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Early life adversity and brain age in youth

Abstract

Background

Different types of early-life adversity have been associated with children’s brain structure and
function. However, understanding the disparate influence of distinct adversity exposures on

the developing brain remains a major challenge.

Methods

This study investigates the neural correlates of 10 robust dimensions of early-life adversity
identified through exploratory factor analysis in a large community sample of youth from the
Adolescent Brain Cognitive Development (ABCD) Study. Brain age models were trained,
validated, and tested separately on T1-weighted (T1; N = 9524), diffusion tensor (DTI; N =
8834), and resting-state functional (rs-fMRI; N = 8233) magnetic resonance imaging (MRI)
data from two time points (mean age = 10.7 years, SD = 1.2, range = 8.9-13.8 years).

Results

Bayesian multilevel modelling supported distinct associations between different types of
early-life adversity exposures and younger- and older-looking brains. Dimensions generally
related to emotional neglect, such as lack of primary and secondary caregiver support, and
lack of caregiver supervision, were associated with lower brain age gaps (BAGs), i.e.,
younger-looking brains. In contrast, dimensions generally related to caregiver
psychopathology, trauma exposure, family aggression, substance use and separation from
biological parent, and socio-economic disadvantage and neighbourhood safety were

associated with higher BAGs, i.e., older-looking brains.

Conclusions
The findings suggest that dimensions of early-life adversity are differentially associated with
distinct neurodevelopmental patterns, indicative of dimension-specific delayed and

accelerated brain maturation.

Keywords: ABCD Study, Adolescence, Brain age, Development, Early-life Adversity, MRI
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1. Introduction

Early-life adversity (ELA) such as exposure to abuse, violence, neglect, separation from
caregivers, and chronic poverty, among others, can have widespread effects on youth
neurodevelopment (1) and increase risk for mental disorders (2,3). Previous studies
investigating how ELA influences neural development have adopted varied theoretical
frameworks, reflecting the complex and multifaceted nature of the field (4,5). Traditionally,
research has focused on a single type of adversity; for example, reporting associations
between heightened amygdala activation and early exposure to violence (6), and lower
volumes of gray matter and low income (7) and exposure to institutionalisation (8). A critical
limitation of this approach however, isthe fact that most children are exposed to numerous
types of adversities concurrently (9). The cumulative risk approach overcomes this by
aggregating different forms of adversity into asingular risk factor. Research has found that
early cumulative risk was prospectively associated with lower total gray matter volume,
cortex volume, and right superior parietal and inferior parietal cortical thickness (10). While
the cumulative risk approach is useful for identifying children at greatest risk for intervention
and can thus serve as avita public health tool, aggregating risk factors may obscure
potentially diverging effects of different adverse experiences on the developing brain.

More nuanced perspectives that have emerged differentiate between adverse
experiences related to threat versus deprivation (11), drawing support for the neural basis of
this distinction from studies on fear learning and sensory deprivation. For children exposed to
threat, studies have reported lower cortical thickness, surface area, volume of the amygdala
and hippocampus (12—14) and ventro-medial prefrontal cortex (vmPFC) (15,16), in addition
to reduced resting-state amygdala-vmPFC connectivity (17). The observed effects may be
indicative of accelerated maturation and are consistent with life history and evolutionary-
biology theories proposing accelerated development as an adaptation to harsh or stressful
environments (4,18-20). Smilarly, another conceptual model, the stress acceleration
hypothesis, argues that adversity may expedite neural development as a means of
compensating for the absence of species-expectant maternal buffering of emotional reactivity
(22).

For children exposed to deprivation, such as institutional rearing, lack of social and
cognitive stimulation, and other forms of parental absence, research has revealed atered
structure and function in the frontoparietal network, amygdal a-hippocampal -PFC
connectivity (11,22), and reductions in cortical gray matter and total brain volume, in
addition to widespread cortical thinning (8,23,24). Moreover, electroencephalogram (EEG)
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103  studies have shown associations between spectral profiles indicative of delayed patterns of
104  functional and cortical maturation and neglect (25), poverty (26), and parental stress (27).
105 While previous research has contributed to an understanding of how different features
106  of ELA are associated with unique brain outcomes (28), real-world occurrences of adversity
107  are multifaceted and often co-occur in acomplex manner, making it a considerable challenge
108 to precisely account for the heterogeneity in ELA. To address this, several data-driven

109 methods have been applied (29-33), albeit on small or homogenous samples. Recent research
110 by Brieant et al. (2023) capitalised on big data from the Adolescent Brain Cognitive

111  Development (ABCD) Study and identified 10 dimensions of adversity co-occurrence

112  pertaining to conceptual domains reflecting 1) caregiver psychopathology, 2) socioeconomic
113  disadvantage and lack of neighbourhood safety, 3) secondary caregiver lack of support, 4)
114  primary caregiver lack of support, 5) child report of family conflict, 6) caregiver substance
115 useand biological parent separation, 7) family anger and arguments, 8) family aggression, 9)
116  traumaexposure, and 10) caregiver lack of supervision. Y et, to date, the neural correlates of
117  thesedimensions of ELA have not been investigated.

118 Brain age prediction offers aframework that can combine multiple imaging features,
119 alleviating the need for selection of specific metrics or regions, and yields an individualised
120  surrogate marker of brain maturation (35). Brain age involves estimation of biological age
121  based on brain MRI characteristics, which may differ from an individual’s chronological age
122 (36). Thisdifference, termed the brain age gap (BAG), could reflect deviation from typical
123  neurodevelopmental patterns, and has been validated in several neurodevelopmental studies
124 (37-40). Previous literature has also validated the stability of brain age models across early
125  adolescence, with evidence of BAG scores tracking with metrics of maturation (40). Studies
126 havealso linked lower BAG in youth to attention-deficit hyperactivity disorder (ADHD),
127  lower socio-economic status, higher anxiety and depression, as well as greater general

128  psychopathology symptom severity (37,41-44). In the context of ELA, where different

129 dimensions of adversity may be associated with unique brain outcomes (4,28,45-49), brain
130 age can probeindividualised markers of delayed or accelerated maturation by means of

131  younger- or older-looking brains.

132 To this end, using ABCD data, our primary aim was to test for associations between
133  MRI-based estimates of brain maturation and 10 previously characterised dimensions of ELA
134  co-occurrence (34). Based on theoretical accounts and the empirical studies reviewed above,
135 we hypothesised ELA dimensions of 1) caregiver psychopathology, 2) socioeconomic

136 disadvantage and lack of neighbourhood safety, 5) child report of family conflict, 6)
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137  caregiver substance use and biological parent separation, 7) family anger and arguments, 8)
138 family aggression, and 9) traumato be associated with older-looking brains and accelerated
139  maturation between the two time points. We hypothesised ELA exposures of 3) secondary
140  caregiver lack of support, 4) primary caregiver lack of support, and 10) caregiver lack of
141  supervision to be associated with younger-looking brains and delayed maturation over time.
142

143 2. Methodsand Materials

144  2.1. Sample and ethical approval

145  The Adolescent Brain Cognitive Development (ABCD) Study © (50) comprises of children
146  and adolescents part of an ongoing longitudinal study. Participants were excluded using the
147  ABCD Study exclusion criterialisted elsewhere (51). Data used in the present study were
148  drawn from the ABCD curated annual release 5.0, containing data from baseline up until the
149  second-year visit (https://data-archive.nimh.nih.gov/abcd). All ABCD Study datais stored in
150 the NIMH Data Archive Collection #2573, which is available for registered and authorised
151  users (Request #7474, Pl: Westlye). The 5.0 release will be permanently available as a

152  persistent dataset defined in the NDA Study 1299 and has been assigned the DOI

153  10.15154/8873-zj65. The Institutional Review Board (IRB) at the University of California,
154  San Diego, approved all aspects of the ABCD Study (52). Parents or guardians provided

155  written consent, while the child provided written assent. The current study was conducted in

156  line with the Declaration of Helsinki and was approved by the Norwegian Regional

157  Committee for Medical and Health Research Ethics (REK 2019/943).

158

159  2.2. Demographic information and data quality assurance

160 Theinitial sample consisted of ~11,800 participants (52% male) at mean age 10.75 (SD =
161 1.18, range 8.92-13.83) years, with baseline and two-year follow-up observations (obs) of T1
162 (obs=19,048), DTI (obs=17,672), and rs-fMRI (obs = 16,495) data. Quality control

163  procedures followed a standard protocol described in Hagler et al. (2019). Briefly,

164  participants with excessive head motion or poor data quality were excluded from the curated
165 datarelease by the ABCD Study team. Additional quality assurance was carried out

166 following extraction of data using the recommendations for data cleaning provided by the
167 ABCD Study team (using data structure abcd _imgincl01). Following quality assurance, the
168 final sampleincluded T1 obs of 19,047, DTI obs of 17,668, and rs-fMRI obs of 16,466 used
169 for the current study. Demographic information for each brain MRI modality-specific sample
170  canbefoundin Sl Table 1, while the T1 sampleisillustrated in Figure 1.
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171

Timepoint

Age
172 Sex {f Female f} Male
173  Figurel. Agedidribution split by sex and time point. Time point (1 and 2) represent baseline and
174  two-year-follow-up datafrom the ABCD Study cohort. Female data in teal blue; male in lavender.
175 Dotted gray lineis drawn between mean age at time point 1 and 2.
176
177  2.3. MRl acquisition, processing, and segmentation
178 Neuroimaging datawere acquired at 21 different sites (using 31 scanners) and processed by
179 the ABCD Study team. A 3-T Siemens Prisma, General Electric 750 or Phillips scanner was
180 used for data acquisition. Protocols used for data acquisition and processing are described in
181 detail elsewhere (50,53) and availablein S Section 1. Three modalities of brain structural
182  and functional measures were used in the present study: structural grey matter measures (T1),
183  diffusion white matter microstructural measures (DTI), and resting-state functional
184  connectivity measures (rs-fMRI) (53). Cortical surface reconstruction and subcortical
185 segmentation was performed with FreeSurfer v7.1.1 (54,55). White matter microstructural
186  measures were generated using AtlasTrack, a probabilistic atlas-based method for automated
187  segmentation of white matter fibre tracts (Hagler et al., 2009). Measures of functional
188  connectivity were computed using a seed-based, correlational approach (57), where average
189 time courses were calculated for cortical surface-based ROIs using a functionally-defined
190 parcellation based on resting-state functional connectivity patterns (58) and subcortical ROIs
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191 (55). A detailed description of the processing and extraction of brain imaging data used is
192  providedin full in SI Section 1.

193

194  Briefly, For T1, we extracted tabulated total and regional measures of cortical surface area,
195  thickness, volume, sulcal depth, intensity-gray-white contrast, and subcortical volume (397
196 measures). For DTI, full and inner (multi) shell tissue properties including functional

197  anisotropy (FA) and mean (MD), longitudinal (or axial, AD), and transverse (or radial, RD)
198  diffusivity were extracted for total and regional features (576 measures). For rs-fMRI,

199 functional connectivity within and between parcellations from Gordon network, including
200  subcortical data (58) were extracted (416 measures). Following procedures of quality

201  assurance (Section 2.2), harmonisation of multi-scanner effects was carried out using

202  longCombat (59) (see Sl Section 2 and S| Figures 1-3).

203

204  2.4. Brain age prediction

205 Brain age prediction was carried out using the eXtreme Gradient Boosting (X GBoost)

206  regression model (60), a machine learning algorithm that a gradient boosting library by

207  combining multiple decision trees to create predictive models. Parameters were tuned using
208 ten-fold cross-validation, stratified by age. The models were fitted using the best estimators
209  and optimised models were applied to the (hold-out) test sample. R2, RMSE, and MAE were
210 calculated to evaluate prediction accuracy in the test set. For each brain modality (T1, DTI,
211  rsfMRI), 50% of the data was used as the hold-out test sample and 50% was used for model
212 training and validation. Here, datawas split ensuring an equal distribution of cross-sectional
213  and longitudinal data across training and testing samples, whereby no two datapoints from the
214  sameindividual (longitudinal) were separated.

215 Consistent with a recent brain age paper using the ABCD Study sample (61),

216  confounding effects from complex family-related factors were minimised using a group

217  shuffle split with family 1D as the group indicator to ensure that no siblings were split across
218 training and test sets. A detailed overview of T1, DTI, and rs-fMRI training and test samples,
219 including demographic information are provided in Sl Section 3, S| Table 1, and S| Figures
220 4-6. A completelist of al the extracted measures used for brain age prediction per modality
221 isprovided in S| Tables 2-4. Feature importance scores for each model is provided in S

222  Figures 7-9. To adjust for commonly observed age-bias (overestimated predictions for

223  younger participants and underestimated predictions for older participants) (62), we applied a
224  satistical correction as previously described in (63). The difference between an individua’s


https://doi.org/10.1101/2024.01.22.576780
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.22.576780; this version posted May 27, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

available under aCC-BY-ND 4.0 International license.

Early life adversity and brain age in youth

predicted brain age and their chronological age (BAG) was calculated by subtracting the
participants chronological age from the age bias corrected predicted age (BAG = predicted
age - chronological age) for each of the models, providing T1, DTI, and rs-fMRI-based BAG
values for all participants. The resulting BAG can be either positive or negative, indicating an

older- or younger-looking brain than the individual’ s actual age.

2.5. Early life adversity

The current study utilised 10 previoudly obtained factor scores from 60 measures of early-life
adversity (ELA) as detailed in (34). Briefly, Brieant and colleagues identified 139 potential
ELA items from the ABCD Study baseline measures, which encompass a spectrum of ELA
constructs including caregiving disruption, caregiver psychopathology, maltreatment,
neighbourhood safety/violence, anong others. These variables were sourced from child and
parent reports, as well as researcher assessments, and originated from modified versions of
validated scales. To identify dimensions, 60 ELA variables which were binary, polytomous,
and continuous in nature were entered into an exploratory factor analysis (EFA) conducted in
Mplus version 8.7 (64), resulting in 10 dimensions (F1 to F10; see Sl Table 5 and SI Figure
10 for correlation matrix). To obtain factor scores, an exploratory structural equation model
was carried out specifying the number of factors identified in the EFA. Further details of the
variable selection process, identification of ELA dimensions, and calculation of factor
loadings can be found in Brieant et al. (2023).

2.6. Satistical analysis

All analyses were carried out using R version 4.2.1 (65). To investigate the association (main
effect) between each ELA dimension (F1:F10) and deviation from expected age patterns (i.e.,
BAG), and whether the effect of each ELA dimension on BAG varies across time points
(interaction effect), Bayesian multilevel models were carried out using the brms (66,67) R-
package. Here, multivariate models are fitted in familiar syntax to comparable frequentist
approaches such as a linear mixed effects model using the Ime4 (68). We assessed the
relationship between each ELA dimension at baseline and residualised (age-bias corrected)
BAG, where modality-specific BAG (T1, DTI, rs-fMRI) was first entered as the dependent
variable, each ELA dimension (F1:F10) and interaction term (TP:F1-F10) between time point
(TP) and ELA dimensions (F1:F10) were separately entered as independent fixed effects

variables with sex entered as a covariate, and with subject ID as the random effect.
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To prevent false positives and to regularise the estimated associations, we defined a
standard prior around zero with a standard deviation of 0.1 for all regression coefficients,
reflecting a baseline expectation of effects being small but allowing for sufficient flexibility
in estimation. Each model was run with 8000 iterations, including 4000 warmup iterations,
across four chains. This setup was chosen to ensure robust convergence and adequate
sampling from the posterior distributions. For each coefficient of interest, we report the mean
estimated value of the posterior distribution (b) and its 95% credible interval (the range of
values that with 95% confidence contains the true value of the association), and calculated
the Bayes Factor (BF) — provided as evidence ratios in the presented figures — using the
Savage-Dickey method (69). Briefly, BF can be interpreted as a measure of the strength of
evidence (extreme, very strong, strong, moderate, anecdotal, none) in favour of the null or

alternative hypothesis. For a pragmatic guide on BF interpretation, see Sl Table 6.

3. Results

3.1. Descriptive statistics

Descriptive statistics can be found in Sl Table 1. Table 1 summarises descriptive and model
validation statistics pertaining to each brain age prediction model, following age-correction.
Figure 2 shows predicted age as afunction of chronological age for each age prediction
model. Sl Figure 11 shows a correlation matrix including each modality-specific predicted
brain age and BAG.

Table 1. Average R? root mean square error (RMSE), mean absolute error (MAE), and
Pearson’s correlations between predicted and chronological age (r) for each brain age prediction

model, with 95% confidence intervals.

T1 DTI rsfMRI
r 0.59 [0.57-0.60] 0.66 [0.65-0.67] 0.41[0.39-0.43]
R? 0.34 0.43 0.17
RMSE 0.96 0.89 1.08
MAE 0.79 0.71 0.89
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T1 model DTI model rs-fMRI model

13 R=059,p<2Z2e-16 . 13 R=0.66, p<22e-16
. e alt * R

R [ T

R=041,p<22e-16. |

r

Timepoint

* Baseline
* Follow-up

Predicted Age
Predicted Age
Predicted Age

9 10 11 12 13 14 9 0 11 12 13 9 0 11 12 13
Age Age Age
280 g 9 g

281  Figure?2. Predicted age asa function of age. Scatter plots demonstrating the correlation between

282  chronological and predicted ages for three brain imaging modalities: T1, DTI, and rs-fMRI. Each plot illustrates
283  the Pearson correlation coefficient (r) and statistical significance (p-value), with data points representing

284  individual samples at baseline and follow-up time points. The plots reveal varying degrees of performance

285  accuracy across modalities, with T1 and DTI models showing higher correlations compared to rs-fMRI.
286

287  3.2. Bayesian multilevel modelling

288 Bayesian multilevel modelling tested the association between each ELA dimension and

289  modality-specific BAG. Thefull results are available in Sl Tables 7-9 and are visualised

290 below in Figure 3. For estimated credible intervals, see Sl Figures 12 and 13.

291

292 3.2.1. T1BAG rdations

293 For T1 BAG, thetest revealed evidence of a positive association between ELA dimension F2
294  (socioeconomic disadvantage and neighbourhood safety) and T1 BAG (BF < 0.01, f = 0.13),
295 indicating that this dimension was associated with older-looking brains. Further, the tests

296 revealed evidence of negative associations between ELA dimensions F3 (secondary caregiver
297  lack of support) (BF = 0.9, g = -0.05) and F4 (primary caregiver lack of support) (BF =0.17,
298 S =-0.08) and T1 BAG, indicating that dimensions related to caregiver emotional neglect are
299  associated with younger-looking brains. In terms of interaction effects of time point, we

300 found a negative association between F10 (lack of supervision) and T1 BAG (BF =0.08, 5 =
301  -0.09), indicating that unsupervised youth diverge more from normétive age patterns

302 throughout the course of the study period.

303

304 3.2.2. DTI BAG relations

305 For DTI, the tests revealed evidence of a positive association between F2 and DTI BAG (BF
306 =0.27, 4=0.06), aligning with the T1 BAG findings, and indicating that those living in more
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disadvantaged and less safe environments may have older-looking brains. In terms of
interaction effects of time point, the tests revealed evidence supporting a positive association
between ELA dimension F1 (caregiver psychopathology) and DTl BAG (BF = 0.09, § =
0.07), indicating that the brain ages of these youth will diverge more (accelerate) from

normative age patterns over time.

3.2.3. rs-fMRI BAG relations

For rs-fMRI, the tests revealed evidence of a positive association between F2 and rs-fMRI
BAG (BF <0.01, g = 0.18), aligning with findings from DTI and T1 BAG. The tests also
revealed positive associations between F1 (BF = 0.63, § = 0.07), F6 (caregiver substance
abuse and separation from biological parents) (BF = 0.03, g = 0.15), F8 (family aggression)
(BF =0.66, = 0.08), and F9 (trauma exposure) (BF = 0.07, = 0.15) and rs-fMRI BAG.
These positive associations largely indicate that dimensions linked to a threatening
environment relate to older-looking brains. Further, the tests revealed a negative association
between F4 and rs-fMRI BAG (BF = 0.27, = -0.10), in line with findings from T1 BAG. In
terms of interaction effects of time point, we found evidence supporting negative associations
between both F3 (BF = 0.62, = -0.08) and F5 (family conflict) (BF = 0.58, g = -0.08) and
rs-fMRI BAG, and a positive association between F6 (BF = 0.51, # = 0.09) and rs-fMRI
BAG.

11
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Figure 3. Associations between ELA dimensions and BAG for DTI, T1, and rs-fMRI. The figure shows

posterior distributions of the estimates of the standardised coefficient. Estimates for each ELA dimension on
BAG (main effect) on the left, and ELA dimension interaction effect of time point (TP.ELA) on BAG on the
right. Colour scale follows directionality of evidence, with positive (red) values indicating evidence in favour of
positive associations (greater adversity linked to older-looking brains) and negative (blue) values indicating
evidence in favour of negative associations (greater adversity linked to younger-looking brains) for each ELA
dimension. The width of the distributions represent the uncertainty of the parameter estimates. F1: Caregiver
psychopathology; F2: Socio-economic disadvantage and neighbourhood safety; F3: Secondary caregiver lack of
support; F4: Primary caregiver lack of support; F5: Youth report of family conflict; F6: Caregiver substance use
and separation from biological parent; F7: Family anger and arguments, F8: Family aggression; F9: Trauma
exposure; F10: Lack of supervision.

4. Discussion
Research indicates that approximately half of all children will experience at least one form of
adversity by the time they reach adulthood (2,70). Different forms of early-life adversity co-
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occur and may uniquely impact child brain structure and function. This work sought to
delineate the potentially unique brain outcomes of 10 co-occurring dimensions of early-life
adversity in alongitudinal sample of 9-14-year-old youth. Our main findings indicate that
ELA dimensions of caregiver lack of support and supervision are associated with younger-
looking brains and that ELA dimensions of caregiver psychopathology, socioeconomic
disadvantage and neighbourhood safety, caregiver substance abuse and separation from
biological parents, family aggression, and trauma exposure are associated with older-looking
brains. Our findings largely align with and extend the current literature on the differential
impact of different co-occurring patterns of environmental exposures and adversity on brain
development (45,49).

4.1. Links to accelerated brain maturation

Familiesliving in lower socioeconomic status neighbourhoods are exposed to more harms,
such as interpersonal violence (71), and are more likely to have concerns about
neighbourhood safety (72). Positive associations between the dimension representing
socioeconomic disadvantage and neighbourhood safety (F2) and BAG were found with all
three brain age models, and are consistent with research showing socioeconomic
disadvantage and neighbourhood violence linked to smaller cortical volumes and greater
cortical thinning (73-75). Positive associations between exposure to trauma (F9) and BAG is
also consistent with previous research showing that children exposed to trauma are more
likely to be misclassified as adults by means of older DNA methylation age compared to
chronological age, and earlier puberta maturation (76—78).

For caregiver psychopathology (F1), we found both positive BAG associations as
main effects and as interaction effects of time, suggesting that parent psychopathology-
related deviations from expected age-patterns accelerate over time. Our findings are
challenging to interpret in the context of mixed results from previous research. ABCD Study
findings have revealed smaller volume in the right putamen (79), left hippocampus (80), and
bilateral hippocampi (81) in relation to parental psychopathology. These findings reflect age
patterns of hippocampi and putamen usually not seen until late adolescents and young
adulthood — whereby subcortical volumes are expected to reduce over time (82,83) —
suggesting the results may indicate accelerated ageing in this younger sample, and thus
aligning with the directionality of our results. However, studies using other datasets have
found that parental history of depression is associated with larger volume in the bilateral
amygdala (84), and others have reported no effects (85). ELA dimensions that indicated the
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potential presence of household hostility including family aggression (e.g., throwing things,
hitting) (F8) revealed a positive main effect for rs-sfMRI BAG, but no effects for family
arguments (e.g., expressing anger, fighting, raising voices) (F7), with the latter finding going
against our hypothesis.

Co-occurrence of caregiver substance abuse and separation from biological parentsin
one dimension (F6) might reflect child custody issues related to caregiver substance use
disorders or arrests (34,86). Moreover, this dimension also has factor loadings from domestic
violence. Our results revealed positive rs-fMRI BAG associations both as a main effect and
an interaction effect of time. Drawing from concepts of stress acceleration, parental
deprivation accelerates the functiona development of the mPFC in children, such that
amygdala—mPFC interactions are more adultlike following deprivation experiences (21).
Children in this group may have accelerated maturation as a means of adapting from a state
of parent-regulated to self-regulated emotional processing due to absent or inconsistent
parental care (4,19-21). Further research is needed to understand the underlying mechanisms
at play. In summary, dimensions of ELA co-occurrence related to older-looking brains
support research reporting accelerated brain maturation in children exposed to potentially

more haostile or dangerous environments.

4.2. Linksto delayed brain maturation
Neurobiological studies of brain development have long assumed a deficit model in which
lack of input to the development of a child will result in delay of certain skills (87). In the
child brain, this may be reflected by a delay in pruning and thus larger brain volumes and
younger-looking brains. Our results support this, with lack of primary (F4) and secondary
(F3) caregiver support as well as lack of caregiver supervision (F10) all revealing negative
associations with T1 and rs-fMRI BAG, with main effects for F3 and F4, and interaction
effects for F3 and F10. Importantly, these factors each share elements of emotional neglect.
Previous research investigating more severe forms of neglect (physical and emotional)
have found that children reared in institutions demonstrate EEG patterns suggestive of a
delay in cortical maturation in frontal, temporal, and occipital regions (25). However, a
wealth of studies also report conflicting results indicative of advanced maturation in similar
samples (8,24). A caveat of research carried out on neglect is that children are often in
environments enriched for several co-occurring ELAS, making it difficult to rely on the
stability of the neglect scores while considering other stressors. Importantly, our results

specifically capture emotional forms of neglect in terms of lack of household emotional
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support in acommunity with relatively lower levels of risk, which may explain divergence
from prior studies on extreme physical neglect or institutionalisation.

Lastly, a negative interaction effect of time for rs-fMRI BAG and family conflict (F5)
was also found, indicating that youth exposed to family conflict diverge more from normative
age patterns (i.e., delayed maturation) over time. This contradicted our hypothesis and
findings from previous research also utilising the ABCD Study cohort which reported high
family conflict associations with smaller cortical surface areas of the orbitofrontal cortex,
anterior cingulate cortex, and middle temporal gyrus (88). In summary, ELA dimensions
related to emotional neglect were associated with younger-looking brains and delayed

maturation.

4.3. Srengths and limitations

Our study adds new insight into the neural correlates of co-occurring ELA dimensionsin a
large-scale longitudinal community sample. Using a sample not enriched for adversity
exposure has the added value of demonstrating that even less severe ELA exposureis
associated with changes in the developing brain, facilitating broader generalisation. However,
there is trade-off in that our findings cannot necessarily be generalised to interpret neural
correlates of children exposed to more severe forms of adversity, as these groups may not be
well-represented in the ABCD Study. Future research is required to address this without
losing adequate power. There remain also additional challenges such as accounting for
differencesin chronicity of adversity events, interindividual differencesin resilience, and
overlap in adversity types.

Building on data driven methods applied in Brieant et a. (2023), the current study
benefitted from ELA dimensions accounting for more variability in ELA patternsand a
dimensional structure replicated in an independent sample, suggesting some stability. The
current study utilised three estimates of brain age based on different MRI modalitiesin an
attempt to capture potentially tissue-specific effects of ELA dimensions. While the
multimodal (with longitudinal data) approach is a strength, deep learning methods have
shown greater accuracy in recent years (39,89). Moreover, focusing on different regional
rather than global brain metrics and their association with adversity dimensions represents an

opportunity for future research.

4.4. Conclusion
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The current study supports notions that brain MRI outcomes related to early-life adversity are
differentially associated with accelerated and delayed brain maturation. Neurodevel opmental
processes influenced by experiences of trauma, parental psychopathology, socio-economic
disadvantage and neighbourhood safety, caregiver substance abuse and separation from
biological parents, and family aggression, are at least partially distinct from those influenced
by experiences of emotional neglect, with brain age deviations indicating differential
maturational patterns. Future research should build on this work by investigating, for
example, how brain age patterns mediate the associ ations between dimensions of early life
adversity and child behavioural and symptom measures. Such studies could elucidate whether
indices of brain maturation serve as an underlying biological mechanism linking early
adversity to later child outcomes, thereby offering a more comprehensive understanding of
these developmental processes and hel ping guide intervention strategies that aim to mitigate

the impact of early-life adversity and supporting healthy development of at-risk youth.
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