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ABSTRACT

Poor prognosis and drug resistance in glioblastoma (GBM) manifests from heterogeneity and
treatment-induced shifts in phenotypic states of tumor cells, including dedifferentiation to glioma
stem-like cells (GSCs). This rare tumorigenic cell subpopulation is inherently resistant to
temozolomide, undergoes proneural-to-mesenchymal transition (PMT) to evade therapy, and
thereby drives recurrence. Through inference of transcriptional regulatory networks (TRNs) of
patient-derived GSCs (PD-GSCs) at single-cell resolution, we demonstrate how topology of
transcription factor interactions drives distinct trajectories of cell state transitions of susceptible
and resistant PD-GSCs in response to cytotoxic drug treatment. By experimentally testing TRN
simulation-based predictions, we show that drug treatment drives surviving cells of a PD-GSC
along a trajectory of intermediate states, akin to a bottleneck in gene expression space, exposing
vulnerability to potentiated killing by sequential addition of siRNA or a second drug targeting
transcriptional programs governing non-genetic plasticity of a PD-GSC. Thus, our findings
demonstrate an approach to uncover and use TRN topology of a PD-GSC to rationally predict
combinatorial and sequential treatments that block treatment escape and acquired resistance in
GBM.
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INTRODUCTION

Glioblastoma (GBM) is the most lethal and aggressive primary brain tumor in adults. With current
standard of care (SOC), which involves maximal surgical resection, fractionated radiotherapy
(XRT), and chemotherapy with the DNA-alkylating agent, temozolomide (TMZ) (1), patient
prognosis remains dismal with a median survival time of 14-15 months and a 90% risk of
recurrence. There is growing evidence that the poor therapy responsiveness and dismal
prognosis in GBM patients emerges from the interplay of tumor cell heterogeneity and treatment-
induced shifts of cellular phenotypic states. Three molecular subtypes of GBM have been
identified— proneural (PN), classical (CL), and mesenchymal (MES), each exhibiting distinct
responses to SOC and clinical prognosis (2, 3). Single-cell resolution transcriptome analyses
further demonstrated that even an individual GBM tumor is heterogeneous, not only
morphologically but also with respect to its composition of cellular states (4), which can include a
mixture of PN/CL/MES subtype cells and a small subpopulation of glioma stem-like cells (GSCs)
that have the capability to self-renew, generate different tumor cell progenies, and initiate hew
tumors. Further, there is evidence that extrinsic signals and stressors, including those generated
by treatment, can also drive heterogeneous tumor cells to dedifferentiate into immature GSCs

that are inherently resistant to TMZ (5, 6).

While PN GSCs have higher proliferation rates and promote tumor angiogenesis, MES GSCs
have potent invasive capabilities (7) and are more resistant to radiation (8) and drug treatment
(9). Thus, most recurrent tumors derived from non-MES primary tumor are comprised of the MES
subtype (10, 11). Two hypotheses have been proposed for the shift in recurrent tumor subtype
and corresponding development of treatment resistance (12, 13): 1) MES subtype GSCs are
selected for and eventually drive the growth of the recurrent tumor (14), or 2) radiation and
chemotherapy causes GSCs to undergo a PN to MES transition (PMT) to evade and survive
treatment (7, 15). The latter hypothesis is in line with the emerging notion that non-genetic cell
plasticity, in addition to selection of fixed, genetically determined phenotypes of mutant cells
accounts for tumor progression and recurrence. For instance, radiation- or chemotherapy-induced
epithelial to MES transition (EMT) in solid tumors has been widely implicated in the rapid
development of therapy resistance (16—25). Thus, GSCs undergoing PMT may be causally
responsible for recurrence of most drug resistant GBM tumors in the form of the MES subtype
(26). For example, expression of MES marker (CD44) and NF-kB pathways associated with PMT

were elevated following radiation treatment of PN GSCs pretreated with TNF-alpha. In genetically
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69 engineered mouse models with cells that can fluorescently report molecular subtype, GSCs
70  transitioned to the MES subtype as early as 6 hours following radiation treatment, demonstrating
71  intrinsic ability of GSCs to deal with treatment-induced stress (15). Finally, GSCs isolated from
72  the invasive tumor edge transitioned from a PN subtype to a MES phenotype in a C/EBP-
73  dependent manner following treatment (27). In view of the accumulating evidence for the role of
74  non-genetic plasticity of GSCs in the development of recurrent and refractory tumors, multiple
75  clinical trials are underway to evaluate novel drugs or drug combinations that are both cytotoxic
76  against GSCs and also meet the criteria for treating brain tumors (e.g., penetrance of blood brain
77  Dbarrier) to treat recurrent therapy-refractory GBM (28). These clinical studies, including our own,
78  have discovered that many FDA-approved drugs are effective in killing GSCs, but can also induce
79  surviving cells to undergo PMT.
80
81 Here, we sought to understand if knowledge of mechanisms of plasticity of GSCs, and the
82  trajectories through which they undergo drug-induced PMT, would enable rational strategies to
83  improve treatment responsiveness by disrupting primary resistance mechanisms, while blocking
84  therapy escape to prevent acquired resistance and tumor recurrence. We have performed these
85  studies with pitavastatin, an HMG-CoA reductase inhibitor, which is widely used to manage
86 cholesterol levels. Pitavastatin is a prime example of an FDA-approved drug that can be
87 repurposed to minimize GBM recurrence because of its anti-proliferative and radiotherapy
88  sensitization effects on glioma cells (29) as well as its cytotoxic effects against GSCs (30).
89  Specifically, we have investigated mechanisms of primary and acquired resistance in six patient-
90 derived GSCs (PD-GSCs) — three responders (SN520, SN533, and SN575) and three non-
91 responders (SN503, SN517 and SN521) to pitavastatin. Through the inference of mechanistic
92  transcriptional regulatory networks at single cell resolution, we demonstrate that the architecture
93  and dynamics of a core transcription factor (TF) network governed the phenotypic plasticity of PD-
94  GSCs. By performing in silico simulations and chemical and genetic (SIRNA) perturbations, we
95 show compelling evidence that it wasn’t the composition of initial cell states, but the topology of
96 the core TF-TF network that governed phenotypic plasticity of GSCs. Finally, our findings
97 demonstrate that mechanistic knowledge of the gene regulatory network topology can be
98 leveraged to rationally tailor combinatorial and sequential treatment regimen to disrupt primary or
99  acquired resistance in a given PD-GSC.

100

101
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102

103 RESULTS

104

105  Pitavastatin treatment induces distinct responses in SN520 and SN503 PD-GSCs

106  Through high throughput dose titration assays we discovered that pitavastatin had a wide range
107  of effectiveness against 45 PD-GSCs. Based on their varying sensitivities, we classified the PD-
108 GSCs into two categories, one in which PD-GSCs were considered a “responder” (IC50 < 5.0uM)
109 and the other in which they were considered a “non-responder” (IC50 > 5.0uM, Figure 1A). To
110  understand the dynamics underlying each drug-response phenotype, we examined pitavastatin
111  sensitivity of two PD-GSC cultures, SN520 and SN503, both of which were isocitrate
112  dehydrogenase 1 (IDH1) wild-type and O6-methylgaunine-DNA methyltransferase (MGMT)
113  unmethylated. The dose titration results revealed distinct susceptibility profiles to pitavastatin
114  treatment. With an ICso of 13.0uM, SN503 was considered a “non-responder”, whereas as SN520
115  with an IC50 of 0.43uM was labeled a “responder” (Figure. 1A). Next, we investigated the
116  longitudinal response of each PD-GSC culture over a 4-day treatment with DMSO (vehicle
117  control) or pitavastatin at 6.M, a dose at which significant decreases in cell viability were observed
118  over the same treatment period (Supplementary Figure S1). To minimize batch effects, replicate
119  cultures were treated with drug or vehicle over a staggered schedule such that all samples for
120 days 0 (D0), 2 (D2), 3 (D3), and 4 (D4) were collected and processed simultaneously for
121 subsequent flow cytometry, bulk RNA-seq, and scRNA-seq analysis (Figure. 1B). SN520 viability
122 decreased dramatically during treatment between D3 and D4, falling below 90% by day 5 (Figure
123 1A). By contrast, over the first three days of pitavastatin treatment, SN503 viability decreased
124  rapidly at a rate that was similar to the kill rate of SN520, but leveled off to ~60% for the remaining
125  duration of the 4-day treatment.

126

127  Flow cytometry analysis with annexin V labeling demonstrated that pitavastatin had killed SN520
128  cells by inducing apoptosis (Supplementary Figure S2). This discrepancy was interesting because
129  unlike SN520, cytometry analysis of the SN503 did not reveal any dramatic increase in annexin
130 V signal, suggesting that in this PD-GSC culture a mechanism other than apoptosis was
131  responsible for cell death in a small fraction of the population (Supplementary Figure S2). These
132 findings indicated that the cytotoxic consequences of pitavastatin may vary depending on the
133  composition and characteristics of subpopulations of cells within each PD-GSC culture. Further,

134  the difference in the rate of cell death in both PD-GSC cultures during treatment suggested either
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135 the presence of distinct sub-populations of cells with varying susceptibility to pitavastatin, or the
136  induction of adaptive responses and cell state transitions across sub-populations within each PD-
137  GSC culture. In support of this hypothesis, subsequent bulk RNA-seq profiling and gene set
138  variance analysis (GSVA, (31)) revealed that while the dominant subtype composition of the two
139  cell cultures was stable during vehicle treatment (DMSO), in response to pitavastatin treatment
140  both PD-GSCs underwent a transition to a MES subtype. While SN503 underwent a rapid shift
141 from PN to MES subtype within two days of treatment, SN520 cells maintained a dominant CL
142  signature for the first three days and then shifted to a MES subtype on the fourth day of treatment
143 (Figure 1C, D). These findings established that despite their similarity in terms of IDH1 mutation
144  and MGMT methylation status, the two PD-GSC cultures exhibited vastly different pitavastatin
145  responses that likely manifested the presence of distinct sub-populations capable of cell state
146  transitions that enabled the surviving cells to escape drug-induced cytotoxicity.

147

148  Single-cell analysis suggests drug-induced PMT is likely mechanism of acquired
149  pitavastatin resistance in SN520

150  To further dissect the likely role of sub-population heterogeneity in enabling treatment escape of
151  SN520 and SN503 (Figure 1B), we performed scRNA-seq profiling of each PD-GSC culture
152  (Chromium, 10X Genomics, Inc.). Following QC of the raw scRNA-seq data (METHODS), a total
153  of 5,402 cells from SN520 and 5,722 cells from SN503 were profiled across all time points (DO,
154 D2, D3, and D4) and treatment conditions (pitavastatin or vehicle control). Batch-integration with
155  Harmony (32), dimensionality reduction, and visualization with uniform manifold approximation
156  and projection (UMAP, (33)) of the integrated scRNA-seq data revealed distinct pitavastatin-
157  specific transcriptional responses across the two PD-GSCs (Figure 1E). In SN520, we observed
158 time-dependent clustering of cells, indicating a coordinated transcriptional response to
159  pitavastatin. By contrast, there was considerable overlap between pitavastatin-treated SN503
160 cells from all time points (Figure 1E). We quantified net temporal shifts in transcriptomic states of
161  the cells, or lack thereof, using Wasserstein distance, which quantifies dissimilarity between two
162  high-dimensional distributions (34). Drug treatment caused the SN520 cells to become
163  progressively dissimilar from the preceding state over time, unlike vehicle-treated cells. By
164  contrast, there was a slight increase in Wasserstein distance in drug-treated SN503 cells between
165 D2 and D3, but not between D3 and D4 samples (Figure 1F). Given the distinct response patterns
166  of the two PD-GSCs, subsequent scRNA-seq analysis was performed on a patient-specific basis,
167  (Figure 2A, B). UMAP plots organized cells within each PD-GSC into two main groups, defined

168 by treatment with either pitavastatin or vehicle control. Pitavastatin-treated SN520 cells organized
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169 along treatment time whereas pitavastatin-treated SN503 cells from different time points
170  overlapped with one another in the gene expression space as captured by the UMAP
171  embeddings.

172

173  Interestingly, GSVA enrichment scoring (Supplementary Figure 3) showed that while the relative
174  proportions of cells for each molecular subtype (i.e., CL, PN, MES) was fairly consistent in vehicle
175  control, the 4-day pitavastatin treatment of SN520 responder cells showed a dramatic increase in
176  the proportion of cells of the MES subtype (Figure 2C). In stark contrast, the subtype composition
177  of the SN503 non-responder cells remained relatively constant during treatment with pitavastatin
178  and vehicle control (Figure 2D). Notably, the longitudinal patterns of subtype composition within
179  each PD-GSC population determined from scRNA-seq time course analysis were inconsistent
180  with findings from bulk-RNA-seq analysis. Cytometry analysis confirmed findings from scRNA-
181  seq analysis that pitavastatin treatment of SN520 resulted in an increase in the proportion of
182  CD44+ (MES) cells from 28.2% to 65.35%, and a simultaneous decrease in CD133+ (PN) cells
183  from 52.7% to ~1%. Of note, SN520 had a sizeable (35.3%) proportion of CD133+/CD44- PN
184  cells, which were nearly eliminated by D4 (Figure 2E), likely due to a combination of treatment-
185 induced killing and a transition of surviving cells to a MES state. By contrast, pitavastatin treatment
186  did not cause a change in the proportion of CD44+ cells in SN503 (87% on D1 to 85.11% on D4,
187  Figure 2F). The significant decrease in the relative proportion of CD133+ cells within SN503 (from
188  38.1% on D1 to 9.51% on D4), especially over the first two days of treatment, was likely due to
189  pitavastatin-induced Killing of a susceptible PN subpopulation (9). Interestingly, the relative
190 proportion of CD133+/CD44- PN cells (1.41%) within SN503 was negligible; pitavastatin
191  sensitivity appeared to be associated with a CD133+/CD44+ sub-population that was in higher
192  abundance (36.7%).

193

194  To differentiate between selection and differential proliferation as the mechanism responsible for
195 the observed shifts in subtype composition, we used canonical cell cycle gene expression
196  signatures to score each cell (METHODS) and found that only small proportions of cells within
197 each PD-GSC culture were in the S or G2/M phase regardless of treatment context
198  (Supplementary Figure 4). Consistent with this finding, cytometry-based DNA quantification of
199 individual cells confirmed that only a small proportion of cells across both PD-GSCs were actively
200 proliferating during pitavastatin treatment (Supplementary Figure S5). Theoretical calculations
201  based on cell division rate and treatment duration (Supplementary Figure S6), as well as the
202  homogeneity of CNV states pre- and post-treatment of both PD-GSCs (Figure 2G, H) both
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203  independently suggested that cell subtype transitions of surviving SN520 cells, rather than a
204  natural selection and expansion, was responsible for the observed treatment-induced changes in
205  subtype composition and phenotypic characteristics. Finally, overall drug sensitivity of surviving
206 SN503 cells remained relatively unchanged post-pitavastatin treatment for ~30 days (Figure 2I;
207  paired t-test p-value = 0.348). In stark contrast, there was significant log2-fold increase of 2.42 in
208  ICso of surviving SN520 cells from 0.42 uM to 2.24 uM, which was sustained over 100 days (Figure
209 2l paired t-test p value = 1.526e-05), demonstrating the long-term functional consequences of
210  drug-induced PMT.

211

212 Characterization of transcriptional states of PD-GSCs reveals multiple mechanisms of
213  primary and acquired resistance

214  Dimensionality reduction with PCA and subsequent Louvain clustering (METHODS) of
215  differentially expressed genes (DEGs, Supplementary Figure S7) organized the 5,402 SN520
216  cells into 14 clusters (Figure 3A, B) and the 5,722 SN503 cells into 12 clusters (Clsos/s20-1; Figure
217  3C, D). As expected, the SN520 Louvain clusters were predominantly comprised of either vehicle-
218  or pitavastatin-treated PD-GSCs (Figure 3E). By contrast, several SN503 Louvain clusters
219  contained a mix of both vehicle- and drug-treated cells (Figure 3F). Below we summarize findings
220  based on pathway enrichment analysis of DEGs within each Louvain cluster (Figure 3G). A more
221  detailed description is included in the Supplement.

222

223  SN520 Clustering & Enrichment. Consistent with the mechanism of action of pitavastatin, gene
224 set enrichment analysis (GSEA, Supplementary Tables S1-S2) revealed that within two days
225 upon initiation of treatment SN520 cells differentially regulated cholesterol homeostasis,
226  biosynthesis, and maintenance, as well as MTORCL1 signaling. Day 3 onwards the cells
227  differentially regulated stress response genes including unfolded protein response, protein
228  secretion, P53 pathway, and apoptosis. Interestingly, upregulation of both apoptosis and EMT
229 genes across subpopulations of drug-treated D4 cells (Cls20-6, Cls20-7) was consistent with
230  simultaneous induction of these pathways by TGF@ during tumor formation and progression, with
231  cell fate being dependent on cell-cycle phase (35, 36). In this case, Cls20-6 and clsxo-7 cells were
232 in G1/S phase, suggesting that SN520 cells escaped apoptosis by transitioning into the MES
233 subtype (Supplementary Figure S7).

234

235  SN503 Clustering & Enrichment. Although there were fewer DEGs in SN503 as compared to
236 SN520 (Figure 3H), the Louvain clusters of pitavastatin-treated SN503 cells did bear similarity to
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237  SNb520 clusters with regard to differential regulation of certain pathways, including cholesterol
238 homeostasis, fatty acid metabolism, MTORC1 signaling, androgen response, and unfolded
239  protein response (Supplementary Tables S3-S4). However, the differential expression patterns
240  were distinct between the two PD-GSCs. For instance, pitavastatin-treated SN503 cells did not
241  cluster by treatment time, instead cells from all time points grouped together across multiple
242 Louvain clusters (Figure 3C, F) characterized by upregulation of oxidative phosphorylation
243 (OXPHOS, Figure 3G, Supplementary Table S3), which has been associated with drug resistance
244 in tumor cells (37—40). Moreover, only a small proportion of pitavastatin-treated SN503 cells
245  differentially regulated EMT-associated genes (clso3-0 and clsos-5) (Figures 2, 3H). These findings
246  suggested that different regulatory mechanisms were likely responsible for the distinct differential
247  expression patterns of key pathways, as well as the responder and non-responder phenotypes of
248  SN520 and SN503, respectively.

249

250 Inference and dynamic simulation of transcriptional regulatory networks identifies
251  mechanisms driving cell-state changes and intervention strategies

252  We applied single-cell SYstems Genetics Network AnaLysis (SCSYGNAL) framework to uncover
253  the transcriptional regulatory networks (TRNs, (41, 42)) responsible for driving the distinct
254  transcriptome responses of the two PD-GSCs. Briefly, Mechanistic Inference of Node Edge
255  Relationships (MINER), an algorithm within the scSYGNAL framework, was used to identify
256  modules of genes (regulons) that were co-regulated differentially in response to treatment across
257  sub-populations of cells (43, 44). Further, using the transcription factor binding site database (45)
258 and the Framework for Inference of Regulation by miRNAs (FIRM, (46)), scSYGNAL implicated
259  specific TFs and miRNAs in mechanistically co-regulating genes of all regulons. Post-processing
260  of the resulting TRNs using MINER (47) clustered regulons with similar activity profiles across
261  subpopulations of cells into transcriptional programs ( Prsess20-7) and clustered single cells with
262  similar program activity profiles into distinct transcriptional states (Stsoss20-1). Here onwards we
263  will refer to the TRNs for each PD-GSC as scSYGNAL-520 and scSYGNAL-503.

264

265  sCSYGNAL-520 modeled the influence of 109 TFs and 505 miRNAs in mechanistically regulating
266 1,668 genes across 572 regulons that organized into 19 transcriptional programs and were
267  differentially active across 17 transcriptional states (Fig. 4A; Supplementary Table S5-S6).
268  Strikingly, nearly every transcriptional program was enriched for genes that have been shown to
269  be essential to GSC survival (Supplementary Table S7, (48)). GSEA revealed that many pathways

270 identified within Louvain clusters were recapitulated by programs (Figure 3G, Supplementary
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271  Table S8). For instance, Program 0 (Prs2-0) — the largest program consisting of 169 regulons,
272 was enriched for genes associated with cellular stress responses, including unfolded protein
273 response, androgen response, p53 pathway, and apoptosis . Prsx-1, the second largest program
274 (61 regulons) was enriched for cholesterol homeostasis and MTORC1 signaling. Prsz-2
275  (proliferation), Prs2o-5 and Prs20-6 (TNFa signaling via NFkB) showed variable activity in states
276  enriched with vehicle-treated cells, but were uniformly underactive in states enriched with
277  pitavastatin-treated cells (Figure 4A). Only four states (Sts20-0 — Sts20-3) were enriched for D3 and
278 D4 pitavastatin-treated cells (Figure 4B), suggesting that they might represent drug resistant
279  states adopted by the surviving subpopulation of cells to avoid pitavastatin-induced killing.
280  Furthermore, when transcriptional states were rearranged with respect to their predominant
281  treatment condition, program activities increased (nearly) monotonically over the course of
282  treatment, which suggested that treatment-induced state transitions occurred through continuous
283  rather than discrete changes in expression in SN520 (Figure 4C, Supplementary Figure S8).
284

285  scSYGNAL-503 modeled the regulation of 1,875 genes by 114 TFs and 507 miRNAs across 420
286  regulons, organized into 21 distinct transcriptional programs, whose activity profiles stratified
287  SN503 cells into 17 transcriptional states (Figure 4A bottom heatmap, Supplementary Tables, S9-
288  S10). Like SN520, a large portion of these programs were enriched with essential genes for GSC
289  survival (Supplementary Table S11; (48). Several programs were similar to those identified in
290 SN520, including Prses-13 (cholesterol homeostasis, MTORC1 signaling and fatty acid
291 metabolism), Prse3-9 and Prsgs-10 (stress responses, including vesicle-mediated transport,
292  unfolded protein response, and p53 pathway). In contrast to SN520, many SN503 programs were
293  uniquely enriched in distinct processes, including WNT/B-catenin and KRAS signaling (Prsos-18,
294  Fig. 4F, Supplementary Table S12). Unlike SN520, D3 and D4 pitavastatin-treated SN503 cells
295  co-clustered in significant proportions with untreated and vehicle-treated cells across >75% of the
296 17 states, suggesting that a large number of SN503 cells may have been in pitavastatin-resistant
297  states even prior to drug exposure (Figure 4C). Interestingly, multiple states included pitavastatin-
298 treated cells from all time points, including seven states in which the drug-treated cells
299 represented >50% of all cells (Figure 4B). The seven transcriptional states were distinct in their
300 activity patterns of some programs, including Prsg3-4 (apoptosis, EMT, IL6/JAK/STAT3 signaling),
301  which was overactive in Stsos-5, Sts3-6, and Stses-10; and Prses-10 (MTORC1 signaling, hypoxia,
302 and unfolded protein response), which was overactive in Sts3-10 and Stsez-11. The

303 heterogeneous activity patterns of these programs, which were enriched for processes linked to

10
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304 chemotherapeutic resistance (49), suggests that multiple mechanisms likely contributed to
305 pitavastatin resistance in SN503.

306

307 Core TF-TF interaction networks governing PD-GSC response to pitavastatin.

308 We derived a “core” network of TF interactions to investigate how transcriptional regulatory
309 mechanisms contributed to PMT and pitavastatin resistance (Figure 4D). Each directed TF-TF
310 interaction was categorized as activating or repressing based on positive or negative pairwise
311  correlation of expression levels between two TFs, respectively. The topology of the core TF
312 network for each PD-GSC population was distinct (METHODS), with 56 interactions (edges)
313 among 31 TFs (nodes) in scSYGNAL-520 and only 13 interactions connecting 15 TFs in
314  scSYGNAL-503 (Figure 4E, F). Multiple TFs in the core scSYGNAL-520 TF network have been
315 linked to response-relevant processes including EMT, cell differentiation, adaptive responses,
316  and stem-cell maintenance (Supplementary Table S13). Nine TFs were common between the
317  core networks (overlap p-value: 9.44e-05), including ARID5A, ATF3/4, MEOX2, SOX9, XBP1,
318 and HEY1, a Notch signaling regulator. TFs unique to the core scSYGNAL-503 network included
319 DDIT3, MAFF, STATS3, and ID4, which have been implicated in multiple GBM-relevant processes,
320 (Supplementary Table S13). Notably among these TFs, ID4 has also been shown to play a role
321 inthe pathogenesis of GBM, driving tumor-initiating cell formation by increasing two key cell-cycle
322  and differentiation regulatory molecules — cyclin E and Jagged 1 (50). These findings suggest that
323  the core networks captured TF-regulation that play central roles in GBM and gliomas in general.
324

325  Trajectory analysis and network simulations uncover mechanisms of primary and acquired
326  resistance

327 Using Monocle3 we discovered that pseudotemporal ordering of SN520 cells correlated with
328 treatment duration and concomitant drug-induced PMT (Pearson correlation coefficient r =
329  0.723). We observed similar agreement between treatment duration and inferred trajectories from
330 RNA velocity analysis (51), as velocity vectors pointed towards 4-day treated cells (Figure 5A).
331 In parallel, we calculated the critical transition index (/), a quantitative metric of the high-
332 dimensional state of a system that predicts whether a cell population is undergoing a state
333  transition (higher /. values) or if it has reached some stable attractor state (lower /. values) (52).
334 [ values of SN520 decreased during drug treatment but remained relatively constant in the
335 vehicle control (Figure 5B), indicating that pitavastatin had driven the entire PD-GSC population
336 into a predominantly drug-resistant MES subtype attractor state. By contrast, pseudotemporal

337 ordering of SN503 cells did not correlate with treatment time (Pearson correlation coefficient r =
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338 —0.0167,) and was associated with high /- values throughout the course of the experiment for both
339  vehicle control and drug treatment, likely driven by the higher heterogeneity of the cells.
340 Consistently, these GSCs exhibited a rather turbulent vector field where RNA velocities projected
341  into multiple directions (Figure 5A). Modeling concerns associated with pseudotime and trajectory
342  inference analysis notwithstanding, e.g., hyperparameter optimization (53, 54), the pseudotime
343  and criticality analyses demonstrated stark contrast between the responses of the two PD-GSCs;
344  SN520 exhibited concerted pitavastatin-induced state transitions, relaxing into a regulated state,
345  while SN503 exhibited a seemingly disorganized response without concerted transition of all cells

346 into an attractor state.

347  To identify putative drivers of treatment response, we performed LOESS regression and rank
348 ordered TFs with respect to timing of peak expression along the pseudotime trajectories and
349 uncovered a distinct sequence of changes in the activity of multiple TFs in each PD-GSC
350 population (Figure 5C). Within SN520, multiple TFs previously associated with PMT in GBM (e.g.,
351 ATF3, CREB, and NFE2L2) positively correlated with pseudotime trajectory (Supplementary
352 Table S13 - Moran’s | value). Notably, the rank order of TFs in SN520 was quite different from
353  previously proposed sequence of transcriptional events driving PMT (55), which highlights the
354  diversity of regulatory mechanisms that have been implicated in driving EMT in multiple cancers
355 (56, 57). As expected, we did not observe temporal sequence of changes in expression levels of
356  TFs across SN503 cells (Figure 5C, Supplementary Table S13).

357 In addition, we investigated the consequence of differential expression patterns of TFs by
358 examining, along pseudotime trajectories, the dynamic activity patterns of transcriptional
359 programs that they regulated (Figure 5D, Supplementary Figure S9). Activity of the stress-
360 response-associated programs (Prs20-0) increased along the pseudotime trajectory of SN520
361 cells, implicating 80 associated TFs, including ATF3, ATF4, CREB3, CREB5, JUN, KLF4, MYC,
362  SOX4/9, and TCF4. In the case of SN503, we identified multiple treatment-activated programs for
363  key processes (Figure 4C) including unfolded protein response and OXPHOS (Prsoz-9 and Prsos-
364  10), cholesterol regulation (Prsos-4) and EMT (Prses-5 and Prsos-13) that showed upregulated gene
365  expression relative to the untreated control condition (Figure 5E). Importantly, sScCSYGNAL-503
366 had accurately identified TFs that have been mechanistically implicated in regulation of these
367 processes, such as AR, FOS, MYC, TP53, and E2F7 for Prsoz-9 and Prses-10 (58).

368 Ensemble modeling and analysis of GSC states via simulated TF-TF network dynamics
369 We performed in silico perturbations on the core TF-TF networks using the random circuit

370  perturbation (RACIPE) algorithm (59-61) to identify transcriptional regulatory mechanisms that
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371 governed pitavastatin-induced cell state changes across the two PD-GSCs (Figure 4D, E).
372  RACIPE was originally developed to investigate EMT circuits in cell development and other
373  cancers by creating an ensemble of dynamic models based on ordinary differential equations and
374  Hill function kinetics (62—64). First, we tested whether the TF-TF network model for each PD-GSC
375  could accurately predict their observed pitavastatin-induced cell states using untreated (DO) TF
376  expression levels to initialize the network. By performing 1,000 RACIPE simulations, we
377 determined that the simulated stable steady states were statistically similar to the observed cell
378 states of each PD-GSC on D4 of pitavastatin treatment (Figure 6A, B, Supplementary Figure
379  S10).

380

381  We then investigated how the core TF network contributed to phenotypic plasticity by determining
382  the range of steady states that could emerge from each network topology. We simulated 10,000
383  distinct models (i.e., parameter sets) across 100 randomly selected initial conditions resulting in
384  an ensemble of 1 million simulations for each PD-GSC population, which was sufficient to yield
385 convergent solutions (Supplementary Figure S11 (59-61)). Based on pairwise Euclidean
386 distances (METHODS) and hierarchical clustering, all simulated states generated by the core TF
387  network for SN520 clustered into four distinct steady states (Figure 6C). The simulated states
388 stratified along the first principal component, recapitulating a continuum of progression from a PN
389 to MES state (Figure 6C). Pairwise comparisons of mean expression profiles of the core network
390 TFs demonstrated that the simulated states were statistically similar to experimentally observed
391 PD-GSC states (Figure 6C, Supplementary Figure S10). Supervised classification using random
392 forest analysis further revealed that ATF3/4, CEBPG, and HES1 contributed the most to
393  distinguishing the four simulated states (Figure 6C), which mirrored expression behavior across
394  experimental data for SN520 (Figure 6D).

395

396 RACIPE simulations for SN503 also yielded four distinct stable steady states that did not show a
397 gradient in PCA space as in the case of the SN520 simulated states (Figure 6E). Three of these
398  states were similar to two experimentally observed PD-GSC states (Figure 6E) associated with
399 elevated expression of SOX4, SOX9, SOX11, HEY1, and ID4 (simulated states 3 and 4 and
400 experimental state 4), or elevated expression of ATF4, ATF3, and FOS (simulated states 1 and 3
401 and experimental state 4). The experimentally observed states not identified by RACIPE
402 simulations were associated with elevated expression of MEOX2, MAFF, and ARID5A, which
403  were “root” nodes, i.e., TFs without any upstream regulators in the context of the model.

404  Consequently, expression of these TFs in the RACIPE simulations was dependent upon the
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405 randomly selected initial conditions. However, the subset of simulations in which MEOX2, MAFF,
406 and ARID5A had elevated initial conditions generated states that were indeed similar to
407  experimentally observed states ESso3-1 and ESsos-2 (Supplementary Figure S10). Further, for
408  distinguishing the four SN503 PD-GSC states, random forest analysis identified MEOX2, MAFF,
409 and ARID5A as the most important TFs, followed by ATF3, SOX9, and SOX11 (Supplementary
410  Figure S10). Interestingly, all of these TFs have previously been implicated in tumor stemness,
411  progression, invasiveness or resistance, suggesting multiple mechanisms may have contributed
412  to pitavastatin resistance in SN503 (Supplementary Table S13).

413

414  In silico network perturbations implicate specific TFs in mechanistically driving treatment-induced
415  cell state transitions and drug resistance in PD-GSCs

416  After benchmarking the random forest models as 85% and 90% accurate in predicting cell states
417  of SN520 and SN503, respectively (Supplementary Figure S12), we used them in perturbation
418  simulations to identify mechanistic drivers of treatment response of each PD-GSC. Specifically,
419 we performed an additional 1 million RACIPE simulations to model the consequence of 95%
420 knockdown in each TF within the core network on treatment-induced change in the relative
421  abundance of each of the four steady states for the two PD-GSCs. (Supplementary Figure S13).
422  This analysis predicted that knockdowns in each of ten TFs, viz., ATF4, IRF1, NFE2L2, CREB3,
423  XBP1, ARID5A, SMAD1, CREB5, CEBPG, and ATF3, would result in significant reduction in the
424  relative abundance of simulated states with large subpopulations of MES subtype cells in SN520
425  (Figure 6G). Notably, all ten TFs have been implicated in driving EMT across different cancers,
426  including GBM (Supplementary Table S13). RACIPE simulations predicted that decrease in the
427  proportion of MES subtype-associated cell states in SN503 was likely through perturbations in
428  just two TFs, namely SOX9 and SOX11 (Supplementary Figure 13) both of which were also
429  implicated in driving PMT (Supplementary Table S13).

430

431  siRNA knockdowns of TFs validate core TF networks

432  We tested RACIPE predictions by investigating whether siRNA (Dharmacon™) knockdown of TFs
433 during pitavastatin treatment would block PMT leading to synergistic increase in PD-GSC killing.
434  Indeed, knockdowns in nine TFs (5/10 predicted), including ATF3, IRF1, CREB3, CREB5, and
435  CEBPG, significantly potentiated pitavastatin killing of SN520 (Figure 61). Notably, increased cell
436 death of SN520 was observed only when siRNA and pitavastatin were administered
437  simultaneously, but not when cells were pre-treated with siRNA prior to pitavastatin treatment

438  (data not shown). Given that SIRNA knockdown is typically manifest in protein reduction maximally
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439 in 2-3 days post-transfection, dynamic induction of TF activity by pitavastatin appears to have
440 been essential for achieving the TF knockdown effect on SN520 PD-GSC survival. In stark
441  contrast, none of the TF knockdowns had any consequence on viability of SN503 (Figure 6H, J).
442  Altogether, the experimental findings corroborated the roles of nine TFs implicated by scSYGNAL
443  and RACIPE analysis in driving PMT, thereby conferring pitavastatin resistance in SN520, but not
444 in SN503, wherein a large fraction of the cell population was in a drug resistant MES state, even
445  prior to drug treatment. As an alternative approach, we identified 24 additional TFs by MINER as
446  important for mechanistically upregulating putative resistance mechanisms, including OXPHOS
447  (Figure 2G, Supplementary Table S3, S12), and discovered that knocking down four TFs (HEY 2,
448 POUS3F4, PRDM4, and PEG10) indeed potentiated pitavastatin killing of SN503, likely by
449  disrupting one or more primary resistance mechanism(s) (Figure 6K).

450

451  Trajectories towards acquired resistance expose vulnerabilities to secondary drugs

452  Finally, we investigated whether knowledge of mechanistic drivers of PMT could enable rational
453  selection of a second drug that could potentiate the action of pitavastatin. Using Open Targets
454  (65), we identified eight drugs that targeted TFs and genes associated with pitavastatin-induced
455  PMT trajectories in SN520. We hypothesized that pitavastatin-induced cell state changes place
456  cellsin transitional states that may expose new vulnerabilities that could be targeted by secondary
457  drugs. We selected vinflunine, a vinca alkaloid that binds to tubulin and inhibits microtubule
458  polymerization, thereby inducing G2/M arrest and ultimately apoptosis. Originally developed to
459 treat advanced or metastatic transitional cell carcinoma of the urothelial tract (66), vinflunine has
460 been tested in multiple Phase lll trials for many cancers, used as a likely potentiator of anti-cancer
461  effects of other drugs (67). Based on vinflunine’s mechanism of action, we identified multiple
462  regulons containing tubulin-related genes (for example, SN520 regulons Rsz-0 and Rs20-43;
463  SN503 regulons Rsps-19, Rse3-38, and Rses-52). In SN520, the activity for Rsx-0 and Rsze-43
464  increased significantly in response to pitavastatin (Figure 7A). By contrast, pitavastatin-induced
465  upregulation of tubulin-associated regulons was varied across in SN503, with only Rsos-19
466  showing consistent over activity across all time points. Rsos-38 showed significantly higher activity
467  in pitavastatin-treated cells relative to vehicle-treated, with maximal activity on D3. Finally, Rsos-
468 52 activity levels were slightly higher relative to vehicle control (Figure 7B). The ability of vinflunine
469  to block pitavastatin-induced cell state transitions was investigated in three experimental designs,
470  one in which both drugs were added simultaneously and the other two in which vinflunine was
471 added at 24 or 48 hrs after initiation of pitavastatin treatment to match the timing when

472  pitavastatin-treatment induced the highest activity of tubulin regulons (Figure 7C). The efficacy of
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473  the drug combinations were compared to outcome of treatments of PD-GSCs with each individual
474  drug.

475

476  Sequential treatments with pitavastatin followed by vinflunine had synergistic effect on killing of
477 the two PD-GSCs (Figure 7D). Specifically, sequential treatment of pitavastatin followed by
478  vinflunine resulted in 5.92 and 1.6 fold-decrease of 1Csg, compared to vinflunine treatment alone
479  (Figure 7D), in SN520 and SN503, respectively. The relative efficacy of sequential treatment with
480  the two-drug combination varied significantly across other PD-GSCs (Supplementary Table S14),
481  with the combination being more effective on pitavastatin responder (SN533 and SN575) than
482  non-responder cells (SN517 and SN521) (Supplementary Figure S14). The poor efficacy of
483  vinflunine on SN503 and other non-responder PD-GSCs is likely because pitavastatin did not
484  induce a coordinated response that places the cells in a vulnerable state from which we predicted
485  the utility of vinflunine based on the transcriptional network. Thus, the coordinated cell-state
486  changes induced by pitavastatin killing of susceptible cells in the responder PD-GSCs pushed the
487  surviving cells along PMT trajectories with generic and patient-specific components, thereby
488  exposing novel vulnerabilities that significantly potentiated net cell killing by sequential treatment
489  with vinflunine.

490

491 DISCUSSION

492

493  Inherent plasticity and heterogeneity of GSCs are implicated as underlying reasons for the high
494  rate of GBM recurrence, which often manifest as an even more aggressive and drug-resistant
495  MES subtype (8-10). Understanding the mechanisms of primary resistance and trajectories along
496  which GSCs undergo adaptive subtype transitions to acquire resistance are both critical for
497  formulating treatment regimens to prevent recurrence of aggressive and drug resistant GBM (7,
498  68). In this study, we report five main findings that shed insight into the underlying mechanisms
499  of phenotypic plasticity of PD-GSCs: 1) distinct population structures distinguished two PD-GSCs
500 with acquired (SN520) and primary (SN503) resistance phenotypes, 2) distinct TF network
501 topologies were associated with the two GSC phenotypes, 3) TF network topology was a key
502  determinant of treatment-induced change in the population structure of PD-GSCs, 4) TF network
503 topology inferred from scRNA-seq enabled predictions of underlying mechanistic drivers of
504 primary and acquired resistance, including response trajectories, 5) disruption of primary
505 resistance potentiated killing of non-responder PD-GSCs, and 6) treatment-induced trajectories

506 through which PD-GSCs acquired resistance, exposed vulnerabilities to sequential interventions
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507 (siRNA KD of TFs and a secondary drug) targeting transcriptional programs mechanistically
508 associated with cell state transitions.Gene

509

510 Primary resistance of SN503 was likely due to a larger pre-existing subpopulation of MES subtype
511 cells, identified by both scRNA-seq and flow cytometry (Figure 2C-F), with elevated expression
512 of OXPHOS and fatty acid metabolism (Figure 5E) and high activity of WNT/B-catenin signaling
513  pathway genes in Prsoz-18 (Figure 4F) (7, 69, 70). Hence, pitavastatin treatment was less effective
514  on SN503 and failed to trigger a coordinated transcriptional response across the population of
515  surviving cells in this PD-GSC. By contrast, a smaller proportion of SN520 cells were of the MES
516  subtype (Figure 2C, D) and activity of programs associated with known treatment-resistance
517 mechanisms was low. As a result, pitavastatin killed most SN520 cells, triggering coordinated
518 transcriptional responses across the surviving PD-GSCs, driving their transition into a MES
519  subtype cell state that was > 5-fold resistant to pitavastatin (Figure 2I). Flow cytometry using
520 apoptosis and cell subtype markers; CNV inference; and theoretical calculations based on cell
521  division rates all demonstrated that pitavastatin-induced cell state and phenotypic transitions were
522  mediated by epigenetic mechanisms and not clonal selection. Further, the core TF-TF networks
523 inferred from scSYGNAL analysis were determined by RACIPE simulations as sufficient to
524  generate the observed heterogeneity and treatment-induced cell state changes of the two PD-
525  GSCs. Our findings showed that the TF-TF network topology was likely a key factor in determining
526 the trajectory and potential endpoint(s) of cell-state transitions in response to drug treatment or
527  perturbation. The sparse network of SN503 generated multiple resistant states that were distinct
528 from each other. The interconnected network of SN520, by contrast, generated a gradient of cell
529 states along a PN-to-MES axis offering a plausible explanation as to why GSCs manifest a
530 gradient of resistant states across a range of drugs (9). Our findings provide novel perspective on
531  how patient-to-patient variation in the roles of TFs and the topology of their interactions can have
532  profound consequences in driving PMT, likely influencing the rate of GBM progression,
533  recurrence, and metastasis as tumors of MES subtype (27, 71).

534

535 By Kkilling a large proportion of cells, pitavastatin treatment triggered a core network of TFs to act
536  sequentially and drive coordinated cell-state transitions across the surviving population of SN520.
537 In so doing, pitavastatin treatment may have generated a bottleneck effect by channeling the
538  surviving SN520 cells along few trajectories, thereby transiently exposing vulnerabilities in
539  associated transcriptional programs across a large segment of those surviving cells, before they

540 transitioned to the MES subtype and acquired a drug-resistant phenotype. Similar constraining
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541  effects on GSC plasticity, i.e., fewer cell-state transitions have been observed and attributed to
542  hypoxic micro-environments, unlike the larger number of stochastic cell state transitions that occur
543  under normoxic conditions (72). Our findings demonstrate that such constraints on plasticity
544  makes the GSC population less heterogeneous and more vulnerable to siRNAs and drugs
545  targeting transiently activated programs that mechanistically coordinate the cell state transitions.
546  Taken together, these results suggest that the bottleneck effect generated by drug treatment can
547  be exploited to minimize or prevent drug-induced transitions and therapy escape of GSCs.

548

549  Notably, the timing of the secondary intervention was critical, with efficacy of potentiation
550 observed only after cell-state transitions had been triggered by pitavastatin treatment. The
551  combinatorial interventions (siRNA) were ineffective when each drug-siRNA pair was
552  administered concurrently (data not shown). These findings illustrate the importance of tailoring
553  not just the specific combination of drugs, but also the order and timing of longitudinal treatment
554  schedules based on mechanistic understanding of the causal sequence of events targeted by
555 each individual intervention. Similar benefits from modeling cell state transitions and
556  characterizing trajectories have also been reported in PDGF-driven GBM mouse models.
557  Specifically, the integration of mathematical models that account for the presence of
558 radiosensitive and radioresistant tumor cell states as well as the rate at which state transitions
559  occurred led to an optimized radiotherapy scheduling that improved survival rates of mice (73,
560 74).

561

562  Sequential treatment with vinflunine was effective to varying degrees across other PD-GSCs that
563  were also sensitive to pitavastatin (SN533 and SN575), but was significantly less effective in
564  pitavastatin-resistant PD-GSCs (SN503, SN517 and SN521). This finding suggests that cytotoxic
565  effects were important to expose vulnerabilities, and that the mechanism of killing by pitavastatin
566  and resulting trajectories of escape were likely similar across some of these PD-GSCs. However,
567  variable susceptibilities of PD-GSCs to vinflunine explain why an N = 1 approach is necessary to
568 uncover patient-specific characteristics and tailor regimen (specific drugs and dosing schedule)
569  tothe unique PMT trajectories for each patient (Supplementary Figure S15, Fedele et al., 2019).
570

571  The partial generalizability of pitavastatin-vinflunine sequential treatment to other pitavastatin-
572  sensitive PD-GSCs, further suggests that subgroups of patients might share transcriptional
573  regulatory network topologies that drive their tumor cell state transitions along similar trajectories.

574  If this hypothesis is confirmed by analyzing a larger number of PD-GSCs across a diverse range
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575  of drug treatments, then stratifying patients based on similar network topologies, instead of steady
576  states of tumor cells, may identify a finite number of topology-matched combinatorial interventions
577  for personalized treatment of most patients (2, 3, 75).

578

579 The causal and mechanistic regulatory influences captured at single-cell resolution in the
580 scSYGNAL network provides a generalizable approach for formulating N = 1 patient-tailored drug
581 regimens and treatment schedules. Remarkably, we discovered that more than the composition
582  of initial tumor cell states, mechanistic understanding of the topology of the core TF-TF network
583 and its associated dynamics of driving cell state transitions is essential for rationally tailoring
584  sequential treatment regimen to an individual patient. This perspective, borne from these findings,
585 complements prior and current efforts that aim to create frameworks that quantify the hierarchical
586  and multi-state switching that underlie intratumoral heterogeneity in GBM using methods such as
587  Markov chain models or exploratory adaptation models (76, 77). While these approaches define
588  what states are present and the probability of transitioning from one state to another, our approach
589  provides mechanistic insights into how GSCs are able to navigate the phenotypic landscape
590 (Figure 7E).

591

592  Broadly speaking, our findings provide a mechanistic framework for connecting two aspects of
593  phenotypic plasticity of tumor cells, one that characterizes discrete states (75), and the second
594  that characterizes cell state continuums, including gradients defined by a neuronal
595  developmental-injury response axis (78) or a PN-MES axis (11, 79). Such a framework, like the
596 seminal GBM molecular subtype classification scheme (2), will enable integration of the genomic,
597 transcriptomic, and epigenomic landscapes and associated factors that underlie phenotypic
598  plasticity of GSCs and differentiated tumor cells that define intra- and inter-tumoral heterogeneity
599 in GBM (2, 4, 75, 80). Ultimately, a systems approach that connects intrinsic regulatory
600  mechanisms wiRAth extrinsic factors, including drug treatment, tumor microenvironment (72), and
601 the immune response (81), governing phenotypic plasticity of GSCs in an individual patient’s
602  cancer, will be needed for formulating treatment strategies to prevent recurrence of drug-resistant
603  GBM tumors.

604

605 METHODS

606

607 Ethics Statement. Use of human tissue was reviewed and approved by the WIRB-Copernicus

608  Group Institutional Review Board (WCG® IRB). All participants provided written informed
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609  consent according to IRB guidelines prior to participation in the study. Only tissue specimens
610 deemed non-essential for diagnostic purposes and that would otherwise be discarded were
611  collected for research purposes.

612

613  Patient samples and patient-derived GBM stem-like cell enrichment

614  Tumors were obtained from surgeries performed at Swedish Medical Center (Seattle, WA)
615  according to institutional guidelines. Patient samples used in this study were diagnosed as WHO
616  grade IV glioblastoma. GSC cultures were established from freshly resected tumor tissues. Tissue
617  samples were minced into Imm? fragments and digested with Accutase (Sigma) at 37°C for 15-
618 20 minutes. Neurobasal-A medium (NBM) was added to quench Accutase activity and cell
619  suspensions were filtered through 70um nylon mesh, centrifuged at 1K rpm for 5 min,
620  resuspended in fresh NBM, and cultured in T75 flasks pre-treated with a laminin solution (1:100
621  Sigma), which includes incubation of the flasks with the laminin solution at 37°C for a minimum of
622 30 minutes. PD-GSCs were maintained in NBM with B-27 serum-free supplement, 20 ng/mL EGF,
623 20 ng/mL FGF-2, 20 ng/mL insulin, 1 mM sodium pyruvate, 2 mM L-glutamine and 1% Antibiotic-
624  Antimycotic.

625

626  PD-GSC in vitro cultures

627 PD-GSC adherent monolayer cultures were used for all pitavastatin and pitavastatin/vinflunine
628 treatments. Monolayer cultures were maintained in T75 flasks (cell expansion), T25 flasks
629 (pitavastatin-treatment), or 96 well plates (ICso studies) pre-treated with a laminin solution (1:100;
630 Sigma) and incubated at 37°C for a minimum of 30 min. Serum-free culture media consisted of
631  Neurobasal Medium-A (Gibco™) with 2.0% (v/v) B-27 serum-free supplement minus vitamin A
632  (Gibco™), 20 ng/mL EGF (PeproTech Inc.), 20 ng/mL FGF-2 (PeproTech Inc.), 20 ng/mL insulin
633  (Sigma), 1 mM sodium pyruvate (Corning), 2 mM L-glutamine (Gibco™) and 1% Antibiotic-
634  Antimycotic (Gibco™). PD-GSC monolayer cultures were maintained at 37°C, 5% CO2
635  atmospheric oxygen with culture pH monitored with the phenol red. Cultures were refed every 2-
636 3 days. PD-GSC cultures tested were within 10 passages from the initial GSC enrichment from
637  the original tumor biopsy.

638

639 PD-GSCs were passaged by dissociating monolayer cultures from the respective substrate by
640 treating the cells with the dissociation reagent Accutase (1mL/25cm?) or TrypLE™ (1mL/25cm? —
641 see Flow cytometry CD44 and CD133 analysis section) at 37°C for 5min. Pre-warmed (37°C)

642  serum-free culture media (described above) was then added to quench dissociation reagent
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643  activity (1:3 media:dissociation reagent ratio). The resulting cell suspension was centrifuged at
644 1K rpm (193g) for five minutes. The cell pellet was resuspended in fresh serum-free culture media,
645 and added to QS serum-free culture media in a new laminin-treated flask. Final culture volumes
646  were as follows: T75 — 10mL, T25 — 5mL, 96-well plate — 100uL. Laminin treatment involved
647  incubating flasks (or 96 well plates) with a laminin working solution (5mL/75cm?), which consisted
648  of stock laminin (Sigma) diluted 1:100 in phosphate buffer solution, at 37°C for a minimum of 30
649  min.

650

651 Flow cytometry — apoptosis, caspase 3/7-mediated apoptosis, and cell-death

652  Data acquisition of surface protein markers was performed on the Attune NXT Flow Cytometer
653  (ThermoFisher Scientific). PD-GSCs were dissociated from their respective substrate using
654  Accutase and washed twice with PBS + FBS serum (10%), which involved centrifugation at 1K
655 rpm (193g) for 5 min, supernatant removal, and cell pellet resuspension with the PBS + FBS
656 serum (10%). The supernatant wash was removed and the cell pellet resuspended in the
657 PBS/FBS solution to the desired concentration of 1e6 cells/mL. To assess apoptosis, caspase
658  3/7-mediated apoptosis, and cell death within the GSC populations, cells were stained with
659  Annexin V conjugated with Alexa Fluro 568 (Invitrogen A13202), CellEvent™ Caspase 3/7
660 detection reagent (Invitrogen C10423), and SYTOX™ AAdvanced Dead Cell Stain (Invitrogen
661  S10349), simultaneously. Samples were stained following each of the manufacturer’s protocol,
662  respectively. Gating for positive and negative expressing cells was performed using FlowJo V10
663  based on multiple controls including, 1) unstained negative controls, 2) heat-inactivated cells
664  (incubated in a 60°C water bath for 15 min), which served as positive controls for apoptotic and
665 dead cells, and 3) Fluorescence minus one (FMO) controls to define an upper boundary for
666  background signal on the omitted signal and gate for positively stained populations in multi-color
667  experiments.

668

669  Flow cytometry — CD44 and CD133 analysis

670 Samples from each treatment condition were collected using TrypLE™ (Gibco™) to dissociate
671  and remove the cells from the culture flasks. TrypLE™ (1mL/25cm?) was used to minimize any
672  structural changes on CD44 and CD133 surface proteins during the dissociation process (82).
673  Subsequent sample processing prior to antibody staining was identical to how samples were
674  processed for apoptosis, caspase 3/7-mediated apoptosis, and cell-death cytometry assessment.
675 An anti-Hu CD44 antibody conjugated with PE (eBiosciences™) and an anti-Hu/Mo CD133

676 antibody conjugated with FITC (eBiosciences™) were used to assess expression of these two
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677  surface proteins across each PD-GSC population. Samples were simultaneously treated with both
678  antibodies per vendors’ recommendations. Analysis of flow cytometry data was performed using
679  FlowJo V10. Fluorescent signal gating was set based on multiple control samples including: 1)
680 unstained PD-GSC negative controls, 2) vendor-recommended isotype controls (Mouse 1gG1
681 kappa isotype and Rat IgG2b kappa isotype for anti-Hu CD133 and anti-Hu/Mo CD44,
682  respectively, 3) human GBM stem cells (Cellprogen Inc.), which served as a positive control cell
683  line for both CD133 and CD44 (per vendor’s specification), and 3) Caco2 cells, (ATCC) which
684  served as a positive control cells for CD133 and negative controls for CD44.

685

686  Pitavastatin treatment of PD-GSCs for scRNA-seq and flow cytometry analysis

687 PD-GSCs were incubated in serum-free culture media (described above) with pitavastatin (6uM).
688  Stock pitvastatin calcium (Selleck Chemicals LLC) was dissolved in DMSO to obtain a stock
689  concentration of 10mg/mL and stored in aliquots at -80°C. Stock pitavastatin calcium solution was
690  serially diluted in serum-free culture media to 100uM and then to the final concentration of 6uM
691  with a final DMSO concentration of 0.053% (v/v).

692

693  To monitor longitudinally PD-GSC response to pitavastatin, we performed a reverse time-course
694  treatment by adding pitavastatin to SN520 and SN503 cultures in a staggered fashion such that
695 the longest (4-day) treatment would have drug added first. Subsequent addition of pitavastatin
696  would occur on following days for 3- and 2-day treatment, respectively. This reverse time course
697  design allowed us to collect all samples simultaneously on day four following the initial addition of
698  pitavastatin. Because pitavastatin was added to PD-GSCs on different days, flasks were
699 inoculated at slightly different cell densities to account for cell growth that would occur in between
700 inoculation and time of pitavastatin addition. Consequently, sScCRNA-seq library preparation of all
701  samples for a particular PD-GSC population occurred simultaneously to minimize batch effects
702  due to individual sample processing (Supplementary Table S15)

703

704  Prior to T25 flask (BioLite™) inoculation for pitavastatin treatment, PD-GSCs were first expanded
705 inaT75 flask (BioLite™). Once the culture was confluent, the culture was harvested and split into
706 laminin-treated T25 flasks. Upon inoculation, cells were incubated in serum-free culture media at
707  37°C for 24 hours to allow cells to adhere to the interior surface of the flask. Following the first 24
708  hours, serum-free culture media was replaced with serum-free culture media with pitavastatin

709  (6uM) in T25 flasks predetermined to receive a 4-day treatment. Spent culture media would then
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710  be replaced with fresh culture media with pitavastatin (6uM) on subsequent days for D3 and D2
711  treatment conditions.

712

713 Upon the completion of the 4-day treatment, spent media was removed and cells were harvested
714  using Accutase™ (1mL/25cm?). To prevent any cell-free DNA/RNA from treatment-induced lysed
715  cells contaminating single-cell samples, we first processed a portion of the cell harvest solution
716  using the dead cell removal kit (Miltenyi Biotec 130-090-101) to remove any cell debris to avoid
717  any free RNA from lysed cells from getting mixed in with mRNA to be extracted from live cells.
718  Samples were processed per vendor’s specifications. The result was a cell suspension of the
719  remaining live cells post vehicle- or pitavastatin-treatment. Cell suspension was then processed
720  for scRNA-seq profiling per the 10X Chromium platform.

721

722  scRNA-seq library prep and sequencing

723  Single-cell RNA sequencing was performed using the 10X Chromium v2 system. Library
724  preparation was performed using 10x manufacturer instructions on an Illlumina NovaSeq 6000.
725  scATAC-seq was performed as per manufacturer instructions (Single-cell ATAC Reagent Kits
726  vl1.1 UserGuide RevD) and sequenced on an lllumina NextSeq 500.

727

728 Multi-passage, pitavastatin treatment

729 PD-GSCs were harvested from a T75 flask and passaged into replicate T75 flasks for either
730  pitavastatin (6uM) or vehicle (DMSO) treatment (2e6 cells/flask). Concomitantly, a portion of those
731  PD-GSCs were used to inoculate laminin-treated 96 well plates for drug-dosing analysis (see ICso
732 Analysis section). On D4, PD-GSCs were harvested using Accutase (1mL/25cm?) as described
733 previously. Cell suspensions were spun at 1000rpm (193g) for five minutes. Cell pellets were then
734  resuspended with serum-free culture media (200,000 cells/mL) to inoculate 96 well plates
735  (100uL/well, 20,000 cells/well) for subsequent ICs, determination. PD-GSCs were incubated in
736  serum-free culture media in 96 well plates for 48 hours to allow for cell attachment prior to
737  replacing spent media with serum-free media with pitavastatin (or vehicle). Treated cells were
738 incubated at 37°C for four days. Following the four-day treatment, cell viability was measured via
739  MTT assay as described below.

740

741  DNA quantification via propidium iodide (PI) staining

742  PD-GSC cultures were treated with pitavastatin (or vehicle control) in a reverse time-course

743  manner as described previously (Pitavastatin treatment of PD-GSCs for scRNA-seq and flow
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744  cytometry analysis section). Following cell harvest, PD-GSCs were washed with PBS and spun
745  down at 1000 RPMs (193 g) for 5 minutes. PD-GSCs were then fixed with cold 70% ethanol by
746  adding 70% ethanol drop-wise to the pellet while vortexing. Cells were fixed in 70% ethanol
747  overnight at 4°C. Once fixation was complete, the PD-GSCs were washed twice in PBS, spun
748  down at 1000 rpms for five minutes with careful removal of the supernatant so as to avoid any
749  cell loss. PD-GSCs were then treated with 50uL of ribonuclease (100ug/mL stock) to remove any
750 RNA and ensure only DNA would be stained. Finally, 200uL of propidium iodide (PI, 50ug/mL
751  stock) was added to the fixed and treated cells prior to flow cytometry analysis.

752

753  ICso Analysis and MTT viability assay

754  3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide, (MTT) assay was used to
755  determine the effects of pitavastatin on the viability of the non-responsive and responsive GSC
756  populations. Briefly, 20,000 cells/well were plated in laminin-treated 96-well plates with 100uL of
757  culture media. Following an initial 24hr incubation, the cells were treated with 100uL of culture
758 media with pitavastatin at varying concentrations (0.0, 0.1, 0.6, 1.0, 3.0, 6.0, 10.0, 33.0uM) and
759 incubated at 37C for four days. Vehicle amounts were adjusted such that the vehicle
760  concentration in all conditions was equivalent to the maximum drug dosage tested (DMSO 0.2%
761  v/v). Following the 4-day treatment, spent media was replaced with 100uL of serum-free culture
762  media with MTT (0.5mg/mL) and incubated at 37°C for 60 minutes. Following incubation,
763  supernatant from each well was discarded and replaced with 100uL of DMSO to dissolve the
764  formazan crystals formed during MTT incubation. Absorbance (4, where j is the drug
765  concentration) was measured via spectrophotometer at 570nm (Synergy H4, Agilent
766  Technologies, Inc.). Relative viability was calculated using the following formula: relative viability
767 = (Ai - Avackgrouna)/Avo * 100%, Where Apackerouna IS the absorbance from DMSO. ICso values were
768  calculated by using a 4-parameter log-logistic model determined by the drm() function within the
769  drc package in R. Here, the upper limit of the log-logistic model was set to 100%.

770

771  siRNA treatment

772 Following a 24hr incubation period, cells were treated with 5uM of Accell SMARTpool siRNA or
773 Accell SMARTpool Non-Targeting siRNA (Dharmacon Inc.). Lyophilized SMARTpool siRNAs
774  were resuspended in 1X siRNA buffer (Dharmacon Inc.) and subsequently diluted in serum-free
775 culture media to a final concentration of 5uM. Based on vendor recommendations, Accell SIRNA

776  designs facilitate siRNA delivery to the target cell and do not require additional transfection
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777  reagents. Accell SMARTpool siRNAs pools consist of four separate siRNAs designed to target a
778  particular gene. To test the efficacy of siRNA-targeted knockdown of specific TFs, siRNA (5uM)
779  and pitavastatin (1.0uM or 6.0uM for SN520 and SN503, respectively) were added simultaneously
780  followed by a four-day incubation at 37°C.

781

782  Bulk RNA-seq library prep and sequencing

783  Total RNA was extracted from PD-GSC cultures using mirVANA™ miRNA isolation kit
784  (ThermoFisher). Residual DNA was removed using the RQI RNAse-Free DNase kit (Promega).
785  Total RNA was then quantified using the Agilent RNA 6000 nano kit (catalogue number) on the
786  Agilent 2100 BioAnalyzer. 1ug of of high purity RNA was used as input to the Illumina TrueSeq
787  Stranded mRNA Library Prep Kit and sample libraries were generated per manufacturer’s
788  specifications. The RNA-seq libraries were sequenced on the NextSeq 500 next gen sequencer
789  using a paired end high-output 150bp v2.5 flowcell. Sequence intensity files were generated on
790 instrument using the lllumina Real Time Analysis software. The resulting intensity files were de-
791  multiplexed with the bcl2fastq2 software.

792

793  Processing and normalization of bulk RNA-seq data

794 Raw RNA-seq data of samples encoded in FASTQ-files were subjected to a standardized
795 RNAseq alignment pipeline. In summary, RNA-seq reads were trimmed and clipped of lllumina
796  sequence adapters via Trim Galore (https://github.com/FelixKrueger/TrimGalore), mapped to
797  human reference genome (GRCh38) using STAR (v2.7.3a), and counted using HTSeq (v 0.11.1).
798 Individual sample counts were combined into a single data object using the
799 DESegDataSetFromHTSeqCount function in DESeq2 (83). Sample-specific size factors were
800 determined and used to normalize counts, which were transformed using regularized log
801 transformation for subsequent downstream analysis, performed in R.

802

803 scRNA-seq data QC filtering and normalization

804  We initially processed the 10X Genomics raw data using Cell Ranger Single-Cell Software Suite
805 (release 3.1.0) to perform alignment, filtering, barcode counting, and UMI counting. Reads were
806  aligned to the GRCh38 reference genome using the pre-built annotation package download from
807 the 10X Genomics website. We then aggregated the outputs from different lanes using the
808  cellrange aggr function with default parameter settings.

809
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810 SN520 and SN503 scRNA-seq data sets were QC-filtered separately prior subsequent
811 downstream analysis. To minimize inclusion of poor-quality genes and single-cell samples per
812  sample set, we applied the following QC filters: 1) mitochondrial genes must comprise < 6.5% of
813  the number of uniquely mapped genes/cell, and 2) total counts/cell should be = 7500 and <
814  60,000. Post QC-filtering, each scRNA-seq data set included: 5,402 cells expressing up to 18,227
815 genes (SN520) and 5,722 cells expressing up to 18,797 genes (SN503). Subsequent
816  normalization and downstream analysis (e.g., DEG and functional enrichment analysis) was
817  performed using the Seurat v3.2.2 platform (84).

818

819  Normalization was performed for each scRNA-seq dataset separately by computing pool-based
820 size factors that were subsequently deconvolved to obtain cell-based size factors using the
821  computeSumFactors function within the scran package (version 1.10.2) (85) in R. Normalized log
822  expression values were used for subsequent downstream analysis.

823

824  Batch integration of scRNA-seq data

825 As each PD-GSC-specific data set was collected separately, we performed batch correction on
826 the scRNA-seq data to integrate the SN520 and SN503 data sets by applying the Harmony
827  algorithm (32). Subsequent SNN-graph formation and UMAP embedding was performed on the
828  Harmony-corrected PCs (Fig. 1E).

829

830 Cell-cycle analysis

831  To annotate individual cells with their respective cell cycle phase, we performed cell cycle analysis
832  using the Seurat program. Briefly, core sets of 43 and 54 genes associated with the S- and G2/M-
833  phases, included in the Seurat platform, were used to determine a cell-cycle phase score based
834  on the expression of the respective markers. Based on these scores, cells were assigned to be
835 either in G1 or G2/M phase. Cells not expressing genes from either set were considered as not
836  cycling and assigned to the G1 phase. Using these quantitative scores, we also regressed out
837  cell-cycle effects on expression for each cell using the ScaleData function in Seurat as part of the
838  pre-processing steps to QC the scRNA-seq data.

839

840 Cluster identification and analysis of differentially expressed genes (DEGS).

841  After quality control and filtering the scran-normalized scRNA-seq data, we performed
842  dimensionality reduction via principal component analysis (PCA). The first 30 principal

843  components were used as a basis to create a shared nearest neighbor (SNN) graph of the single-
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cell samples. From this graph, clusters of single cells were identified via Louvain clustering of

nodes, i.e., single cells, from the SNN graph.

To identify DEGs in each of the SNN-clusters identified across the primary tumor and PDX single-
cell samples, the FindMarkers function in Seurat was used. In particular, the Wilcoxon rank sum
test was used with the following cutoff values to identify DEGs: absolute log-fold change =
log2(1.5), with a minimum proportion of 10% of the cells of interest expressing the gene of interest,
and an FDR-adjusted p-value < 0.1.

Gene set variance analysis (GSVA) enrichment scores and statistical significance

Gene set variance analysis GSVA (version 1.34.0, R package) (31) was used to determine
enrichment scores of GBM molecular subtypes. To define the dominant molecular subtype gene
expression signature in each single cell, we used an amalgamation of the original gene sets that
defined the classical, proneural, and mesenchymal subtypes (2) and refined molecular subtype
gene sets (3) for GSVA.

Critical Transition Index (/)
A brief explanation of /. from (52) is reproduced for reference. The critical transition index is a
scalar value that quantifies if a cell is undergoing (high Ic) or has undergone some critical

transition and reached some stable cell state (low Ic). /is calculated according to the following:

_ {IR(gu.9))
1e(®) = ~R(sE, 50

1)
Where Ris Pearson’s correlation coefficient between two observed cell state vectors S« and $ or
between two “gene” vectors g; and g;, respectively, taken from the gene expression data matrix

representing the state(s) of a “cell ensemble” X(t)

x% e xm
x®=|: -~ )
x{l e x‘;':)l’l

X(t) thus represents the data of a “measurement point”, with access to finer-grained layer of

information given the single-cell nature of the data. Each row represents a single-cell in some
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873 state k within the cell-ensemble of n-cells in m-dimensional gene state space — S* =
874  [xf,x%,..,xk]. Each column represents gene i’s expression across n cells from said “cell
875  ensemble” X(t), where g; = [x}xl2 ...,xl-"]. The brackets (--- ) in equation 1 represent the average
876  of all correlation coefficients R between all pairs of state vectors S or gene vectors g from matrix
877  X(t). Here, a cell-ensemble represented the population of PD-GSCs at a particular treatment time-
878  point (DO, D2, D3, or D4).

879

880  The underlying premise is that cells that have undergone some critical transition into an attractor
881  state will be nominally expressing the same distinct gene expression pattern, with the exception
882  of deviations due to stochastic fluctuations. Consequently, cells of the same differentiated state
883  will be expressing similar gene expression programs and will correlate highly with one another.
884  Characteristic gene expression of cells within a particular attractor state is affected by symmetric
885  random fluctuations. Thus, gene-to-gene coupling is dominated by noise, reducing gene-to-gene
886  correlations. Conversely, destabilized cells undergoing some transition, requires some non-
887 random shift in gene expression patterns that override the symmetric noise expected in cells
888  within a stable attractor state.

889

890 MINER network inference

891  An additional gene-filtering step was performed on the QC scRNA-seq data sets to identify a
892 common gene set between SN520 and SN503 — only common genes having a minimum gene
893 count = 2 in a minimum of 20 cells were considered for network inference. This resulted in a
894 common gene set of 9,089 common genes used in SN520 and SN503 for MINER3 network
895 inference.

896

897  Toinferregulons within single cells, we applied the MINER (86) workflow to the SN520 and SN503
898 scRNA-seq data sets independently. As part of the scSYGNAL framework, the MINER algorithm
899 involves a suite of functions that enables the inference of causal mechanistic relationships linking
900 genetic mutations to transcriptional regulation. Because our datasets did not include any
901 mutational profiling, we primarily focused on identifying regulons, based on co-expression
902 clustering and enrichment of transcription factor binding motifs present in those co-expression
903 clusters identified, and calculated the activity of these regulons in the single-cell samples. Broadly
904  speaking, regulon activity represents the “eigengene” value in an individual cell. Regulons are
905 identified, in part, by performing PCA on the normalized scRNA-seq data profiles to identify

906  principal components in which decreasing amounts of variation across genes are captured along
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907 each principal component — defined as a linear combination of gene expression values. This linear
908 combination of weighted gene expression values defines the eigengene value per sample (41,
909 42, 86, 87). Alternatively, the eigengene is defined as the first principal component of the module
910 expression matrix composed of expression values of regulon genes across samples. It is a scalar
911 representation of expression of gene members for a regulon in an individual sample (87).

912

913 To determine the significance of each inferred regulon, we performed a permutation test to
914 determine the possibility of obtaining an eigenvalue corresponding to the first principal component
915 of a regulon (across all single-cells) of equal or greater value. The eigenvalue represents a
916  summarizing value of all the genes in the regulon, i.e., eigengene and thus if these genes are
917 indeed coregulated or are correlated, the eigengene value would be higher than that of randomly
918 selected set of genes. Next, we randomly select a set of genes having the same number of
919 members as the original regulon and calculate the corresponding eigengene value for the
920 permuted regulon. This procedure was repeated 1,000 times to create a null distribution of
921  eigengene values. We repeated this procedure for each inferred regulon. Those regulons whose
922  eigengene values were greater than the 95th percentile of their respective null distribution were
923  considered significant. These eigengene values represented regulon “activity” within each cell.
924  We further filtered out regulons in which the first principal component from the module expression
925  matrix composed of expression values of regulon genes across samples did not account for at
926 least 20% of the variation of the module expression matrix. From these two criteria, statistical
927  significance of an eigengene and variance explained within the module expression matrix were
928  used to refine the number of regulons to include for SN520 and SN503, respectively.

929

930 Pseudotime analysis

931 We applied Monocle v3 in R (88, 89) to organize cells along a pseudotime axis and identify distinct
932 trajectories along which transcriptomic expression states putatively transition. Scran-normalized
933 scRNA-seq datasets were used to infer pseudotime trajectories for SN520 and SN503
934 independently using the learn_graph and order_cells function in Monocle v3 (v1.2.7) and default
935  parameter settings.

936

937 Locally estimated scatterplot smoothing (LOESS) regression analysis

938 We performed LOESS regression on individual TF expression across the single cells along the
939 inferred pseudotime trajectories. This allowed us to fit a polynomial regression line through the

940  highly variable single-cell gene expression to identify any underlying patterns that may be present
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941  over pseudotime. LOESS regression of normalized single-cell gene expression along pseudotime
942  was performed using the loess function within the stats v3.6.2 package in R.

943

944  TF-TF network topology inference

945  Togenerate TF-TF network topologies, we cross-referenced all regulator-target gene connections
946 inferred by MINER3 against the transcription factor binding site database
947  (tfbsdb.systemsbiology.net), focusing on only those interactions that involved pairs of TFs that
948  were also regulators for some regulon. The type of TF-TF interaction was determined by the sign
949  of the pairwise Pearson correlation between the two components — positive correlations were
950 interpreted as activating interactions while negative correlations were interpreted as inhibiting
951 interactions. We further refined the TF-TF network by removing those interactions having an
952  absolute Pearson correlation coefficient () below a statistically significant minimum threshold,
953 determined by permutation analysis (|r | > 0.17 for SN520 and |r | > 0.16 from SN503).
954  Permutation tests involved randomly mixing expression values across genes within a single-cell
955 and calculating Pearson’s r among all gene pairs across all PD-GSCs for SN520 and SN503
956 independently. This process was repeated 1000 times to create a null distribution of Pearson
957  correlation coefficients.

958

959  To determine the statistical significance of each network TF-TF network topology, we performed
960 two sets of permutation tests (Supplementary). Briefly, the first set of permutation testes involved
961 permuting the network topology, where node labels and edges were permuted such that the
962 number of edges and nodes remained consistent, we performed dynamic simulation for the
963  permuted network using initial condition, i.e., TF expression profiles from a randomly selected
964 untreated (DO) cell for each PD-GSC, respectively. The simulated results were then compared to
965  experimental data to determine cosine similarity values. This permutation-simulation-comparison
966  process was repeated 1,000 times to create a null distribution of cosine similarity values. The
967 distribution of cosine similarity values derived from the original TF-TF network topologies were
968  significantly higher than the permuted similarity values (SN503 empirical p-value = XXX, SN520
969 empirical p-value = YYY). The second set of permutations involved permuting the gene
970 expression data, mixing the gene and cell ids to see if similar TF-expression states could be
971  achieved by random chance. Cell and gene labels were permuted 1000 times to create a
972  permuted distribution of TF-expression states, which were then compared to the original
973  experimental states, defined by hierarchical clustering, using pairwise cosine similarity values

974  (Supplementary Figure S10).
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975
976  RACIPE simulations
977  Simulations were performed using the sRACIPE package v1.16.0 in R. Briefly, using sRACIPE
978  we generated an ensemble of ordinary differential equation (ODE) models based on associated
979 chemical rate equations with distinct, randomly generated kinetic parameter sets. From the
980 ensemble of models, we analyze the resulting distribution of steady states and identify robust
981  phenotypes supported by the core TF network. The inferred TF-TF network topology for SN520
982  (or SN503) was used as the input circuit for the sracipeSimulate function. An integral step size of
983 0.2 and simulation time of 100 was used for simulations.
984
985  To verify the ability of the network topology to recapitulate observed TF expression states, we
986 initialized the network by randomly selecting 1,000 expression profiles (with replacement) for the
987 respective TFs from DO scRNA-seq profiles for each PD-GSC, i.e., initial conditions that were
988  paired with 1,000 parameter models randomly selected by the sracipeSimulate function (default
989  settings used).
990
991 To explore the plausible network states supported by each network topology, we initialized each
992  network topology by using 100 randomly selected initial conditions that were used across 10,000
993 randomly selected parameter sets, which resulted in an ensemble of 1 million simulated steady-
994  states. To determine the dominant steady states from the ensemble of simulations, all Euclidean
995 pairwise distances were calculated. Those simulated states that had a Euclidean pairwise
996  distance > 4.0 (ScCSYGNAL-520) or > 1.92 (scSYGNAL-503) were labeled as a “non-redundant”
997 state. The distance thresholds were found to be the > 99" percentile of permuted Euclidean
998  pairwise distances for each PD-GSC, which was determined by randomly selecting 1,000 pairs
999  of simulated states and calculating all pairwise Euclidean distances. This process was repeated
1000 10 times to create a distribution of 10 million pairwise Euclidean distances. From these distance
1001 thresholds, we identified 6,519 (ScCSYGNAL-520) and 4,223 (scSYGNAL-503) simulated states
1002 were deemed as unique states. We then hierarchically clustered each set of distinct, “non-
1003  redundant” states and identified four dominant states that were supported by each TF-TF network
1004 topology (Figure 6C, E). To classify a “redundant” simulated state, we assigned it the same state
1005 as its nearest “non-redundant” neighbor, based on Euclidean distance.
1006
1007 RACIPE convergence tests
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1008  To verify that the number of initial conditions and parameter sets would sufficiently converge to
1009  steady state solutions across the initial condition and parameter space, we performed a series of
1010 simulations using 100 randomly selected initial conditions across different humber of model
1011 parameters (1e3, 2e3, 4e3, 6e3, 8e3, and 1e4). The result was a series of simulations consisting
1012  of six different ensembles of simulated states, one for each model parameter set, with each
1013  ensemble associated with a randomly selected set of initial conditions. This series of simulations
1014  was performed in triplicate. For each set of results, we identified the unique states using the same
1015  Euclidean distance thresholds described in RACIPE simulations. Next, we determined the
1016  Kullback-Liebler (KL) divergence for these simulated states across the triplicate set of simulations
1017  for each set of results (Supplementary Figure S11).

1018

1019 Random Forest analysis of RACIPE simulations

1020 Random forest analysis was performed on RACIPE simulations, i.e., simulated transcriptional
1021  states for SN520 and SN503 using randomForest function (default parameters) from the
1022 randomForest package v4.7-1.1. Simulated state classifiers were based on hierarchical clustering
1023  of the unique (non-redundant) simulated states as described in RACIPE simulations.

1024

1025  Drug Matching Identification

1026  To identify drugs targeting elements within the transcriptional programs identified from the
1027 network analysis, we applied the Open Targets platform tool (https://www.targetvalidation.org/).
1028  The platform integrates a variety of data and evidence from genetics, genomics, transcriptomics,
1029  drug, animal models, and literature to score and rank target-disease associations for drug target
1030 identification. We focused our search on identifying drug-target matches for only those drugs
1031  associated with any cancer treatments that had reached Phase IV matching with regulon genes
1032  associated with SN520. Originally, 28 drugs paired with genes across 17 regulons. We further
1033  refined the list of potential drug candidates to those drugs associated with GBM, reducing the
1034  number of candidate drugs to eight, including vinflunine.

1035

1036 DATA AND CODE AVAILABILITY

1037

1038  All single-cell RNA-seq data will be deposited in dbGaP. All code is available upon request. Any
1039  additional information required to reanalyze the data reported in this paper is available upon
1040  request.

1041
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1396 FIGURE LEGENDS

1397

1398  Figure 1. Pitavastatin causes shift in molecular subtype expressed by PD-GSCs. (A)
1399  Pitavastatin ICs values for each of 45 PD-GSCs as determined using dose titration assays
1400 (below). Labeled PD-GSCs represent a subset deemed as a responders (blue) and non-
1401  responders (red) to pitavastatin. Below are drug-dose response and time-course response curves
1402 for SN520 (pitavastatin-responsive) and SN503 (pitavastatin-non-responsive) PD-GSC
1403  populations. (B) Experimental workflow for longitudinal monitoring of PD-GSC response to
1404  pitavastatin treatment. Colored horizontal arrows indicate duration of pitavastatin (magenta),
1405  vehicle-control (DMSO, light blue), or untreated control (dark grey). (C) Heatmap of bulk-level
1406  expression for molecular subtype gene sets (classical — CL, proneural — PN, mesenchymal —
1407  MES) for samples collected. (D) Table summarizing dominant molecular subtype expressed in
1408  each sample. D2 bulk sample for SN520 was absent due to sample limitations. (E) UMAP plots
1409  of Harmony-integrated scRNA-seq data sets and corresponding individual plots for each PD-GSC
1410  phenotype. (F) Wasserstein distance of transport distances between each consecutive time point
1411  for each PD-GSC under each treatment condition (vehicle- or pitavastatin-treatment).

1412

1413  Figure 2. Single-cell characterization of PD-GSC response to pitavastatin. UMAP plots of
1414  scRNA-seq profiles, annotated according to treatment conditions (untreated control, vehicle —
1415 DMSO, and pitavastatin — PSTAT), for (A) SN520 and (B) SN503. Scatter plots show proportions
1416  of each subtype in each PD-GSC population across treatment for (C) SN520 and (D) SN503. (E
1417 - F) Flow cytometry analysis of PN and MES markers CD133 (PN) and CD44 (MES) across
1418  pitavastatin-treated cells for SN520 and SN503, respectively. Proportions of cells positive for each
1419  subtype marker are quantified in the adjacent barplots underneath. (G-H) Heatmap of inferCNV
1420 scores for SN520 and SN503, respectively. Cells (rows) are grouped based on treatment
1421  conditions (same color annotation as in (A) and (B)). Genes (columns) are arranged according to
1422  their chromosomal positions. () Dose-response curves of naive SN520 PD-GSCs (light blue) and
1423  SN520 PD-GSCs that survived an initial pitavastatin-treatment (treated — dark blue). Adjacent plot
1424  shows corresponding AUC values from dose-response curves generated from subsequent PD-
1425  GSC cultures derived from original pitavastatin- or vehicle-control-treatment for SN520 (left) and
1426 SN503 (right). Paired t-test results showed a sustained (significant) increase in AUC values of the
1427  PSTAT-treated SN520 PD-GSCs relative to their vehicle-control counterparts but not for SN503.
1428
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1429  Figure 3. Differential expression and pathway enrichment analysis reveals underlying
1430 processes driving pitavastatin responses. (A) Heatmap of the top upregulated DEGs, based
1431 on FDR p-values, across the 14 Louvain cell clusters (cl) identified in vehicle-control- and
1432  pitavastatin-treated SN520 PD-GSCs. Adjacent UMAP plot with treatment annotation (same as
1433 Fig 2A) included for reference. (B) Corresponding UMAP plots of sScRNA-seq profiles annotated
1434  according to Louvain cell cluster (left) and treatment condition (right) as reference. (C) Cell
1435  proportions for each Louvain cluster that belong to each treatment condition for SN520. Significant
1436  enrichment of treatment condition within Louvain cluster indicated by asterisk (FDR < 0.05) or
1437  double dagger (FDR < 1e-05) (D) Cell proportions for each Louvain cluster that belong to each
1438 treatment condition for SN503. Significant enrichment notation identical to that used in (D). (E)
1439  Dotplot of hallmark gene sets enriched across SN503 and SN520 PD-GSCs, grouped with respect
1440 to either drug-treatment duration or Louvain clustering. Dot size represents the ratio of number of
1441  upregulated genes associated with a PD-GSC grouping to the number of genes associated with
1442  a specific hallmark gene set. Dot colors indicate significance of enrichment (FDR value). (F) Total
1443  number of up- and down-regulated DEGSs, relative to untreated control (DO) cells, at each
1444  treatment time point for SN503 (red) and SN520 (blue).

1445

1446  Figure 4. MINERS3 transcriptional regulatory network inference reveals mechanisms of cell-
1447  state changes. (A) Heatmaps of normalized regulon activities across SN520 (top) and SN503
1448  (bottom) PD-GSCs. Regulons (rows) are organized into transcriptional programs (Pr) while single
1449 cells (columns) are organized into transcriptional states (St). Left-adjacent color bars indicate
1450 what regulons belong to a particular transcriptional program. Left-adjacent color bar indicates
1451  transcriptional programs. Top color bars indicate treatment condition (color annotation identical
1452  to Fig. 1E) and corresponding transcriptional state for a single cell. (B) Stacked barplot show
1453  proportion of cells within each transcriptional state from each treatment condition for SN520 (top)
1454  and SN503 (bottom). (C) Boxplot/violin plots of distributions of regulon activity for select programs
1455  across treatment conditions for SN520 and SN503. Regulon activity values were capped between
1456  the lower 2.5% and 97.5% range of values. Labels indicate program IDs and select hallmark gene
1457  sets (90) enriched within each program. The box represents the inter-quantile range (IQR — 25"
1458  and 75" percentile) and median activity value while the whiskers represent 1.5x IQR. Asterisks
1459 indicate statistically significant differences between regulon activity distributions. Single asterisks
1460  (*) denote activity distribution of untreated controls (CTRL) is significantly lower than distribution
1461  being compared (FDR << 1e-3). Double asterisks (**) denote distribution of untreated controls is
1462  significantly higher than either vehicle-treated (DMSO) or pitavstatin-treated (PSTAT)
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1463  distributions being compared (FDR << 1e-3). (D) Flow diagram outlining approach to derive core
1464  TF-TF network from MINERS results. Final core TF-TF networks derived for (E) SN520 and (F)
1465 SN503.

1466

1467  Figure 5. Distinct trajectories define SN520 and SN503 pitavastatin response. (A) UMAP
1468  plots of vehicle- and pitavastatin-treated cells for SN520 (left column) and SN503 (right column).
1469  Annotation highlight treatment conditions (top row), molecular subtype (2" row), pseudotime (3™
1470  row) and RNA velocity (4™ row). (B) Critical transition index (Ic) of SN520 (blue) and SN503 (red)
1471  cells treated with vehicle (DMSO - light) or pitavastatin (PSTAT — dark). (C) LOESS regression of
1472  TF expression behavior sorted according to peak expression along pseudotime. Density plots
1473  depict distribution of sample time points along pseudotime trajectory. Heatmap shows expression
1474  of TFs rank sorted by time of peak expression along pseudotime (color bar beneath heatmap).
1475 (D) Select set of LOESS regression of mean program activities with respect to pseudotime.
1476  Regulons are clustered based on their dynamic activity profiles with respect to pseudotime.
1477  Dashed grey line represents the average shape of the curves for each cluster. Labels indicate
1478  which transcriptional programs were grouped into each cluster. Select hallmark gene sets (90)
1479  enriched within programs are labeled as well. (E) Boxplots/violin plots of expression of genes
1480  associated with indicated pathways/processes (90) on respective treatment days. Relative gene
1481  expression values were capped at the lower 2.5% and 97.5% range of values. Labels indicate
1482  select hallmark gene sets enriched within subpopulation of cells (treatment time point). Asterisks
1483 indicate statistically greater expression in pitavstatin-treated cells (PSTAT) relative to untreated
1484  control (CTRL) counterparts (Wilcoxon rank test, FDR << 1e-5). The box represents the inter-
1485  quantile range (IQR — 25™ and 75" percentile), median activity value while the whiskers highlight
1486  1.5x IQR.

1487

1488 Figure 6. Dynamic simulations of core TF regulatory network supports phenotypic
1489 plasticity of GSCs. Simulated transcriptional states projected along first two principal
1490 components. Contour lines represent distribution of scores from PCA of TF expression states
1491  from single PD-GSCs for (A) SN520 and (B) SN503. One thousand simulated states were
1492  generated using scSYGNAL-520/503 as network topologies and using respective DO scRNA-seq
1493  data as inputs to RACIPE algorithm. (C) Three plots summarize results from 1 million simulations
1494  using scSYGNAL-520 and randomly selected initial conditions as inputs to RACIPE algorithm to
1495  explore plausible steady states supported by network topology derived from MINER3 (simulations

1496  are distinct from those in (A)). Dendrogram highlights four distinct simulated steady states
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1497  generated by RACIPE using core TF network and randomly selected initial conditions as input..
1498  Simulated states projected along first two PCs. Horizontal barplot visualizes rank-ordered
1499 importance of TFs in distinguishing four simulated states per random forest analysis based on the
1500 mean decrease in accuracy in categorizing sample if the TF were excluded from the model. (D)
1501 Heatmap of expression for TFs that define core TF network in SN520 cells that define
1502  experimental states (ESs20-i) used as basis of comparison for simulated states. Adjacent boxplots
1503  of top four most important TFs per random forest analysis. Top row of boxplots show distributions
1504  of expression of TFs for each experimental states identified. Bottom row includes distributions of
1505 simulated expression values (normalized) from simulations that used randomized initial
1506  conditions. (E-F) Same as (C-D), but for SN503. (G) Viability of SN520 following 4-day treatment
1507  with 1.0 uM pitavastatin and simultaneous siRNA-mediated KD of TFs or non-template control
1508 (NTC - red dashed line). Values in bars represent FDR p-values indicating significant decrease
1509 relative to NTC. Values in bars represent FDR p-values indicating significant decrease relative to
1510 NTC siRNA condition. Adjacent scatterplot compares rank ordering of tested TFs to
1511  corresponding rank ordering based on predicted change in proportion of states belonging to MES
1512  state 1. TFs below the diagonal have a greater impact on reducing viability than was predicted.
1513  (H) Viability of SN503 following pitavastatin treatment and simultaneous siRNA-mediate KD of
1514  TFsassociated with OXPHOS-associated relative to NTC and 4-day treatment 6.0 uM pitavastatin
1515 treatment. Again, values in bars represent FDR p-values. Values in bars represent FDR p-values.
1516

1517 Figure 7. Dynamic behavior of regulons reveal additional targets that guide rational
1518 secondary drug selection. (A) Distribution of activities for representative tubulin-associated
1519  regulons across SN520 PD-GSCs. Statistically significant differences in regulon activity, relative
1520  to activity in untreated control cells are indicated by asterisks or double daggers (Wilcoxon rank
1521  test, * FDR < 1e-20, ** FDR < 1e-150). (B) Distribution of activities for representative tubulin-
1522  associated regulons across SN503 PD-GSCs across treatment conditions. Asterisks indicate
1523  conditions having significantly higher values relative to untreated controls (Wilcoxon rank test, *
1524 FDR < 1le-20, ** FDR < 1e-150). (C) Experimental designs used to test effects of sequential
1525  pitavastatin and vinflunine treatment on non-responder and responder PD-GSC populations. (D)
1526  Dose-response curves for SN520 (top) and SN503 (bottom) resulting from a 24hr pre-treatment
1527  with vehicle or pitavastatin (2uM or 6uM) followed by vinflunine treatment (1.5e-9, 4.6e-9, 13.7e-
1528 9, 41.2e-9, 123.5e-9, 370.4e-9, 1.10e-6, 3.30e-6, 10.0e-6 30.0e-6 M). Adjacent barplot of ICso
1529  values determined from 24hr pretreatment with vehicle or pitavastatin (2uM or 6uM) for all non-

1530 responder and responder PD-GSCs tested. Results from 48hr pretreatment are included as
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1531  Supplementary Figure S14. (E) Depiction of how topologies of the underlying response TF-TF
1532  networks, in response to drug treatment, can drive responder and non-responder PD-GSCs to
1533  transition into different states along a Waddington-like phenotypic landscape. Treatment with a
1534  drug to which cells are sensitive (1° drug®) activates a highly interconnected network of a
1535 responder PD-GSC, driving PMT across a majority of the surviving cell population, enabling
1536  acquisition of resistance to “multiple drugs®”. Secondary intervention with a drug to which cells
1537  are resistant (2° drug®) to target vulnerabilities in the intermediate states potentiates killing and
1538  likely blocks PMT. By contrast, the non-responder PD-GSC is comprised of sub-populations of
1539  cells that are already in states (center well) that are resistant to the primary drug (1° drugR®).
1540 Treatment with the primary drug in this case activates a sparse network that does not trigger
1541  coordinated cell state transitions, but instead drives the surviving cells into multiple distinct drug-
1542  resistant states, which may be sensitive to secondary interventions (e.g., SiRNA).

1543

1544

1545
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