

Early life adversity and brain age in youth

1 Title: Dimensions of early life adversity are differentially associated with patterns of delayed and
2 accelerated brain maturation

3

4 Authors: Dani Beck^{1,2,3,*}, Lucy Whitmore⁴, Niamh MacSweeney^{1,2,3}, Alexis Brieant⁵, Valerie Karl^{1,2},
5 Ann-Marie G. de Lange^{2,6,7}, Lars T. Westlye^{2,8,9}, Kathryn L. Mills⁴, Christian K. Tamnes^{1,2,3}

6

7

8

9 ¹ PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway

10 ² NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical
11 Medicine, University of Oslo, Oslo, Norway

12 ³ Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway

13 ⁴ Department of Psychology, University of Oregon, Eugene, OR, USA

14 ⁵ Department of Psychological Science, University of Vermont, Vermont, USA

15 ⁶ Department of Clinical Neurosciences, CHUV and University of Lausanne, Lausanne, Switzerland

16 ⁷ Department of Psychiatry, University of Oxford, Oxford, UK

17 ⁸ Department of Psychology, University of Oslo, Oslo, Norway

18 ⁹ KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway

19

20

21

22

23 * Correspondence: Dani Beck (dani.beck@psykologi.uio.no)

24

25

26

27

28

29

30

31

32

33

34

Early life adversity and brain age in youth

35 **Abstract**

36 **Background**

37 Different types of early-life adversity have been associated with children's brain structure and
38 function. However, understanding the disparate influence of distinct adversity exposures on
39 the developing brain remains a major challenge.

40

41 **Methods**

42 This study investigates the neural correlates of 10 robust dimensions of early-life adversity
43 identified through exploratory factor analysis in a large community sample of youth from the
44 Adolescent Brain Cognitive Development (ABCD) Study. Brain age models were trained,
45 validated, and tested separately on T1-weighted (T1; N = 9524), diffusion tensor (DTI; N =
46 8834), and resting-state functional (rs-fMRI; N = 8233) magnetic resonance imaging (MRI)
47 data from two time points (mean age = 10.7 years, SD = 1.2, range = 8.9-13.8 years).

48

49 **Results**

50 Bayesian multilevel modelling supported distinct associations between different types of
51 early-life adversity exposures and younger- and older-looking brains. Dimensions generally
52 related to emotional neglect, such as lack of primary and secondary caregiver support, and
53 lack of caregiver supervision, were associated with lower brain age gaps (BAGs), i.e.,
54 younger-looking brains. In contrast, dimensions generally related to caregiver
55 psychopathology, trauma exposure, family aggression, substance use and separation from
56 biological parent, and socio-economic disadvantage and neighbourhood safety were
57 associated with higher BAGs, i.e., older-looking brains.

58

59 **Conclusions**

60 The findings suggest that dimensions of early-life adversity are differentially associated with
61 distinct neurodevelopmental patterns, indicative of dimension-specific delayed and
62 accelerated brain maturation.

63

64

65 **Keywords:** ABCD Study, Adolescence, Brain age, Development, Early-life Adversity, MRI

66

67

68

Early life adversity and brain age in youth

69 1. Introduction

70 Early-life adversity (ELA) such as exposure to abuse, violence, neglect, separation from
71 caregivers, and chronic poverty, among others, can have widespread effects on youth
72 neurodevelopment (1) and increase risk for mental disorders (2,3). Previous studies
73 investigating how ELA influences neural development have adopted varied theoretical
74 frameworks, reflecting the complex and multifaceted nature of the field (4,5). Traditionally,
75 research has focused on a single type of adversity; for example, reporting associations
76 between heightened amygdala activation and early exposure to violence (6), and lower
77 volumes of gray matter and low income (7) and exposure to institutionalisation (8). A critical
78 limitation of this approach however, is the fact that most children are exposed to numerous
79 types of adversities concurrently (9). The cumulative risk approach overcomes this by
80 aggregating different forms of adversity into a singular risk factor. Research has found that
81 early cumulative risk was prospectively associated with lower total gray matter volume,
82 cortex volume, and right superior parietal and inferior parietal cortical thickness (10). While
83 the cumulative risk approach is useful for identifying children at greatest risk for intervention
84 and can thus serve as a vital public health tool, aggregating risk factors may obscure
85 potentially diverging effects of different adverse experiences on the developing brain.

86 More nuanced perspectives that have emerged differentiate between adverse
87 experiences related to threat versus deprivation (11), drawing support for the neural basis of
88 this distinction from studies on fear learning and sensory deprivation. For children exposed to
89 threat, studies have reported lower cortical thickness, surface area, volume of the amygdala
90 and hippocampus (12–14) and ventro-medial prefrontal cortex (vmPFC) (15,16), in addition
91 to reduced resting-state amygdala–vmPFC connectivity (17). The observed effects may be
92 indicative of accelerated maturation and are consistent with life history and evolutionary-
93 biology theories proposing accelerated development as an adaptation to harsh or stressful
94 environments (4,18–20). Similarly, another conceptual model, the stress acceleration
95 hypothesis, argues that adversity may expedite neural development as a means of
96 compensating for the absence of species-expectant maternal buffering of emotional reactivity
97 (21).

98 For children exposed to deprivation, such as institutional rearing, lack of social and
99 cognitive stimulation, and other forms of parental absence, research has revealed altered
100 structure and function in the frontoparietal network, amygdala-hippocampal-PFC
101 connectivity (11,22), and reductions in cortical gray matter and total brain volume, in
102 addition to widespread cortical thinning (8,23,24). Moreover, electroencephalogram (EEG)

Early life adversity and brain age in youth

103 studies have shown associations between spectral profiles indicative of delayed patterns of
104 functional and cortical maturation and neglect (25), poverty (26), and parental stress (27).

105 While previous research has contributed to an understanding of how different features
106 of ELA are associated with unique brain outcomes (28), real-world occurrences of adversity
107 are multifaceted and often co-occur in a complex manner, making it a considerable challenge
108 to precisely account for the heterogeneity in ELA. To address this, several data-driven
109 methods have been applied (29–33), albeit on small or homogenous samples. Recent research
110 by Brieant et al. (2023) capitalised on big data from the Adolescent Brain Cognitive
111 Development (ABCD) Study and identified 10 dimensions of adversity co-occurrence
112 pertaining to conceptual domains reflecting 1) caregiver psychopathology, 2) socioeconomic
113 disadvantage and lack of neighbourhood safety, 3) secondary caregiver lack of support, 4)
114 primary caregiver lack of support, 5) child report of family conflict, 6) caregiver substance
115 use and biological parent separation, 7) family anger and arguments, 8) family aggression, 9)
116 trauma exposure, and 10) caregiver lack of supervision. Yet, to date, the neural correlates of
117 these dimensions of ELA have not been investigated.

118 Brain age prediction offers a framework that can combine multiple imaging features,
119 alleviating the need for selection of specific metrics or regions, and yields an individualised
120 surrogate marker of brain maturation (35). Brain age involves estimation of biological age
121 based on brain MRI characteristics, which may differ from an individual's chronological age
122 (36). This difference, termed the brain age gap (BAG), could reflect deviation from typical
123 neurodevelopmental patterns, and has been validated in several neurodevelopmental studies
124 (37–40). Previous literature has also validated the stability of brain age models across early
125 adolescence, with evidence of BAG scores tracking with metrics of maturation (40). Studies
126 have also linked lower BAG in youth to attention-deficit hyperactivity disorder (ADHD),
127 lower socio-economic status, higher anxiety and depression, as well as greater general
128 psychopathology symptom severity (37,41–44). In the context of ELA, where different
129 dimensions of adversity may be associated with unique brain outcomes (4,28,45–49), brain
130 age can probe individualised markers of delayed or accelerated maturation by means of
131 younger- or older-looking brains.

132 To this end, using ABCD data, our primary aim was to test for associations between
133 MRI-based estimates of brain maturation and 10 previously characterised dimensions of ELA
134 co-occurrence (34). Based on theoretical accounts and the empirical studies reviewed above,
135 we hypothesised ELA dimensions of 1) caregiver psychopathology, 2) socioeconomic
136 disadvantage and lack of neighbourhood safety, 5) child report of family conflict, 6)

Early life adversity and brain age in youth

137 caregiver substance use and biological parent separation, 7) family anger and arguments, 8)
138 family aggression, and 9) trauma to be associated with older-looking brains and accelerated
139 maturation between the two time points. We hypothesised ELA exposures of 3) secondary
140 caregiver lack of support, 4) primary caregiver lack of support, and 10) caregiver lack of
141 supervision to be associated with younger-looking brains and delayed maturation over time.
142

143 **2. Methods and Materials**

144 *2.1. Sample and ethical approval*

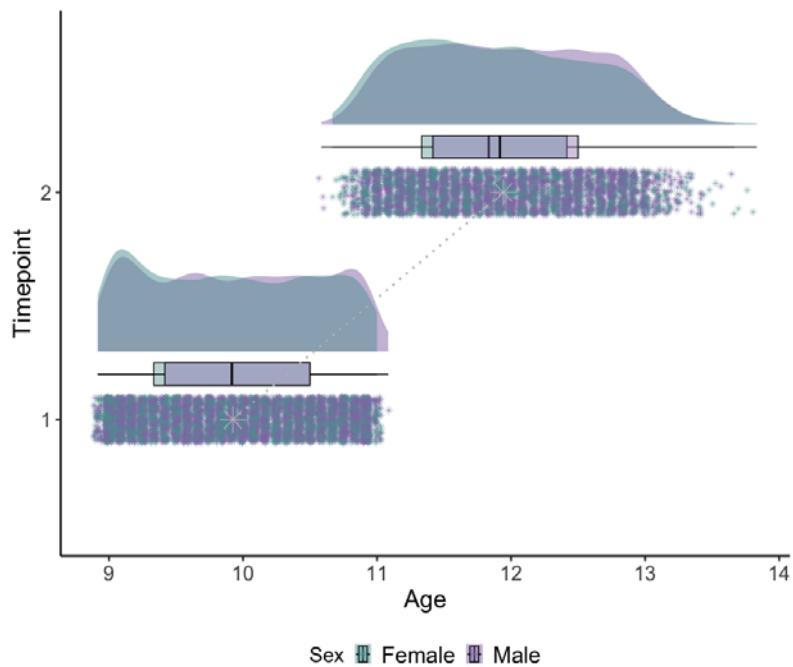
145 The Adolescent Brain Cognitive Development (ABCD) Study[®] (50) comprises of children
146 and adolescents part of an ongoing longitudinal study. Participants were excluded using the
147 ABCD Study exclusion criteria listed elsewhere (51). Data used in the present study were
148 drawn from the ABCD curated annual release 5.0, containing data from baseline up until the
149 second-year visit (<https://data-archive.nimh.nih.gov/abcd>). All ABCD Study data is stored in
150 the NIMH Data Archive Collection #2573, which is available for registered and authorised
151 users (Request #7474, PI: Westlye). The 5.0 release will be permanently available as a
152 persistent dataset defined in the NDA Study 1299 and has been assigned the DOI
153 10.15154/8873-zj65. The Institutional Review Board (IRB) at the University of California,
154 San Diego, approved all aspects of the ABCD Study (52). Parents or guardians provided
155 written consent, while the child provided written assent. The current study was conducted in
156 line with the Declaration of Helsinki and was approved by the Norwegian Regional
157 Committee for Medical and Health Research Ethics (REK 2019/943).
158

159 *2.2. Demographic information and data quality assurance*

160 The initial sample consisted of ~11,800 participants (52% male) at mean age 10.75 (SD =
161 1.18, range 8.92-13.83) years, with baseline and two-year follow-up observations (obs) of T1
162 (obs = 19,048), DTI (obs = 17,672), and rs-fMRI (obs = 16,495) data. Quality control
163 procedures followed a standard protocol described in Hagler et al. (2019). Briefly,
164 participants with excessive head motion or poor data quality were excluded from the curated
165 data release by the ABCD Study team. Additional quality assurance was carried out
166 following extraction of data using the recommendations for data cleaning provided by the
167 ABCD Study team (using data structure abcd_imgincl01). Following quality assurance, the
168 final sample included T1 obs of 19,047, DTI obs of 17,668, and rs-fMRI obs of 16,466 used
169 for the current study. Demographic information for each brain MRI modality-specific sample
170 can be found in SI Table 1, while the T1 sample is illustrated in Figure 1.

Early life adversity and brain age in youth

171



172

173 **Figure 1.** Age distribution split by sex and time point. Time point (1 and 2) represent baseline and
174 two-year-follow-up data from the ABCD Study cohort. Female data in teal blue; male in lavender.
175 Dotted gray line is drawn between mean age at time point 1 and 2.

176

177 2.3. MRI acquisition, processing, and segmentation

178 Neuroimaging data were acquired at 21 different sites (using 31 scanners) and processed by
179 the ABCD Study team. A 3-T Siemens Prisma, General Electric 750 or Phillips scanner was
180 used for data acquisition. Protocols used for data acquisition and processing are described in
181 detail elsewhere (50,53) and available in SI Section 1. Three modalities of brain structural
182 and functional measures were used in the present study: structural grey matter measures (T1),
183 diffusion white matter microstructural measures (DTI), and resting-state functional
184 connectivity measures (rs-fMRI) (53). Cortical surface reconstruction and subcortical
185 segmentation was performed with FreeSurfer v7.1.1 (54,55). White matter microstructural
186 measures were generated using AtlasTrack, a probabilistic atlas-based method for automated
187 segmentation of white matter fibre tracts (Hagler et al., 2009). Measures of functional
188 connectivity were computed using a seed-based, correlational approach (57), where average
189 time courses were calculated for cortical surface-based ROIs using a functionally-defined
190 parcellation based on resting-state functional connectivity patterns (58) and subcortical ROIs

Early life adversity and brain age in youth

191 (55). A detailed description of the processing and extraction of brain imaging data used is
192 provided in full in SI Section 1.

193

194 Briefly, For T1, we extracted tabulated total and regional measures of cortical surface area,
195 thickness, volume, sulcal depth, intensity-gray-white contrast, and subcortical volume (397
196 measures). For DTI, full and inner (multi) shell tissue properties including functional
197 anisotropy (FA) and mean (MD), longitudinal (or axial, AD), and transverse (or radial, RD)
198 diffusivity were extracted for total and regional features (576 measures). For rs-fMRI,
199 functional connectivity within and between parcellations from Gordon network, including
200 subcortical data (58) were extracted (416 measures). Following procedures of quality
201 assurance (Section 2.2), harmonisation of multi-scanner effects was carried out using
202 *longCombat* (59) (see SI Section 2 and SI Figures 1-3).

203

204 2.4. Brain age prediction

205 Brain age prediction was carried out using the eXtreme Gradient Boosting (XGBoost)
206 regression model (60), a machine learning algorithm that a gradient boosting library by
207 combining multiple decision trees to create predictive models. Parameters were tuned using
208 ten-fold cross-validation, stratified by age. The models were fitted using the best estimators
209 and optimised models were applied to the (hold-out) test sample. R2, RMSE, and MAE were
210 calculated to evaluate prediction accuracy in the test set. For each brain modality (T1, DTI,
211 rs-fMRI), 50% of the data was used as the hold-out test sample and 50% was used for model
212 training and validation. Here, data was split ensuring an equal distribution of cross-sectional
213 and longitudinal data across training and testing samples, whereby no two datapoints from the
214 same individual (longitudinal) were separated.

215 Consistent with a recent brain age paper using the ABCD Study sample (61),
216 confounding effects from complex family-related factors were minimised using a group
217 shuffle split with family ID as the group indicator to ensure that no siblings were split across
218 training and test sets. A detailed overview of T1, DTI, and rs-fMRI training and test samples,
219 including demographic information are provided in SI Section 3, SI Table 1, and SI Figures
220 4-6. A complete list of all the extracted measures used for brain age prediction per modality
221 is provided in SI Tables 2-4. Feature importance scores for each model is provided in SI
222 Figures 7-9. To adjust for commonly observed age-bias (overestimated predictions for
223 younger participants and underestimated predictions for older participants) (62), we applied a
224 statistical correction as previously described in (63). The difference between an individual's

Early life adversity and brain age in youth

225 predicted brain age and their chronological age (BAG) was calculated by subtracting the
226 participants chronological age from the age bias corrected predicted age (BAG = predicted
227 age - chronological age) for each of the models, providing T1, DTI, and rs-fMRI-based BAG
228 values for all participants. The resulting BAG can be either positive or negative, indicating an
229 older- or younger-looking brain than the individual's actual age.

230

231 *2.5. Early life adversity*

232 The current study utilised 10 previously obtained factor scores from 60 measures of early-life
233 adversity (ELA) as detailed in (34). Briefly, Brieant and colleagues identified 139 potential
234 ELA items from the ABCD Study baseline measures, which encompass a spectrum of ELA
235 constructs including caregiving disruption, caregiver psychopathology, maltreatment,
236 neighbourhood safety/violence, among others. These variables were sourced from child and
237 parent reports, as well as researcher assessments, and originated from modified versions of
238 validated scales. To identify dimensions, 60 ELA variables which were binary, polytomous,
239 and continuous in nature were entered into an exploratory factor analysis (EFA) conducted in
240 Mplus version 8.7 (64), resulting in 10 dimensions (F1 to F10; see SI Table 5 and SI Figure
241 10 for correlation matrix). To obtain factor scores, an exploratory structural equation model
242 was carried out specifying the number of factors identified in the EFA. Further details of the
243 variable selection process, identification of ELA dimensions, and calculation of factor
244 loadings can be found in Brieant et al. (2023).

245

246 *2.6. Statistical analysis*

247 All analyses were carried out using R version 4.2.1 (65). To investigate the association (main
248 effect) between each ELA dimension (F1:F10) and deviation from expected age patterns (i.e.,
249 BAG), and whether the effect of each ELA dimension on BAG varies across time points
250 (interaction effect), Bayesian multilevel models were carried out using the *brms* (66,67) R-
251 package. Here, multivariate models are fitted in familiar syntax to comparable frequentist
252 approaches such as a linear mixed effects model using the *lme4* (68). We assessed the
253 relationship between each ELA dimension at baseline and residualised (age-bias corrected)
254 BAG, where modality-specific BAG (T1, DTI, rs-fMRI) was first entered as the dependent
255 variable, each ELA dimension (F1:F10) and interaction term (TP:F1-F10) between time point
256 (TP) and ELA dimensions (F1:F10) were separately entered as independent fixed effects
257 variables with sex entered as a covariate, and with subject ID as the random effect.

Early life adversity and brain age in youth

258 To prevent false positives and to regularise the estimated associations, we defined a
259 standard prior around zero with a standard deviation of 0.1 for all regression coefficients,
260 reflecting a baseline expectation of effects being small but allowing for sufficient flexibility
261 in estimation. Each model was run with 8000 iterations, including 4000 warmup iterations,
262 across four chains. This setup was chosen to ensure robust convergence and adequate
263 sampling from the posterior distributions. For each coefficient of interest, we report the mean
264 estimated value of the posterior distribution (b) and its 95% credible interval (the range of
265 values that with 95% confidence contains the true value of the association), and calculated
266 the Bayes Factor (BF) – provided as evidence ratios in the presented figures – using the
267 Savage-Dickey method (69). Briefly, BF can be interpreted as a measure of the strength of
268 evidence (*extreme, very strong, strong, moderate, anecdotal, none*) in favour of the null or
269 alternative hypothesis. For a pragmatic guide on BF interpretation, see SI Table 6.

270

271 **3. Results**

272 *3.1. Descriptive statistics*

273 Descriptive statistics can be found in SI Table 1. Table 1 summarises descriptive and model
274 validation statistics pertaining to each brain age prediction model, following age-correction.
275 Figure 2 shows predicted age as a function of chronological age for each age prediction
276 model. SI Figure 11 shows a correlation matrix including each modality-specific predicted
277 brain age and BAG.

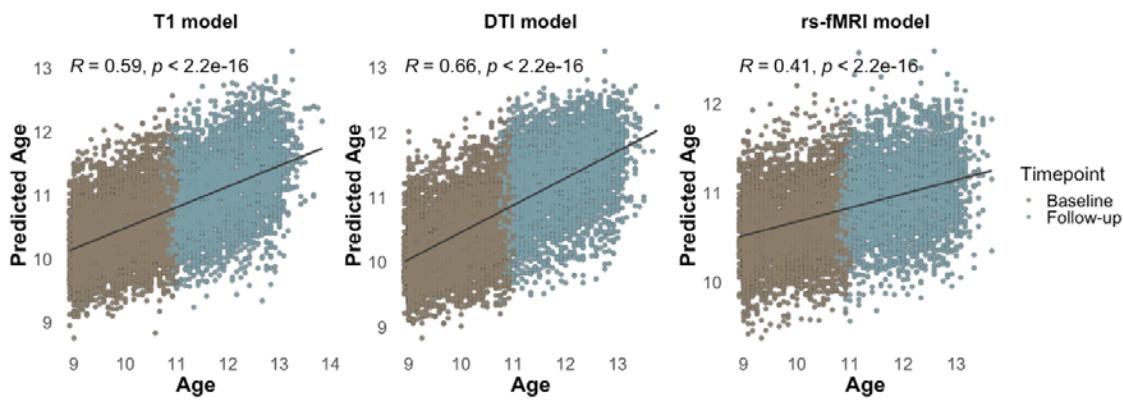
278

Table 1. Average R^2 , root mean square error (RMSE), mean absolute error (MAE), and Pearson's correlations between predicted and chronological age (r) for each brain age prediction model, with 95% confidence intervals.

	T1	DTI	rs-fMRI
r	0.59 [0.57-0.60]	0.66 [0.65-0.67]	0.41 [0.39-0.43]
R^2	0.34	0.43	0.17
RMSE	0.96	0.89	1.08
MAE	0.79	0.71	0.89

279

Early life adversity and brain age in youth



280
281 **Figure 2. Predicted age as a function of age.** Scatter plots demonstrating the correlation between
282 chronological and predicted ages for three brain imaging modalities: T1, DTI, and rs-fMRI. Each plot illustrates
283 the Pearson correlation coefficient (r) and statistical significance (p -value), with data points representing
284 individual samples at baseline and follow-up time points. The plots reveal varying degrees of performance
285 accuracy across modalities, with T1 and DTI models showing higher correlations compared to rs-fMRI.
286

287 *3.2. Bayesian multilevel modelling*

288 Bayesian multilevel modelling tested the association between each ELA dimension and
289 modality-specific BAG. The full results are available in SI Tables 7-9 and are visualised
290 below in Figure 3. For estimated credible intervals, see SI Figures 12 and 13.
291

292 *3.2.1. T1 BAG relations*

293 For T1 BAG, the test revealed evidence of a positive association between ELA dimension F2
294 (socioeconomic disadvantage and neighbourhood safety) and T1 BAG ($BF < 0.01$, $\beta = 0.13$),
295 indicating that this dimension was associated with older-looking brains. Further, the tests
296 revealed evidence of negative associations between ELA dimensions F3 (secondary caregiver
297 lack of support) ($BF = 0.9$, $\beta = -0.05$) and F4 (primary caregiver lack of support) ($BF = 0.17$,
298 $\beta = -0.08$) and T1 BAG, indicating that dimensions related to caregiver emotional neglect are
299 associated with younger-looking brains. In terms of interaction effects of time point, we
300 found a negative association between F10 (lack of supervision) and T1 BAG ($BF = 0.08$, $\beta =$
301 -0.09), indicating that unsupervised youth diverge more from normative age patterns
302 throughout the course of the study period.
303

304 *3.2.2. DTI BAG relations*

305 For DTI, the tests revealed evidence of a positive association between F2 and DTI BAG (BF
306 $= 0.27$, $\beta = 0.06$), aligning with the T1 BAG findings, and indicating that those living in more

Early life adversity and brain age in youth

307 disadvantaged and less safe environments may have older-looking brains. In terms of
308 interaction effects of time point, the tests revealed evidence supporting a positive association
309 between ELA dimension F1 (caregiver psychopathology) and DTI BAG ($BF = 0.09, \beta =$
310 0.07), indicating that the brain ages of these youth will diverge more (accelerate) from
311 normative age patterns over time.

312

313 *3.2.3. rs-fMRI BAG relations*

314 For rs-fMRI, the tests revealed evidence of a positive association between F2 and rs-fMRI
315 BAG ($BF < 0.01, \beta = 0.18$), aligning with findings from DTI and T1 BAG. The tests also
316 revealed positive associations between F1 ($BF = 0.63, \beta = 0.07$), F6 (caregiver substance
317 abuse and separation from biological parents) ($BF = 0.03, \beta = 0.15$), F8 (family aggression)
318 ($BF = 0.66, \beta = 0.08$), and F9 (trauma exposure) ($BF = 0.07, \beta = 0.15$) and rs-fMRI BAG.
319 These positive associations largely indicate that dimensions linked to a threatening
320 environment relate to older-looking brains. Further, the tests revealed a negative association
321 between F4 and rs-fMRI BAG ($BF = 0.27, \beta = -0.10$), in line with findings from T1 BAG. In
322 terms of interaction effects of time point, we found evidence supporting negative associations
323 between both F3 ($BF = 0.62, \beta = -0.08$) and F5 (family conflict) ($BF = 0.58, \beta = -0.08$) and
324 rs-fMRI BAG, and a positive association between F6 ($BF = 0.51, \beta = 0.09$) and rs-fMRI
325 BAG.

326

Early life adversity and brain age in youth

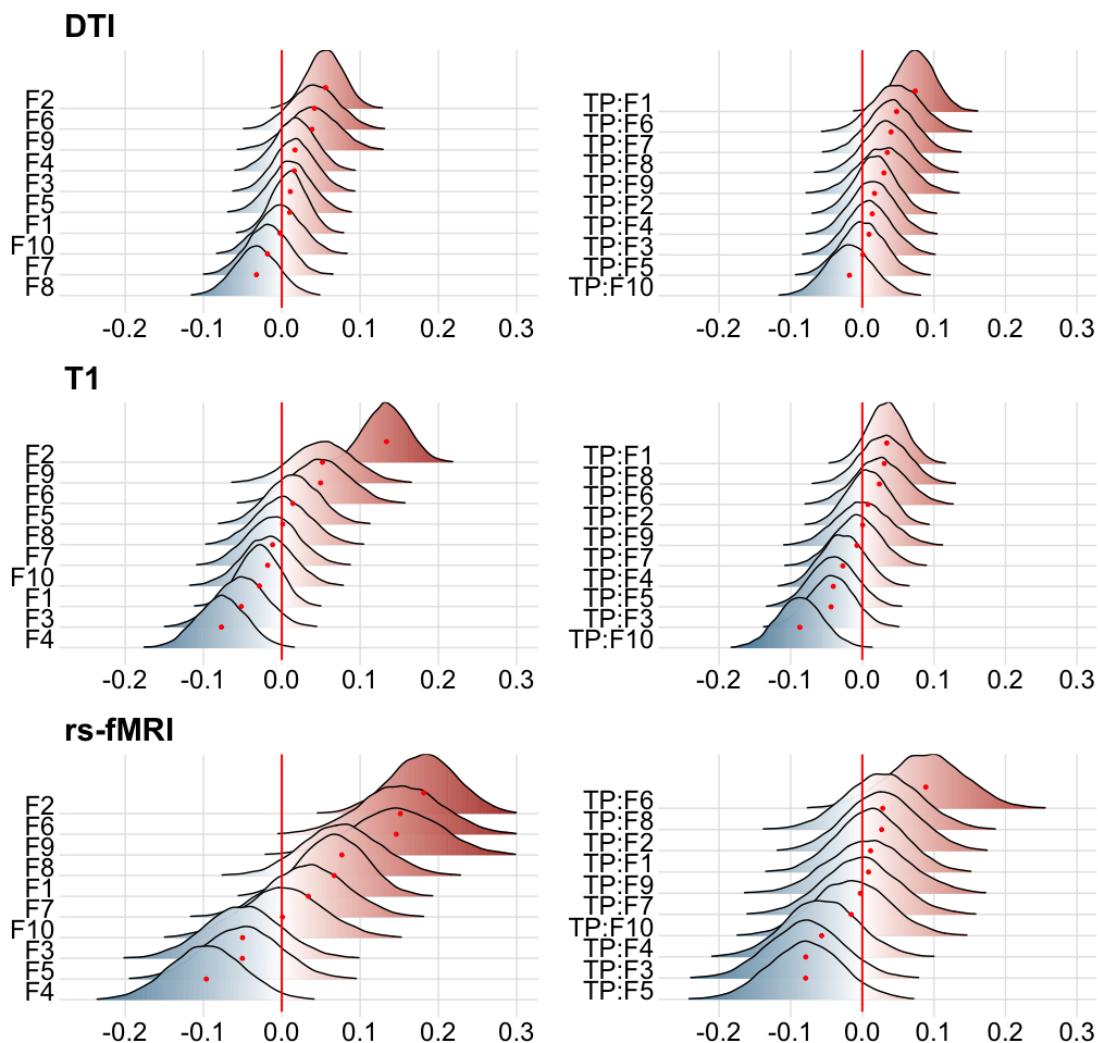


Figure 3. Associations between ELA dimensions and BAG for DTI, T1, and rs-fMRI. The figure shows posterior distributions of the estimates of the standardised coefficient. Estimates for each ELA dimension on BAG (main effect) on the left, and ELA dimension interaction effect of time point (TP:ELA) on BAG on the right. Colour scale follows directionality of evidence, with positive (red) values indicating evidence in favour of positive associations (greater adversity linked to older-looking brains) and negative (blue) values indicating evidence in favour of negative associations (greater adversity linked to younger-looking brains) for each ELA dimension. The width of the distributions represent the uncertainty of the parameter estimates. F1: Caregiver psychopathology; F2: Socio-economic disadvantage and neighbourhood safety; F3: Secondary caregiver lack of support; F4: Primary caregiver lack of support; F5: Youth report of family conflict; F6: Caregiver substance use and separation from biological parent; F7: Family anger and arguments; F8: Family aggression; F9: Trauma exposure; F10: Lack of supervision.

4. Discussion

Research indicates that approximately half of all children will experience at least one form of adversity by the time they reach adulthood (2,70). Different forms of early-life adversity co-

Early life adversity and brain age in youth

343 occur and may uniquely impact child brain structure and function. This work sought to
344 delineate the potentially unique brain outcomes of 10 co-occurring dimensions of early-life
345 adversity in a longitudinal sample of 9–14-year-old youth. Our main findings indicate that
346 ELA dimensions of caregiver lack of support and supervision are associated with younger-
347 looking brains and that ELA dimensions of caregiver psychopathology, socioeconomic
348 disadvantage and neighbourhood safety, caregiver substance abuse and separation from
349 biological parents, family aggression, and trauma exposure are associated with older-looking
350 brains. Our findings largely align with and extend the current literature on the differential
351 impact of different co-occurring patterns of environmental exposures and adversity on brain
352 development (45,49).

353

354 *4.1. Links to accelerated brain maturation*

355 Families living in lower socioeconomic status neighbourhoods are exposed to more harms,
356 such as interpersonal violence (71), and are more likely to have concerns about
357 neighbourhood safety (72). Positive associations between the dimension representing
358 socioeconomic disadvantage and neighbourhood safety (F2) and BAG were found with all
359 three brain age models, and are consistent with research showing socioeconomic
360 disadvantage and neighbourhood violence linked to smaller cortical volumes and greater
361 cortical thinning (73–75). Positive associations between exposure to trauma (F9) and BAG is
362 also consistent with previous research showing that children exposed to trauma are more
363 likely to be misclassified as adults by means of older DNA methylation age compared to
364 chronological age, and earlier pubertal maturation (76–78).

365 For caregiver psychopathology (F1), we found both positive BAG associations as
366 main effects and as interaction effects of time, suggesting that parent psychopathology-
367 related deviations from expected age-patterns accelerate over time. Our findings are
368 challenging to interpret in the context of mixed results from previous research. ABCD Study
369 findings have revealed smaller volume in the right putamen (79), left hippocampus (80), and
370 bilateral hippocampi (81) in relation to parental psychopathology. These findings reflect age
371 patterns of hippocampi and putamen usually not seen until late adolescents and young
372 adulthood – whereby subcortical volumes are expected to reduce over time (82,83) –
373 suggesting the results may indicate accelerated ageing in this younger sample, and thus
374 aligning with the directionality of our results. However, studies using other datasets have
375 found that parental history of depression is associated with larger volume in the bilateral
376 amygdala (84), and others have reported no effects (85). ELA dimensions that indicated the

Early life adversity and brain age in youth

377 potential presence of household hostility including family aggression (e.g., throwing things,
378 hitting) (F8) revealed a positive main effect for rs-fMRI BAG, but no effects for family
379 arguments (e.g., expressing anger, fighting, raising voices) (F7), with the latter finding going
380 against our hypothesis.

381 Co-occurrence of caregiver substance abuse and separation from biological parents in
382 one dimension (F6) might reflect child custody issues related to caregiver substance use
383 disorders or arrests (34,86). Moreover, this dimension also has factor loadings from domestic
384 violence. Our results revealed positive rs-fMRI BAG associations both as a main effect and
385 an interaction effect of time. Drawing from concepts of stress acceleration, parental
386 deprivation accelerates the functional development of the mPFC in children, such that
387 amygdala–mPFC interactions are more adultlike following deprivation experiences (21).
388 Children in this group may have accelerated maturation as a means of adapting from a state
389 of parent-regulated to self-regulated emotional processing due to absent or inconsistent
390 parental care (4,19–21). Further research is needed to understand the underlying mechanisms
391 at play. In summary, dimensions of ELA co-occurrence related to older-looking brains
392 support research reporting accelerated brain maturation in children exposed to potentially
393 more hostile or dangerous environments.

394

395 *4.2. Links to delayed brain maturation*

396 Neurobiological studies of brain development have long assumed a deficit model in which
397 lack of input to the development of a child will result in delay of certain skills (87). In the
398 child brain, this may be reflected by a delay in pruning and thus larger brain volumes and
399 younger-looking brains. Our results support this, with lack of primary (F4) and secondary
400 (F3) caregiver support as well as lack of caregiver supervision (F10) all revealing negative
401 associations with T1 and rs-fMRI BAG, with main effects for F3 and F4, and interaction
402 effects for F3 and F10. Importantly, these factors each share elements of emotional neglect.

403 Previous research investigating more severe forms of neglect (physical and emotional)
404 have found that children reared in institutions demonstrate EEG patterns suggestive of a
405 delay in cortical maturation in frontal, temporal, and occipital regions (25). However, a
406 wealth of studies also report conflicting results indicative of advanced maturation in similar
407 samples (8,24). A caveat of research carried out on neglect is that children are often in
408 environments enriched for several co-occurring ELAs, making it difficult to rely on the
409 stability of the neglect scores while considering other stressors. Importantly, our results
410 specifically capture emotional forms of neglect in terms of lack of household emotional

Early life adversity and brain age in youth

411 support in a community with relatively lower levels of risk, which may explain divergence
412 from prior studies on extreme physical neglect or institutionalisation.

413 Lastly, a negative interaction effect of time for rs-fMRI BAG and family conflict (F5)
414 was also found, indicating that youth exposed to family conflict diverge more from normative
415 age patterns (i.e., delayed maturation) over time. This contradicted our hypothesis and
416 findings from previous research also utilising the ABCD Study cohort which reported high
417 family conflict associations with smaller cortical surface areas of the orbitofrontal cortex,
418 anterior cingulate cortex, and middle temporal gyrus (88). In summary, ELA dimensions
419 related to emotional neglect were associated with younger-looking brains and delayed
420 maturation.

421

422 *4.3. Strengths and limitations*

423 Our study adds new insight into the neural correlates of co-occurring ELA dimensions in a
424 large-scale longitudinal community sample. Using a sample not enriched for adversity
425 exposure has the added value of demonstrating that even less severe ELA exposure is
426 associated with changes in the developing brain, facilitating broader generalisation. However,
427 there is trade-off in that our findings cannot necessarily be generalised to interpret neural
428 correlates of children exposed to more severe forms of adversity, as these groups may not be
429 well-represented in the ABCD Study. Future research is required to address this without
430 losing adequate power. There remain also additional challenges such as accounting for
431 differences in chronicity of adversity events, interindividual differences in resilience, and
432 overlap in adversity types.

433 Building on data driven methods applied in Brieant et al. (2023), the current study
434 benefitted from ELA dimensions accounting for more variability in ELA patterns and a
435 dimensional structure replicated in an independent sample, suggesting some stability. The
436 current study utilised three estimates of brain age based on different MRI modalities in an
437 attempt to capture potentially tissue-specific effects of ELA dimensions. While the
438 multimodal (with longitudinal data) approach is a strength, deep learning methods have
439 shown greater accuracy in recent years (39,89). Moreover, focusing on different regional
440 rather than global brain metrics and their association with adversity dimensions represents an
441 opportunity for future research.

442

443 *4.4. Conclusion*

Early life adversity and brain age in youth

444 The current study supports notions that brain MRI outcomes related to early-life adversity are
445 differentially associated with accelerated and delayed brain maturation. Neurodevelopmental
446 processes influenced by experiences of trauma, parental psychopathology, socio-economic
447 disadvantage and neighbourhood safety, caregiver substance abuse and separation from
448 biological parents, and family aggression, are at least partially distinct from those influenced
449 by experiences of emotional neglect, with brain age deviations indicating differential
450 maturational patterns. Future research should build on this work by investigating, for
451 example, how brain age patterns mediate the associations between dimensions of early life
452 adversity and child behavioural and symptom measures. Such studies could elucidate whether
453 indices of brain maturation serve as an underlying biological mechanism linking early
454 adversity to later child outcomes, thereby offering a more comprehensive understanding of
455 these developmental processes and helping guide intervention strategies that aim to mitigate
456 the impact of early-life adversity and supporting healthy development of at-risk youth.

457

458 **5. Funding**

459 This work was supported by the Research Council of Norway (#223273, #288083, #323951,
460 #276082, #249795, #248238, #298646, #300767), the South-Eastern Norway Regional
461 Health Authority (#2019069, #2021070, #500189, #2014097, #2015073, #2016083,
462 #2018076, #2019101), KG Jebsen Stiftelsen, the European Union-funded Horizon Europe
463 project 'environMENTAL' (101057429); and the UK Research and Innovation (UKRI) under
464 the UK government's Horizon Europe (10041392 and 10038599), the Swiss National Science
465 Foundation (#PZ00P3_193658), and the European Research Council under the European
466 Union's Horizon 2020 Research and Innovation program (ERC StG, #802998 and RIA
467 #847776). The work was performed on the Service for Sensitive Data (TSD) platform, owned
468 by the University of Oslo, operated, and developed by the TSD service group at the
469 University of Oslo IT-Department (USIT). Computations were performed on resources
470 provided by Sigma2 - the National Infrastructure for High Performance Computing and Data
471 Storage in Norway.

472

473 **6. Acknowledgments**

474 Data used in the preparation of this article were obtained from the Adolescent Brain
475 Cognitive DevelopmentSM (ABCD) Study (<https://abcdstudy.org>), held in the NIMH Data
476 Archive (NDA). This is a multisite, longitudinal study designed to recruit more than 10,000
477 children aged 9-10 and follow them over 10 years into early adulthood. The ABCD Study® is

Early life adversity and brain age in youth

478 supported by the National Institutes of Health and additional federal partners under award
479 numbers U01DA041048, U01DA050989, U01DA051016, U01DA041022, U01DA051018,
480 U01DA051037, U01DA050987, U01DA041174, U01DA041106, U01DA041117,
481 U01DA041028, U01DA041134, U01DA050988, U01DA051039, U01DA041156,
482 U01DA041025, U01DA041120, U01DA051038, U01DA041148, U01DA041093,
483 U01DA041089, U24DA041123, U24DA041147. A full list of supporters is available at
484 <https://abcdstudy.org/federal-partners.html>. A listing of participating sites and a complete
485 listing of the study investigators can be found at https://abcdstudy.org/consortium_members/.
486 ABCD consortium investigators designed and implemented the study and/or provided data
487 but did not necessarily participate in the analysis or writing of this report. This manuscript
488 reflects the views of the authors and may not reflect the opinions or views of the NIH or
489 ABCD consortium investigators. This manuscript has been posted on the preprint server
490 *bioRxiv*: <https://www.biorxiv.org/content/10.1101/2024.01.22.576780v1>. We thank the co-
491 authors of Brieant et al. (2023) for their contributions to the development of the factor scores
492 used in this paper (Anna Vannucci, Hajar Nakua, Jenny Harris, Jack Lovell, Divya
493 Brundavanam, Nim Tottenham, and Dylan Gee).

494

495 **7. Financial disclosures**

496 None of the authors report financial conflict or potential conflict of interest.

497

498 **8. References**

- 499 1. McLaughlin KA, Sheridan MA, Gold AL, Duys A, Lambert HK, Peverill M, *et al.* (2016):
500 Maltreatment Exposure, Brain Structure, and Fear Conditioning in Children and
501 Adolescents [no. 8]. *Neuropsychopharmacology* 41: 1956–1964.
- 502 2. Kessler RC, McLaughlin KA, Green JG, Gruber MJ, Sampson NA, Zaslavsky AM, *et al.*
503 (2010): Childhood adversities and adult psychopathology in the WHO World Mental
504 Health Surveys. *Br J Psychiatry* 197: 378–385.
- 505 3. Wade M, Wright L, Finegold KE (2022): The effects of early life adversity on children's
506 mental health and cognitive functioning [no. 1]. *Transl Psychiatry* 12: 1–12.

Early life adversity and brain age in youth

507 4. Ellis BJ, Sheridan MA, Belsky J, McLaughlin KA (2022): Why and how does early
508 adversity influence development? Toward an integrated model of dimensions of
509 environmental experience. *Dev Psychopathol* 34: 447–471.

510 5. Smith KE, Pollak SD (2021): Rethinking Concepts and Categories for Understanding the
511 Neurodevelopmental Effects of Childhood Adversity. *Perspect Psychol Sci* 16: 67–
512 93.

513 6. White SF, Voss JL, Chiang JJ, Wang L, McLaughlin KA, Miller GE (2019): Exposure to
514 violence and low family income are associated with heightened amygdala
515 responsiveness to threat among adolescents. *Dev Cogn Neurosci* 40: 100709.

516 7. Hanson JL, Hair N, Shen DG, Shi F, Gilmore JH, Wolfe BL, Pollak SD (2013): Family
517 Poverty Affects the Rate of Human Infant Brain Growth. *PLOS ONE* 8: e80954.

518 8. Sheridan MA, Fox NA, Zeanah CH, McLaughlin KA, Nelson CA (2012): Variation in
519 neural development as a result of exposure to institutionalization early in childhood.
520 *Proc Natl Acad Sci U S A* 109: 12927–12932.

521 9. McLaughlin KA, Green JG, Gruber MJ, Sampson NA, Zaslavsky AM, Kessler RC (2012):
522 Childhood adversities and first onset of psychiatric disorders in a national sample of
523 adolescents. *Arch Gen Psychiatry* 69: 1151–1160.

524 10. Chad-Friedman E, Botdorf M, Riggins T, Dougherty LR (2021): Early childhood
525 cumulative risk is associated with decreased global brain measures, cortical thickness,
526 and cognitive functioning in school-age children. *Dev Psychobiol* 63: 192–205.

527 11. Sheridan MA, McLaughlin KA (2014): Dimensions of early experience and neural
528 development: deprivation and threat. *Trends Cogn Sci* 18: 580–585.

529 12. Colich NL, Platt JM, Keyes KM, Sumner JA, Allen NB, McLaughlin KA (2020): Earlier
530 age at menarche as a transdiagnostic mechanism linking childhood trauma with
531 multiple forms of psychopathology in adolescent girls. *Psychol Med* 50: 1090–1098.

Early life adversity and brain age in youth

532 13. Gold AL, Sheridan MA, Peverill M, Busso DS, Lambert HK, Alves S, *et al.* (2016):
533 Childhood abuse and reduced cortical thickness in brain regions involved in
534 emotional processing. *J Child Psychol Psychiatry* 57: 1154–1164.

535 14. Lim L, Radua J, Rubia K (2014): Gray Matter Abnormalities in Childhood Maltreatment:
536 A Voxel-Wise Meta-Analysis. *Am J Psychiatry* 171: 854–863.

537 15. De Brito SA, Viding E, Sebastian CL, Kelly PA, Mechelli A, Maris H, McCrory EJ
538 (2013): Reduced orbitofrontal and temporal grey matter in a community sample of
539 maltreated children. *J Child Psychol Psychiatry* 54: 105–112.

540 16. Hanson JL, Chung MK, Avants BB, Shirtcliff EA, Gee JC, Davidson RJ, Pollak SD
541 (2010): Early stress is associated with alterations in the orbitofrontal cortex: A tensor-
542 based morphometry investigation of brain structure and behavioral risk. *J Neurosci*
543 30: 7466–7472.

544 17. Herringa RJ, Birn RM, Ruttle PL, Burghy CA, Stodola DE, Davidson RJ, Essex MJ
545 (2013): Childhood maltreatment is associated with altered fear circuitry and increased
546 internalizing symptoms by late adolescence. *Proc Natl Acad Sci U S A* 110: 19119–
547 19124.

548 18. Belsky J (2012): The Development of Human Reproductive Strategies: Progress and
549 Prospects. *Curr Dir Psychol Sci* 21: 310–316.

550 19. Frankenhuys WE, de Weerth C (2013): Does Early-Life Exposure to Stress Shape or
551 Impair Cognition? *Curr Dir Psychol Sci* 22: 407–412.

552 20. McEwen BS, Gianaros PJ (2010): Central role of the brain in stress and adaptation: Links
553 to socioeconomic status, health, and disease. *Ann N Y Acad Sci* 1186: 190–222.

554 21. Callaghan BL, Tottenham N (2016): The Stress Acceleration Hypothesis: effects of early-
555 life adversity on emotion circuits and behavior. *Curr Opin Behav Sci* 7: 76–81.

Early life adversity and brain age in youth

556 22. Silvers JA, Lumian DS, Gabard-Durnam L, Gee DG, Goff B, Fareri DS, *et al.* (2016):
557 Previous Institutionalization Is Followed by Broader Amygdala-Hippocampal-PFC
558 Network Connectivity during Aversive Learning in Human Development. *J Neurosci*
559 *Off J Soc Neurosci* 36: 6420–6430.

560 23. McLaughlin KA, Sheridan MA, Winter W, Fox NA, Zeanah CH, Nelson CA (2014):
561 Widespread Reductions in Cortical Thickness Following Severe Early-Life
562 Deprivation: A Neurodevelopmental Pathway to Attention-Deficit/Hyperactivity
563 Disorder. *Biol Psychiatry* 76: 629–638.

564 24. Mehta MA, Golembo NI, Nosarti C, Colvert E, Mota A, Williams SCR, *et al.* (2009):
565 Amygdala, hippocampal and corpus callosum size following severe early institutional
566 deprivation: The English and Romanian Adoptees Study Pilot. *J Child Psychol*
567 *Psychiatry* 50: 943–951.

568 25. McLaughlin KA, Fox NA, Zeanah CH, Sheridan MA, Marshall P, Nelson CA (2010):
569 Delayed Maturation in Brain Electrical Activity Partially Explains the Association
570 Between Early Environmental Deprivation and Symptoms of Attention-
571 Deficit/Hyperactivity Disorder. *Biol Psychiatry* 68: 329–336.

572 26. Pietto ML, Kamienkowski JE, Lipina SJ (2017): Electrophysiological Approaches in the
573 Study of the Influence of Childhood Poverty on Cognition. In: Ibáñez A, Sedeño L,
574 García AM, editors. *Neuroscience and Social Science: The Missing Link*. Cham:
575 Springer International Publishing, pp 349–381.

576 27. Pierce LJ, Thompson BL, Gharib A, Schlueter L, Reilly E, Valdes V, *et al.* (2019):
577 Association of Perceived Maternal Stress During the Perinatal Period With
578 Electroencephalography Patterns in 2-Month-Old Infants. *JAMA Pediatr* 173: 561–
579 570.

Early life adversity and brain age in youth

580 28. McLaughlin KA, Sheridan MA, Humphreys KL, Belsky J, Ellis BJ (2021): The Value of
581 Dimensional Models of Early Experience: Thinking Clearly About Concepts and
582 Categories. *Perspect Psychol Sci* 16: 1463–1472.

583 29. Cohen-Cline H, Jones KG, Kulkarni-Rajasekhara S, Polonsky HM, Vartanian KB (2019):
584 Identifying underlying constructs of childhood adversity in a low-income population.
585 *Child Abuse Negl* 91: 1–11.

586 30. Mersky JP, Janczewski CE, Topitzes J (2017): Rethinking the Measurement of Adversity:
587 Moving Toward Second-Generation Research on Adverse Childhood Experiences.
588 *Child Maltreat* 22: 58–68.

589 31. Nikolaidis A, Heleniak C, Fields A, Bloom PA, VanTieghem M, Vannucci A, *et al.*
590 (2022): Heterogeneity in caregiving-related early adversity: Creating stable
591 dimensions and subtypes. *Dev Psychopathol* 34: 621–634.

592 32. van Zyl T-L, O'Neill T, Rushe T (2023): Distinct Psychological Profiles Linking
593 Childhood Adversity and Substance Misuse in High-Risk Young Adults. *J Fam
594 Violence* 38: 633–645.

595 33. Zinn ME, Huntley ED, Keating DP (2020): Resilience in adolescence: Prospective Self
596 moderates the association of early life adversity with externalizing problems. *J
597 Adolesc* 81: 61–72.

598 34. Brieant A, Vannucci A, Nakua H, Harris J, Lovell J, Brundavanam D, *et al.* (2023):
599 Characterizing the dimensional structure of early-life adversity in the Adolescent
600 Brain Cognitive Development (ABCD) Study. *Dev Cogn Neurosci* 61: 101256.

601 35. Cole, Franke K (2017): Predicting Age Using Neuroimaging: Innovative Brain Ageing
602 Biomarkers. *Trends Neurosci* 40: 681–690.

Early life adversity and brain age in youth

603 36. Franke K, Ziegler G, Klöppel S, Gaser C (2010): Estimating the age of healthy subjects
604 from T1-weighted MRI scans using kernel methods: Exploring the influence of
605 various parameters. *NeuroImage* 50: 883–892.

606 37. Drobinin V, Van Gestel H, Helmick CA, Schmidt MH, Bowen CV, Uher R (2022): The
607 Developmental Brain Age Is Associated With Adversity, Depression, and Functional
608 Outcomes Among Adolescents. *Biol Psychiatry Cogn Neurosci Neuroimaging* 7:
609 406–414.

610 38. Franke K, Luders E, May A, Wilke M, Gaser C (2012): Brain maturation: Predicting
611 individual BrainAGE in children and adolescents using structural MRI. *NeuroImage*
612 63: 1305–1312.

613 39. Holm MC, Leonardsen EH, Beck D, Dahl A, Kjelkenes R, de Lange A-MG, Westlye LT
614 (2023): Linking brain maturation and puberty during early adolescence using
615 longitudinal brain age prediction in the ABCD cohort. *Dev Cogn Neurosci* 60:
616 101220.

617 40. Whitmore LB, Weston SJ, Mills KL (2023): BrainAGE as a measure of maturation
618 during early adolescence. *Imaging Neurosci* 1: 1–21.

619 41. Lund MJ, Alnæs D, de Lange A-MG, Andreassen OA, Westlye LT, Kaufmann T (2022):
620 Brain age prediction using fMRI network coupling in youths and associations with
621 psychiatric symptoms. *NeuroImage Clin* 33: 102921.

622 42. Cohen JW, Ramphal B, DeSerisy M, Zhao Y, Pagliaccio D, Colcombe S, *et al.* (2024):
623 Relative brain age is associated with socioeconomic status and anxiety/depression
624 problems in youth. *Dev Psychol* 60: 199–209.

625 43. Cropley VL, Tian Y, Fernando K, Mansour L. S, Pantelis C, Cocchi L, Zalesky A (2021):
626 Brain-Predicted Age Associates With Psychopathology Dimensions in Youths. *Biol
627 Psychiatry Cogn Neurosci Neuroimaging* 6: 410–419.

Early life adversity and brain age in youth

628 44. Kurth F, Levitt JG, Gaser C, Alger J, Loo SK, Narr KL, *et al.* (2022): Preliminary
629 evidence for a lower brain age in children with attention-deficit/hyperactivity
630 disorder. *Front Psychiatry* 13. Retrieved June 8, 2023, from
631 <https://www.frontiersin.org/articles/10.3389/fpsyg.2022.1019546>

632 45. Alnæs D, Kaufmann T, Marquand AF, Smith SM, Westlye LT (2020): Patterns of
633 sociocognitive stratification and perinatal risk in the child brain. *Proc Natl Acad Sci*
634 117: 12419–12427.

635 46. Holz NE, Zabihi M, Kia SM, Monninger M, Aggensteiner P-M, Siehl S, *et al.* (2023): A
636 stable and replicable neural signature of lifespan adversity in the adult brain. *Nat*
637 *Neurosci* 26: 1603–1612.

638 47. Jeong HJ, Durham EL, Moore TM, Dupont RM, McDowell M, Cardenas-Iniguez C, *et al.*
639 (2021): The association between latent trauma and brain structure in children [no. 1].
640 *Transl Psychiatry* 11: 1–9.

641 48. Malave L, van Dijk MT, Anacker C (2022): Early life adversity shapes neural circuit
642 function during sensitive postnatal developmental periods [no. 1]. *Transl Psychiatry*
643 12: 1–14.

644 49. Modabbernia A, Reichenberg A, Ing A, Moser DA, Doucet GE, Artiges E, *et al.* (2021):
645 Linked patterns of biological and environmental covariation with brain structure in
646 adolescence: a population-based longitudinal study [no. 9]. *Mol Psychiatry* 26: 4905–
647 4918.

648 50. Casey BJ, Cannonier T, Conley MI, Cohen AO, Barch DM, Heitzeg MM, *et al.* (2018):
649 The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition
650 across 21 sites. *Dev Cogn Neurosci* 32: 43–54.

Early life adversity and brain age in youth

651 51. Karcher NR, Barch DM, Avenevoli S, Savill M, Huber RS, Simon TJ, *et al.* (2018):
652 Assessment of the Prodromal Questionnaire—Brief Child Version for Measurement of
653 Self-reported Psychoticlike Experiences in Childhood. *JAMA Psychiatry* 75: 853–861.

654 52. Auchter AM, Hernandez Mejia M, Heyser CJ, Shilling PD, Jernigan TL, Brown SA, *et al.*
655 (2018): A description of the ABCD organizational structure and communication
656 framework. *Dev Cogn Neurosci* 32: 8–15.

657 53. Hagler DJ, Hatton SeanN, Cornejo MD, Makowski C, Fair DA, Dick AS, *et al.* (2019):
658 Image processing and analysis methods for the Adolescent Brain Cognitive
659 Development Study. *NeuroImage* 202: 116091.

660 54. Dale AM, Fischl B, Sereno MI (1999): Cortical Surface-Based Analysis. 16.

661 55. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, *et al.* (2002): Whole
662 Brain Segmentation. *Neuron* 33: 341–355.

663 56. Hagler Jr. DJ, Ahmadi ME, Kuperman J, Holland D, McDonald CR, Halgren E, Dale AM
664 (2009): Automated white-matter tractography using a probabilistic diffusion tensor
665 atlas: Application to temporal lobe epilepsy. *Hum Brain Mapp* 30: 1535–1547.

666 57. Van Dijk KRA, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL (2010):
667 Intrinsic Functional Connectivity As a Tool For Human Connectomics: Theory,
668 Properties, and Optimization. *J Neurophysiol* 103: 297–321.

669 58. Gordon EM, Laumann TO, Adeyemo B, Huckins JF, Kelley WM, Petersen SE (2016):
670 Generation and Evaluation of a Cortical Area Parcellation from Resting-State
671 Correlations. *Cereb Cortex N Y NY* 26: 288–303.

672 59. Beer JC, Tustison NJ, Cook PA, Davatzikos C, Sheline YI, Shinohara RT, Linn KA
673 (2020): Longitudinal ComBat: A method for harmonizing longitudinal multi-scanner
674 imaging data. *NeuroImage* 220: 117129.

Early life adversity and brain age in youth

675 60. Chen T, Guestrin C (2016): XGBoost: A Scalable Tree Boosting System. *Proceedings of*
676 *the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data*
677 *Mining* 785–794.

678 61. Dehestani N, Whittle S, Vijayakumar N, Silk TJ (2023): Developmental brain changes
679 during puberty and associations with mental health problems. *Dev Cogn Neurosci* 60:
680 101227.

681 62. Liang H, Zhang F, Niu X (2019): Investigating systematic bias in brain age estimation
682 with application to post-traumatic stress disorders. *Hum Brain Mapp* hbm.24588.

683 63. de Lange, Cole (2020): Commentary: Correction procedures in brain-age prediction.
684 *NeuroImage Clin* 26: 102229.

685 64. Muthén L, Muthén B (1998): Mplus User Guide. Retrieved November 21, 2023, from
686 https://www.statmodel.com/HTML_UG/introV8.htm

687 65. R Core Team (2022): *R: A Language and Environment for Statistical Computing*. Vienna,
688 Austria: R Foundation for Statistical Computing. Retrieved from [https://www.R-
689 project.org/](https://www.R-project.org/)

690 66. Bürkner P-C (2017): **brms**: An *R* Package for Bayesian Multilevel Models Using *Stan*.
691 *J Stat Softw* 80. <https://doi.org/10.18637/jss.v080.i01>

692 67. Bürkner P-C (2018): Advanced Bayesian Multilevel Modeling with the R Package brms.
693 *R J* 10: 395.

694 68. Bates D, Mächler M, Bolker B, Walker S (2015): Fitting Linear Mixed-Effects Models
695 Using **lme4**. *J Stat Softw* 67. <https://doi.org/10.18637/jss.v067.i01>

696 69. Wagenmakers E-J, Lodewyckx T, Kuriyal H, Grasman R (2010): Bayesian hypothesis
697 testing for psychologists: A tutorial on the Savage–Dickey method. *Cognit Psychol*
698 60: 158–189.

Early life adversity and brain age in youth

699 70. Green JG, McLaughlin KA, Berglund PA, Gruber MJ, Sampson NA, Zaslavsky AM,
700 Kessler RC (2010): Childhood adversities and adult psychiatric disorders in the
701 national comorbidity survey replication I: associations with first onset of DSM-IV
702 disorders. *Arch Gen Psychiatry* 67: 113–123.

703 71. Chong VE, Lee WS, Victorino GP (2015): Neighborhood socioeconomic status is
704 associated with violent reinjury. *J Surg Res* 199: 177–182.

705 72. Meyer OL, Castro-Schilo L, Aguilar-Gaxiola S (2014): Determinants of Mental Health
706 and Self-Rated Health: A Model of Socioeconomic Status, Neighborhood Safety, and
707 Physical Activity. *Am J Public Health* 104: 1734–1741.

708 73. Butler O, Yang X, Laube C, Kühn S, Immordino Yang MH (2018): Community
709 violence exposure correlates with smaller gray matter volume and lower IQ in urban
710 adolescents. *Hum Brain Mapp* 39: 2088–2097.

711 74. Noble KG, Houston SM, Brito NH, Bartsch H, Kan E, Kuperman JM, *et al.* (2015):
712 Family income, parental education and brain structure in children and adolescents [no.
713 5]. *Nat Neurosci* 18: 773–778.

714 75. Whittle S, Vijayakumar N, Simmons JG, Dennison M, Schwartz O, Pantelis C, *et al.*
715 (2017): Role of Positive Parenting in the Association Between Neighborhood Social
716 Disadvantage and Brain Development Across Adolescence. *JAMA Psychiatry* 74:
717 824–832.

718 76. Mendle J, Leve LD, Van Ryzin M, Natsuaki MN, Ge X (2011): Associations Between
719 Early Life Stress, Child Maltreatment, and Pubertal Development Among Girls in
720 Foster Care. *J Res Adolesc Off J Soc Res Adolesc* 21: 871–880.

721 77. Sumner JA, Colich NL, Uddin M, Armstrong D, McLaughlin KA (2019): Early
722 Experiences of Threat, but Not Deprivation, Are Associated With Accelerated
723 Biological Aging in Children and Adolescents. *Biol Psychiatry* 85: 268–278.

Early life adversity and brain age in youth

724 78. Wolf EJ, Maniates H, Nugent N, Maihofer AX, Armstrong D, Ratanatharathorn A, *et al.*
725 (2018): Traumatic Stress and Accelerated DNA Methylation Age: A Meta-Analysis.
726 *Psychoneuroendocrinology* 92: 123–134.

727 79. Pagliaccio D, Alqueza KL, Marsh R, Auerbach RP (2020): Brain Volume Abnormalities
728 in Youth at High Risk for Depression: Adolescent Brain and Cognitive Development
729 Study. *J Am Acad Child Adolesc Psychiatry* 59: 1178–1188.

730 80. Chen MC, Hamilton JP, Gotlib IH (2010): Decreased Hippocampal Volume in Healthy
731 Girls at Risk of Depression. *Arch Gen Psychiatry* 67: 270–276.

732 81. Rao U, Chen L-A, Bidesi AS, Shad MU, Thomas MA, Hammen CL (2010):
733 Hippocampal Changes Associated with Early-Life Adversity and Vulnerability to
734 Depression. *Biol Psychiatry* 67: 357–364.

735 82. Herting MM, Johnson C, Mills KL, Vijayakumar N, Dennison M, Liu C, *et al.* (2018):
736 Development of subcortical volumes across adolescence in males and females: A
737 multisample study of longitudinal changes. *NeuroImage* 172: 194–205.

738 83. Dima D, Modabbernia A, Papachristou E, Doucet GE, Agartz I, Aghajani M, *et al.*
739 (2022): Subcortical volumes across the lifespan: Data from 18,605 healthy individuals
740 aged 3–90 years. *Hum Brain Mapp* 43: 452–469.

741 84. Lupien SJ, Parent S, Evans AC, Tremblay RE, Zelazo PD, Corbo V, *et al.* (2011): Larger
742 amygdala but no change in hippocampal volume in 10-year-old children exposed to
743 maternal depressive symptomatology since birth. *Proc Natl Acad Sci* 108: 14324–
744 14329.

745 85. Mattoni M, Hopman HJ, Dademathews A, Chan SSM, Olino TM (2023): Specificity of
746 associations between parental psychopathology and offspring brain structure.
747 *Psychiatry Res Neuroimaging* 334: 111684.

Early life adversity and brain age in youth

748 86. Freisthler B, Weiss RE (2008): Using Bayesian Space-Time Models to Understand the
749 Substance Use Environment and Risk for Being Referred to Child Protective Services.
750 *Subst Use Misuse* 43: 239–251.

751 87. Glaser D (2000): Child Abuse and Neglect and the Brain—A Review. *J Child Psychol*
752 *Psychiatry* 41: 97–116.

753 88. Gong W, Rolls ET, Du J, Feng J, Cheng W (2021): Brain structure is linked to the
754 association between family environment and behavioral problems in children in the
755 ABCD study [no. 1]. *Nat Commun* 12: 3769.

756 89. Leonardsen EH, Peng H, Kaufmann T, Agartz I, Andreassen OA, Celius EG, *et al.*
757 (2022): Deep neural networks learn general and clinically relevant representations of
758 the ageing brain. *NeuroImage* 256: 119210.

759