

1 **Gene regulatory network topology governs resistance and treatment**
2 **escape in glioma stem-like cells**

3

4 James H. Park¹, Parvinder Hothi², Adrian Lopez Garcia de Lomana³, Min Pan¹, Rachel Calder¹,
5 Serdar Turkarslan¹, Wei-Ju Wu¹, Hwahyung Lee², Anoop P. Patel^{4,5}, Charles Cobbs², Sui Huang¹,
6 Nitin S. Baliga^{1,6}

7 1. Institute for Systems Biology, Seattle, WA.

8 2. Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle,
9 WA.

10 3. Center for Systems Biology, University of Iceland, Reykjavik, Iceland.

11 4. Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center, Duke University,
12 Durham, NC.

13 5. Center for Advanced Genomic Technologies, Duke University, Durham, NC

14 6. Departments of Microbiology, Biology, and Molecular Engineering Sciences, University of
15 Washington, Seattle, WA.

16

17 **ABSTRACT**

18
19 Poor prognosis and drug resistance in glioblastoma (GBM) manifests from heterogeneity and
20 treatment-induced shifts in phenotypic states of tumor cells, including dedifferentiation to glioma
21 stem-like cells (GSCs). This rare tumorigenic cell subpopulation is inherently resistant to
22 temozolomide, undergoes proneural-to-mesenchymal transition (PMT) to evade therapy, and
23 thereby drives recurrence. Through inference of transcriptional regulatory networks (TRNs) of
24 patient-derived GSCs (PD-GSCs) at single-cell resolution, we demonstrate how topology of
25 transcription factor interactions drives distinct trajectories of cell state transitions of susceptible
26 and resistant PD-GSCs in response to cytotoxic drug treatment. By experimentally testing TRN
27 simulation-based predictions, we show that drug treatment drives surviving cells of a PD-GSC
28 along a trajectory of intermediate states, akin to a bottleneck in gene expression space, exposing
29 vulnerability to potentiated killing by sequential addition of siRNA or a second drug targeting
30 transcriptional programs governing non-genetic plasticity of a PD-GSC. Thus, our findings
31 demonstrate an approach to uncover and use TRN topology of a PD-GSC to rationally predict
32 combinatorial and sequential treatments that block treatment escape and acquired resistance in
33 GBM.

34

35 **INTRODUCTION**

36

37 Glioblastoma (GBM) is the most lethal and aggressive primary brain tumor in adults. With current
38 standard of care (SOC), which involves maximal surgical resection, fractionated radiotherapy
39 (XRT), and chemotherapy with the DNA-alkylating agent, temozolomide (TMZ) (1), patient
40 prognosis remains dismal with a median survival time of 14-15 months and a 90% risk of
41 recurrence. There is growing evidence that the poor therapy responsiveness and dismal
42 prognosis in GBM patients emerges from the interplay of tumor cell heterogeneity and treatment-
43 induced shifts of cellular phenotypic states. Three molecular subtypes of GBM have been
44 identified—proneural (PN), classical (CL), and mesenchymal (MES), each exhibiting distinct
45 responses to SOC and clinical prognosis (2, 3). Single-cell resolution transcriptome analyses
46 further demonstrated that even an individual GBM tumor is heterogeneous, not only
47 morphologically but also with respect to its composition of cellular states (4), which can include a
48 mixture of PN/CL/MES subtype cells and a small subpopulation of glioma stem-like cells (GSCs)
49 that have the capability to self-renew, generate different tumor cell progenies, and initiate new
50 tumors. Further, there is evidence that extrinsic signals and stressors, including those generated
51 by treatment, can also drive heterogeneous tumor cells to dedifferentiate into immature GSCs
52 that are inherently resistant to TMZ (5, 6).

53

54 While PN GSCs have higher proliferation rates and promote tumor angiogenesis, MES GSCs
55 have potent invasive capabilities (7) and are more resistant to radiation (8) and drug treatment
56 (9). Thus, most recurrent tumors derived from non-MES primary tumor are comprised of the MES
57 subtype (10, 11). Two hypotheses have been proposed for the shift in recurrent tumor subtype
58 and corresponding development of treatment resistance (12, 13): 1) MES subtype GSCs are
59 selected for and eventually drive the growth of the recurrent tumor (14), or 2) radiation and
60 chemotherapy causes GSCs to undergo a PN to MES transition (PMT) to evade and survive
61 treatment (7, 15). The latter hypothesis is in line with the emerging notion that non-genetic cell
62 plasticity, in addition to selection of fixed, genetically determined phenotypes of mutant cells
63 accounts for tumor progression and recurrence. For instance, radiation- or chemotherapy-induced
64 epithelial to MES transition (EMT) in solid tumors has been widely implicated in the rapid
65 development of therapy resistance (16–25). Thus, GSCs undergoing PMT may be causally
66 responsible for recurrence of most drug resistant GBM tumors in the form of the MES subtype
67 (26). For example, expression of MES marker (CD44) and NF- κ B pathways associated with PMT
68 were elevated following radiation treatment of PN GSCs pretreated with TNF-alpha. In genetically

69 engineered mouse models with cells that can fluorescently report molecular subtype, GSCs
70 transitioned to the MES subtype as early as 6 hours following radiation treatment, demonstrating
71 intrinsic ability of GSCs to deal with treatment-induced stress (15). Finally, GSCs isolated from
72 the invasive tumor edge transitioned from a PN subtype to a MES phenotype in a C/EBP- β
73 dependent manner following treatment (27). In view of the accumulating evidence for the role of
74 non-genetic plasticity of GSCs in the development of recurrent and refractory tumors, multiple
75 clinical trials are underway to evaluate novel drugs or drug combinations that are both cytotoxic
76 against GSCs and also meet the criteria for treating brain tumors (e.g., penetrance of blood brain
77 barrier) to treat recurrent therapy-refractory GBM (28). These clinical studies, including our own,
78 have discovered that many FDA-approved drugs are effective in killing GSCs, but can also induce
79 surviving cells to undergo PMT.

80

81 Here, we sought to understand if knowledge of mechanisms of plasticity of GSCs, and the
82 trajectories through which they undergo drug-induced PMT, would enable rational strategies to
83 improve treatment responsiveness by disrupting primary resistance mechanisms, while blocking
84 therapy escape to prevent acquired resistance and tumor recurrence. We have performed these
85 studies with pitavastatin, an HMG-CoA reductase inhibitor, which is widely used to manage
86 cholesterol levels. Pitavastatin is a prime example of an FDA-approved drug that can be
87 repurposed to minimize GBM recurrence because of its anti-proliferative and radiotherapy
88 sensitization effects on glioma cells (29) as well as its cytotoxic effects against GSCs (30).
89 Specifically, we have investigated mechanisms of primary and acquired resistance in six patient-
90 derived GSCs (PD-GSCs) – three responders (SN520, SN533, and SN575) and three non-
91 responders (SN503, SN517 and SN521) to pitavastatin. Through the inference of mechanistic
92 transcriptional regulatory networks at single cell resolution, we demonstrate that the architecture
93 and dynamics of a core transcription factor (TF) network governed the phenotypic plasticity of PD-
94 GSCs. By performing *in silico* simulations and chemical and genetic (siRNA) perturbations, we
95 show compelling evidence that it wasn't the composition of initial cell states, but the topology of
96 the core TF-TF network that governed phenotypic plasticity of GSCs. Finally, our findings
97 demonstrate that mechanistic knowledge of the gene regulatory network topology can be
98 leveraged to rationally tailor combinatorial and sequential treatment regimen to disrupt primary or
99 acquired resistance in a given PD-GSC.

100

101

102

103 **RESULTS**

104

105 **Pitavastatin treatment induces distinct responses in SN520 and SN503 PD-GSCs**

106 Through high throughput dose titration assays we discovered that pitavastatin had a wide range
107 of effectiveness against 45 PD-GSCs. Based on their varying sensitivities, we classified the PD-
108 GSCs into two categories, one in which PD-GSCs were considered a “responder” ($IC_{50} < 5.0\mu M$)
109 and the other in which they were considered a “non-responder” ($IC_{50} \geq 5.0\mu M$, Figure 1A). To
110 understand the dynamics underlying each drug-response phenotype, we examined pitavastatin
111 sensitivity of two PD-GSC cultures, SN520 and SN503, both of which were isocitrate
112 dehydrogenase 1 (IDH1) wild-type and O6-methylguanine-DNA methyltransferase (MGMT)
113 unmethylated. The dose titration results revealed distinct susceptibility profiles to pitavastatin
114 treatment. With an IC_{50} of $13.0\mu M$, SN503 was considered a “non-responder”, whereas as SN520
115 with an IC_{50} of $0.43\mu M$ was labeled a “responder” (Figure. 1A). Next, we investigated the
116 longitudinal response of each PD-GSC culture over a 4-day treatment with DMSO (vehicle
117 control) or pitavastatin at $6\mu M$, a dose at which significant decreases in cell viability were observed
118 over the same treatment period (Supplementary Figure S1). To minimize batch effects, replicate
119 cultures were treated with drug or vehicle over a staggered schedule such that all samples for
120 days 0 (D0), 2 (D2), 3 (D3), and 4 (D4) were collected and processed simultaneously for
121 subsequent flow cytometry, bulk RNA-seq, and scRNA-seq analysis (Figure. 1B). SN520 viability
122 decreased dramatically during treatment between D3 and D4, falling below 90% by day 5 (Figure
123 1A). By contrast, over the first three days of pitavastatin treatment, SN503 viability decreased
124 rapidly at a rate that was similar to the kill rate of SN520, but leveled off to ~60% for the remaining
125 duration of the 4-day treatment.

126

127 Flow cytometry analysis with annexin V labeling demonstrated that pitavastatin had killed SN520
128 cells by inducing apoptosis (Supplementary Figure S2). This discrepancy was interesting because
129 unlike SN520, cytometry analysis of the SN503 did not reveal any dramatic increase in annexin
130 V signal, suggesting that in this PD-GSC culture a mechanism other than apoptosis was
131 responsible for cell death in a small fraction of the population (Supplementary Figure S2). These
132 findings indicated that the cytotoxic consequences of pitavastatin may vary depending on the
133 composition and characteristics of subpopulations of cells within each PD-GSC culture. Further,
134 the difference in the rate of cell death in both PD-GSC cultures during treatment suggested either

135 the presence of distinct sub-populations of cells with varying susceptibility to pitavastatin, or the
136 induction of adaptive responses and cell state transitions across sub-populations within each PD-
137 GSC culture. In support of this hypothesis, subsequent bulk RNA-seq profiling and gene set
138 variance analysis (GSVA, (31)) revealed that while the dominant subtype composition of the two
139 cell cultures was stable during vehicle treatment (DMSO), in response to pitavastatin treatment
140 both PD-GSCs underwent a transition to a MES subtype. While SN503 underwent a rapid shift
141 from PN to MES subtype within two days of treatment, SN520 cells maintained a dominant CL
142 signature for the first three days and then shifted to a MES subtype on the fourth day of treatment
143 (Figure 1C, D). These findings established that despite their similarity in terms of IDH1 mutation
144 and MGMT methylation status, the two PD-GSC cultures exhibited vastly different pitavastatin
145 responses that likely manifested the presence of distinct sub-populations capable of cell state
146 transitions that enabled the surviving cells to escape drug-induced cytotoxicity.

147

148 **Single-cell analysis suggests drug-induced PMT is likely mechanism of acquired**
149 **pitavastatin resistance in SN520**

150 To further dissect the likely role of sub-population heterogeneity in enabling treatment escape of
151 SN520 and SN503 (Figure 1B), we performed scRNA-seq profiling of each PD-GSC culture
152 (Chromium, 10X Genomics, Inc.). Following QC of the raw scRNA-seq data (METHODS), a total
153 of 5,402 cells from SN520 and 5,722 cells from SN503 were profiled across all time points (D0,
154 D2, D3, and D4) and treatment conditions (pitavastatin or vehicle control). Batch-integration with
155 Harmony (32), dimensionality reduction, and visualization with uniform manifold approximation
156 and projection (UMAP, (33)) of the integrated scRNA-seq data revealed distinct pitavastatin-
157 specific transcriptional responses across the two PD-GSCs (Figure 1E). In SN520, we observed
158 time-dependent clustering of cells, indicating a coordinated transcriptional response to
159 pitavastatin. By contrast, there was considerable overlap between pitavastatin-treated SN503
160 cells from all time points (Figure 1E). We quantified net temporal shifts in transcriptomic states of
161 the cells, or lack thereof, using Wasserstein distance, which quantifies dissimilarity between two
162 high-dimensional distributions (34). Drug treatment caused the SN520 cells to become
163 progressively dissimilar from the preceding state over time, unlike vehicle-treated cells. By
164 contrast, there was a slight increase in Wasserstein distance in drug-treated SN503 cells between
165 D2 and D3, but not between D3 and D4 samples (Figure 1F). Given the distinct response patterns
166 of the two PD-GSCs, subsequent scRNA-seq analysis was performed on a patient-specific basis,
167 (Figure 2A, B). UMAP plots organized cells within each PD-GSC into two main groups, defined
168 by treatment with either pitavastatin or vehicle control. Pitavastatin-treated SN520 cells organized

169 along treatment time whereas pitavastatin-treated SN503 cells from different time points
170 overlapped with one another in the gene expression space as captured by the UMAP
171 embeddings.

172
173 Interestingly, GSVA enrichment scoring (Supplementary Figure 3) showed that while the relative
174 proportions of cells for each molecular subtype (i.e., CL, PN, MES) was fairly consistent in vehicle
175 control, the 4-day pitavastatin treatment of SN520 responder cells showed a dramatic increase in
176 the proportion of cells of the MES subtype (Figure 2C). In stark contrast, the subtype composition
177 of the SN503 non-responder cells remained relatively constant during treatment with pitavastatin
178 and vehicle control (Figure 2D). Notably, the longitudinal patterns of subtype composition within
179 each PD-GSC population determined from scRNA-seq time course analysis were inconsistent
180 with findings from bulk-RNA-seq analysis. Cytometry analysis confirmed findings from scRNA-
181 seq analysis that pitavastatin treatment of SN520 resulted in an increase in the proportion of
182 CD44+ (MES) cells from 28.2% to 65.35%, and a simultaneous decrease in CD133+ (PN) cells
183 from 52.7% to ~1%. Of note, SN520 had a sizeable (35.3%) proportion of CD133+/CD44- PN
184 cells, which were nearly eliminated by D4 (Figure 2E), likely due to a combination of treatment-
185 induced killing and a transition of surviving cells to a MES state. By contrast, pitavastatin treatment
186 did not cause a change in the proportion of CD44+ cells in SN503 (87% on D1 to 85.11% on D4,
187 Figure 2F). The significant decrease in the relative proportion of CD133+ cells within SN503 (from
188 38.1% on D1 to 9.51% on D4), especially over the first two days of treatment, was likely due to
189 pitavastatin-induced killing of a susceptible PN subpopulation (9). Interestingly, the relative
190 proportion of CD133+/CD44- PN cells (1.41%) within SN503 was negligible; pitavastatin
191 sensitivity appeared to be associated with a CD133+/CD44+ sub-population that was in higher
192 abundance (36.7%).

193
194 To differentiate between selection and differential proliferation as the mechanism responsible for
195 the observed shifts in subtype composition, we used canonical cell cycle gene expression
196 signatures to score each cell (METHODS) and found that only small proportions of cells within
197 each PD-GSC culture were in the S or G2/M phase regardless of treatment context
198 (Supplementary Figure 4). Consistent with this finding, cytometry-based DNA quantification of
199 individual cells confirmed that only a small proportion of cells across both PD-GSCs were actively
200 proliferating during pitavastatin treatment (Supplementary Figure S5). Theoretical calculations
201 based on cell division rate and treatment duration (Supplementary Figure S6), as well as the
202 homogeneity of CNV states pre- and post-treatment of both PD-GSCs (Figure 2G, H) both

203 independently suggested that cell subtype transitions of surviving SN520 cells, rather than a
204 natural selection and expansion, was responsible for the observed treatment-induced changes in
205 subtype composition and phenotypic characteristics. Finally, overall drug sensitivity of surviving
206 SN503 cells remained relatively unchanged post-pitavastatin treatment for ~30 days (Figure 2I;
207 paired t-test p-value = 0.348). In stark contrast, there was significant log2-fold increase of 2.42 in
208 IC₅₀ of surviving SN520 cells from 0.42 μ M to 2.24 μ M, which was sustained over 100 days (Figure
209 2I paired t-test p value = 1.526e-05), demonstrating the long-term functional consequences of
210 drug-induced PMT.

211

212 **Characterization of transcriptional states of PD-GSCs reveals multiple mechanisms of 213 primary and acquired resistance**

214 Dimensionality reduction with PCA and subsequent Louvain clustering (METHODS) of
215 differentially expressed genes (DEGs, Supplementary Figure S7) organized the 5,402 SN520
216 cells into 14 clusters (Figure 3A, B) and the 5,722 SN503 cells into 12 clusters (cl_{503/520-1}; Figure
217 3C, D). As expected, the SN520 Louvain clusters were predominantly comprised of either vehicle-
218 or pitavastatin-treated PD-GSCs (Figure 3E). By contrast, several SN503 Louvain clusters
219 contained a mix of both vehicle- and drug-treated cells (Figure 3F). Below we summarize findings
220 based on pathway enrichment analysis of DEGs within each Louvain cluster (Figure 3G). A more
221 detailed description is included in the Supplement.

222

223 *SN520 Clustering & Enrichment.* Consistent with the mechanism of action of pitavastatin, gene
224 set enrichment analysis (GSEA, Supplementary Tables S1-S2) revealed that within two days
225 upon initiation of treatment SN520 cells differentially regulated cholesterol homeostasis,
226 biosynthesis, and maintenance, as well as MTORC1 signaling. Day 3 onwards the cells
227 differentially regulated stress response genes including unfolded protein response, protein
228 secretion, P53 pathway, and apoptosis. Interestingly, upregulation of both apoptosis and EMT
229 genes across subpopulations of drug-treated D4 cells (cl₅₂₀₋₆, cl₅₂₀₋₇) was consistent with
230 simultaneous induction of these pathways by TGF β during tumor formation and progression, with
231 cell fate being dependent on cell-cycle phase (35, 36). In this case, cl₅₂₀₋₆ and cl₅₂₀₋₇ cells were
232 in G1/S phase, suggesting that SN520 cells escaped apoptosis by transitioning into the MES
233 subtype (Supplementary Figure S7).

234

235 *SN503 Clustering & Enrichment.* Although there were fewer DEGs in SN503 as compared to
236 SN520 (Figure 3H), the Louvain clusters of pitavastatin-treated SN503 cells did bear similarity to

237 SN520 clusters with regard to differential regulation of certain pathways, including cholesterol
238 homeostasis, fatty acid metabolism, MTORC1 signaling, androgen response, and unfolded
239 protein response (Supplementary Tables S3-S4). However, the differential expression patterns
240 were distinct between the two PD-GSCs. For instance, pitavastatin-treated SN503 cells did not
241 cluster by treatment time, instead cells from all time points grouped together across multiple
242 Louvain clusters (Figure 3C, F) characterized by upregulation of oxidative phosphorylation
243 (OXPHOS, Figure 3G, Supplementary Table S3), which has been associated with drug resistance
244 in tumor cells (37–40). Moreover, only a small proportion of pitavastatin-treated SN503 cells
245 differentially regulated EMT-associated genes (cl₅₀₃-0 and cl₅₀₃-5) (Figures 2, 3H). These findings
246 suggested that different regulatory mechanisms were likely responsible for the distinct differential
247 expression patterns of key pathways, as well as the responder and non-responder phenotypes of
248 SN520 and SN503, respectively.

249

250 **Inference and dynamic simulation of transcriptional regulatory networks identifies
251 mechanisms driving cell-state changes and intervention strategies**

252 We applied single-cell SYstems Genetics Network AnaLysis (scSYGNAL) framework to uncover
253 the transcriptional regulatory networks (TRNs, (41, 42)) responsible for driving the distinct
254 transcriptome responses of the two PD-GSCs. Briefly, Mechanistic Inference of Node Edge
255 Relationships (MINER), an algorithm within the scSYGNAL framework, was used to identify
256 modules of genes (regulons) that were co-regulated differentially in response to treatment across
257 sub-populations of cells (43, 44). Further, using the transcription factor binding site database (45)
258 and the Framework for Inference of Regulation by miRNAs (FIRM, (46)), scSYGNAL implicated
259 specific TFs and miRNAs in mechanistically co-regulating genes of all regulons. Post-processing
260 of the resulting TRNs using MINER (47) clustered regulons with similar activity profiles across
261 subpopulations of cells into transcriptional programs ($Pr_{503/520-i}$) and clustered single cells with
262 similar program activity profiles into distinct transcriptional states ($St_{503/520-i}$). Here onwards we
263 will refer to the TRNs for each PD-GSC as scSYGNAL-520 and scSYGNAL-503.

264

265 scSYGNAL-520 modeled the influence of 109 TFs and 505 miRNAs in mechanistically regulating
266 1,668 genes across 572 regulons that organized into 19 transcriptional programs and were
267 differentially active across 17 transcriptional states (Fig. 4A; Supplementary Table S5-S6).
268 Strikingly, nearly every transcriptional program was enriched for genes that have been shown to
269 be essential to GSC survival (Supplementary Table S7, (48)). GSEA revealed that many pathways
270 identified within Louvain clusters were recapitulated by programs (Figure 3G, Supplementary

271 Table S8). For instance, Program 0 (Pr_{520-0}) – the largest program consisting of 169 regulons,
272 was enriched for genes associated with cellular stress responses, including unfolded protein
273 response, androgen response, p53 pathway, and apoptosis. Pr_{520-1} , the second largest program
274 (61 regulons) was enriched for cholesterol homeostasis and MTORC1 signaling. Pr_{520-2}
275 (proliferation), Pr_{520-5} and Pr_{520-6} (TNF α signaling via NF κ B) showed variable activity in states
276 enriched with vehicle-treated cells, but were uniformly underactive in states enriched with
277 pitavastatin-treated cells (Figure 4A). Only four states (St_{520-0} – St_{520-3}) were enriched for D3 and
278 D4 pitavastatin-treated cells (Figure 4B), suggesting that they might represent drug resistant
279 states adopted by the surviving subpopulation of cells to avoid pitavastatin-induced killing.
280 Furthermore, when transcriptional states were rearranged with respect to their predominant
281 treatment condition, program activities increased (nearly) monotonically over the course of
282 treatment, which suggested that treatment-induced state transitions occurred through continuous
283 rather than discrete changes in expression in SN520 (Figure 4C, Supplementary Figure S8).

284

285 *scSYGNAL-503* modeled the regulation of 1,875 genes by 114 TFs and 507 miRNAs across 420
286 regulons, organized into 21 distinct transcriptional programs, whose activity profiles stratified
287 SN503 cells into 17 transcriptional states (Figure 4A bottom heatmap, Supplementary Tables, S9-
288 S10). Like SN520, a large portion of these programs were enriched with essential genes for GSC
289 survival (Supplementary Table S11; (48). Several programs were similar to those identified in
290 SN520, including Pr_{503-13} (cholesterol homeostasis, MTORC1 signaling and fatty acid
291 metabolism), Pr_{503-9} and Pr_{503-10} (stress responses, including vesicle-mediated transport,
292 unfolded protein response, and p53 pathway). In contrast to SN520, many SN503 programs were
293 uniquely enriched in distinct processes, including WNT/ β -catenin and KRAS signaling (Pr_{503-18} ,
294 Fig. 4F, Supplementary Table S12). Unlike SN520, D3 and D4 pitavastatin-treated SN503 cells
295 co-clustered in significant proportions with untreated and vehicle-treated cells across >75% of the
296 17 states, suggesting that a large number of SN503 cells may have been in pitavastatin-resistant
297 states even prior to drug exposure (Figure 4C). Interestingly, multiple states included pitavastatin-
298 treated cells from all time points, including seven states in which the drug-treated cells
299 represented >50% of all cells (Figure 4B). The seven transcriptional states were distinct in their
300 activity patterns of some programs, including Pr_{503-4} (apoptosis, EMT, IL6/JAK/STAT3 signaling),
301 which was overactive in St_{503-5} , St_{503-6} , and St_{503-10} ; and Pr_{503-10} (MTORC1 signaling, hypoxia,
302 and unfolded protein response), which was overactive in St_{503-10} and St_{503-11} . The
303 heterogeneous activity patterns of these programs, which were enriched for processes linked to

304 chemotherapeutic resistance (49), suggests that multiple mechanisms likely contributed to
305 pitavastatin resistance in SN503.

306

307 **Core TF-TF interaction networks governing PD-GSC response to pitavastatin.**

308 We derived a “core” network of TF interactions to investigate how transcriptional regulatory
309 mechanisms contributed to PMT and pitavastatin resistance (Figure 4D). Each directed TF-TF
310 interaction was categorized as activating or repressing based on positive or negative pairwise
311 correlation of expression levels between two TFs, respectively. The topology of the core TF
312 network for each PD-GSC population was distinct (METHODS), with 56 interactions (edges)
313 among 31 TFs (nodes) in scSYGNAL-520 and only 13 interactions connecting 15 TFs in
314 scSYGNAL-503 (Figure 4E, F). Multiple TFs in the core scSYGNAL-520 TF network have been
315 linked to response-relevant processes including EMT, cell differentiation, adaptive responses,
316 and stem-cell maintenance (Supplementary Table S13). Nine TFs were common between the
317 core networks (overlap p-value: 9.44e-05), including ARID5A, ATF3/4, MEOX2, SOX9, XBP1,
318 and HEY1, a Notch signaling regulator. TFs unique to the core scSYGNAL-503 network included
319 DDIT3, MAFF, STAT3, and ID4, which have been implicated in multiple GBM-relevant processes,
320 (Supplementary Table S13). Notably among these TFs, ID4 has also been shown to play a role
321 in the pathogenesis of GBM, driving tumor-initiating cell formation by increasing two key cell-cycle
322 and differentiation regulatory molecules – cyclin E and Jagged 1 (50). These findings suggest that
323 the core networks captured TF-regulation that play central roles in GBM and gliomas in general.

324

325 **Trajectory analysis and network simulations uncover mechanisms of primary and acquired
326 resistance**

327 Using Monocle3 we discovered that pseudotemporal ordering of SN520 cells correlated with
328 treatment duration and concomitant drug-induced PMT (Pearson correlation coefficient $r =$
329 0.723). We observed similar agreement between treatment duration and inferred trajectories from
330 RNA velocity analysis (51), as velocity vectors pointed towards 4-day treated cells (Figure 5A).
331 In parallel, we calculated the critical transition index (I_c), a quantitative metric of the high-
332 dimensional state of a system that predicts whether a cell population is undergoing a state
333 transition (higher I_c values) or if it has reached some stable attractor state (lower I_c values) (52).
334 I_c values of SN520 decreased during drug treatment but remained relatively constant in the
335 vehicle control (Figure 5B), indicating that pitavastatin had driven the entire PD-GSC population
336 into a predominantly drug-resistant MES subtype attractor state. By contrast, pseudotemporal
337 ordering of SN503 cells did not correlate with treatment time (Pearson correlation coefficient $r =$

338 –0.0167,) and was associated with high I_c values throughout the course of the experiment for both
339 vehicle control and drug treatment, likely driven by the higher heterogeneity of the cells.
340 Consistently, these GSCs exhibited a rather turbulent vector field where RNA velocities projected
341 into multiple directions (Figure 5A). Modeling concerns associated with pseudotime and trajectory
342 inference analysis notwithstanding, e.g., hyperparameter optimization (53, 54), the pseudotime
343 and criticality analyses demonstrated stark contrast between the responses of the two PD-GSCs;
344 SN520 exhibited concerted pitavastatin-induced state transitions, relaxing into a regulated state,
345 while SN503 exhibited a seemingly disorganized response without concerted transition of all cells
346 into an attractor state.

347 To identify putative drivers of treatment response, we performed LOESS regression and rank
348 ordered TFs with respect to timing of peak expression along the pseudotime trajectories and
349 uncovered a distinct sequence of changes in the activity of multiple TFs in each PD-GSC
350 population (Figure 5C). Within SN520, multiple TFs previously associated with PMT in GBM (e.g.,
351 ATF3, CREB, and NFE2L2) positively correlated with pseudotime trajectory (Supplementary
352 Table S13 - Moran's I value). Notably, the rank order of TFs in SN520 was quite different from
353 previously proposed sequence of transcriptional events driving PMT (55), which highlights the
354 diversity of regulatory mechanisms that have been implicated in driving EMT in multiple cancers
355 (56, 57). As expected, we did not observe temporal sequence of changes in expression levels of
356 TFs across SN503 cells (Figure 5C, Supplementary Table S13).

357 In addition, we investigated the consequence of differential expression patterns of TFs by
358 examining, along pseudotime trajectories, the dynamic activity patterns of transcriptional
359 programs that they regulated (Figure 5D, Supplementary Figure S9). Activity of the stress-
360 response-associated programs (Pr_{520-0}) increased along the pseudotime trajectory of SN520
361 cells, implicating 80 associated TFs, including ATF3, ATF4, CREB3, CREB5, JUN, KLF4, MYC,
362 SOX4/9, and TCF4. In the case of SN503, we identified multiple treatment-activated programs for
363 key processes (Figure 4C) including unfolded protein response and OXPHOS (Pr_{503-9} and Pr_{503-10}),
364 cholesterol regulation (Pr_{503-4}) and EMT (Pr_{503-5} and Pr_{503-13}) that showed upregulated gene
365 expression relative to the untreated control condition (Figure 5E). Importantly, scSYGNAL-503
366 had accurately identified TFs that have been mechanistically implicated in regulation of these
367 processes, such as AR, FOS, MYC, TP53, and E2F7 for Pr_{503-9} and Pr_{503-10} (58).

368 *Ensemble modeling and analysis of GSC states via simulated TF-TF network dynamics*
369 We performed *in silico* perturbations on the core TF-TF networks using the random circuit
370 perturbation (RACIPE) algorithm (59–61) to identify transcriptional regulatory mechanisms that

371 governed pitavastatin-induced cell state changes across the two PD-GSCs (Figure 4D, E).
372 RACIPE was originally developed to investigate EMT circuits in cell development and other
373 cancers by creating an ensemble of dynamic models based on ordinary differential equations and
374 Hill function kinetics (62–64). First, we tested whether the TF-TF network model for each PD-GSC
375 could accurately predict their observed pitavastatin-induced cell states using untreated (D0) TF
376 expression levels to initialize the network. By performing 1,000 RACIPE simulations, we
377 determined that the simulated stable steady states were statistically similar to the observed cell
378 states of each PD-GSC on D4 of pitavastatin treatment (Figure 6A, B, Supplementary Figure
379 S10).

380
381 We then investigated how the core TF network contributed to phenotypic plasticity by determining
382 the range of steady states that could emerge from each network topology. We simulated 10,000
383 distinct models (i.e., parameter sets) across 100 randomly selected initial conditions resulting in
384 an ensemble of 1 million simulations for each PD-GSC population, which was sufficient to yield
385 convergent solutions (Supplementary Figure S11 (59–61)). Based on pairwise Euclidean
386 distances (METHODS) and hierarchical clustering, all simulated states generated by the core TF
387 network for SN520 clustered into four distinct steady states (Figure 6C). The simulated states
388 stratified along the first principal component, recapitulating a continuum of progression from a PN
389 to MES state (Figure 6C). Pairwise comparisons of mean expression profiles of the core network
390 TFs demonstrated that the simulated states were statistically similar to experimentally observed
391 PD-GSC states (Figure 6C, Supplementary Figure S10). Supervised classification using random
392 forest analysis further revealed that ATF3/4, CEBPG, and HES1 contributed the most to
393 distinguishing the four simulated states (Figure 6C), which mirrored expression behavior across
394 experimental data for SN520 (Figure 6D).

395
396 RACIPE simulations for SN503 also yielded four distinct stable steady states that did not show a
397 gradient in PCA space as in the case of the SN520 simulated states (Figure 6E). Three of these
398 states were similar to two experimentally observed PD-GSC states (Figure 6E) associated with
399 elevated expression of SOX4, SOX9, SOX11, HEY1, and ID4 (simulated states 3 and 4 and
400 experimental state 4), or elevated expression of ATF4, ATF3, and FOS (simulated states 1 and 3
401 and experimental state 4). The experimentally observed states not identified by RACIPE
402 simulations were associated with elevated expression of MEOX2, MAFF, and ARID5A, which
403 were “root” nodes, i.e., TFs without any upstream regulators in the context of the model.
404 Consequently, expression of these TFs in the RACIPE simulations was dependent upon the

405 randomly selected initial conditions. However, the subset of simulations in which MEOX2, MAFF,
406 and ARID5A had elevated initial conditions generated states that were indeed similar to
407 experimentally observed states ES₅₀₃-1 and ES₅₀₃-2 (Supplementary Figure S10). Further, for
408 distinguishing the four SN503 PD-GSC states, random forest analysis identified MEOX2, MAFF,
409 and ARID5A as the most important TFs, followed by ATF3, SOX9, and SOX11 (Supplementary
410 Figure S10). Interestingly, all of these TFs have previously been implicated in tumor stemness,
411 progression, invasiveness or resistance, suggesting multiple mechanisms may have contributed
412 to pitavastatin resistance in SN503 (Supplementary Table S13).

413

414 *In silico network perturbations implicate specific TFs in mechanistically driving treatment-induced*
415 *cell state transitions and drug resistance in PD-GSCs*

416 After benchmarking the random forest models as 85% and 90% accurate in predicting cell states
417 of SN520 and SN503, respectively (Supplementary Figure S12), we used them in perturbation
418 simulations to identify mechanistic drivers of treatment response of each PD-GSC. Specifically,
419 we performed an additional 1 million RACIPE simulations to model the consequence of 95%
420 knockdown in each TF within the core network on treatment-induced change in the relative
421 abundance of each of the four steady states for the two PD-GSCs. (Supplementary Figure S13).
422 This analysis predicted that knockdowns in each of ten TFs, viz., ATF4, IRF1, NFE2L2, CREB3,
423 XBP1, ARID5A, SMAD1, CREB5, CEBPG, and ATF3, would result in significant reduction in the
424 relative abundance of simulated states with large subpopulations of MES subtype cells in SN520
425 (Figure 6G). Notably, all ten TFs have been implicated in driving EMT across different cancers,
426 including GBM (Supplementary Table S13). RACIPE simulations predicted that decrease in the
427 proportion of MES subtype-associated cell states in SN503 was likely through perturbations in
428 just two TFs, namely SOX9 and SOX11 (Supplementary Figure 13) both of which were also
429 implicated in driving PMT (Supplementary Table S13).

430

431 *siRNA knockdowns of TFs validate core TF networks*

432 We tested RACIPE predictions by investigating whether siRNA (DharmaconTM) knockdown of TFs
433 during pitavastatin treatment would block PMT leading to synergistic increase in PD-GSC killing.
434 Indeed, knockdowns in nine TFs (5/10 predicted), including ATF3, IRF1, CREB3, CREB5, and
435 CEBPG, significantly potentiated pitavastatin killing of SN520 (Figure 6I). Notably, increased cell
436 death of SN520 was observed only when siRNA and pitavastatin were administered
437 simultaneously, but not when cells were pre-treated with siRNA prior to pitavastatin treatment
438 (data not shown). Given that siRNA knockdown is typically manifest in protein reduction maximally

439 in 2-3 days post-transfection, dynamic induction of TF activity by pitavastatin appears to have
440 been essential for achieving the TF knockdown effect on SN520 PD-GSC survival. In stark
441 contrast, none of the TF knockdowns had any consequence on viability of SN503 (Figure 6H, J).
442 Altogether, the experimental findings corroborated the roles of nine TFs implicated by scSYGNAL
443 and RACIPE analysis in driving PMT, thereby conferring pitavastatin resistance in SN520, but not
444 in SN503, wherein a large fraction of the cell population was in a drug resistant MES state, even
445 prior to drug treatment. As an alternative approach, we identified 24 additional TFs by MINER as
446 important for mechanistically upregulating putative resistance mechanisms, including OXPHOS
447 (Figure 2G, Supplementary Table S3, S12), and discovered that knocking down four TFs (HEY2,
448 POU3F4, PRDM4, and PEG10) indeed potentiated pitavastatin killing of SN503, likely by
449 disrupting one or more primary resistance mechanism(s) (Figure 6K).

450

451 **Trajectories towards acquired resistance expose vulnerabilities to secondary drugs**

452 Finally, we investigated whether knowledge of mechanistic drivers of PMT could enable rational
453 selection of a second drug that could potentiate the action of pitavastatin. Using Open Targets
454 (65), we identified eight drugs that targeted TFs and genes associated with pitavastatin-induced
455 PMT trajectories in SN520. We hypothesized that pitavastatin-induced cell state changes place
456 cells in transitional states that may expose new vulnerabilities that could be targeted by secondary
457 drugs. We selected vinflunine, a vinca alkaloid that binds to tubulin and inhibits microtubule
458 polymerization, thereby inducing G2/M arrest and ultimately apoptosis. Originally developed to
459 treat advanced or metastatic transitional cell carcinoma of the urothelial tract (66), vinflunine has
460 been tested in multiple Phase III trials for many cancers, used as a likely potentiator of anti-cancer
461 effects of other drugs (67). Based on vinflunine's mechanism of action, we identified multiple
462 regulons containing tubulin-related genes (for example, SN520 regulons R₅₂₀₋₀ and R₅₂₀₋₄₃;
463 SN503 regulons R₅₀₃₋₁₉, R₅₀₃₋₃₈, and R₅₀₃₋₅₂). In SN520, the activity for R₅₂₀₋₀ and R₅₂₀₋₄₃
464 increased significantly in response to pitavastatin (Figure 7A). By contrast, pitavastatin-induced
465 upregulation of tubulin-associated regulons was varied across in SN503, with only R₅₀₃₋₁₉
466 showing consistent over activity across all time points. R₅₀₃₋₃₈ showed significantly higher activity
467 in pitavastatin-treated cells relative to vehicle-treated, with maximal activity on D3. Finally, R₅₀₃₋₅₂
468 activity levels were slightly higher relative to vehicle control (Figure 7B). The ability of vinflunine
469 to block pitavastatin-induced cell state transitions was investigated in three experimental designs,
470 one in which both drugs were added simultaneously and the other two in which vinflunine was
471 added at 24 or 48 hrs after initiation of pitavastatin treatment to match the timing when
472 pitavastatin-treatment induced the highest activity of tubulin regulons (Figure 7C). The efficacy of

473 the drug combinations were compared to outcome of treatments of PD-GSCs with each individual
474 drug.

475
476 Sequential treatments with pitavastatin followed by vinflunine had synergistic effect on killing of
477 the two PD-GSCs (Figure 7D). Specifically, sequential treatment of pitavastatin followed by
478 vinflunine resulted in 5.92 and 1.6 fold-decrease of IC_{50} , compared to vinflunine treatment alone
479 (Figure 7D), in SN520 and SN503, respectively. The relative efficacy of sequential treatment with
480 the two-drug combination varied significantly across other PD-GSCs (Supplementary Table S14),
481 with the combination being more effective on pitavastatin responder (SN533 and SN575) than
482 non-responder cells (SN517 and SN521) (Supplementary Figure S14). The poor efficacy of
483 vinflunine on SN503 and other non-responder PD-GSCs is likely because pitavastatin did not
484 induce a coordinated response that places the cells in a vulnerable state from which we predicted
485 the utility of vinflunine based on the transcriptional network. Thus, the coordinated cell-state
486 changes induced by pitavastatin killing of susceptible cells in the responder PD-GSCs pushed the
487 surviving cells along PMT trajectories with generic and patient-specific components, thereby
488 exposing novel vulnerabilities that significantly potentiated net cell killing by sequential treatment
489 with vinflunine.

490

491 **DISCUSSION**

492
493 Inherent plasticity and heterogeneity of GSCs are implicated as underlying reasons for the high
494 rate of GBM recurrence, which often manifest as an even more aggressive and drug-resistant
495 MES subtype (8–10). Understanding the mechanisms of primary resistance and trajectories along
496 which GSCs undergo adaptive subtype transitions to acquire resistance are both critical for
497 formulating treatment regimens to prevent recurrence of aggressive and drug resistant GBM (7,
498 68). In this study, we report five main findings that shed insight into the underlying mechanisms
499 of phenotypic plasticity of PD-GSCs: 1) distinct population structures distinguished two PD-GSCs
500 with acquired (SN520) and primary (SN503) resistance phenotypes, 2) distinct TF network
501 topologies were associated with the two GSC phenotypes, 3) TF network topology was a key
502 determinant of treatment-induced change in the population structure of PD-GSCs, 4) TF network
503 topology inferred from scRNA-seq enabled predictions of underlying mechanistic drivers of
504 primary and acquired resistance, including response trajectories, 5) disruption of primary
505 resistance potentiated killing of non-responder PD-GSCs, and 6) treatment-induced trajectories
506 through which PD-GSCs acquired resistance, exposed vulnerabilities to sequential interventions

507 (siRNA KD of TFs and a secondary drug) targeting transcriptional programs mechanistically
508 associated with cell state transitions. *Gene*

509
510 Primary resistance of SN503 was likely due to a larger pre-existing subpopulation of MES subtype
511 cells, identified by both scRNA-seq and flow cytometry (Figure 2C-F), with elevated expression
512 of OXPHOS and fatty acid metabolism (Figure 5E) and high activity of WNT/β-catenin signaling
513 pathway genes in Pr₅₀₃-18 (Figure 4F) (7, 69, 70). Hence, pitavastatin treatment was less effective
514 on SN503 and failed to trigger a coordinated transcriptional response across the population of
515 surviving cells in this PD-GSC. By contrast, a smaller proportion of SN520 cells were of the MES
516 subtype (Figure 2C, D) and activity of programs associated with known treatment-resistance
517 mechanisms was low. As a result, pitavastatin killed most SN520 cells, triggering coordinated
518 transcriptional responses across the surviving PD-GSCs, driving their transition into a MES
519 subtype cell state that was > 5-fold resistant to pitavastatin (Figure 2I). Flow cytometry using
520 apoptosis and cell subtype markers; CNV inference; and theoretical calculations based on cell
521 division rates all demonstrated that pitavastatin-induced cell state and phenotypic transitions were
522 mediated by epigenetic mechanisms and not clonal selection. Further, the core TF-TF networks
523 inferred from scSYGNAL analysis were determined by RACIPE simulations as sufficient to
524 generate the observed heterogeneity and treatment-induced cell state changes of the two PD-
525 GSCs. Our findings showed that the TF-TF network topology was likely a key factor in determining
526 the trajectory and potential endpoint(s) of cell-state transitions in response to drug treatment or
527 perturbation. The sparse network of SN503 generated multiple resistant states that were distinct
528 from each other. The interconnected network of SN520, by contrast, generated a gradient of cell
529 states along a PN-to-MES axis offering a plausible explanation as to why GSCs manifest a
530 gradient of resistant states across a range of drugs (9). Our findings provide novel perspective on
531 how patient-to-patient variation in the roles of TFs and the topology of their interactions can have
532 profound consequences in driving PMT, likely influencing the rate of GBM progression,
533 recurrence, and metastasis as tumors of MES subtype (27, 71).

534
535 By killing a large proportion of cells, pitavastatin treatment triggered a core network of TFs to act
536 sequentially and drive coordinated cell-state transitions across the surviving population of SN520.
537 In so doing, pitavastatin treatment may have generated a bottleneck effect by channeling the
538 surviving SN520 cells along few trajectories, thereby transiently exposing vulnerabilities in
539 associated transcriptional programs across a large segment of those surviving cells, before they
540 transitioned to the MES subtype and acquired a drug-resistant phenotype. Similar constraining

541 effects on GSC plasticity, i.e., fewer cell-state transitions have been observed and attributed to
542 hypoxic micro-environments, unlike the larger number of stochastic cell state transitions that occur
543 under normoxic conditions (72). Our findings demonstrate that such constraints on plasticity
544 makes the GSC population less heterogeneous and more vulnerable to siRNAs and drugs
545 targeting transiently activated programs that mechanistically coordinate the cell state transitions.
546 Taken together, these results suggest that the bottleneck effect generated by drug treatment can
547 be exploited to minimize or prevent drug-induced transitions and therapy escape of GSCs.

548

549 Notably, the timing of the secondary intervention was critical, with efficacy of potentiation
550 observed only *after* cell-state transitions had been triggered by pitavastatin treatment. The
551 combinatorial interventions (siRNA) were ineffective when each drug-siRNA pair was
552 administered concurrently (data not shown). These findings illustrate the importance of tailoring
553 not just the specific combination of drugs, but also the order and timing of longitudinal treatment
554 schedules based on mechanistic understanding of the causal sequence of events targeted by
555 each individual intervention. Similar benefits from modeling cell state transitions and
556 characterizing trajectories have also been reported in PDGF-driven GBM mouse models.
557 Specifically, the integration of mathematical models that account for the presence of
558 radiosensitive and radioresistant tumor cell states as well as the rate at which state transitions
559 occurred led to an optimized radiotherapy scheduling that improved survival rates of mice (73,
560 74).

561

562 Sequential treatment with vinflunine was effective to varying degrees across other PD-GSCs that
563 were also sensitive to pitavastatin (SN533 and SN575), but was significantly less effective in
564 pitavastatin-resistant PD-GSCs (SN503, SN517 and SN521). This finding suggests that cytotoxic
565 effects were important to expose vulnerabilities, and that the mechanism of killing by pitavastatin
566 and resulting trajectories of escape were likely similar across some of these PD-GSCs. However,
567 variable susceptibilities of PD-GSCs to vinflunine explain why an $N = 1$ approach is necessary to
568 uncover patient-specific characteristics and tailor regimen (specific drugs and dosing schedule)
569 to the unique PMT trajectories for each patient (Supplementary Figure S15, Fedele et al., 2019).

570

571 The partial generalizability of pitavastatin-vinflunine sequential treatment to other pitavastatin-
572 sensitive PD-GSCs, further suggests that subgroups of patients might share transcriptional
573 regulatory network topologies that drive their tumor cell state transitions along similar trajectories.
574 If this hypothesis is confirmed by analyzing a larger number of PD-GSCs across a diverse range

575 of drug treatments, then stratifying patients based on similar network topologies, instead of steady
576 states of tumor cells, may identify a finite number of topology-matched combinatorial interventions
577 for personalized treatment of most patients (2, 3, 75).

578
579 The causal and mechanistic regulatory influences captured at single-cell resolution in the
580 scSYGNAL network provides a generalizable approach for formulating $N = 1$ patient-tailored drug
581 regimens and treatment schedules. Remarkably, we discovered that more than the composition
582 of initial tumor cell states, mechanistic understanding of the topology of the core TF-TF network
583 and its associated dynamics of driving cell state transitions is essential for rationally tailoring
584 sequential treatment regimen to an individual patient. This perspective, borne from these findings,
585 complements prior and current efforts that aim to create frameworks that quantify the hierarchical
586 and multi-state switching that underlie intratumoral heterogeneity in GBM using methods such as
587 Markov chain models or exploratory adaptation models (76, 77). While these approaches define
588 *what* states are present and the probability of transitioning from one state to another, our approach
589 provides mechanistic insights into *how* GSCs are able to navigate the phenotypic landscape
590 (Figure 7E).

591
592 Broadly speaking, our findings provide a mechanistic framework for connecting two aspects of
593 phenotypic plasticity of tumor cells, one that characterizes discrete states (75), and the second
594 that characterizes cell state continuums, including gradients defined by a neuronal
595 developmental–injury response axis (78) or a PN–MES axis (11, 79). Such a framework, like the
596 seminal GBM molecular subtype classification scheme (2), will enable integration of the genomic,
597 transcriptomic, and epigenomic landscapes and associated factors that underlie phenotypic
598 plasticity of GSCs and differentiated tumor cells that define intra- and inter-tumoral heterogeneity
599 in GBM (2, 4, 75, 80). Ultimately, a systems approach that connects intrinsic regulatory
600 mechanisms with extrinsic factors, including drug treatment, tumor microenvironment (72), and
601 the immune response (81), governing phenotypic plasticity of GSCs in an individual patient’s
602 cancer, will be needed for formulating treatment strategies to prevent recurrence of drug-resistant
603 GBM tumors.

604
605 **METHODS**
606
607 **Ethics Statement.** Use of human tissue was reviewed and approved by the WIRB-Copernicus
608 Group Institutional Review Board (WCG® IRB). All participants provided written informed

609 consent according to IRB guidelines prior to participation in the study. Only tissue specimens
610 deemed non-essential for diagnostic purposes and that would otherwise be discarded were
611 collected for research purposes.

612

613 **Patient samples and patient-derived GBM stem-like cell enrichment**

614 Tumors were obtained from surgeries performed at Swedish Medical Center (Seattle, WA)
615 according to institutional guidelines. Patient samples used in this study were diagnosed as WHO
616 grade IV glioblastoma. GSC cultures were established from freshly resected tumor tissues. Tissue
617 samples were minced into 1mm³ fragments and digested with Accutase (Sigma) at 37°C for 15-
618 20 minutes. Neurobasal-A medium (NBM) was added to quench Accutase activity and cell
619 suspensions were filtered through 70µm nylon mesh, centrifuged at 1K rpm for 5 min,
620 resuspended in fresh NBM, and cultured in T75 flasks pre-treated with a laminin solution (1:100
621 Sigma), which includes incubation of the flasks with the laminin solution at 37°C for a minimum of
622 30 minutes. PD-GSCs were maintained in NBM with B-27 serum-free supplement, 20 ng/mL EGF,
623 20 ng/mL FGF-2, 20 ng/mL insulin, 1 mM sodium pyruvate, 2 mM L-glutamine and 1% Antibiotic-
624 Antimycotic.

625

626 **PD-GSC in vitro cultures**

627 PD-GSC adherent monolayer cultures were used for all pitavastatin and pitavastatin/vinflunine
628 treatments. Monolayer cultures were maintained in T75 flasks (cell expansion), T25 flasks
629 (pitavastatin-treatment), or 96 well plates (IC₅₀ studies) pre-treated with a laminin solution (1:100;
630 Sigma) and incubated at 37°C for a minimum of 30 min. Serum-free culture media consisted of
631 Neurobasal Medium-A (GibcoTM) with 2.0% (v/v) B-27 serum-free supplement minus vitamin A
632 (GibcoTM), 20 ng/mL EGF (PeproTech Inc.), 20 ng/mL FGF-2 (PeproTech Inc.), 20 ng/mL insulin
633 (Sigma), 1 mM sodium pyruvate (Corning), 2 mM L-glutamine (GibcoTM) and 1% Antibiotic-
634 Antimycotic (GibcoTM). PD-GSC monolayer cultures were maintained at 37°C, 5% CO₂
635 atmospheric oxygen with culture pH monitored with the phenol red. Cultures were refed every 2-
636 3 days. PD-GSC cultures tested were within 10 passages from the initial GSC enrichment from
637 the original tumor biopsy.

638

639 PD-GSCs were passaged by dissociating monolayer cultures from the respective substrate by
640 treating the cells with the dissociation reagent Accutase (1mL/25cm²) or TrypLETM (1mL/25cm² –
641 see *Flow cytometry CD44 and CD133 analysis* section) at 37°C for 5min. Pre-warmed (37°C)
642 serum-free culture media (described above) was then added to quench dissociation reagent

643 activity (1:3 media:dissociation reagent ratio). The resulting cell suspension was centrifuged at
644 1K rpm (193g) for five minutes. The cell pellet was resuspended in fresh serum-free culture media,
645 and added to QS serum-free culture media in a new laminin-treated flask. Final culture volumes
646 were as follows: T75 – 10mL, T25 – 5mL, 96-well plate – 100 μ L. Laminin treatment involved
647 incubating flasks (or 96 well plates) with a laminin working solution (5mL/75cm²), which consisted
648 of stock laminin (Sigma) diluted 1:100 in phosphate buffer solution, at 37°C for a minimum of 30
649 min.

650

651 **Flow cytometry – apoptosis, caspase 3/7-mediated apoptosis, and cell-death**

652 Data acquisition of surface protein markers was performed on the Attune NxT Flow Cytometer
653 (ThermoFisher Scientific). PD-GSCs were dissociated from their respective substrate using
654 Accutase and washed twice with PBS + FBS serum (10%), which involved centrifugation at 1K
655 rpm (193g) for 5 min, supernatant removal, and cell pellet resuspension with the PBS + FBS
656 serum (10%). The supernatant wash was removed and the cell pellet resuspended in the
657 PBS/FBS solution to the desired concentration of 1e6 cells/mL. To assess apoptosis, caspase
658 3/7-mediated apoptosis, and cell death within the GSC populations, cells were stained with
659 Annexin V conjugated with Alexa Fluro 568 (Invitrogen A13202), CellEventTM Caspase 3/7
660 detection reagent (Invitrogen C10423), and SYTOXTM AAdvanced Dead Cell Stain (Invitrogen
661 S10349), simultaneously. Samples were stained following each of the manufacturer's protocol,
662 respectively. Gating for positive and negative expressing cells was performed using FlowJo V10
663 based on multiple controls including, 1) unstained negative controls, 2) heat-inactivated cells
664 (incubated in a 60°C water bath for 15 min), which served as positive controls for apoptotic and
665 dead cells, and 3) Fluorescence minus one (FMO) controls to define an upper boundary for
666 background signal on the omitted signal and gate for positively stained populations in multi-color
667 experiments.

668

669 **Flow cytometry – CD44 and CD133 analysis**

670 Samples from each treatment condition were collected using TrypLETM (GibcoTM) to dissociate
671 and remove the cells from the culture flasks. TrypLETM (1mL/25cm²) was used to minimize any
672 structural changes on CD44 and CD133 surface proteins during the dissociation process (82).
673 Subsequent sample processing prior to antibody staining was identical to how samples were
674 processed for apoptosis, caspase 3/7-mediated apoptosis, and cell-death cytometry assessment.
675 An anti-Hu CD44 antibody conjugated with PE (eBiosciencesTM) and an anti-Hu/Mo CD133
676 antibody conjugated with FITC (eBiosciencesTM) were used to assess expression of these two

677 surface proteins across each PD-GSC population. Samples were simultaneously treated with both
678 antibodies per vendors' recommendations. Analysis of flow cytometry data was performed using
679 FlowJo V10. Fluorescent signal gating was set based on multiple control samples including: 1)
680 unstained PD-GSC negative controls, 2) vendor-recommended isotype controls (Mouse IgG1
681 kappa isotype and Rat IgG2b kappa isotype for anti-Hu CD133 and anti-Hu/Mo CD44,
682 respectively, 3) human GBM stem cells (Cellprogen Inc.), which served as a positive control cell
683 line for both CD133 and CD44 (per vendor's specification), and 3) Caco2 cells, (ATCC) which
684 served as a positive control cells for CD133 and negative controls for CD44.

685

686 **Pitavastatin treatment of PD-GSCs for scRNA-seq and flow cytometry analysis**

687 PD-GSCs were incubated in serum-free culture media (described above) with pitavastatin (6 μ M).
688 Stock pitavastatin calcium (Selleck Chemicals LLC) was dissolved in DMSO to obtain a stock
689 concentration of 10mg/mL and stored in aliquots at -80°C. Stock pitavastatin calcium solution was
690 serially diluted in serum-free culture media to 100 μ M and then to the final concentration of 6 μ M
691 with a final DMSO concentration of 0.053% (v/v).

692

693 To monitor longitudinally PD-GSC response to pitavastatin, we performed a reverse time-course
694 treatment by adding pitavastatin to SN520 and SN503 cultures in a staggered fashion such that
695 the longest (4-day) treatment would have drug added first. Subsequent addition of pitavastatin
696 would occur on following days for 3- and 2-day treatment, respectively. This reverse time course
697 design allowed us to collect all samples simultaneously on day four following the initial addition of
698 pitavastatin. Because pitavastatin was added to PD-GSCs on different days, flasks were
699 inoculated at slightly different cell densities to account for cell growth that would occur in between
700 inoculation and time of pitavastatin addition. Consequently, scRNA-seq library preparation of all
701 samples for a particular PD-GSC population occurred simultaneously to minimize batch effects
702 due to individual sample processing (Supplementary Table S15)

703

704 Prior to T25 flask (BioLite™) inoculation for pitavastatin treatment, PD-GSCs were first expanded
705 in a T75 flask (BioLite™). Once the culture was confluent, the culture was harvested and split into
706 laminin-treated T25 flasks. Upon inoculation, cells were incubated in serum-free culture media at
707 37°C for 24 hours to allow cells to adhere to the interior surface of the flask. Following the first 24
708 hours, serum-free culture media was replaced with serum-free culture media with pitavastatin
709 (6 μ M) in T25 flasks predetermined to receive a 4-day treatment. Spent culture media would then

710 be replaced with fresh culture media with pitavastatin (6 μ M) on subsequent days for D3 and D2
711 treatment conditions.

712

713 Upon the completion of the 4-day treatment, spent media was removed and cells were harvested
714 using AccutaseTM (1mL/25cm²). To prevent any cell-free DNA/RNA from treatment-induced lysed
715 cells contaminating single-cell samples, we first processed a portion of the cell harvest solution
716 using the dead cell removal kit (Miltenyi Biotec 130-090-101) to remove any cell debris to avoid
717 any free RNA from lysed cells from getting mixed in with mRNA to be extracted from live cells.
718 Samples were processed per vendor's specifications. The result was a cell suspension of the
719 remaining live cells post vehicle- or pitavastatin-treatment. Cell suspension was then processed
720 for scRNA-seq profiling per the 10X Chromium platform.

721

722 **scRNA-seq library prep and sequencing**

723 Single-cell RNA sequencing was performed using the 10X Chromium v2 system. Library
724 preparation was performed using 10x manufacturer instructions on an Illumina NovaSeq 6000.
725 scATAC-seq was performed as per manufacturer instructions (Single-cell ATAC Reagent Kits
726 v1.1 UserGuide RevD) and sequenced on an Illumina NextSeq 500.

727

728 **Multi-passage, pitavastatin treatment**

729 PD-GSCs were harvested from a T75 flask and passaged into replicate T75 flasks for either
730 pitavastatin (6 μ M) or vehicle (DMSO) treatment (2e6 cells/flask). Concomitantly, a portion of those
731 PD-GSCs were used to inoculate laminin-treated 96 well plates for drug-dosing analysis (see *IC₅₀*
732 *Analysis* section). On D4, PD-GSCs were harvested using Accutase (1mL/25cm²) as described
733 previously. Cell suspensions were spun at 1000rpm (193g) for five minutes. Cell pellets were then
734 resuspended with serum-free culture media (200,000 cells/mL) to inoculate 96 well plates
735 (100 μ L/well, 20,000 cells/well) for subsequent IC₅₀ determination. PD-GSCs were incubated in
736 serum-free culture media in 96 well plates for 48 hours to allow for cell attachment prior to
737 replacing spent media with serum-free media with pitavastatin (or vehicle). Treated cells were
738 incubated at 37°C for four days. Following the four-day treatment, cell viability was measured via
739 MTT assay as described below.

740

741 **DNA quantification via propidium iodide (PI) staining**

742 PD-GSC cultures were treated with pitavastatin (or vehicle control) in a reverse time-course
743 manner as described previously (*Pitavastatin treatment of PD-GSCs for scRNA-seq and flow*

744 *cytometry analysis* section). Following cell harvest, PD-GSCs were washed with PBS and spun
745 down at 1000 RPMs (193 g) for 5 minutes. PD-GSCs were then fixed with cold 70% ethanol by
746 adding 70% ethanol drop-wise to the pellet while vortexing. Cells were fixed in 70% ethanol
747 overnight at 4°C. Once fixation was complete, the PD-GSCs were washed twice in PBS, spun
748 down at 1000 rpm for five minutes with careful removal of the supernatant so as to avoid any
749 cell loss. PD-GSCs were then treated with 50µL of ribonuclease (100µg/mL stock) to remove any
750 RNA and ensure only DNA would be stained. Finally, 200µL of propidium iodide (PI, 50µg/mL
751 stock) was added to the fixed and treated cells prior to flow cytometry analysis.

752

753 **IC₅₀ Analysis and MTT viability assay**

754 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide, (MTT) assay was used to
755 determine the effects of pitavastatin on the viability of the non-responsive and responsive GSC
756 populations. Briefly, 20,000 cells/well were plated in laminin-treated 96-well plates with 100uL of
757 culture media. Following an initial 24hr incubation, the cells were treated with 100µL of culture
758 media with pitavastatin at varying concentrations (0.0, 0.1, 0.6, 1.0, 3.0, 6.0, 10.0, 33.0µM) and
759 incubated at 37C for four days. Vehicle amounts were adjusted such that the vehicle
760 concentration in all conditions was equivalent to the maximum drug dosage tested (DMSO 0.2%
761 v/v). Following the 4-day treatment, spent media was replaced with 100µL of serum-free culture
762 media with MTT (0.5mg/mL) and incubated at 37°C for 60 minutes. Following incubation,
763 supernatant from each well was discarded and replaced with 100µL of DMSO to dissolve the
764 formazan crystals formed during MTT incubation. Absorbance (A_i , where i is the drug
765 concentration) was measured via spectrophotometer at 570nm (Synergy H4, Agilent
766 Technologies, Inc.). Relative viability was calculated using the following formula: relative viability
767 = $(A_i - A_{background})/A_{0.0} * 100\%$, where $A_{background}$ is the absorbance from DMSO. IC₅₀ values were
768 calculated by using a 4-parameter log-logistic model determined by the *drm()* function within the
769 *drc* package in R. Here, the upper limit of the log-logistic model was set to 100%.

770

771 **siRNA treatment**

772 Following a 24hr incubation period, cells were treated with 5µM of Accell SMARTpool siRNA or
773 Accell SMARTpool Non-Targeting siRNA (Dharmacon Inc.). Lyophilized SMARTpool siRNAs
774 were resuspended in 1X siRNA buffer (Dharmacon Inc.) and subsequently diluted in serum-free
775 culture media to a final concentration of 5µM. Based on vendor recommendations, Accell siRNA
776 designs facilitate siRNA delivery to the target cell and do not require additional transfection

777 reagents. Accell SMARTpool siRNAs pools consist of four separate siRNAs designed to target a
778 particular gene. To test the efficacy of siRNA-targeted knockdown of specific TFs, siRNA (5uM)
779 and pitavastatin (1.0 μ M or 6.0 μ M for SN520 and SN503, respectively) were added simultaneously
780 followed by a four-day incubation at 37°C.

781

782 **Bulk RNA-seq library prep and sequencing**

783 Total RNA was extracted from PD-GSC cultures using mirVANA™ miRNA isolation kit
784 (ThermoFisher). Residual DNA was removed using the RQI RNAse-Free DNase kit (Promega).
785 Total RNA was then quantified using the Agilent RNA 6000 nano kit (catalogue number) on the
786 Agilent 2100 BioAnalyzer. 1 μ g of high purity RNA was used as input to the Illumina TrueSeq
787 Stranded mRNA Library Prep Kit and sample libraries were generated per manufacturer's
788 specifications. The RNA-seq libraries were sequenced on the NextSeq 500 next gen sequencer
789 using a paired end high-output 150bp v2.5 flowcell. Sequence intensity files were generated on
790 instrument using the Illumina Real Time Analysis software. The resulting intensity files were de-
791 multiplexed with the bcl2fastq2 software.

792

793 **Processing and normalization of bulk RNA-seq data**

794 Raw RNA-seq data of samples encoded in FASTQ-files were subjected to a standardized
795 RNAseq alignment pipeline. In summary, RNA-seq reads were trimmed and clipped of Illumina
796 sequence adapters via Trim Galore (<https://github.com/FelixKrueger/TrimGalore>), mapped to
797 human reference genome (GRCh38) using STAR (v2.7.3a), and counted using HTSeq (v 0.11.1).
798 Individual sample counts were combined into a single data object using the
799 *DESeqDataSetFromHTSeqCount* function in DESeq2 (83). Sample-specific size factors were
800 determined and used to normalize counts, which were transformed using regularized log
801 transformation for subsequent downstream analysis, performed in R.

802

803 **scRNA-seq data QC filtering and normalization**

804 We initially processed the 10X Genomics raw data using Cell Ranger Single-Cell Software Suite
805 (release 3.1.0) to perform alignment, filtering, barcode counting, and UMI counting. Reads were
806 aligned to the GRCh38 reference genome using the pre-built annotation package download from
807 the 10X Genomics website. We then aggregated the outputs from different lanes using the
808 *cellrange aggr* function with default parameter settings.

809

810 SN520 and SN503 scRNA-seq data sets were QC-filtered separately prior subsequent
811 downstream analysis. To minimize inclusion of poor-quality genes and single-cell samples per
812 sample set, we applied the following QC filters: 1) mitochondrial genes must comprise \leq 6.5% of
813 the number of uniquely mapped genes/cell, and 2) total counts/cell should be \geq 7500 and \leq
814 60,000. Post QC-filtering, each scRNA-seq data set included: 5,402 cells expressing up to 18,227
815 genes (SN520) and 5,722 cells expressing up to 18,797 genes (SN503). Subsequent
816 normalization and downstream analysis (e.g., DEG and functional enrichment analysis) was
817 performed using the Seurat v3.2.2 platform (84).

818

819 Normalization was performed for each scRNA-seq dataset separately by computing pool-based
820 size factors that were subsequently deconvolved to obtain cell-based size factors using the
821 *computeSumFactors* function within the *scran* package (version 1.10.2) (85) in R. Normalized log
822 expression values were used for subsequent downstream analysis.

823

824 **Batch integration of scRNA-seq data**

825 As each PD-GSC-specific data set was collected separately, we performed batch correction on
826 the scRNA-seq data to integrate the SN520 and SN503 data sets by applying the Harmony
827 algorithm (32). Subsequent SNN-graph formation and UMAP embedding was performed on the
828 Harmony-corrected PCs (Fig. 1E).

829

830 **Cell-cycle analysis**

831 To annotate individual cells with their respective cell cycle phase, we performed cell cycle analysis
832 using the Seurat program. Briefly, core sets of 43 and 54 genes associated with the S- and G2/M-
833 phases, included in the Seurat platform, were used to determine a cell-cycle phase score based
834 on the expression of the respective markers. Based on these scores, cells were assigned to be
835 either in G1 or G2/M phase. Cells not expressing genes from either set were considered as not
836 cycling and assigned to the G1 phase. Using these quantitative scores, we also regressed out
837 cell-cycle effects on expression for each cell using the *ScaleData* function in Seurat as part of the
838 pre-processing steps to QC the scRNA-seq data.

839

840 **Cluster identification and analysis of differentially expressed genes (DEGs).**

841 After quality control and filtering the scran-normalized scRNA-seq data, we performed
842 dimensionality reduction via principal component analysis (PCA). The first 30 principal
843 components were used as a basis to create a shared nearest neighbor (SNN) graph of the single-

844 cell samples. From this graph, clusters of single cells were identified via Louvain clustering of
845 nodes, i.e., single cells, from the SNN graph.

846

847 To identify DEGs in each of the SNN-clusters identified across the primary tumor and PDX single-
848 cell samples, the *FindMarkers* function in Seurat was used. In particular, the Wilcoxon rank sum
849 test was used with the following cutoff values to identify DEGs: absolute log-fold change \geq
850 $\log_2(1.5)$, with a minimum proportion of 10% of the cells of interest expressing the gene of interest,
851 and an FDR-adjusted p-value ≤ 0.1 .

852

853 **Gene set variance analysis (GSVA) enrichment scores and statistical significance**

854 Gene set variance analysis GSVA (version 1.34.0, R package) (31) was used to determine
855 enrichment scores of GBM molecular subtypes. To define the dominant molecular subtype gene
856 expression signature in each single cell, we used an amalgamation of the original gene sets that
857 defined the classical, proneural, and mesenchymal subtypes (2) and refined molecular subtype
858 gene sets (3) for GSVA.

859

860 **Critical Transition Index (I_c)**

861 A brief explanation of I_c from (52) is reproduced for reference. The critical transition index is a
862 scalar value that quantifies if a cell is undergoing (high I_c) or has undergone some critical
863 transition and reached some stable cell state (low I_c). I_c is calculated according to the following:

864

$$I_c(t) = \frac{\langle |R(g_i, g_j)| \rangle}{\langle R(S^k, S^l) \rangle} \quad (1)$$

865

866 Where R is Pearson's correlation coefficient between two observed cell state vectors S^k and S^l or
867 between two "gene" vectors g_i and g_j , respectively, taken from the gene expression data matrix
868 representing the state(s) of a "cell ensemble" $X(t)$

869

$$X(t) = \begin{bmatrix} x_1^1 & \cdots & x_m^1 \\ \vdots & \ddots & \vdots \\ x_1^n & \cdots & x_m^n \end{bmatrix} \quad (2)$$

870

871 $X(t)$ thus represents the data of a "measurement point", with access to finer-grained layer of
872 information given the single-cell nature of the data. Each row represents a single-cell in some

873 state k within the cell-ensemble of n -cells in m -dimensional gene state space – $S^k =$
874 $[x_1^k, x_2^k, \dots, x_m^k]$. Each column represents gene i 's expression across n cells from said “cell
875 ensemble” $X(t)$, where $g_i = [x_i^1, x_i^2, \dots, x_i^n]$. The brackets $\langle \dots \rangle$ in equation 1 represent the average
876 of all correlation coefficients R between all pairs of state vectors S or gene vectors g from matrix
877 $X(t)$. Here, a cell-ensemble represented the population of PD-GSCs at a particular treatment time-
878 point (D0, D2, D3, or D4).

879

880 The underlying premise is that cells that have undergone some critical transition into an attractor
881 state will be nominally expressing the same distinct gene expression pattern, with the exception
882 of deviations due to stochastic fluctuations. Consequently, cells of the same differentiated state
883 will be expressing similar gene expression programs and will correlate highly with one another.
884 Characteristic gene expression of cells within a particular attractor state is affected by symmetric
885 random fluctuations. Thus, gene-to-gene coupling is dominated by noise, reducing gene-to-gene
886 correlations. Conversely, destabilized cells undergoing some transition, requires some non-
887 random shift in gene expression patterns that override the symmetric noise expected in cells
888 within a stable attractor state.

889

890 **MINER network inference**

891 An additional gene-filtering step was performed on the QC scRNA-seq data sets to identify a
892 common gene set between SN520 and SN503 – only common genes having a minimum gene
893 count ≥ 2 in a minimum of 20 cells were considered for network inference. This resulted in a
894 common gene set of 9,089 common genes used in SN520 and SN503 for MINER3 network
895 inference.

896

897 To infer regulons within single cells, we applied the MINER (86) workflow to the SN520 and SN503
898 scRNA-seq data sets independently. As part of the scSYGNAL framework, the MINER algorithm
899 involves a suite of functions that enables the inference of causal mechanistic relationships linking
900 genetic mutations to transcriptional regulation. Because our datasets did not include any
901 mutational profiling, we primarily focused on identifying regulons, based on co-expression
902 clustering and enrichment of transcription factor binding motifs present in those co-expression
903 clusters identified, and calculated the activity of these regulons in the single-cell samples. Broadly
904 speaking, regulon activity represents the “eigengene” value in an individual cell. Regulons are
905 identified, in part, by performing PCA on the normalized scRNA-seq data profiles to identify
906 principal components in which decreasing amounts of variation across genes are captured along

907 each principal component – defined as a linear combination of gene expression values. This linear
908 combination of weighted gene expression values defines the eigengene value per sample (41,
909 42, 86, 87). Alternatively, the eigengene is defined as the first principal component of the module
910 expression matrix composed of expression values of regulon genes across samples. It is a scalar
911 representation of expression of gene members for a regulon in an individual sample (87).

912

913 To determine the significance of each inferred regulon, we performed a permutation test to
914 determine the possibility of obtaining an eigenvalue corresponding to the first principal component
915 of a regulon (across all single-cells) of equal or greater value. The eigenvalue represents a
916 summarizing value of all the genes in the regulon, i.e., eigengene and thus if these genes are
917 indeed coregulated or are correlated, the eigengene value would be higher than that of randomly
918 selected set of genes. Next, we randomly select a set of genes having the same number of
919 members as the original regulon and calculate the corresponding eigengene value for the
920 permuted regulon. This procedure was repeated 1,000 times to create a null distribution of
921 eigengene values. We repeated this procedure for each inferred regulon. Those regulons whose
922 eigengene values were greater than the 95th percentile of their respective null distribution were
923 considered significant. These eigengene values represented regulon “activity” within each cell.
924 We further filtered out regulons in which the first principal component from the module expression
925 matrix composed of expression values of regulon genes across samples did not account for at
926 least 20% of the variation of the module expression matrix. From these two criteria, statistical
927 significance of an eigengene and variance explained within the module expression matrix were
928 used to refine the number of regulons to include for SN520 and SN503, respectively.

929

930 **Pseudotime analysis**

931 We applied Monocle v3 in R (88, 89) to organize cells along a pseudotime axis and identify distinct
932 trajectories along which transcriptomic expression states putatively transition. Scran-normalized
933 scRNA-seq datasets were used to infer pseudotime trajectories for SN520 and SN503
934 independently using the *learn_graph* and *order_cells* function in Monocle v3 (v1.2.7) and default
935 parameter settings.

936

937 **Locally estimated scatterplot smoothing (LOESS) regression analysis**

938 We performed LOESS regression on individual TF expression across the single cells along the
939 inferred pseudotime trajectories. This allowed us to fit a polynomial regression line through the
940 highly variable single-cell gene expression to identify any underlying patterns that may be present

941 over pseudotime. LOESS regression of normalized single-cell gene expression along pseudotime
942 was performed using the *loess* function within the *stats* v3.6.2 package in R.

943

944 **TF-TF network topology inference**

945 To generate TF-TF network topologies, we cross-referenced all regulator-target gene connections
946 inferred by MINER3 against the transcription factor binding site database
947 (tfbsdb.systemsbiology.net), focusing on only those interactions that involved pairs of TFs that
948 were also regulators for some regulon. The type of TF-TF interaction was determined by the sign
949 of the pairwise Pearson correlation between the two components – positive correlations were
950 interpreted as activating interactions while negative correlations were interpreted as inhibiting
951 interactions. We further refined the TF-TF network by removing those interactions having an
952 absolute Pearson correlation coefficient (r) below a statistically significant minimum threshold,
953 determined by permutation analysis ($|r| \geq 0.17$ for SN520 and $|r| \geq 0.16$ from SN503).
954 Permutation tests involved randomly mixing expression values across genes within a single-cell
955 and calculating Pearson's r among all gene pairs across all PD-GSCs for SN520 and SN503
956 independently. This process was repeated 1000 times to create a null distribution of Pearson
957 correlation coefficients.

958

959 To determine the statistical significance of each network TF-TF network topology, we performed
960 two sets of permutation tests (Supplementary). Briefly, the first set of permutation testes involved
961 permuting the network topology, where node labels and edges were permuted such that the
962 number of edges and nodes remained consistent, we performed dynamic simulation for the
963 permuted network using initial condition, i.e., TF expression profiles from a randomly selected
964 untreated (D0) cell for each PD-GSC, respectively. The simulated results were then compared to
965 experimental data to determine cosine similarity values. This permutation-simulation-comparison
966 process was repeated 1,000 times to create a null distribution of cosine similarity values. The
967 distribution of cosine similarity values derived from the original TF-TF network topologies were
968 significantly higher than the permuted similarity values (SN503 empirical p-value = XXX, SN520
969 empirical p-value = YYY). The second set of permutations involved permuting the gene
970 expression data, mixing the gene and cell ids to see if similar TF-expression states could be
971 achieved by random chance. Cell and gene labels were permuted 1000 times to create a
972 permuted distribution of TF-expression states, which were then compared to the original
973 experimental states, defined by hierarchical clustering, using pairwise cosine similarity values
974 (Supplementary Figure S10).

975

976 **RACIPE simulations**

977 Simulations were performed using the sRACIPE package v1.16.0 in R. Briefly, using sRACIPE
978 we generated an ensemble of ordinary differential equation (ODE) models based on associated
979 chemical rate equations with distinct, randomly generated kinetic parameter sets. From the
980 ensemble of models, we analyze the resulting distribution of steady states and identify robust
981 phenotypes supported by the core TF network. The inferred TF-TF network topology for SN520
982 (or SN503) was used as the input circuit for the *sracipeSimulate* function. An integral step size of
983 0.2 and simulation time of 100 was used for simulations.

984

985 To verify the ability of the network topology to recapitulate observed TF expression states, we
986 initialized the network by randomly selecting 1,000 expression profiles (with replacement) for the
987 respective TFs from D0 scRNA-seq profiles for each PD-GSC, i.e., initial conditions that were
988 paired with 1,000 parameter models randomly selected by the *sracipeSimulate* function (default
989 settings used).

990

991 To explore the plausible network states supported by each network topology, we initialized each
992 network topology by using 100 randomly selected initial conditions that were used across 10,000
993 randomly selected parameter sets, which resulted in an ensemble of 1 million simulated steady-
994 states. To determine the dominant steady states from the ensemble of simulations, all Euclidean
995 pairwise distances were calculated. Those simulated states that had a Euclidean pairwise
996 distance ≥ 4.0 (scSYGNAL-520) or ≥ 1.92 (scSYGNAL-503) were labeled as a “non-redundant”
997 state. The distance thresholds were found to be the $\geq 99^{\text{th}}$ percentile of permuted Euclidean
998 pairwise distances for each PD-GSC, which was determined by randomly selecting 1,000 pairs
999 of simulated states and calculating all pairwise Euclidean distances. This process was repeated
1000 10 times to create a distribution of 10 million pairwise Euclidean distances. From these distance
1001 thresholds, we identified 6,519 (scSYGNAL-520) and 4,223 (scSYGNAL-503) simulated states
1002 were deemed as unique states. We then hierarchically clustered each set of distinct, “non-
1003 redundant” states and identified four dominant states that were supported by each TF-TF network
1004 topology (Figure 6C, E). To classify a “redundant” simulated state, we assigned it the same state
1005 as its nearest “non-redundant” neighbor, based on Euclidean distance.

1006

1007 **RACIPE convergence tests**

1008 To verify that the number of initial conditions and parameter sets would sufficiently converge to
1009 steady state solutions across the initial condition and parameter space, we performed a series of
1010 simulations using 100 randomly selected initial conditions across different number of model
1011 parameters (1e3, 2e3, 4e3, 6e3, 8e3, and 1e4). The result was a series of simulations consisting
1012 of six different ensembles of simulated states, one for each model parameter set, with each
1013 ensemble associated with a randomly selected set of initial conditions. This series of simulations
1014 was performed in triplicate. For each set of results, we identified the unique states using the same
1015 Euclidean distance thresholds described in *RACIPE simulations*. Next, we determined the
1016 Kullback-Liebler (KL) divergence for these simulated states across the triplicate set of simulations
1017 for each set of results (Supplementary Figure S11).

1018

1019 **Random Forest analysis of RACIPE simulations**

1020 Random forest analysis was performed on RACIPE simulations, i.e., simulated transcriptional
1021 states for SN520 and SN503 using *randomForest* function (default parameters) from the
1022 *randomForest* package v4.7-1.1. Simulated state classifiers were based on hierarchical clustering
1023 of the unique (non-redundant) simulated states as described in *RACIPE simulations*.

1024

1025 **Drug Matching Identification**

1026 To identify drugs targeting elements within the transcriptional programs identified from the
1027 network analysis, we applied the Open Targets platform tool (<https://www.targetvalidation.org/>).
1028 The platform integrates a variety of data and evidence from genetics, genomics, transcriptomics,
1029 drug, animal models, and literature to score and rank target-disease associations for drug target
1030 identification. We focused our search on identifying drug-target matches for only those drugs
1031 associated with any cancer treatments that had reached Phase IV matching with regulon genes
1032 associated with SN520. Originally, 28 drugs paired with genes across 17 regulons. We further
1033 refined the list of potential drug candidates to those drugs associated with GBM, reducing the
1034 number of candidate drugs to eight, including vinflunine.

1035

1036 **DATA AND CODE AVAILABILITY**

1037

1038 All single-cell RNA-seq data will be deposited in dbGaP. All code is available upon request. Any
1039 additional information required to reanalyze the data reported in this paper is available upon
1040 request.

1041

1042 **ACKNOWLEDGEMENTS**

1043

1044 We thank M. Strasser for insightful discussions and advice on simulating and analyzing TF-TF
1045 network dynamics; M. Arietta-Ortiz for advice on TF-TF network analysis and testing; H. Hampton
1046 on advice on experimental design and analysis of flow cytometry data; A. Akade for helpful
1047 discussion on stem-cell culture methodologies; C. Lausted for advice on experimental design for
1048 single-cell RNA-seq; and the entire Baliga laboratory for general support and advice. We would
1049 also like to thank the ISB Molecular Core for their services in preparing and sequencing the single-
1050 cell samples and Timothy J. Martins and the University of Washington Quellos High-throughput
1051 Screening Core for advice and services in running HTP screens. J.P. was funded by a fellowship
1052 from the NIH (F32-CA247445) and currently supported by NIH grant R01-CA259469. P.H. was
1053 funded by the Ben and Catherin Ivy Foundation and is currently supported by R01-CA259469 and
1054 philanthropic funding from Swedish Medical Center Foundation. A.L. was supported by R01-
1055 AI141953. M.P. is supported by R01-AI128215 and R01-CA259469, R.C. was supported by R01-
1056 CA259469, W.W. is supported by R01-AI128215 and R01-CA259469, and S.T. is supported by
1057 R01-AI128215 and R01-CA259469. H.L. is supported by R01-CA259469 and philanthropic
1058 funding from the Swedish Medical Center Foundation. A.P.P. is supported by R01-NS119650,
1059 the Burroughs Wellcome Career Award for Medical Scientists, and Discovery Grant from the Kuni
1060 Foundation. C.C. is supported by R01-CA259469. S.H. is supported by R01-GM109964, R01-
1061 CA226258, R01-GM135396, and R01-CA255536. N.S.B. is supported by R01-AI128215, R01-
1062 CA259469, and R01-AI141953.

1063

1064 **AUTHOR CONTRIBUTIONS**

1065

1066 J.P., S.H., and N.S.B. conceived the study. J.P. designed all experiments with guidance from A.L.,
1067 M.P., P.H., and C.C. Pitavastatin-treatment experiments for bulk and single-cell RNA-seq, and all
1068 flow cytometry-related experiments were performed by J.P. M.P. prepared samples for bulk RNA
1069 sequencing. J.P., M.P., and R.C. performed all siRNA-related experiments. P.H. and C.C.
1070 organized and executed the HTP drug screen. P.H. and H.L. performed sequential drug treatment
1071 experiments. J.P. analyzed all data and performed all network dynamics simulations with
1072 guidance from A.P.P., S.H., and N.S.B. W.W. and S.T. performed miRNA regulation and drug
1073 targeting analysis. J.P. and N.S.B. wrote the paper with input from all authors.

1074

1075

1076 **DECLARATION OF INTERESTS**

1077

1078 NSB is a co-founder and member of the Board of Directors of Sygnomics, Inc., which will
1079 commercialize the SYGNAL technology. The terms of this arrangement have been reviewed and
1080 approved by ISB in accordance with its conflict of interest policy. APP is a consultant for and has
1081 an equity interest in Sygnomics, Inc. CC and PH hold a patent titled "Methods and panels of
1082 compounds for characterization of glioblastoma multiforme tumors and cancer stem cells thereof"
1083 (U.S. Patent No. US11499972B2). JP, ST, SH, and NSB have applied for a patent titled "Cancer
1084 drug sensitivity, treatment, and progression determination" (U.S. Patent application number
1085 63/549,391).

1086

1087 **REFERENCES**

1088

1089 1. R. Stupp, W. Mason, M. J. van den Bent, M. Weller, B. M. Fisher, M. J. B. Taphoorn, K. Belanger, A. A. Brandes, C. Marosi, U. Bogdahn, J. Curschmann, R. C. Janzer, S. K. Ludwin, T. Gorlia, A. Allgeier, D. Lacombe, G. Cairncross, E. Eisenhauer, R. O. Mirimanoff, Radiotherapy plus Concomitant\and Adjuvant Temozolomide for Glioblastoma. *N. Engl. J. Med.* (2005), doi:10.1056/NEJMoa043330.

1090

1091

1092

1093

1094 2. R. G. W. Verhaak, K. A. Hoadley, E. Purdom, V. Wang, Y. Qi, M. D. Wilkerson, C. R. Miller, L. Ding, T. Golub, J. P. Mesirov, G. Alexe, M. Lawrence, M. O'Kelly, P. Tamayo, B. A. Weir, S. Gabriel, W. Winckler, S. Gupta, L. Jakkula, H. S. Feiler, J. G. Hodgson, C. D. James, J. N. Sarkaria, C. Brennan, A. Kahn, P. T. Spellman, R. K. Wilson, T. P. Speed, J. W. Gray, M. Meyerson, G. Getz, C. M. Perou, D. N. Hayes, Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1. *Cancer Cell.* **17**, 98–110 (2010).

1095

1096

1097

1098

1099

1100

1101 3. Q. Wang, B. Hu, X. Hu, H. Kim, M. Squatrito, L. Scarpace, A. C. deCarvalho, S. Lyu, P. Li, Y. Li, F. Barthel, H. J. Cho, Y. H. Lin, N. Satani, E. Martinez-Ledesma, S. Zheng, E. Chang, C. E. G. Sauvé, A. Olar, Z. D. Lan, G. Finocchiaro, J. J. Phillips, M. S. Berger, K. R. Gabrusiewicz, G. Wang, E. Eskilsson, J. Hu, T. Mikkelsen, R. A. DePinho, F. Muller, A. B. Heimberger, E. P. Sulman, D. H. Nam, R. G. W. Verhaak, Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. *Cancer Cell.* **32**, 42-56.e6 (2017).

1102

1103

1104

1105

1106

1107

1108 4. A. P. Patel, I. Tirosh, J. J. Trombetta, A. K. Shalek, S. M. Gillespie, H. Wakimoto, D. P. Cahill, B. V. Nahed, W. T. Curry, R. L. Martuza, D. N. Louis, O. Rozenblatt-Rosen, M. L. Suva, A. Regev, B. E. Bernstein, Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. *Science (80-).* **344**, 1396–1401 (2014).

1109

1110

1111

1112 5. J. Chen, Y. Li, T.-S. Yu, R. M. McKay, D. K. Burns, S. G. Kernie, L. F. Parada, A restricted cell population propagates glioblastoma growth after chemotherapy. *Nature.* **488**, 522–526 (2012).

1113

1114

1115 6. A. Eramo, L. Ricci-Vitiani, A. Zeuner, R. Pallini, F. Lotti, G. Sette, E. Pilozzi, L. M. Larocca, C. Peschle, R. De Maria, Chemotherapy resistance of glioblastoma stem cells. *Cell Death Differ.* **13**, 1238–1241 (2006).

1116

1117

1118 7. Z. Wang, H. Zhang, S. Xu, Z. Liu, Q. Cheng, The adaptive transition of glioblastoma stem cells and its implications on treatments. *Signal Transduct. Target. Ther.* **6**, 124 (2021).

1119

1120 8. D. Garnier, O. Renault, M.-C. Alves-Guerra, F. Paris, C. Pecqueur, Glioblastoma Stem-

1121 Like Cells, Metabolic Strategy to Kill a Challenging Target. *Front. Oncol.* **9** (2019),
1122 doi:10.3389/fonc.2019.00118.

1123 9. A. Segerman, M. Niklasson, C. Haglund, T. Bergström, M. Jarvius, Y. Xie, A.
1124 Westermark, D. Sönmez, A. Hermansson, M. Kastemar, Z. Naimaie-Ali, F. Nyberg, M.
1125 Berglund, M. Sundström, G. Hesselager, L. Uhrbom, M. Gustafsson, R. Larsson, M.
1126 Fryknäs, B. Segerman, B. Westermark, Clonal Variation in Drug and Radiation Response
1127 among Glioma-Initiating Cells Is Linked to Proneural-Mesenchymal Transition. *Cell Rep.*
1128 **17**, 2994–3009 (2016).

1129 10. Z. Azam, S.-S. T. TO, B. A. Tannous, Mesenchymal Transformation: The Rosetta Stone
1130 of Glioblastoma Pathogenesis and Therapy Resistance. *Adv. Sci.* **7**, 2002015 (2020).

1131 11. L. Wang, J. Jung, H. Babikir, K. Shamardani, S. Jain, X. Feng, N. Gupta, S. Rosi, S.
1132 Chang, D. Raleigh, D. Solomon, J. J. Phillips, A. A. Diaz, A single-cell atlas of
1133 glioblastoma evolution under therapy reveals cell-intrinsic and cell-extrinsic therapeutic
1134 targets. *Nat. Cancer.* **3**, 1534–1552 (2022).

1135 12. N. Vasan, J. Baselga, D. M. Hyman, A view on drug resistance in cancer. *Nature.* **575**,
1136 299–309 (2019).

1137 13. C. Holohan, S. Van Schaeybroeck, D. B. Longley, P. G. Johnston, Cancer drug
1138 resistance : an evolving paradigm. *Nat. Publ. Gr.* **13**, 714–726 (2013).

1139 14. K. P. L. Bhat, V. Balasubramaniyan, B. Vaillant, R. Ezhilarasan, K. Hummelink, F.
1140 Hollingsworth, K. Wani, L. Heathcock, J. D. James, L. D. Goodman, S. Conroy, L. Long,
1141 N. Lelic, S. Wang, J. Gumin, D. Raj, Y. Kodama, A. Raghunathan, A. Olar, K. Joshi, C. E.
1142 Pelloski, A. Heimberger, S. H. Kim, D. P. Cahill, G. Rao, W. F. A. Den Dunnen, H. W. G.
1143 M. Boddeke, H. S. Phillips, I. Nakano, F. F. Lang, H. Colman, E. P. Sulman, K. Aldape,
1144 Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in
1145 glioblastoma. *Cancer Cell.* **24**, 331–346 (2013).

1146 15. J. Halliday, K. Helmy, S. S. Pattwell, K. L. Pitter, Q. LaPlant, T. Ozawa, E. C. Holland,
1147 *Proc. Natl. Acad. Sci.*, in press, doi:10.1073/pnas.1321014111.

1148 16. Z.-D. Shi, K. Pang, Z.-X. Wu, Y. Dong, L. Hao, J.-X. Qin, W. Wang, Z.-S. Chen, C.-H.
1149 Han, Tumor cell plasticity in targeted therapy-induced resistance: mechanisms and new
1150 strategies. *Signal Transduct. Target. Ther.* **8**, 113 (2023).

1151 17. Y. Sun, B.-E. Wang, K. G. Leong, P. Yue, L. Li, S. Jhunjhunwala, D. Chen, K. Seo, Z.
1152 Modrusan, W.-Q. Gao, J. Settleman, L. Johnson, Androgen Deprivation Causes
1153 Epithelial–Mesenchymal Transition in the Prostate: Implications for Androgen-Deprivation
1154 Therapy. *Cancer Res.* **72**, 527–536 (2012).

1155 18. K. Izumi, L.-Y. Fang, A. Mizokami, M. Namiki, L. Li, W.-J. Lin, C. Chang, Targeting the
1156 androgen receptor with siRNA promotes prostate cancer metastasis through enhanced
1157 macrophage recruitment via CCL2/CCR2-induced STAT3 activation. *EMBO Mol. Med.* **5**,
1158 1383–1401 (2013).

1159 19. L. Kyjacova, S. Hubackova, K. Krejcikova, R. Strauss, H. Hanzlikova, R. Dzijak, T.
1160 Imrichova, J. Simova, M. Reinis, J. Bartek, Z. Hodny, Radiotherapy-induced plasticity of
1161 prostate cancer mobilizes stem-like non-adherent, Erk signaling-dependent cells. *Cell
1162 Death Differ.* **22**, 898–911 (2015).

1163 20. G. N. Gan, J. Eagles, S. B. Keysar, G. Wang, M. J. Glogowska, C. Altunbas, R. T.
1164 Anderson, P. N. Le, J. J. Morton, B. Frederick, D. Raben, X.-J. Wang, A. Jimeno,
1165 Hedgehog Signaling Drives Radioresistance and Stroma-Driven Tumor Repopulation in
1166 Head and Neck Squamous Cancers. *Cancer Res.* **74**, 7024–7036 (2014).

1167 21. T. Shibue, R. A. Weinberg, EMT, CSCs, and drug resistance: the mechanistic link and
1168 clinical implications. *Nat. Rev. Clin. Oncol.* **14**, 611–629 (2017).

1169 22. Z. Culig, Epithelial mesenchymal transition and resistance in endocrine-related cancers.
1170 *Biochim. Biophys. Acta - Mol. Cell Res.* **1866**, 1368–1375 (2019).

1171 23. K. Polyak, R. A. Weinberg, Transitions between epithelial and mesenchymal states:
1172 acquisition of malignant and stem cell traits. *Nat. Rev. Cancer.* **9**, 265–273 (2009).

1173 24. T. Brabletz, R. Kalluri, M. A. Nieto, R. A. Weinberg, EMT in cancer. *Nat. Rev. Cancer.* **18**,
1174 128–134 (2018).

1175 25. T. B. Steinbichler, J. Dudás, S. Skvortsov, U. Ganswindt, H. Riechelmann, I.-I.
1176 Skvortsova, Therapy resistance mediated by cancer stem cells. *Semin. Cancer Biol.* **53**,
1177 156–167 (2018).

1178 26. T. Ozawa, M. Riester, Y.-K. Cheng, J. T. Huse, M. Squatrito, K. Helmy, N. Charles, F.
1179 Michor, E. C. Holland, Most Human Non-GCIMP Glioblastoma Subtypes Evolve from a
1180 Common Proneural-like Precursor Glioma. *Cancer Cell.* **26**, 288–300 (2014).

1181 27. M. Minata, A. Audia, J. Shi, S. Lu, J. Bernstock, M. S. Pavlyukov, A. Das, S. H. Kim, Y. J.
1182 Shin, Y. Lee, H. Koo, K. Snigdha, I. Waghmare, X. Guo, A. Mohyeldin, D. Gallego-Perez,
1183 J. Wang, D. Chen, P. Cheng, F. Mukheef, M. Contreras, J. F. Reyes, B. Vaillant, E. P.
1184 Sulman, S. Y. Cheng, J. M. Markert, B. A. Tannous, X. Lu, M. Kango-Singh, L. J. Lee, D.
1185 H. Nam, I. Nakano, K. P. Bhat, Phenotypic Plasticity of Invasive Edge Glioma Stem-like
1186 Cells in Response to Ionizing Radiation. *Cell Rep.* **26**, 1893–1905.e7 (2019).

1187 28. P. Hothi, T. J. Martins, L. Chen, L. Deleyrolle, J.-G. Yoon, B. Reynolds, G. Foltz, High-
1188 Throughput Chemical Screens Identify Disulfiram as an Inhibitor of Human Glioblastoma

1189 29. Stem Cells. *Oncotarget*. **3**, 1124–1136 (2012).

1190 29. P. Jiang, R. Mukthavavam, Y. Chao, I. S. Bharati, V. Fogal, S. Pastorino, X. Cong, N.
1191 Nomura, M. Gallagher, T. Abbasi, S. Vali, S. C. Pingle, M. Makale, S. Kesari, Novel anti-
1192 glioblastoma agents and therapeutic combinations identified from a collection of FDA
1193 approved drugs. *J. Transl. Med.* **12** (2014), doi:10.1186/1479-5876-12-13.

1194 30. P. Jiang, R. Mukthavaram, Y. Chao, N. Nomura, I. S. Bharati, V. Fogal, S. Pastorino, D.
1195 Teng, X. Cong, S. C. Pingle, S. Kapoor, K. Shetty, A. Aggrawal, S. Vali, T. Abbasi, S.
1196 Chien, S. Kesari, In vitro and in vivo anticancer effects of mevalonate pathway
1197 modulation on human cancer cells. *Br. J. Cancer*. **111**, 1562–1571 (2014).

1198 31. S. Hänelmann, R. Castelo, J. Guinney, GSVA: gene set variation analysis for microarray
1199 and RNA-Seq data. *BMC Bioinformatics*. **14**, 7 (2013).

1200 32. I. Korsunsky, N. Millard, J. Fan, K. Slowikowski, F. Zhang, K. Wei, Y. Baglaenko, M.
1201 Brenner, P. Loh, S. Raychaudhuri, Fast, sensitive and accurate integration of single-cell
1202 data with Harmony. *Nat. Methods*. **16**, 1289–1296 (2019).

1203 33. L. McInnes, J. Healy, J. Melville, UMAP: Uniform Manifold Approximation and Projection
1204 for Dimension Reduction (2020).

1205 34. G. Peyré, M. Cuturi, Computational Optimal Transport: With Applications to Data
1206 Science. *Found. Trends® Mach. Learn.* **11**, 355–607 (2019).

1207 35. J. Song, EMT or apoptosis: a decision for TGF-β. *Cell Res.* **17**, 289–290 (2007).

1208 36. J. Song, W. Shi, The concomitant apoptosis and EMT underlie the fundamental functions
1209 of TGF-β. *Acta Biochim. Biophys. Sin. (Shanghai)*. **50**, 91–97 (2017).

1210 37. C. Chen, X. Hao, X. Lai, L. Liu, J. Zhu, H. Shao, D. Huang, H. Gu, T. Zhang, Z. Yu, L.
1211 Xie, X. Zhang, Y. Yang, J. Xu, Y. Zhao, Z. Lu, J. Zheng, Oxidative phosphorylation
1212 enhances the leukemogenic capacity and resistance to chemotherapy of B cell acute
1213 lymphoblastic leukemia. *Sci. Adv.* **7**, eabd6280 (2021).

1214 38. P. Jin, J. Jiang, L. Zhou, Z. Huang, E. C. Nice, C. Huang, L. Fu, Mitochondrial adaptation
1215 in cancer drug resistance: prevalence, mechanisms, and management. *J. Hematol.
1216 Oncol.* **15**, 97 (2022).

1217 39. Z. Zhang, Y. Tan, C. Huang, X. Wei, Redox signaling in drug-tolerant persister cells as an
1218 emerging therapeutic target. *eBioMedicine*. **89**, 104483 (2023).

1219 40. Z. Zhao, Y. Mei, Z. Wang, W. He, The Effect of Oxidative Phosphorylation on Cancer
1220 Drug Resistance. *Cancers (Basel)*. **15**, 1–17 (2023).

1221 41. J. H. Park, A. H. Feroze, S. N. Emerson, A. B. Mihalas, C. D. Keene, P. J. Cimino, A. L.
1222 G. de Lomana, K. Kannan, W. J. Wu, S. Turkarslan, N. S. Baliga, A. P. Patel, A single-

1223 cell based precision medicine approach using glioblastoma patient-specific models. *npj*
1224 *Precis. Oncol.* **6** (2022), doi:10.1038/s41698-022-00294-4.

1225 42. C. L. Plaisier, S. O'Brien, B. Bernard, S. Reynolds, Z. Simon, C. M. Toledo, Y. Ding, D. J.
1226 Reiss, P. J. Paddison, N. S. Baliga, Causal Mechanistic Regulatory Network for
1227 Glioblastoma Deciphered Using Systems Genetics Network Analysis. *Cell Syst.* **3**, 172–
1228 186 (2016).

1229 43. D. J. Reiss, N. S. Baliga, R. Bonneau, Integrated biclustering of heterogeneous genome-
1230 wide datasets for the inference of global regulatory networks. *BMC Bioinformatics.* **7**, 280
1231 (2006).

1232 44. M. A. Wall, S. Turkarslan, W.-J. Wu, S. A. Danziger, D. J. Reiss, M. J. Mason, A. P.
1233 Dervan, M. W. B. Trotter, D. Bassett, R. M. Hershberg, A. L. G. de Lomana, A. V
1234 Ratushny, N. S. Baliga, Genetic program activity delineates risk, relapse, and therapy
1235 responsiveness in multiple myeloma. *npj Precis. Oncol.* **5**, 60 (2021).

1236 45. C. L. Plaisier, W.-J. Wu, N. S. Baliga, Transcription Factor Target Gene Database (2016),
1237 (available at <http://tfbsdb.systemsbiology.net/>).

1238 46. C. L. Plaisier, M. Pan, N. S. Baliga, A miRNA-regulatory network explains how
1239 dysregulated miRNAs perturb oncogenic processes across diverse cancers. *Genome*
1240 *Res.* **22**, 2302–2314 (2012).

1241 47. S. Turkarslan, A. V Raman, A. W. Thompson, C. E. Arens, M. A. Gillespie, F. von Netzer,
1242 K. L. Hillesland, S. Stolyar, A. de Lomana, D. J. Reiss, D. Gorman-Lewis, G. M. Zane, J.
1243 A. Ranish, J. D. Wall, D. A. Stahl, N. S. Baliga, Mechanism for microbial population
1244 collapse in a fluctuating resource environment. *Mol. Syst. Biol.* **13** (2017),
1245 doi:10.15252/msb.20167058.

1246 48. G. MacLeod, D. A. Bozek, N. Rajakulendran, V. Monteiro, M. Ahmadi, Z. Steinhart, M. M.
1247 Kushida, H. Yu, F. J. Coutinho, F. M. G. Cavalli, I. Restall, X. Hao, T. Hart, H. A.
1248 Luchman, S. Weiss, P. B. Dirks, S. Angers, Genome-Wide CRISPR-Cas9 Screens
1249 Expose Genetic Vulnerabilities and Mechanisms of Temozolomide Sensitivity in
1250 Glioblastoma Stem Cells. *Cell Rep.* **27**, 971–986.e9 (2019).

1251 49. J. Obacz, T. Avril, P.-J. Le Reste, H. Urra, V. Quillien, C. Hetz, E. Chevet, Endoplasmic
1252 reticulum proteostasis in glioblastoma - From molecular mechanisms to therapeutic
1253 perspectives. *Sci. Signal.* **10**, eaal2323 (2017).

1254 50. H.-M. Jeon, X. Jin, J.-S. Lee, S.-Y. Oh, Y.-W. Sohn, H.-J. Park, K. M. Joo, W.-Y. Park, D.-
1255 H. Nam, R. A. DePinho, L. Chin, H. Kim, Inhibitor of differentiation 4 drives brain tumor-
1256 initiating cell genesis through cyclin E and notch signaling. *Genes Dev.* **22**, 2028–2033

1257 (2008).

1258 51. G. La Manno, R. Soldatov, A. Zeisel, E. Braun, H. Hochgerner, V. Petukhov, K. Lidschreiber, M. E. Kastriti, P. Lönnerberg, A. Furlan, J. Fan, L. E. Borm, Z. Liu, D. van Bruggen, J. Guo, X. He, R. Barker, E. Sundström, G. Castelo-Branco, P. Cramer, I. Adameyko, S. Linnarsson, P. V. Kharchenko, RNA velocity of single cells. *Nature*. **560**, 494–498 (2018).

1263 52. M. Mojtahedi, A. Skupin, J. Zhou, I. G. Casta, Y. Rebecca, H. Chang, K. Trachana, A. Giuliani, S. Huang, Cell Fate Decision as High-Dimensional Critical State Transition. *PLoS Biol.* **14**, 1–28 (2016).

1266 53. G. Gorin, M. Fang, T. Chari, L. Pachter, RNA velocity unraveled. *PLOS Comput. Biol.* **18**, 1–55 (2022).

1268 54. J. Ding, N. Sharon, Z. Bar-Joseph, Temporal modelling using single-cell transcriptomics. *Nat. Rev. Genet.* **23**, 355–368 (2022).

1270 55. M. Fedele, L. Cerchia, S. Pegoraro, R. Sgarra, G. Manfioletti, Proneural-mesenchymal transition: Phenotypic plasticity to acquire multitherapy resistance in glioblastoma. *Int. J. Mol. Sci.* **20** (2019), , doi:10.3390/ijms20112746.

1273 56. D. P. Cook, B. C. Vanderhyden, Transcriptional census of epithelial-mesenchymal plasticity in cancer. *Sci. Adv.* **8** (2022), doi:10.1126/sciadv.abi7640.

1275 57. D. P. Cook, B. C. Vanderhyden, Context specificity of the EMT transcriptional response. *Nat. Commun.* **11**, 1–9 (2020).

1277 58. S. Rodríguez-Enríquez, Á. Marín-Hernández, J. C. Gallardo-Pérez, S. C. Pacheco-Velázquez, J. A. Belmont-Díaz, D. X. Robledo-Cadena, J. L. Vargas-Navarro, N. A. de la Peña, E. Saavedra, R. Moreno-Sánchez, Transcriptional Regulation of Energy Metabolism in Cancer Cells. *Cells*. **8** (2019), doi:10.3390/cells8101225.

1281 59. B. Huang, M. Lu, D. Jia, E. Ben-Jacob, H. Levine, J. N. Onuchic, Interrogating the topological robustness of gene regulatory circuits by randomization. *PLOS Comput. Biol.* **13**, 1–21 (2017).

1284 60. B. Huang, D. Jia, J. Feng, H. Levine, J. N. Onuchic, M. Lu, RACIPE: a computational tool for modeling gene regulatory circuits using randomization. *BMC Syst. Biol.* **12**, 74 (2018).

1286 61. V. Kohar, M. Lu, Role of noise and parametric variation in the dynamics of gene regulatory circuits. *npj Syst. Biol. Appl.* **4**, 40 (2018).

1288 62. T. S. Gardner, J. J. Faith, Reverse-engineering transcription control networks. *Phys. Life Rev.* **2**, 65–88 (2005).

1290 63. M. Hecker, S. Lambeck, S. Toepfer, E. van Someren, R. Guthke, Gene regulatory

1291 network inference: data integration in dynamic models-a review. *Biosystems*. **96**, 86–103
1292 (2009).

1293 64. M. Banf, S. Y. Rhee, Computational inference of gene regulatory networks: Approaches,
1294 limitations and opportunities. *Biochim. Biophys. Acta - Gene Regul. Mech.* **1860**, 41–52
1295 (2017).

1296 65. D. Carvalho-Silva, A. Pierleoni, M. Pignatelli, C. Ong, L. Fumis, N. Karamanis, M.
1297 Carmona, A. Faulconbridge, A. Hercules, E. McAuley, A. Miranda, G. Peat, M. Spitzer, J.
1298 Barrett, D. G. Hulcoop, E. Papa, G. Koscielny, I. Dunham, Open Targets Platform: new
1299 developments and updates two years on. *Nucleic Acids Res.* **47**, D1056–D1065 (2018).

1300 66. J. Bellmunt, C. Théodore, T. Demkov, B. Komyakov, L. Sengelov, G. Daugaard, A. Caty,
1301 J. Carles, A. Jagiello-Grusfeld, O. Karyakin, F.-M. Delgado, P. Hurteloup, E. Winquist,
1302 N. Morsli, Y. Salhi, S. Culiné, H. von der Maase, Phase III Trial of Vinflunine Plus Best
1303 Supportive Care Compared With Best Supportive Care Alone After a Platinum-Containing
1304 Regimen in Patients With Advanced Transitional Cell Carcinoma of the Urothelial Tract.
1305 *J. Clin. Oncol.* **27**, 4454–4461 (2009).

1306 67. J.-M. Barret, C. Etiévant, B. T. Hill, In vitro synergistic effects of vinflunine, a novel
1307 fluorinated vinca alkaloid, in combination with other anticancer drugs. *Cancer Chemother.
1308 Pharmacol.* **45**, 471–476 (2000).

1309 68. Y. A. Yabo, S. P. Niclou, A. Golebiewska, Cancer cell heterogeneity and plasticity: A
1310 paradigm shift in glioblastoma. *Neuro. Oncol.* **24**, 669–682 (2021).

1311 69. T. M. Ashton, W. G. McKenna, L. A. Kunz-Schughart, G. S. Higgins, Oxidative
1312 Phosphorylation as an Emerging Target in Cancer Therapy. *Clin. Cancer Res.* **24**, 2482–
1313 2490 (2018).

1314 70. V. Sica, J. M. Bravo-San Pedro, G. Stoll, G. Kroemer, Oxidative phosphorylation as a
1315 potential therapeutic target for cancer therapy. *Int. J. Cancer.* **146**, 10–17 (2020).

1316 71. J. P. Thiery, H. Acloque, R. Y. J. Huang, M. A. Nieto, Epithelial-Mesenchymal Transitions
1317 in Development and Disease. *Cell.* **139**, 871–890 (2009).

1318 72. A. Dirkse, A. Golebiewska, T. Buder, P. V. Nazarov, A. Muller, S. Poovathingal, N. H. C.
1319 Brons, S. Leite, N. Sauvageot, D. Sarkisjan, M. Seyfrid, S. Fritah, D. Stieber, A.
1320 Michelucci, F. Hertel, C. Herold-Mende, F. Azuaje, A. Skupin, R. Bjerkvig, A. Deutsch, A.
1321 Voss-Böhme, S. P. Niclou, Stem cell-associated heterogeneity in Glioblastoma results
1322 from intrinsic tumor plasticity shaped by the microenvironment. *Nat. Commun.* **10** (2019),
1323 doi:10.1038/s41467-019-09853-z.

1324 73. K. Leder, K. Pitter, Q. LaPlant, D. Hambardzumyan, B. D. Ross, T. A. Chan, E. C.

1325 Holland, F. Michor, Mathematical Modeling of PDGF-Driven Glioblastoma Reveals
1326 Optimized Radiation Dosing Schedules. *Cell*. **156**, 603–616 (2014).

1327 74. A. Randles, H.-G. Wirsching, J. A. Dean, Y.-K. Cheng, S. Emerson, S. S. Pattwell, E. C.
1328 Holland, F. Michor, Computational modelling of perivascular-niche dynamics for the
1329 optimization of treatment schedules for glioblastoma. *Nat. Biomed. Eng.* **5**, 346–359
1330 (2021).

1331 75. C. Neftel, J. Laffy, M. G. Filbin, T. Hara, M. E. Shore, G. J. Rahme, A. R. Richman, D.
1332 Silverbush, M. L. Shaw, C. M. Hebert, J. Dewitt, S. Gritsch, E. M. Perez, L. N. G. Castro,
1333 X. Lan, N. Druck, C. Rodman, D. Dionne, A. Kaplan, M. S. Bertalan, J. Small, K. Pelton,
1334 S. Becker, D. Bonal, Q.-D. Nguyen, R. L. Servis, J. M. Fung, R. Mylvaganam, L. Mayr, J.
1335 Gojo, C. Haberler, R. Geyeregger, T. Czech, I. Slavc, B. V Nahed, W. T. Curry, B. S.
1336 Carter, H. Wakimoto, P. K. Brastianos, T. T. Batchelor, A. Stemmer-Rachamimov, M.
1337 Martinez-Lage, M. P. Frosch, I. Stamenkovic, N. Riggi, E. Rheinbay, M. Monje, O.
1338 Rozenblatt-Rosen, D. P. Cahill, A. P. Patel, T. Hunter, I. M. Verma, K. L. Ligon, D. N.
1339 Louis, A. Regev, B. E. Bernstein, I. Tirosh, M. L. Suvà, An Integrative Model of Cellular
1340 States, Plasticity, and Genetics for Glioblastoma. *Cell* (2019),
1341 doi:<https://doi.org/10.1016/j.cell.2019.06.024>.

1342 76. I. Larsson, E. Dalmo, R. Elgendy, M. Niklasson, M. Doroszko, A. Segerman, R. Jörnsten,
1343 B. Westermark, S. Nelander, Modeling glioblastoma heterogeneity as a dynamic network
1344 of cell states. *Mol. Syst. Biol.* **17**, 1–19 (2021).

1345 77. O. Celiku, M. R. Gilbert, O. Lavi, Computational modeling demonstrates that glioblastoma
1346 cells can survive spatial environmental challenges through exploratory adaptation. *Nat.*
1347 *Commun.* **10** (2019), doi:10.1038/s41467-019-13726-w.

1348 78. L. M. Richards, O. K. N. Whitley, G. MacLeod, F. M. G. Cavalli, F. J. Coutinho, J. E.
1349 Jaramillo, N. Svergun, M. Riverin, D. C. Croucher, M. Kushida, K. Yu, P. Guilhamon, N.
1350 Rastegar, M. Ahmadi, J. K. Bhatti, D. A. Bozek, N. Li, L. Lee, C. Che, E. Luis, N. I. Park,
1351 Z. Xu, T. Ketela, R. A. Moore, M. A. Marra, J. Spears, M. D. Cusimano, S. Das, M.
1352 Bernstein, B. Haibe-Kains, M. Lupien, H. A. Luchman, S. Weiss, S. Angers, P. B. Dirks,
1353 G. D. Bader, T. J. Pugh, Gradient of Developmental and Injury Response transcriptional
1354 states defines functional vulnerabilities underpinning glioblastoma heterogeneity. *Nat.*
1355 *Cancer*. **2**, 157–173 (2021).

1356 79. L. Wang, H. Babikir, S. Müller, G. Yagnik, K. Shamardani, F. Catalan, G. Kohanbash, B.
1357 Alvarado, E. Di Lullo, A. Kriegstein, S. Shah, H. Wadhwa, S. M. Chang, J. J. Phillips, M.
1358 K. Aghi, A. A. Diaz, The phenotypes of proliferating glioblastoma cells reside on a single

1359 axis of variation. *Cancer Discov.* **9**, 1708–1719 (2019).

1360 80. H. P. Ellis, M. Greenslade, B. Powell, I. Spiteri, A. Sottoriva, K. M. Kurian, Current
1361 Challenges in Glioblastoma: Intratumour Heterogeneity, Residual Disease, and Models to
1362 Predict Disease Recurrence. *Front. Oncol.* **5**, 251 (2015).

1363 81. T. Hara, R. Chanoch-Myers, N. D. Mathewson, C. Myskiw, L. Atta, L. Bussema, S. W.
1364 Eichhorn, A. C. Greenwald, G. S. Kinker, C. Rodman, L. N. Gonzalez Castro, H.
1365 Wakimoto, O. Rozenblatt-Rosen, X. Zhuang, J. Fan, T. Hunter, I. M. Verma, K. W.
1366 Wucherpfennig, A. Regev, M. L. Suvà, I. Tirosh, Interactions between cancer cells and
1367 immune cells drive transitions to mesenchymal-like states in glioblastoma. *Cancer Cell.*
1368 **39**, 779-792.e11 (2021).

1369 82. K. Tsuji, M. Ojima, K. Otabe, M. Horie, H. Koga, I. Sekiya, T. Muneta, Effects of Different
1370 Cell-Detaching Methods on the Viability and Cell Surface Antigen Expression of Synovial
1371 Mesenchymal Stem Cells. *Cell Transplant.* **26**, 1089–1102 (2017).

1372 83. M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for
1373 RNA-seq data with DESeq2. *Genome Biol.* **15**, 550 (2014).

1374 84. T. Stuart, A. Butler, P. Hoffman, C. Hafemeister, E. Papalexi, W. M. Mauck, Y. Hao, M.
1375 Stoeckius, P. Smibert, R. Satija, Comprehensive Integration of Single-Cell Data. *Cell.*
1376 **177**, 1888-1902.e21 (2019).

1377 85. A. T. L. Lun, K. Bach, J. C. Marioni, Pooling across cells to normalize single-cell RNA
1378 sequencing data with many zero counts. *Genome Biol.* **17**, 75 (2016).

1379 86. M. A. Wall, S. Turkarslan, W.-J. Wu, S. A. Danziger, D. J. Reiss, M. J. Mason, A. P.
1380 Dervan, M. W. B. Trotter, D. Bassett, R. M. Hershberg, A. L. G. de Lomana, A. V.
1381 Ratushny, N. S. Baliga, *bioRxiv*, in press, doi:10.1101/2020.04.01.012351.

1382 87. P. Langfelder, S. Horvath, Eigengene networks for studying the relationships between co-
1383 expression modules. *BMC Syst. Biol.* **1**, 54 (2007).

1384 88. C. Trapnell, D. Cacchiarelli, J. Grimsby, P. Pokharel, S. Li, M. Morse, N. J. Lennon, K. J.
1385 Livak, T. S. Mikkelsen, J. L. Rinn, The dynamics and regulators of cell fate decisions are
1386 revealed by pseudotemporal ordering of single cells. *Nat. Biotechnol.* **32**, 381–6 (2014).

1387 89. J. Cao, M. Spielmann, X. Qiu, X. Huang, D. M. Ibrahim, A. J. Hill, F. Zhang, S. Mundlos,
1388 L. Christiansen, F. J. Steemers, C. Trapnell, J. Shendure, The single-cell transcriptional
1389 landscape of mammalian organogenesis. *Nature.* **566**, 496–502 (2019).

1390 90. A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, A.
1391 Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, J. P. Mesirov, Gene set enrichment
1392 analysis: A knowledge-based approach for interpreting genome-wide expression profiles.

1393 *Proc. Natl. Acad. Sci.* **102**, 15545–15550 (2005).

1394

1395

1396 **FIGURE LEGENDS**

1397

1398 **Figure 1. Pitavastatin causes shift in molecular subtype expressed by PD-GSCs. (A)**
1399 Pitavastatin IC₅₀ values for each of 45 PD-GSCs as determined using dose titration assays
1400 (below). Labeled PD-GSCs represent a subset deemed as a responders (blue) and non-
1401 responders (red) to pitavastatin. Below are drug-dose response and time-course response curves
1402 for SN520 (pitavastatin-responsive) and SN503 (pitavastatin-non-responsive) PD-GSC
1403 populations. **(B)** Experimental workflow for longitudinal monitoring of PD-GSC response to
1404 pitavastatin treatment. Colored horizontal arrows indicate duration of pitavastatin (magenta),
1405 vehicle-control (DMSO, light blue), or untreated control (dark grey). **(C)** Heatmap of bulk-level
1406 expression for molecular subtype gene sets (classical – CL, proneural – PN, mesenchymal –
1407 MES) for samples collected. **(D)** Table summarizing dominant molecular subtype expressed in
1408 each sample. D2 bulk sample for SN520 was absent due to sample limitations. **(E)** UMAP plots
1409 of Harmony-integrated scRNA-seq data sets and corresponding individual plots for each PD-GSC
1410 phenotype. **(F)** Wasserstein distance of transport distances between each consecutive time point
1411 for each PD-GSC under each treatment condition (vehicle- or pitavastatin-treatment).

1412

1413 **Figure 2. Single-cell characterization of PD-GSC response to pitavastatin.** UMAP plots of
1414 scRNA-seq profiles, annotated according to treatment conditions (untreated control, vehicle –
1415 DMSO, and pitavastatin – PSTAT), for **(A)** SN520 and **(B)** SN503. Scatter plots show proportions
1416 of each subtype in each PD-GSC population across treatment for **(C)** SN520 and **(D)** SN503. **(E)**
1417 - **(F)** Flow cytometry analysis of PN and MES markers CD133 (PN) and CD44 (MES) across
1418 pitavastatin-treated cells for SN520 and SN503, respectively. Proportions of cells positive for each
1419 subtype marker are quantified in the adjacent barplots underneath. **(G-H)** Heatmap of inferCNV
1420 scores for SN520 and SN503, respectively. Cells (rows) are grouped based on treatment
1421 conditions (same color annotation as in (A) and (B)). Genes (columns) are arranged according to
1422 their chromosomal positions. **(I)** Dose-response curves of naïve SN520 PD-GSCs (light blue) and
1423 SN520 PD-GSCs that survived an initial pitavastatin-treatment (treated – dark blue). Adjacent plot
1424 shows corresponding AUC values from dose-response curves generated from subsequent PD-
1425 GSC cultures derived from original pitavastatin- or vehicle-control-treatment for SN520 (left) and
1426 SN503 (right). Paired t-test results showed a sustained (significant) increase in AUC values of the
1427 PSTAT-treated SN520 PD-GSCs relative to their vehicle-control counterparts but not for SN503.

1428

1429 **Figure 3. Differential expression and pathway enrichment analysis reveals underlying**
1430 **processes driving pitavastatin responses. (A)** Heatmap of the top upregulated DEGs, based
1431 on FDR p-values, across the 14 Louvain cell clusters (cl) identified in vehicle-control- and
1432 pitavastatin-treated SN520 PD-GSCs. Adjacent UMAP plot with treatment annotation (same as
1433 Fig 2A) included for reference. **(B)** Corresponding UMAP plots of scRNA-seq profiles annotated
1434 according to Louvain cell cluster (left) and treatment condition (right) as reference. **(C)** Cell
1435 proportions for each Louvain cluster that belong to each treatment condition for SN520. Significant
1436 enrichment of treatment condition within Louvain cluster indicated by asterisk (FDR ≤ 0.05) or
1437 double dagger (FDR $\leq 1e-05$) **(D)** Cell proportions for each Louvain cluster that belong to each
1438 treatment condition for SN503. Significant enrichment notation identical to that used in (D). **(E)**
1439 Dotplot of hallmark gene sets enriched across SN503 and SN520 PD-GSCs, grouped with respect
1440 to either drug-treatment duration or Louvain clustering. Dot size represents the ratio of number of
1441 upregulated genes associated with a PD-GSC grouping to the number of genes associated with
1442 a specific hallmark gene set. Dot colors indicate significance of enrichment (FDR value). **(F)** Total
1443 number of up- and down-regulated DEGs, relative to untreated control (D0) cells, at each
1444 treatment time point for SN503 (red) and SN520 (blue).

1445
1446 **Figure 4. MINER3 transcriptional regulatory network inference reveals mechanisms of cell-**
1447 **state changes. (A)** Heatmaps of normalized regulon activities across SN520 (top) and SN503
1448 (bottom) PD-GSCs. Regulons (rows) are organized into transcriptional programs (Pr) while single
1449 cells (columns) are organized into transcriptional states (St). Left-adjacent color bars indicate
1450 what regulons belong to a particular transcriptional program. Left-adjacent color bar indicates
1451 transcriptional programs. Top color bars indicate treatment condition (color annotation identical
1452 to Fig. 1E) and corresponding transcriptional state for a single cell. **(B)** Stacked barplot show
1453 proportion of cells within each transcriptional state from each treatment condition for SN520 (top)
1454 and SN503 (bottom). **(C)** Boxplot/violin plots of distributions of regulon activity for select programs
1455 across treatment conditions for SN520 and SN503. Regulon activity values were capped between
1456 the lower 2.5% and 97.5% range of values. Labels indicate program IDs and select hallmark gene
1457 sets (90) enriched within each program. The box represents the inter-quantile range (IQR – 25th
1458 and 75th percentile) and median activity value while the whiskers represent 1.5x IQR. Asterisks
1459 indicate statistically significant differences between regulon activity distributions. Single asterisks
1460 (*) denote activity distribution of untreated controls (CTRL) is significantly lower than distribution
1461 being compared (FDR $<< 1e-3$). Double asterisks (**) denote distribution of untreated controls is
1462 significantly higher than either vehicle-treated (DMSO) or pitavastatin-treated (PSTAT)

1463 distributions being compared (FDR << 1e-3). **(D)** Flow diagram outlining approach to derive core
1464 TF-TF network from MINER3 results. Final core TF-TF networks derived for **(E)** SN520 and **(F)**
1465 SN503.

1466
1467 **Figure 5. Distinct trajectories define SN520 and SN503 pitavastatin response.** **(A)** UMAP
1468 plots of vehicle- and pitavastatin-treated cells for SN520 (left column) and SN503 (right column).
1469 Annotation highlight treatment conditions (top row), molecular subtype (2nd row), pseudotime (3rd
1470 row) and RNA velocity (4th row). **(B)** Critical transition index (I_c) of SN520 (blue) and SN503 (red)
1471 cells treated with vehicle (DMSO - light) or pitavastatin (PSTAT – dark). **(C)** LOESS regression of
1472 TF expression behavior sorted according to peak expression along pseudotime. Density plots
1473 depict distribution of sample time points along pseudotime trajectory. Heatmap shows expression
1474 of TFs rank sorted by time of peak expression along pseudotime (color bar beneath heatmap).
1475 **(D)** Select set of LOESS regression of mean program activities with respect to pseudotime.
1476 Regulons are clustered based on their dynamic activity profiles with respect to pseudotime.
1477 Dashed grey line represents the average shape of the curves for each cluster. Labels indicate
1478 which transcriptional programs were grouped into each cluster. Select hallmark gene sets (90)
1479 enriched within programs are labeled as well. **(E)** Boxplots/violin plots of expression of genes
1480 associated with indicated pathways/processes (90) on respective treatment days. Relative gene
1481 expression values were capped at the lower 2.5% and 97.5% range of values. Labels indicate
1482 select hallmark gene sets enriched within subpopulation of cells (treatment time point). Asterisks
1483 indicate statistically greater expression in pitavastatin-treated cells (PSTAT) relative to untreated
1484 control (CTRL) counterparts (Wilcoxon rank test, FDR << 1e-5). The box represents the inter-
1485 quantile range (IQR – 25th and 75th percentile), median activity value while the whiskers highlight
1486 1.5x IQR.
1487

1488 **Figure 6. Dynamic simulations of core TF regulatory network supports phenotypic**
1489 **plasticity of GSCs.** Simulated transcriptional states projected along first two principal
1490 components. Contour lines represent distribution of scores from PCA of TF expression states
1491 from single PD-GSCs for **(A)** SN520 and **(B)** SN503. One thousand simulated states were
1492 generated using scSYGNAL-520/503 as network topologies and using respective D0 scRNA-seq
1493 data as inputs to RACIPE algorithm. **(C)** Three plots summarize results from 1 million simulations
1494 using scSYGNAL-520 and randomly selected initial conditions as inputs to RACIPE algorithm to
1495 explore plausible steady states supported by network topology derived from MINER3 (simulations
1496 are distinct from those in (A)). Dendrogram highlights four distinct simulated steady states

1497 generated by RACIPE using core TF network and randomly selected initial conditions as input..
1498 Simulated states projected along first two PCs. Horizontal barplot visualizes rank-ordered
1499 importance of TFs in distinguishing four simulated states per random forest analysis based on the
1500 mean decrease in accuracy in categorizing sample if the TF were excluded from the model. **(D)**
1501 Heatmap of expression for TFs that define core TF network in SN520 cells that define
1502 experimental states (ES₅₂₀-i) used as basis of comparison for simulated states. Adjacent boxplots
1503 of top four most important TFs per random forest analysis. Top row of boxplots show distributions
1504 of expression of TFs for each experimental states identified. Bottom row includes distributions of
1505 simulated expression values (normalized) from simulations that used randomized initial
1506 conditions. **(E-F)** Same as (C-D), but for SN503. **(G)** Viability of SN520 following 4-day treatment
1507 with 1.0 μ M pitavastatin and simultaneous siRNA-mediated KD of TFs or non-template control
1508 (NTC – red dashed line). Values in bars represent FDR p-values indicating significant decrease
1509 relative to NTC. Values in bars represent FDR p-values indicating significant decrease relative to
1510 NTC siRNA condition. Adjacent scatterplot compares rank ordering of tested TFs to
1511 corresponding rank ordering based on predicted change in proportion of states belonging to MES
1512 state 1. TFs below the diagonal have a greater impact on reducing viability than was predicted.
1513 **(H)** Viability of SN503 following pitavastatin treatment and simultaneous siRNA-mediate KD of
1514 TFs associated with OXPHOS-associated relative to NTC and 4-day treatment 6.0 μ M pitavastatin
1515 treatment. Again, values in bars represent FDR p-values. Values in bars represent FDR p-values.
1516

1517 **Figure 7. Dynamic behavior of regulons reveal additional targets that guide rational**
1518 **secondary drug selection. (A)** Distribution of activities for representative tubulin-associated
1519 regulons across SN520 PD-GSCs. Statistically significant differences in regulon activity, relative
1520 to activity in untreated control cells are indicated by asterisks or double daggers (Wilcoxon rank
1521 test, * FDR \leq 1e-20, ** FDR \leq 1e-150). **(B)** Distribution of activities for representative tubulin-
1522 associated regulons across SN503 PD-GSCs across treatment conditions. Asterisks indicate
1523 conditions having significantly higher values relative to untreated controls (Wilcoxon rank test, *
1524 FDR \leq 1e-20, ** FDR \leq 1e-150). **(C)** Experimental designs used to test effects of sequential
1525 pitavastatin and vinflunine treatment on non-responder and responder PD-GSC populations. **(D)**
1526 Dose-response curves for SN520 (top) and SN503 (bottom) resulting from a 24hr pre-treatment
1527 with vehicle or pitavastatin (2 μ M or 6 μ M) followed by vinflunine treatment (1.5e-9, 4.6e-9, 13.7e-
1528 9, 41.2e-9, 123.5e-9, 370.4e-9, 1.10e-6, 3.30e-6, 10.0e-6 30.0e-6 M). Adjacent barplot of IC₅₀
1529 values determined from 24hr pretreatment with vehicle or pitavastatin (2 μ M or 6 μ M) for all non-
1530 responder and responder PD-GSCs tested. Results from 48hr pretreatment are included as

1531 Supplementary Figure S14. **(E)** Depiction of how topologies of the underlying response TF-TF
1532 networks, in response to drug treatment, can drive responder and non-responder PD-GSCs to
1533 transition into different states along a Waddington-like phenotypic landscape. Treatment with a
1534 drug to which cells are sensitive (1° drug^S) activates a highly interconnected network of a
1535 responder PD-GSC, driving PMT across a majority of the surviving cell population, enabling
1536 acquisition of resistance to “multiple drugs^R”. Secondary intervention with a drug to which cells
1537 are resistant (2° drug^R) to target vulnerabilities in the intermediate states potentiates killing and
1538 likely blocks PMT. By contrast, the non-responder PD-GSC is comprised of sub-populations of
1539 cells that are already in states (center well) that are resistant to the primary drug (1° drug^R).
1540 Treatment with the primary drug in this case activates a sparse network that does not trigger
1541 coordinated cell state transitions, but instead drives the surviving cells into multiple distinct drug-
1542 resistant states, which may be sensitive to secondary interventions (e.g., siRNA).

1543

1544

1545

Figure 1



Figure 2

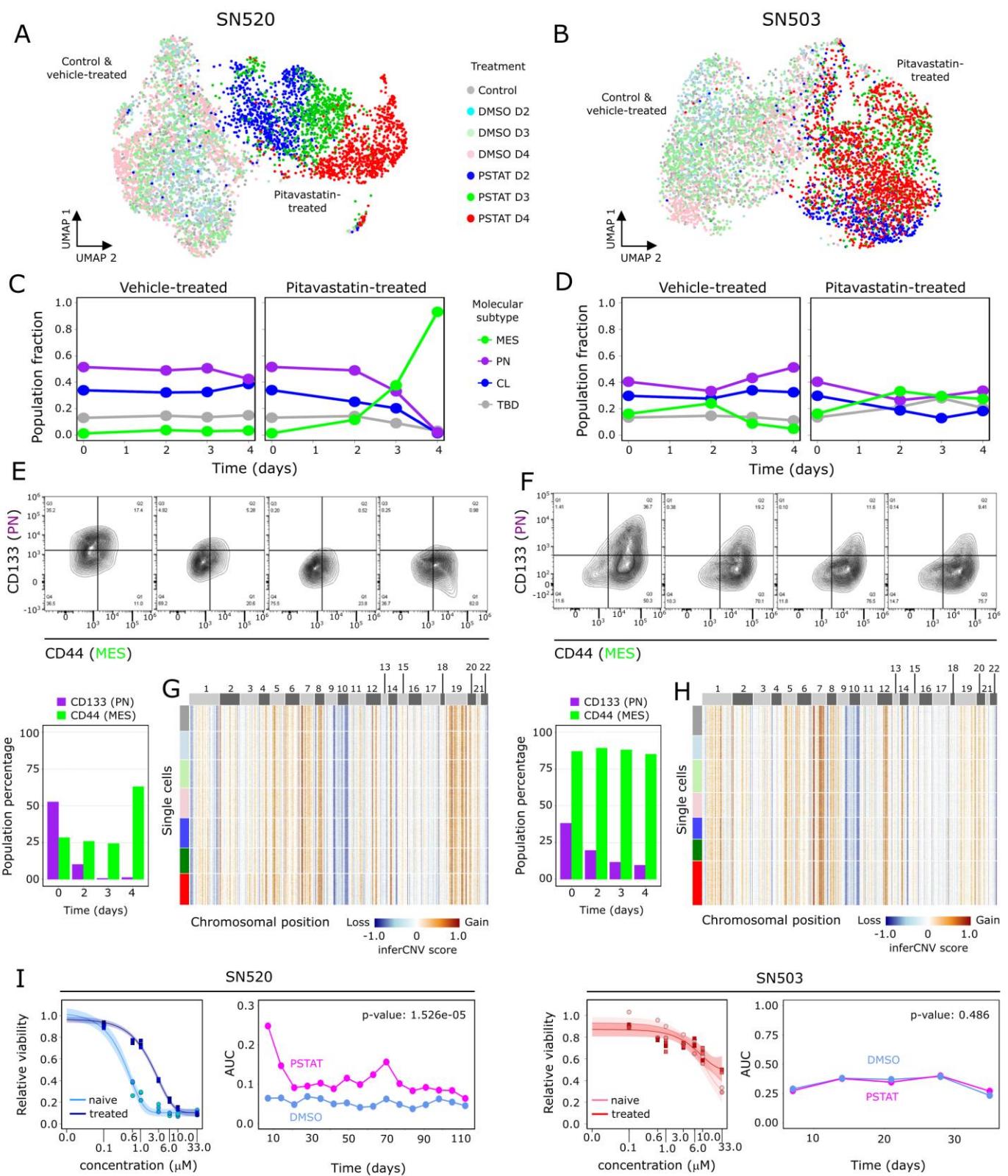
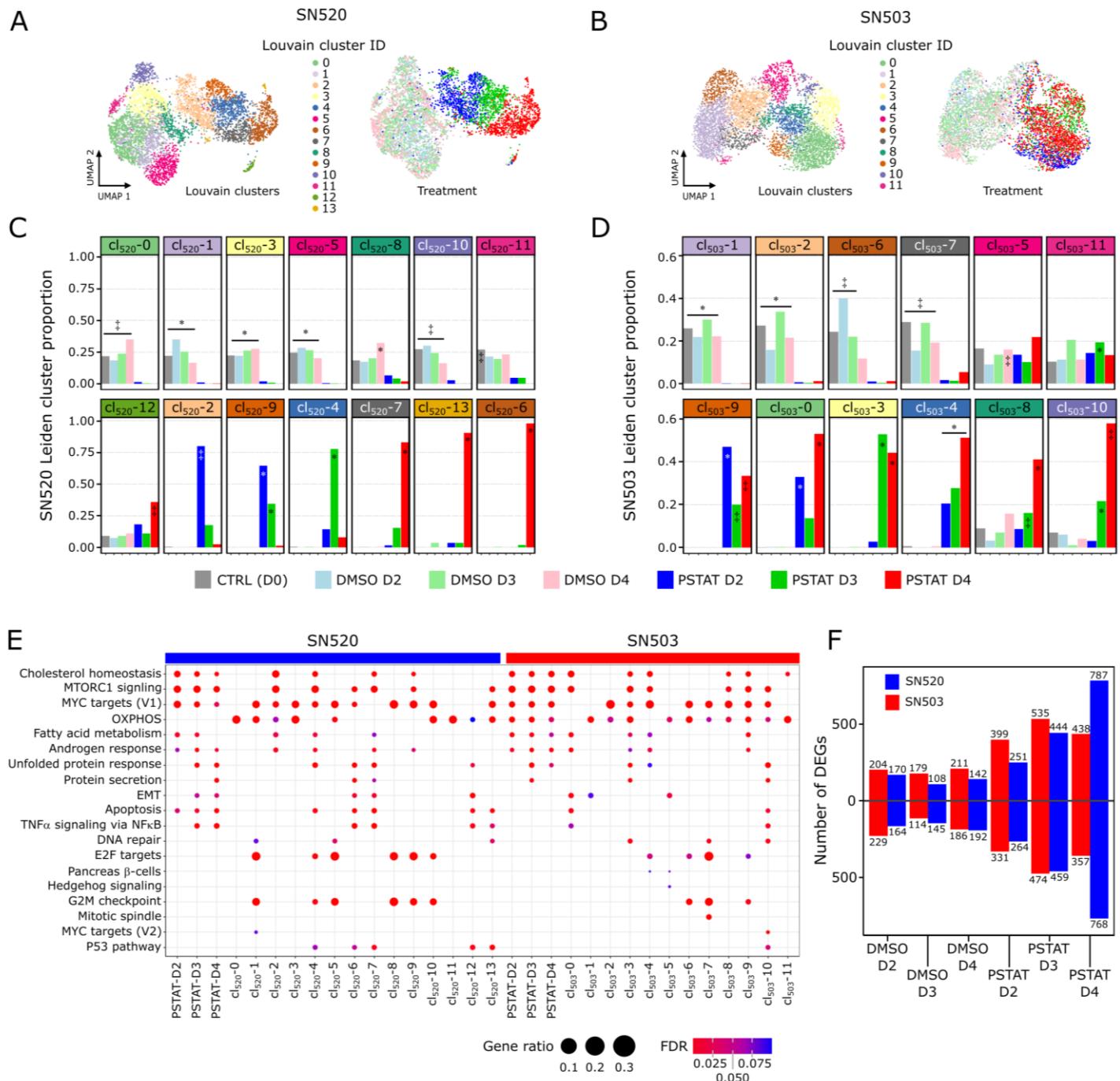


Figure 3



549

550

Figure 4

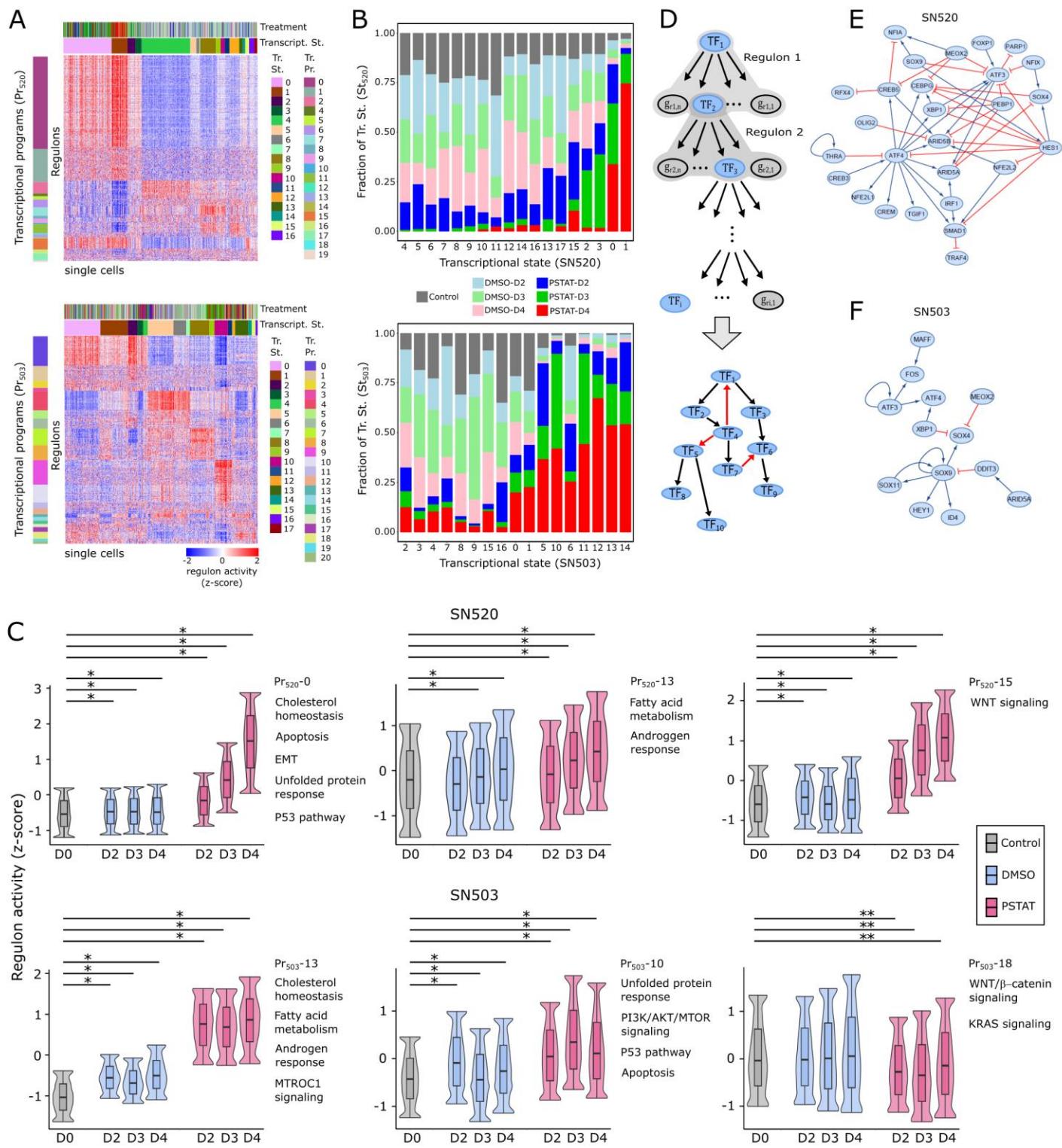
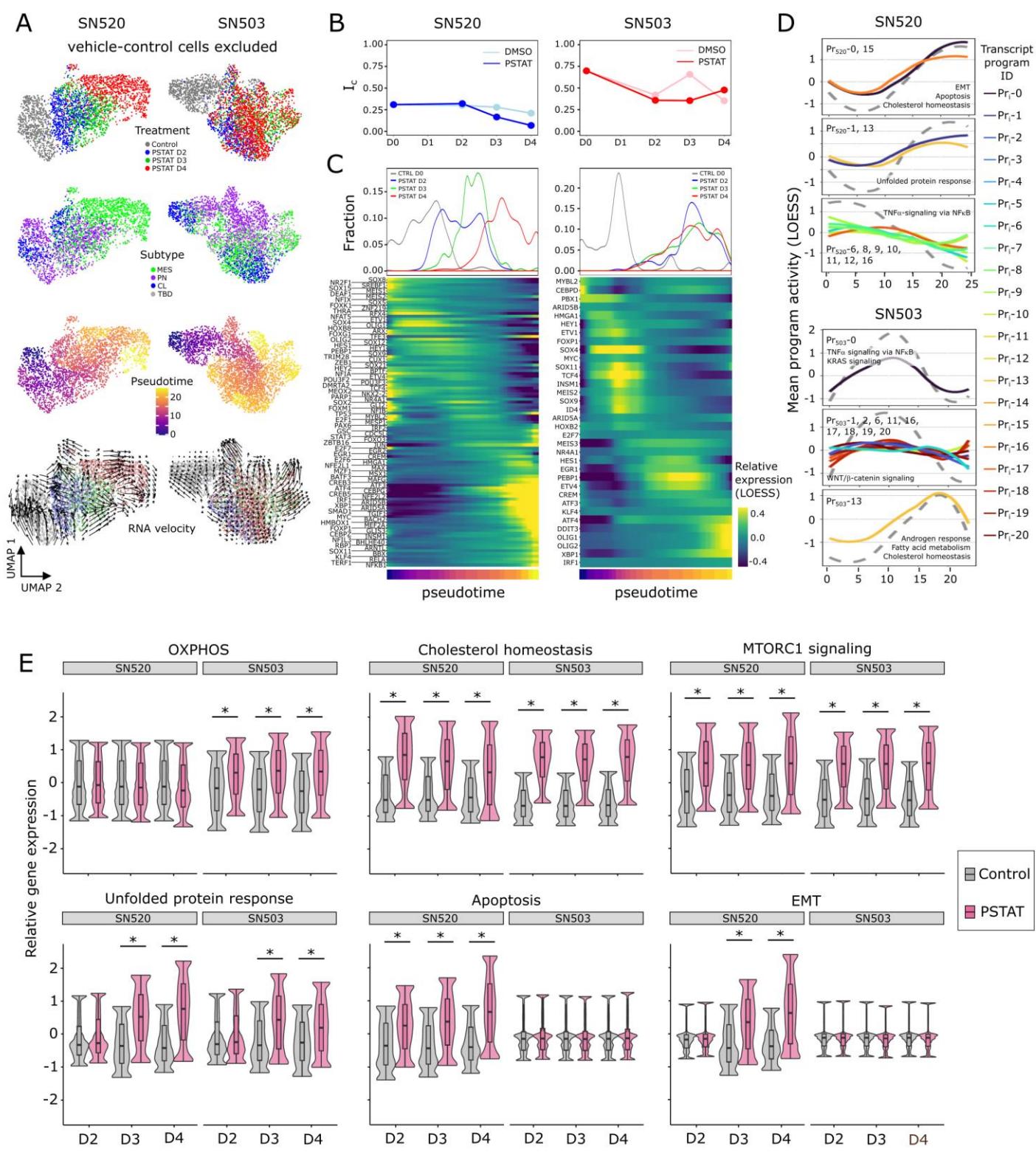


Figure 5



553

554

Figure 6

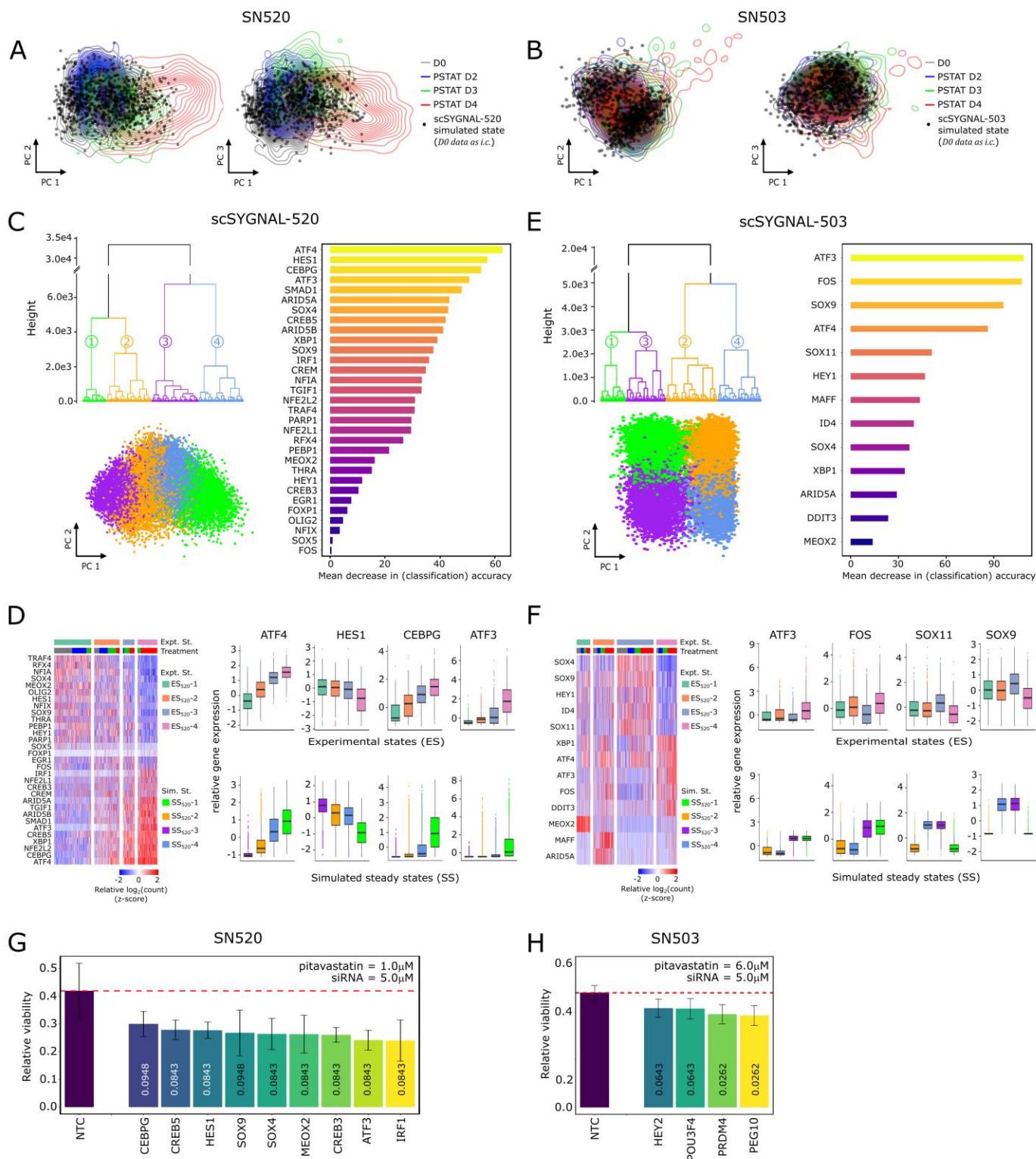


FIGURE 7

