides corresponding to the region downstream of the *TUB1* locus. This
717 sequence was chosen because it extends well beyond the last potential polyadenylation sequence
718 (AATAAA, 145 nt downstream of the stop codon; ATTAAA, 540 nt downstream of the stop
719 codon). Following transformation with the BsaBI-digested plasmid (*pHIS3p*:yomWasabi-
720 *TUB1*+3'UTR), both the endogenous, untagged *TUB1* and the tagged *TUB1* genes are
721 immediately followed by the 3'UTR sequence.

722

723 **Quantitative liquid growth assays**

724

725 Yeast were grown overnight in liquid SC media supplemented with appropriate amino acids,
726 diluted into fresh medium, then grown until reaching logarithmic growth phase (OD₆₀₀ 0.2-0.5).
727 Yeast cells were then transferred to liquid media supplemented with an appropriate concentration
728 of nocodazole (Sigma) or equivalent percentage (<0.5%) of DMSO (ThermoFisher). Strains
729 were normalized to the same OD₆₀₀ then diluted to an OD₆₀₀ value of 0.005-0.010 in 96-well

730 plates in triplicate wells to a volume of 200 μ L. Plates were then incubated at 30°C with orbital
731 shaking at 600 RPM in a Biotek Instruments Epoch 2 Microplate Spectrophotometer. Data was
732 \log_2 transformed and appropriate time points were fitted to a linear equation, with exponential
733 growth constants derived from the slopes of the linear equation (except in drug treatments where
734 yeast showed a non-exponential growth pattern). Statistical analysis was performed in GraphPad
735 Prism 10, and significant differences between pairs were detected using Student's *t*-test or
736 between pairwise combinations of groups using a one-way ANOVA with *post-hoc* multiple
737 comparisons corrections using Tukey's method.

738

739 **Western blotting**

740

741 Yeast cell lysates were prepared using the TCA (Trichloroacetic acid) precipitation method (68).
742 The following primary antibodies were used: chicken anti-GFP (1:5000 of Abcam ab13970) and
743 mouse anti-PGK1 (1:5000 of Abcam ab113687). The following secondary antibodies were used:
744 donkey anti-chicken Alexafluor 488 (1:10,000 of Jackson ImmunoReserach Lab 703-545-155)
745 and goat anti-mouse DyLight 800 (1:15,000 of Invitrogen SA5-10176). The experiments were
746 performed in triplicates, and the results were quantified using the Image Lab software (BioRad).

747

748 Mammalian cells were lysed using RIPA (Radio Immuno Precipitation Assay) buffer (50 mM
749 Tris-HCl (pH 7.4), 150 mM NaCl, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS,
750 and 5 mM EDTA) supplemented with cOmplete protease inhibitors (Roche). The following
751 primary antibodies were used: rabbit anti-PAN2 (1:1000 of Proteintech 16427-1-AP) and mouse

752 anti-actin (1:5000 of Abcam ab8226). The following secondary antibodies were used: goat anti-

753 mouse HRP (Jackson 115-035-003) and goat anti-rabbit HRP (Jackson 111-035-003).

754

755 **Synthetic Genetic Array Analysis**

756

757 Creation of the genome-wide array of double mutants with the *pan2Δ* deletion strain was
758 undertaken as previously described (69,70). Briefly, *PAN2* was knocked-out in the SGA query
759 strain background Y7092 by genomic integration of the *URA3* cassette at the *PAN2* genomic
760 locus amplified from pKT209. This *pan2Δ* query strain was mated to an array of non-essential
761 deletion mutants marked with kanMX6 using a Singer RoToR HDA robot. Diploids were
762 selected for and induced to undergo sporulation. From spores, *MATa* cells were obtained by
763 pinning onto haploid selection media (SC-His/Arg/Lys supplemented with 100 µg/mL
764 canavanine and 100 µg/mL thialysine). Control plates were obtained by re-pinning to 5-FOA
765 media to counter select for the *PAN2* deletion, while experimental plates were generated by
766 plating on media lacking uracil. These were then separately pinned onto plates containing 1.5µM
767 of nocodazole. Plates were imaged using a CanoScan flatbed scanner and were analyzed using
768 Balony software (69). Gene Ontology (GO) term enrichment and protein-protein interaction
769 network analysis was performed using the GeneMANIA web server, with GO term enrichment
770 presented as Benjamini-Hochberg FDR-adjusted p values (q values) from hypergeometric tests
771 (71,72).

772

773 **FACS analysis of DNA content**

774

775 Yeast cells were cultured under specified conditions, fixed in 70% ethanol, and stored at 4°C.
776 Fixed cells were rehydrated in phosphate-buffered saline, incubated with 100 µg/mL RNase A
777 (ThermoFisher) for 3 hrs, and stained with 5 µg/mL propidium iodide (Invitrogen) for 1 hour.

778 Cells were analyzed using a Cytoflex LX Analyser, and yeast cells were separated from debris
779 by gating with forward scatter and side scatter. The experiments were repeated three times using
780 freshly grown cultures.

781

782 **Confocal microscopy**

783

784 Log phase (OD₆₀₀ 0.2-0.5) yeast cells were centrifuged at 2,000 g and imaged in sterile filtered
785 SC liquid medium (yeast nitrogen base without amino acids and with ammonium sulphate,
786 amino acid mix, dextrose). Squashes of yeast were made and imaged on the Leica SP5 system
787 with DIC imaging. Images were analyzed using the Fiji distribution (73) of ImageJ software
788 (74).

789

790 **Sample preparation for live-cell imaging of yeast and cell-segmentation**

791

792 Live-cell imaging of yeast was conducted in Concanavalin A (ConA) (Sigma L7647) coated 96-
793 well microscope dishes using the Cell Discoverer 7 imaging system. To prepare the ConA-coated
794 dishes, a stock solution of ConA at a concentration of 10 mg/mL was initially prepared and
795 stored in aliquots at -20°C for a maximum of 6 months. A working solution was then prepared
796 by diluting the stock to a final concentration of 1 mg/mL and stored at 4°C for several weeks.
797 The ConA solution was evenly applied to each well of the 96-well dishes (Cellvis, P96-1.5H-N).
798 Following a 5-minute incubation on the benchtop, excess solution was aspirated, and the dishes
799 were allowed to dry for 5 minutes. For sample preparation, yeast cultures were grown overnight
800 in SC medium (sterile filtered). The following day, yeast cultures were diluted and allowed to

801 grow to log phase. Cells were adhered to the ConA-coated plates by applying 20 μ L of the cell
802 suspension to each well. After 10 minutes of incubation to ensure proper adhesion, the media
803 was removed, and 40 μ L of fresh media without cells was added to eliminate potential optical
804 artifacts. The CellDiscoverer7 (Carl Zeiss) microscope was set up prior to starting the live-cell
805 imaging to reach 30°C and allow the objectives to acclimate to that temperature. An imaging
806 time course was set up using ZEN Blue software (Carl Zeiss) to take images at 2 evenly
807 dispersed, non-overlapping locations per well. For each condition, 2 biological replicates were
808 imaged in separate wells. Images were taken in brightfield (TL LED lamp) and GFP (LED
809 module 470nm) channels. The Plan Apochromat water immersion 50x/1.2 objective and 1x
810 Tubelens were used for a final magnification of 50x, with an effective NA of 1.2. Images were
811 taken every 5 minutes for 480 minutes using definite focus. The individual images were
812 deconvolved using the constrained iterative algorithm and max intensity images were generated
813 using extended depth of focus with an effective depth of $\sim 1 \mu\text{m}$ (9 z-stacks of $\sim 0.125 \mu\text{m}$). Images
814 were analyzed using the ZEN Blue software (Carl Zeiss). GFP segmentation was performed to
815 collect data for individual cells after Gaussian smoothing, sigma=2, using iso data thresholding
816 for light regions. For each GFP segmented cell, area and GFP mean intensity were measured.
817 Data for the cells in each of the 4 images per well were compiled to generate the total cell
818 number, number of dead cells (brighter, GFP mean intensity > 8000) and cell area.
819

820 **RNA isolation and qRT-PCR analysis**

821
822 Total RNA was isolated from cells using the RNeasy kit from Qiagen (74104) following the
823 manufacturer's instructions. Quantitative reverse-transcriptase PCR was performed using Power

824 SYBR® Green RNA-to-CT™ 1-Step Kit from ThermoFisher (4389986). All data were
825 normalized to *ACT1* transcript levels and are presented as ΔCt values. Where a statistically
826 significant change was observed, fold-increase against control was indicated in the plots. The
827 primers used in this study are listed in **Table 3**.

828

829 **Table 3: RT-PCR primers**

830

Primer	Sequence
Sc_Act1_qFwd	TTTGCCTGGTGACGACGCTCC
Sc_Act1_qRev	ACAGGGTGTCTTCTGGGGCA
Sc_Clb1_qFwd	CAGTCTAGGACGTTAGC
Sc_Clb1_qRev	GTCGTGAATAGTAGATCC
Sc_Cln3_qFwd	TCAGCGCTGCCTCATGTC
Sc_Cln3_qRev	ATGGCCCGCCTTTTG
Sc_Tub1_qFwd	GGCCACTGTGGATAGGGCCG
Sc_Tub1_qRev	TCAGCGTATGAGTCGGCACCC
Sc_Tub2_qFwd	CGTCGATCTAGAACCTGGGA
Sc_Tub2_qRev	GACGCTGTCTACAAGCTCAG
Sc_Tub3_qFwd	TGGCCGACCAATGTGACGGT
Sc_Tub3_qRev	AGGCGCAGGATAAACGGCGA

831

832 **RNA sequencing and analysis**

833

834 Sample quality control was performed using the Agilent 2100 Bioanalyzer. Qualifying samples
835 were then prepped following the standard protocol for the Illumina Stranded mRNA prep
836 (Illumina). Sequencing was performed on the Illumina NextSeq2000 with Paired End 59bp ×
837 59bp reads by BRC-sequencing facility. As previously described (75), multiple differential
838 expression analysis pipelines were applied, and the results combined. The pipelines used the
839 reference genome and transcriptome R64-1-1 downloaded from Ensembl (www.ensembl.org,
840 Release 107).

841

842 **Generation of stable PAN2 knockdown mammalian HEK293 cell populations**

843

844 HEK293A cells were cultured in DMEM/F12 medium (Sigma) supplemented with 10% FBS and
845 grown in an incubator at 5% CO₂ and 37°C and transfected with Dharmacon pGIPZ shRNA set
846 (RHS4531-EG9924; shRNAs fused to GFP) targeting PAN2 ORF/3'UTR using Lipofectamine
847 2000 according to the manufacturer's protocol (ThermoFisher Scientific 11668027). Puromycin
848 selection was initiated 48 hours post-transfection at a concentration of 1 µg/mL to generate
849 stably integrated shRNA-mediated knockdowns. After 14 days of selection, the puromycin-
850 resistant cells were subjected to FACS to isolate a stably transfected population of GFP-positive
851 cells. Pan2 knockdown efficiency was then determined by Western blotting (1:1000 of
852 Proteintech 16427-1-AP against human Pan2).

853

854 **Mammalian cell viability assessment using MTT**

855

856 HEK293 cells were plated in 96-well plates at 10,000 cells/well. The number of viable cells was
857 quantified using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT; M2128,
858 Sigma) assay at 0, 24, 48, and 72 h. After the designated treatment period, the culture medium
859 was removed, MTT was added to each well at 1 mg/mL in regular growth media for 2 h to allow
860 the formation of formazan crystals (purple precipitate). Following incubation, the MTT solution
861 was aspirated, and the formazan crystals were solubilized using 100 µL of DMSO per well. The
862 plate was gently agitated to ensure complete dissolution of the formazan crystals. The
863 absorbance was measured at 560 nm using a spectrophotometer plate, with DMSO serving as the
864 blank control. Cell viability was calculated as the percentage of viable cells relative to the
865 untreated control group, and the results were expressed as mean ± standard deviation (SD) of at
866 least three independent experiments. Statistical analysis was performed in GraphPad.

867

868 **Live-cell imaging of mammalian cell spindle formation and mitosis**

869

870 For spindle analysis of living cells, cells were grown in a 96-well plate (Corning) and a tubulin
871 staining dye, CellLight™ Tubulin-RFP BacMam 2.0 was added prior to imaging the cells in a
872 37°C and 5% CO₂ environmental chamber (ImageXpress Micro XL). Images were taken using a
873 40X 0.75 NA dry objective with the MetaXpress 5.0.2.0 software on the ImageXpress Micro XL
874 epifluorescence microscope (Molecular Devices Inc.). Images were taken every 15 minutes using
875 100-ms exposures, 2x2 binned resolution, with 25% of full lamp intensity per channel. Movies of
876 the fluorescence channels were made in the MetaXpress 5.0.2.0 software (Molecular Devices
877 Inc.).

878

879 **Acknowledgements**

880

881 We thank members of the Loewen and Roskelley labs for critical discussions. We thank Dr. Phil
882 Hieter and Dr. J. Thomas Beatty for sharing reagents. We thank the following core facilities at
883 UBC: LSI imaging facility, ubcFLOW, and School of Biomedical Engineering (SBME)
884 Sequencing Core (formerly BRC-Seq). Research was funded by the Canadian Institutes of
885 Health Research (PJT-152967) and CFI Innovation Fund (2020) #39914 awarded to CJRL. This
886 study was partially funded by the Canadian Institutes of Health Research (CIHR 169111)
887 awarded to CDM and Canadian Institutes of Health Research (PJT-162253) awarded to LJH.

888

889 **Author contributions**

890

891 JV, CDR and CJRL designed the experiments. JV performed the majority of the experiments.
892 ZH collected live-cell imaging data for HEK293 cells, under the supervision of CDM. JARB
893 collected the flow-cytometry data for cell-cycle analysis in yeast cells, under the supervision of
894 LJH. PD confirmed HEK293 Pan2KD GFP positive cells by flow cytometry. BPY performed the
895 initial testing of sensitivity of *pan2Δ* to nocodazole. SF performed the bioinformatics analysis on
896 RNA-seq data. JV, ZH, JARB, PD, BPY, CDM, CDR and CJRL analyzed the data. JV and
897 CJRL wrote the manuscript. CDM and CDR edited the manuscript.

898

899 **Competing interests**

900 The authors declare no competing financial interests.

901

902 **References**

903

904 1. Jackson RJ, Standart N. Do the poly(A) tail and 3' untranslated region control mRNA
905 translation? *Cell*. 1990;62(1):15–24.

906 2. Sachs AB, Kornberg RD. Purification and characterization of polyadenylate-binding protein.
907 *Methods Enzym*. 1990;181:332–52.

908 3. Zlotorynski E. The short tail that wags the mRNA. *Nat Rev Mol Cell Biol*. 2018;19(1):2–3.

909 4. Nicholson AL, Pasquinelli AE. Tales of Detailed Poly(A) Tails. *Trends Cell Biol*.
910 2019;29(3):191–200.

911 5. Tang TTL, Passmore LA. Recognition of Poly(A) RNA through Its Intrinsic Helical Structure.
912 *Cold Spring Harb Symp Quant Biol*. 2020;84:039818.

913 6. Passmore LA, Coller J. Roles of mRNA poly(A) tails in regulation of eukaryotic gene
914 expression. *Nat Rev Mol Cell Biol*. 2022;23(2):93–106.

915 7. Edmonds M, Vaughan MH, Nakazato H. Polyadenylic Acid Sequences in the Heterogeneous
916 Nuclear RNA and Rapidly-Labeled Polyribosomal RNA of HeLa Cells: Possible Evidence for a
917 Precursor Relationship. *Proc Natl Acad Sci*. 1971;68(6):1336–40.

918 8. McLaughlin CS, Warner JR, Edmonds M, Nakazato H, Vaughan MH. Polyadenylic Acid
919 Sequences in Yeast Messenger Ribonucleic Acid. *J Biol Chem*. 1973;248(4):1466–71.

920 9. Weill L, Belloc E, Bava FA, Méndez R. Translational control by changes in poly(A) tail
921 length: recycling mRNAs. *Nat Struct Mol Biol*. 2012;19(6):577–85.

922 10. Jalkanen AL, Coleman SJ, Wilusz J. Determinants and implications of mRNA poly(A) tail
923 size – Does this protein make my tail look big? *Semin Cell Dev Biol*. 2014;34:24–32.

924 11. Boeck R, Tarun S, Rieger M, Deardorff JA, Müller-Auer S, Sachs AB. The Yeast Pan2

925 Protein Is Required for Poly(A)-binding Protein-stimulated Poly(A)-nuclease Activity *. *J Biol*
926 *Chem.* 1996;271(1):432–8.

927 12. Brown CE, Tarun SZ, Boeck R, Sachs AB. PAN3 Encodes a Subunit of the Pab1p-
928 Dependent Poly(A) Nuclease in *Saccharomyces cerevisiae*. *Mol Cell Biol.* 1996;16(10):5744–53.

929 13. Yamashita A, Chang TC, Yamashita Y, Zhu W, Zhong Z, Chen CYA, et al. Concerted action
930 of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. *Nat Struct Mol*
931 *Biol.* 2005;12(12):1054–63.

932 14. Yi H, Park J, Ha M, Lim J, Chang H, Kim VN. PABP Cooperates with the CCR4-NOT
933 Complex to Promote mRNA Deadenylation and Block Precocious Decay. *Mol Cell.*
934 2018;70(6):1081-1088.e5.

935 15. Park JE, Yi H, Kim Y, Chang H, Kim VN. Regulation of Poly(A) Tail and Translation
936 during the Somatic Cell Cycle. *Mol Cell.* 2016;62(3):462–71.

937 16. Jonas S, Christie M, Peter D, Bhandari D, Loh B, Huntzinger E, et al. An asymmetric PAN3
938 dimer recruits a single PAN2 exonuclease to mediate mRNA deadenylation and decay. *Nat*
939 *Struct Mol Biol.* 2014;21(7):599–608.

940 17. Schäfer IB, Rode M, Bonneau F, Schüssler S, Conti E. The structure of the Pan2–Pan3 core
941 complex reveals cross-talk between deadenylase and pseudokinase. *Nat Struct Mol Biol.*
942 2014;21(7):591–8.

943 18. Wolf J, Valkov E, Allen MD, Meineke B, Gordiyenko Y, McLaughlin SH, et al. Structural
944 basis for Pan3 binding to Pan2 and its function in mRNA recruitment and deadenylation. *EMBO*
945 *J.* 2014;33(14):1514–26.

946 19. Yang S, Liu L, Cao C, Song N, Wang Y, Ma S, et al. USP52 acts as a deubiquitinase and
947 promotes histone chaperone ASF1A stabilization. *Nat Commun.* 2018;9(1):1285.

948 20. Gao M, Guo G, Huang J, Kloeber JA, Zhao F, Deng M, et al. USP52 regulates DNA end
949 resection and chemosensitivity through removing inhibitory ubiquitination from CtIP. *Nat*
950 *Commun.* 2020;11(1):5362.

951 21. Christie M, Boland A, Huntzinger E, Weichenrieder O, Izaurralde E. Structure of the PAN3
952 Pseudokinase Reveals the Basis for Interactions with the PAN2 Deadenylase and the GW182
953 Proteins. *Mol Cell.* 2013;51(3):360–73.

954 22. Holt LJ, Tuch BB, Villén J, Johnson AD, Gygi SP, Morgan DO. Global Analysis of Cdk1
955 Substrate Phosphorylation Sites Provides Insights into Evolution. *Science.*
956 2009;325(5948):1682–6.

957 23. Huang KL, Chadee AB, Chen CYA, Zhang Y, Shyu AB. Phosphorylation at intrinsically
958 disordered regions of PAM2 motif-containing proteins modulates their interactions with
959 PABPC1 and influences mRNA fate. *RNA.* 2013;19(3):295–305.

960 24. Dephoure N, Howson RW, Blethrow JD, Shokat KM, O’Shea EK. Combining chemical
961 genetics and proteomics to identify protein kinase substrates. *Proc Natl Acad Sci.*
962 2005;102(50):17940–5.

963 25. Huang D, Patrick G, Moffat J, Tsai LH, Andrews B. Mammalian Cdk5 is a functional
964 homologue of the budding yeast Pho85 cyclin-dependent protein kinase. *Proc National Acad Sci.*
965 1999;96(25):14445–50.

966 26. Bett JS, Ibrahim AFM, Garg AK, Kelly V, Pedrioli P, Rocha S, et al. The P-body component
967 USP52/PAN2 is a novel regulator of HIF1A mRNA stability. *Biochem J.* 2013;451(Pt 2):185–
968 94.

969 27. Hammet A, Pike BL, Heierhorst J. Posttranscriptional regulation of the RAD5 DNA repair
970 gene by the Dun1 kinase and the Pan2-Pan3 poly(A)-nuclease complex contributes to survival of

971 replication blocks. *J Biol Chem.* 2002;277(25):22469–74.

972 28. Costanzo M, VanderSluis B, Koch EN, Baryshnikova A, Pons C, Tan G, et al. A global
973 genetic interaction network maps a wiring diagram of cellular function. *Science.*
974 2016;353(6306):aaf1420–aaf1420.

975 29. Lee AY, St.Onge RP, Proctor MJ, Wallace IM, Nile AH, Spagnuolo PA, et al. Mapping the
976 Cellular Response to Small Molecules Using Chemogenomic Fitness Signatures. *Science.*
977 2014;344(6180):208–11.

978 30. Hoyt MA, Stearns T, Botstein D. Chromosome Instability Mutants of *Saccharomyces*
979 *cerevisiae* That Are Defective in Microtubule-Mediated Processes. *Mol Cell Biol.*
980 1990;10(1):223–34.

981 31. Hoyt MA, Macke JP, Roberts BT, Geiser JR. *Saccharomyces cerevisiae* PAC2 Functions
982 With CIN1, 2 and 4 in a Pathway Leading to Normal Microtubule Stability. *Genetics.*
983 1997;146(3):849–57.

984 32. Bhamidipati A, Lewis SA, Cowan NJ. Adp Ribosylation Factor-like Protein 2 (Arl2)
985 Regulates the Interaction of Tubulin-Folding Cofactor D with Native Tubulin. *J Cell Biol.*
986 2000;149(5):1087–96.

987 33. Geiser JR, Schott EJ, Kingsbury TJ, Cole NB, Totis LJ, Bhattacharyya G, et al.
988 *Saccharomyces cerevisiae* genes required in the absence of the CIN8-encoded spindle motor act
989 in functionally diverse mitotic pathways. *Mol Biol Cell.* 1997;8(6):1035–50.

990 34. Amberg DC, Burke DJ, Strathern JN. Inducing yeast cell synchrony: nocodazole arrest. *CSH*
991 *Protoc.* 2006;2006(1):pdb.prot4175.

992 35. Schäfer IB, Yamashita M, Schuller JM, Schüssler S, Reichelt P, Strauss M, et al. Molecular
993 Basis for poly(A) RNP Architecture and Recognition by the Pan2-Pan3 Deadenylase. *Cell.*

994 2019;177(6):1619-1631.e21.

995 36. Tian G, Huang Y, Rommelaere H, Vandekerckhove J, Ampe C, Cowan NJ. Pathway Leading

996 to Correctly Folded β -Tubulin. *Cell*. 1996;86(2):287-96.

997 37. Siegers K, Waldmann T, Leroux MR, Grein K, Shevchenko A, Schiebel E, et al.

998 Compartmentation of protein folding in vivo: sequestration of non-native polypeptide by the

999 chaperonin-GimC system. *EMBO J*. 1999;18(1):75-84.

1000 38. Markus SM, Omer S, Baranowski K, Lee W. Improved Plasmids for Fluorescent Protein

1001 Tagging of Microtubules in *Saccharomyces cerevisiae*. *Traffic*. 2015;16(7):773-86.

1002 39. Hereford LM, Osley MA, Ludwig JR, McLaughlin CS. Cell-cycle regulation of yeast histone

1003 mRNA. *Cell*. 1981;24(2):367-75.

1004 40. Fitch I, Dahmann C, Surana U, Amon A, Nasmyth K, Goetsch L, et al. Characterization of

1005 four B-type cyclin genes of the budding yeast *Saccharomyces cerevisiae*. *Mol Biol Cell*.

1006 1992;3(7):805-18.

1007 41. Richardson H, Lew DJ, Henze M, Sugimoto K, Reed SI. Cyclin-B homologs in

1008 *Saccharomyces cerevisiae* function in S phase and in G2. *Genes Dev*. 1992;6(11):2021-34.

1009 42. Kamiloglu S, Sari G, Ozdal T, Capanoglu E. Guidelines for cell viability assays. *Food Front*.

1010 2020;1(3):332-49.

1011 43. Xiang K, Bartel DP. The molecular basis of coupling between poly(A)-tail length and

1012 translational efficiency. *eLife*. 2021;10:e66493.

1013 44. Müller GA, Wintsche A, Stangner K, Prohaska SJ, Stadler PF, Engeland K. The CHR site:

1014 definition and genome-wide identification of a cell cycle transcriptional element. *Nucleic Acids*

1015 *Res*. 2014;42(16):10331-50.

1016 45. Stumpf CR, Moreno MV, Olshen AB, Taylor BS, Ruggero D. The Translational Landscape

1017 of the Mammalian Cell Cycle. *Mol Cell*. 2013;52(4):574–82.

1018 46. Czaplinski K, Singer RH. Pathways for mRNA localization in the cytoplasm. *Trends*
1019 *Biochem Sci*. 2006;31(12):687–93.

1020 47. Engel KL, Arora A, Goering R, Lo HG, Taliaferro JM. Mechanisms and consequences of
1021 subcellular RNA localization across diverse cell types. *Traffic*. 2020;21(6):404–18.

1022 48. Loedige I, Baranovskii A, Mendonsa S, Dantsuji S, Popitsch N, Breimann L, et al. mRNA
1023 stability and m6A are major determinants of subcellular mRNA localization in neurons. *Mol*
1024 *Cell*. 2023;83(15):2709-2725.e10.

1025 49. Safieddine A, Coleno E, Salloum S, Imbert A, Traboulsi AM, Kwon OS, et al. A
1026 choreography of centrosomal mRNAs reveals a conserved localization mechanism involving
1027 active polysome transport. *Nat Commun*. 2021;12(1):1352.

1028 50. Karasu OR, Neuner A, Atorino ES, Pereira G, Schiebel E. The central scaffold protein
1029 CEP350 coordinates centriole length, stability, and maturation. *J Cell Biol*.
1030 2022;221(12):e202203081.

1031 51. Jiang K, Rezabkova L, Hua S, Liu Q, Capitani G, Altelaar AFM, et al. Microtubule minus-
1032 end regulation at spindle poles by an ASPM–katanin complex. *Nat Cell Biol*. 2017;19(5):480–
1033 92.

1034 52. Sun M, Jia M, Ren H, Yang B, Chi W, Xin G, et al. NuMA regulates mitotic spindle
1035 assembly, structural dynamics and function via phase separation. *Nat Commun*.
1036 2021;12(1):7157.

1037 53. He Z, Mei L, Connell M, Maxwell CA. Hyaluronan Mediated Motility Receptor (HMMR)
1038 Encodes an Evolutionarily Conserved Homeostasis, Mitosis, and Meiosis Regulator Rather than
1039 a Hyaluronan Receptor. *Cells*. 2020;9(4):819.

1040 54. Vineethakumari C, Lüders J. Microtubule Anchoring: Attaching Dynamic Polymers to
1041 Cellular Structures. *Front Cell Dev Biol.* 2022;10:867870.

1042 55. Delgehyr N, Sillibourne J, Bornens M. Microtubule nucleation and anchoring at the
1043 centrosome are independent processes linked by ninein function. *J Cell Sci.* 2005;118(8):1565–
1044 75.

1045 56. Panic M, Hata S, Neuner A, Schiebel E. The Centrosomal Linker and Microtubules Provide
1046 Dual Levels of Spatial Coordination of Centrosomes. *PLoS Genet.* 2015;11(5):e1005243.

1047 57. He Z, Wilson A, Rich F, Kenwright D, Stevens A, Low YS, et al. Chromosomal instability
1048 and its effect on cell lines. *Cancer Rep.* 2023;6(6):e1822.

1049 58. Nicholson JM, Macedo JC, Mattingly AJ, Wangsa D, Camps J, Lima V, et al. Chromosome
1050 mis-segregation and cytokinesis failure in trisomic human cells. *eLife.* 2015;4:e05068.

1051 59. Bona MD, Bakhoun SF. Micronuclei and Cancer. *Cancer Discov.* 2024;14(2):214–26.

1052 60. Cai Y, Hossain MJ, Hériché JK, Politi AZ, Walther N, Koch B, et al. Experimental and
1053 computational framework for a dynamic protein atlas of human cell division. *Nature.*
1054 2018;561(7723):411–5.

1055 61. Sweet TJ, Boyer B, Hu W, Baker KE, Coller J. Microtubule disruption stimulates P-body
1056 formation. *RNA.* 2007;13(4):493–502.

1057 62. Aizer A, Kafri P, Kalo A, Shav-Tal Y. The P Body Protein Dcp1a Is Hyper-phosphorylated
1058 during Mitosis. *Plos One.* 2013;8(1):e49783.

1059 63. Luo Y, Na Z, Slavoff SA. P-Bodies: Composition, Properties, and Functions. *Biochemistry.*
1060 2018;57(17):2424–31.

1061 64. Sheff MA, Thorn KS. Optimized cassettes for fluorescent protein tagging in *Saccharomyces*
1062 *cerevisiae*. *Yeast.* 2004;21(8):661–70.

1063 65. Bähler J, Wu J, Longtine MS, Shah NG, III AM, Steever AB, et al. Heterologous modules
1064 for efficient and versatile PCR-based gene targeting in *Schizosaccharomyces pombe*. *Yeast*.
1065 1998;14(10):943–51.

1066 66. Ho CH, Magtanong L, Barker SL, Gresham D, Nishimura S, Natarajan P, et al. A molecular
1067 barcoded yeast ORF library enables mode-of-action analysis of bioactive compounds. *Nat*
1068 *Biotechnol*. 2009;27(4):369–77.

1069 67. Douglas AC, Smith AM, Sharifpoor S, Yan Z, Durbic T, Heisler LE, et al. Functional
1070 Analysis With a Barcoder Yeast Gene Overexpression System. *G3: GenesGenomesGenet*.
1071 2012;2(10):1279–89.

1072 68. Cox JS, Chapman RE, Walter P. The unfolded protein response coordinates the production of
1073 endoplasmic reticulum protein and endoplasmic reticulum membrane. *Mol Biol Cell*.
1074 1997;8(9):1805–14.

1075 69. Young BP, Loewen CJR. Balony: a software package for analysis of data generated by
1076 synthetic genetic array experiments. *BMC Bioinform*. 2013;14:354.

1077 70. Tong AHY, Boone C. Yeast Protocol. *Methods Mol Biol (Clifton, NJ)*. 2005;313:171–91.

1078 71. Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, et al. The
1079 GeneMANIA prediction server: biological network integration for gene prioritization and
1080 predicting gene function. *Nucleic Acids Res*. 2010;38(suppl_2):W214–20.

1081 72. Zuberi K, Franz M, Rodriguez H, Montojo J, Lopes CT, Bader GD, et al. GeneMANIA
1082 Prediction Server 2013 Update. *Nucleic Acids Res*. 2013;41(W1):W115–22.

1083 73. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an
1084 open-source platform for biological-image analysis. *Nat Methods*. 2012;9(7):676–82.

1085 74. Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, et al. ImageJ2:

1086 ImageJ for the next generation of scientific image data. *BMC Bioinform.* 2017;18(1):529.

1087 75. Vuilleumier R, Lian T, Flibotte S, Khan ZN, Fuchs A, Pyrowolakis G, et al. Retrograde BMP

1088 signaling activates neuronal gene expression through widespread deployment of a conserved

1089 BMP-responsive cis-regulatory activation element. *Nucleic Acids Res.* 2019;47(2):679–99.

1090

1091 **Supporting information captions**

1092

1093 **SFile 1.docx:** Sequence of human PAN2 codon optimized for yeast

1094

1095 **SFile 2.xlsx:** Synthetic Genetic Analysis (SGA) data for *PAN2* in presence or absence of

1096 nocodazole

1097

1098 **SFile 3.xlsx:** RNA-seq data for *pan2Δ* + WT Pan2 and *pan2Δ* + D1020A Pan2 in presence of

1099 nocodazole

1100

1101 **SFile 4.avi:** Yeast WT with DMSO

1102

1103 **SFile 5.avi:** Yeast WT with nocodazole

1104

1105 **SFile 6.avi:** Yeast *pan2Δ* with DMSO

1106

1107 **SFile 7.avi:** Yeast *pan2Δ* with nocodazole

1108

1109 **SFile 8.avi:** HEK293 cells - bipolar spindle formation

1110

1111 **SFile 9.avi:** HEK293 cells - tetrapolar spindle formation