

1 **Mechano-regulation of GLP-1 production by Piezo1 in intestinal L cells**

2 Yanling Huang^{1#}, Haocong Mo^{1#}, Jie Yang^{2#}, Luyang Gao^{1#}, Tian Tao¹, Qing Shu¹,
3 Wenying Guo¹, Yawen Zhao¹, Jingya Lyu¹, Qimeng Wang³, Jinghui Guo⁴, Hening
4 Zhai⁵, Linyan Zhu⁶, Hui Chen^{3*}, Geyang Xu^{1,7*}

5

6 ¹Department of Physiology, School of Medicine, Jinan University, 601 Huangpu
7 Avenue West, Tianhe District, Guangzhou 510632, Guangdong, China;

8 ²Department of Pathology, School of Basic Medicine, Guangzhou Medical University,
9 Guangzhou 511436, Guangdong, China;

10 ³Biotherapy Center, Cell-gene Therapy Translational Medicine Research Center, the
11 Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, Guangdong,
12 China.

13 ⁴School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172,
14 Guangdong, China;

15 ⁵Endoscopy Center, The First Affiliated Hospital of Jinan University, 613 Huangpu
16 Avenue West, Tianhe District, Guangzhou 510630, Guangdong, China;

17 ⁶Department of Pharmacology, School of Medicine, Jinan University, Guangzhou
18 510632, Guangdong, China.

19 ⁷Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan
20 University), Ministry of Education, Guangzhou 510632, Guangdong, China.

21

22

23 #Yanling Huang, Haocong Mo, Jie Yang and Luyang Gao contributed equally to this
24 work.

25

26 * Corresponding Author:

27 Geyang Xu

28 Department of Physiology, School of Medicine, Jinan University, 601 Huangpu
29 Avenue West, Tianhe District, Guangzhou, Guangdong, 510632, China.

30 Tel: 86-20-85220260

31 Fax: 86-20-85221343

32 E-mail: xugeyangliang@163.com

33

34 Or

35

36 Hui Chen

37 Biotherapy Center; Cell-Gene Therapy Translational Medicine Research Center, the
38 Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong,
39 China.

40 Tel: 86-20-85252826

41 E-mail: chenh567@mail.sysu.edu.cn

42 **Abstract**

43 Glucagon-like peptide 1 (GLP-1) is a gut-derived hormone secreted by intestinal L
44 cells and vital for postprandial glycemic control. As open-type enteroendocrine cells,
45 whether L cells can sense mechanical stimuli caused by chyme and thus regulate
46 GLP-1 synthesis and secretion is unexplored. Our study showed expression of Piezo1
47 in intestinal L cells. Its level varied in different energy status and correlates with
48 blood glucose and GLP-1 levels. Mice with L cell-specific loss of Piezo1
49 (*IntL-Piezo1*^{-/-}) exhibited impaired glucose tolerance, increased body weight, reduced
50 GLP-1 production and decreased CaMKK β /CaMKIV-mTORC1 signaling pathway
51 under normal chow diet or high fed diet. Activation of the intestinal Piezo1 by its
52 agonist Yoda1 or intestinal bead implantation increased the synthesis and secretion of
53 GLP-1, thus alleviated glucose intolerance in diet-induced-diabetic mice.
54 Overexpression of Piezo1, Yoda1 treatment or stretching stimulated GLP-1
55 production and CaMKK β /CaMKIV-mTORC1 signaling pathway, which could be
56 abolished by knockdown or blockage of Piezo1 in primary cultured mouse L cells and
57 STC-1 cells. These findings suggest a previously undiscovered mechano-regulation of
58 GLP-1 production in L cells, which may shed new light on the treatments of diabetes.

59

60 **Keywords:** Piezo1, Glucagon-like peptide 1, Intestinal L cells, CaMKK β , CaMKIV,
61 Mammalian target of rapamycin

62

63 **Abbreviations:**

CaMKK β	Ca ²⁺ /calmodulin-dependent protein kinase kinase β
CaMKIV	Ca ²⁺ /calmodulin-dependent protein kinases IV
CCK	Cholecystokinin
EECs	Enteroendocrine cells
mTOR	Mechanistic target of rapamycin
PYY	Peptide tyrosine tyrosine
RYGB	Roux-en-Y gastric bypass
S6K	p70 S6 Kinase
S6	S6 Ribosomal Protein
T2DM	Type 2 Diabetes Mellitus

64

65 **Introduction**

66 The gastrointestinal (GI) tract represents the largest endocrine organ in the
67 human body. The enteroendocrine cells (EECs) located throughout the GI tract secrete
68 a large number of gastrointestinal hormones to regulate a variety of physiological
69 processes and are key regulators for energy homeostasis (Bany Bakar et al., 2023).
70 GLP-1 is one of the gut-derived peptide hormones essential for postprandial glycemic
71 control (Song et al., 2019). It is produced from Proglucagon (Gcg) by proprotein
72 convertase in the intestinal L cells, a group EECs predominantly situated in the distal
73 gut (Drucker, 2006; Rouillé et al., 1997). The circulating GLP-1 levels rapidly
74 increase after meal and reduce postprandial blood glucose fluctuations by augmenting
75 insulin secretion, suppressing glucagon secretion and slowing gastric emptying
76 (Drucker, 2006; Willms et al., 1996). Nowadays, GLP-1-based therapy is
77 well-recognized and commonly used in treatment of Type 2 Diabetes Mellitus (T2DM)
78 (Saxena et al., 2021; Tan et al., 2022). Elucidation of the mechanism that regulates
79 GLP-1 production is essential for the development of new drug targets for the
80 treatment of diabetes.

81 EECs can be divided into two categories according to its morphology: open type
82 and closed type. The open type EECs possess microvilli protruding into the gut lumen
83 and have direct contact with the luminal contents. In contrast, the closed type EECs
84 are located basolaterally without direct contact with the lumen (Gribble & Reimann,
85 2016). Both types of EECs synthesize and store peptides or hormones in secretory
86 granules and release them by exocytosis at the basolateral membrane upon
87 mechanical, chemical or neural stimulation (Atanga et al., 2023). As open-type EECs,
88 L cells received both chemical and mechanical signals from the luminal contents, and
89 neural signals from the nerves (Furness et al., 2013). It has been well-documented that
90 nutrients such as glucose, lipids, and amino acids in the intestinal lumen can stimulate
91 the secretion of GLP-1 from L cells (Diakogiannaki et al., 2012). GLP-1 secretion can
92 also be stimulated by intrinsic cholinergic nerves (Anini et al., 2002; Drucker, 2006).

93 However, whether and how L cells coordinate mechanical stimuli from intestinal
94 lumen to regulate GLP-1 production remain poorly understood.

95 Piezo channels, including Piezo1 and Piezo2 have recently been identified as
96 mechanosensitive ion channels involved in the sensation of multiple mechanical
97 stimuli, such as shear stress, pressure, and stretch (Gudipaty et al., 2017; Li et al.,
98 2014; Romac et al., 2018). They allow the influx of cations such as Ca^{2+} and Na^+ in
99 response to mechanical tension and converts mechanical stimuli into various electrical
100 and chemical signals. Piezo1 plays a crucial role in blood pressure regulation, red
101 blood cell volume regulation, bone homeostasis, pulmonary and cardiac functions
102 (Cahalan et al., 2015; Lai et al., 2022; Wang et al., 2023; Wang et al., 2016). Previous
103 studies have reported that Piezo1 is expressed in the intestinal epithelium, regulating
104 gut peristalsis, barrier function, mucus secretion, and inflammation (Jiang et al., 2021;
105 Liu et al., 2022; Sugisawa et al., 2020; Xu et al., 2021). Interestingly, accumulating
106 evidence demonstrates the regulation of insulin and ghrelin secretion by Piezo1
107 (Deivasikamani et al., 2019; Ye et al., 2022; Zhao et al., 2024). Recent studies have
108 also reported that Piezo2 is expressed in a population of EECs and convert force into
109 serotonin release (Alcaino et al., 2018; Treichel et al., 2022). These findings suggest a
110 critical role of Piezo channels in the mechano-regulation of hormone production.
111 However, whether Piezo channels are expressed L cells and play a role in GLP-1
112 production remain unknown.

113 Here, we present evidence that Piezo1 channels on intestinal L cells mediate the
114 mechanosensing from intestinal contents and trigger the synthesis and secretion of
115 GLP-1 through $\text{CaMKK}\beta/\text{CaMKIV-mTORC1}$ signaling pathway, thus regulating
116 glucose homeostasis. Our research provides new insights for the treatment of T2DM
117 and a new theoretical basis for hypoglycemic medicines targeting Piezo1.

118 **Methods**

119 **Collection of Human Intestine Samples**

120 Male obese participants with type 2 diabetes (n=6, BMI=45.87±4.889 kg/m²) and
121 one-year post-RYGB patients (n=6, BMI=25.48±1.085 kg/m²) were recruited in
122 current study. Written informed consent was obtained from each donor. The study
123 protocol was approved by the Institutional Review Board of Jinan University.
124 Mucosal biopsies were obtained from human intestines by using a colonoscopy
125 (CF-HQ290I; Olympus).

126

127 **Genetic Mouse Generation**

128 *Villin-Flippase (Vil-Flp) mice*

129 *Vil-Flp* knock-in mouse model was developed by Shanghai Model Organisms
130 Center, Inc. The targeting construct was designed to insert a 2A-Flp-WPRE-pA
131 coexpression cassette into the stop codon of mouse *Vil1* gene via homologous
132 recombination using CRISPR/Cas9 system. 5'-AGCCCCTACCCTGCCTTCAA-3'
133 was chosen as Cas9 targeted guide RNA (sgRNA). The donor vector, sgRNA and
134 Cas9 mRNA was microinjected into C57BL/6J fertilized eggs. F0 generation mice
135 positive for homologous recombination were identified by long PCR. The primers
136 (I-IV) used for detection of the correct homology recombination were I:
137 5'-ACTTCAGGCCTAACGCTCAC-3' and II:
138 5'-TGTCTGCAGGCAGAGAAAG-3' for the correct 5' homology arm
139 recombination, and III: 5'-GTGCCGTCTCTAACGACAGT-3' and IV:
140 5'-TGTTGGTGCTTCGGAGTGTT-3' for the correct 3' homology arm recombination.
141 The PCR products were further confirmed by sequencing. F0 mice were crossed with
142 C57BL/6J mice to obtain *Vil-Flp* heterozygous mice.

143 *Flp-dependent Glucagon-Cre (FGC) mice*

144 *FGC* mouse model was developed by Shanghai Model Organisms Center, Inc.
145 The targeting construct was designed to insert an IRES-F3-Frt-Wpre-pA-Cre-Frt-F3
146 expression cassette into the 3' UTR of mouse *Gcg* gene of via homologous

147 recombination using CRISPR/Cas9 system. 5'-ATGCAAAGCAATATAGCTTC-3'
148 was chosen as Cas9 targeted guide RNA (sgRNA). The donor vector, sgRNA and
149 Cas9 mRNA was microinjected into C57BL/6J fertilized eggs. F0 generation mice
150 positive for homologous recombination were identified by long PCR. The primers
151 (I-IV) used for detection of the correct homology recombination were I:
152 5'-TGCTACACAGGAGGTCTGTC-3' and II: 5'-AGGCATGCTCTGCTATCACG-3'
153 for the correct 5' homology arm recombination, and III:
154 5'-CCCTCCTAGTCCCTTCTCAGT-3' and IV:
155 5'-GCCAAGGACATCTCAGCGA-3' for the correct 3' homology arm
156 recombination. The PCR products were further confirmed by sequencing. F0 mice
157 were crossed with C57BL/6J mice to obtain *FGC* heterozygous mice.

158 *IntL-Cre* mice

159 *Vil-Flp* mice were crossed with *FGC* mice to obtain Intestinal L cell-specific Cre
160 (*IntL-Cre*) mice.

161 *IntL-Piezo1^{-/-}* mice

162 *Piezo1*^{loxp/loxp} mice (B6.Cg-*Piezo1*^{tm2.1Apat}/J) purchased from Jackson laboratory
163 were crossed with *IntL-Cre* mice to generate *IntL-Piezo1^{-/-}* mice.

164 PCR is used to identify the genotype of mice during the subsequent mating and
165 breeding process. The primers required for mouse genotyping are shown in the
166 Supplementary information, Table S1.

167

168 **Mouse Validation**

169 *mT/mG* reporter mice were purchased from Shanghai Model Organisms Center,
170 Inc. *IntL-Cre* mice were bred with *mT/mG* reporter mice to further validate Cre
171 recombinase activity and specificity. Every single *IntL-Cre* mouse was confirmed by
172 *mT/mG* reporter mice before breeding with *Piezo1*^{loxp/loxp} mice to generate Intestinal L
173 cell-*Piezo1^{-/-}* (*IntL-Piezo1^{-/-}*) mice.

174

175 **Frozen Tissue Confocal Imaging**

176 *IntL-Cre-mT/mG* reporter mice were sacrificed. Fresh ileum and pancreas tissues
177 were collected and embedded in O.C.T. compound for histological analysis
178 immediately. Slices of the tissues were cut for confocal imaging, which was protected
179 from light. Fluorescence was detected by laser scanning confocal microscopy (Li et
180 al., 2022).

181

182 **Animal Housing and Treatment**

183 Male mice were maintained on a 12-hour light/12-hour dark cycle environment.
184 Normal chow diet (NCD) or a high-fat diet (HFD) and water were available ad
185 libitum unless specified otherwise. The animal protocols were approved by the
186 Animal Care and Use Committee of Jinan University.

187 Male *IntL-Piezo1*^{-/-} mice and age-matched control littermates (*Piezo1*^{loxP/loxP},
188 *Vil-Flp*, *FGC*, *IntL-Cre* mice) fed with NCD or HFD were used in the experiments.

189 Male *Piezo1*^{loxP/loxP} and *IntL-Piezo1*^{-/-} mice fed with 10 week-high fat diet were
190 intraperitoneally injected with normal saline (NS) or the GLP-1R agonist Exendin-4
191 (100 ug/kg body weight) for 7 consecutive days.

192 High fat diet induced diabetic mice were randomly divided into 3 groups. When
193 indicated, animals were injected intraperitoneally with Vehicle, Yoda1 (2 µg per
194 mouse) or GsMTx4 (250 µg/kg) plus Yoda1 for 7 consecutive days.

195 High fat diet treated *IntL-Piezo1*^{-/-} mice were randomly divided into 2 groups.
196 When indicated, animals were injected intraperitoneally with Vehicle, Yoda1 (2 µg per
197 mouse) for 7 consecutive days.

198 Diet induce diabetic C57BL/6J mice were divided into sham and intestinal bead
199 implantation groups.

200

201 **Food and water intake detection**

202 The food and water intake were quantified using metabolic cages (Cat 41853,
203 Ugo Basile, Comerio, Italy). The mice were individually housed in these specialized
204 cages and given a period of 3 days to acclimate before data collection began. They

205 had unrestricted access to food and water, which was continuously monitored
206 throughout the study. The 41850-010 software/interface package, consisting of
207 EXPEDATA (for data analysis) and METASCREEN (for data collection) software,
208 along with the IM-2 interface module, was employed to record and analyze the data.

209

210 **Intraperitoneal Glucose Tolerance Test**

211 Mice were fasted for 12 hours before measuring their fasting glucose levels. An
212 intraperitoneal glucose tolerance test (IPGTT) was performed by administering 1.5
213 g/kg body weight of glucose. Blood glucose concentrations were measured at
214 specified time points using a glucometer by collecting tail vein blood samples.

215

216 **Insulin Tolerance Test**

217 Mice were subjected to a 4-hour fast before measurement of fasting glucose were
218 taken. Insulin tolerance tests (ITT) were conducted with a dose of 0.75 U/kg body
219 weight of insulin. Blood glucose levels were measured at specified time points.

220

221 **Intestinal Bead implantation**

222 High-fat diet-induced type 2 diabetic C57BL/6J mice were fasted 6 to 8 h before
223 the operation. Standard aseptic procedures were used throughout the operation.
224 Intestinal bead implantation was similar to gastric bead implantation described in our
225 previous study (Zhao et al., 2024). Briefly, a 1cm incision was made on the abdominal
226 wall to expose the intestine. A 1 cm incision was made approximately 1cm above the
227 ileocecal region. A 2.5 mm diameter bead was implanted into the ileum of the mouse
228 through an incision. Then the wound was closed with suture. Finally, the abdominal
229 wall was closed with suture. For sham operation, all the procedures were the same as
230 the bead implantation except that the bead was not implanted.

231

232 **Stretching of isolated ileum**

233 About 2cm ileum was isolated from control and *IntL-Piezo1*^{-/-} mice and kept in
234 the specimen chamber filled with Tyrode's solution (KCl 0.2g/L, NaCl 8g/L, CaCl₂
235 0.2g/L, MgCl₂ 0.1g/L, NaHCO₃ 1g/L, NaH₂PO₄ 0.05g/L, Glucose 1g/L) of 37°C
236 gassed with oxygen. The specimen was connected to the force transducer of organ
237 bath system (HW200S, Techman, Chengdu, CN). Adjust the transducer to apply
238 traction force of 1.5 grams on the tissue and maintained for two hours.

239

240 **Measurement of GLP-1 Secretion**

241 The measurement of GLP-1 secretion was carried out according to previously
242 described methods (Zhai et al., 2018). Samples were collected in the presence of
243 aprotinin (2 µg/mL), EDTA (1 mg/mL) and diprotin A (0.1 mmol/L), and stored at
244 -80 °C before use. GLP-1 levels were assayed using enzyme immunoassay kits
245 following the manufacturer's instructions.

246

247 **Histological Analysis**

248 Tissues were collected, fixed with 4% paraformaldehyde, embedded in paraffin,
249 and cut into 4µm sections. Standard protocols were followed for staining the sections
250 with hematoxylin-eosin. Photomicrographs were captured under an inverted
251 microscope (Leica, Germany).

252

253 **Immunofluorescence**

254 Paraffin sections were dewaxed and rehydrated. After antigen retrieval in citrate
255 buffer (pH6.0), sections were blocked with normal serum and then incubated with
256 rabbit anti-Piezo1 (1:400) and mouse anti-GLP-1 (1:500) antibodies at 4°C overnight.
257 The sections were then incubated with a mixture of secondary antibodies. Images
258 were taken by laser scanning confocal microscopy (Leica SP8). Fluorescence
259 intensity was quantified by ImageJ software.

260

261 **In situ hybridization**

262 Paraffin sections were dewaxed and rehydrated. After antigen retrieval in citrate
263 buffer (pH6.0), the sections were incubated with Proteinase K (5ug/ml) at 37°C for
264 the 15 minutes. Then the sections were hybridized with the probes overnight in a
265 temperature-controlled chamber at 40°C. The Piezo1 probe sequences were as follows:
266 5'-CTGCAGGTGGTTCTGGATATAGCCC-3', 5'-AAGAACAGATCTCCAGCCCCG
267 AAT-3', 5'-GCCATGGATAGTCAATGCACAGTGC-3'. After washing with SSC
268 buffers, the sections were hybridized in pre-warmed branch probes at 40°C for 45
269 minutes. After washing with SSC buffers, the sections were hybridized with signal
270 probe at 42°C for 3 hours. After washing with SSC buffers, the sections were blocked
271 with normal serum and then incubated with mouse anti-GLP-1 (1:500) antibody at
272 4°C overnight followed by secondary antibody. Images were taken laser scanning
273 confocal microscopy and the fluorescence signals were quantified by ImageJ.

274

275 **Western Blot Analysis**

276 Tissues and cells were harvested. Ileal mucosa was scraped for protein extraction.
277 Protein extraction was performed by using RIPA lysis buffer (50mM Tris PH 7.4,
278 150mM NaCl, 1% Triton X-100, 0.1% SDS, 1% Sodium deoxycholate, 1mM PMSF
279 and protease inhibitor cocktail.), then 40 µg of proteins were loaded onto an
280 SDS-PAGE gel for separation. After the separation, the proteins were transferred onto
281 a nitrocellulose membrane. The membrane was then incubated in blocking buffer at
282 room temperature for 1 hour. For overnight incubation, the membrane and primary
283 antibody (at the recommended dilution as stated in the product datasheet) were
284 immersed in primary antibody dilution buffer, with gentle agitation, at 4°C.
285 Subsequently, the membrane was incubated with a secondary antibody that
286 specifically recognizes and binds to the primary antibody. Finally, Western blotting
287 luminol reagent was used to visualize bands. The grey scale values of the bands were
288 measured using ImageJ software.

289

290 **RNA extraction, quantitative real-time PCR**

291 RNA was extracted and reverse-transcribed into cDNAs using RT-PCR kit.
292 Real-time PCR was performed as previously described (Zhai et al., 2018). Sequences
293 for the primer pairs used in this study were shown in Supplementary information,
294 Table S2.

295

296 **Isolation of Mouse Intestinal L Cells**

297 A 5~6cm long ileum segment was collected from the *IntL-cre-mT/mG* mouse. The
298 tissue was washed with ice-cold PBS twice to remove the chyme in the lumen. The
299 tissue was minced into 0.5mm³ pieces in ice-cold PBS and then digested in 100mIU
300 collagenase I and 0.01g/mL trypsin at 37°C for 30min with rotation. After digested
301 tissue was passed through 40μm and 30μm cell strainers sequentially, then centrifuged
302 for 7min at 4°C. The cell pellet was resuspended in red cell lysis buffer and incubated
303 for 10min at room temperature. The unlysed cells were collected by centrifugation
304 and resuspended with 1mL cold PBS. The GFP positive cells was sorted by
305 fluorescence-activated cell sorting (FASC) on Beckman Coulter MoFlo XDP cell
306 sorter system.

307

308 **Cell Culture and Treatments**

309 STC-1 cells were maintained in DMEM medium supplemented with 2.5% fetal
310 bovine serum and 10% equine serum at 37 °C with 5% CO₂ air. L cells were
311 maintained in DMEM medium supplemented with 10% fetal bovine serum.

312 For cell transfection, cells were plated at optimal densities and grown for 48 h.
313 Cells were then transfected with GFP, Piezo1-GFP, CaMKKβ, CaMKIV by using
314 lipofectamine reagent according to the manufacturer's instructions.

315 For stable knockdown of Piezo1 in STC-1 cells, short hairpin RNA (shRNA)
316 sequences for mouse Piezo1 interference were cloned in to pLKO.1 vector. To
317 produce lentivirus, psPAX2, pMD2G and pLKO.1 or pLKO.1-shPiezo1 plasmids
318 (siPiezo1: CCAACCTTATCAGTGACTT) were co-transfected into 293T cells with

319 lipofectamine 2000 reagent. Supernatant containing lentivirus was collected 48 hours
320 after transfection and filtered through 0.45 μ m filter. The virus-containing supernatant
321 was used to infect STC-1 cells. Forty-eight hours after infection, the STC-1 cells were
322 subjected to 1 μ g/mL puromycin selection for 2-3 days.

323 For cell stretching, cells were grown in silicone elastic chambers coated by 0.1 %
324 gelatin solution. After incubated at 37 °C for 24-48 hours, The chambers were
325 subjected to mechanical stretch to 120% of their original length.

326

327 **Calcium Imaging**

328 Cells were plated onto confocal dishes at optimal densities and grown for 24 h.
329 Cells were loaded with the calcium fluorescent probe fluo-4 AM (1 μ M) for 1 h at
330 37 °C, then the cells were treated with Yoda1 (5 μ M) or GsMTx4. The intracellular
331 calcium ions were measured at room temperature using a laser confocal microscope
332 with an excitation wave length of 494 nm and an emission wave length of 516 nm.
333 The change of fluorescent signal was presented as $\Delta F/F_0$ and plotted against time.

334

335 **Whole-cell Patch-Clamp recording**

336 Borosilicate glass-made patch pipettes (BF150-86-7.5, Sutter Instrument Co,
337 USA) were pulled with micropipette puller (P-1000, Sutter Instrument Co, USA) to a
338 resistance of 3–5 \square M Ω after being filled with pipette solution: 138mM KCl, 10mM
339 NaCl, 1mM MgCl₂, 10mM Glucose and 10mM HEPES (pH 7.4). Cells were bathed
340 in Margo-Ringer solution: 130mM NaCl, 5mM KCl, 1mM MgCl₂, 2.5mM CaCl₂,
341 10mM Glucose, 20mM HEPES (pH7.4). Whole-cell calcium currents of STC-1 cells
342 were recorded with the EPC10 USB patch-clamp amplifier (HEKA, Germany)
343 controlled by PatchMaster software.

344

345 **Key resource**

346 Key reagents or resources are listed in the Supplementary information, Table S3.

347

348 **Statistical Analysis**

349 All data were expressed as mean \pm S.E.M. Statistical differences were evaluated
350 by one-way ANOVA or Student's t-test. The correlation was determined by Pearson
351 analysis. $P < 0.05$ was considered significant. (* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$,
352 ns=not significance). In our study, the data collection and analysis processes were not
353 conducted in a blinded manner with respect to the experimental conditions. For the
354 administration of drugs to animals, we allocated mice of the same genetic background
355 to various experimental cohorts using a randomization protocol. No data were
356 excluded during the data analysis.

357

358

359 **Results**

360 **Assessment of Piezo1 in human and mouse intestine in different energy status**

361 *Piezol1* mRNA was found to be highly expressed in both mouse ileal mucosa and
362 STC-1 cells (Figure1-figure supplement 1A). Moreover, Piezo1 was co-localized with
363 GLP-1 in immunofluorescent staining on NCD fed mouse ileal sections, indicating its
364 expression in L cells (Figure1-figure supplement 1B). Interestingly, increased body
365 weight and impaired glucose tolerance were observed in high-fat diet-induced diabetic
366 mice, while Piezo1 and Proglucagon expression levels in the ileal mucosa of diabetic
367 mice were significantly lower than that in mice feed with normal chow diet
368 (Figure1-figure supplement 1C-F). Moreover, ileal mucosal *Piezol1* mRNA levels
369 were positively correlated with *Proglucagon* mRNA levels (Figure1-figure
370 supplement 1G), but negatively correlated with the AUC of glucose tolerance test
371 (Figure1-figure supplement 1H). Obese T2MD patients who underwent Roux-en-Y
372 gastric bypass (RYGB) surgery showed decreased BMI (Figure1-figure supplement 1
373 I) and increased *Piezol1* and GLP-1 in ileal mucosa (Figure1-figure supplement 1J and
374 K) compared to that before surgery. These findings indicated that Piezo1 is expressed
375 in intestinal L cells and its level varies in different energy status.

376

377 **Generation and characterization of *IntL-Piezo1*^{-/-} mice**

378 To investigate the potential role of Piezo1 in GLP-1 production, we tried to
379 knockout *Piezo1* in L cells by Cre-loxP system driven by an L cell-specific promoter.
380 Proglucagon (encoded by *Gcg* gene) is mainly expressed in both L cells and
381 pancreatic α cells (Jin, 2008). Villin-1 (encoded by *Vill* gene) is expressed in
382 gastrointestinal epithelium, including L cells, but not in pancreatic α cells (Maunoury
383 et al., 1992; Rutlin et al., 2020). Since neither *Gcg* nor Villin are specific markers for
384 L cells, we tried to generate a new line of mice enabling loss of Piezo1 expression
385 specifically in the intestine L cell by combination of Flp-Frt and Cre-loxP system. We
386 inserted a Flippase (Flp) expression cassette in the 3'UTR of *Vill* to generate a *Vill*
387 promoter-driven Flp mice (*Vil-Flp*) (Figure 1A). Then, we generated
388 Flippase-dependent *Gcg* promoter driven-Cre (*FGC*) mice by inserting an Frt-flanked
389 Cre expression cassette in reverse orientation within the 3'- UTR of *Gcg* gene (Figure
390 1A). We further crossed the *Vil-Flp* mice with *FGC* mice to obtain L cell specific Cre
391 mice (*IntL-Cre*), in which *Vill* promoter-driven Flippase flipped the reverse Cre
392 cassette into a correct orientation in Villin positive cells (including L cells, but not
393 pancreatic α cells), and thus Cre can only be expressed under the *Gcg* promoter in L
394 cells. The genotypes of the *Vil-Flp*, *FGC* and *IntL-Cre* mice were identified by PCR
395 with specific primers (Figure 1B). The flipping of the reverse Cre cassette was
396 validated by PCR, which confirmed that the flipping only occurred the intestine, but
397 not in the pancreas (Figure 1C). To confirm the cell type specificity of Cre activity,
398 we crossed *IntL-Cre* mice to *mT/mG* reporter mice. All tissues and cells of *mT/mG*
399 mice express red fluorescence (membrane-targeted tdTomato; mT) at baseline, and
400 switch to membrane-targeted EGFP in the presence of cell-specific Cre (Figure 1D).
401 EGFP expression was only observed scatteredly in the intestine, but not in the
402 pancreas, indicating the intestine-specific Cre activity in the *IntL-Cre* mice (Figure
403 1E). Finally, we bred *IntL-Cre* mice with *Piezo1*^{loxP/loxP} mice to generate *IntL-Piezo1*^{-/-}
404 mice (Figure 1F).

405 Under normal chow diet, *IntL-Piezo1*^{-/-} mice exhibited increased body weight
406 (Figure 1G) and greater glycemic excursions compared to control groups
407 (*Piezo1*^{loxP/loxP}, *Vil-Flp*, *FGC* and *IntL-cre*) (Figure 1H and I), while the food and
408 water intake were not changed (Figure 1-figure supplement 2A and B). The
409 morphology of islet (Figure 1-figure supplement 3A) and ileum (Figure 1-figure
410 supplement 4A) were not affected. Ileal mucosal Proglucagon expression and plasma
411 GLP-1 level were significantly lower in *IntL-Piezo1*^{-/-} mice than that in all littermate
412 controls such as *Piezo1*^{loxP/loxP}, *Vil-Flp*, *FGC* and *IntL-Cre* mice (Figure 1J and K),
413 while no significant alteration was observed in the expression of pancreatic Piezo1
414 and Proglucagon (Figure 1-figure supplement 3B-D). According to in situ
415 hybridization of Piezo1 and GLP-1, the expression of Piezo1 disappeared in GLP-1
416 positive cells, suggesting successful knockout of Piezo1 in L cells in *IntL-Piezo1*^{-/-}
417 mice (Figure 1L and M). Also depicted in Figure 1-figure supplement 5, Piezo1 is
418 expressed in GLP-1-positive cells of the duodenum, jejunum, ileum, and colon in
419 control mice, but not in *IntL-Piezo1*^{-/-} mice. However, Piezo1 remains expressed in
420 intestinal ghrelin positive cells and pancreatic glucagon positive cells of *IntL-Piezo1*^{-/-}
421 mice (Figure 1-figure supplement 6). Moreover, while GLP-1 levels were reduced in
422 L cells of *IntL-Piezo1*^{-/-} mice, levels of PYY, another hormone secreted by L cells,
423 were unaffected (Figure 1-figure supplement 7A-D). Additionally, ileal mucosal
424 cholecystokinin (CCK), a hormone secreted by I cells with metabolic effects similar
425 to GLP-1, was also unchanged in *IntL-Piezo1*^{-/-} mice (Figure 1-figure supplement 7E).
426 Previous study showed that Piezo1 affected intestinal tight junctions and epithelial
427 integrity (Jiang et al., 2021). To access whether loss of Piezo1 in L cells affect
428 epithelial integrity of the intestine, we examined the expression of tight junction
429 proteins, including ZO-1 and Occludin. As shown in Figure 1-figure supplement 8,
430 the expression of ZO-1 and Occludin remained unchanged in *IntL-Piezo1*^{-/-} mice
431 when compared to littermate controls.

432 Piezo1 is a non-selective cationic channel that allows passage of Ca^{2+} and Na^+ .
433 CaMKK β is the main calcium/calmodulin dependent protein kinase kinase involved

434 in the regulation of metabolic homeostasis (Marcelo et al., 2016). It is activated by
435 binding calcium-calmodulin ($\text{Ca}^{2+}/\text{CaM}$), resulting in downstream activation of
436 kinases CaMKIV. The activation of CaMKIV modulate the gene expression of
437 nutrient- and hormone-related proteins (Ban et al., 2000; Chen et al., 2011;
438 Takemoto-Kimura et al., 2017). Previous studies have reported that Ca^{2+} and mTOR
439 signaling regulate the production of GLP-1 (Tolhurst et al., 2011; Xu et al., 2015; Yu
440 & Jin, 2010). Drawing from these findings, we hypothesized that Piezo1 might
441 regulate GLP-1 synthesis through the CaMKK β /CaMKIV-mTOR signaling pathway
442 (Figure 1N). As shown in Figure 1O, abrogated GLP-1 production was associated
443 with decreased CaMKK β /CaMKIV-mTOR signaling in the ileal mucosa of
444 *IntL-Piezo1^{-/-}* mice (Figure 1O).

445 **Derangements of glucose metabolism and GLP-1 production were induced by**
446 **HFD in *IntL-Piezo1*^{-/-} mice, which was mitigated by Exendin-4**

447 We next assessed the effect of L cell-specific *Piezo1* gene deletion on GLP-1 and
448 glucose tolerance in diet-induced diabetic mice. *IntL-Piezo1*^{-/-} and control mice were
449 exposed to HFD for 10 weeks. Compared to the controls, higher body weight (Figure
450 2A), greater glucose excursions (Figure 2B) were observed in *IntL-Piezo1*^{-/-} mice
451 exposed to HFD. Ileal mucosal Proglucagon expression levels were lower in
452 *IntL-Piezo1*^{-/-} than control mice (Figure 2C-F). Impaired
453 CaMKK β /CaMKIV-mTORC1 signaling pathway in ileal mucosa as evidenced by a
454 decrease in CaMKK β , reduced phosphorylation levels of CaMKIV, mTOR, S6K, and
455 S6 was also observed in *IntL-Piezo1*^{-/-} mice (Figure 2F). No significant alteration in
456 morphology, Piezo1 or Proglucagon levels were observed in the pancreas of
457 *IntL-Piezo1*^{-/-} mice (Figure 2-figure supplement 3E-H). Together these data
458 demonstrate that *IntL-Piezo1*^{-/-} mice with prolonged HFD feeding exhibit impaired
459 glucose metabolism phenotype and reduced GLP-1.

460 Injection of GLP-1 analog Exendin-4 (Ex-4) decreased the body weight (Figure
461 2G) and improved both glucose tolerance (Figure 2H) and insulin resistance (Figure
462 2I) in control and *IntL-Piezo1*^{-/-} mice, while endogenous synthesis of GLP-1 was not
463 changed by Ex-4 injection in *IntL-Piezo1*^{-/-} mice (Figure 2J and K). These data
464 suggested that decreased GLP-1 synthesis and secretion contribute to impaired
465 glucose metabolism in *IntL-Piezo1*^{-/-} mice.

466

467 **The pharmacological and mechanical activation of ileal Piezo1 stimulates GLP-1
468 synthesis**

469 We next examined whether activation of Piezo1 could rescue the impaired
470 glucose metabolism in diet-induced diabetic mice. Injection of Piezo1 activator
471 Yoda1 after 10 weeks of high-fat diet, led to reduced body weight and improved the
472 impaired glucose metabolism significantly in diabetic mice, while Piezo1 antagonist
473 GsMTx4 reversed the weight loss and glucose-lowering effect of Yoda1 (Figure 3A
474 and B). Yoda1 remarkably induced an increase in GLP-1 synthesis and secretion
475 (Figure 3C and D), as well as an increment of CaMKK β /CaMKIV-mTORC1
476 signaling in ileal mucosa (Figure 3E), while GsMTx4 abolished the effect of Yoda1
477 (Figure 3C-E). However, weight loss, improved plasma glucose and increased GLP-1
478 production induced by Yoda1 were not observed in *IntL-Piezo1*^{-/-} mice (Figure 3F-J).

479 The intestine receives mechanical stimulation from the chyme, which may
480 activate Piezo1 in the intestine epithelium, including L cells. To mimic the
481 mechanical pressing and stretching induced by intestinal contents, a small silicon bead
482 was implanted into the high-fat diet-induced diabetic mouse ileum. To exclude the
483 possibility of bowel obstruction and abdominal pain caused by bead implantation, we
484 measured the fecal mass and gastrointestinal transit time, and accessed abdominal
485 mechanical sensitivity in both sham and bead-implanted mice. As shown in
486 Figure 3-figure supplement 9A-B, there was no significant difference in fecal mass
487 and gastrointestinal transit time between the sham-operated mice and those implanted
488 with beads. The results of abdominal mechanical sensitivity indicated that no
489 difference in abdominal pain threshold was observed between sham and bead
490 implanted mice (Figure 3-figure supplement 9C). Intestinal bead implantation
491 improved the impaired glucose metabolism in diabetic mice (Figure 3K and L). Body
492 weight loss, activated ileal mucosal CaMKK β /CaMKIV-mTOR signaling, increased
493 mRNA and protein levels of ileal mucosal Piezo1 and Proglucagon, as well as the
494 circulating levels of GLP-1 were observed in diabetic mice after operation (Figure
495 3M-R). The above data suggest that mechanical stimuli induced by intestinal bead

496 implantation activates ileal Piezo1 in diabetic mice, stimulating GLP-1 production via
497 CaMKK β /CaMKIV-mTOR signaling axis, thus improving glucose homeostasis.
498

499 **Piezo1 regulates GLP-1 synthesis and secretion in primary cultured mouse L
500 cells and isolated mouse ileum.**

501 To obtain primary L cells, we isolated cell from the ileum of *IntL-Cre-mT/mG*
502 mice, in which tdTomato expression switched to EGFP expression in L cells as shown
503 in Figure 1E. EGFP positive cells (mouse L cells) were then sorted from isolated
504 single cells (Figure 4A). Immunofluorescence showed that the sorted EGFP+ cells
505 were Piezo1 positive (Figure 4B).

506 Yoda1 at the dose of 5 μ M triggered an increase in intracellular Ca²⁺ level in
507 primary cultured mouse L cells, which was blocked by pre-incubation of cells with
508 GsMTx4 (0.1 μ M) for 15 min (Figure 4C). Yoda1 also stimulated Proglucagon
509 expression and GLP-1 secretion, as well as CaMKK β /CaMKIV-mTOR signaling
510 pathway in primary cultured mouse L cells (Figure 4D-F). In contrast, knockdown of
511 Piezo1 by shRNA led to significant decrease in Proglucagon expression and GLP-1
512 secretion, as well as inhibition of CaMKK β /CaMKIV/mTOR signaling pathway
513 (Figure 4G-J).

514 Given the ability of Piezo1 in sensing mechanical force, tension of 1.5g was
515 applied to the isolated mouse ileum bathed in Tyrode's solution for two hours.
516 Tension stimulated Proglucagon expression, GLP-1 secretion and activated
517 CaMKK β /CaMKIV-mTOR signaling pathway in the ileum of control mice, but not in
518 *IntL-Piezo1^{-/-}* mice (Figure 4K-N), suggesting the involvement of Piezo1 of the L
519 cells in mediating the force-induced GLP-1 production and
520 CaMKK β /CaMKIV-mTOR signaling.

521

522 **Pharmacological, mechanical and genetic activation of Piezo1 stimulates GLP-1**
523 **synthesis and secretion in STC-1 cells**

524 To further validate the role of Piezo1 in regulating GLP-1, we examined the
525 effect of manipulating Piezo1 on GLP-1 production in an intestinal neuroendocrine
526 cell line STC-1. Pharmacological activation of Piezo1 by Yoda1 triggered an inward
527 current in STC-1 cell recorded by whole cell patch-clamp, which could be inhibited
528 by pre-incubation of GsMTx4 (Figure 5A). Yoda1 also triggered an increase in
529 intracellular Ca^{2+} level in STC-1 cells. Pre-incubation of cells with GsMTx4 (0.1 μM)
530 for 15 min inhibited $[\text{Ca}^{2+}]_i$ increase (Figure 5B and C). Yoda1 induced a
531 concentration-dependent activation of CaMKK β /CaMKIV-mTOR pathway and
532 GLP-1 synthesis and secretion (Figure 5D-F). GsMTx4 blocked the effect of Yoda1
533 on STC-1 cells in both GLP-1 and CaMKK β /CaMKIV-mTOR activation (Figure
534 5G-I).

535 To mimic the activation of Piezo1 by mechanical stretching in vivo, STC-1 cells
536 grown on elastic chambers were subjected to mechanical stretch to 120% of their
537 original length. Mechanical stretch upregulated Piezo1 and Proglucagon expression,
538 promoted GLP-1 secretion (Figure 5J-N), and activated CaMKK β /CaMKIV- mTOR
539 signaling pathways (Figure 5N).

540 Consistent to the pharmacological and mechanical activation of Piezo1,
541 over-expression of Piezo1 in STC-1 cells resulted in a significant increase in GLP-1
542 production, as well as activation of the CaMKK β /CaMKIV-mTOR signaling pathway
543 (Figure 6A-D). Conversely, knockdown of Piezo1 by shRNA led to a significant
544 decrease in GLP-1 production and inhibition of CaMKK β /CaMKIV-mTOR signaling
545 pathways (Figure 6E-H).

546

547 **Piezo1 regulates GLP-1 production through CaMKK β /CaMKIV and mTOR in**
548 **STC-1 cells**

549 Next, we examined whether CaMKK β /CaMKIV and mTOR signaling mediates
550 the effects of Piezo1 on GLP-1 production. Overexpression of CaMKK β or CaMKIV
551 increased CaMKK β /CaMKIV and mTOR signaling activity, resulting in increased
552 synthesis and secretion of GLP-1 (Figure 7A-C). In contrast, the CaMKK β inhibitor
553 STO-609, downregulated CaMKK β /CaMKIV and mTOR signaling, as well as GLP-1
554 synthesis and secretion (Figure 7D-F). Inhibition of mTORC1 activity by rapamycin
555 suppressed GLP-1 production induced by Yoda1, which was associated with
556 inhibition of mTOR signaling (Figure 7G-I).

557

558 **Discussion**

559 It has been known for decades that GLP-1 secretion from the intestinal L cells is
560 stimulated by meal intake and is essential for postprandial glycemic control (Drucker,
561 2006; Song et al., 2019). However, the mechanism underlying the regulation of
562 GLP-1 production is not completely understood. One of the problems that impeded
563 the investigation of regulation mechanism of GLP-1 is the lack of an L cell-specific
564 genetically engineered animal model. Here, we generated an L cell-specific Cre
565 mouse line for the first time by combination of the Flp-Frt and Cre-LoxP systems,
566 which allows genetic manipulation specifically in the L cells and thus creates a useful
567 tool to investigate molecular mechanisms in L cells.

568 Previous studies have shown that L cells are able to sense nutrients in the
569 intestinal lumen such as glucose and other carbohydrates, lipids and amino acids,
570 which induce GLP-1 secretion through different mechanisms, including membrane
571 depolarization-associated exocytosis, Ca^{2+} /Calmodulin (Tolhurst et al., 2011), cAMP
572 (Yu & Jin, 2010), mTORC1 (Xu et al., 2015) and AMPK (Jiang et al., 2016) signaling
573 pathways. However, it is innegligible that as open type endocrine cells, L cells not
574 only receive the chemical stimulations from the nutrients, but also mechanical
575 stimulation when the chyme passing through the intestine, including stretching,
576 pressure and shear force (Sensoy, 2021). While the food needs to be digested and
577 nutrients absorbed before L-cells can detect the nutritive signals, mechanical
578 stimulation may be more direct and faster. Here, we showed the expression of the
579 mechano-sensitive ion channel Piezo1 in L cells of human and mouse intestinal
580 sections, mouse primary L cell culture and an intestinal neuroendocrine cell line
581 STC-1, suggesting the mechano-sensing ability of L cells and potential regulation of
582 GLP-1 in response to mechanical stimulation. Indeed, our study showed that the
583 mechano-regulation of GLP-1 secretion did exist as demonstrated by the increased
584 GLP-1 secretion by intestinal bead implantation, intestinal tissue stretching or STC-1
585 cell stretching. Moreover, mice with selective loss of Piezo1 expression in intestinal L
586 cell (*IntL-Piezo1*^{-/-}) exhibited reduced circulating levels of GLP-1, increased body

587 weight and impaired glucose homeostasis, while pharmacological activation of Piezo1
588 on mice, primary L cells and STC-1 cells did the reverse. More importantly,
589 *IntL-Piezo1^{-/-}* mice was unable to response to the tension-induced GLP-1 production.
590 These further suggested a Piezo1-mediated mechanical sensing mechanism in L cells
591 that regulates GLP-1 production and glucose metabolism by sensing the stimulation
592 of intestinal luminal contents. Therefore, our study provides a mechano-regulation
593 mechanism in addition to the existing known nutritive regulation for GLP-1
594 production. However, the relationship between mechano-regulation and nutritive
595 regulation remains to be explored.

596 Interestingly, this intestinal Piezo1-mediated mechanical sensing mechanism
597 may severely impaired in diabetic patients and rodents. We observed a decreased
598 Piezo1 expression in the ileal mucosa of diet-induced diabetic mice accompanied by
599 reduced GLP-1 production. When challenged with high-fat, *IntL-Piezo1^{-/-}* mice
600 exhibited more severe symptoms of diabetes which was mitigated by Ex-4. These
601 findings suggest that the impairment of Piezo1-mediated mechanical sensing function
602 in the intestine is an important mechanism for the pathogenesis of T2DM. It is
603 noteworthy that RYGB, a commonly performed weight-loss and hypoglycemic
604 surgery (Cummings et al., 2004), significantly increased Piezo1 expression in L cells
605 of obese diabetic patients. Yoda1 treatment or intestinal bead implantation enhanced
606 GLP-1 production and improved glucose metabolism in the diet-induced diabetic
607 mouse model, suggesting that restore the mechano-sensing or enhance the function of
608 Piezo1 either pharmacologically or mechanically, may be a new strategy to improve
609 the secretion of GLP-1, thus alleviate T2DM. However, in our study, the
610 Piezo1-mediated regulation of GLP-1 production is only demonstrated in transgenic
611 mice, mouse primary L cells and an intestinal neuroendocrine cell line derived from
612 mouse. Whether Piezo1 plays the same role in human L cells awaits to be investigated.
613 A number of studies have generated L cells culture from human intestinal organoid
614 culture or human intestinal stem cell monolayer culture by manipulating the growth
615 factors in the media (Goldspink et al., 2020; Petersen et al., 2014; Villegas-Novoa et

616 al., 2022). It is worthy to validate our finding in human L cells in order to prove its
617 translational potential in T2DM treatment.

618 The intragastric balloon is a current noninvasive clinical weight loss measure
619 that involves placing a space-occupying balloon in the stomach to reduce food intake
620 and generate satiety signals, thus maintaining satiety. Investigations illustrated that
621 intragastric balloon alter the secretion of hormones such as cholecystokinin and
622 pancreatic polypeptide, delay the emptying of food in the stomach and reduce the
623 appetite (Mathus-Vliegen & de Groot, 2013). Intragastric balloon provides a feasible
624 weight loss intervention for obese people (Kim et al., 2016). In this study, a new
625 intestinal implantation surgery of beads was adopted, which may offer a novel
626 approach for weight loss and glucose control by activating the intestinal
627 Piezo1-GLP-1 signaling pathway in the future.

628 Mechanistically, our study suggest that Piezo1 regulates GLP-1 production
629 through a CaMKK β /CaMKIV-mTOR signaling pathway. CaMKK β /CaMKIV has
630 been reported to mediate the Ca^{2+} signaling in many metabolic processes, including
631 liver gluconeogenesis and de novo lipogenesis, adipogenesis, insulin sensitivity and β
632 cell proliferation (Anderson et al., 2012; Lin et al., 2011; Liu et al., 2012; J. Liu et al.,
633 2022). mTOR plays a central role in nutrient and energy sensing and regulates cellular
634 metabolism and growth in response to different nutrient and energy status (Howell &
635 Manning, 2011). Here we showed that mTOR can also response to mechanical stimuli
636 through a mechano-sensitive Ca^{2+} channel mediated CaMKK β /CaMKIV activation.
637 Although we did not demonstrate direct phosphorylation of mTOR or S6K by
638 CaMKIV in L cells, previous study reported that CaMKK β could serve as a scaffold
639 to assemble CaMKIV with key components of the mTOR/S6K pathway and promote
640 liver cancer cell growth (Lin et al., 2015), which lend support to the
641 CaMKK β /CaMKIV-mTOR signaling in our study. Recently, Knutson et. al. found
642 that ryanodine and IP3-triggered calcium release from intracellular calcium store
643 could amplified the initial Peizo2 - Ca^{2+} signal triggered by mechanical stimulation,
644 and was required for the mechanotransduction in the serotonin release from

645 enterochromaffin cells (Knutson et al., 2023). In our study, we also observed
646 long-lasting intracellular Ca^{2+} increase triggered by Yoda1 in primary L cells and
647 STC-1 cells, which also suggested an involvement of intracellular Ca^{2+} store in the
648 Ca^{2+} relay. Beside Ca^{2+} , cyclic AMP (cAMP) is another signaling molecule that active
649 *Gcg* gene expression and GLP-1 production (Drucker et al., 1994; Jin, 2008; Simpson
650 et al., 2007). cAMP was found to play a critical role in nutrients-induced GLP-1
651 secretion, including glucose (Ong et al., 2009), lipids (Hodge et al., 2016), and amino
652 acids (Tolhurst et al., 2011). Previous study reported that Ca^{2+} can activate soluble
653 adenylyl cyclase (sAC) to increase intracellular cAMP (Jaiswal & Conti, 2003).
654 Whether sAC-cAMP can be activated by Piezo1-mediated Ca^{2+} influx and whether it
655 is an alternative signaling pathway that mediates the Piezo1-regulated GLP-1
656 production remain to be explored.

657 In summary, our study reveals a previously undiscovered Piezo1-mediated
658 mechano-sensing property of intestinal L cell, which plays an essential role in the
659 regulation of GLP-1 production and glucose metabolism. This finding also suggests a
660 new mechano-regulation in enteroendocrine cells, in addition to chemical and
661 neuronal regulation, which may shed new light on the strategy for metabolic diseases
662 such as diabetes and obesity.

663 **Acknowledgements**

664 **Funding**

665 This work was supported by grants from the National Natural Science Foundation
666 of China (82170818, 81770794), Guangdong Basic and Applied Basic Research
667 Foundation (2024A1515010686), the Fundamental Research Funds for the Central
668 Universities (21620423), Guangzhou Science and Technology Plan Project Funding
669 (202201011353).

670

671 **Additional information**

Funder	Author	Grant reference number	Author
National Natural Science Foundation of China		82170818	Geyang Xu
National Natural Science Foundation of China		81770794	Geyang Xu
Guangdong Basic and Applied Basic Research Foundation		2024A1515010686	Geyang Xu
Fundamental Research Funds for the Central Universities		21620423	Geyang Xu
Guangzhou Science and Technology Plan Project Funding		202201011353	Jie Yang

672

673 **Conflicts of interest**

674 On behalf of all authors, the corresponding author states that there is no conflict
675 of interest.

676

677

678 **Author contribution**

679 Yanling Huang, Data curation, Software, Formal analysis, Validation, Investigation,
680 Methodology, Writing - original draft;
681 Haocong Mo, Data curation, Software, Formal analysis, Validation, Investigation,
682 Methodology, Writing - original draft;
683 Jie Yang, Data curation, Formal analysis, Validation, Investigation, Methodology,
684 Funding acquisition;
685 Luyang Gao, Data curation, Formal analysis, Validation, Investigation, Methodology,
686 Writing - original draft;
687 Tian Tao, Data curation, Investigation, Methodology;
688 Qing Shu, Formal analysis, Validation, Investigation;
689 Wenyi Guo, Formal analysis, Validation, Investigation;
690 Yawen Zhao, Formal analysis, Validation, Investigation;
691 Jingya Lyu, Resources, Formal analysis, Validation;
692 Qimeng Wang, Formal analysis, Validation;
693 Jinghui Guo, Resources, Investigation;
694 Hening Zhai, Resources, Investigation;
695 Linyan Zhu, Resources, Investigation, Methodology;
696 Hui Chen, Conceptualization, Resources, Formal analysis, Supervision, Investigation,
697 Software, Visualization, Methodology, Writing - review and editing;
698 Geyang Xu, Conceptualization, Resources, Formal analysis, Supervision, Funding
699 acquisition, Investigation, Visualization, Methodology, Writing - review and editing,
700 Project administration.

701

702 **Ethical Statement**

703 Animals used in this study were handled in accordance with the Guide for the
704 Care and Use of Laboratory Animals published by the National Institutes of Health
705 (NIH Publications No. 8023, revised 1978). All animal protocols were approved by
706 the Animal Care and Use Committee of Jinan University.

707 Human subject research was approved by the Institutional Review Board of
708 Jinan University.

709

710 **Data availability**

711 All of the data supporting the findings of this study are included in the article and
712 supplementary information.

713 **Reference**

714 Alcaino, C., Knutson, K. R., Treichel, A. J., Yildiz, G., Strege, P. R., Linden, D. R., . . .
715 Beyder, A. (2018). A population of gut epithelial enterochromaffin cells is
716 mechanosensitive and requires Piezo2 to convert force into serotonin release. *Proc
717 Natl Acad Sci U S A*, 115(32), E7632-e7641. <https://doi.org/10.1073/pnas.1804938115>

718 Anderson, K. A., Lin, F., Ribar, T. J., Stevens, R. D., Muehlbauer, M. J., Newgard, C.
719 B., & Means, A. R. (2012). Deletion of CaMKK2 from the liver lowers blood glucose
720 and improves whole-body glucose tolerance in the mouse. *Mol Endocrinol*, 26(2),
721 281-291. <https://doi.org/10.1210/me.2011-1299>

722 Anini, Y., Hansotia, T., & Brubaker, P. L. (2002). Muscarinic receptors control
723 postprandial release of glucagon-like peptide-1: in vivo and in vitro studies in rats.
724 *Endocrinology*, 143(6), 2420-2426. <https://doi.org/10.1210/endo.143.6.8840>

725 Atanga, R., Singh, V., & In, J. G. (2023). Intestinal Enteroendocrine Cells: Present
726 and Future Druggable Targets. *Int J Mol Sci*, 24(10).
727 <https://doi.org/10.3390/ijms24108836>

728 Ban, N., Yamada, Y., Someya, Y., Ihara, Y., Adachi, T., Kubota, A., . . . Seino, Y.
729 (2000). Activating transcription factor-2 is a positive regulator in CaM kinase
730 IV-induced human insulin gene expression. *Diabetes*, 49(7), 1142-1148.
731 <https://doi.org/10.2337/diabetes.49.7.1142>

732 Bany Bakar, R., Reimann, F., & Gribble, F. M. (2023). The intestine as an endocrine
733 organ and the role of gut hormones in metabolic regulation. *Nat Rev Gastroenterol
734 Hepatol*. <https://doi.org/10.1038/s41575-023-00830-y>

735 Cahalan, S. M., Lukacs, V., Ranade, S. S., Chien, S., Bandell, M., & Patapoutian, A.
736 (2015). Piezo1 links mechanical forces to red blood cell volume. *Elife*, 4.
737 <https://doi.org/10.7554/eLife.07370>

738 Chen, K., Yu, X., Murao, K., Imachi, H., Li, J., Muraoka, T., . . . Tokumitsu, H. (2011).
739 Exendin-4 regulates GLUT2 expression via the CaMKK/CaMKIV pathway in a
740 pancreatic β -cell line. *Metabolism*, 60(4), 579-585.
741 <https://doi.org/10.1016/j.metabol.2010.06.002>

742 Cummings, D. E., Overduin, J., & Foster-Schubert, K. E. (2004). Gastric bypass for
743 obesity: mechanisms of weight loss and diabetes resolution. *J Clin Endocrinol Metab*,
744 89(6), 2608-2615. <https://doi.org/10.1210/jc.2004-0433>

745 Deivasikamani, V., Dhayalan, S., Abudushalamu, Y., Mughal, R., Visnagri, A.,
746 Cuthbertson, K., . . . Sukumar, P. (2019). Piezo1 channel activation mimics high
747 glucose as a stimulator of insulin release. *Sci Rep*, 9(1), 16876.
748 <https://doi.org/10.1038/s41598-019-51518-w>

749 Diakogiannaki, E., Gribble, F. M., & Reimann, F. (2012). Nutrient detection by
750 incretin hormone secreting cells. *Physiol Behav*, 106(3), 387-393.
751 <https://doi.org/10.1016/j.physbeh.2011.12.001>

752 Drucker, D. J. (2006). The biology of incretin hormones. *Cell Metab*, 3(3), 153-165.
753 <https://doi.org/10.1016/j.cmet.2006.01.004>

754 Drucker, D. J., Jin, T., Asa, S. L., Young, T. A., & Brubaker, P. L. (1994). Activation
755 of proglucagon gene transcription by protein kinase-A in a novel mouse
756 enteroendocrine cell line. *Mol Endocrinol*, 8(12), 1646-1655.
757 <https://doi.org/10.1210/mend.8.12.7535893>

758 Furness, J. B., Rivera, L. R., Cho, H. J., Bravo, D. M., & Callaghan, B. (2013). The
759 gut as a sensory organ. *Nat Rev Gastroenterol Hepatol*, 10(12), 729-740.
760 <https://doi.org/10.1038/nrgastro.2013.180>

761 Goldspink, D. A., Lu, V. B., Miedzybrodzka, E. L., Smith, C. A., Foreman, R. E.,
762 Billing, L. J., . . . Gribble, F. M. (2020). Labeling and Characterization of Human
763 GLP-1-Secreting L-cells in Primary Ileal Organoid Culture. *Cell Rep*, 31(13), 107833.
764 <https://doi.org/10.1016/j.celrep.2020.107833>

765 Gribble, F. M., & Reimann, F. (2016). Enteroendocrine Cells: Chemosensors in the
766 Intestinal Epithelium. *Annu Rev Physiol*, 78, 277-299.
767 <https://doi.org/10.1146/annurev-physiol-021115-105439>

768 Gudipaty, S. A., Lindblom, J., Loftus, P. D., Redd, M. J., Edes, K., Davey, C. F., . . .
769 Rosenblatt, J. (2017). Mechanical stretch triggers rapid epithelial cell division through
770 Piezo1. *Nature*, 543(7643), 118-121. <https://doi.org/10.1038/nature21407>

771 Hodge, D., Glass, L. L., Diakogiannaki, E., Pais, R., Lenaghan, C., Smith, D. M., . . .
772 Reimann, F. (2016). Lipid derivatives activate GPR119 and trigger GLP-1 secretion in
773 primary murine L-cells. *Peptides*, 77, 16-20.
774 <https://doi.org/10.1016/j.peptides.2015.06.012>

775 Howell, J. J., & Manning, B. D. (2011). mTOR couples cellular nutrient sensing to
776 organismal metabolic homeostasis. *Trends Endocrinol Metab*, 22(3), 94-102.
777 <https://doi.org/10.1016/j.tem.2010.12.003>

778 Jaiswal, B. S., & Conti, M. (2003). Calcium regulation of the soluble adenylyl cyclase
779 expressed in mammalian spermatozoa. *Proc Natl Acad Sci U S A*, 100(19),
780 10676-10681. <https://doi.org/10.1073/pnas.1831008100>

781 Jiang, S., Zhai, H., Li, D., Huang, J., Zhang, H., Li, Z., . . . Xu, G. (2016).
782 AMPK-dependent regulation of GLP1 expression in L-like cells. *J Mol Endocrinol*,
783 57(3), 151-160. <https://doi.org/10.1530/jme-16-0099>

784 Jiang, Y., Song, J., Xu, Y., Liu, C., Qian, W., Bai, T., & Hou, X. (2021). Piezo1
785 regulates intestinal epithelial function by affecting the tight junction protein claudin-1
786 via the ROCK pathway. *Life Sci*, 275, 119254.
787 <https://doi.org/10.1016/j.lfs.2021.119254>

788 Jin, T. (2008). Mechanisms underlying proglucagon gene expression. *J Endocrinol*,
789 198(1), 17-28. <https://doi.org/10.1677/joe-08-0085>

790 Kim, S. H., Chun, H. J., Choi, H. S., Kim, E. S., Keum, B., & Jeen, Y. T. (2016).
791 Current status of intragastric balloon for obesity treatment. *World J Gastroenterol*,
792 22(24), 5495-5504. <https://doi.org/10.3748/wjg.v22.i24.5495>

793 Knutson, K. R., Whiteman, S. T., Alcaino, C., Mercado-Perez, A., Finholm, I., Serlin,
794 H. K., . . . Beyder, A. (2023). Intestinal enteroendocrine cells rely on ryanodine and
795 IP(3) calcium store receptors for mechanotransduction. *J Physiol*, 601(2), 287-305.
796 <https://doi.org/10.1113/jp283383>

797 Lai, A., Cox, C. D., Chandra Sekar, N., Thurgood, P., Jaworowski, A., Peter, K., &
798 Baratchi, S. (2022). Mechanosensing by Piezo1 and its implications for physiology
799 and various pathologies. *Biol Rev Camb Philos Soc*, 97(2), 604-614.
800 <https://doi.org/10.1111/brv.12814>

801 Li, J., Hou, B., Tumova, S., Muraki, K., Bruns, A., Ludlow, M. J., . . . Beech, D. J.
802 (2014). Piezo1 integration of vascular architecture with physiological force. *Nature*,
803 515(7526), 279-282. <https://doi.org/10.1038/nature13701>

804 Li, Z., Bowers, E., Zhu, J., Yu, H., Hardij, J., Bagchi, D. P., . . . MacDougald, O. A.
805 (2022). Lipolysis of bone marrow adipocytes is required to fuel bone and the marrow
806 niche during energy deficits. *Elife*, 11. <https://doi.org/10.7554/eLife.78496>

807 Lin, F., Marcelo, K. L., Rajapakshe, K., Coarfa, C., Dean, A., Wilganowski, N., . . .
808 York, B. (2015). The camKK2/camKIV relay is an essential regulator of hepatic
809 cancer. *Hepatology*, 62(2), 505-520. <https://doi.org/10.1002/hep.27832>

810 Lin, F., Ribar, T. J., & Means, A. R. (2011). The Ca2+/calmodulin-dependent protein
811 kinase kinase, CaMKK2, inhibits preadipocyte differentiation. *Endocrinology*,
812 152(10), 3668-3679. <https://doi.org/10.1210/en.2011-1107>

813 Liu, B., Barbosa-Sampaio, H., Jones, P. M., Persaud, S. J., & Muller, D. S. (2012).
814 The CaMK4/CREB/IRS-2 cascade stimulates proliferation and inhibits apoptosis of
815 β -cells. *PLoS One*, 7(9), e45711. <https://doi.org/10.1371/journal.pone.0045711>

816 Liu, H., Hu, J., Zheng, Q., Feng, X., Zhan, F., Wang, X., . . . Hua, F. (2022). Piezo1
817 Channels as Force Sensors in Mechanical Force-Related Chronic Inflammation. *Front
818 Immunol*, 13, 816149. <https://doi.org/10.3389/fimmu.2022.816149>

819 Liu, J., Li, Y., Gao, N., Ji, J., & He, Q. (2022). Calcium/calmodulin-dependent protein
820 kinase IV regulates vascular autophagy and insulin signaling through
821 Akt/mTOR/CREB pathway in ob/ob mice. *J Physiol Biochem*, 78(1), 199-211.
822 <https://doi.org/10.1007/s13105-021-00853-6>

823 Marcelo, K. L., Means, A. R., & York, B. (2016). The Ca(2+)/Calmodulin/CaMKK2
824 Axis: Nature's Metabolic CaMshaft. *Trends Endocrinol Metab*, 27(10), 706-718.
825 <https://doi.org/10.1016/j.tem.2016.06.001>

826 Mathus-Vliegen, E. M., & de Groot, G. H. (2013). Fasting and meal-induced CCK
827 and PP secretion following intragastric balloon treatment for obesity. *Obes Surg*, 23(5),
828 622-633. <https://doi.org/10.1007/s11695-012-0834-6>

829 Maunoury, R., Robine, S., Pringault, E., Léonard, N., Gaillard, J. A., & Louvard, D.
830 (1992). Developmental regulation of villin gene expression in the epithelial cell
831 lineages of mouse digestive and urogenital tracts. *Development*, 115(3), 717-728.
832 <https://doi.org/10.1242/dev.115.3.717>

833 Ong, W. K., Gribble, F. M., Reimann, F., Lynch, M. J., Houslay, M. D., Baillie, G.
834 S., . . . Pyne, N. J. (2009). The role of the PDE4D cAMP phosphodiesterase in the
835 regulation of glucagon-like peptide-1 release. *Br J Pharmacol*, 157(4), 633-644.
836 <https://doi.org/10.1111/j.1476-5381.2009.00194.x>

837 Petersen, N., Reimann, F., Bartfeld, S., Farin, H. F., Ringnalda, F. C., Vries, R. G., . . .
838 de Koning, E. J. (2014). Generation of L cells in mouse and human small intestine
839 organoids. *Diabetes*, 63(2), 410-420. <https://doi.org/10.2337/db13-0991>

840 Romac, J. M., Shahid, R. A., Swain, S. M., Vigna, S. R., & Liddle, R. A. (2018).
841 Piezo1 is a mechanically activated ion channel and mediates pressure induced
842 pancreatitis. *Nat Commun*, 9(1), 1715. <https://doi.org/10.1038/s41467-018-04194-9>

843 Rouillé, Y., Kantengwa, S., Irminger, J. C., & Halban, P. A. (1997). Role of the
844 prohormone convertase PC3 in the processing of proglucagon to glucagon-like
845 peptide 1. *J Biol Chem*, 272(52), 32810-32816.
846 <https://doi.org/10.1074/jbc.272.52.32810>

847 Rutlin, M., Rastelli, D., Kuo, W. T., Estep, J. A., Louis, A., Riccomagno, M. M., . . .
848 Rao, M. (2020). The Villin1 Gene Promoter Drives Cre Recombinase Expression in
849 Extraintestinal Tissues. *Cell Mol Gastroenterol Hepatol*, 10(4), 864-867.e865.
850 <https://doi.org/10.1016/j.jcmgh.2020.05.009>

851 Saxena, A. R., Gorman, D. N., Esquejo, R. M., Bergman, A., Chidsey, K., Buckeridge,
852 C., . . . Kim, A. M. (2021). Danuglipron (PF-06882961) in type 2 diabetes: a
853 randomized, placebo-controlled, multiple ascending-dose phase 1 trial. *Nat Med*,
854 27(6), 1079-1087. <https://doi.org/10.1038/s41591-021-01391-w>

855 Sensoy, I. (2021). A review on the food digestion in the digestive tract and the used in
856 vitro models. *Curr Res Food Sci*, 4, 308-319.
857 <https://doi.org/10.1016/j.crfs.2021.04.004>

858 Simpson, A. K., Ward, P. S., Wong, K. Y., Collord, G. J., Habib, A. M., Reimann, F.,
859 & Gribble, F. M. (2007). Cyclic AMP triggers glucagon-like peptide-1 secretion from
860 the GLUTag enteroendocrine cell line. *Diabetologia*, 50(10), 2181-2189.
861 <https://doi.org/10.1007/s00125-007-0750-9>

862 Song, Y., Koehler, J. A., Baggio, L. L., Powers, A. C., Sandoval, D. A., & Drucker, D.
863 J. (2019). Gut-Proglucagon-Derived Peptides Are Essential for Regulating Glucose
864 Homeostasis in Mice. *Cell Metab*, 30(5), 976-986.e973.
865 <https://doi.org/10.1016/j.cmet.2019.08.009>

866 Sugisawa, E., Takayama, Y., Takemura, N., Kondo, T., Hatakeyama, S., Kumagai,
867 Y., . . . Maruyama, K. (2020). RNA Sensing by Gut Piezo1 Is Essential for Systemic
868 Serotonin Synthesis. *Cell*, 182(3), 609-624.e621.
869 <https://doi.org/10.1016/j.cell.2020.06.022>

870 Takemoto-Kimura, S., Suzuki, K., Horigane, S. I., Kamijo, S., Inoue, M., Sakamoto,
871 M., . . . Bito, H. (2017). Calmodulin kinases: essential regulators in health and disease.
872 *J Neurochem*, 141(6), 808-818. <https://doi.org/10.1111/jnc.14020>

873 Tan, Q., Akindehin, S. E., Orsso, C. E., Waldner, R. C., DiMarchi, R. D., Müller, T. D.,
874 & Haqq, A. M. (2022). Recent Advances in Incretin-Based Pharmacotherapies for the
875 Treatment of Obesity and Diabetes. *Front Endocrinol (Lausanne)*, 13, 838410.
876 <https://doi.org/10.3389/fendo.2022.838410>

877 Tolhurst, G., Zheng, Y., Parker, H. E., Habib, A. M., Reimann, F., & Gribble, F. M.
878 (2011). Glutamine triggers and potentiates glucagon-like peptide-1 secretion by
879 raising cytosolic Ca²⁺ and cAMP. *Endocrinology*, 152(2), 405-413.
880 <https://doi.org/10.1210/en.2010-0956>

881 Treichel, A. J., Finholm, I., Knutson, K. R., Alcaino, C., Whiteman, S. T., Brown, M.
882 R., . . . Beyder, A. (2022). Specialized Mechanosensory Epithelial Cells in Mouse Gut
883 Intrinsic Tactile Sensitivity. *Gastroenterology*, 162(2), 535-547.e513.
884 <https://doi.org/10.1053/j.gastro.2021.10.026>

885 Villegas-Novoa, C., Wang, Y., Sims, C. E., & Allbritton, N. L. (2022). Development
886 of a Primary Human Intestinal Epithelium Enriched in L-Cells for Assay of GLP-1
887 Secretion. *Anal Chem*, 94(27), 9648-9655.
888 <https://doi.org/10.1021/acs.analchem.2c00912>

889 Wang, J., Sun, Y. X., & Li, J. (2023). The role of mechanosensor Piezo1 in bone
890 homeostasis and mechanobiology. *Dev Biol*, 493, 80-88.
891 <https://doi.org/10.1016/j.ydbio.2022.11.002>

892 Wang, S., Chennupati, R., Kaur, H., Iring, A., Wettschureck, N., & Offermanns, S.
893 (2016). Endothelial cation channel PIEZO1 controls blood pressure by mediating
894 flow-induced ATP release. *J Clin Invest*, 126(12), 4527-4536.
895 <https://doi.org/10.1172/jci87343>

896 Willms, B., Werner, J., Holst, J. J., Orskov, C., Creutzfeldt, W., & Nauck, M. A.
897 (1996). Gastric emptying, glucose responses, and insulin secretion after a liquid test
898 meal: effects of exogenous glucagon-like peptide-1 (GLP-1)-(7-36) amide in type 2
899 (noninsulin-dependent) diabetic patients. *J Clin Endocrinol Metab*, 81(1), 327-332.
900 <https://doi.org/10.1210/jcem.81.1.8550773>

901 Xu, G., Li, Z., Ding, L., Tang, H., Guo, S., Liang, H., . . . Zhang, W. (2015). Intestinal
902 mTOR regulates GLP-1 production in mouse L cells. *Diabetologia*, 58(8), 1887-1897.
903 <https://doi.org/10.1007/s00125-015-3632-6>

904 Xu, Y., Bai, T., Xiong, Y., Liu, C., Liu, Y., Hou, X., & Song, J. (2021). Mechanical
905 stimulation activates Piezo1 to promote mucin2 expression in goblet cells. *J
906 Gastroenterol Hepatol*, 36(11), 3127-3139. <https://doi.org/10.1111/jgh.15596>

907 Ye, Y., Barghouth, M., Dou, H., Luan, C., Wang, Y., Karagiannopoulos, A., . . .
908 Renström, E. (2022). A critical role of the mechanosensor PIEZO1 in glucose-induced
909 insulin secretion in pancreatic β -cells. *Nat Commun*, 13(1), 4237.
910 <https://doi.org/10.1038/s41467-022-31103-y>

911 Yu, Z., & Jin, T. (2010). New insights into the role of cAMP in the production and
912 function of the incretin hormone glucagon-like peptide-1 (GLP-1). *Cell Signal*, 22(1),
913 1-8. <https://doi.org/10.1016/j.cellsig.2009.09.032>

914 Zhai, H., Li, Z., Peng, M., Huang, Z., Qin, T., Chen, L., . . . Xu, G. (2018). Takeda G
915 Protein-Coupled Receptor 5-Mechanistic Target of Rapamycin Complex 1 Signaling
916 Contributes to the Increment of Glucagon-Like Peptide-1 Production after Roux-en-Y
917 Gastric Bypass. *EBioMedicine*, 32, 201-214.
918 <https://doi.org/10.1016/j.ebiom.2018.05.026>

919 Zhao, Y., Liu, Y., Tao, T., Zhang, J., Guo, W., Deng, H., . . . Xu, G. (2024). Gastric
920 mechanosensitive channel Piezo1 regulates ghrelin production and food intake. *Nat
921 Metab*, 6(3), 458-472. <https://doi.org/10.1038/s42255-024-00995-z>

922

923 **Figure legends**

924 **Figure 1: Generation, Validation and Characterization of *IntL-Piezo1*^{-/-} mice**

925 (A) Schematic description for the generation of Villin-Flippase (*Vil-Flp*) and
926 Flippase-dependent Gcg-Cre (*FGC*) mice. *Vil-Flp* flip the inverted Cre gene in the
927 Gcg-Cre cassette in *IntL-Cre* mice to restrict Cre expression in intestinal L cells. As
928 shown, Locations of genotyping primers are also indicated.

929 (B) Tail DNA genotyping PCR results using genotyping primer for *Vil-Flp*, *FGC* and
930 Flippase-activated Cre (*IntL-Cre*) mice.

931 (C) Intestine and pancreas DNA genotyping results. The "Original" band represents
932 the original FGC cassette with inverted Cre, while the "Flipped" band represents
933 recombined FGC cassette with Cre flipped into the correct direction.

934 (D) Schematic description for the validation of *IntL-Cre* efficacy by crossing with
935 *mT/mG* reporter mice.

936 (E) Fluorescence was detected in the ileal and pancreatic tissues from *mT/mG* and
937 *IntL-Cre-mT/mG* mice by frozen tissue confocal microscopy. Green fluorescence
938 represents successful deletion of TdTomato and reactivation of EGFP in the
939 Cre-expressing cells.

940 (F) Schematic description for the generation of Intestinal L cell-Piezo1^{-/-} mice
941 (*IntL-Piezo1*^{-/-}) by crossing *Piezo1*^{loxP/loxP} mice with *IntL-Cre* mice.

942 (G) Body weight of 14- to 16-week-old male mice of the indicated genotypes fed
943 NCD (n=6/group).

944 (H-I) IPGTT (H) and ITT (I) and associated area under the curve (AUC) values of
945 14- to 16-week-old male mice of the indicated genotypes fed NCD (n=6/group).

946 (J) *Proglucagon* mRNA levels in ileum of 14- to 16-week-old male mice of the
947 indicated genotypes fed NCD. (n=6/group).

948 (K) The plasma GLP-1 levels in 14- to 16-week-old male mice of the indicated
949 genotypes fed NCD (n=6/group).

950 (L) Representative images for *Piezo1* RNA-FISH and GLP-1 immunofluorescent
951 staining in the ileum of 14-week-old male mice of indicated genotypes fed NCD
952 (n=6/group).

953 (M) Percentage of *Piezo1*-positive GLP-1 cells in total GLP-1 cells in the ileal
954 mucosa of 14-week-old male mice of indicated genotypes fed NCD (n=6/group).

955 (N) A schematic diagram depicting the potential mechanisms linking the
956 CaMKK β /CaMKIV-mTOR signaling pathway and GLP-1 production.

957 (O) Representative western blots are shown for indicated antibodies in the ileal
958 mucosa (n = 6/group).

959 Data are represented as mean \pm SEM. Significance was determined by Student's t test
960 for comparison between two groups, and by one-way ANOVA for comparison among
961 three groups or more, *p < 0.05, **p < 0.01, ***p < 0.001.

962 **Figure 2: Validation and phenotype of *IntL-Piezo1*^{-/-} mice fed with high-fat diet**
963 (A) Body weight of 14- to 16-week-old male *Piezo1*^{loxP/loxP} and *IntL-Piezo1*^{-/-} mice fed
964 with HFD for 10 weeks (n=6/group).
965 (B) IPGTT and associated area under the curve (AUC) values of 14- to 16-week-old
966 male *Piezo1*^{loxP/loxP} and *IntL-Piezo1*^{-/-} mice fed with HFD (n=6/group).
967 (C) *Proglucagon* mRNA levels in the ileal mucosa of 14- to 16-week-old male
968 *Piezo1*^{loxP/loxP} and *IntL-Piezo1*^{-/-} mice fed with HFD (n=6/group).
969 (D) The plasma GLP-1 level in 14- to 16-week-old male *Piezo1*^{loxP/loxP} and
970 *IntL-Piezo1*^{-/-} mice fed with HFD (n=6/group).
971 (E) Double immunofluorescent staining of Piezo1, and GLP-1 in the ilea of 14- to
972 16-week-old male *Piezo1*^{loxP/loxP} and *IntL-Piezo1*^{-/-} mice fed HFD (n=6/group).
973 (F) Representative western blots are shown for indicated antibodies in the ileal
974 mucosa (n=6/group).
975 (G) Body weight after 7 consecutive days infusion of saline or Ex-4 (100ug/kg body
976 weight) in 14- to 16-week-old male *Piezo1*^{loxP/loxP} and *IntL-Piezo1*^{-/-} mice fed with
977 HFD (n=6/group).
978 (H-I) IPGTT (H) and ITT (I) and associated area under the curve (AUC) values after
979 consecutive infusion of saline or Ex-4.
980 (J) *Proglucagon* mRNA levels in the ileal mucosa (n=6/group) after consecutive
981 infusion of saline or Ex-4.
982 (K) The plasma GLP-1 level after consecutive infusion of saline or Ex-4 (n=6/group).
983 Data are represented as mean \pm SEM. Significance was determined by Student's t test
984 for comparison between two groups, and by one-way ANOVA for comparison among
985 three groups or more, *p < 0.05, **p < 0.01, ***p < 0.001.
986

987 **Figure 3: Chemical and mechanical interventions of Piezo1 regulates GLP-1**
988 **synthesis in mice**

989 (A-E) 14- to 16-week-old male C57BL/6J mice fed with HFD for 10 weeks were
990 infused with vehicle, Yoda1 (2 μ g per mouse) or GsMTx4 (250 μ g/kg) by i.p. for 7
991 consecutive days. (n=6/group).

992 (A) Body weight after consecutive drug infusion.

993 (B) IPGTT and associated area under the curve (AUC) values.

994 (C) *Proglucagon* mRNA levels in the ileal mucosa.

995 (D) Plasma GLP-1.

996 (E) Representative western blots are shown for indicated antibodies in the ileal
997 mucosa.

998 (F-J) 14- to 16-week-old male *IntL-Piezo1*^{-/-} mice fed with HFD for 10 weeks were
999 infused with vehicle, Yoda1 (2 μ g per mouse) by i.p. for 7 consecutive days. (n=4 or
1000 5/group)

1001 (F) Body weight after 7 consecutive days' drug infusion.

1002 (G) Fasting blood glucose levels.

1003 (H) Ileal mucosal *Proglucagon* mRNA levels.

1004 (I) Plasma GLP-1 levels.

1005 (J) Ileal mucosal Proglucagon protein levels.

1006 (K-R) 14- to 16-week-old male C57BL/6J mice fed with HFD were subjected to sham
1007 operation, or intestinal bead implantation (n=6/group).

1008 (K) Fasting blood glucose levels.

1009 (L) IPGTT and associated area under the curve (AUC) values.

1010 (M) Body weight.

1011 (N and O) *Piezo1* (N) and *Proglucagon* (O) mRNA levels in the ileal mucosa.

1012 (P) The plasma GLP-1 levels.

1013 (Q) Immunofluorescence staining of GLP-1 in ileum and quantification of GLP-1
1014 positive cells.

1015 (R) Representative western blots images and densitometry quantification for indicated
1016 antibodies in the ileal mucosa.

1017 Data are represented as mean \pm SEM. Significance was determined by Student's t test
1018 for comparison between two groups, and by one-way ANOVA for comparison among
1019 three groups or more, *p < 0.05, **p < 0.01, ***p < 0.001.

1020 **Figure 4: Piezo1 regulates GLP-1 synthesis and secretion in primary cultured**
1021 **mouse L cells and isolated mouse ileum.**

1022 (A) Isolation of mouse L cells (GFP positive) from ileal tissue by FACS. The gating
1023 in flowcytometry for sorting of GFP positive cells.
1024 (B) Immunofluorescent staining of Piezo1 in sorted GFP positive L cells.
1025 (C) Intracellular Ca^{2+} imaging by fluo-4-AM calcium probe. The change of
1026 fluorescent intensity ($\Delta F/F_0$) was plotted against time.
1027 (D-F) L cells were treated with vehicle or Yoda1 (5 μM) for 24 hours.
1028 (D) *Proglucagon* mRNA expression.
1029 (E) GLP-1 concentrations in the culture medium.
1030 (F) Western blot images and densitometry quantification for the indicated antibodies.
1031 (G-J) Knockdown of Piezo1 in L cells by shRNA for 48 hours.
1032 (G) *Piezo1* mRNA expression.
1033 (H) *Proglucagon* mRNA expression.
1034 (I) GLP-1 levels in the culture medium.
1035 (J) Western blot images and densitometry quantification for the indicated antibodies.
1036 (K-N) Ileal tissues from *Piezo1*^{loxP/loxP} and *IntL-Piezo1*^{-/-} mice were subjected to
1037 tension force (n=6/group).
1038 (K) A representative photograph showing the traction of isolated ileum.
1039 (L) *Proglucagon* mRNA levels.
1040 (M) GLP-1 concentrations in the medium.
1041 (N) Western blot images and densitometry quantification for the indicated antibodies.
1042 Data are represented as mean \pm SEM and are representative of six biological
1043 replicates. Significance was determined by Student's t test for comparison between
1044 two groups, and by one-way ANOVA for comparison among three groups or more,
1045 *p < 0.05, **p < 0.01, ***p < 0.001.

1046

1047

1048 **Figure 5: Modulation of GLP-1 synthesis and secretion by pharmacological and**
1049 **mechanical activation of Piezo1 in STC-1 cells**

1050 (A) Whole-cell currents induced by Yoda1 (5 μ M) were recorded from STC-1 cells or
1051 STC-1 cells pretreated with GsMTx4 for 30 min.

1052 (B and C) Intracellular calcium imaging in STC-1 cells. (B) STC-1 cells were loaded
1053 with fluo-4 AM for 1 h. The representative time-lapse image showing the intracellular
1054 Ca²⁺ signals. (C) The change of fluorescent intensity ($\Delta F/F_0$) was plotted against
1055 time.

1056 (D-F) STC-1 cells were treated with various concentrations of Yoda1 for 24 h. (D)
1057 Whole-cell extracts underwent western blot with indicated antibodies. (E)
1058 *Proglucagon* mRNA levels. (F) GLP-1 concentrations in the culture medium.

1059 (G-I) STC-1 cells were treated with Yoda1 (5 μ M) in the presence or absence of
1060 GsMTx4 (0.1 μ M) for 24 h. (G) Whole-cell extracts underwent western blot with
1061 indicated antibodies. (H) *Proglucagon* mRNA levels. (I) GLP-1 concentrations in the
1062 culture medium.

1063 (J-N) STC-1 were subjected to mechanical stretch. (J) STC-1 cells were cultured in
1064 elastic chambers and the chambers were subjected to mechanical stretch by 120%
1065 extension of their original length. (K) The medium GLP-1 concentrations were
1066 detected at indicated time. (L) *Piezo1* mRNA levels. (M) *Proglucagon* mRNA levels.
1067 (N) Whole-cell extracts underwent western blot with indicated antibodies.

1068 Data are represented as mean \pm SEM and are representative of six biological
1069 replicates. Significance was determined by Student's t test for comparison between
1070 two groups, and by one-way ANOVA for comparison among three groups or more,
1071 *p < 0.05, **p < 0.01, ***p < 0.001.

1072

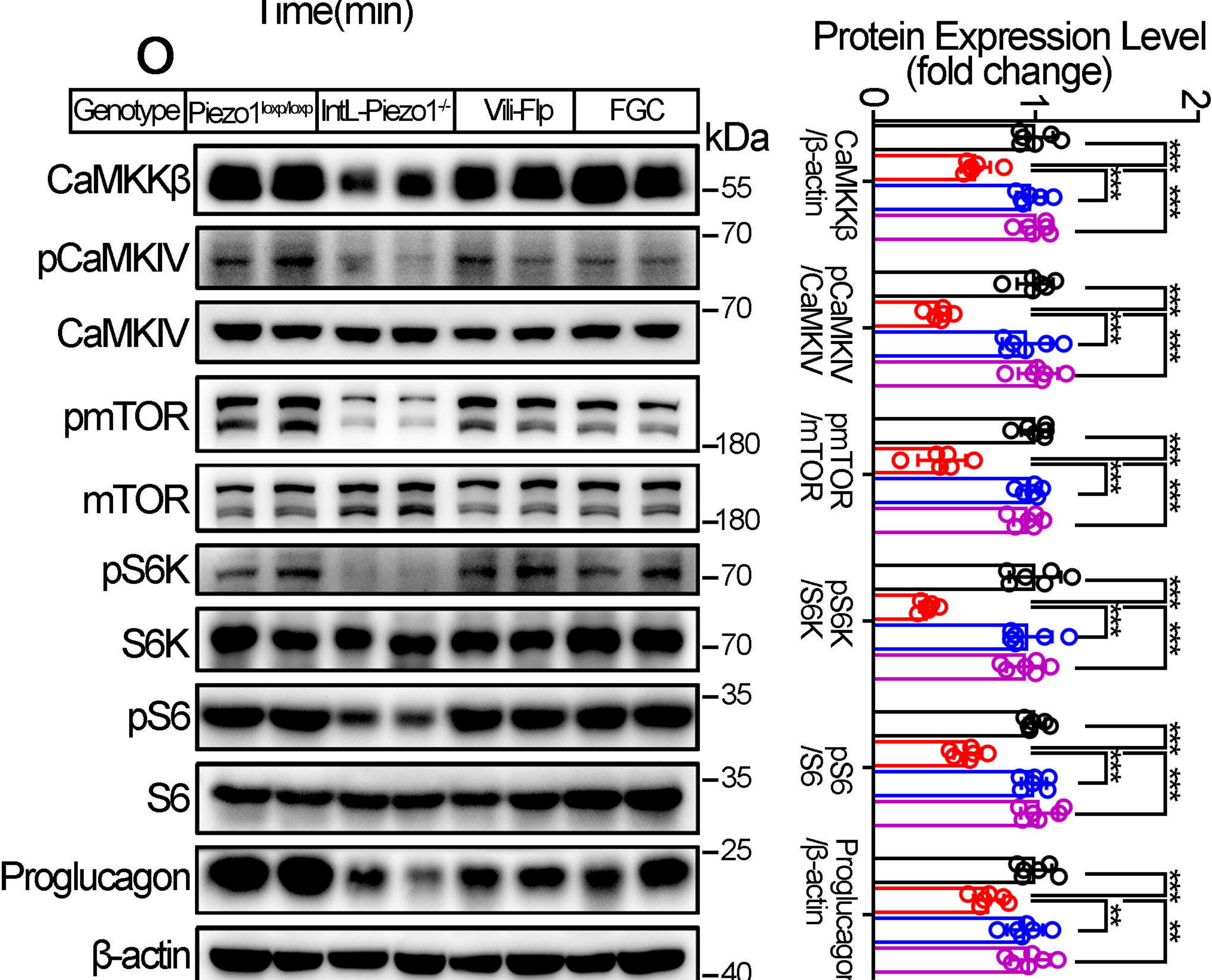
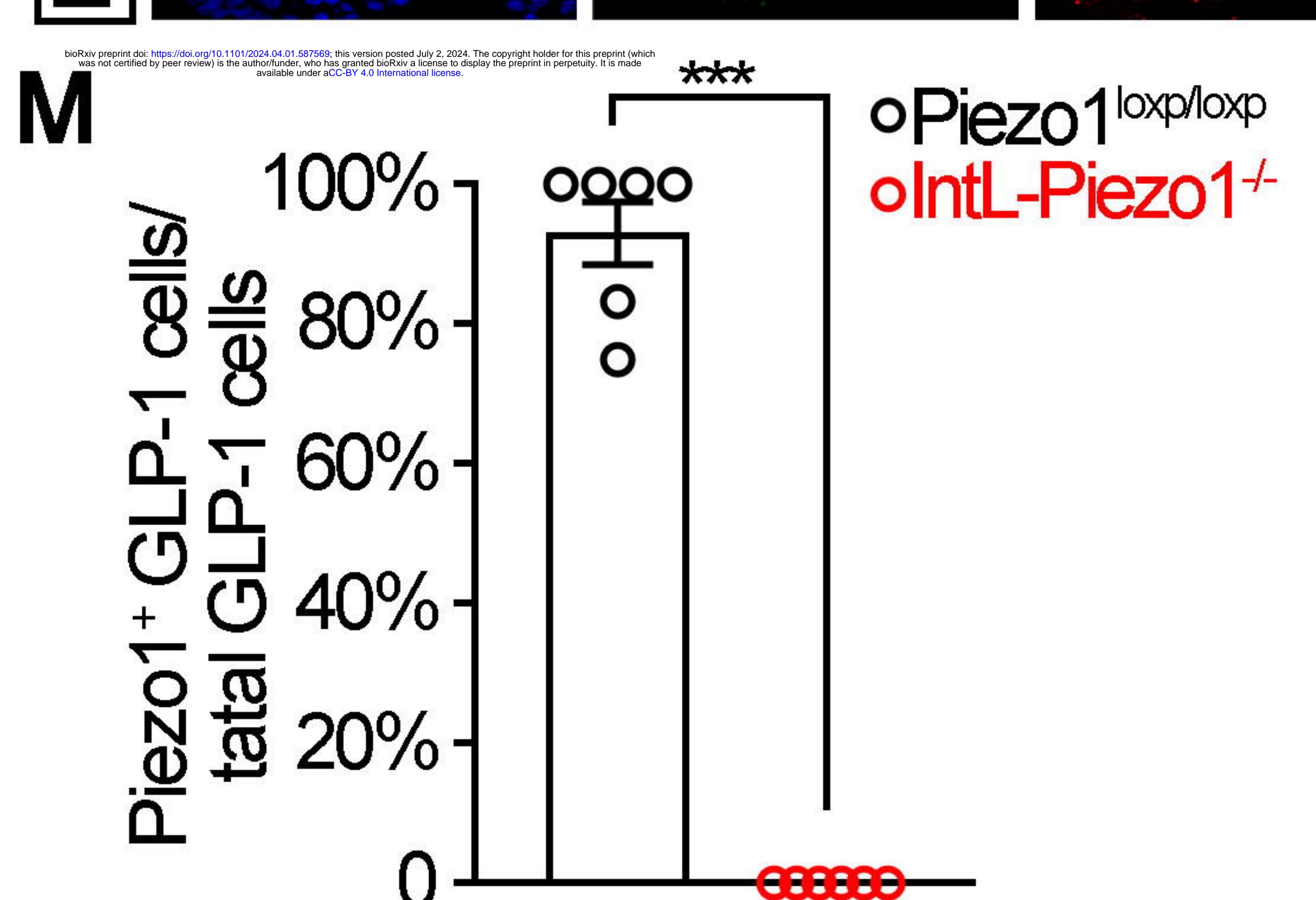
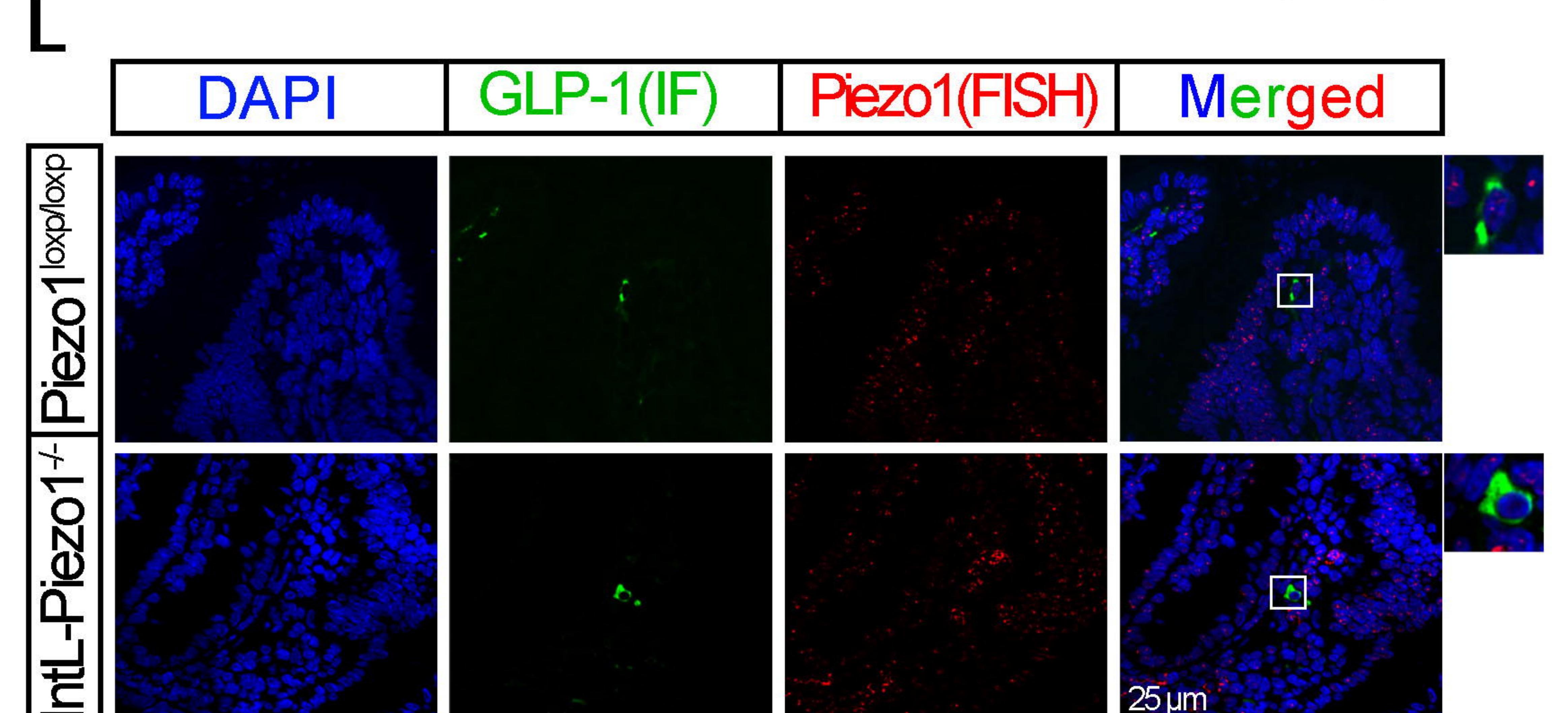
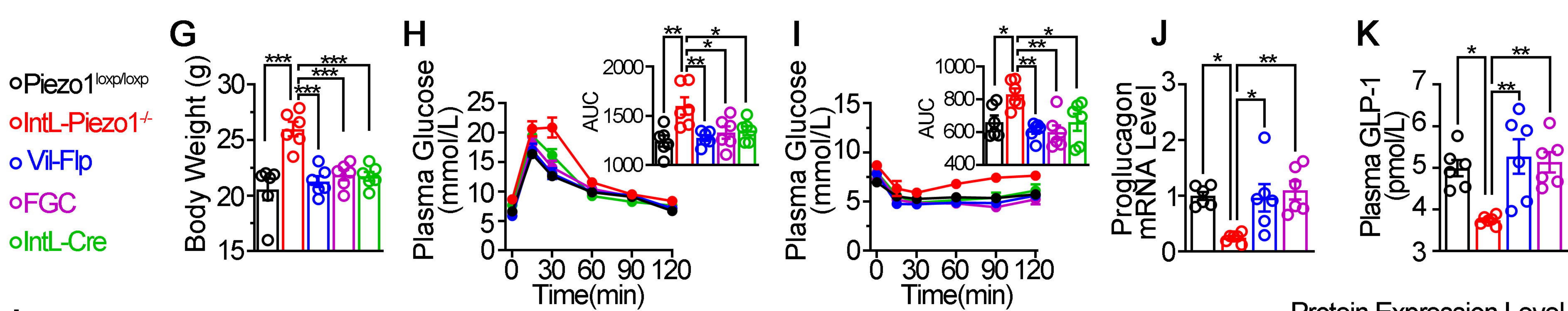
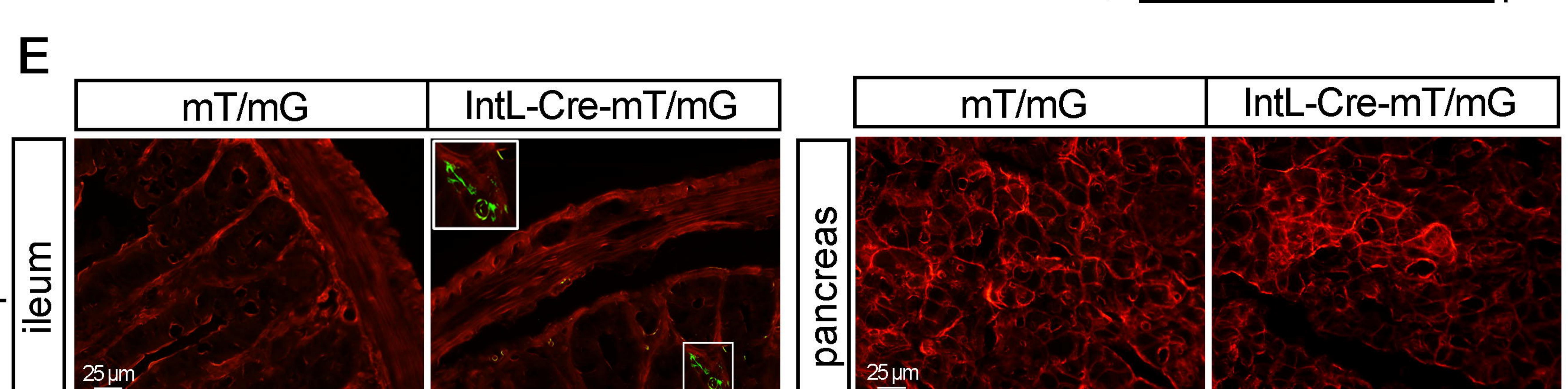
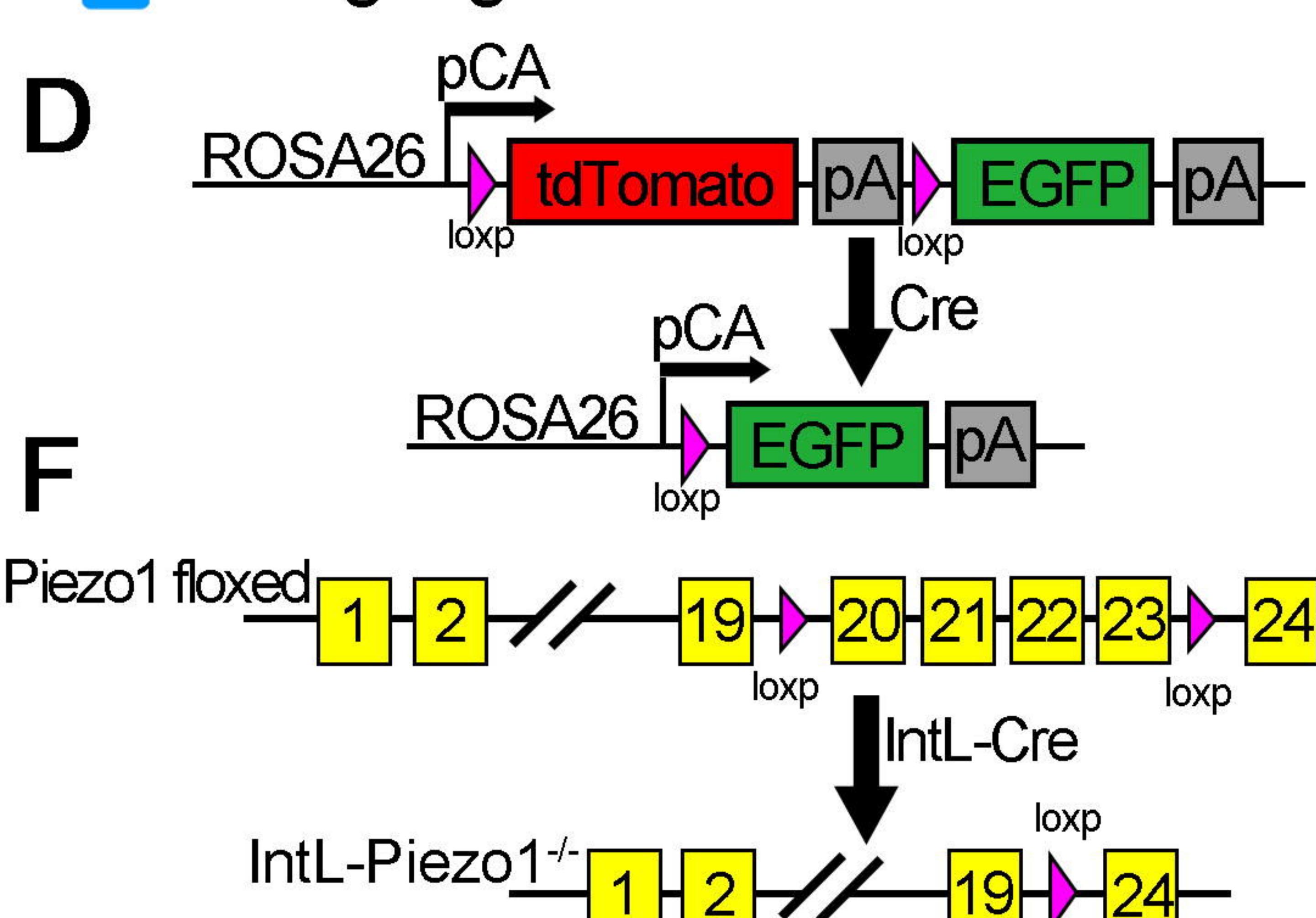
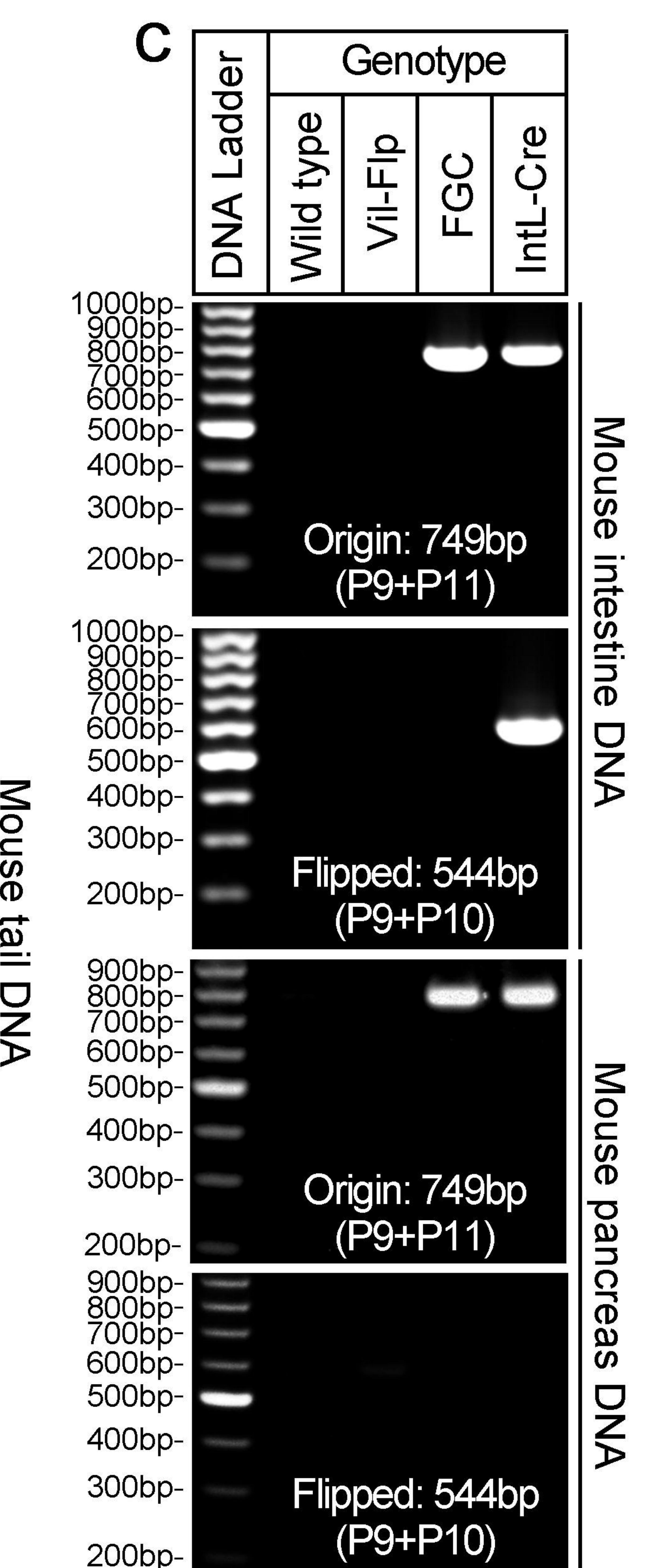
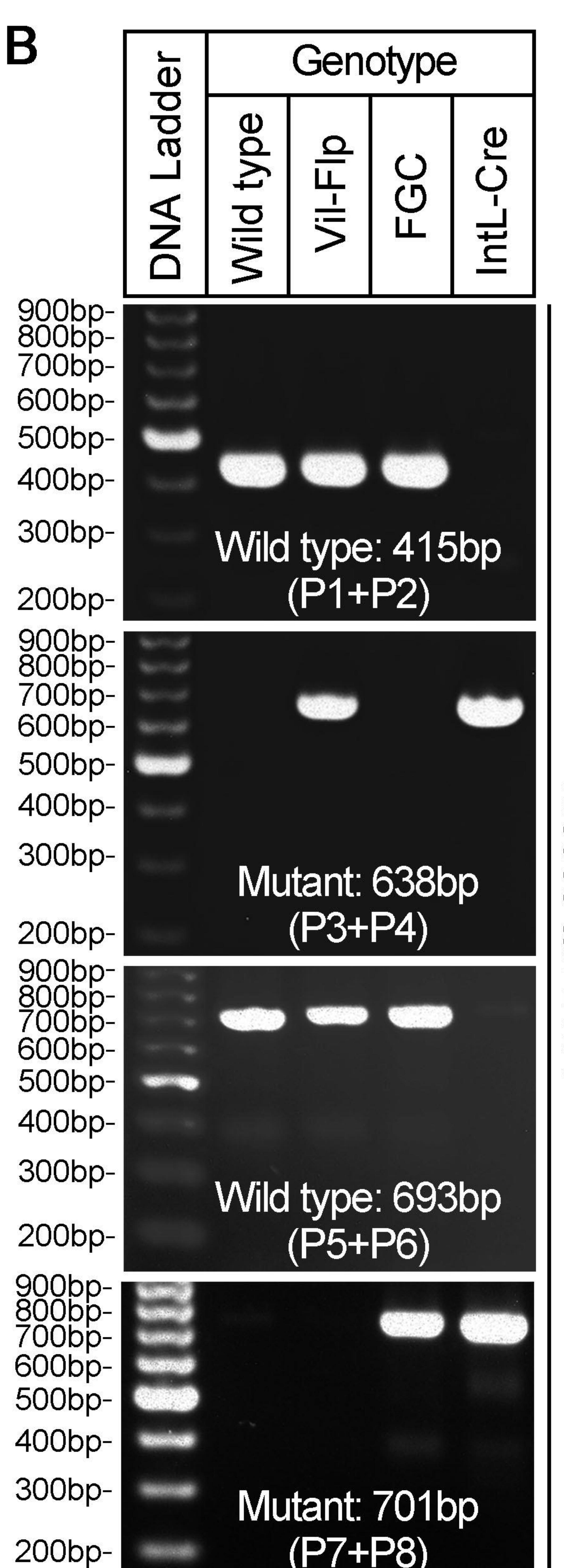
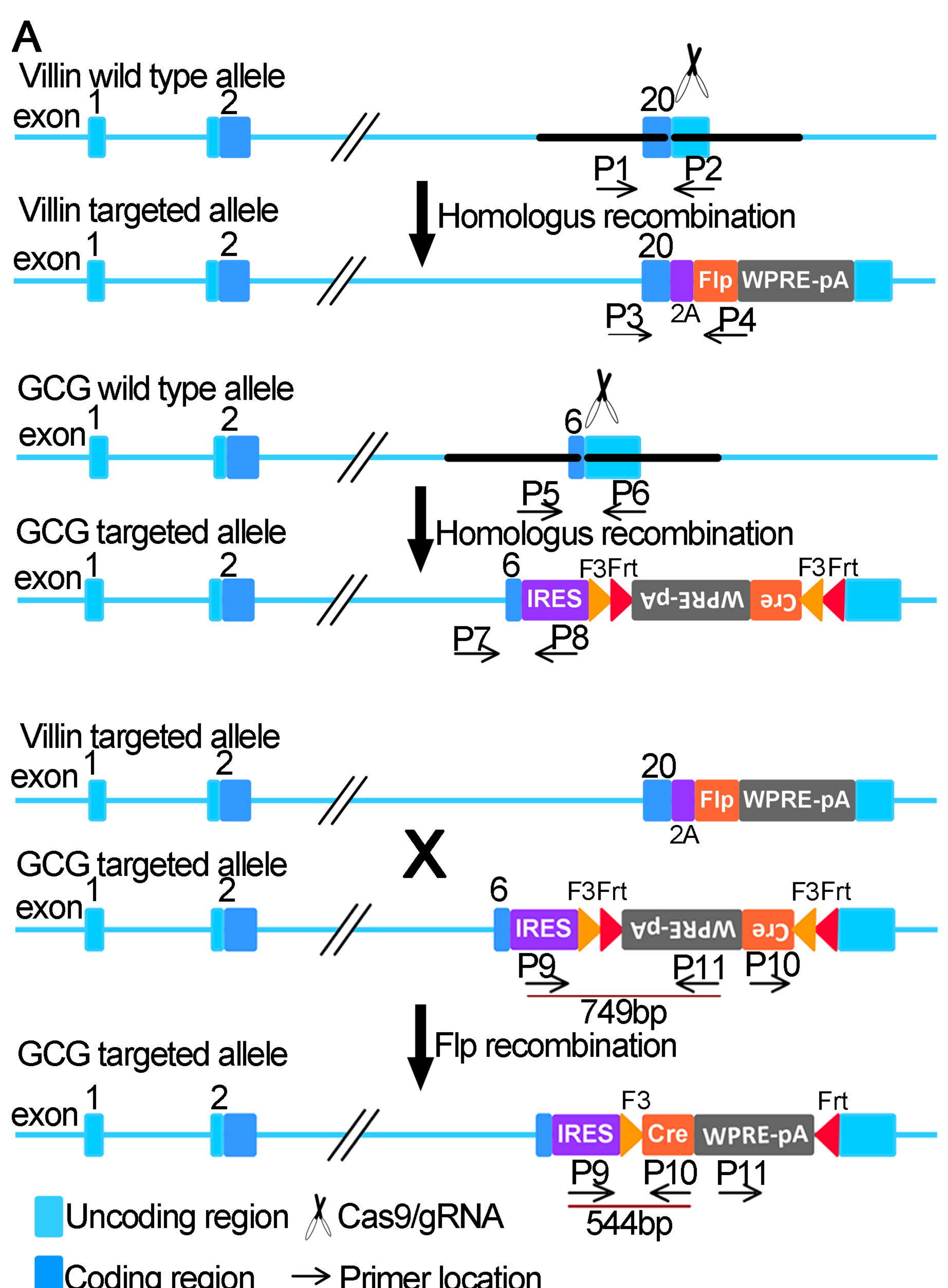
1073 **Figure 6: Genetic interference of Piezo1 regulates GLP-1 production in STC-1**
1074 **cells**

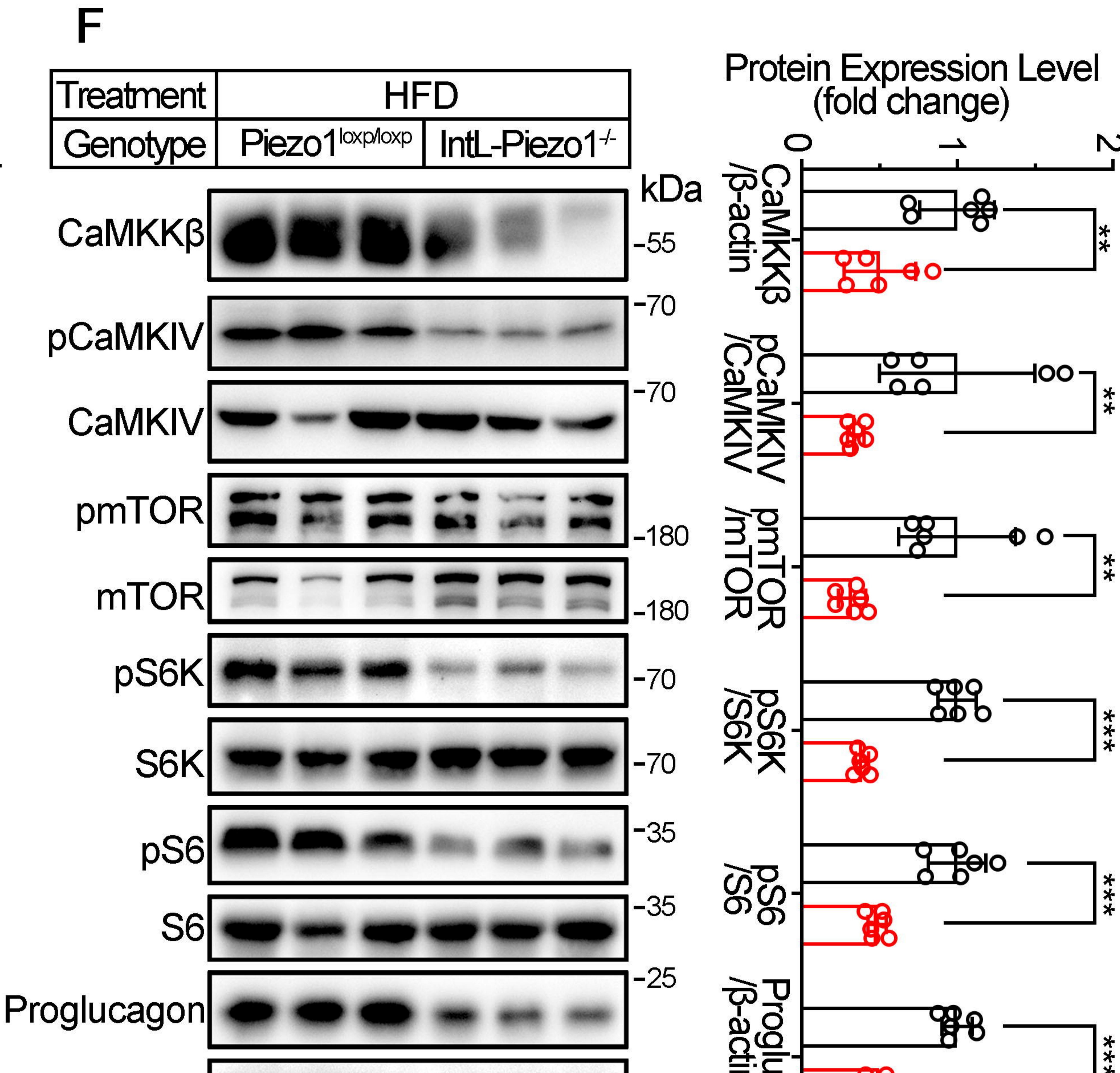
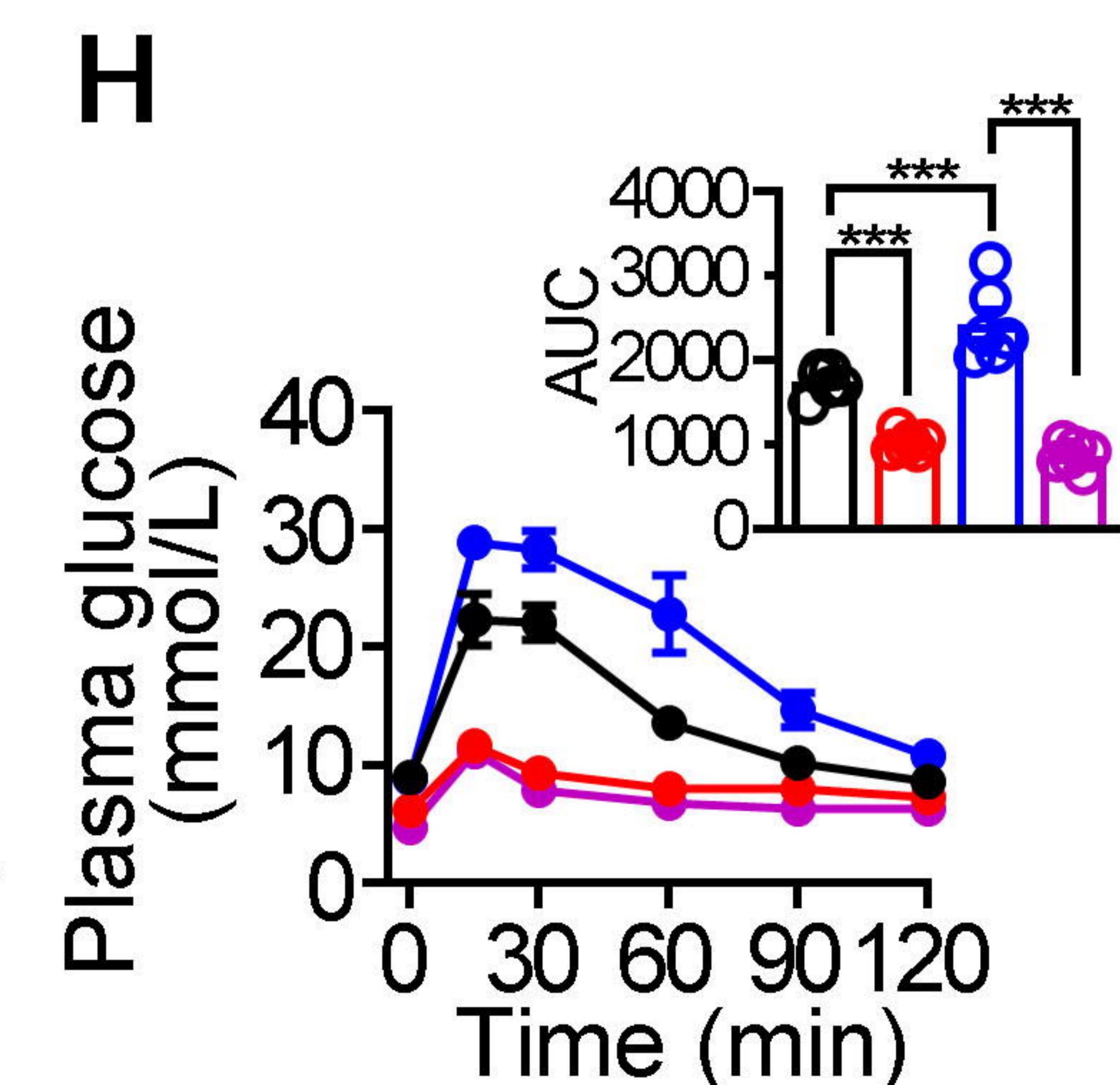
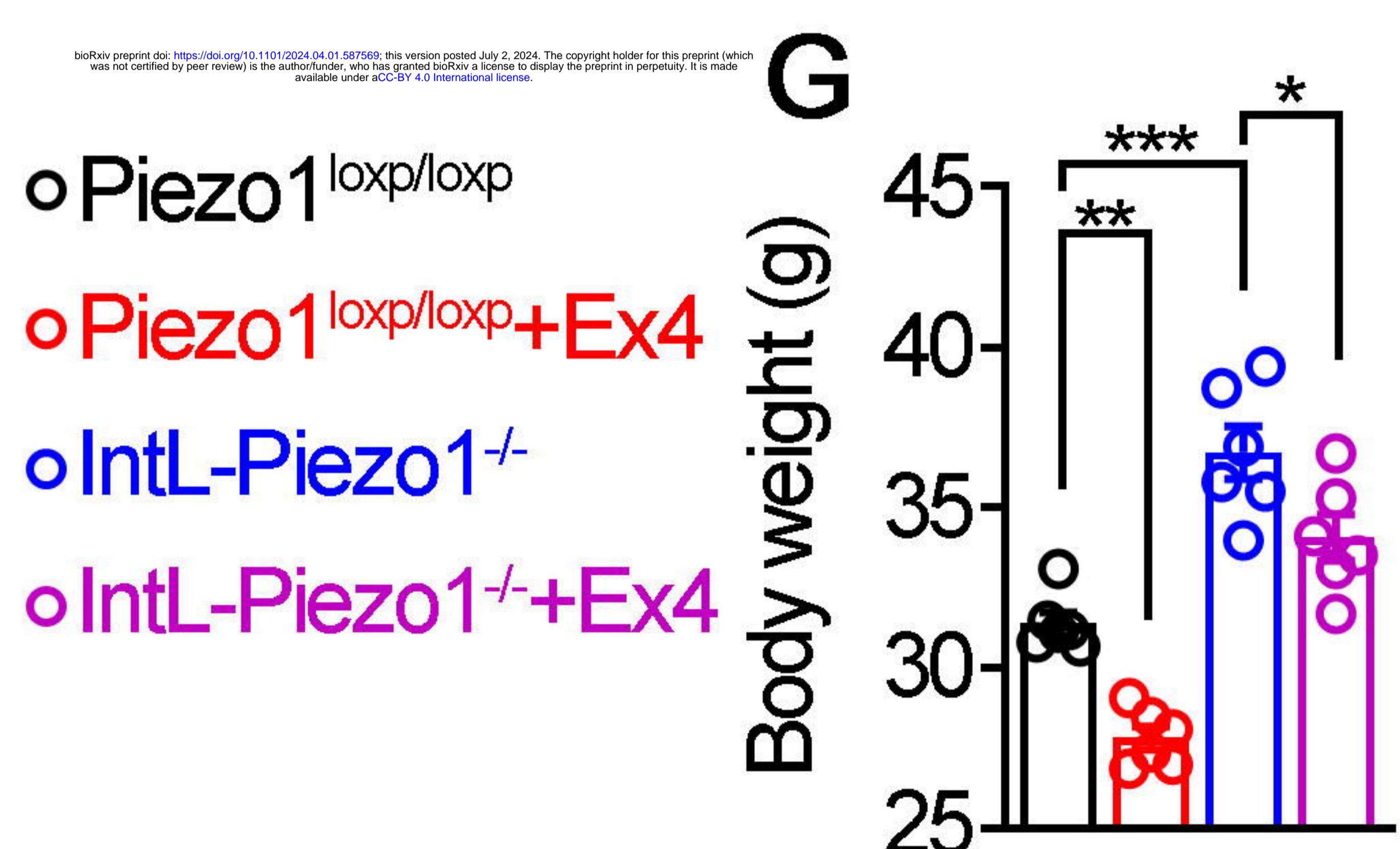
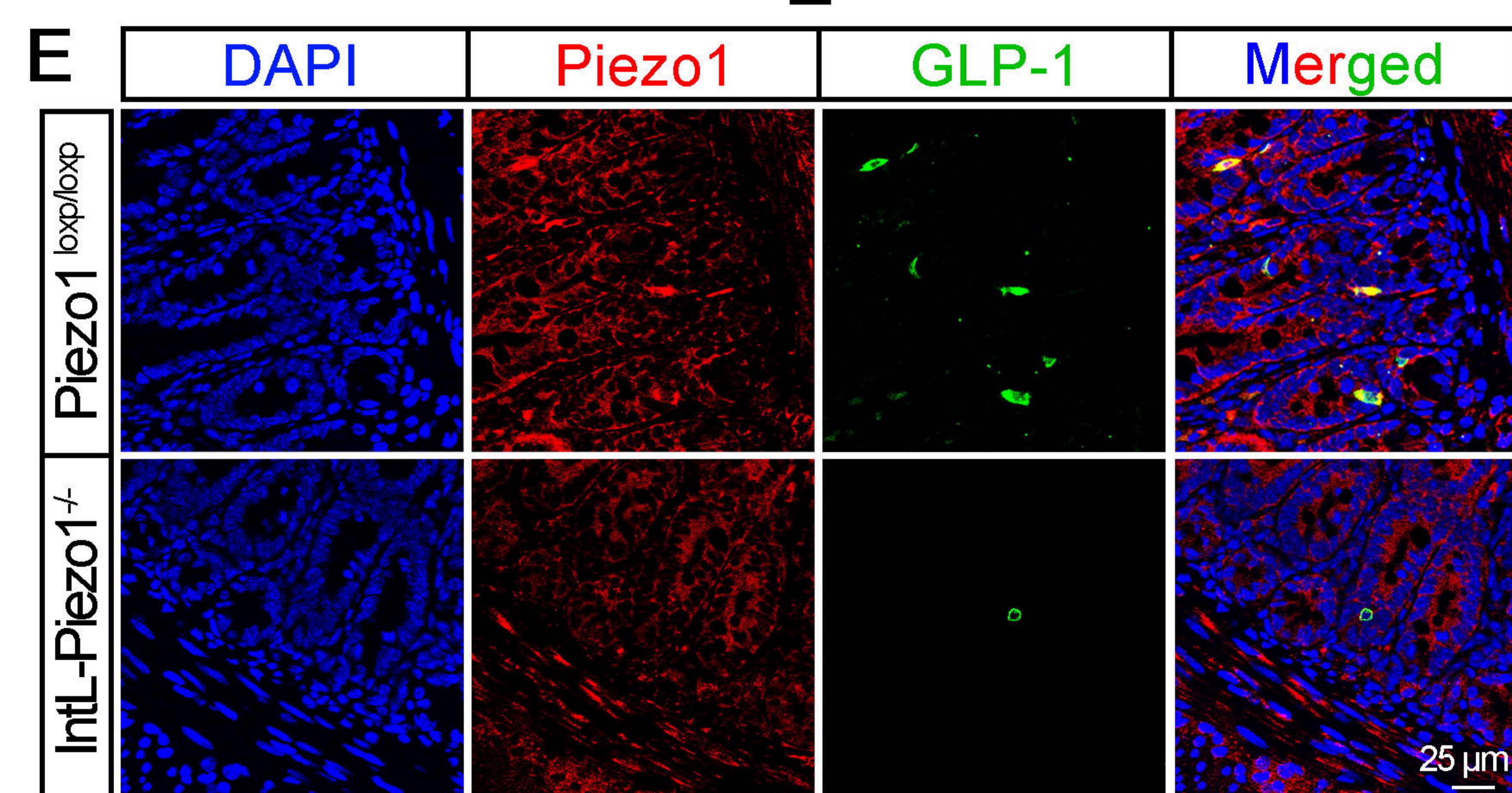
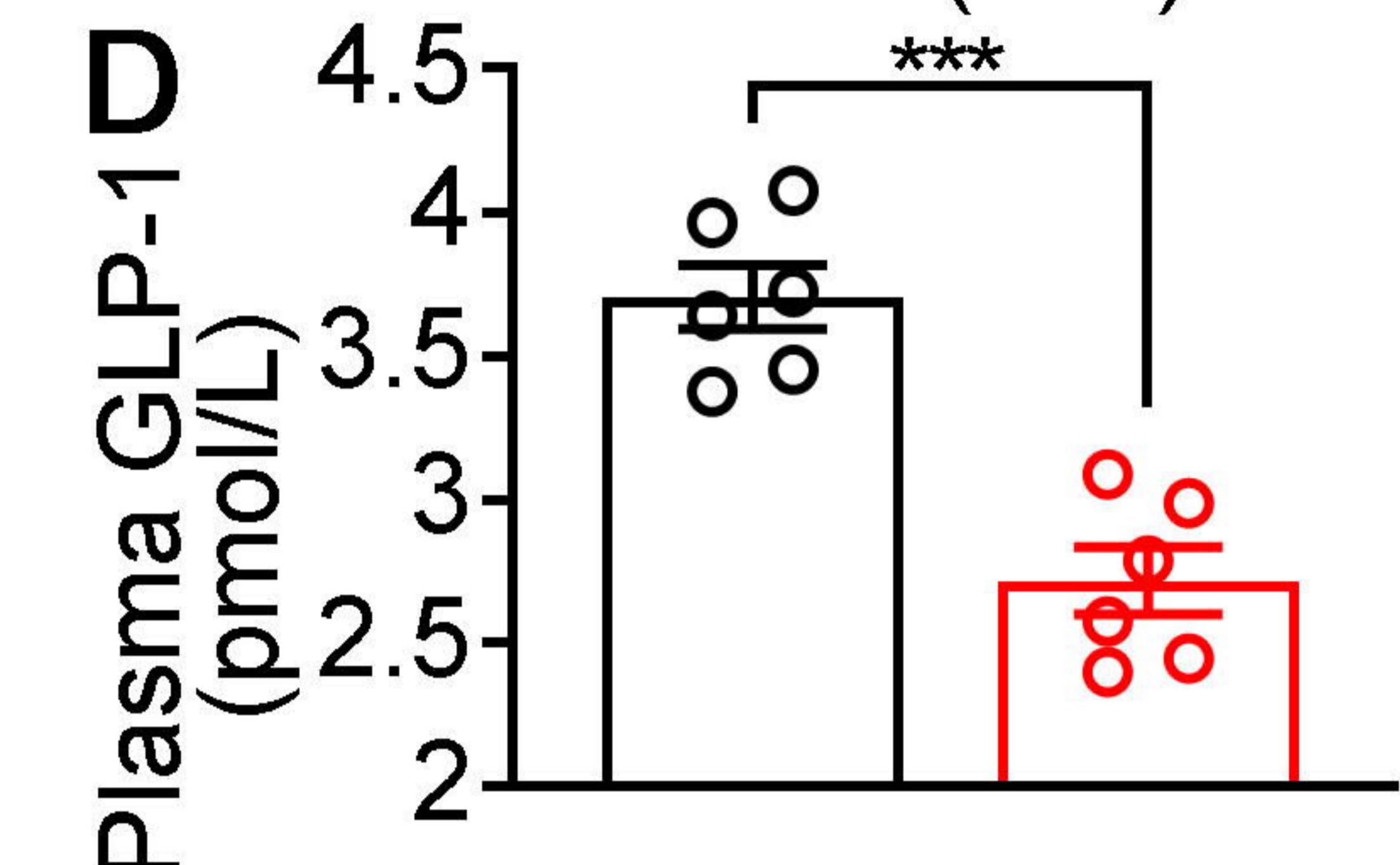
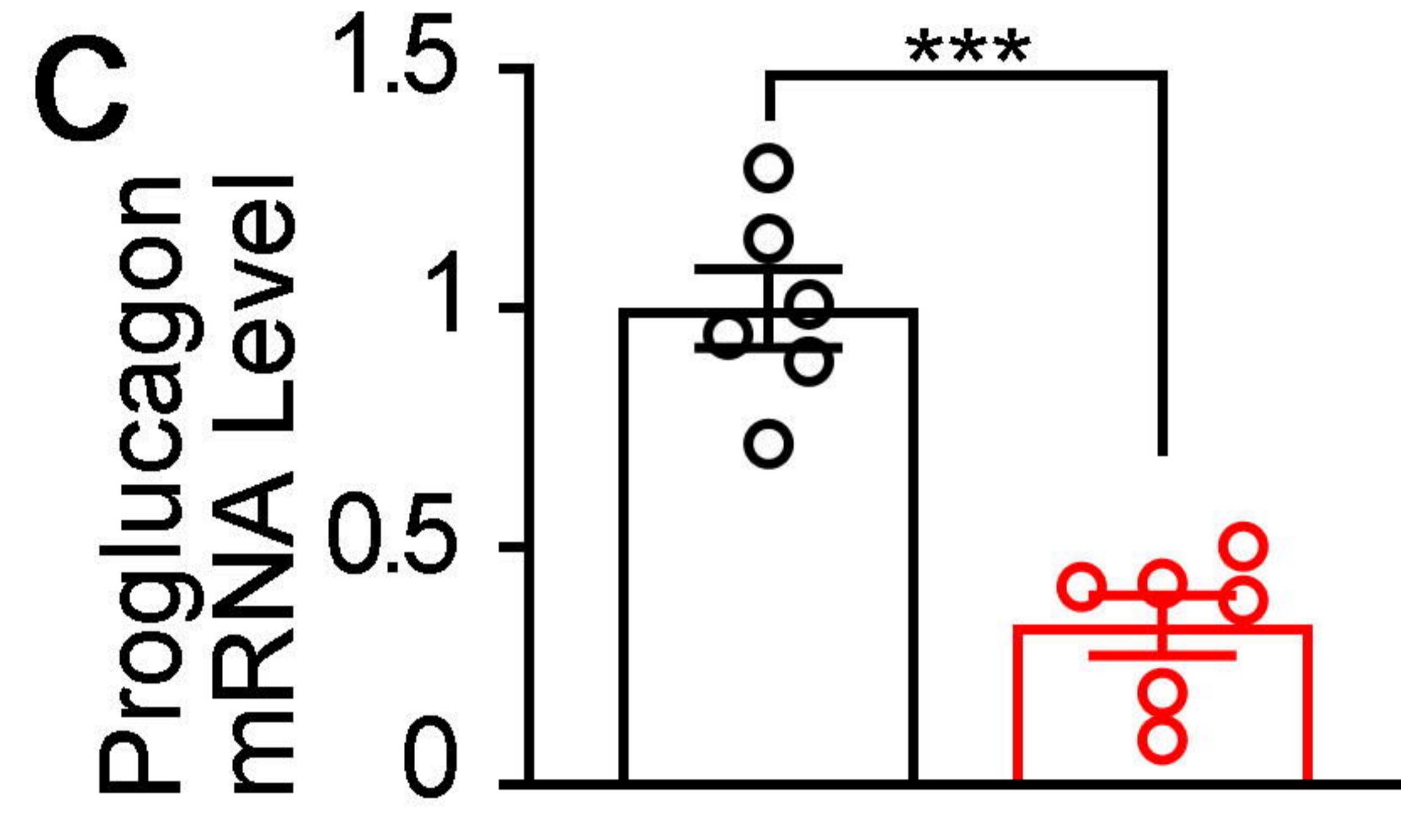
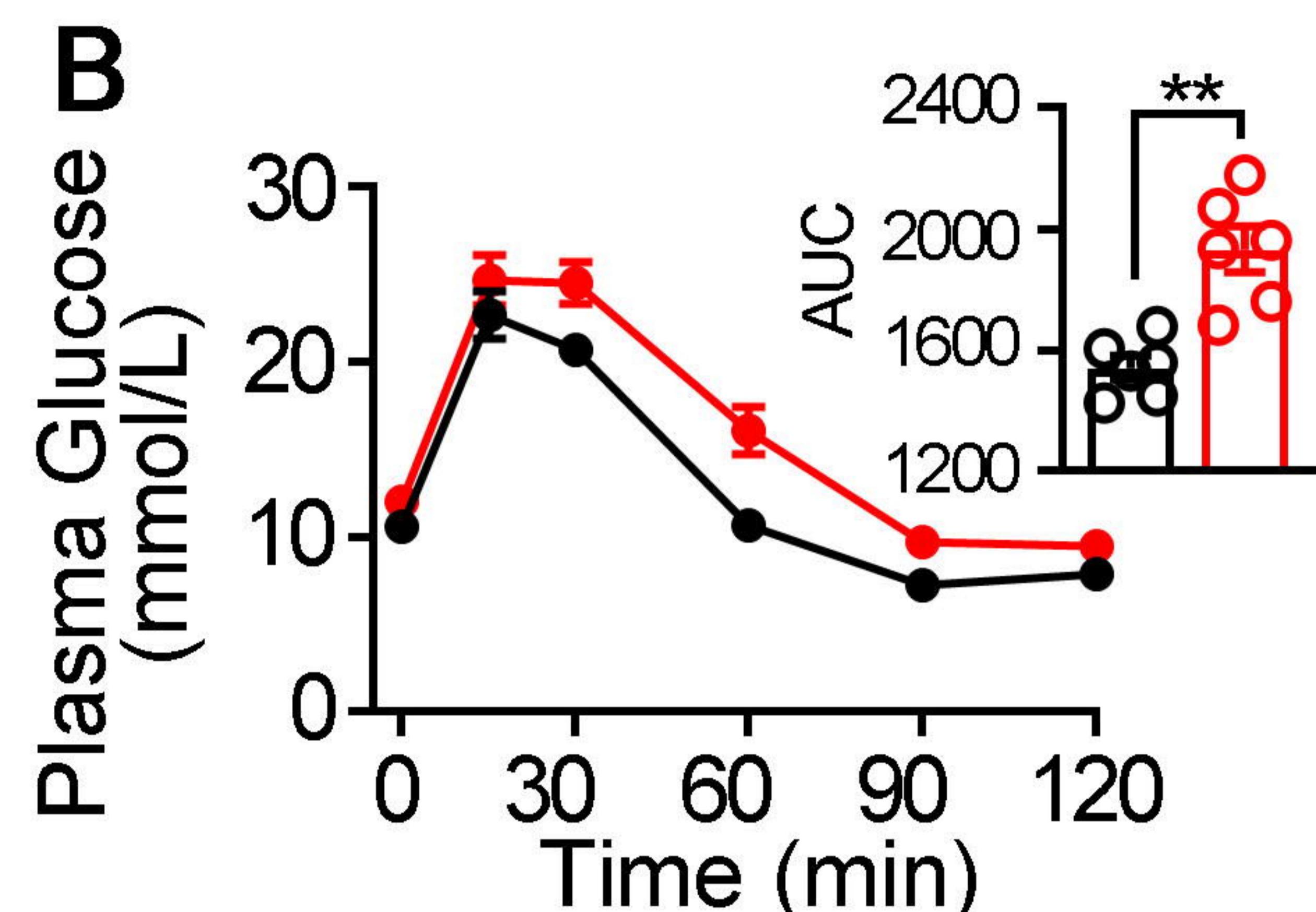
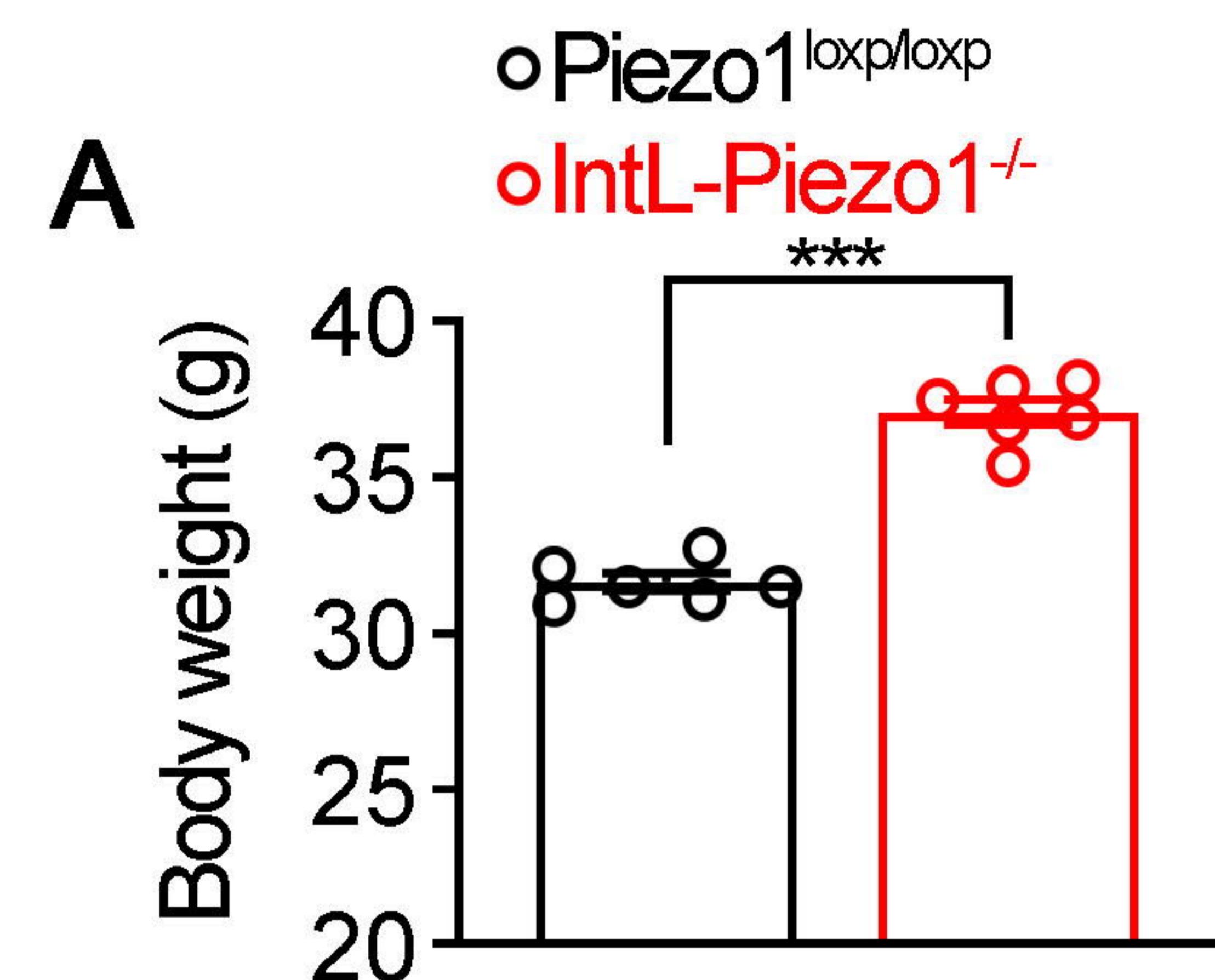
1075 (A-D) STC-1 cells were transfected with mouse control or *Piezo1* expression
1076 plasmids for 48h. *Piezo1* (A) and *Proglucagon* (B) mRNA levels in STC-1 cells. (C)
1077 GLP-1 concentrations in culture medium. (D) Whole-cell extracts underwent western
1078 blot with indicated antibodies.

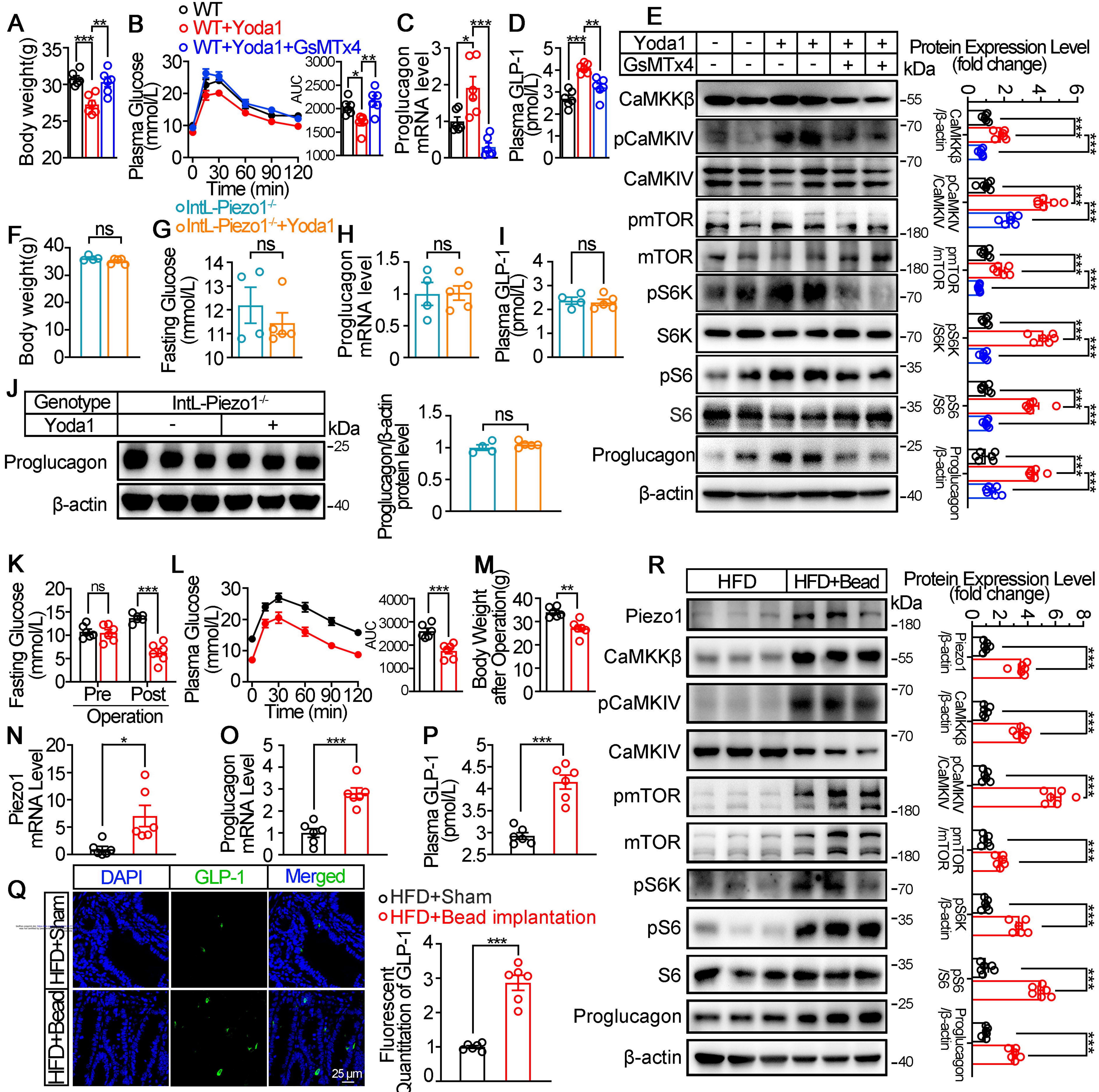
1079 (E-H) Stable knockdown of Piezo1 in STC-1 cells. *Piezo1* (E) and *Proglucagon* (F)
1080 mRNA levels in STC-1 cells. (G) GLP-1 concentrations in culture medium. (H)
1081 Whole-cell extracts underwent western blot with indicated antibodies.

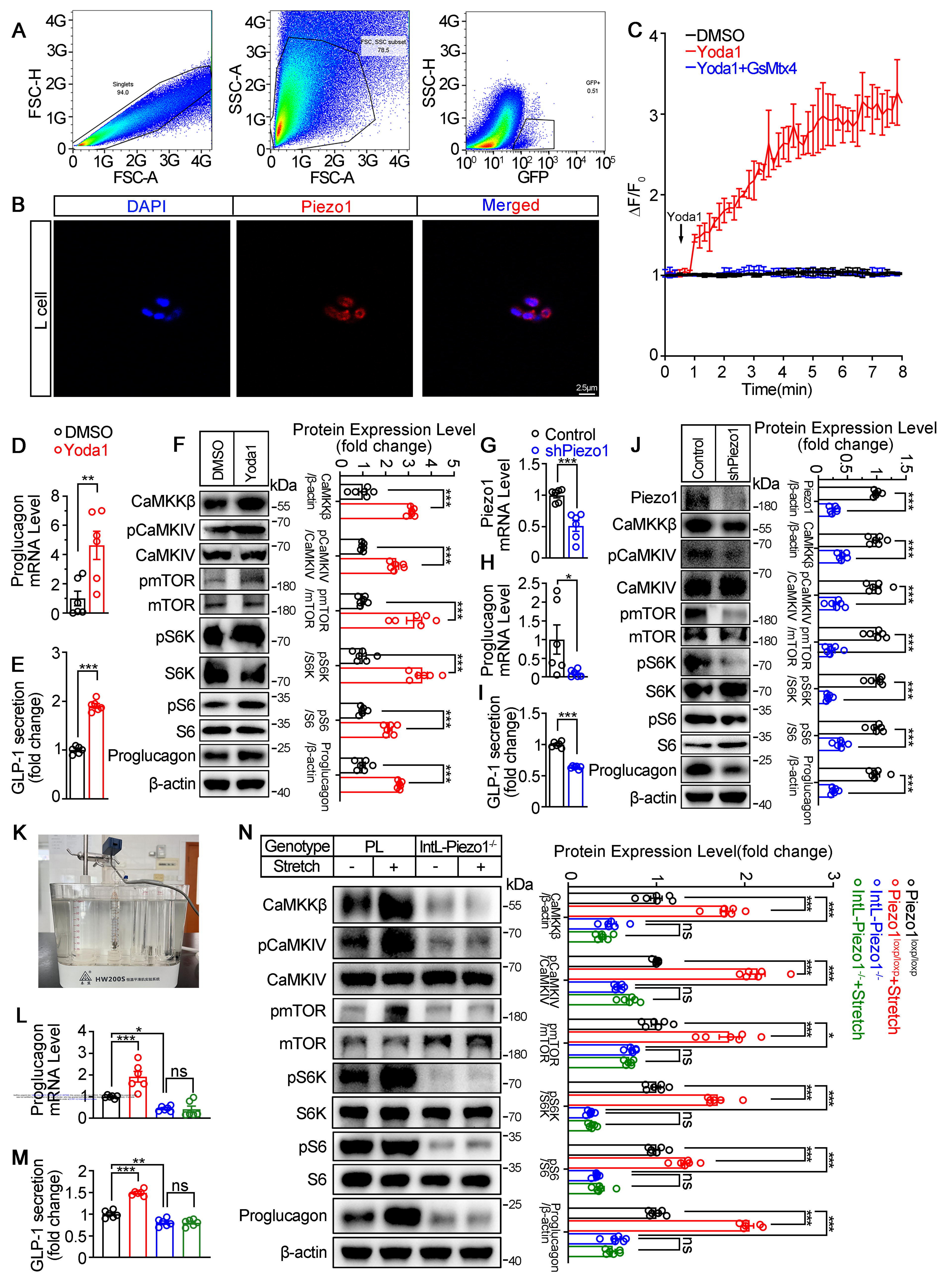
1082 Data are represented as mean \pm SEM Data are represented as mean \pm SEM and are
1083 representative of six biological replicates. Significance was determined by Student's t
1084 test, *p < 0.05, **p < 0.01, ***p < 0.001.

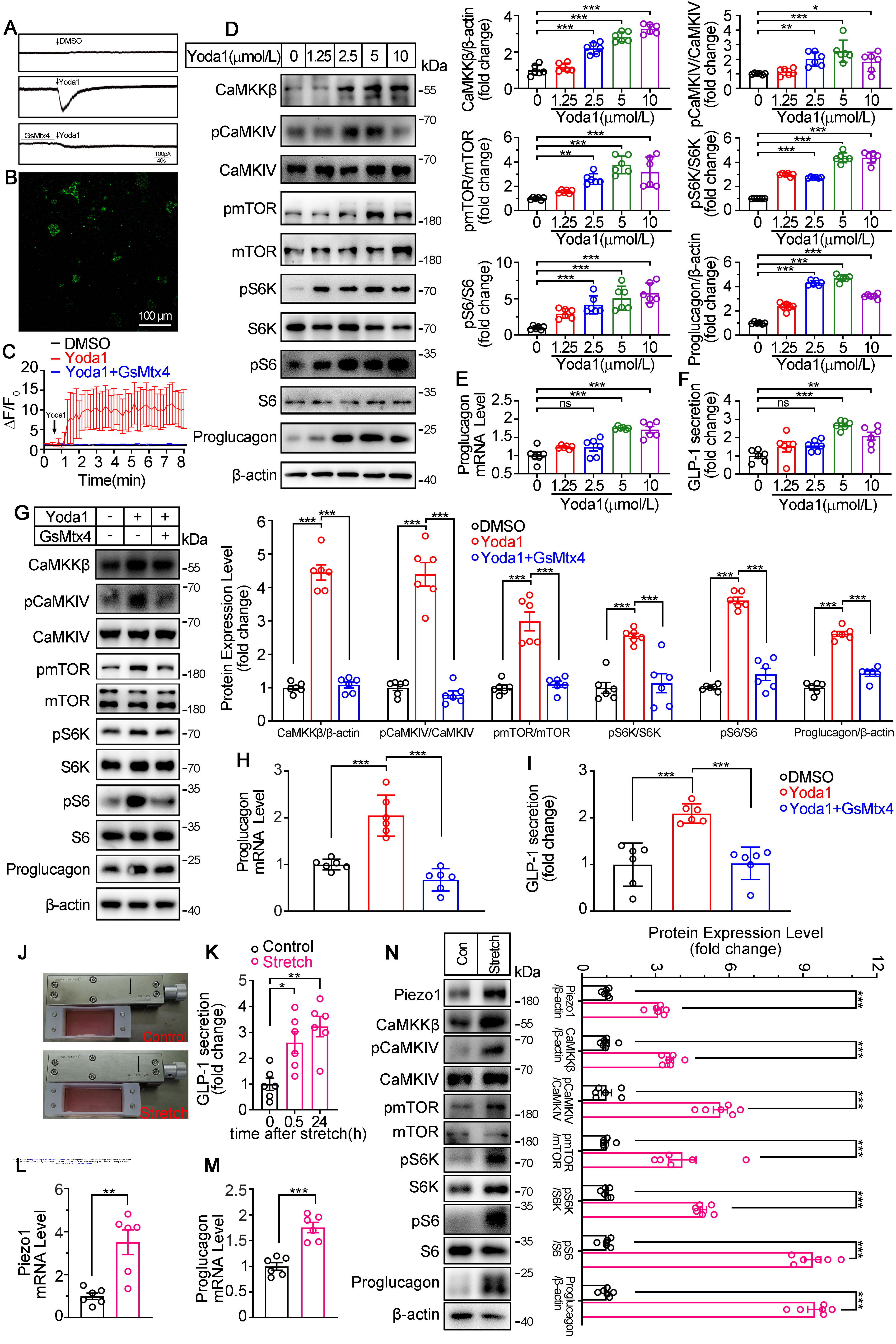
1085

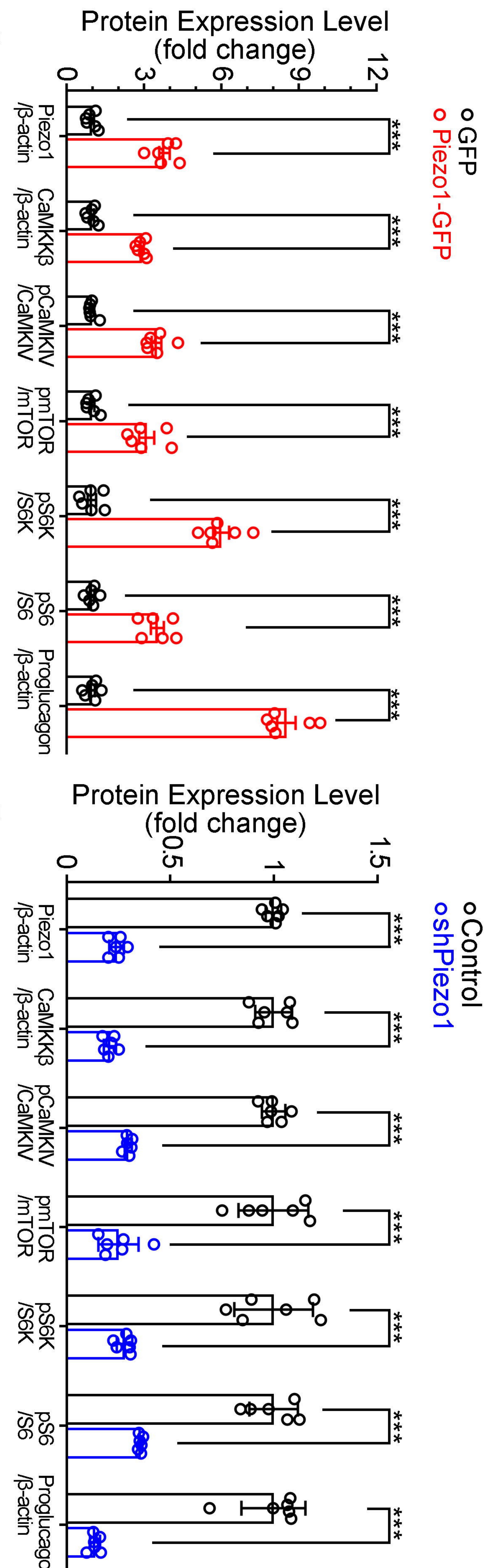
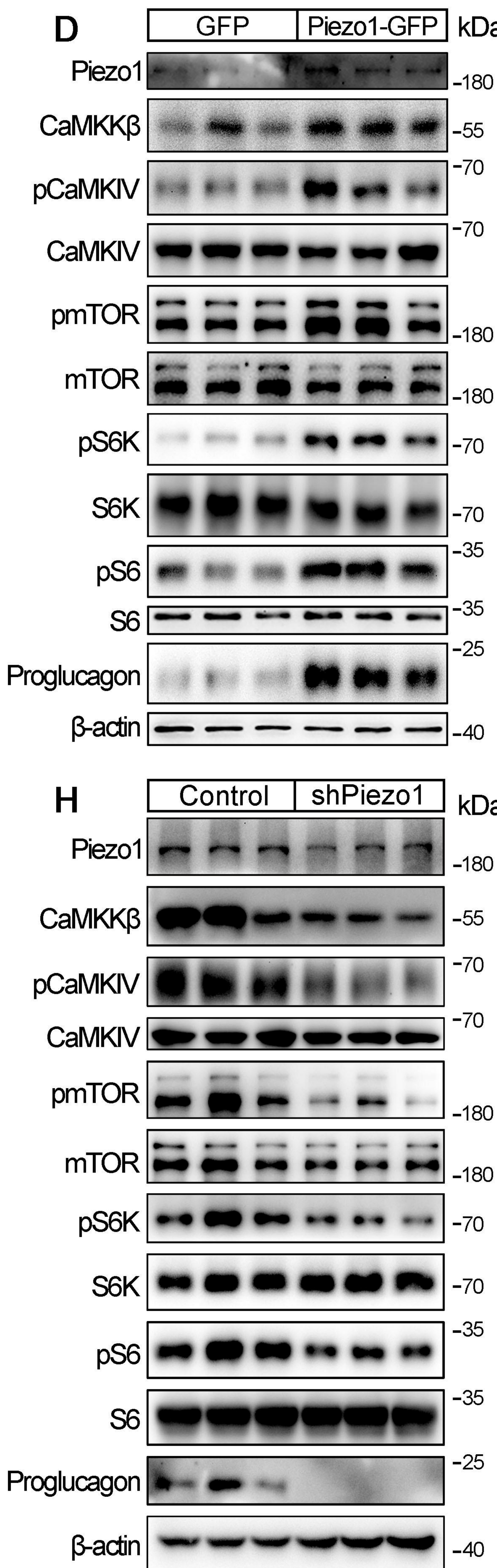
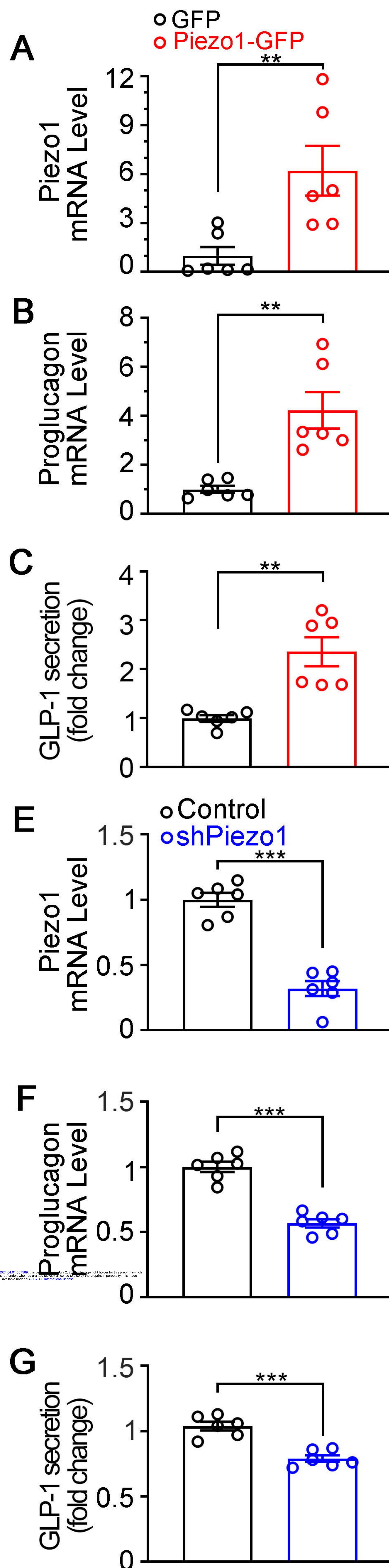









1086 **Figure 7: Modulation of GLP-1 production by CaMKK β /CaMKIV and mTOR
1087 signaling activity in STC-1 cells**

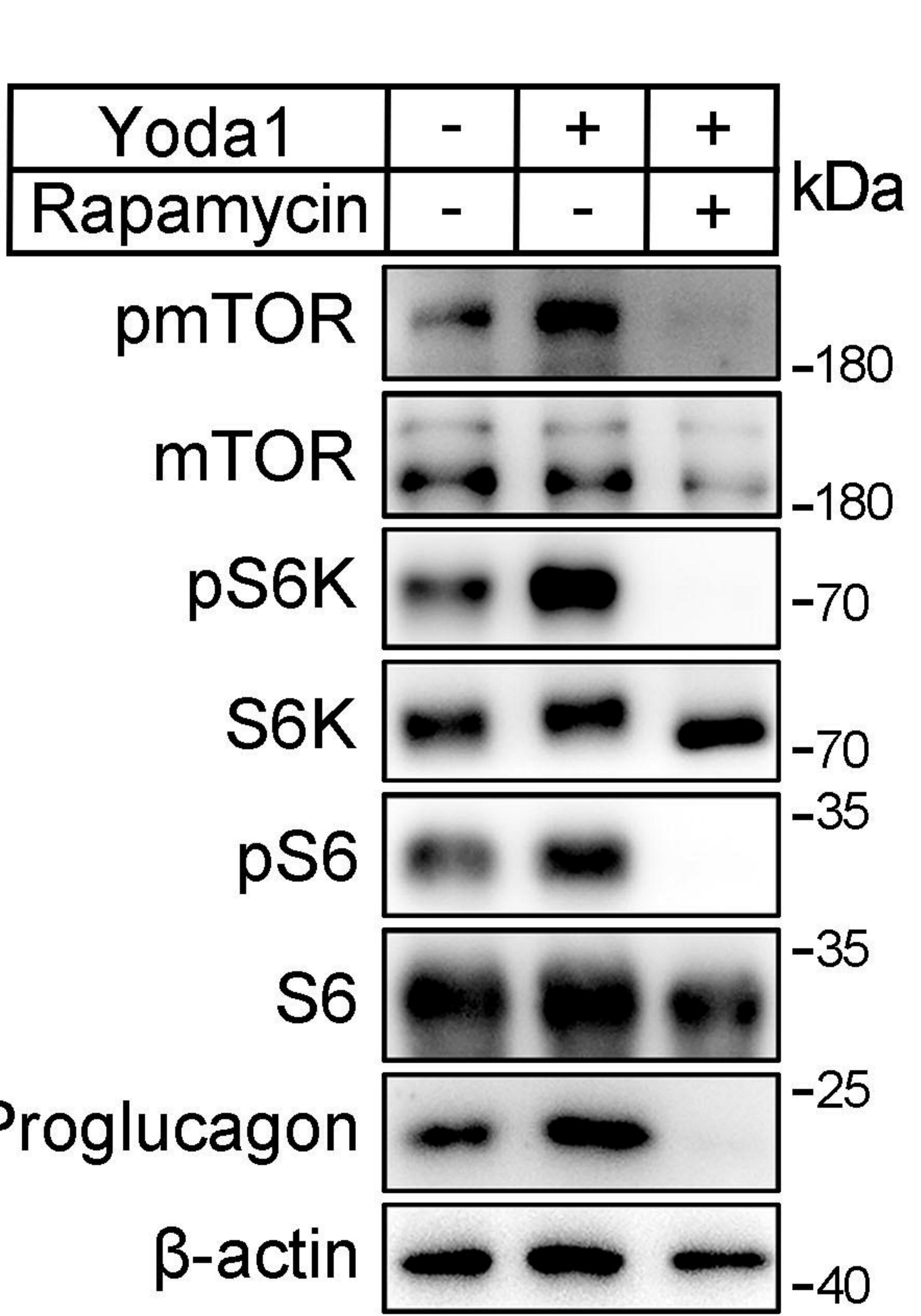
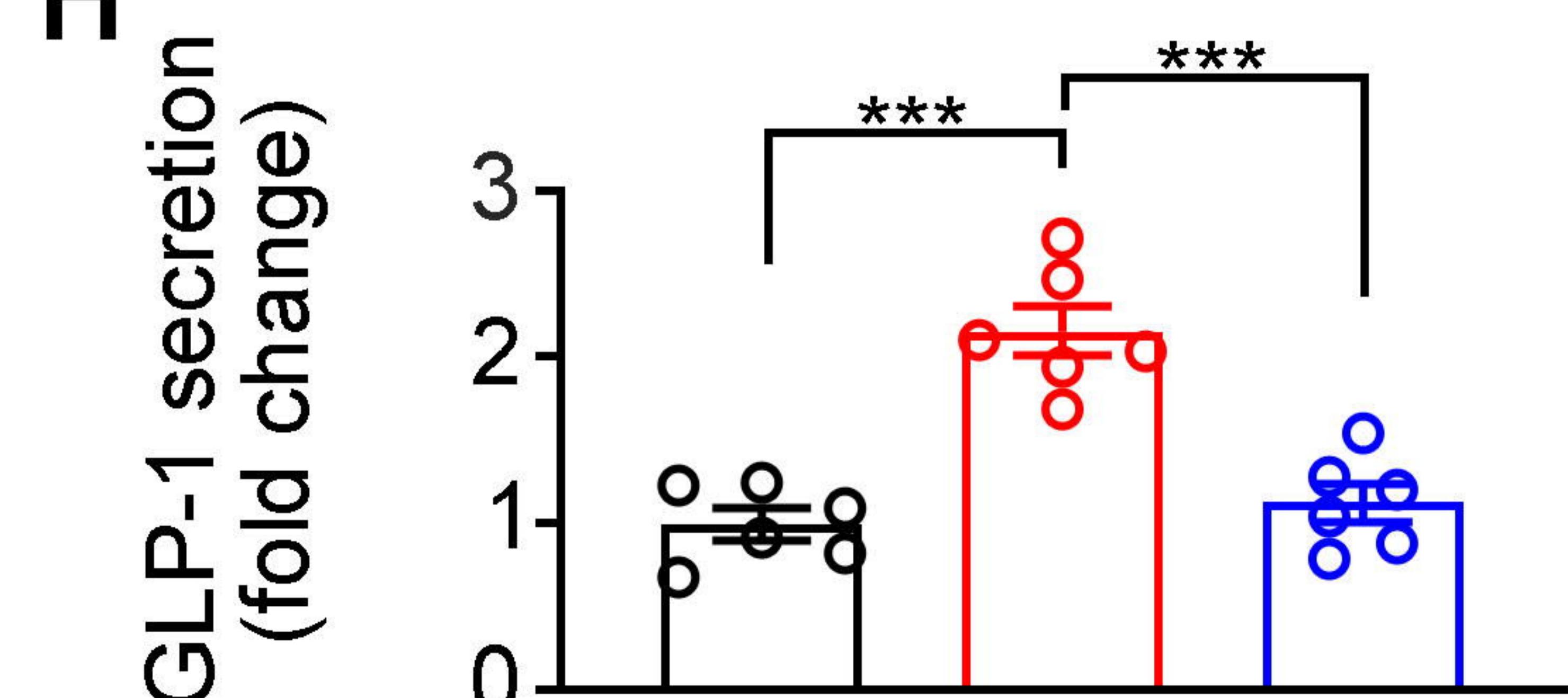
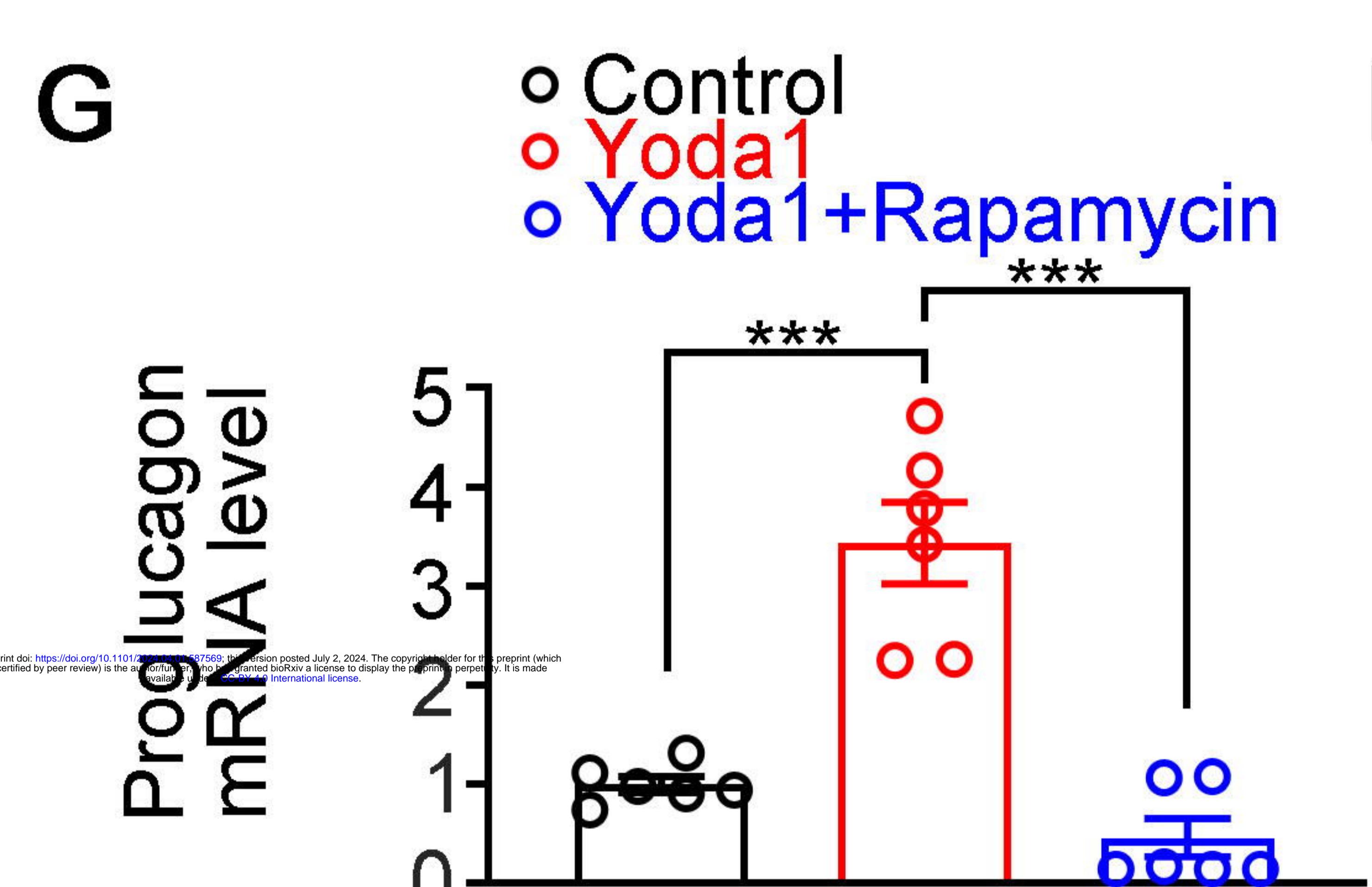
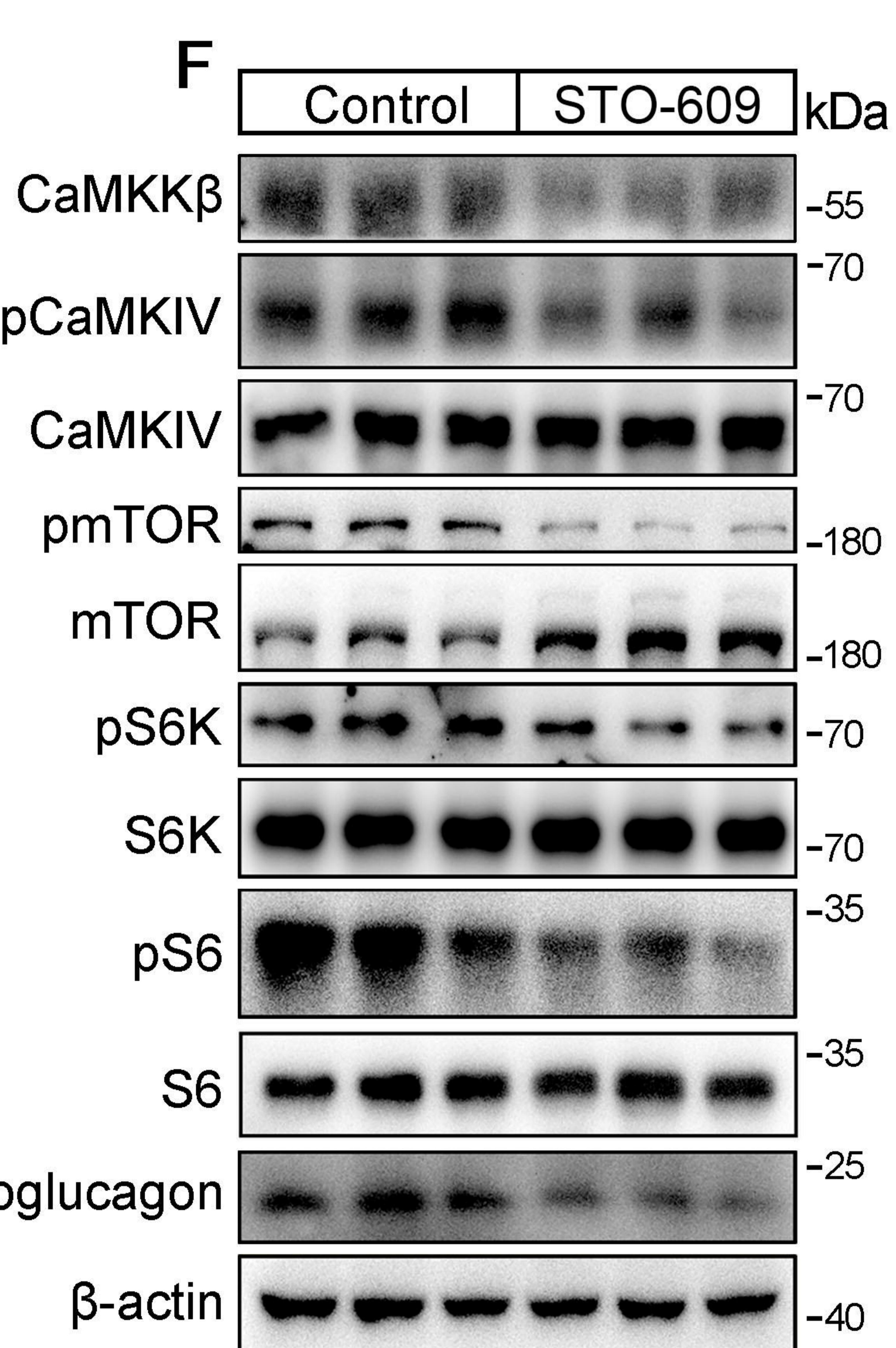
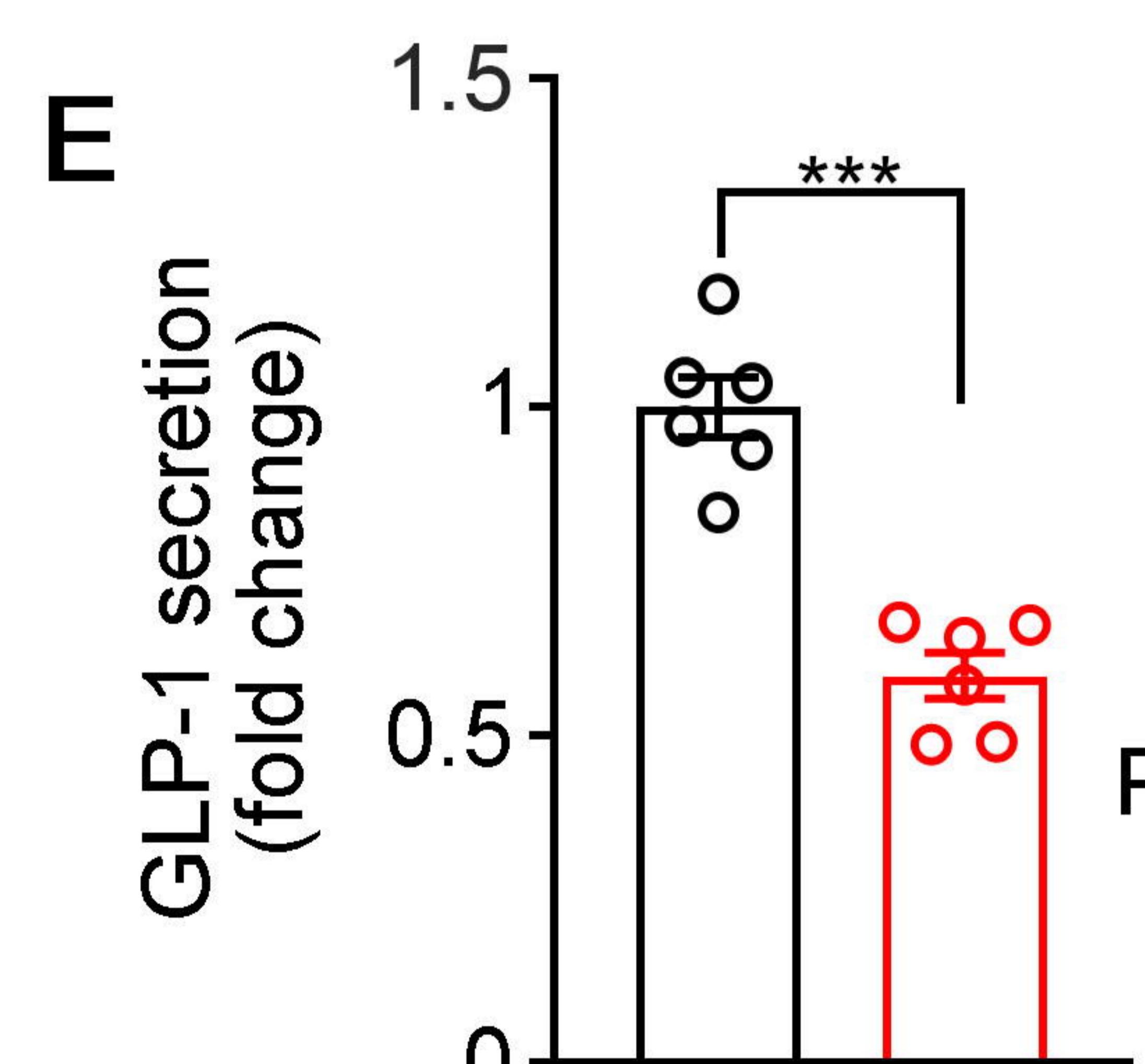
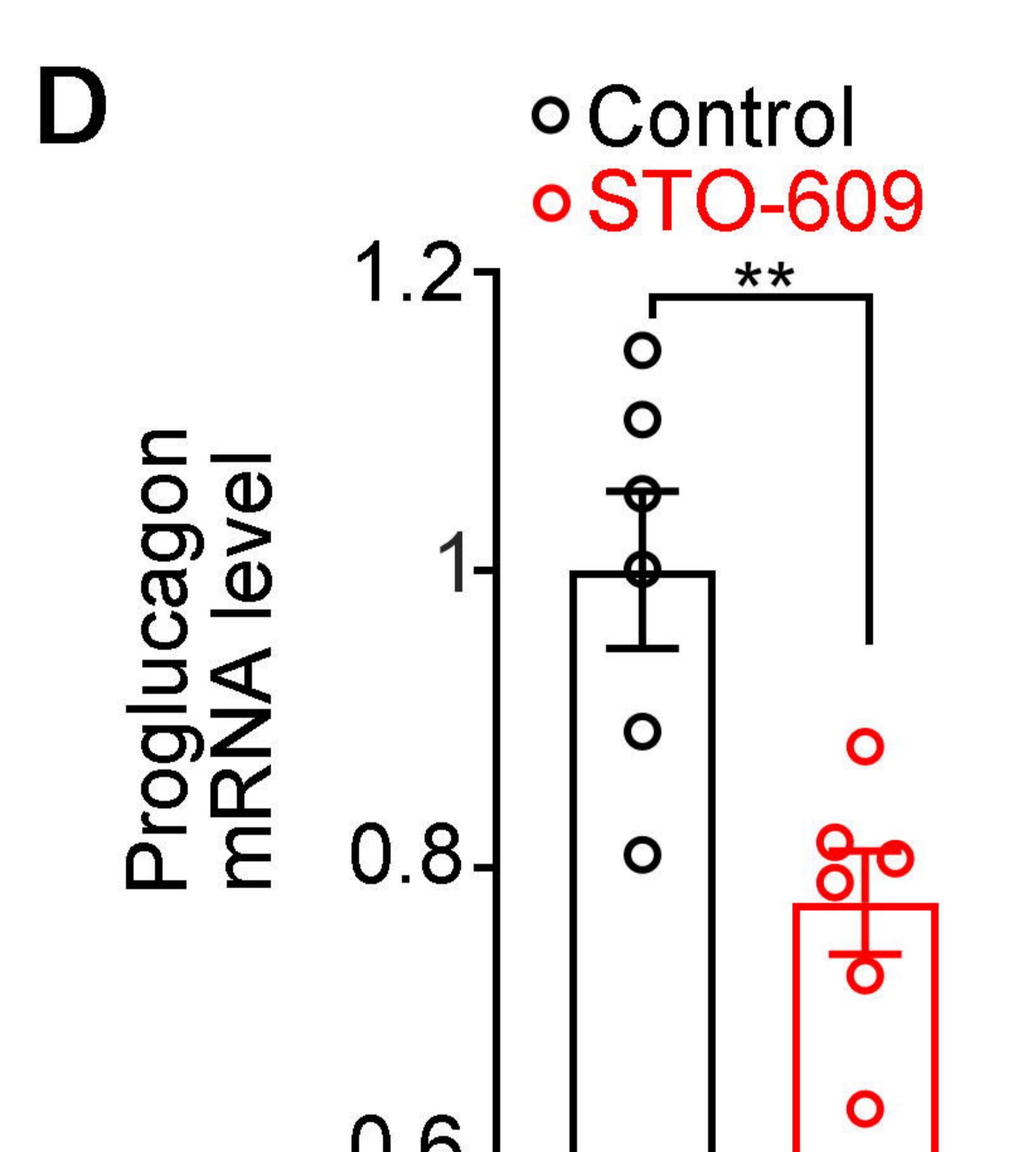
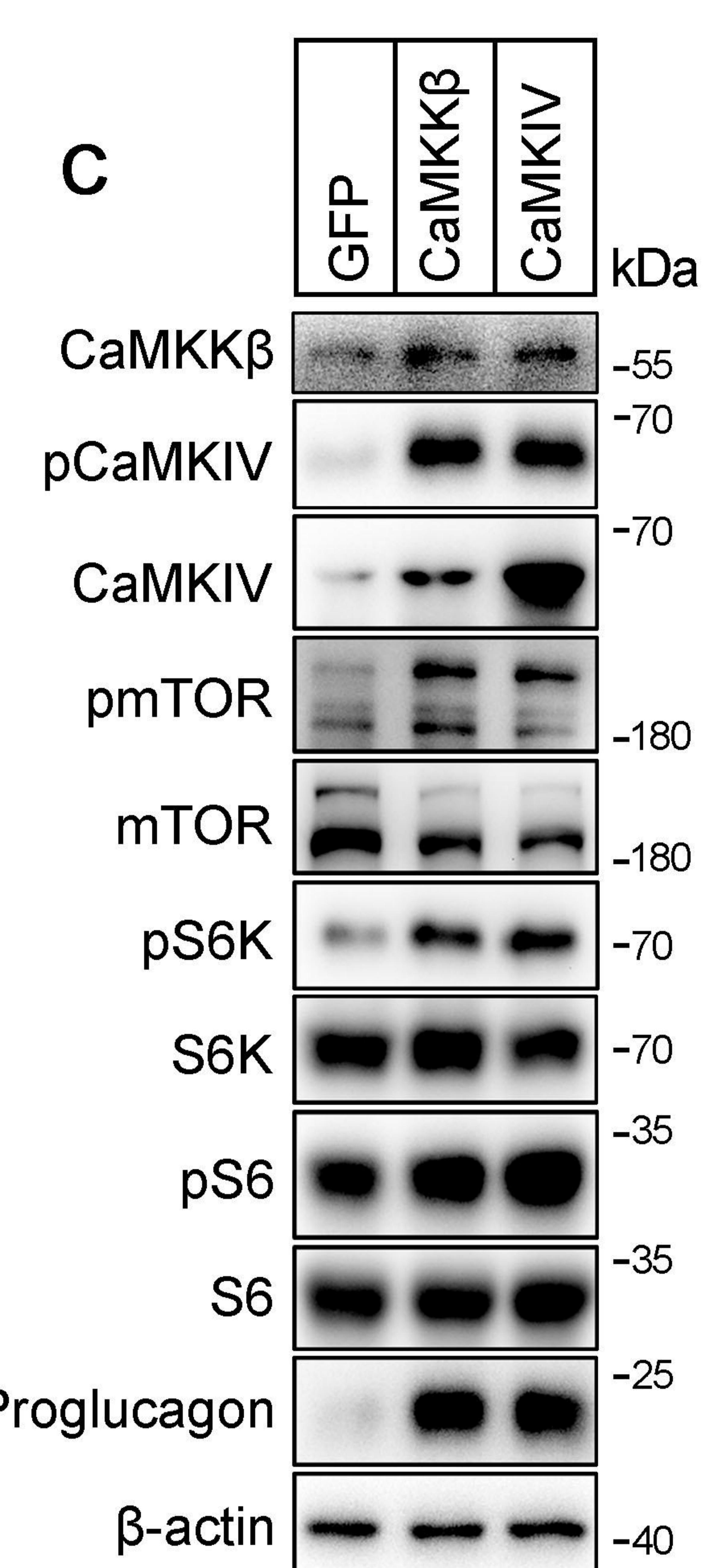
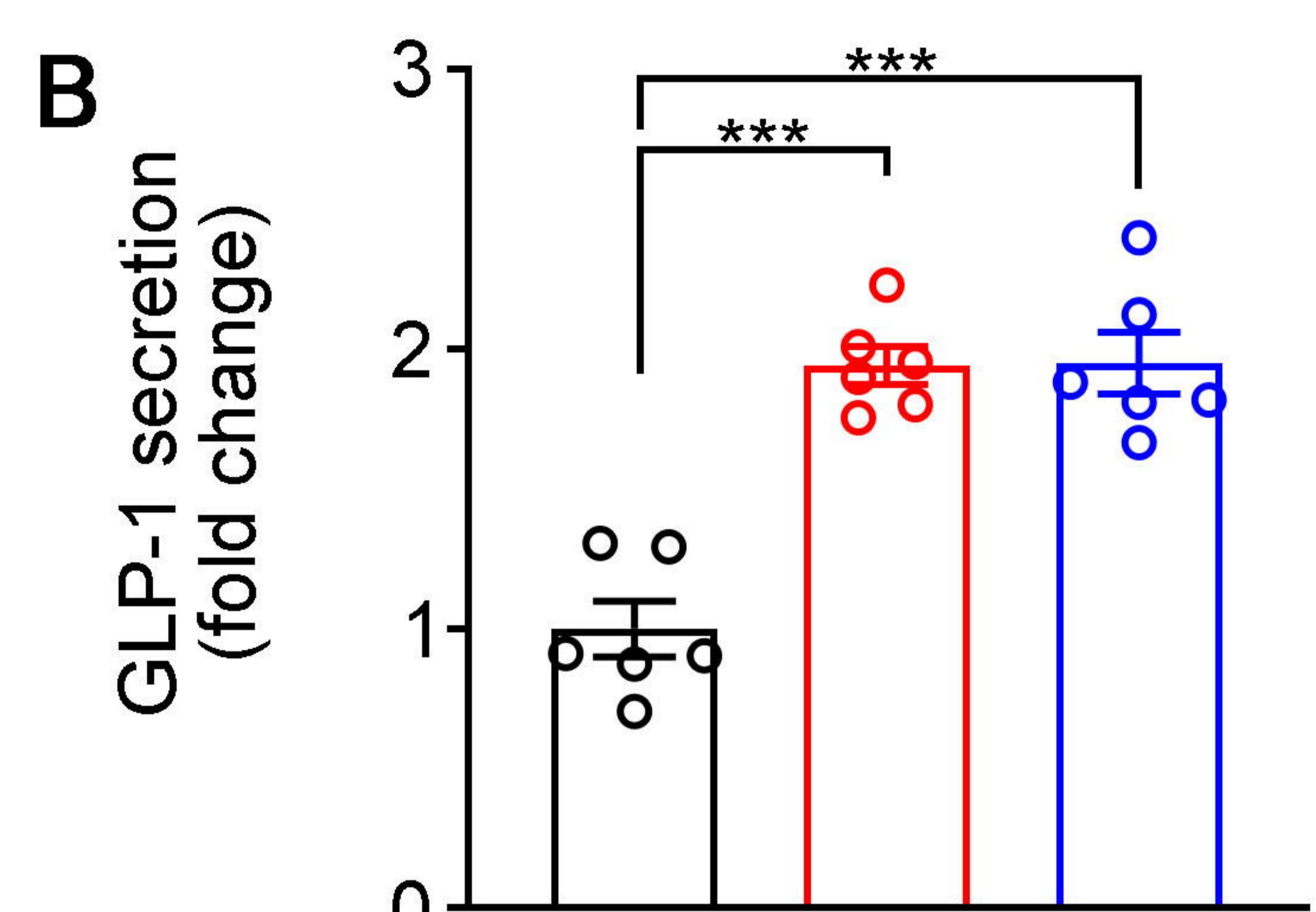
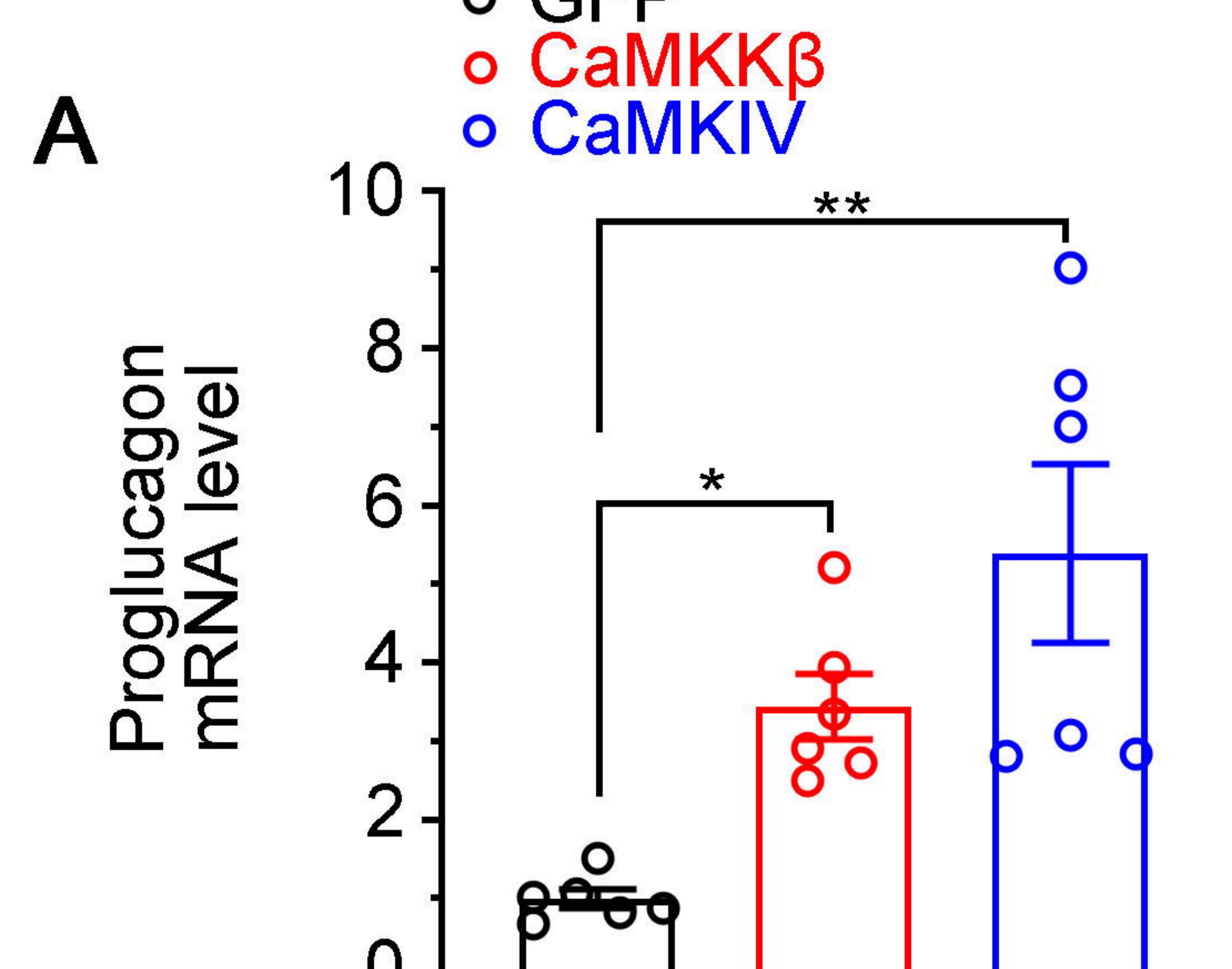








1088 (A-C) STC-1 cells were transfected with GFP, CaMKK β or CaMKIV plasmids for
1089 48h. (A) *Proglucagon* mRNA levels in STC-1 cells. (B) GLP-1 concentrations in
1090 culture medium. (C) Whole-cell extracts underwent western blot with indicated
1091 antibodies.


1092 (D-F) STC-1 cells were treated with CaMKK β inhibitor STO-609 (10 μ mol/L) for 24
1093 h. (D) *Proglucagon* mRNA levels in STC-1 cells. (E) GLP-1 concentrations in culture
1094 medium. (F) Whole-cell extracts underwent western blot with indicated antibodies.


1095 (G-I) STC-1 cells were pretreated with Rapamycin (50 nmol/L) for 1 h, then treated
1096 with Yoda1 (5 μ mol/L) for 24 h. (G) *Proglucagon* mRNA levels in STC-1 cells. (H)
1097 GLP-1 concentrations in the culture medium. (I) Whole-cell extracts underwent
1098 western blot with indicated antibodies.


1099 Data are represented as mean \pm SEM Data are represented as mean \pm SEM and are
1100 representative of six biological replicates. Significance was determined by Student's t
1101 test for comparison between two groups, and by one-way ANOVA for comparison
1102 among three groups or more, * p < 0.05, ** p < 0.01, *** p < 0.001.

○ GFP
○ CaMKK β
○ CaMKIV

○ Control
○ STO-609

○ Control
○ Yoda1
○ Yoda1+Rapamycin