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ABSTRACT

Memory T cells are records of clonal expansion from priorimmune exposures, such as
infections, vaccines and chronic diseases like cancer. A subset of the receptors of these
expanded T cells in a typical immune repertoire are highly public, i.e., presentin many
individuals exposed to the same exposure. For the most part, the exposures associated
with these public T cells are unknown.

To identify public T-cell receptor signatures of immune exposures, we mined the
immunosequencing repertoires of tens of thousands of donors to define clusters of co-
occurring T cells. We first built co-occurrence clusters of T cells responding to antigens
presented by the same Human Leukocyte Antigen (HLA) and then combined those clusters
across HLAs. Each cross-HLA cluster putatively represents the public T-cell signature of a
single prevalent exposure.

Using repertoires from donors with known serological status for 7 prevalent exposures
(HSV-1, HSV-2, EBV, Parvovirus, Toxoplasma gondii, Cytomegalovirus and SARS-CoV-2),
we identified a single T-cell cluster strongly associated with each exposure and used it to
construct a highly sensitive and specific diagnostic model for the exposure.

These T-cell clusters constitute the public immune responses to prevalent exposures, 7
known and many others unknown. By learning the exposure associations for more T-cell
clusters, this approach could be used to derive a ledger of a person's past and present
immune exposures.


https://doi.org/10.1101/2024.03.26.583354
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.26.583354; this version posted April 10, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

INTRODUCTION

The enormous diversity of T cells in any individual allows forimmune system recognition of
many foreign pathogenic exposures. A given individual’s T-cell repertoire is a mix of naive
and memory T cells that is largely shaped by the combination of naive T-cell generation
early in life and the exposure history of the individual (Goronzy & Weyand, 2017; Nikolich-
Zugich, 2014; Qi et al., 2014).

T cells are activated when T-cell receptors (TCRs) recognize cognate antigens (Zinkernagel
et al., 1978) presented by major histocompatibility complexes known as human leukocyte
antigen (HLA) molecules in humans. TCRs are often observed to be specificto a
combination of peptide antigen and restricting HLA (pHLA) (Babbitt et al., 1985; Brown et
al., 1993; Fremont et al., 1996). HLA is the most polymorphic gene in the genome, and
different HLAs present distinct and often complementary sets of antigens. T cells in
subjects sharing HLAs and a common immune exposure will encounter at least some of
the same pHLAs.

A large number (~10°) of TCRs in an individual may be measured via high-throughput
sequencing of TCRs (Robins, 2013). An individual’s immune history is encoded in the TCRs
presentin their T-cell repertoire (DeWitt et al., 2018) (here and onward, we define a TCR as
a T cell’s combination of TCRB V gene, J gene and CDR3 amino acid sequence). However,
given the generally unknown pHLA specificity of T cells, the high-dimensional nature of
TCRs and the genetic diversity of individuals as encoded by their inherited HLAs,
disentangling the many signals present in a repertoire is extremely challenging (Katayama
et al., 2022; Liu & Wu, 2018; Pradier et al., 2023).

Subjects with overlapping HLAs and exposure histories will tend to share some TCRs
responding to specific exposures. It has been previously shown that TCRs shared between
individuals can be used to build diagnostic models of infectious diseases such as
Cytomegalovirus (CMV) (Emerson et al., 2015a), SARS-CoV-2 (Snyder et al., 2020a), Lyme
disease (Greissl et al., 2021) and herpes simplexvirus 1 and 2 (HSV1/2) (Pradier et al.,
2023). For each disease, the TCRs thus identified are specific to antigens derived from the
exposure but may have various HLA restrictions.

Similarly, by identifying TCRs with higher prevalence in subjects expressing a particular
HLA as compared to subjects not expressing that HLA, sets of TCRs may be associated to
specific HLAs. Using TCRp repertoires from 4,144 HLA genotyped subjects, Zahid et al.
associate ~108 public TCRs (i.e., TCRs observed in multiple subjects) to hundreds of
common HLAs (Zahid et al., 2024). They show that these sets of TCRs are enriched for T
cells with specific HLA restriction and build models to impute donor expression of
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hundreds of HLAs with high sensitivity and specificity. These TCRs are associated with a
single HLA but putatively respond to antigens derived from various prevalent exposures.
We reason that, given the set of TCRs associated with the same HLA, each prevalent
exposure is responsible for a different subset of these TCRs, and that those TCRs are more
likely to be presentin the repertoires of donors expressing the associated HLA who were
exposed to the exposure.

Here, we introduce a method leveraging the co-occurrence patterns of HLA-restricted
TCRs observed in a set of 30,674 T-cell repertoires to identify thousands of HLA-
COclusters (HLA Co-Occurrence clusters), i.e., subsets of HLA-restricted TCRs that co-
occur in subsets of repertoires expressing the HLA. We expect that each prevalent
exposure is represented by a group of HLA-COclusters associated with different HLAs.
Accordingly, we cluster the identified HLA-COclusters by their representation across all
donors to derive ECOclusters (Exposure Co-Occurrence clusters). Each ECOcluster may
contain TCRs associated with many different HLAs but is hypothesized to be enriched for
TCRs associated with a specific prevalent exposure.

We validate our method using repertoires with serological labels for 7 common exposures
with a wide range of prevalence. For each exposure, we identify a single ECOcluster that
allows us to discriminate serological cases from controls in a holdout set of repertoires,
thereby associating that ECOcluster with the exposure it responds to. By associating more
ECOclusters with their exposures, we will decode more of the public T-cell repertoire.

RESULTS

We performed immunosequencing as previously described (Robins, 2013; Snyder et al.,
2020a) to derive T-cell repertoires for 30,674 donors from our T-DETECT cohort (see
Supplementary Figure 1 for donor demographics). These donors purchased Adaptive
Biotechnologies' T-Detect COVID test for prior infection by SARS-CoV-2, and they
consented to have their data used for research purposes. We then clustered TCRs (here
defined as the combination of TCRB V gene, J gene and CDR3 amino acid sequence) by
their co-occurrence in those repertoires, first within HLA association and then across HLA
associations. We determined the exposure association of 7 TCR clusters using repertoires
from serologically labeled donors from other cohorts. Finally, we demonstrated the strong
diagnostic performance of the exposure-associated clusters on holdout repertoires with
serological labels for each exposure.
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Public TCR Occurrence in Repertoires Is Determined by HLA Status and
Exposures

Figure 1 illustrates the central idea that public TCRs tend to co-occur in individuals who
share HLAs and common exposures. We consider a small subset of the TCRs associated
with one of two Class Il HLAs (DRB1*07:01 or DRB1*05:01) as well as with one of two
exposures (CMV or SARS-CoV-2) using methods we will describe below. We visualize the
occurrence of these TCRs within the repertoires of T-DETECT donors determined to have
one or both HLAs using our HLA imputation models (Emerson et al., 2015a; Zahid et al.,
2024) and to have one or both exposures using our previously described diagnostic models
(Emerson et al., 2015b; Snyder et al., 2020b).
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Figure 1: Donor HLA type and prior exposures determine TCR occurrence in
repertoires. Heatmaps show presence (black) or absence (white) of 80 TCRs in 58 donor
repertoires. TCRs are associated with the Class || HLADRB1*07:01 (green, 58 TCRs) or with
DRB1*01:01 (pink, 22 TCRs), and with exposure to CMV (blue, 52 TCRs) or SARS-CoV-2
(orange, 28 TCRs). Donors are assigned positive (corresponding color) or negative (white)
labels for each HLA, and for each exposure, using previously described models.
Dendrograms illustrate clustering of TCRs and repertoires by average linkage clustering. A.
Considering donors with one or both HLAs and TCRs associated with one HLA or the other,
donor repertoires cluster primarily by HLA status and secondarily by exposure status. B. As
in Figure 1A, but considering only 37 donors with DRB1*07:01 and 58 DRB1*07:01-
associated TCRs; donor repertoires cluster by exposure status.
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We constructed a matrix of donors (rows) by TCRs (columns), with 1 representing TCR
presence in the donor’s repertoire and 0 representing absence. The full matrix is extremely
sparse (which constitutes a central difficulty in TCR clustering), and so for this illustration
we retained the 80 TCRs and 58 repertoires with maximum occurrence. For illustration, we
use average-linkage agglomerative clustering (Sokal, 1958) to cluster the rows and the
columns. Figure 1A demonstrates four characteristics of this clustering: donors cluster
primarily by HLA type and secondarily by exposure status, and TCRs cluster primarily by
HLA association and secondarily by exposure association.

Next, we restricted the matrix to the TCRs associated with DRB1*07:01, and the donors
imputed to have that HLA, and performed the clustering again. In this HLA-restricted
context, the donors cluster by their status with respect to the two exposures, and the TCRs
cluster nearly perfectly by their associated exposures (Figure 1B). This restriction to TCRs
and donors associated with / expressing the HLA in question is critical to isolating co-
occurrence signatures of exposure.

As we will demonstrate, we can derive exposure-associated clusters of publicly HLA-
associated TCRs without the a priori knowledge of TCR exposure association and the
sparsity reduction used in this example.

Deriving clusters of co-occurring TCRs from Tens of Thousands of T-cell
Repertoires

As we observed above, a public TCR’s pattern of occurrence across a group of donor
repertoires is influenced by its HLA association (i.e., the HLA presenting its cognate
antigen in the context of a prevalent exposure) and the exposure it responds to, and by
donor HLA expression and exposure history. Accordingly, to discover groups of public
TCRs associated with exposures, we first developed the tools needed to associate millions
of public TCRs with HLAs (Figure 2).

We used a “pseudolabeling” approach to expand our database of HLA-associated TCRs
beyond the 2,904,747 TCRs previously described (Zahid et al., 2024). We used our
previously-described (Emerson et al., 2015b; Zahid et al., 2024) HLA inference models to
infer donor status with respect to 131 HLAs for 27,606 donors from our T-DETECT cohort.
We then identified TCRs associated with each HLA using the imputed HLA types of the
repertoires using the same approach with which we originally associated TCRs with HLAs
using genotyped HLA status. This method yielded 3,805,455 TCRs associated with 131
HLAs.
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Figure 2: ECOcluster construction and disease modeling. A. Constructing ECOclusters.
Starting with 10,000s of TCR repertoires, apply existing HLA inference models to infer all
HLA types, then identify TCRs associated with inferred presence of each HLA using
Fisher’s Exact Test. Separately for each HLA, cluster HLA-associated TCRs by co-
occurrence within HLA+ donors. Cluster these clusters using distance defined on donor
occurrence correlation, considering only donors having the HLA(s) associated with both
clusters. B. Deriving exposure biomarkers from ECOclusters. Serologically label thousands
of donors for multiple disease labels. For each labeled donor repertoire, for each
ECOcluster, calculate a measure of ECOcluster response (Rec, see Methods). For each
exposure, identify a single ECOcluster for which higher Rec is most strongly associated with
case label by Mann-Whitney U (MWU) test. Assess performance of disease-associated Rec
as a diagnostic classifier for exposure status.


https://doi.org/10.1101/2024.03.26.583354
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.26.583354; this version posted April 10, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Next, separately for each HLA, we constructed an occurrence matrix of TCRs associated
with the HLA by donors inferred to express the HLA, of the kind shown in Figure 1B. We
then performed density-based clustering of the TCRs by their co-occurrence in the donors
(see Methods for details, clustering visualized in Supplementary Figure 2). This process
yielded 43,643 HLA-COclusters (HLA-associated Co-Occurrence clusters) across all 131
HLA associations.

Finally, we clustered the HLA-COclusters by co-occurrence across all donors using HLA-
masked Pearson correlation (see Methods), yielding 7,106 ECOclusters (Exposure Co-
Occurrence Clusters, summarized in Supplementary Figure 3). Each ECOcluster
comprises TCRs associated with one or more HLAs and putatively represents the public
TCR signature, or a portion of the signature, of some unknown, prevalent exposure.

1,280 ECOclusters contained only a single HLA-COcluster, and 1,269 contained fewer
than 50 TCRs. We suspect that many of these small ECOclusters represent HLA-bound
partial exposure responses that failed to cluster across HLA associations due to
insufficient donor HLA-sharing within the T-DETECT cohort. On the other end of the
spectrum, 693 ECOclusters contained at least 10 HLA-COclusters, and 465 contained 500
or more TCRs. As a percentage of total sequenced TCRs in the repertoire, the TCRs that
were members of any ECOcluster ranged from 0.01% to 6.05% (median: 0.91%) across the
T-DETECT cohort.

Building Sensitive, Specific Diagnostic Models from Serological Labels

To identify the ECOcluster associated with a given exposure, we can collect many TCR
repertoires from donors with known exposure status and identify the ECOcluster with the
most significant difference in representation between exposed vs. unexposed donors. This
approach is analogous to our previously described approach (Emerson et al., 2015b;
Snyder et al., 2020Db) to statistically associate individual TCRs with exposure for use in a
diagnostic model. However, when considering ECOclusters as groups rather than TCRs
individually, association with the positive label is greatly strengthened by combining the
occurrence of hundreds or thousands of TCRs into a single test.

We restricted our analysis to the 465 “large” ECOclusters comprising 500 or more TCRs
(Supplementary Figure 3D). For each ECOcluster, we can ask what proportion of donors
are “HLA-matched” to the ECOcluster, i.e., have at least one imputed HLA amongthe
HLAs with which ECOcluster-member TCRs are associated. All ECOclusters HLA-matched
to at least 96% of donors were among the 465 “large” ECOclusters.
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For each of seven different exposures, we collected repertoires from donors with positive
and negative serological labels for the exposure. For Cytomegalovirus (CMV) and SARS-
CoV-2, we used labeled repertoires described previously (Emerson et al., 2015b; Snyder et
al., 2020b). For each of EBV, HSV-1, HSV-2, Parvovirus and Toxoplasma gondii, we derived
new in-house serological labels on a shared set of donors (see Methods). We divided the
labeled repertoires into training and holdout datasets (demographics in Supplementary
Figure 4). Our case-control modeling approach was developed without any use of the
holdout repertoires. For each of the in-house serological labels except T. gondii, positive
and negative label counts roughly alighed with United States prevalence (CDC website,
see Table 2). T. gondii positive labels represented only ~1% of our confident labels,
suggesting our assay may be systematically failing to assign positive labels.

We calculated a “raw breadth” measure of the proportion of a repertoire’s unique TCRs
belonging to each ECOcluster (and also associated with an HLA the donoris inferred to
express), termed Bec. We then adjusted Bec for each donor’s inferred HLA type to derive a
measure of each repertoire’s response to each ECOcluster, termed Rec (see Methods for
precise formulations of Bec and Rec). We decided to adjust for donor HLA type after
observing that donor expression or non-expression of the various HLAs represented in a
given ECOcluster contributes significantly to donor Bec for that ECOcluster.

For each exposure, we tested for higher Rec among exposed than unexposed donors using
a one-sided Mann-Whitney U test. For each exposure, a single ECOcluster had a highly
significant p value (see Table 1) far lower than that of any other ECOcluster (Figure 3). As a
percentage of total repertoire TCRs, the TCRs that were members of any of the 7 exposure-
associated ECOclusters ranged from 0.001% to 2.83% (median: 0.09%) across the T-
DETECT donor repertoires.
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Figure 3: Histograms of log, p-values, per label, for all large ECOclusters. For each
exposure with serological labels, we tested association of each large (>500-TCR)
ECOcluster with the positive label using a one-sided Mann-Whitney U test. The figure
shows, for each label, the distribution of log: p-values per ECOcluster (vertical axis on
logqo scale for visibility). The red line at the left highlights the position of the single lowest p-
value for each exposure, which for all exposures is much lower than the rest.
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We used Rec on the ECOcluster associated with each exposure as a metric for exposure
classification. We evaluated each classifier on the held-out labeled repertoires (Table 1,
Figure 4b). Models have AUROC in the range: 0.876-1.0. The CMV model has AUROC 0.96,
compared with 0.93 reported in cross-validation using our previously described
approach(Emerson et al., 2015a). 5 of the 7 models also have at least 80% sensitivity at
99% specificity. Performance of classifiers using Bec instead of Rec was notably inferior but

still strong (Supplementary Figure 5).

Table 1: Serological label counts, ECOcluster statistical significance, and classifier

performance.

Exposure +/- training | +/- holdout | ECOcluster Cluster AUROC*** Sensitivity

labels* labels* p-value** TCRs at 99%
Specificity

CMV 289/352 51/66 4.0e-66 26,139 96 (.93-.98) 92.1%

EBV 1,046/57 365/11 2.2e-18 9,704 99(.97-1.0) 97.3%

HSV-1 521/414 167/153 1.0e-72 11,579 88(.84-.91) 7.8%

HSV-2 191/623 73/159 3.9e-55 938 .99(.97-1.0) 86.3%

Parvovirus | 652/176 172/37 7.4e-25 4,359 93(.87-.98) 18.0%

SARS-CoV- | 1,130/ 463/4,287 5.0e-242 16,472 95 (.93-.97) 84.8%

2 2,669

T. gondii 14/1003 3/252 6.5e-7 1,058 1.0 (N/A) 100.0%

* +/-training (holdout) labels: the number of positively and negatively labeled samples in

the training (holdout) set

** ECOcluster p-value: the one-sided Mann-Whitney U test p-value of the exposure-
associated ECOcluster

*** AUROC: area under the receiver operating characteristic curve; values in parentheses
indicate 95% confidence interval from 1,001 bootstrapping iterations (T. gondii had too few
holdout samples for bootstrapping)
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Figure 4: Exposure-associated ECOclusters. A) Box plots of Bec (raw logo HLA-aware
breadth) on the ECOcluster TCRs associated with each exposure, for positive and negative
serologically labeled holdout samples. B) Receiver Operating Characteristic curves
describing the performance of Rec (donor HLA-adjusted Bec) calculated on the exposure-
associated ECOcluster as an exposure classifier in each holdout set.

Our model of HSV-1 exposure performs far more poorly than the rest of the models. HSV-1
model performance segregates clearly by HSV-2 status: the HSV-1 model has AUROC 0.69
on HSV-2 positive-label repertoires and 0.97 on HSV-2 negative-label repertoires
(Supplementary Figure 6). This strongly suggests that poor HSV-1 classification is due to
the roughly 80% genome homology between the two viruses (Greninger et al., 2018). Our
previous work (Pradier et al., 2023) demonstrates a successful approach to disentangling
the TCR signals of these two viruses by jointly modeling the two diseases and learning a
low-dimensional compositional representation of TCR repertoires. By contrast, our current
approach produced an ECOcluster highly specific to HSV-2, but no ECOcluster specific to
HSV-1. This is likely because our approach forces each TCR to be a member of at most one
ECOcluster: if a TCR responds to an antigen derived from both viruses, its occurrence in
repertoires would be dominated by responses to the more-prevalent exposure.
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ECOclusters representing other, cryptic, highly homologous pairs of exposures are very
likely similarly entangled.

The second weakest model is Parovirus (AUROC 0.93). We propose that the ECOcluster
breadth of acute exposures like Parvovirus may diminish with time since exposure.
Analysis of model-estimated prevalence by age, below, supports this inference.

While our model of T. gondii exposure predicts holdout label status perfectly, our holdout
repertoires contain only three positive labels, with the additional aforementioned caveat
that our positive label may lack sensitivity. Therefore, while the ROC curve is suggestive of
a T. gondii-specific response, the performance of the T. gondii model cannot be accurately
assessed.

The remainder of our serological labels (HSV-2, EBV, CMV and SARS-CoV-2), for which we
have developed very strong classifiers, are potentially chronic infections, except SARS-
CoV-2. Notably, since our SARS-CoV-2 positively-labeled samples were all acquired before
October 2021, the SARS-CoV-2-positive donors were necessarily exposed less than two
years prior to sample collection.

Interpreting ECOclusters through intersection with public databases

To investigate the agreement between our results and publicly available TCR data, we
intersected ECOcluster TCRs with three public databases of associations between TCRs
and peptide antigens (VDJDB (Shugay et al., 2018), IEDB (Vita et al., 2019) and
McPAS(Tickotsky et al., 2017)). We looked for ECOclusters that were significantly enriched
for TCRs associated with antigens from a single taxon, using an approach inspired by gene
set enrichment analysis (see Methods).

This approach lent further support to the association of some of our ECOclusters with
exposures via serological labels. 310 of our EBV-associated ECOcluster’s 9,704 TCRs were
associated with EBV antigens in the public databases, a significant enrichment with
hypergeometric test p < 1e-15. The SARS-CoV-2 ECOcluster association was similarly
supported (1,005 of 16,429 ECOcluster TCRs found in public databases, p <1e-15). Even
though only 5 of the 938 HSV-2-associated ECOcluster’s TCRs were associated with HSV-2
in the public databases, that association was still highly significant (p < 1e-13) because the
public databases only contained a total of 59 HSV-2-associated TCRs. While we observed
a large overlap of 249 TCRs between our CMV-associated ECOcluster and CMV-associated
TCRs in public databases, this overlap was not statistically significant (p =0.21) due to the
large number of TCRs in both the ECOCluster (26,106) and the public databases (24,828).
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One ECOcluster of previously unknown exposure association was significantly enriched
for public database TCRs from influenza antigens: 375 of this ECOcluster’s 4,746 TCRs
were among the 10,379 public-database TCRs associated with influenza antigens (p < 1e-
15). We will attempt to validate this association with further experiments.

Table 2: Summary of ECOcluster-associated exposure status across the T-DETECT

cohort.
Exposure | Sensitivity | Specificity Donors Estimated u.s. %
Labeled* | Prevalence** | Prevalence | Exposed
(CDC) Female
CMV 94% 93% 30,674 42% >50% 57%
EBV 100% 97% 30,666 95% 90% 53%
HSV-1 82% 83% 30,673 46% | 48.1% aged 56%
14-49
HSV-2 95% 95% 30,499 23% | 12.1% aged 59%
14-49
Parvovirus 86% 84% 30,430 58% 40%-60% 52%
SARS-CoV-2 89% 90% 30,674 64% N/A 52%
T. gondii 100% 100% 30,619 6% 11% 48%

* Donors with at least one HLA matching the exposure-associated ECOcluster were
labeled as positive or negative using a classification threshold with the indicated sensitivity
and specificity

**Estimated prevalences are broadly similar to estimates from the CDC website (SARS-
CoV-2 prevalence is not relevant due to the timing of sample collection). Full T-DETECT
cohortis 52% female.

These estimates of infection prevalence derived from T-DETECT donor TCR repertoires
broadly aligned with expectations current Centers for Disease Control and Prevention
(CDC) estimates for adults in the United States (CDC website). HSV-2, CMV and HSV-1 all
showed strong bias toward female exposures (59%, 57% and 56%, respectively, compared
with 52% female donorsin the full T-DETECT cohort) among exposed individuals, also
consistent with CDC estimates (HSV-1, HSV-2) and literature (CMV (Fowler et al., 2022)).
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To further validate this approach, we examined estimated seroprevalence of each
exposure as a function of age (Figure 5). EBV prevalence increases dramatically until
roughly age 32 and flattens significantly afterward, consistent with expectations. In
contrast, T. gondii exposure prevalence is around 1% at age 20 but increases steadily
throughout the full range of observed ages. Parvovirus seropositivity appears to decrease
in prevalence starting around age 40. The sensitivity of our Parvovirus model likely
decreases with time since exposure because it is an acute infection that does not continue
to stimulate an immune response. Acute exposures like Parvovirus present an opportunity
to develop models that retain sensitivity for a longer time after exposure, perhaps by
identifying subsets of the TCR response that tend to persist longer than others.

Exposure prevalence by age

1.0
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I Parvovirus
§ 0.6 HSV-1
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Figure 5: Prevalence of ECOcluster-associated exposures by age. Prevalence (vertical
axis) calculated over rolling mean of 1,000 donors, by age (horizontal axis). Each line
represents a different exposure, with known exposures indicated by color. SARS-CoV-2 is
excluded because itis a novel virus; its prevalence by age doesn’t have the same
interpretation.
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DISCUSSION

The TCR clusters we have derived from tens of thousands of human immune repertoires
putatively represent the public T-cell responses to hundreds of prevalent exposures. Most
of these exposures remain unknown. Each ECOcluster could potentially represent the
immune signature of any kind of prevalent immune exposure, including acute or chronic
viral or bacterial infections, vaccines and medications. ECOclusters represent exposures
at leastas rare as T. gondii (~11% prevalence in the U.S.) and at least as prevalent as EBV
(~90%).

Unlike serological and PCR-based tests, ECOclusters enable the potential determination
of exposure status for many different exposures with a single test. Toward that end, we
intend to discover the exposures associated with many more ECOclusters. We will
generate data associating TCRs with antigens from prevalent exposures, using our MIRA
assay(Klinger et al., 2015), and apply these new data to identify the ECOclusters
associated with more exposures.

Our hundreds of large ECOclusters may be clinically relevant, even without knowledge of
their associated exposure, in diseases such as autoimmune disorders. Serology and PCR-
based detection of common infections like EBV and coxsackie virus have made important
links between these infections and the incidence of autoimmune diseases like MS and
type | diabetes. In this work we have used ECOclusters to classify exposure status, a binary
classification, but our measure of ECOcluster response (Rec) is a quantitative measure.
The relationship between prior viral immune responses and autoimmune disorders is
complex (Shim et al., 2022). While bystander reactivation of viral responses may have a
limited role in autoimmune disease pathogenesis, measures of the degree of such
reactivation for many prevalent exposures may provide insight into autoimmune disease
severity or treatment efficacy (Guan et al., 2019).

We intend to continue improving ECOclusters. As observed in Table 2, not all ECOclusters
are HLA-matched to all donors in the T-DETECT cohort. Adding more repertoires to the
clustering could help cluster more disease signhatures across more HLA associations, as
well as identify new TCR clusters for HLAs that are rare in that cohort. Further, the T-
DETECT cohort used to derive ECOclusters represents a limited portion of worldwide HLA
diversity. We are actively collecting repertoires with greater HLA diversity to increase
applicability of the ECOclusters to all populations.

The ECOclusters are a powerful tool for discoveries about TCR-pHLA binding. Each HLA-
COclusteris a group of T cells responding to a constrained set of antigens, presented by a
known HLA. By applying some basic assumptions about TCR sequence similarity required
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to achieve the same binding solution, we can derive a dataset comprising the TCRB
responses to tens or hundreds of thousands of (largely cryptic) antigens presented by
known HLAs. By combining these data with TCRB-TCRa pairing data such as public single-
cell experiments, we can construct a trove of data to illuminate the relationship between
TCR sequence and HLA-presented antigen specificity.

Sequencing and analyzing tens of thousands of TCRp repertoires has led to the discovery
of hundreds of public T-cell signatures of immune exposures. As these approaches are
applied to more varied data at greater scale, they will help decode a greater portion of the
public T-cell repertoire.

METHODS

Identifying HLA-associated TCRs

To construct a large database of TCRs publicly associated with HLAs, we first constructed
diagnostic models for each of 131 Human Leukocyte Antigen (HLA) genes, using HLA-typed
donor repertoires, as described previously(Emerson et al., 2015b; Zahid et al., in review).
Next, we applied those HLA-imputation models to a much larger pool of donor repertoires
of unknown HLA (27,606 of our T-DETECT donors) to infer those donors’ HLA types. Finally,
we used those imputed HLA types to identify 3,805,455 TCRs having strong statistical
association with one or more HLAs (one-sided Fisher‘s Exact Test p < 1e-4) using the
previously described L1LR method (Zahid et al., 2024).

Constructing ECOclusters

We employed distinct methods for clustering TCRs into HLA-COclusters and for clustering
HLA-COclusters into ECOclusters. For the latter, we opted to use agglomerative clustering
on a correlation matrix, as this allowed us to explore an interpretable clustering threshold.
For clustering TCRs into HLA-COclusters, direct computation of pairwise correlations
performs very poorly due to the extreme sparsity of the TCR-by-donor matrix. We therefore
first transformed the matrix through embedding and dimensionality reduction steps. These
transformations lose the interpretability of the distance measure, and so we opted to use
density-based clustering to define HLA-COclusters, rather than tuning HLA-specific
clustering thresholds.

In more detail, to construct HLA-COclusters we used density-based clustering to identify,
for each of 131 HLAs with at least 2,000 imputed donors, clusters of HLA-associated TCRs
that tend to co-occur in a subset of donors inferred to have the HLA. We first used spectral
co-clustering (Dhillon, 2001) to embed both TCRs and donors into a shared space of 150
dimensions, and to relate the problem of clustering TCRs to the problem of clustering
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donors in terms of their TCRs. Next, we applied UMAP (Mclnnes et al., 2018) to reduce the
dimensionality of this space to 15. Finally, we applied HDBSCAN (Campello et al., 2013)
with a minimum cluster size of 10 TCRs and/or donors to define HLA-COclusters.

To construct ECOclusters, we clustered the HLA-COclusters: we constructed the matrix X
of 30,674 donors by 43,673 HLA-COclusters, with values indicating the count of the TCR
members of each HLA-COcluster occurring in each donor. We then computed the HLA-
masked Pearson correlation matrix P between all pairs of HLA-COclusters, where each
entry P;;is equal to the Pearson correlation of Xq4; and Xy, where d are the donors imputed
to have the HLA or HLAs associated with both HLA-COclustersjandj. We defined a
distance metric between all pairs of HLA-COclusters, D = 1 — P, which ranged from 0.0 to
1.0. We performed average-linkage (UPGMA) agglomerative clustering with a D threshold
of 0.8 (corresponding to a Pearson correlation coefficient of 0.2). The 7,106 clusters thus
defined each comprised between 5 and 287,393 TCRs and combining between 1 and 1,129
HLA-COclusters.

Serological labeling of exposure status

For CMV and SARS-CoV-2 labels, we used previously acquired serologically labeled
samples as described previously (Emerson et al., 2015b; Snyder et al., 2020a).

For EBV, Parvovirus, HSV-1, HSV-2 and T. gondii, we derived new serological labels on
previously acquired samples. A multiplexed serological testing method was developed in
house using U-PLEX Development Pack from Meso Scale Discovery (MSD). Purified
antigens (recombinant VCA p18 and EBNA-1 proteins for EBV, recombinant HSV-1 gG
protein, recombinant HSV-2 gG protein and T. gondii antigen were purchased from
Meridian Life Science. Parvovirus B19 VLP/VP1/VP2 Co-Capsid Recombinant protein was
purchased from Raybiotech) were biotinylated at optimized biotin-to-protein ratios that
generated biotinylated proteins with 1-3 biotin(s) per molecule.

Biotinylated antigens were coated on the plate simultaneously at optimized
concentrations onto different spots via linker provided by MSD. After washing off the
unbound antigens, sera samples diluted to optimized concentration with assay diluent
were applied to the plate. Antibodies in the serum that recognize the plate bound antigens
were detected by a sulfo-tag labeled anti-human IgG antibody. The signal level of each
spotisin direct correlation with the amount of antigen-specific antibodies in the serum
sample. A positive control that contains antibodies against all the antigens in the panel, a
negative control that does not have detectable antibodies against any of the antigensin the
panel and two cutoff samples that contain threshold level of antibodies against the
antigens in the panel were run on each plate. The multiplexed serological testing method
was validated using clinically labeled serum samples and using commercially available
ELISA kits.


https://doi.org/10.1101/2024.03.26.583354
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.26.583354; this version posted April 10, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

We normalized MSD signal in two steps to remove variation in background signal among (1)
wells and samples, and (2) MSD plates. First, within each well of an MSD plate, we used
the mean signal of spots without antigens as a measure of background signal and
subtracted it from the signal of spots with bound disease antigens. We ran each samplein
three wells and took the mean of the three background-adjusted signal values for each
disease. Second, to remove variation among MSD plates, we included a cutoff sample in
three wells of every plate and calculated the normalized signal, S, for each disease for
each sample; for each antigen, we divided the mean background-adjusted signal of every
sample on the plate by the mean background-adjusted signal of the cutoff sample. The
signal of the cutoff sample was always greater than the background signal, so the
denominator of S was always positive, but for some samples with low signal for a disease,
the numerator (and S) was negative.

Statistical methods for identifying high-confidence serological labels

We observed a bimodal distribution of log S for each disease, so we modeled log Sas a
mixture of two univariate Gaussian distributions, assuming the component distributions
with lower and higher signal represented controls and cases, respectively. When fitting the
mixture model, we ignored all samples with negative S; this ranged from 1-6% of the
samples among the diseases. After fitting the means, variances, and mixture proportion of
the mixture model using all samples with positive S, we used Bayes’ rule to calculate the
probability each sample was a case given its value of log S. When calculating this
probability for samples with negative S, we used the smallest positive S among the
samples for the disease. For model training and evaluation, we considered samples with
probability less than 0.01 and greater than 0.99 as high-confidence controls and cases,
respectively.

For the EBV labels, as described above, we had labels and confidence estimates for two
antigens, VCA and EBNA1. We used VCA as our primary indicator of donor EBV status.
However, a small number of donors had a confident negative label for VCA but also had a
label for EBNA1 that was insufficiently confidently negative (>0.1 posterior probability). We
removed those labels from consideration.

Measuring each donor’s response to each ECOcluster

For each ECOcluster, we define each donor’s “ECOcluster count” Cgc as the number of
unique ECOcluster-member TCRs in the donor’s repertoire with HLA associations
matching the donor’s imputed HLA type. We define each donor’s UPR, or Unique
Productive Rearrangement count, as the total number of unique TCRs observed in the
donor’s repertoire. We then calculate “raw ECOcluster breadth” Becas log1o(Cec / UPR).
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Next, we developed a measure of ECOcluster response adjusted for the donor’s HLA type.
For each ECOcluster, we constructed a linear regression model to predict a donor’s Bec
(denoted Bpredec) from presence (encoded as 1) or absence (encoded as 0) of each
ECOcluster-associated HLA according to theirimputed HLA type. We calculated an
“ECOcluster response” Rec, adjusted for each donor’s HLA type, as Bec - Bpredec.

Building classifiers for disease labels

For each exposure, we divided the labeled repertoires into training and holdout sets, with
labeled repertoire counts described in Table 1. All model development and selection,
including the definition of the ECOclusters, Bec and Rec, was performed without any use of
the holdout set. Within the training set, we tested each ECOcluster for association with
case status, using a one-sided Mann-Whitney U test (MWU) on serologically positive vs.
negative Rec for each ECOcluster. We declared the ECOcluster with the lowest MWU p
value to be the single ECOcluster associated with the exposure.

Computing enrichment of ECOclusters for TCRs with known association

Given the dataset of TCR-pHLA associations from public databases, we tested each
ECOcluster for enrichment of TCRs associated with pHLAs from each different taxon. In
this analysis, because of differences in V gene naming between our data and the
databases, we matched TCRs by CDR3 amino acid sequence, V gene family and J gene
family. For each combination of ECOcluster and taxon, we calculated the number x of
unique TCRs shared between the ECOcluster and the taxon-associated TCR list. We then
computed the probability p(x) of observing an intersection of x or more TCRs with an
ECOcluster by chance. p(x) is computed using the hypergeometric distribution as follows:

p(z) = (7)) / (")

where:

x = count of intersecting TCRs

m = count of TCRs in ECOcluster
k =count of TCRs in TCR list

n = estimate for total number of public TCRs (5 million) - m
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