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ABSTRACT 17 

 18 

Poor prognosis and drug resistance in glioblastoma (GBM) manifests from heterogeneity and 19 

treatment-induced shifts in phenotypic states of tumor cells, including dedifferentiation to glioma 20 

stem-like cells (GSCs). This rare tumorigenic cell subpopulation is inherently resistant to 21 

temozolomide, undergoes proneural-to-mesenchymal transition (PMT) to evade therapy, and 22 

thereby drives recurrence. Through inference of transcriptional regulatory networks (TRNs) of 23 

patient-derived GSCs (PD-GSCs) at single-cell resolution, we demonstrate how topology of 24 

transcription factor interactions drives distinct trajectories of cell state transitions of susceptible 25 

and resistant PD-GSCs in response to cytotoxic drug treatment. By experimentally testing TRN 26 

simulation-based predictions, we show that drug treatment drives surviving cells of a PD-GSC 27 

along a trajectory of intermediate states, akin to a bottleneck in gene expression space, exposing 28 

vulnerability to potentiated killing by sequential addition of siRNA or a second drug targeting 29 

transcriptional programs governing non-genetic plasticity of a PD-GSC. Thus, our findings 30 

demonstrate an approach to uncover and use TRN topology of a PD-GSC to rationally predict 31 

combinatorial and sequential treatments that block treatment escape and acquired resistance in 32 

GBM. 33 

  34 
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INTRODUCTION 35 

 36 

Glioblastoma (GBM) is the most lethal and aggressive primary brain tumor in adults. With current 37 

standard of care (SOC), which involves maximal surgical resection, fractionated radiotherapy 38 

(XRT), and chemotherapy with the DNA-alkylating agent, temozolomide (TMZ) (1), patient 39 

prognosis remains dismal with a median survival time of 14-15 months and a 90% risk of 40 

recurrence. There is growing evidence that the poor therapy responsiveness and dismal 41 

prognosis in GBM patients emerges from the interplay of tumor cell heterogeneity and treatment-42 

induced shifts of cellular phenotypic states. Three molecular subtypes of GBM have been 43 

identified– proneural (PN), classical (CL), and mesenchymal (MES), each exhibiting distinct 44 

responses to SOC and clinical prognosis (2, 3). Single-cell resolution transcriptome analyses 45 

further demonstrated that even an individual GBM tumor is heterogeneous, not only 46 

morphologically but also with respect to its composition of cellular states (4), which can include a 47 

mixture of PN/CL/MES subtype cells and a small subpopulation of glioma stem-like cells (GSCs) 48 

that have the capability to self-renew, generate different tumor cell progenies, and initiate new 49 

tumors. Further, there is evidence that extrinsic signals and stressors, including those generated 50 

by treatment, can also drive heterogeneous tumor cells to dedifferentiate into immature GSCs 51 

that are inherently resistant to TMZ (5, 6). 52 

 53 

While PN GSCs have higher proliferation rates and promote tumor angiogenesis, MES GSCs 54 

have potent invasive capabilities (7) and are more resistant to radiation (8) and drug treatment 55 

(9). Thus, most recurrent tumors derived from non-MES primary tumor are comprised of the MES 56 

subtype (10, 11). Two hypotheses have been proposed for the shift in recurrent tumor subtype 57 

and corresponding development of treatment resistance (12, 13): 1) MES subtype GSCs are 58 

selected for and eventually drive the growth of the recurrent tumor (14), or 2) radiation and 59 

chemotherapy causes GSCs to undergo a PN to MES transition (PMT) to evade and survive 60 

treatment (7, 15). The latter hypothesis is in line with the emerging notion that non-genetic cell 61 

plasticity, in addition to selection of fixed, genetically determined phenotypes of mutant cells 62 

accounts for tumor progression and recurrence. For instance, radiation- or chemotherapy-induced 63 

epithelial to MES transition (EMT) in solid tumors has been widely implicated in the rapid 64 

development of therapy resistance (16–25). Thus, GSCs undergoing PMT may be causally 65 

responsible for recurrence of most drug resistant GBM tumors in the form of the MES subtype 66 

(26). For example, expression of MES marker (CD44) and NF-kB pathways associated with PMT 67 

were elevated following radiation treatment of PN GSCs pretreated with TNF-alpha. In genetically 68 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2024. ; https://doi.org/10.1101/2024.02.02.578510doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.02.578510
http://creativecommons.org/licenses/by-nc/4.0/


4 
 

engineered mouse models with cells that can fluorescently report molecular subtype, GSCs 69 

transitioned to the MES subtype as early as 6 hours following radiation treatment, demonstrating 70 

intrinsic ability of GSCs to deal with treatment-induced stress (15). Finally, GSCs isolated from 71 

the invasive tumor edge transitioned from a PN subtype to a MES phenotype in a C/EBP- 72 

dependent manner following treatment (27). In view of the accumulating evidence for the role of 73 

non-genetic plasticity of GSCs in the development of recurrent and refractory tumors, multiple 74 

clinical trials are underway to evaluate novel drugs or drug combinations that are both cytotoxic 75 

against GSCs and also meet the criteria for treating brain tumors (e.g., penetrance of blood brain 76 

barrier) to treat recurrent therapy-refractory GBM (28). These clinical studies, including our own, 77 

have discovered that many FDA-approved drugs are effective in killing GSCs, but can also induce 78 

surviving cells to undergo PMT. 79 

 80 

Here, we sought to understand if knowledge of mechanisms of plasticity of GSCs, and the 81 

trajectories through which they undergo drug-induced PMT, would enable rational strategies to 82 

improve treatment responsiveness by disrupting primary resistance mechanisms, while blocking 83 

therapy escape to prevent acquired resistance and tumor recurrence. We have performed these 84 

studies with pitavastatin, an HMG-CoA reductase inhibitor, which is widely used to manage 85 

cholesterol levels. Pitavastatin is a prime example of an FDA-approved drug that can be 86 

repurposed to minimize GBM recurrence because of its anti-proliferative and radiotherapy 87 

sensitization effects on glioma cells (29) as well as its cytotoxic effects against GSCs (30). 88 

Specifically, we have investigated mechanisms of primary and acquired resistance in six patient-89 

derived GSCs (PD-GSCs) – three responders (SN520, SN533, and SN575) and three non-90 

responders (SN503, SN517 and SN521) to pitavastatin. Through the inference of mechanistic 91 

transcriptional regulatory networks at single cell resolution, we demonstrate that the architecture 92 

and dynamics of a core transcription factor (TF) network governed the phenotypic plasticity of PD-93 

GSCs. By performing in silico simulations and chemical and genetic (siRNA) perturbations, we 94 

show compelling evidence that it wasn’t the composition of initial cell states, but the topology of 95 

the core TF-TF network that governed phenotypic plasticity of GSCs. Finally, our findings 96 

demonstrate that mechanistic knowledge of the gene regulatory network topology can be 97 

leveraged to rationally tailor combinatorial and sequential treatment regimen to disrupt primary or 98 

acquired resistance in a given PD-GSC. 99 

 100 

 101 
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 102 

RESULTS 103 

 104 

Pitavastatin treatment induces distinct responses in SN520 and SN503 PD-GSCs 105 

Through high throughput dose titration assays we discovered that pitavastatin had a wide range 106 

of effectiveness against 45 PD-GSCs. Based on their varying sensitivities, we classified the PD-107 

GSCs into two categories, one in which PD-GSCs were considered a “responder” (IC50 < 5.0M) 108 

and the other in which they were considered a “non-responder” (IC50  5.0M, Figure 1A). To 109 

understand the dynamics underlying each drug-response phenotype, we examined pitavastatin 110 

sensitivity of two PD-GSC cultures, SN520 and SN503, both of which were isocitrate 111 

dehydrogenase 1 (IDH1) wild-type and O6-methylgaunine-DNA methyltransferase (MGMT) 112 

unmethylated. The dose titration results revealed distinct susceptibility profiles to pitavastatin 113 

treatment. With an IC50 of 13.0M, SN503 was considered a “non-responder”, whereas as SN520 114 

with an IC50 of 0.43M was labeled a “responder” (Figure. 1A). Next, we investigated the 115 

longitudinal response of each PD-GSC culture over a 4-day treatment with DMSO (vehicle 116 

control) or pitavastatin at 6M, a dose at which significant decreases in cell viability were observed 117 

over the same treatment period (Supplementary Figure S1). To minimize batch effects, replicate 118 

cultures were treated with drug or vehicle over a staggered schedule such that all samples for 119 

days 0 (D0), 2 (D2), 3 (D3), and 4 (D4) were collected and processed simultaneously for 120 

subsequent flow cytometry, bulk RNA-seq, and scRNA-seq analysis (Figure. 1B). SN520 viability 121 

decreased dramatically during treatment between D3 and D4, falling below 90% by day 5 (Figure 122 

1A). By contrast, over the first three days of pitavastatin treatment, SN503 viability decreased 123 

rapidly at a rate that was similar to the kill rate of SN520, but leveled off to ~60% for the remaining 124 

duration of the 4-day treatment.  125 

 126 

Flow cytometry analysis with annexin V labeling demonstrated that pitavastatin had killed SN520 127 

cells by inducing apoptosis (Supplementary Figure S2). This discrepancy was interesting because 128 

unlike SN520, cytometry analysis of the SN503 did not reveal any dramatic increase in annexin 129 

V signal, suggesting that in this PD-GSC culture a mechanism other than apoptosis was 130 

responsible for cell death in a small fraction of the population (Supplementary Figure S2). These 131 

findings indicated that the cytotoxic consequences of pitavastatin may vary depending on the 132 

composition and characteristics of subpopulations of cells within each PD-GSC culture. Further, 133 

the difference in the rate of cell death in both PD-GSC cultures during treatment suggested either 134 
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the presence of distinct sub-populations of cells with varying susceptibility to pitavastatin, or the 135 

induction of adaptive responses and cell state transitions across sub-populations within each PD-136 

GSC culture. In support of this hypothesis, subsequent bulk RNA-seq profiling and gene set 137 

variance analysis (GSVA, (31)) revealed that while the dominant subtype composition of the two 138 

cell cultures was stable during vehicle treatment (DMSO), in response to pitavastatin treatment 139 

both PD-GSCs underwent a transition to a MES subtype. While SN503 underwent a rapid shift 140 

from PN to MES subtype within two days of treatment, SN520 cells maintained a dominant CL 141 

signature for the first three days and then shifted to a MES subtype on the fourth day of treatment 142 

(Figure 1C, D). These findings established that despite their similarity in terms of IDH1 mutation 143 

and MGMT methylation status, the two PD-GSC cultures exhibited vastly different pitavastatin 144 

responses that likely manifested the presence of distinct sub-populations capable of cell state 145 

transitions that enabled the surviving cells to escape drug-induced cytotoxicity.  146 

 147 

Single-cell analysis suggests drug-induced PMT is likely mechanism of acquired 148 

pitavastatin resistance in SN520 149 

To further dissect the likely role of sub-population heterogeneity in enabling treatment escape of 150 

SN520 and SN503 (Figure 1B), we performed scRNA-seq profiling of each PD-GSC culture 151 

(Chromium, 10X Genomics, Inc.). Following QC of the raw scRNA-seq data (METHODS), a total 152 

of 5,402 cells from SN520 and 5,722 cells from SN503 were profiled across all time points (D0, 153 

D2, D3, and D4) and treatment conditions (pitavastatin or vehicle control). Batch-integration with 154 

Harmony (32), dimensionality reduction, and visualization with uniform manifold approximation 155 

and projection (UMAP, (33)) of the integrated scRNA-seq data revealed distinct pitavastatin-156 

specific transcriptional responses across the two PD-GSCs (Figure 1E). In SN520, we observed 157 

time-dependent clustering of cells, indicating a coordinated transcriptional response to 158 

pitavastatin. By contrast, there was considerable overlap between pitavastatin-treated SN503 159 

cells from all time points (Figure 1E). We quantified net temporal shifts in transcriptomic states of 160 

the cells, or lack thereof, using Wasserstein distance, which quantifies dissimilarity between two 161 

high-dimensional distributions (34). Drug treatment caused the SN520 cells to become 162 

progressively dissimilar from the preceding state over time, unlike vehicle-treated cells. By 163 

contrast, there was a slight increase in Wasserstein distance in drug-treated SN503 cells between 164 

D2 and D3, but not between D3 and D4 samples (Figure 1F). Given the distinct response patterns 165 

of the two PD-GSCs, subsequent scRNA-seq analysis was performed on a patient-specific basis, 166 

(Figure 2A, B). UMAP plots organized cells within each PD-GSC into two main groups, defined 167 

by treatment with either pitavastatin or vehicle control. Pitavastatin-treated SN520 cells organized 168 
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along treatment time whereas pitavastatin-treated SN503 cells from different time points 169 

overlapped with one another in the gene expression space as captured by the UMAP 170 

embeddings.  171 

 172 

Interestingly, GSVA enrichment scoring (Supplementary Figure 3) showed that while the relative 173 

proportions of cells for each molecular subtype (i.e., CL, PN, MES) was fairly consistent in vehicle 174 

control, the 4-day pitavastatin treatment of SN520 responder cells showed a dramatic increase in 175 

the proportion of cells of the MES subtype (Figure 2C). In stark contrast, the subtype composition 176 

of the SN503 non-responder cells remained relatively constant during treatment with pitavastatin 177 

and vehicle control (Figure 2D). Notably, the longitudinal patterns of subtype composition within 178 

each PD-GSC population determined from scRNA-seq time course analysis were inconsistent 179 

with findings from bulk-RNA-seq analysis. Cytometry analysis confirmed findings from scRNA-180 

seq analysis that pitavastatin treatment of SN520 resulted in an increase in the proportion of 181 

CD44+ (MES) cells from 28.2% to 65.35%, and a simultaneous decrease in CD133+ (PN) cells 182 

from 52.7% to ~1%. Of note, SN520 had a sizeable (35.3%) proportion of CD133+/CD44- PN 183 

cells, which were nearly eliminated by D4 (Figure 2E), likely due to a combination of treatment-184 

induced killing and a transition of surviving cells to a MES state. By contrast, pitavastatin treatment 185 

did not cause a change in the proportion of CD44+ cells in SN503 (87% on D1 to 85.11% on D4, 186 

Figure 2F). The significant decrease in the relative proportion of CD133+ cells within SN503 (from 187 

38.1% on D1 to 9.51% on D4), especially over the first two days of treatment, was likely due to 188 

pitavastatin-induced killing of a susceptible PN subpopulation (9). Interestingly, the relative 189 

proportion of CD133+/CD44- PN cells (1.41%) within SN503 was negligible; pitavastatin 190 

sensitivity appeared to be associated with a CD133+/CD44+ sub-population that was in higher 191 

abundance (36.7%).  192 

 193 

To differentiate between selection and differential proliferation as the mechanism responsible for 194 

the observed shifts in subtype composition, we used canonical cell cycle gene expression 195 

signatures to score each cell (METHODS) and found that only small proportions of cells within 196 

each PD-GSC culture were in the S or G2/M phase regardless of treatment context 197 

(Supplementary Figure 4). Consistent with this finding, cytometry-based DNA quantification of 198 

individual cells confirmed that only a small proportion of cells across both PD-GSCs were actively 199 

proliferating during pitavastatin treatment (Supplementary Figure S5). Theoretical calculations 200 

based on cell division rate and treatment duration (Supplementary Figure S6), as well as the 201 

homogeneity of CNV states pre- and post-treatment of both PD-GSCs (Figure 2G, H) both 202 
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independently suggested that cell subtype transitions of surviving SN520 cells, rather than a 203 

natural selection and expansion, was responsible for the observed treatment-induced changes in 204 

subtype composition and phenotypic characteristics. Finally, overall drug sensitivity of surviving 205 

SN503 cells remained relatively unchanged post-pitavastatin treatment for ~30 days (Figure 2I; 206 

paired t-test p-value = 0.348). In stark contrast, there was significant log2-fold increase of 2.42 in 207 

IC50 of surviving SN520 cells from 0.42 M to 2.24 M, which was sustained over 100 days (Figure 208 

2I paired t-test p value = 1.526e-05), demonstrating the long-term functional consequences of 209 

drug-induced PMT. 210 

 211 

Characterization of transcriptional states of PD-GSCs reveals multiple mechanisms of 212 

primary and acquired resistance 213 

Dimensionality reduction with PCA and subsequent Louvain clustering (METHODS) of 214 

differentially expressed genes (DEGs, Supplementary Figure S7) organized the 5,402 SN520 215 

cells into 14 clusters (Figure 3A, B) and the 5,722 SN503 cells into 12 clusters (cl503/520-i; Figure 216 

3C, D). As expected, the SN520 Louvain clusters were predominantly comprised of either vehicle- 217 

or pitavastatin-treated PD-GSCs (Figure 3E). By contrast, several SN503 Louvain clusters 218 

contained a mix of both vehicle- and drug-treated cells (Figure 3F). Below we summarize findings 219 

based on pathway enrichment analysis of DEGs within each Louvain cluster (Figure 3G). A more 220 

detailed description is included in the Supplement. 221 

 222 

SN520 Clustering & Enrichment. Consistent with the mechanism of action of pitavastatin, gene 223 

set enrichment analysis (GSEA, Supplementary Tables S1-S2) revealed that within two days 224 

upon initiation of treatment SN520 cells differentially regulated cholesterol homeostasis, 225 

biosynthesis, and maintenance, as well as MTORC1 signaling. Day 3 onwards the cells 226 

differentially regulated stress response genes including unfolded protein response, protein 227 

secretion, P53 pathway, and apoptosis. Interestingly, upregulation of both apoptosis and EMT 228 

genes across subpopulations of drug-treated D4 cells (cl520-6, cl520-7) was consistent with 229 

simultaneous induction of these pathways by TGFβ during tumor formation and progression, with 230 

cell fate being dependent on cell-cycle phase (35, 36). In this case, cl520-6 and cl520-7 cells were 231 

in G1/S phase, suggesting that SN520 cells escaped apoptosis by transitioning into the MES 232 

subtype (Supplementary Figure S7).  233 

 234 

SN503 Clustering & Enrichment. Although there were fewer DEGs in SN503 as compared to 235 

SN520 (Figure 3H), the Louvain clusters of pitavastatin-treated SN503 cells did bear similarity to 236 
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SN520 clusters with regard to differential regulation of certain pathways, including cholesterol 237 

homeostasis, fatty acid metabolism, MTORC1 signaling, androgen response, and unfolded 238 

protein response (Supplementary Tables S3-S4). However, the differential expression patterns 239 

were distinct between the two PD-GSCs. For instance, pitavastatin-treated SN503 cells did not 240 

cluster by treatment time, instead cells from all time points grouped together across multiple 241 

Louvain clusters (Figure 3C, F) characterized by upregulation of oxidative phosphorylation 242 

(OXPHOS, Figure 3G, Supplementary Table S3), which has been associated with drug resistance 243 

in tumor cells (37–40). Moreover, only a small proportion of pitavastatin-treated SN503 cells 244 

differentially regulated EMT-associated genes (cl503-0 and cl503-5) (Figures 2, 3H). These findings 245 

suggested that different regulatory mechanisms were likely responsible for the distinct differential 246 

expression patterns of key pathways, as well as the responder and non-responder phenotypes of 247 

SN520 and SN503, respectively.  248 

 249 

Inference and dynamic simulation of transcriptional regulatory networks identifies 250 

mechanisms driving cell-state changes and intervention strategies 251 

We applied single-cell SYstems Genetics Network AnaLysis (scSYGNAL) framework to uncover 252 

the transcriptional regulatory networks (TRNs, (41, 42)) responsible for driving the distinct 253 

transcriptome responses of the two PD-GSCs. Briefly, Mechanistic Inference of Node Edge 254 

Relationships (MINER), an algorithm within the scSYGNAL framework, was used to identify 255 

modules of genes (regulons) that were co-regulated differentially in response to treatment across 256 

sub-populations of cells (43, 44). Further, using the transcription factor binding site database (45)  257 

and the Framework for Inference of Regulation by miRNAs (FIRM, (46)), scSYGNAL implicated 258 

specific TFs and miRNAs in mechanistically co-regulating genes of all regulons. Post-processing 259 

of the resulting TRNs using MINER (47) clustered regulons with similar activity profiles across 260 

subpopulations of cells into transcriptional programs ( Pr503/520-i) and clustered single cells with 261 

similar program activity profiles into distinct transcriptional states (St503/520-i). Here onwards we 262 

will refer to the TRNs for each PD-GSC as scSYGNAL-520 and scSYGNAL-503. 263 

 264 

scSYGNAL-520 modeled the influence of 109 TFs and 505 miRNAs in mechanistically regulating 265 

1,668 genes across 572 regulons that organized into 19 transcriptional programs and were 266 

differentially active across 17 transcriptional states (Fig. 4A; Supplementary Table S5-S6). 267 

Strikingly, nearly every transcriptional program was enriched for genes that have been shown to 268 

be essential to GSC survival (Supplementary Table S7, (48)). GSEA revealed that many pathways 269 

identified within Louvain clusters were recapitulated by programs (Figure 3G, Supplementary 270 
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Table S8). For instance, Program 0 (Pr520-0) – the largest program consisting of 169 regulons, 271 

was enriched for genes associated with cellular stress responses, including unfolded protein 272 

response, androgen response, p53 pathway, and apoptosis . Pr520-1, the second largest program 273 

(61 regulons) was enriched for cholesterol homeostasis and MTORC1 signaling. Pr520-2 274 

(proliferation), Pr520-5 and Pr520-6 (TNF signaling via NFB) showed variable activity in states 275 

enriched with vehicle-treated cells, but were uniformly underactive in states enriched with 276 

pitavastatin-treated cells (Figure 4A). Only four states (St520-0 – St520-3) were enriched for D3 and 277 

D4 pitavastatin-treated cells (Figure 4B), suggesting that they might represent drug resistant 278 

states adopted by the surviving subpopulation of cells to avoid pitavastatin-induced killing. 279 

Furthermore, when transcriptional states were rearranged with respect to their predominant 280 

treatment condition, program activities increased (nearly) monotonically over the course of 281 

treatment, which suggested that treatment-induced state transitions occurred through continuous 282 

rather than discrete changes in expression in SN520 (Figure 4C, Supplementary Figure S8).  283 

 284 

scSYGNAL-503 modeled the regulation of 1,875 genes by 114 TFs and 507 miRNAs across 420 285 

regulons, organized into 21 distinct transcriptional programs, whose activity profiles stratified 286 

SN503 cells into 17 transcriptional states (Figure 4A bottom heatmap, Supplementary Tables, S9-287 

S10). Like SN520, a large portion of these programs were enriched with essential genes for GSC 288 

survival (Supplementary Table S11; (48). Several programs were similar to those identified in 289 

SN520, including Pr503-13 (cholesterol homeostasis, MTORC1 signaling and fatty acid 290 

metabolism), Pr503-9 and Pr503-10 (stress responses, including vesicle-mediated transport, 291 

unfolded protein response, and p53 pathway). In contrast to SN520, many SN503 programs were 292 

uniquely enriched in distinct processes, including WNT/-catenin and KRAS signaling (Pr503-18, 293 

Fig. 4F, Supplementary Table S12). Unlike SN520, D3 and D4 pitavastatin-treated SN503 cells 294 

co-clustered in significant proportions with untreated and vehicle-treated cells across >75% of the 295 

17 states, suggesting that a large number of SN503 cells may have been in pitavastatin-resistant 296 

states even prior to drug exposure (Figure 4C). Interestingly, multiple states included pitavastatin-297 

treated cells from all time points, including seven states in which the drug-treated cells 298 

represented >50% of all cells (Figure 4B). The seven transcriptional states were distinct in their 299 

activity patterns of some programs, including Pr503-4 (apoptosis, EMT, IL6/JAK/STAT3 signaling), 300 

which was overactive in St503-5, St503-6, and St503-10; and Pr503-10 (MTORC1 signaling, hypoxia, 301 

and unfolded protein response), which was overactive in St503-10 and St503-11. The 302 

heterogeneous activity patterns of these programs, which were enriched for processes linked to 303 
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chemotherapeutic resistance (49), suggests that multiple mechanisms likely contributed to 304 

pitavastatin resistance in SN503.  305 

 306 

Core TF-TF interaction networks governing PD-GSC response to pitavastatin.  307 

We derived a “core” network of TF interactions to investigate how transcriptional regulatory 308 

mechanisms contributed to PMT and pitavastatin resistance (Figure 4D). Each directed TF-TF 309 

interaction was categorized as activating or repressing based on positive or negative pairwise 310 

correlation of expression levels between two TFs, respectively. The topology of the core TF 311 

network for each PD-GSC population was distinct (METHODS), with 56 interactions (edges) 312 

among 31 TFs (nodes) in scSYGNAL-520 and only 13 interactions connecting 15 TFs in 313 

scSYGNAL-503 (Figure 4E, F). Multiple TFs in the core scSYGNAL-520 TF network have been 314 

linked to response-relevant processes including EMT, cell differentiation, adaptive responses, 315 

and stem-cell maintenance (Supplementary Table S13). Nine TFs were common between the 316 

core networks (overlap p-value: 9.44e-05), including ARID5A, ATF3/4, MEOX2, SOX9, XBP1, 317 

and HEY1, a Notch signaling regulator. TFs unique to the core scSYGNAL-503 network included 318 

DDIT3, MAFF, STAT3, and ID4, which have been implicated in multiple GBM-relevant processes, 319 

(Supplementary Table S13). Notably among these TFs, ID4 has also been shown to play a role 320 

in the pathogenesis of GBM, driving tumor-initiating cell formation by increasing two key cell-cycle 321 

and differentiation regulatory molecules – cyclin E and Jagged 1 (50). These findings suggest that 322 

the core networks captured TF-regulation that play central roles in GBM and gliomas in general. 323 

 324 

Trajectory analysis and network simulations uncover mechanisms of primary and acquired 325 

resistance  326 

Using Monocle3 we discovered that pseudotemporal ordering of SN520 cells correlated with 327 

treatment duration and concomitant drug-induced PMT (Pearson correlation coefficient r  = 328 

0.723). We observed similar agreement between treatment duration and inferred trajectories from 329 

RNA velocity analysis (51), as velocity vectors pointed towards 4-day treated cells  (Figure 5A). 330 

In parallel, we calculated the critical transition index (Ic), a quantitative metric of the high-331 

dimensional state of a system that predicts whether a cell population is undergoing a state 332 

transition (higher Ic values) or if it has reached some stable attractor state (lower Ic values) (52). 333 

Ic values of SN520 decreased during drug treatment but remained relatively constant in the 334 

vehicle control (Figure 5B), indicating that pitavastatin had driven the entire PD-GSC population 335 

into a predominantly drug-resistant MES subtype attractor state. By contrast, pseudotemporal 336 

ordering of SN503 cells did not correlate with treatment time (Pearson correlation coefficient r  = 337 
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–0.0167,) and was associated with high Ic values throughout the course of the experiment for both 338 

vehicle control and drug treatment, likely driven by the higher heterogeneity of the cells. 339 

Consistently, these GSCs exhibited a rather turbulent vector field where RNA velocities projected 340 

into multiple directions (Figure 5A). Modeling concerns associated with pseudotime and trajectory 341 

inference analysis notwithstanding, e.g., hyperparameter optimization (53, 54), the pseudotime 342 

and criticality analyses demonstrated stark contrast between the responses of the two PD-GSCs; 343 

SN520 exhibited concerted pitavastatin-induced state transitions, relaxing into a regulated state, 344 

while SN503 exhibited a seemingly disorganized response without concerted transition of all cells 345 

into an attractor state. 346 

To identify putative drivers of treatment response, we performed LOESS regression and rank 347 

ordered TFs with respect to timing of peak expression along the pseudotime trajectories and 348 

uncovered a distinct sequence of changes in the activity of multiple TFs in each PD-GSC 349 

population (Figure 5C). Within SN520, multiple TFs previously associated with PMT in GBM (e.g., 350 

ATF3, CREB, and NFE2L2) positively correlated with pseudotime trajectory (Supplementary 351 

Table S13 - Moran’s I value). Notably, the rank order of TFs in SN520 was quite different from 352 

previously proposed sequence of transcriptional events driving PMT (55), which highlights the 353 

diversity of regulatory mechanisms that have been implicated in driving EMT in multiple cancers 354 

(56, 57). As expected, we did not observe temporal sequence of changes in expression levels of 355 

TFs across SN503 cells (Figure 5C, Supplementary Table S13).  356 

In addition, we investigated the consequence of differential expression patterns of TFs by 357 

examining, along pseudotime trajectories, the dynamic activity patterns of transcriptional 358 

programs that they regulated (Figure 5D, Supplementary Figure S9). Activity of the stress-359 

response-associated programs (Pr520-0) increased along the pseudotime trajectory of SN520 360 

cells, implicating 80 associated TFs, including ATF3, ATF4, CREB3, CREB5, JUN, KLF4, MYC, 361 

SOX4/9, and TCF4. In the case of SN503, we identified multiple treatment-activated programs for 362 

key processes (Figure 4C) including unfolded protein response and OXPHOS (Pr503-9 and Pr503-363 

10), cholesterol regulation (Pr503-4) and EMT (Pr503-5 and Pr503-13) that showed upregulated gene 364 

expression relative to the untreated control condition (Figure 5E). Importantly, scSYGNAL-503 365 

had accurately identified TFs that have been mechanistically implicated in regulation of these 366 

processes, such as AR, FOS, MYC, TP53, and E2F7 for Pr503-9 and Pr503-10 (58). 367 

Ensemble modeling and analysis of GSC states via simulated TF-TF network dynamics 368 

We performed in silico perturbations on the core TF-TF networks using the random circuit 369 

perturbation (RACIPE) algorithm (59–61) to identify transcriptional regulatory mechanisms that 370 
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governed pitavastatin-induced cell state changes across the two PD-GSCs (Figure 4D, E). 371 

RACIPE was originally developed to investigate EMT circuits in cell development and other 372 

cancers by creating an ensemble of dynamic models based on ordinary differential equations and 373 

Hill function kinetics (62–64). First, we tested whether the TF-TF network model for each PD-GSC 374 

could accurately predict their observed pitavastatin-induced cell states using untreated (D0) TF 375 

expression levels to initialize the network. By performing 1,000 RACIPE simulations, we 376 

determined that the simulated stable steady states were statistically similar to the observed cell 377 

states of each PD-GSC on D4 of pitavastatin treatment (Figure 6A, B, Supplementary Figure 378 

S10).  379 

 380 

We then investigated how the core TF network contributed to phenotypic plasticity by determining 381 

the range of steady states that could emerge from each network topology. We simulated 10,000 382 

distinct models (i.e., parameter sets) across 100 randomly selected initial conditions resulting in 383 

an ensemble of 1 million simulations for each PD-GSC population, which was sufficient to yield 384 

convergent solutions (Supplementary Figure S11 (59–61)). Based on pairwise Euclidean 385 

distances (METHODS) and hierarchical clustering, all simulated states generated by the core TF 386 

network for SN520 clustered into four distinct steady states (Figure 6C). The simulated states 387 

stratified along the first principal component, recapitulating a continuum of progression from a PN 388 

to MES state (Figure 6C). Pairwise comparisons of mean expression profiles of the core network 389 

TFs demonstrated that the simulated states were statistically similar to experimentally observed 390 

PD-GSC states (Figure 6C, Supplementary Figure S10). Supervised classification using random 391 

forest analysis further revealed that ATF3/4, CEBPG, and HES1 contributed the most to 392 

distinguishing the four simulated states (Figure 6C), which mirrored expression behavior across 393 

experimental data for SN520 (Figure 6D). 394 

 395 

RACIPE simulations for SN503 also yielded four distinct stable steady states that did not show a 396 

gradient in PCA space as in the case of the SN520 simulated states (Figure 6E). Three of these 397 

states were similar to two experimentally observed PD-GSC states (Figure 6E) associated with 398 

elevated expression of SOX4, SOX9, SOX11, HEY1, and ID4 (simulated states 3 and 4 and 399 

experimental state 4), or elevated expression of ATF4, ATF3, and FOS (simulated states 1 and 3 400 

and experimental state 4). The experimentally observed states not identified by RACIPE 401 

simulations were associated with elevated expression of MEOX2, MAFF, and ARID5A, which 402 

were “root” nodes, i.e., TFs without any upstream regulators in the context of the model. 403 

Consequently, expression of these TFs in the RACIPE simulations was dependent upon the 404 
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randomly selected initial conditions. However, the subset of simulations in which MEOX2, MAFF, 405 

and ARID5A had elevated initial conditions generated states that were indeed similar to 406 

experimentally observed states ES503-1 and ES503-2 (Supplementary Figure S10). Further, for 407 

distinguishing the four SN503 PD-GSC states, random forest analysis identified MEOX2, MAFF, 408 

and ARID5A as the most important TFs, followed by ATF3, SOX9, and SOX11 (Supplementary 409 

Figure S10). Interestingly, all of these TFs have previously been implicated in tumor stemness, 410 

progression, invasiveness or resistance, suggesting multiple mechanisms may have contributed 411 

to pitavastatin resistance in SN503 (Supplementary Table S13). 412 

 413 

In silico network perturbations implicate specific TFs in mechanistically driving treatment-induced 414 

cell state transitions and drug resistance in PD-GSCs 415 

After benchmarking the random forest models as 85% and 90% accurate in predicting cell states 416 

of SN520 and SN503, respectively (Supplementary Figure S12), we used them in perturbation 417 

simulations to identify mechanistic drivers of treatment response of each PD-GSC. Specifically, 418 

we performed an additional 1 million RACIPE simulations to model the consequence of 95% 419 

knockdown in each TF within the core network on treatment-induced change in the relative 420 

abundance of each of the four steady states for the two PD-GSCs. (Supplementary Figure S13). 421 

This analysis predicted that knockdowns in each of ten TFs, viz., ATF4, IRF1, NFE2L2, CREB3, 422 

XBP1, ARID5A, SMAD1, CREB5, CEBPG, and ATF3, would result in significant reduction in the 423 

relative abundance of simulated states with large subpopulations of MES subtype cells in SN520 424 

(Figure 6G). Notably, all ten TFs have been implicated in driving EMT across different cancers, 425 

including GBM (Supplementary Table S13). RACIPE simulations predicted that decrease in the 426 

proportion of MES subtype-associated cell states in SN503 was likely through perturbations in 427 

just two TFs, namely SOX9 and SOX11 (Supplementary Figure 13) both of which were also 428 

implicated in driving PMT (Supplementary Table S13). 429 

 430 

siRNA knockdowns of TFs validate core TF networks 431 

We tested RACIPE predictions by investigating whether siRNA (DharmaconTM) knockdown of TFs 432 

during pitavastatin treatment would block PMT leading to synergistic increase in PD-GSC killing. 433 

Indeed, knockdowns in nine TFs (5/10 predicted), including ATF3, IRF1, CREB3, CREB5, and 434 

CEBPG, significantly potentiated pitavastatin killing of SN520 (Figure 6I). Notably, increased cell 435 

death of SN520 was observed only when siRNA and pitavastatin were administered 436 

simultaneously, but not when cells were pre-treated with siRNA prior to pitavastatin treatment 437 

(data not shown). Given that siRNA knockdown is typically manifest in protein reduction maximally 438 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2024. ; https://doi.org/10.1101/2024.02.02.578510doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.02.578510
http://creativecommons.org/licenses/by-nc/4.0/


15 
 

in 2-3 days post-transfection, dynamic induction of TF activity by pitavastatin appears to have 439 

been essential for achieving the TF knockdown effect on SN520 PD-GSC survival. In stark 440 

contrast, none of the TF knockdowns had any consequence on viability of SN503 (Figure 6H, J). 441 

Altogether, the experimental findings corroborated the roles of nine TFs implicated by scSYGNAL 442 

and RACIPE analysis in driving PMT, thereby conferring pitavastatin resistance in SN520, but not 443 

in SN503, wherein a large fraction of the cell population was in a drug resistant MES state, even 444 

prior to drug treatment. As an alternative approach, we identified 24 additional TFs by MINER as 445 

important for mechanistically upregulating putative resistance mechanisms, including OXPHOS 446 

(Figure 2G, Supplementary Table S3, S12), and discovered that knocking down four TFs (HEY2, 447 

POU3F4, PRDM4, and PEG10) indeed potentiated pitavastatin killing of SN503, likely by 448 

disrupting one or more primary resistance mechanism(s) (Figure 6K). 449 

 450 

Trajectories towards acquired resistance expose vulnerabilities to secondary drugs 451 

Finally, we investigated whether knowledge of mechanistic drivers of PMT could enable rational 452 

selection of a second drug that could potentiate the action of pitavastatin. Using Open Targets 453 

(65), we identified eight drugs that targeted TFs and genes associated with pitavastatin-induced 454 

PMT trajectories in SN520. We hypothesized that pitavastatin-induced cell state changes place 455 

cells in transitional states that may expose new vulnerabilities that could be targeted by secondary 456 

drugs. We selected vinflunine, a vinca alkaloid that binds to tubulin and inhibits microtubule 457 

polymerization, thereby inducing G2/M arrest and ultimately apoptosis. Originally developed to 458 

treat advanced or metastatic transitional cell carcinoma of the urothelial tract (66), vinflunine has 459 

been tested in multiple Phase III trials for many cancers, used as a likely potentiator of anti-cancer 460 

effects of other drugs (67). Based on vinflunine’s mechanism of action, we identified multiple 461 

regulons containing tubulin-related genes (for example, SN520 regulons R520-0 and R520-43; 462 

SN503 regulons R503-19, R503-38, and R503-52). In SN520, the activity for R520-0 and R520-43 463 

increased significantly in response to pitavastatin (Figure 7A). By contrast, pitavastatin-induced 464 

upregulation of tubulin-associated regulons was varied across in SN503, with only R503-19 465 

showing consistent over activity across all time points. R503-38 showed significantly higher activity 466 

in pitavastatin-treated cells relative to vehicle-treated, with maximal activity on D3. Finally, R503-467 

52 activity levels were slightly higher relative to vehicle control (Figure 7B). The ability of vinflunine 468 

to block pitavastatin-induced cell state transitions was investigated in three experimental designs, 469 

one in which both drugs were added simultaneously and the other two in which vinflunine was 470 

added at 24 or 48 hrs after initiation of pitavastatin treatment to match the timing when 471 

pitavastatin-treatment induced the highest activity of tubulin regulons (Figure 7C). The efficacy of 472 
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the drug combinations were compared to outcome of treatments of PD-GSCs with each individual 473 

drug.  474 

 475 

Sequential treatments with pitavastatin followed by vinflunine had synergistic effect on killing of 476 

the two PD-GSCs (Figure 7D). Specifically, sequential treatment of pitavastatin followed by 477 

vinflunine resulted in 5.92 and 1.6 fold-decrease of IC50, compared to vinflunine treatment alone 478 

(Figure 7D), in SN520 and SN503, respectively. The relative efficacy of sequential treatment with 479 

the two-drug combination varied significantly across other PD-GSCs (Supplementary Table S14), 480 

with the combination being more effective on pitavastatin responder (SN533 and SN575) than 481 

non-responder cells (SN517 and SN521) (Supplementary Figure S14). The poor efficacy of 482 

vinflunine on SN503 and other non-responder PD-GSCs is likely because pitavastatin did not 483 

induce a coordinated response that places the cells in a vulnerable state from which we predicted 484 

the utility of vinflunine based on the transcriptional network. Thus, the coordinated cell-state 485 

changes induced by pitavastatin killing of susceptible cells in the responder PD-GSCs pushed the 486 

surviving cells along PMT trajectories with generic and patient-specific components, thereby 487 

exposing novel vulnerabilities that significantly potentiated net cell killing by sequential treatment 488 

with vinflunine.  489 

 490 

DISCUSSION 491 

 492 

Inherent plasticity and heterogeneity of GSCs are implicated as underlying reasons for the high 493 

rate of GBM recurrence, which often manifest as an even more aggressive and drug-resistant 494 

MES subtype (8–10). Understanding the mechanisms of primary resistance and trajectories along 495 

which GSCs undergo adaptive subtype transitions to acquire resistance are both critical for 496 

formulating treatment regimens to prevent recurrence of aggressive and drug resistant GBM (7, 497 

68). In this study, we report five main findings that shed insight into the underlying mechanisms 498 

of phenotypic plasticity of PD-GSCs: 1) distinct population structures distinguished two PD-GSCs 499 

with acquired (SN520) and primary (SN503) resistance phenotypes, 2) distinct TF network 500 

topologies were associated with the two GSC phenotypes, 3) TF network topology was a key 501 

determinant of treatment-induced change in the population structure of PD-GSCs, 4) TF network 502 

topology inferred from scRNA-seq enabled predictions of underlying mechanistic drivers of 503 

primary and acquired resistance, including response trajectories, 5) disruption of primary 504 

resistance potentiated killing of non-responder PD-GSCs, and 6) treatment-induced trajectories 505 

through which PD-GSCs acquired resistance, exposed vulnerabilities to sequential interventions 506 
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(siRNA KD of TFs and a secondary drug) targeting transcriptional programs mechanistically 507 

associated with cell state transitions.Gene 508 

 509 

Primary resistance of SN503 was likely due to a larger pre-existing subpopulation of MES subtype 510 

cells, identified by both scRNA-seq and flow cytometry (Figure 2C-F), with elevated expression 511 

of OXPHOS and fatty acid metabolism (Figure 5E) and high activity of WNT/-catenin signaling 512 

pathway genes in Pr503-18 (Figure 4F) (7, 69, 70). Hence, pitavastatin treatment was less effective 513 

on SN503 and failed to trigger a coordinated transcriptional response across the population of 514 

surviving cells in this PD-GSC. By contrast, a smaller proportion of SN520 cells were of the MES 515 

subtype (Figure 2C, D) and activity of programs associated with known treatment-resistance 516 

mechanisms was low. As a result, pitavastatin killed most SN520 cells, triggering coordinated 517 

transcriptional responses across the surviving PD-GSCs, driving their transition into a MES 518 

subtype cell state that was > 5-fold resistant to pitavastatin (Figure 2I). Flow cytometry using 519 

apoptosis and cell subtype markers; CNV inference; and theoretical calculations based on cell 520 

division rates all demonstrated that pitavastatin-induced cell state and phenotypic transitions were 521 

mediated by epigenetic mechanisms and not clonal selection. Further, the core TF-TF networks 522 

inferred from scSYGNAL analysis were determined by RACIPE simulations as sufficient to 523 

generate the observed heterogeneity and treatment-induced cell state changes of the two PD-524 

GSCs. Our findings showed that the TF-TF network topology was likely a key factor in determining 525 

the trajectory and potential endpoint(s) of cell-state transitions in response to drug treatment or 526 

perturbation. The sparse network of SN503 generated multiple resistant states that were distinct 527 

from each other. The interconnected network of SN520, by contrast, generated a gradient of cell 528 

states along a PN-to-MES axis offering a plausible explanation as to why GSCs manifest a 529 

gradient of resistant states across a range of drugs (9). Our findings provide novel perspective on 530 

how patient-to-patient variation in the roles of TFs and the topology of their interactions can have 531 

profound consequences in driving PMT, likely influencing the rate of GBM progression, 532 

recurrence, and metastasis as tumors of MES subtype (27, 71). 533 

 534 

By killing a large proportion of cells, pitavastatin treatment triggered a core network of TFs to act 535 

sequentially and drive coordinated cell-state transitions across the surviving population of SN520. 536 

In so doing, pitavastatin treatment may have generated a bottleneck effect by channeling the 537 

surviving SN520 cells along few trajectories, thereby transiently exposing vulnerabilities in 538 

associated transcriptional programs across a large segment of those surviving cells, before they 539 

transitioned to the MES subtype and acquired a drug-resistant phenotype. Similar constraining 540 
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effects on GSC plasticity, i.e., fewer cell-state transitions have been observed and attributed to 541 

hypoxic micro-environments, unlike the larger number of stochastic cell state transitions that occur 542 

under normoxic conditions (72). Our findings demonstrate that such constraints on plasticity 543 

makes the GSC population less heterogeneous and more vulnerable to siRNAs and drugs 544 

targeting transiently activated programs that mechanistically coordinate the cell state transitions. 545 

Taken together, these results suggest that the bottleneck effect generated by drug treatment can 546 

be exploited to minimize or prevent drug-induced transitions and therapy escape of GSCs.  547 

 548 

Notably, the timing of the secondary intervention was critical, with efficacy of potentiation 549 

observed only after cell-state transitions had been triggered by pitavastatin treatment. The 550 

combinatorial interventions (siRNA) were ineffective when each drug-siRNA pair was 551 

administered concurrently (data not shown). These findings illustrate the importance of tailoring 552 

not just the specific combination of drugs, but also the order and timing of longitudinal treatment 553 

schedules based on mechanistic understanding of the causal sequence of events targeted by 554 

each individual intervention. Similar benefits from modeling cell state transitions and 555 

characterizing trajectories have also been reported in PDGF-driven GBM mouse models. 556 

Specifically, the integration of mathematical models that account for the presence of 557 

radiosensitive and radioresistant tumor cell states as well as the rate at which state transitions 558 

occurred led to an optimized radiotherapy scheduling that improved survival rates of mice (73, 559 

74).  560 

 561 

Sequential treatment with vinflunine was effective to varying degrees across other PD-GSCs that 562 

were also sensitive to pitavastatin (SN533 and SN575), but was significantly less effective in 563 

pitavastatin-resistant PD-GSCs (SN503, SN517 and SN521). This finding suggests that cytotoxic 564 

effects were important to expose vulnerabilities, and that the mechanism of killing by pitavastatin 565 

and resulting trajectories of escape were likely similar across some of these PD-GSCs. However, 566 

variable susceptibilities of PD-GSCs to vinflunine explain why an N = 1 approach is necessary to 567 

uncover patient-specific characteristics and tailor regimen (specific drugs and dosing schedule) 568 

to the unique PMT trajectories for each patient (Supplementary Figure S15,  Fedele et al., 2019).  569 

 570 

The partial generalizability of pitavastatin-vinflunine sequential treatment to other pitavastatin-571 

sensitive PD-GSCs, further suggests that subgroups of patients might share transcriptional 572 

regulatory network topologies that drive their tumor cell state transitions along similar trajectories. 573 

If this hypothesis is confirmed by analyzing a larger number of PD-GSCs across a diverse range 574 
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of drug treatments, then stratifying patients based on similar network topologies, instead of steady 575 

states of tumor cells, may identify a finite number of topology-matched combinatorial interventions 576 

for personalized treatment of most patients (2, 3, 75). 577 

 578 

The causal and mechanistic regulatory influences captured at single-cell resolution in the 579 

scSYGNAL network provides a generalizable approach for formulating N = 1 patient-tailored drug 580 

regimens and treatment schedules. Remarkably, we discovered that more than the composition 581 

of initial tumor cell states, mechanistic understanding of the topology of the core TF-TF network 582 

and its associated dynamics of driving cell state transitions is essential for rationally tailoring 583 

sequential treatment regimen to an individual patient. This perspective, borne from these findings, 584 

complements prior and current efforts that aim to create frameworks that quantify the hierarchical 585 

and multi-state switching that underlie intratumoral heterogeneity in GBM using methods such as 586 

Markov chain models or exploratory adaptation models (76, 77). While these approaches define 587 

what states are present and the probability of transitioning from one state to another, our approach 588 

provides mechanistic insights into how GSCs are able to navigate the phenotypic landscape 589 

(Figure 7E).  590 

 591 

Broadly speaking, our findings provide a mechanistic framework for connecting two aspects of 592 

phenotypic plasticity of tumor cells, one that characterizes discrete states (75), and the second 593 

that characterizes cell state continuums, including gradients defined by a neuronal 594 

developmental–injury response axis (78) or a PN–MES axis (11, 79). Such a framework, like the 595 

seminal GBM molecular subtype classification scheme (2), will enable integration of the genomic, 596 

transcriptomic, and epigenomic landscapes and associated factors that underlie phenotypic 597 

plasticity of GSCs and differentiated tumor cells that define intra- and inter-tumoral heterogeneity 598 

in GBM (2, 4, 75, 80). Ultimately, a systems approach that connects intrinsic regulatory 599 

mechanisms wiRAth extrinsic factors, including drug treatment, tumor microenvironment (72), and 600 

the immune response (81), governing phenotypic plasticity of GSCs in an individual patient’s 601 

cancer, will be needed for formulating treatment strategies to prevent recurrence of drug-resistant 602 

GBM tumors. 603 

 604 

METHODS 605 

 606 

Ethics Statement. Use of human tissue was reviewed and approved by the WIRB-Copernicus 607 

Group Institutional Review Board (WCG® IRB).  All participants provided written informed 608 
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consent according to IRB guidelines prior to participation in the study. Only tissue specimens 609 

deemed non-essential for diagnostic purposes and that would otherwise be discarded were 610 

collected for research purposes. 611 

 612 

Patient samples and patient-derived GBM stem-like cell enrichment 613 

Tumors were obtained from surgeries performed at Swedish Medical Center (Seattle, WA) 614 

according to institutional guidelines. Patient samples used in this study were diagnosed as WHO 615 

grade IV glioblastoma. GSC cultures were established from freshly resected tumor tissues. Tissue 616 

samples were minced into 1mm3 fragments and digested with Accutase (Sigma) at 37°C for 15-617 

20 minutes. Neurobasal-A medium (NBM) was added to quench Accutase activity and cell 618 

suspensions were filtered through 70μm nylon mesh, centrifuged at 1K rpm for 5 min, 619 

resuspended in fresh NBM, and cultured in T75 flasks pre-treated with a laminin solution (1:100 620 

Sigma), which includes incubation of the flasks with the laminin solution at 37°C for a minimum of 621 

30 minutes. PD-GSCs were maintained in NBM with B-27 serum-free supplement, 20 ng/mL EGF, 622 

20 ng/mL FGF-2, 20 ng/mL insulin, 1 mM sodium pyruvate, 2 mM L-glutamine and 1% Antibiotic-623 

Antimycotic.  624 

 625 

PD-GSC in vitro cultures 626 

PD-GSC adherent monolayer cultures were used for all pitavastatin and pitavastatin/vinflunine 627 

treatments. Monolayer cultures were maintained in T75 flasks (cell expansion), T25 flasks 628 

(pitavastatin-treatment), or 96 well plates (IC50 studies) pre-treated with a laminin solution (1:100; 629 

Sigma) and incubated at 37°C for a minimum of 30 min. Serum-free culture media consisted of 630 

Neurobasal Medium-A (GibcoTM) with 2.0% (v/v) B-27 serum-free supplement minus vitamin A 631 

(GibcoTM), 20 ng/mL EGF (PeproTech Inc.), 20 ng/mL FGF-2 (PeproTech Inc.), 20 ng/mL insulin 632 

(Sigma), 1 mM sodium pyruvate (Corning), 2 mM L-glutamine (GibcoTM) and 1% Antibiotic-633 

Antimycotic (GibcoTM). PD-GSC monolayer cultures were maintained at 37°C, 5% CO2 634 

atmospheric oxygen with culture pH monitored with the phenol red. Cultures were refed every 2-635 

3 days. PD-GSC cultures tested were within 10 passages from the initial GSC enrichment from 636 

the original tumor biopsy.  637 

 638 

PD-GSCs were passaged by dissociating monolayer cultures from the respective substrate by 639 

treating the cells with the dissociation reagent Accutase (1mL/25cm2) or TrypLETM (1mL/25cm2 – 640 

see Flow cytometry CD44 and CD133 analysis section) at 37°C for 5min. Pre-warmed (37°C) 641 

serum-free culture media (described above) was then added to quench dissociation reagent 642 
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activity (1:3 media:dissociation reagent ratio). The resulting cell suspension was centrifuged at 643 

1K rpm (193g) for five minutes. The cell pellet was resuspended in fresh serum-free culture media, 644 

and added to QS serum-free culture media in a new laminin-treated flask. Final culture volumes 645 

were as follows: T75 – 10mL, T25 – 5mL, 96-well plate – 100L. Laminin treatment involved 646 

incubating flasks (or 96 well plates) with a laminin working solution (5mL/75cm2), which consisted 647 

of stock laminin (Sigma) diluted 1:100 in phosphate buffer solution, at 37°C for a minimum of 30 648 

min.  649 

 650 

Flow cytometry – apoptosis, caspase 3/7-mediated apoptosis, and cell-death 651 

Data acquisition of surface protein markers was performed on the Attune NxT Flow Cytometer 652 

(ThermoFisher Scientific). PD-GSCs were dissociated from their respective substrate using 653 

Accutase and washed twice with PBS + FBS serum (10%), which involved centrifugation at 1K 654 

rpm (193g) for 5 min, supernatant removal, and cell pellet resuspension with the PBS + FBS 655 

serum (10%). The supernatant wash was removed and the cell pellet resuspended in the 656 

PBS/FBS solution to the desired concentration of 1e6 cells/mL. To assess apoptosis, caspase 657 

3/7-mediated apoptosis, and cell death within the GSC populations, cells were stained with 658 

Annexin V conjugated with Alexa Fluro 568 (Invitrogen A13202), CellEventTM Caspase 3/7 659 

detection reagent (Invitrogen C10423), and SYTOXTM AAdvanced Dead Cell Stain (Invitrogen 660 

S10349), simultaneously. Samples were stained following each of the manufacturer’s protocol, 661 

respectively. Gating for positive and negative expressing cells was performed using FlowJo V10 662 

based on multiple controls including, 1) unstained negative controls, 2) heat-inactivated cells 663 

(incubated in a 60°C water bath for 15 min), which served as positive controls for apoptotic and 664 

dead cells, and 3) Fluorescence minus one (FMO) controls to define an upper boundary for 665 

background signal on the omitted signal and gate for positively stained populations in multi-color 666 

experiments. 667 

 668 

Flow cytometry – CD44 and CD133 analysis 669 

Samples from each treatment condition were collected using TrypLETM (GibcoTM) to dissociate 670 

and remove the cells from the culture flasks. TrypLETM (1mL/25cm2) was used to minimize any 671 

structural changes on CD44 and CD133 surface proteins during the dissociation process (82). 672 

Subsequent sample processing prior to antibody staining was identical to how samples were 673 

processed for apoptosis, caspase 3/7-mediated apoptosis, and cell-death cytometry assessment. 674 

An anti-Hu CD44 antibody conjugated with PE (eBiosciencesTM) and an anti-Hu/Mo CD133 675 

antibody conjugated with FITC (eBiosciencesTM) were used to assess expression of these two 676 
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surface proteins across each PD-GSC population. Samples were simultaneously treated with both 677 

antibodies per vendors’ recommendations. Analysis of flow cytometry data was performed using 678 

FlowJo V10. Fluorescent signal gating was set based on multiple control samples including: 1) 679 

unstained PD-GSC negative controls, 2) vendor-recommended isotype controls (Mouse IgG1 680 

kappa isotype and Rat IgG2b kappa isotype for anti-Hu CD133 and anti-Hu/Mo CD44, 681 

respectively, 3) human GBM stem cells (Cellprogen Inc.), which served as a positive control cell 682 

line for both CD133 and CD44 (per vendor’s specification), and 3) Caco2 cells, (ATCC) which 683 

served as a positive control cells for CD133 and negative controls for CD44. 684 

 685 

Pitavastatin treatment of PD-GSCs for scRNA-seq and flow cytometry analysis 686 

PD-GSCs were incubated in serum-free culture media (described above) with pitavastatin (6M). 687 

Stock pitvastatin calcium (Selleck Chemicals LLC) was dissolved in DMSO to obtain a stock 688 

concentration of 10mg/mL and stored in aliquots at -80°C. Stock pitavastatin calcium solution was 689 

serially diluted in serum-free culture media to 100M and then to the final concentration of 6M 690 

with a final DMSO concentration of 0.053% (v/v).  691 

 692 

To monitor longitudinally PD-GSC response to pitavastatin, we performed a reverse time-course 693 

treatment by adding pitavastatin to SN520 and SN503 cultures in a staggered fashion such that 694 

the longest (4-day) treatment would have drug added first. Subsequent addition of pitavastatin 695 

would occur on following days for 3- and 2-day treatment, respectively. This reverse time course 696 

design allowed us to collect all samples simultaneously on day four following the initial addition of 697 

pitavastatin. Because pitavastatin was added to PD-GSCs on different days, flasks were 698 

inoculated at slightly different cell densities to account for cell growth that would occur in between 699 

inoculation and time of pitavastatin addition. Consequently, scRNA-seq library preparation of all 700 

samples for a particular PD-GSC population occurred simultaneously to minimize batch effects 701 

due to individual sample processing (Supplementary Table S15)  702 

 703 

Prior to T25 flask (BioLiteTM) inoculation for pitavastatin treatment, PD-GSCs were first expanded 704 

in a T75 flask (BioLiteTM). Once the culture was confluent, the culture was harvested and split into 705 

laminin-treated T25 flasks. Upon inoculation, cells were incubated in serum-free culture media at 706 

37°C for 24 hours to allow cells to adhere to the interior surface of the flask. Following the first 24 707 

hours, serum-free culture media was replaced with serum-free culture media with pitavastatin 708 

(6M) in T25 flasks predetermined to receive a 4-day treatment. Spent culture media would then 709 
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be replaced with fresh culture media with pitavastatin (6M) on subsequent days for D3 and D2 710 

treatment conditions.  711 

 712 

Upon the completion of the 4-day treatment, spent media was removed and cells were harvested 713 

using AccutaseTM (1mL/25cm2). To prevent any cell-free DNA/RNA from treatment-induced lysed 714 

cells contaminating single-cell samples, we first processed a portion of the cell harvest solution 715 

using the dead cell removal kit (Miltenyi Biotec 130-090-101) to remove any cell debris to avoid 716 

any free RNA from lysed cells from getting mixed in with mRNA to be extracted from live cells. 717 

Samples were processed per vendor’s specifications. The result was a cell suspension of the 718 

remaining live cells post vehicle- or pitavastatin-treatment. Cell suspension was then processed 719 

for scRNA-seq profiling per the 10X Chromium platform.  720 

 721 

scRNA-seq library prep and sequencing 722 

Single-cell RNA sequencing was performed using the 10X Chromium v2 system. Library 723 

preparation was performed using 10x manufacturer instructions on an Illumina NovaSeq 6000. 724 

scATAC-seq was performed as per manufacturer instructions (Single-cell ATAC Reagent Kits 725 

v1.1 UserGuide RevD) and sequenced on an Illumina NextSeq 500. 726 

 727 

Multi-passage, pitavastatin treatment   728 

PD-GSCs were harvested from a T75 flask and passaged into replicate T75 flasks for either 729 

pitavastatin (6M) or vehicle (DMSO) treatment (2e6 cells/flask). Concomitantly, a portion of those 730 

PD-GSCs were used to inoculate laminin-treated 96 well plates for drug-dosing analysis (see IC50 731 

Analysis section). On D4, PD-GSCs were harvested using Accutase (1mL/25cm2) as described 732 

previously. Cell suspensions were spun at 1000rpm (193g) for five minutes. Cell pellets were then 733 

resuspended with serum-free culture media (200,000 cells/mL) to inoculate 96 well plates 734 

(100L/well, 20,000 cells/well) for subsequent IC50 determination. PD-GSCs were incubated in 735 

serum-free culture media in 96 well plates for 48 hours to allow for cell attachment prior to 736 

replacing spent media with serum-free media with pitavastatin (or vehicle). Treated cells were 737 

incubated at 37°C for four days. Following the four-day treatment, cell viability was measured via 738 

MTT assay as described below.  739 

 740 

DNA quantification via propidium iodide (PI) staining 741 

PD-GSC cultures were treated with pitavastatin (or vehicle control) in a reverse time-course 742 

manner as described previously (Pitavastatin treatment of PD-GSCs for scRNA-seq and flow 743 
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cytometry analysis section). Following cell harvest, PD-GSCs were washed with PBS and spun 744 

down at 1000 RPMs (193 g) for 5 minutes. PD-GSCs were then fixed with cold 70% ethanol by 745 

adding 70% ethanol drop-wise to the pellet while vortexing. Cells were fixed in 70% ethanol 746 

overnight at 4°C. Once fixation was complete, the PD-GSCs were washed twice in PBS, spun 747 

down at 1000 rpms for five minutes with careful removal of the supernatant so as to avoid any 748 

cell loss. PD-GSCs were then treated with 50L of ribonuclease (100g/mL stock) to remove any 749 

RNA and ensure only DNA would be stained. Finally, 200L of propidium iodide (PI, 50g/mL 750 

stock) was added to the fixed and treated cells prior to flow cytometry analysis.  751 

 752 

IC50 Analysis and MTT viability assay 753 

3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide, (MTT) assay was used to 754 

determine the effects of pitavastatin on the viability of the non-responsive and responsive GSC 755 

populations. Briefly, 20,000 cells/well were plated in laminin-treated 96-well plates with 100uL of 756 

culture media. Following an initial 24hr incubation, the cells were treated with 100L of culture 757 

media with pitavastatin at varying concentrations (0.0, 0.1, 0.6, 1.0, 3.0, 6.0, 10.0, 33.0M) and 758 

incubated at 37C for four days. Vehicle amounts were adjusted such that the vehicle 759 

concentration in all conditions was equivalent to the maximum drug dosage tested (DMSO 0.2% 760 

v/v). Following the 4-day treatment, spent media was replaced with 100L of serum-free culture 761 

media with MTT (0.5mg/mL) and incubated at 37°C for 60 minutes. Following incubation, 762 

supernatant from each well was discarded and replaced with 100L of DMSO to dissolve the 763 

formazan crystals formed during MTT incubation. Absorbance (Ai, where i is the drug 764 

concentration) was measured via spectrophotometer at 570nm (Synergy H4, Agilent 765 

Technologies, Inc.). Relative viability was calculated using the following formula: relative viability 766 

= (Ai – Abackground)/A0.0 * 100%, where Abackground is the absorbance from DMSO. IC50 values were 767 

calculated by using a 4-parameter log-logistic model determined by the drm() function within the 768 

drc package in R. Here, the upper limit of the log-logistic model was set to 100%.  769 

 770 

siRNA treatment 771 

Following a 24hr incubation period, cells were treated with 5M of Accell SMARTpool siRNA or 772 

Accell SMARTpool Non-Targeting siRNA (Dharmacon Inc.). Lyophilized SMARTpool siRNAs 773 

were resuspended in 1X siRNA buffer (Dharmacon Inc.) and subsequently diluted in serum-free 774 

culture media to a final concentration of 5M. Based on vendor recommendations, Accell siRNA 775 

designs facilitate siRNA delivery to the target cell and do not require additional transfection 776 
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reagents. Accell SMARTpool siRNAs pools consist of four separate siRNAs designed to target a 777 

particular gene. To test the efficacy of siRNA-targeted knockdown of specific TFs, siRNA (5uM) 778 

and pitavastatin (1.0M or 6.0M for SN520 and SN503, respectively) were added simultaneously 779 

followed by a four-day incubation at 37°C. 780 

 781 

Bulk RNA-seq library prep and sequencing 782 

Total RNA was extracted from PD-GSC cultures using mirVANATM miRNA isolation kit 783 

(ThermoFisher). Residual DNA was removed using the RQI RNAse-Free DNase kit (Promega). 784 

Total RNA was then quantified using the Agilent RNA 6000 nano kit (catalogue number) on the 785 

Agilent 2100 BioAnalyzer. 1g of of high purity RNA was used as input to the Illumina TrueSeq 786 

Stranded mRNA Library Prep Kit and sample libraries were generated per manufacturer’s 787 

specifications. The RNA-seq libraries were sequenced on the NextSeq 500 next gen sequencer 788 

using a paired end high-output 150bp v2.5 flowcell. Sequence intensity files were generated on 789 

instrument using the Illumina Real Time Analysis software. The resulting intensity files were de-790 

multiplexed with the bcl2fastq2 software.  791 

 792 

Processing and normalization of bulk RNA-seq data 793 

Raw RNA-seq data of samples encoded in FASTQ-files were subjected to a standardized 794 

RNAseq alignment pipeline. In summary, RNA-seq reads were trimmed and clipped of Illumina 795 

sequence adapters via Trim Galore (https://github.com/FelixKrueger/TrimGalore), mapped to 796 

human reference genome (GRCh38) using STAR (v2.7.3a), and counted using HTSeq (v 0.11.1). 797 

Individual sample counts were combined into a single data object using the 798 

DESeqDataSetFromHTSeqCount function in DESeq2 (83). Sample-specific size factors were 799 

determined and used to normalize counts, which were transformed using regularized log 800 

transformation for subsequent downstream analysis, performed in R. 801 

 802 

scRNA-seq data QC filtering and normalization 803 

We initially processed the 10X Genomics raw data using Cell Ranger Single-Cell Software Suite 804 

(release 3.1.0) to perform alignment, filtering, barcode counting, and UMI counting. Reads were 805 

aligned to the GRCh38 reference genome using the pre-built annotation package download from 806 

the 10X Genomics website. We then aggregated the outputs from different lanes using the 807 

cellrange aggr function with default parameter settings.  808 

 809 
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SN520 and SN503 scRNA-seq data sets were QC-filtered separately prior subsequent 810 

downstream analysis. To minimize inclusion of poor-quality genes and single-cell samples per 811 

sample set, we applied the following QC filters: 1) mitochondrial genes must comprise ≤ 6.5% of 812 

the number of uniquely mapped genes/cell, and 2) total counts/cell should be ≥ 7500 and ≤ 813 

60,000. Post QC-filtering, each scRNA-seq data set included: 5,402 cells expressing up to 18,227 814 

genes (SN520) and 5,722 cells expressing up to 18,797 genes (SN503). Subsequent 815 

normalization and downstream analysis (e.g., DEG and functional enrichment analysis) was 816 

performed using the Seurat v3.2.2 platform (84).  817 

 818 

Normalization was performed for each scRNA-seq dataset separately by computing pool-based 819 

size factors that were subsequently deconvolved to obtain cell-based size factors using the 820 

computeSumFactors function within the scran package (version 1.10.2) (85) in R. Normalized log 821 

expression values were used for subsequent downstream analysis.  822 

 823 

Batch integration of scRNA-seq data 824 

As each PD-GSC-specific data set was collected separately, we performed batch correction on 825 

the scRNA-seq data to integrate the SN520 and SN503 data sets by applying the Harmony 826 

algorithm (32). Subsequent SNN-graph formation and UMAP embedding was performed on the 827 

Harmony-corrected PCs (Fig. 1E).  828 

 829 

Cell-cycle analysis 830 

To annotate individual cells with their respective cell cycle phase, we performed cell cycle analysis 831 

using the Seurat program. Briefly, core sets of 43 and 54 genes associated with the S- and G2/M-832 

phases, included in the Seurat platform, were used to determine a cell-cycle phase score based 833 

on the expression of the respective markers. Based on these scores, cells were assigned to be 834 

either in G1 or G2/M phase. Cells not expressing genes from either set were considered as not 835 

cycling and assigned to the G1 phase. Using these quantitative scores, we also regressed out 836 

cell-cycle effects on expression for each cell using the ScaleData function in Seurat as part of the 837 

pre-processing steps to QC the scRNA-seq data.  838 

 839 

Cluster identification and analysis of differentially expressed genes (DEGs). 840 

After quality control and filtering the scran-normalized scRNA-seq data, we performed 841 

dimensionality reduction via principal component analysis (PCA). The first 30 principal 842 

components were used as a basis to create a shared nearest neighbor (SNN) graph of the single-843 
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cell samples. From this graph, clusters of single cells were identified via Louvain clustering of 844 

nodes, i.e., single cells, from the SNN graph.  845 

 846 

To identify DEGs in each of the SNN-clusters identified across the primary tumor and PDX single-847 

cell samples, the FindMarkers function in Seurat was used. In particular, the Wilcoxon rank sum 848 

test was used with the following cutoff values to identify DEGs: absolute log-fold change ≥ 849 

log2(1.5), with a minimum proportion of 10% of the cells of interest expressing the gene of interest, 850 

and an FDR-adjusted p-value ≤ 0.1.  851 

 852 

Gene set variance analysis (GSVA) enrichment scores and statistical significance 853 

Gene set variance analysis GSVA (version 1.34.0, R package) (31) was used to determine 854 

enrichment scores of GBM molecular subtypes. To define the dominant molecular subtype gene 855 

expression signature in each single cell, we used an amalgamation of the original gene sets that 856 

defined the classical, proneural, and mesenchymal subtypes (2) and refined molecular subtype 857 

gene sets (3) for GSVA.  858 

 859 

Critical Transition Index (Ic) 860 

A brief explanation of Ic from (52) is reproduced for reference. The critical transition index is a 861 

scalar value that quantifies if a cell is undergoing (high Ic) or has undergone some critical 862 

transition and reached some stable cell state (low Ic). Ic is calculated according to the following: 863 

 864 

 𝐼𝑐(𝑡) =  
〈|𝑅(𝑔𝑖, 𝑔𝑗)|〉

〈𝑅(𝑆𝑘, 𝑆𝑙)〉
 (1) 

 865 

Where R is Pearson’s correlation coefficient between two observed cell state vectors Sk and Sl or 866 

between two “gene” vectors gi and gj, respectively, taken from the gene expression data matrix 867 

representing the state(s) of a “cell ensemble” X(t) 868 

 869 

 𝑋(𝑡) =  [
𝑥1

1 ⋯ 𝑥𝑚
1

⋮ ⋱ ⋮
𝑥1

𝑛 ⋯ 𝑥𝑚
𝑛

] (2) 

 870 

X(t) thus represents the data of a “measurement point”, with access to finer-grained layer of 871 

information given the single-cell nature of the data. Each row represents a single-cell in some 872 
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state k within the cell-ensemble of n-cells in m-dimensional gene state space – 𝑆𝑘 =873 

 [𝑥1
𝑘 , 𝑥2

𝑘 , … , 𝑥𝑚
𝑘 ]. Each column represents gene i’s expression across n cells from said “cell 874 

ensemble” X(t), where 𝑔𝑖 =  [𝑥𝑖
1, 𝑥𝑖

2, … , 𝑥𝑖
𝑛]. The brackets 〈⋯ 〉 in equation 1 represent the average 875 

of all correlation coefficients R between all pairs of state vectors S or gene vectors g from matrix 876 

X(t). Here, a cell-ensemble represented the population of PD-GSCs at a particular treatment time-877 

point (D0, D2, D3, or D4).   878 

 879 

The underlying premise is that cells that have undergone some critical transition into an attractor 880 

state will be nominally expressing the same distinct gene expression pattern, with the exception 881 

of deviations due to stochastic fluctuations. Consequently, cells of the same differentiated state 882 

will be expressing similar gene expression programs and will correlate highly with one another. 883 

Characteristic gene expression of cells within a particular attractor state is affected by symmetric 884 

random fluctuations. Thus, gene-to-gene coupling is dominated by noise, reducing gene-to-gene 885 

correlations. Conversely, destabilized cells undergoing some transition, requires some non-886 

random shift in gene expression patterns that override the symmetric noise expected in cells 887 

within a stable attractor state. 888 

 889 

MINER network inference 890 

An additional gene-filtering step was performed on the QC scRNA-seq data sets to identify a 891 

common gene set between SN520 and SN503 – only common genes having a minimum gene 892 

count ≥ 2 in a minimum of 20 cells were considered for network inference. This resulted in a 893 

common gene set of 9,089 common genes used in SN520 and SN503 for MINER3 network 894 

inference.  895 

 896 

To infer regulons within single cells, we applied the MINER (86) workflow to the SN520 and SN503 897 

scRNA-seq data sets independently. As part of the scSYGNAL framework, the MINER algorithm 898 

involves a suite of functions that enables the inference of causal mechanistic relationships linking 899 

genetic mutations to transcriptional regulation. Because our datasets did not include any 900 

mutational profiling, we primarily focused on identifying regulons, based on co-expression 901 

clustering and enrichment of transcription factor binding motifs present in those co-expression 902 

clusters identified, and calculated the activity of these regulons in the single-cell samples. Broadly 903 

speaking, regulon activity represents the “eigengene” value in an individual cell. Regulons are 904 

identified, in part, by performing PCA on the normalized scRNA-seq data profiles to identify 905 

principal components in which decreasing amounts of variation across genes are captured along 906 
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each principal component – defined as a linear combination of gene expression values. This linear 907 

combination of weighted gene expression values defines the eigengene value per sample (41, 908 

42, 86, 87). Alternatively, the eigengene is defined as the first principal component of the module 909 

expression matrix composed of expression values of regulon genes across samples. It is a scalar 910 

representation of expression of gene members for a regulon in an individual sample (87). 911 

 912 

To determine the significance of each inferred regulon, we performed a permutation test to 913 

determine the possibility of obtaining an eigenvalue corresponding to the first principal component 914 

of a regulon (across all single-cells) of equal or greater value. The eigenvalue represents a 915 

summarizing value of all the genes in the regulon, i.e., eigengene and thus if these genes are 916 

indeed coregulated or are correlated, the eigengene value would be higher than that of randomly 917 

selected set of genes. Next, we randomly select a set of genes having the same number of 918 

members as the original regulon and calculate the corresponding eigengene value for the 919 

permuted regulon. This procedure was repeated 1,000 times to create a null distribution of 920 

eigengene values. We repeated this procedure for each inferred regulon. Those regulons whose 921 

eigengene values were greater than the 95th percentile of their respective null distribution were 922 

considered significant. These eigengene values represented regulon “activity” within each cell. 923 

We further filtered out regulons in which the first principal component from the module expression 924 

matrix composed of expression values of regulon genes across samples did not account for at 925 

least 20% of the variation of the module expression matrix. From these two criteria, statistical 926 

significance of an eigengene and variance explained within the module expression matrix were 927 

used to refine the number of regulons to include for SN520 and SN503, respectively.  928 

 929 

Pseudotime analysis 930 

We applied Monocle v3 in R (88, 89) to organize cells along a pseudotime axis and identify distinct 931 

trajectories along which transcriptomic expression states putatively transition. Scran-normalized 932 

scRNA-seq datasets were used to infer pseudotime trajectories for SN520 and SN503 933 

independently using the learn_graph and order_cells function in Monocle v3 (v1.2.7) and default 934 

parameter settings.  935 

 936 

Locally estimated scatterplot smoothing (LOESS) regression analysis 937 

We performed LOESS regression on individual TF expression across the single cells along the 938 

inferred pseudotime trajectories. This allowed us to fit a polynomial regression line through the 939 

highly variable single-cell gene expression to identify any underlying patterns that may be present 940 
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over pseudotime. LOESS regression of normalized single-cell gene expression along pseudotime 941 

was performed using the loess function within the stats v3.6.2 package in R.  942 

 943 

TF-TF network topology inference 944 

To generate TF-TF network topologies, we cross-referenced all regulator-target gene connections 945 

inferred by MINER3 against the transcription factor binding site database 946 

(tfbsdb.systemsbiology.net), focusing on only those interactions that involved pairs of TFs that 947 

were also regulators for some regulon. The type of TF-TF interaction was determined by the sign 948 

of the pairwise Pearson correlation between the two components – positive correlations were 949 

interpreted as activating interactions while negative correlations were interpreted as inhibiting 950 

interactions. We further refined the TF-TF network by removing those interactions having an 951 

absolute Pearson correlation coefficient (r) below a statistically significant minimum threshold, 952 

determined by permutation analysis (|r |  0.17 for SN520 and |r |  0.16 from SN503). 953 

Permutation tests involved randomly mixing expression values across genes within a single-cell 954 

and calculating Pearson’s r  among all gene pairs across all PD-GSCs for SN520 and SN503 955 

independently. This process was repeated 1000 times to create a null distribution of Pearson 956 

correlation coefficients.  957 

 958 

To determine the statistical significance of each network TF-TF network topology, we performed 959 

two sets of permutation tests (Supplementary). Briefly, the first set of permutation testes involved 960 

permuting the network topology, where node labels and edges were permuted such that the 961 

number of edges and nodes remained consistent, we performed dynamic simulation for the 962 

permuted network using initial condition, i.e., TF expression profiles from a randomly selected 963 

untreated (D0) cell for each PD-GSC, respectively. The simulated results were then compared to 964 

experimental data to determine cosine similarity values. This permutation-simulation-comparison 965 

process was repeated 1,000 times to create a null distribution of cosine similarity values. The 966 

distribution of cosine similarity values derived from the original TF-TF network topologies were 967 

significantly higher than the permuted similarity values (SN503 empirical p-value = XXX, SN520 968 

empirical p-value = YYY). The second set of permutations involved permuting the gene 969 

expression data, mixing the gene and cell ids to see if similar TF-expression states could be 970 

achieved by random chance. Cell and gene labels were permuted 1000 times to create a 971 

permuted distribution of TF-expression states, which were then compared to the original 972 

experimental states, defined by hierarchical clustering, using pairwise cosine similarity values 973 

(Supplementary Figure S10).  974 
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 975 

RACIPE simulations 976 

Simulations were performed using the sRACIPE package v1.16.0 in R. Briefly, using sRACIPE 977 

we generated an ensemble of ordinary differential equation (ODE) models based on associated 978 

chemical rate equations with distinct, randomly generated kinetic parameter sets. From the 979 

ensemble of models, we analyze the resulting distribution of steady states and identify robust 980 

phenotypes supported by the core TF network. The inferred TF-TF network topology for SN520 981 

(or SN503) was used as the input circuit for the sracipeSimulate function. An integral step size of 982 

0.2 and simulation time of 100 was used for simulations.  983 

 984 

To verify the ability of the network topology to recapitulate observed TF expression states, we 985 

initialized the network by randomly selecting 1,000 expression profiles (with replacement) for the 986 

respective TFs from D0 scRNA-seq profiles for each PD-GSC, i.e., initial conditions that were 987 

paired with 1,000 parameter models randomly selected by the sracipeSimulate function (default 988 

settings used).  989 

 990 

To explore the plausible network states supported by each network topology, we initialized each 991 

network topology by using 100 randomly selected initial conditions that were used across 10,000 992 

randomly selected parameter sets, which resulted in an ensemble of 1 million simulated steady-993 

states. To determine the dominant steady states from the ensemble of simulations, all Euclidean 994 

pairwise distances were calculated. Those simulated states that had a Euclidean pairwise 995 

distance  4.0 (scSYGNAL-520) or  1.92 (scSYGNAL-503) were labeled as a “non-redundant” 996 

state. The distance thresholds were found to be the  99th percentile of permuted Euclidean 997 

pairwise distances for each PD-GSC, which was determined by randomly selecting 1,000 pairs 998 

of simulated states and calculating all pairwise Euclidean distances. This process was repeated 999 

10 times to create a distribution of 10 million pairwise Euclidean distances. From these distance 1000 

thresholds, we identified 6,519 (scSYGNAL-520) and 4,223 (scSYGNAL-503) simulated states 1001 

were deemed as unique states. We then hierarchically clustered each set of distinct, “non-1002 

redundant” states and identified four dominant states that were supported by each TF-TF network 1003 

topology (Figure 6C, E). To classify a “redundant” simulated state, we assigned it the same state 1004 

as its nearest “non-redundant” neighbor, based on Euclidean distance.  1005 

 1006 

RACIPE convergence tests  1007 
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To verify that the number of initial conditions and parameter sets would sufficiently converge to 1008 

steady state solutions across the initial condition and parameter space, we performed a series of 1009 

simulations using 100 randomly selected initial conditions across different number of model 1010 

parameters (1e3, 2e3, 4e3, 6e3, 8e3, and 1e4). The result was a series of simulations consisting 1011 

of six different ensembles of simulated states, one for each model parameter set, with each 1012 

ensemble associated with a randomly selected set of initial conditions. This series of simulations 1013 

was performed in triplicate. For each set of results, we identified the unique states using the same 1014 

Euclidean distance thresholds described in RACIPE simulations. Next, we determined the 1015 

Kullback-Liebler (KL) divergence for these simulated states across the triplicate set of simulations 1016 

for each set of results (Supplementary Figure S11).  1017 

 1018 

Random Forest analysis of RACIPE simulations 1019 

Random forest analysis was performed on RACIPE simulations, i.e., simulated transcriptional 1020 

states for SN520 and SN503 using randomForest function (default parameters) from the 1021 

randomForest package v4.7-1.1. Simulated state classifiers were based on hierarchical clustering 1022 

of the unique (non-redundant) simulated states as described in RACIPE simulations.  1023 

 1024 

Drug Matching Identification 1025 

To identify drugs targeting elements within the transcriptional programs identified from the 1026 

network analysis, we applied the Open Targets platform tool (https://www.targetvalidation.org/). 1027 

The platform integrates a variety of data and evidence from genetics, genomics, transcriptomics, 1028 

drug, animal models, and literature to score and rank target-disease associations for drug target 1029 

identification. We focused our search on identifying drug-target matches for only those drugs 1030 

associated with any cancer treatments that had reached Phase IV matching with regulon genes 1031 

associated with SN520. Originally, 28 drugs paired with genes across 17 regulons. We further 1032 

refined the list of potential drug candidates to those drugs associated with GBM, reducing the 1033 

number of candidate drugs to eight, including vinflunine.  1034 

 1035 

DATA AND CODE AVAILABILITY 1036 

 1037 

All single-cell RNA-seq data will be deposited in dbGaP. All code is available upon request. Any 1038 

additional information required to reanalyze the data reported in this paper is available upon 1039 

request.  1040 

 1041 
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FIGURE LEGENDS 1396 

 1397 

Figure 1. Pitavastatin causes shift in molecular subtype expressed by PD-GSCs. (A) 1398 

Pitavastatin IC50 values for each of 45 PD-GSCs as determined using dose titration assays 1399 

(below). Labeled PD-GSCs represent a subset deemed as a responders (blue) and non-1400 

responders (red) to pitavastatin. Below are drug-dose response and time-course response curves 1401 

for SN520 (pitavastatin-responsive) and SN503 (pitavastatin-non-responsive) PD-GSC 1402 

populations. (B) Experimental workflow for longitudinal monitoring of PD-GSC response to 1403 

pitavastatin treatment. Colored horizontal arrows indicate duration of pitavastatin (magenta), 1404 

vehicle-control (DMSO, light blue), or untreated control (dark grey). (C) Heatmap of bulk-level 1405 

expression for molecular subtype gene sets (classical – CL, proneural – PN, mesenchymal – 1406 

MES) for samples collected. (D) Table summarizing dominant molecular subtype expressed in 1407 

each sample. D2 bulk sample for SN520 was absent due to sample limitations. (E) UMAP plots 1408 

of Harmony-integrated scRNA-seq data sets and corresponding individual plots for each PD-GSC 1409 

phenotype. (F) Wasserstein distance of transport distances between each consecutive time point 1410 

for each PD-GSC under each treatment condition (vehicle- or pitavastatin-treatment).  1411 

 1412 

Figure 2. Single-cell characterization of PD-GSC response to pitavastatin. UMAP plots of 1413 

scRNA-seq profiles, annotated according to treatment conditions (untreated control, vehicle – 1414 

DMSO, and pitavastatin – PSTAT), for (A) SN520 and (B) SN503. Scatter plots show proportions 1415 

of each subtype in each PD-GSC population across treatment for (C) SN520 and (D) SN503. (E 1416 

- F) Flow cytometry analysis of PN and MES markers CD133 (PN) and CD44 (MES) across 1417 

pitavastatin-treated cells for SN520 and SN503, respectively. Proportions of cells positive for each 1418 

subtype marker are quantified in the adjacent barplots underneath. (G-H) Heatmap of inferCNV 1419 

scores for SN520 and SN503, respectively. Cells (rows) are grouped based on treatment 1420 

conditions (same color annotation as in (A) and (B)). Genes (columns) are arranged according to 1421 

their chromosomal positions. (I) Dose-response curves of naïve SN520 PD-GSCs (light blue) and 1422 

SN520 PD-GSCs that survived an initial pitavastatin-treatment (treated – dark blue). Adjacent plot 1423 

shows corresponding AUC values from dose-response curves generated from subsequent PD-1424 

GSC cultures derived from original pitavastatin- or vehicle-control-treatment for SN520 (left) and 1425 

SN503 (right). Paired t-test results showed a sustained (significant) increase in AUC values of the 1426 

PSTAT-treated SN520 PD-GSCs relative to their vehicle-control counterparts but not for SN503. 1427 

 1428 
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Figure 3. Differential expression and pathway enrichment analysis reveals underlying 1429 

processes driving pitavastatin responses. (A) Heatmap of the top upregulated DEGs, based 1430 

on FDR p-values, across the 14 Louvain cell clusters (cl) identified in vehicle-control- and 1431 

pitavastatin-treated SN520 PD-GSCs. Adjacent UMAP plot with treatment annotation (same as 1432 

Fig 2A) included for reference. (B) Corresponding UMAP plots of scRNA-seq profiles annotated 1433 

according to Louvain cell cluster (left) and treatment condition (right) as reference. (C) Cell 1434 

proportions for each Louvain cluster that belong to each treatment condition for SN520. Significant 1435 

enrichment of treatment condition within Louvain cluster indicated by asterisk (FDR ≤ 0.05) or 1436 

double dagger (FDR ≤ 1e-05) (D) Cell proportions for each Louvain cluster that belong to each 1437 

treatment condition for SN503. Significant enrichment notation identical to that used in (D). (E) 1438 

Dotplot of hallmark gene sets enriched across SN503 and SN520 PD-GSCs, grouped with respect 1439 

to either drug-treatment duration or Louvain clustering. Dot size represents the ratio of number of 1440 

upregulated genes associated with a PD-GSC grouping to the number of genes associated with 1441 

a specific hallmark gene set. Dot colors indicate significance of enrichment (FDR value). (F) Total 1442 

number of up- and down-regulated DEGs, relative to untreated control (D0) cells, at each 1443 

treatment time point for SN503 (red) and SN520 (blue).  1444 

 1445 

Figure 4. MINER3 transcriptional regulatory network inference reveals mechanisms of cell-1446 

state changes. (A) Heatmaps of normalized regulon activities across SN520 (top) and SN503 1447 

(bottom) PD-GSCs. Regulons (rows) are organized into transcriptional programs (Pr) while single 1448 

cells (columns) are organized into transcriptional states (St). Left-adjacent color bars indicate 1449 

what regulons belong to a particular transcriptional program. Left-adjacent color bar indicates 1450 

transcriptional programs. Top color bars indicate treatment condition (color annotation identical 1451 

to Fig. 1E) and corresponding transcriptional state for a single cell. (B) Stacked barplot show 1452 

proportion of cells within each transcriptional state from each treatment condition for SN520 (top) 1453 

and SN503 (bottom). (C) Boxplot/violin plots of distributions of regulon activity for select programs 1454 

across treatment conditions for SN520 and SN503. Regulon activity values were capped between 1455 

the lower 2.5% and 97.5% range of values. Labels indicate program IDs and select hallmark gene 1456 

sets (90) enriched within each program. The box represents the inter-quantile range (IQR – 25th 1457 

and 75th percentile) and median activity value while the whiskers represent 1.5x IQR. Asterisks 1458 

indicate statistically significant differences between regulon activity distributions. Single asterisks 1459 

(*) denote activity distribution of untreated controls (CTRL) is significantly lower than distribution 1460 

being compared (FDR << 1e-3). Double asterisks (**) denote distribution of untreated controls is 1461 

significantly higher than either vehicle-treated (DMSO) or pitavstatin-treated (PSTAT) 1462 
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distributions being compared (FDR << 1e-3). (D) Flow diagram outlining approach to derive core 1463 

TF-TF network from MINER3 results. Final core TF-TF networks derived for (E) SN520 and (F) 1464 

SN503.  1465 

 1466 

Figure 5. Distinct trajectories define SN520 and SN503 pitavastatin response. (A) UMAP 1467 

plots of vehicle- and pitavastatin-treated cells for SN520 (left column) and SN503 (right column). 1468 

Annotation highlight treatment conditions (top row), molecular subtype (2nd row), pseudotime (3rd 1469 

row) and RNA velocity (4th row). (B) Critical transition index (Ic) of SN520 (blue) and SN503 (red) 1470 

cells treated with vehicle (DMSO - light) or pitavastatin (PSTAT – dark). (C) LOESS regression of 1471 

TF expression behavior sorted according to peak expression along pseudotime. Density plots 1472 

depict distribution of sample time points along pseudotime trajectory. Heatmap shows expression 1473 

of TFs rank sorted by time of peak expression along pseudotime (color bar beneath heatmap). 1474 

(D) Select set of LOESS regression of mean program activities with respect to pseudotime. 1475 

Regulons are clustered based on their dynamic activity profiles with respect to pseudotime. 1476 

Dashed grey line represents the average shape of the curves for each cluster. Labels indicate 1477 

which transcriptional programs were grouped into each cluster. Select hallmark gene sets (90) 1478 

enriched within programs are labeled as well. (E) Boxplots/violin plots of expression of genes 1479 

associated with indicated pathways/processes (90) on respective treatment days. Relative gene 1480 

expression values were capped at the lower 2.5% and 97.5% range of values. Labels indicate 1481 

select hallmark gene sets enriched within subpopulation of cells (treatment time point). Asterisks 1482 

indicate statistically greater expression in pitavstatin-treated cells (PSTAT) relative to untreated 1483 

control (CTRL) counterparts (Wilcoxon rank test, FDR << 1e-5). The box represents the inter-1484 

quantile range (IQR – 25th and 75th percentile), median activity value while the whiskers highlight 1485 

1.5x IQR.  1486 

 1487 

Figure 6. Dynamic simulations of core TF regulatory network supports phenotypic 1488 

plasticity of GSCs. Simulated transcriptional states projected along first two principal 1489 

components. Contour lines represent distribution of scores from PCA of TF expression states 1490 

from single PD-GSCs for (A) SN520 and (B) SN503. One thousand simulated states were 1491 

generated using scSYGNAL-520/503 as network topologies and using respective D0 scRNA-seq 1492 

data as inputs to RACIPE algorithm. (C) Three plots summarize results from 1 million simulations 1493 

using scSYGNAL-520 and randomly selected initial conditions as inputs to RACIPE algorithm to 1494 

explore plausible steady states supported by network topology derived from MINER3 (simulations 1495 

are distinct from those in (A)). Dendrogram highlights four distinct simulated steady states 1496 
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generated by RACIPE using core TF network and randomly selected initial conditions as input.. 1497 

Simulated states projected along first two PCs. Horizontal barplot visualizes rank-ordered 1498 

importance of TFs in distinguishing four simulated states per random forest analysis based on the 1499 

mean decrease in accuracy in categorizing sample if the TF were excluded from the model. (D) 1500 

Heatmap of expression for TFs that define core TF network in SN520 cells that define 1501 

experimental states (ES520-i) used as basis of comparison for simulated states. Adjacent boxplots 1502 

of top four most important TFs per random forest analysis. Top row of boxplots show distributions 1503 

of expression of TFs for each experimental states identified. Bottom row includes distributions of 1504 

simulated expression values (normalized) from simulations that used randomized initial 1505 

conditions. (E-F) Same as (C-D), but for SN503. (G) Viability of SN520 following 4-day treatment 1506 

with 1.0 M pitavastatin and simultaneous siRNA-mediated KD of TFs or non-template control 1507 

(NTC – red dashed line). Values in bars represent FDR p-values indicating significant decrease 1508 

relative to NTC. Values in bars represent FDR p-values indicating significant decrease relative to 1509 

NTC siRNA condition. Adjacent scatterplot compares rank ordering of tested TFs to 1510 

corresponding rank ordering based on predicted change in proportion of states belonging to MES 1511 

state 1. TFs below the diagonal have a greater impact on reducing viability than was predicted. 1512 

(H) Viability of SN503 following pitavastatin treatment and simultaneous siRNA-mediate KD of 1513 

TFs associated with OXPHOS-associated relative to NTC and 4-day treatment 6.0 M pitavastatin 1514 

treatment. Again, values in bars represent FDR p-values.  Values in bars represent FDR p-values.  1515 

 1516 

Figure 7. Dynamic behavior of regulons reveal additional targets that guide rational 1517 

secondary drug selection. (A) Distribution of activities for representative tubulin-associated 1518 

regulons across SN520 PD-GSCs. Statistically significant differences in regulon activity, relative 1519 

to activity in untreated control cells are indicated by asterisks or double daggers (Wilcoxon rank 1520 

test,  FDR ≤ 1e-20,   FDR ≤ 1e-150). (B) Distribution of activities for representative tubulin-1521 

associated regulons across SN503 PD-GSCs across treatment conditions. Asterisks indicate 1522 

conditions having significantly higher values relative to untreated controls (Wilcoxon rank test,  1523 

FDR ≤ 1e-20,   FDR ≤ 1e-150). (C) Experimental designs used to test effects of sequential 1524 

pitavastatin and vinflunine treatment on non-responder and responder PD-GSC populations. (D) 1525 

Dose-response curves for SN520 (top) and SN503 (bottom) resulting from a 24hr pre-treatment 1526 

with vehicle or pitavastatin (2M or 6M) followed by vinflunine treatment (1.5e-9, 4.6e-9, 13.7e-1527 

9, 41.2e-9, 123.5e-9, 370.4e-9, 1.10e-6, 3.30e-6, 10.0e-6 30.0e-6 M). Adjacent barplot of IC50 1528 

values determined from 24hr pretreatment with vehicle or pitavastatin (2M or 6M) for all non-1529 

responder and responder PD-GSCs tested. Results from 48hr pretreatment are included as 1530 
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Supplementary Figure S14. (E) Depiction of how topologies of the underlying response TF-TF 1531 

networks, in response to drug treatment, can drive responder and non-responder PD-GSCs to 1532 

transition into different states along a Waddington-like phenotypic landscape. Treatment with a 1533 

drug to which cells are sensitive (1° drugS) activates a highly interconnected network of a 1534 

responder PD-GSC, driving PMT across a majority of the surviving cell population, enabling 1535 

acquisition of resistance to “multiple drugsR”. Secondary intervention with a drug to which cells 1536 

are resistant (2° drugR) to target vulnerabilities in the intermediate states potentiates killing and 1537 

likely blocks PMT. By contrast, the non-responder PD-GSC is comprised of sub-populations of 1538 

cells that are already in states (center well) that are resistant to the primary drug (1° drugR). 1539 

Treatment with the primary drug in this case activates a sparse network that does not trigger 1540 

coordinated cell state transitions, but instead drives the surviving cells into multiple distinct drug-1541 

resistant states, which may be sensitive to secondary interventions (e.g., siRNA). 1542 

 1543 

 1544 

 1545 
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