

1 A suite of enhancer AAVs and transgenic mouse lines for 2 genetic access to cortical cell types

3

4 Yoav Ben-Simon,^{1,4} Marcus Hooper,^{1,4} Sujatha Narayan,^{1,4} Tanya Daigle,^{1,4} Deepanjali Dwivedi,¹ Sharon W.
5 Way,¹ Aaron Oster,¹ David A. Stafford,² John K. Mich,¹ Michael J. Taormina,¹ Refugio A. Martinez,¹ Ximena
6 Opitz-Araya,¹ Jada R. Roth,¹ Shona Allen,² Angela Ayala,¹ Trygve E. Bakken,¹ Tyler Barcelli,¹ Stuard Barta,¹
7 Jacqueline Bendrick,¹ Darren Bertagnolli,¹ Jessica Bowlus,¹ Gabriella Boyer,¹ Krissy Brouner,¹ Brittney Casian,¹
8 Tamara Casper,¹ Anish B. Chakka,¹ Rushil Chakrabarty,¹ Rebecca K. Chance,² Sakshi Chavan,¹ Maxwell
9 Departee,¹ Nicholas Donadio,¹ Nadezhda Dotson,¹ Tom Egdorf,¹ Mariano Gabitto,¹ Jazmin Garcia,¹ Amanda
10 Gary,¹ Molly Gasperini,¹ Jeff Goldy,¹ Bryan B. Gore,¹ Lucas Graybuck,¹ Noah Greisman,¹ Francoise Haeseler,¹
11 Carliana Halterman,¹ Olivia Helback,¹ Dirk Hockemeyer,² Cindy Huang,¹ Sydney Huff,¹ Avery Hunker,¹ Nelson
12 Johansen,¹ Zoe Juneau,¹ Brian Kalmbach,¹ Shannon Khem,¹ Emily Kussick,¹ Rana Kutsal,¹ Rachael Larsen,¹
13 Changkyu Lee,¹ Angus Y. Lee,² Madison Leibly,¹ Garreck H. Lenz,¹ Elizabeth Liang,¹ Nicholas Lusk,¹ Jocelin
14 Malone,¹ Tyler Mollenkopf,¹ Elyse Morin,¹ Dakota Newman,¹ Lydia Ng,¹ Kiet Ngo,¹ Victoria Omstead,¹ Alana
15 Oyama,¹ Trangthanh Pham,¹ Christina A. Pom,¹ Lydia Potekhina,¹ Shea Ransford,¹ Dean Rette,¹ Christine
16 Rimorin,¹ Dana Rocha,¹ Augustin Ruiz,¹ Raymond E.A. Sanchez,¹ Adriana Sedeno-Cortes,¹ Joshua P. Sevigny,¹
17 Nadiya Shapovalova,¹ Lyudmila Shulga,¹ Ana R. Sigler,¹ La' Akea Siverts,¹ Saroja Somasundaram,¹ Kaiya
18 Stewart,¹ Eric Szelenyi,¹ Michael Tieu,¹ Cameron Trader,¹ Cindy T.J. van Velthoven,¹ Miranda Walker,¹ Natalie
19 Weed,¹ Morgan Wirthlin,¹ Toren Wood,¹ Brooke Wynalda,¹ Zizhen Yao,¹ Thomas Zhou,¹ Jeanelle Ariza,¹ Nick
20 Dee,¹ Melissa Reding,¹ Kara Ronellenfitch,¹ Shoaib Mufti,¹ Susan M. Sunkin,¹ Kimberly A. Smith,¹ Luke
21 Esposito,¹ Jack Waters,¹ Bargavi Thyagarajan,¹ Shengqin Yao,¹ Ed S. Lein,¹ Hongkui Zeng,¹ Boaz P. Levi,¹ John
22 Ngai,^{2,3} Jonathan Ting,¹ Bosiljka Tasic^{1,5,*}

23

24 ¹Allen Institute for Brain Science, Seattle, WA 98109

25 ²University of California, Berkeley, Berkeley, CA 94720

26 ³Present affiliation: National Institute of Neurological Disorders and Stroke, National Institutes of Health,
27 Bethesda, MD 20892

28 ⁴Equivalent contribution

29 ⁵Lead contact

30

31 *Correspondence: bosiljkat@alleninstitute.org

32

33 **Summary**

34 The mammalian cortex is comprised of cells classified into types according to shared properties. Defining
35 the contribution of each cell type to the processes guided by the cortex is essential for understanding its function
36 in health and disease. We used transcriptomic and epigenomic cortical cell type taxonomies from mouse and
37 human to define marker genes and putative enhancers and created a large toolkit of transgenic lines and
38 enhancer AAVs for selective targeting of cortical cell populations. We report evaluation of fifteen new transgenic
39 driver lines, two new reporter lines, and >800 different enhancer AAVs covering most subclasses of cortical cells.
40 The tools reported here as well as the scaled process of tool creation and modification enable diverse
41 experimental strategies towards understanding mammalian cortex and brain function.

42 **Keywords**

43 Epigenetics, Transcriptomics, Enhancer, Cell type, Neocortex, AAV, Transgenic, Recombinase, Mouse, Human

44 **Introduction**

45 To understand how the brain works, we need to establish the structure-function relationships between
46 the units that comprise it and the outputs of its activity¹. One approach is to gain experimental access to each
47 building block (e.g., a cell type) and manipulate it to observe effects on an animal's physiology and behavior²⁻⁴.
48 Historically, the definition of building blocks and 'tags' for those building blocks have relied on non-systematic
49 cell-type definition and non-systematic marker gene or genomic enhancer discovery. Numerous valuable tools
50 have been developed and utilized to understand cell type functions in the brain, though they may not always
51 achieve the desired level of cell-type resolution^{2,3,5,6}.

52 Advances in next generation nucleic acid sequencing and machine learning have transformed cell
53 classification based on single-cell genomics (transcriptomics, epigenomics, etc.)⁷⁻¹⁶. These new methods enable
54 measurements of tens of thousands of molecular properties in individual cells and their subsequent classification
55 into molecularly defined cell types. Cell type taxonomies have hierarchical organization, with cell type taxons of
56 increased granularity frequently referred to as classes, subclasses, supertypes, and types/clusters^{9,16}. Single-
57 cell genomics also enables cell type-congruent discovery of marker genes and putative enhancers at all levels
58 of the taxonomy^{8,9,11,13,17-21}. These marker genes and enhancers can be used to make tools for precision cell
59 type access, that can be employed to test the correspondence of molecularly defined cell types to 'functional'
60 cell types^{3,22-24} (**Figure 1A**).

61 Here, we relied on historical genomics data^{17,18,25-27}, and newly-generated single-nucleus multiome data
62 (snMultiome, 10x Genomics, consisting of joint snRNA-seq and snATAC-seq from each nucleus) to create a
63 transcriptomic and epigenomic cross-species (mouse/human) taxonomy consistent with previously published
64 datasets^{17,18,25-27}. The newly generated snMultiome data were generated from the adult mouse cortex
65 (somatosensory, motor, and visual areas), whereas the human cortical dataset was derived from the adult middle
66 temporal gyrus²⁸. We employed cell type definition in both transcriptomic and epigenomic space to discover
67 corresponding 'tags': marker genes and putative enhancers to build and characterize a large suite of tools for
68 cortical cell types.

69 We examined a total of 682 putative enhancers sequences: 599 novel and 83 that have been previously
70 reported^{17-19,29-31}. We tested these in mice by systemic introduction (retro-orbital injection) of individual enhancer
71 AAVs expressing a fluorescent protein, employing the blood-brain-barrier penetrating PHP.eB capsid³²⁻³⁴. For
72 initial evaluation of the enhancer AAVs, we visually examined and scored epifluorescence images of brain

73 sections. Promising vectors were further evaluated for their brain-wide labeling pattern with serial two-photon
74 tomography (STPT), and the cell-type specificity was determined by single-cell RNA sequencing (scRNA-seq)
75 of labeled visual cortex cells (**Figure 1B**). We also attempted to optimize expression from these vectors by
76 enhancer core bashing and concatenation (142 vectors), or expression of recombinase versions that can be
77 combined with reporter mice (39 vectors)^{17–19,35,36}. In total, we examined 863 enhancer AAVs in this study. Lastly,
78 we generated new transgenic driver lines which can be used alone or in combination with enhancer AAVs to
79 genetically access specific cortical populations at the finest taxonomical categories (supertype/cluster-level;
80 **Figure 1C**).

81 In summary, we created and characterized a suite of genetic tools and compared them to select existing
82 ones using a common battery of imaging and molecular techniques to provide detailed examination of their
83 specificity and recommendations for their utilization (**Figure 1**). We are in the process of providing the tools
84 through public repositories (Addgene and Jackson Labs) as well as adding data and metadata for all reagents
85 (**Tables S1–S5**) to a new Allen Institute public web resource, the Genetic Tools Atlas (RRID:SCR_025643;
86 <https://portal.brain-map.org/genetic-tools/genetic-tools-atlas>). These freely available public resources will enable
87 scientists to access the information on these tools and select the best tool for their use.

88 Results

89 Selection of putative enhancer sequences from mouse and human genomics data

90 We selected putative enhancers based on a variety of data and diverse criteria over a span of several
91 years. To identify putative enhancers, we used various chromatin accessibility genomics data for mouse and
92 human cortex, some published^{17,18,25–27}, some newly created and analyzed (see below). Most putative enhancer
93 selection was based on 1) high and differential chromatin accessibility across the cortical cell subclasses and 2)
94 proximity to marker genes. Putative enhancer sequence conservation across species was not a generally used
95 criterion.

96 To summarize all the chromatin accessibility data across cell types and represent them in a unified way,
97 as well as select more putative enhancers, we generated a new cortical snMultiome (10x Genomics, bimodal
98 single-nucleus RNA-seq and ATAC-seq) dataset of single nuclei isolated from adult mouse visual,
99 somatosensory, and motor cortices (82,654 nuclei post-QC; **Figure 2A**). We also employed a recently-published
100 snMultiome dataset of nuclei isolated from adult human middle temporal gyrus (MTG, 83,977 nuclei post-QC;
101 **Figure 2A**, right)²⁸. For mouse, we mapped the single-nucleus transcriptomes to the recently-published whole
102 mouse brain taxonomy (AIT21) using hierarchical approximate nearest neighbor (HANN) mapping¹⁶. For the
103 human MTG data, single-nucleus transcriptomes were mapped to the great apes taxonomy with scANVI^{37,38}. We
104 compared the great ape taxonomy and a previously published mouse cortical taxonomy⁹ to generate a common
105 list of cell types that occur in both species. This list was used to re-annotate mapped mouse and human nuclei
106 at an intermediate cell type resolution (cell subclass). This annotation was performed on the transcriptomic part
107 of the multiome datasets and it resulted in comparable cell populations across mouse and human datasets;
108 similar to what has been described before^{37,39}.

109 The transcriptome-based annotation for each nucleus was used to label its respective ATAC-seq profile
110 for downstream analysis. Pseudobulk ATAC-seq data were generated with ArchR⁴⁰ and used to identify putative
111 enhancers as differentially-accessible peaks across subclasses by MACS2 and ArchR^{40,41}. As an example, we
112 show gene expression data for the *Nos1* gene and the accessibility of two orthologous enhancers targeting
113 *Sst_Chodl* cell type near this gene in the mouse and human datasets (**Figures 2A, 2B**).

In total, we selected 532 sequences from the mouse genome (average length \pm SD = 583 \pm 256 bp; range = 133-2096 bp, **Figure S1A**) and 150 sequences from the human genome (average length \pm SD = 484 \pm 176 bp; range = 162-1070 bp; **Figures 2C, S1A**). Each putative enhancer sequence was assigned a unique ID, consisting of the initials AiE for enhancers discovered at the Allen Institute, or ExE for enhancers previously reported by other groups^{29,30}, followed by a four-digit number and a species indicator (“m” or “h” for mouse or human, respectively). To provide consistency to the enhancer collection, we applied the same naming structure to the previously published enhancers from Allen Institute¹⁷⁻¹⁹ and provide the original names as aliases (**Table S4**). Additionally, each enhancer was associated with one or two target cell populations (TCP), which allow us to predict which population/s they are most likely to be expressed in. These TCPs were determined by scaling ATAC signal across subclasses and nominating the subclasses with accessibility Z-scores higher than 2 as a TCP.

We also evaluated the degree of cross-species sequence conservation using the UCSC genome browser LiftOver tool⁴², followed by BLAST alignment, and correlated the chromatin accessibility pattern of the orthologous pairs, across the cortical subclasses (**Figure 2C**). Most of the selected candidate enhancer sequences were conserved between the two species (n = 554, 81.2%, **Figures 2C, S1A-B**). Among this conserved subset, 59.2% (n = 178) of mouse and 39.0% (n = 72) of human enhancers also displayed conserved chromatin accessibility across species (**Figure 2C**). This dataset also included 27 tested orthologous pairs from the two species (black arcs in **Figure 2C**).

Enhancer AAV screening *in vivo*

Candidate enhancer sequences were amplified from the respective genome and cloned into the previously-described AAV plasmid backbone^{17,18}, upstream of a minimal promoter (beta-globin, rho or CMV), driving expression of the yellow fluorescent protein, SYFP2⁴³. Most plasmids contained the beta-globin minimal promoter (MinBG; 94.6%). The plasmids were packaged into blood-brain-barrier-penetrating, PHP.eB-pseudotyped, AAV vectors^{33,34} and delivered retro-orbitally (RO) to \sim 30 day-old wild-type mice of C57BL/6J background (average age \pm SD = 30.8 \pm 5.0 days, range = 27-70 days; **Methods**)⁴⁴. About four weeks after virus delivery (average duration \pm SD = 27.2 \pm 1.5 days, range = 23-39 days; **Methods**), the brains were extracted, fixed, and sectioned along the sagittal plane, with five selected sections spanning the mediolateral axis mounted and imaged by an epifluorescence microscope (**Figure 3A**). We evaluated each experiment by visual inspection and categorized labeled cell populations (LCPs) in the cortex into 11 visually distinguishable categories (**Figure 3B**). Each LCP was further visually assessed for labeling density relative to the expected density for that target cell population (high vs. low density), as well as relative labeling brightness (high vs. low brightness; **Figures 3B, S2A, S2B**). Although we scored each LCP for both parameters, we considered brightness to be a more relevant feature of the enhancer than the density, as this factor is more easily comparable across different populations of labeled cells, and is more routinely used to evaluate enhancer strength⁴⁵⁻⁴⁷. In addition to annotating the neocortical populations, we also scored all labeled regions, brain-wide, using Allen Mouse Brain Reference Atlas naming scheme⁴⁸ as these enhancer AAVs could be useful tools for other brain regions. For brevity, we are reporting only the neocortical labeling patterns here. The Allen Genetic Tools Atlas web portal (in preparation) will contain labeling scores for all tools and all brain regions.

Since cell type distribution and cell shapes across neocortical layers for all TCPs are known^{9,49,50}, we visually matched each observed LCP with the expected pattern of the TCP to derive initial evaluation on target specificity. Following this TCP-LCP matching, we assigned each enhancer to 1 of 7 categories, indicating whether it had putative on-target, mixed, or off-target labeling, or whether no signal was detected; each of the first three categories was further divided according to the labeling brightness (**Figure 3C, 3D**). Multiple TCPs

157 can belong to a single LCP, for example, in the case of different subclasses of GABAergic neurons. Therefore,
158 this level of analysis can only provide putative on-target specificity for groups clearly differentiable by visual
159 inspection. However, as presented below, this scoring scheme identified many highly specific enhancers and
160 provided a nomination path for their additional characterization. Of the 682 unique enhancers screened, ~55%
161 produced labeling in the cortex, ~43% were putatively on-target or had mixed (on- and off-target) labeling, and
162 ~30% were putatively on-target (**Figure 3E**).

163 We also used the scoring data to examine the distributions of scores across cell subclasses and species,
164 as well as the degree of sequence/accessibility conservation (**Figure 3F, S3A – S3D**). For human enhancers,
165 we detect a statistically significant lower-on target rate for glutamatergic cell class (**Figure S3A**, top). We observe
166 a similar trend for mouse enhancers, but it did not reach statistical significance (**Figure S3A**, top). We also
167 observe a higher on-target rate for enhancers with conserved sequence and accessibility (**Figure S3A**, bottom).
168 Specifically, we note that the precise degree of conservation, measured by the fraction of overlapping base pairs
169 (**Figure S1E**) strongly affects both the specificity and brightness of the enhancer (**Figure S3B**). When comparing
170 orthologous pairs, no significant differences in score distribution were observed overall (**Figures S3C**). However,
171 high variability within the categories was noted, showing that the differences in orthologous sequences can affect
172 enhancer specificity and strength (**Figure 3D**). We also found that orientation of enhancers in the context of AAV
173 appears to have no effect on their performance, (**Figures S3E, S3F**), as has previously been observed for the
174 SV40 enhancer⁵¹.

175 In summary, we describe a screening pipeline for putative enhancer sequences in the mouse brain and
176 conclude that sequences derived from mouse and human genome can perform comparably well at the subclass
177 cell type level, when evaluated in the mouse brain, with roughly 30% of them showing on-target specificity as
178 determined by our manual scoring.

179 Enhancer AAV secondary characterization

180 Enhancers that showed promising results in our initial screen were nominated for further evaluation with
181 single-cell RNA-seq (scRNA-seq) with Smart-seq v4 (SSv4) and/or serial two-photon tomography (STPT)⁵²
182 (**Figure 4A**). To better evaluate target specificity and labeling brightness, we delivered each vector with the same
183 parameters used for the primary screen, and 4-8 weeks later (average duration \pm SD = 45 \pm 10 days; range =
184 21-91 days), dissected the visual cortex, dissociated the cells and isolated SYFP2(+)/DAPI(-) cells with FACS
185 (**Figure S4A**). These cells were subjected to scRNA-seq and their transcriptomes were mapped to the mouse
186 VISp cortical taxonomy (**Methods**). These data enabled us to quantify the fraction of cells belonging to any cell
187 type for each experiment (**Figures 4B, 4C, S4B, S4C**). In addition, we quantified the expression level of the
188 SYFP mRNA (median SYFP2 mRNA count per million transcripts) and normalized it for each cell type to the
189 median expression of *hSyn1*-promoter/enhancer-driven SYFP2 mRNA (**Figure 4B, S4D**).

190 We find that our initial screen produced many highly specific enhancer AAVs: more than 50% of the
191 enhancers examined with scRNA-seq exhibited target specificity of >70% at the subclass cell-type level and
192 28% were >90% specific (**Figure S4C**). However, we note that SYFP2 mRNA expression driven by the enhancer
193 AAVs was relatively low for most of the enhancers, when compared with the pan-neuronal *hSyn1*-
194 promoter/enhancer (average ratio \pm SD = 13.3 \pm 15.3% of *hSyn1*; **Figure S4D**). We also observed that ~29% of
195 enhancers exhibited labeling distribution patterns that were not significantly correlated with the distribution of
196 accessibility across subclasses (**Figure S4E**). This unexpected result could be partially explained by the way
197 cells were collected and sorted for sequencing: To avoid false negatives in FACS, we set the sorting gates
198 relatively stringently, to collect the brightest cells (**Figure S4A**)¹⁹. However, this can lead to biases in the results,
199 in cases where two or more populations are labeled, with the more abundant population being dimmer than the

200 smaller one, as in the case of AiE2543m (**Figure 4D**). Note that evaluation of specificity by scRNA-seq of FACS-
201 isolated cells can also lead to biases in cases where labeled population includes cell types particularly sensitive
202 to the dissociation and sorting process (see below)^{8,9}.

203 For enhancers with putative on-target labeling patterns, we generated whole-brain STPT image sets to
204 further interrogate the enhancer AAV labeling patterns. Compared to five epifluorescence images, STPT enables
205 more complete evaluation of the entire cortex. STPT also examines all other parts of the brain and shows if the
206 enhancer is cortex-specific or active in other brain regions. Finally, brain-wide visualization reveals axonal
207 projection patterns and can help distinguish between different types of cortical projection neurons. We examined
208 ~34% (180/532) of mouse enhancers and ~41% (62/150) human enhancers for a total of 242 STPT whole-brain
209 image datasets (representative examples in **Figure 4D**). These data complement the SSv4 data (**Figure 4B**),
210 as well as confirm and extend primary screen data, as they cover the whole brain with a series of coronal images.
211 In all cases, we find that the STPT data are in full agreement with the labeling patterns observed in the primary
212 screen.

213 We cross-correlated the specificity of each enhancer, measured as the maximal fraction of labeled cells,
214 with the SYFP2 transcript count and cross-species conservation of sequence and accessibility (**Figure S4F**).
215 We find that enhancer specificity was positively correlated with the SYFP2 transcript count, suggesting that
216 specific enhancers also tend to drive stronger cargo expression. We also found a significant positive correlation
217 with the mouse-human sequence homology for the 130 enhancers for which the sequence was conserved, but
218 not with the degree of accessibility conservation across the two species (**Figure S4F**). It should be noted that
219 this analysis was performed only on the SSv4 data, which comprise only enhancers with demonstrated putative
220 on-target specificity in our primary screen, and therefore is not representative of the entire collection.

221 These analyses highlighted enhancers which delivered high specificity as potentially useful tools for
222 selective targeting of cortical cell types. The relevant experimental data for SYFP2-expressing vectors in this
223 study were organized in supplementary material (**Documents S1-S5**) and will be available at the Genetic Tools
224 Atlas web portal (RRID:SCR_025643; <https://portal.brain-map.org/genetic-tools/genetic-tools-atlas>).

225 Enhancer optimization and use diversification

226 Previous studies have shown that the active site of a putative enhancer sequence can be short and can
227 be discovered through an approach called “bashing”, where shorter fragments of the originally tested sequence
228 are individually examined for their ability to drive cargo expression⁵³⁻⁵⁶. We proceeded to fragment a subset of
229 enhancers into three putative “cores” (C1, C2, and C3; average length \pm SD = 212 \pm 75 bp) that tile the originally-
230 examined sequence with 50 bp overlap¹⁷. To try to enhance labeling brightness and specificity, we cloned a 3x-
231 concatenated version of each core (3xCore, 3xC) into the AAV backbone (**Figure 5A**). We have previously
232 shown that enhancer concatenation can increase reporter expression¹⁷⁻¹⁹. In addition, this approach may also
233 increase labeling specificity in cases where the complete enhancer sequence contains several independent
234 elements, each driving expression in a different population of cells^{57,58}.

235 We core-bashed a total of 82 enhancers, creating 3xC of all three cores or only the middle core (C2),
236 which usually aligns with the peak of chromatin accessibility. For each original enhancer, at least one, and in
237 some cases two bashed enhancers displayed labeling in the original TCP. Most also resulted in a marked
238 increase in brightness (**Figure 5B**), particularly those core-bashed enhancers designed using the middle (C2)
239 core. However, core-bashed versions occasionally labeled additional cell populations, which were not labeled
240 by the original enhancer (**Figures 5C, 5D**). It is unclear if the concatenation of the cores produced novel TF
241 syntax, which led to *de novo* labeling, or whether these populations were labeled by the full-length (original)

enhancer but at levels below detection threshold. To further compare the select bashed versions with the original enhancers, we collected SSv4 scRNA-seq data from ViSp. We compared the labeling specificity and SYFP2 mRNA expression levels of the concatenated bashed enhancer with the original enhancer. The behavior of individual enhancers varied, but on average, we observed ~3-fold increase in SYFP2 mRNA count for the bashed 3x concatenated enhancer (average ratio \pm SD = $274 \pm 217\%$ of full-length enhancer) with a slight reduction in the specificity (average ratio \pm SD = $91 \pm 30\%$ of full-length enhancer; **Figures 5E, 5F**). This is in agreement with previous studies that show that enhancers can support target gene expression in additive fashion, as well as sub- and supra-additive fashion depending on the enhancers themselves^{59,60}.

To diversify the use of our enhancer-based genetic toolkit, we replaced SYFP2 with a Cre recombinase, which would enable expression of a variety of tools from existing or new Cre-dependent AAVs or mouse transgenes. We employed iCre or a mutated iCre(R297T) with reduced recombination efficacy⁶¹ and removed the WPRE sequence in a subset of enhancer vectors. The latter two choices were implemented to counter loss of specificity that was more frequently observed in constructs with iCre and WPRE compared to the original constructs with fluorescent proteins, as reported previously²². We evaluated the recombination-mediated reporter labeling and compared it to the original pattern defined by constructs with SYFP2 (**Figure 6A**). Several enhancers labeling various TCPs showed highly similar labeling patterns following replacement of the fluorophore with a recombinase. Others produced broad labeling patterns (**Figures 6B – 6D**) that could be overcome by using the mutated version of Cre, and/or by titrating the amount of virus delivered (**Figure 6E**).

To further test the applicability of these viral tools, we evaluated their performance under different delivery methods. We observed that intracerebroventricular (ICV) delivery of vectors into the lateral ventricle of newborn mouse pups can lead to specific and widespread labeling, comparable with RO injections, but with substantially brighter fluorescent signal⁶² (**Figures S5A – S5C**). However, in several cases, we observed a non-uniform signal distribution and an increase in non-specific labeling, which may have been present below detection levels when the virus was RO-delivered⁶². Interestingly, we found that some populations, particularly endothelial cells, could only be labeled when the virus was delivered RO, but not by ICV administration (**Figure S5C**), which is consistent with previous observations where alternative approaches were tested to target this population^{21,33,63}. It has also been reported that certain cell subclasses such as VLMCs, OPCs and microglia have virtually absent transduction with PhP.eB-serotyped AAVs and hence are difficult to target via our current screening strategy, which exclusively uses the PhP.eB capsid for all vectors⁶⁴. All the vectors designed for these cell subclasses led to off-target/mixed-target labeling (**Figure 3F**) and were not further investigated by SSv4.

In addition, we delivered several purified enhancer AAVs stereotactically to the visual cortex and noted that the fluorescent signal was substantially brighter, restricted to the injection site, and mostly maintained specificity (**Figures S6A, S6B**). We also note that enhancers that exhibited weak fluorescence when delivered RO displayed increased signal intensity when delivered stereotactically, likely due to higher multiplicity of infection (MOI) at the target region (**Figure S6A**). Finally, we provide a summary of ‘hall-of-fame’ enhancer tools with highest available strength and specificity of labeling for cell subclasses or clusters (**Table S5**).

278 New transgenic lines targeting cortical cell types

Based on the transcriptomic taxonomies of cell types in the mouse cortex^{8,9,13}, we selected marker genes that could label specific cell type taxons (subclasses, supertypes or clusters). We targeted regions of the taxonomy for which tools did not exist. Based on select marker genes, we generated a total of 15 new transgenic driver lines: 12 preferentially for glutamatergic and 3 preferentially for GABAergic cell types (**Figure S7A, 7, 8**). We also made two new reporter lines that address the unmet need for Cre “AND/OR” Flp reporters: *Ai193*⁶⁵ and *Ai224*⁶⁶ (**Figure S7B**).

Initial characterization for the new driver lines was performed by crossing to a fluorescent reporter line (*Ai14* for Cre, *Ai65F* for Flp transgenes, respectively)^{67,68} and subsequent STPT on the whole mouse brain. We examined labeling of cortical cells for expected cell distribution (**Table S1**). Most driver lines produced expected labeling based on cell types expressing the targeted marker gene and were further analyzed by single-cell transcriptomic profiling (SSv4) of fluorescently labeled FACS-isolated cells. Others that produced broad labeling were not analyzed by SSv4. The single-cell transcriptomes were then mapped to the VISp taxonomy as above⁹ (**Figures 7, 8**).

Many lines were included into intersectional crosses to examine if additional specificity can be achieved up to the level of single transcriptomic cell-type cluster. The intersectional crosses were performed by first making double recombinase transgenics (Cre and Flp; **Figure 1A**), followed by crossing to a dual “AND” recombinase reporter (e.g., *Ai65* or *RCFL-H2B-GFP*)^{69,70}. This crossing scheme prevents unintended recombination and permanent reporter modification in the germline with certain recombinase lines, if they are crossed to a reporter first, and then to the second recombinase⁷¹. The triple transgenic mice were examined by STPT and SSv4 (**Figures 7, 8**). In most cases, the use of triple transgenics refined reporter expression and resulted in greater specificity (**Table S1**). For comparison, we present equivalent data from enhancer viruses that were RO-injected into either wild-type or reporter mice. In some cases, the viruses were further validated by injecting them into triple transgenic lines that already showed target cell-type labeling (**Figures 8B₂₉₊₃₁, 8B₃₀₊₃₁, 8C₃₉₊₄₀**) and had observed expected overlap between the two labeling patterns.

Some cell type taxons, such as the IT glutamatergic subclasses and clusters, are difficult to target with high specificity (**Figure 7A**), perhaps because many markers for IT types tend to be continuously expressed across related IT clusters and subclasses^{9,72}. This appears to be true as well for the enhancer viruses that target these populations (**Figure 4B**). A notable exception is the L6_IT_Car3 cluster, which is labeled by several unique markers in addition to being specifically targeted by several enhancer viruses (**Figures 4B, 7A₁₁, 7B₁₁**).

We successfully targeted L5_ET types by viruses at both subclass and cluster level (**Figures 4B, S4B, 7A_{16,17}, 7C_{16,17}**). We have also generated a specific transgenic line targeting the *Chrna6* gene that labels the unique L5_ET_Chrna6 cell type (**Figures 7A₁₅, 7C₁₅**). For the L5_NP subclass, we have previously profiled transgenic lines based on the *Slc17a8* gene (*Slc17a8-iCre* and *Slc17a8-IRES-Cre*)^{9,73}. Here, we report a highly specific enhancer virus for the L5_NP subclass (**Figures 4B, 7A₁₉, 7C₁₉**).

For L6_CT and L6b types, we show that a judicious use of crosses can result in nearly single cell-type cluster labeling (**Table S1**). For example, *Ctxn3-IRES2-FlpO* labels an assortment of glutamatergic IT cell types, as well as select L6_CT clusters (**Figures 7A₁₃, 7B₁₃**). Crossing this line with a L6_CT-specific line, *Ntsr1-Cre_GN220*⁷⁴ (**Figures 7A₂₆, 7D₂₆**), and then to the intersectional reporter *Ai65*, produces a triple transgenic that precisely labels the only two *Ctxn3*-expressing L6_CT types (L6_CT_VISp_Ctxn3_Sla and L6_CT_VISp_Ctxn3_Brnp3; **Figures 7A₂₄, 7B₂₄; Table S7**). Similarly, we generated a tool that can exhibit a remarkably specific pattern of expression at the level of single L6_CT cluster in a triple transgenic cross. *Gpr139-IRES2-FlpO*, a line based on *Gpr139*, is expressed in several glutamatergic clusters in different layers, including a specific L6_CT cluster. When this line is crossed with *Ntsr1-Cre_GN220* and *Ai65*, we find that it almost exclusively labels only the L6_CT_VISp_Gpr139 cluster (**Figures 7A₂₂₋₂₃, 7D₂₂₋₂₃**).

The two new reporters we made, *Ai193*⁶⁵ and *Ai224*⁶⁶ (**Figure S7B**), report Cre “AND/OR” Flp labeling, unlike *Ai65*⁷⁰, which requires both Cre “AND” Flp to express a fluorescent protein (FP, tdTomato in this case). These two lines have separate transcription units that independently report the presence of Cre or Flp, resulting in GFP expression for Cre, tdTomato (or dTomato) expression for Flp, and both FPs when Cre and Flp are present. *Ai193* expresses the FPs in the cytoplasm (**Figure 7E**), whereas *Ai224* expresses them in the nucleus

328 **(Figure 7F).** When compared with previously widely used reporters (*Ai14*, *Ai65* or *Ai65F*; **Figure S8D**), both
329 lines appear to faithfully report Cre and Flp recombinase expression by expressing either one or both marker
330 genes. Note that the localization of GFP in *Ai224*, while predominantly nuclear, is imperfect (**Figure S8F**).

331 For GABAergic cell types, we selected the *Lamp5*, *Sncg* and *Chodl* genes for targeting. Although *Lamp5*
332 is an excellent marker for the Lamp5 subclass of GABAergic cells, it also labels glutamatergic cells in L2-3, L5
333 and L6 (**Figures 7A₄, 7B₄, 8A₄, 8B₄**). To exclude expression in glutamatergic cells, we generated a triple
334 transgenic containing the pan-GABAergic line *Slc32a1-IRES-Cre*⁷⁵. We show that *Lamp5-2A-FlpO;Slc32a1-*
335 *IRES-Cre;Ai65* exclusively labels the Lamp5 subclass of GABAergic interneurons in the cortex (**Figures 8A₃₁,**
336 **8B₃₁**). We also find that this subclass can be very specifically labeled by many enhancer viruses (**Figures 8A₂₉,**
337 **30, 8B₂₉₋₃₀**). Another subclass of MGE-derived GABAergic cells is labeled by the gene *Sncg*. *Sncg-IRES-*
338 *FlpO;Ai65* labels the *Sncg* population of neurons as well as endothelial cells (**Figures 8A₃₃, 8B₃₃**). The generation
339 of the triple transgenic *Sncg-IRES-FlpO;Slc32a1-IRES-Cre;Ai65* experimental animals excluded the endothelial
340 cells, labeling only the *Sncg* GABAergic cells (**Figures 8A₃₄, 8B₃₄**). In addition, we were able to use the *Sncg*
341 line to label an individual cell type cluster, *Sncg_Slc17a8*, a unique *Sncg* type enriched in the frontal cortex⁹. To
342 achieve this, we crossed this line with the *Slc17a8-IRES-Cre* driver line⁷³ followed by *Ai65*. We observed
343 exquisitely specific labeling for the *Sncg_Slc17a8* cluster, as shown by SSv4 of cells isolated from the Anterior
344 Lateral Motor (ALM) cortex of the triple transgenic *Sncg-IRES-FlpO;Slc17a8-IRES-Cre;Ai65* mice (**Figures 8A₃₅,**
345 **36, 8B₃₆**). Note that the new *Sncg* line is useful beyond cortex: when combined with reporter viruses, we used it
346 to characterize the *Sncg* GABAergic neurons in the hippocampus⁷⁶.

347 To gain access to the *Sst_Chodl* cell type cluster, which corresponds to sleep-active *Nos1* and *Tacr1*-
348 expressing cells⁷⁷, we made a Cre line that targets the gene *Chodl* (*Chodl-P2A-Cre*). In initial characterization,
349 we found that this line also labels other cell types (**Figure 8C**), so we generated the triple transgenic *Chodl-P2A-*
350 *Cre;Sst-IRES-FlpO;Ai65* that exhibits very specific *Sst_Chodl* cell type labeling (**Figure 8C₃₉**). We also
351 discovered two enhancer viruses that quite specifically label this cell type (**Figures 4B,C, 8C₄₀**). We note that
352 one of the enhancers (AiE0600m) is located ~250 kbp from the *Nos1* gene (**Figure 2A**). The previously described
353 *Nos1-CreERT2*⁷⁸ also labels *Sst_Chodl*, but not cleanly (**Figure 8C₃₇₋₃₈**). However, *Nos1-CreERT2;Sst-IRES-*
354 *FlpO;Ai65* quite specifically labels the *Sst_Chodl* cell type (**Figure 8C₃₇₋₃₈**).

355 We tested if similar level of specificity can be achieved for the *Sst_Hpse* clusters. The *Hpse-P2A-Cre* line
356 labels the *Sst_Hpse* clusters as well as a few cells of almost every other cluster in the *Sst* subclass. Although
357 the triple transgenic *Hpse-P2A-Cre;Sst-IRES-FlpO;Ai65* resulted in an enrichment of the *Hpse⁺* population, it did
358 not completely eliminate other *Sst* cell type cluster labeling (**Figure 8C₄₅₋₄₆**; **Table S1**). Therefore, each cross
359 needs to be tested before assuming that the tools based on the marker genes will provide expected labeling.

360 We note that the exact components used to create a transgenic line influence the labeling pattern that
361 the line will produce. This has previously been observed with lines targeting the parvalbumin gene (*Pvalb*), where
362 *Pvalb-2A-Cre* expresses in L5_ET types as well as thalamus excitatory cells (thalamocortical projection
363 neurons), whereas the *Pvalb-IRES-Cre* line does not⁶⁸. Consistent with previous observations, we note that
364 compared to IRES, the 2A peptide usually produces broader recombinase and therefore reporter expression.
365 This effect is likely a consequence of 2A fusion better capturing the lower end of the range of marker gene
366 expression than IRES. Similarly, the addition of WPRE increases the overall expression level of the recombinase
367 from the targeted locus. For example, *Gpr139-IRES2-FlpO-WPRE*, is expressed in a broader range of cells
368 including L2-3, compared to both *Gpr139-IRES2-FlpO* and *Gpr139-IRES2-FlpO-neo* (**Figures S7A₅₋₆, S7B₄₋₆**).

369 As observed before^{9,79,80}, presence of the Neomycin selection cassette (Neo) can affect transgene
370 expression. Some of the lines we include in this paper were generated by gene targeting without drug selection

371 (the Ngai lines; **Figure S7**), whereas others were generated using antibiotic selection and contained Neo. It is a
372 common practice to remove Neo after the line is established⁶⁸. However, we have observed that in many cases,
373 the expression patterns are different with and without Neo, and these differences may be useful depending on
374 the application⁷⁹. In most cases, the removal of Neo results in an expansion of expression as in the case of
375 *Slc17a8-IRES2-Cre* (**Figure S8B₆₋₇**). It does not appear to make a difference for the *Gpr139-IRES2-FlpO* line
376 (**Figure S8B₃₁₋₃₂**) or for the *Chrna6-IRES2-FlpO* line (**Figure S8B₁₋₂**). Note that in the latter case, the addition of
377 WPRE in the *Chrna6-IRES2-FlpO-WPRE-neo* did not appear to change cell type labeling: L5_ET_Chrna6 was
378 still the dominant labeled type, with the same rare L6b cluster (L6b_Col8a1_Rprm) expressing the *Chrna6* mRNA
379 also labeled (**Figure S8B₁₋₃**)^{8,9}.

380 In this study, we used SSv4 to evaluate the expression pattern of transgenic lines. However, it is important
381 to compare, whenever possible, the SSv4 data with other modalities to confirm labeling patterns. For example,
382 the SSv4 data for *Npnt-2A-FlpO;Ai65* show cells from both L2-3 and L5 whereas that for *Npnt-2A-FlpO;Ai193*
383 only includes L2-3 cells implying *Ai193* only labels a subset of cells expressing *Npnt*. However, consistent with
384 *in situ* hybridization results (<https://mouse.brain-map.org/experiment/show/71670677>; **Figure S8C**)⁸¹, *Npnt-2A-*
385 *FlpO;Ai65F* and *Npnt-2A-FlpO;Ai193* show identical expression patterns by STPT with labeling of both L2-3 and
386 L5 cells (**Figure S8C₇₋₈**). This discrepancy can be explained by our previous report that some cell types
387 (specifically cortical Pvalb and L5 ET cells) are sensitive to FACS isolation, and survive the process with variable
388 success experiment-to-experiment^{8,9}. Therefore, the absence of L5_ET cells in some SSv4 experiments (**Figure**
389 **S8A₉₋₁₀**) is likely an effect of FACS, and not differential reporter sensitivity.

390 We sought to further explore the effect of reporter line choice by comparing labeling patterns in crosses
391 where the same driver lines were crossed with previously characterized reporters (*Ai14* and *Ai65/Ai65F*) and the
392 new AND/OR reporters (*Ai193* and *Ai224*). In every case examined, we found that there was no discernable
393 difference between the patterns of labelled cells. For example, triple-transgenic animals obtained by crossing
394 *Chodl-P2A-Cre;Sst-IRES-FlpO* with *Ai65* or *Ai224* show a similar number and distribution of labelled cells (red
395 cells in the *Ai65* cross and yellow-double labelled cells in the *Ai224* cross; **Figure S8D**). Likewise, the labelling
396 patterns in double transgenic crosses of *Sst-IRES-FlpO* or *Chodl-P2A-Cre* with *Ai224*, *Ai14*, *RCL-H2B-EGFP*⁶⁹
397 or *Ai193*, show that the labeling pattern, at least for these reporters, depends on the recombinase lines employed
398 (**Figure S8D**).

399 Finally, we expected that the knock-in recombinase-based labeling may be more inclusive of all cells that
400 express a certain marker gene compared to enhancer AAVs. However, we show at least one instance where the
401 enhancer virus faithfully captures the expression pattern of a marker gene while the knock-in recombinase line-
402 based labeling is incomplete. *Cplx3* is a marker gene for L6b neurons as shown by scRNA-seq^{9,13} and RNA *in*
403 *situ* hybridization⁸¹ (<https://mouse.brain-map.org/experiment/show/70928340>; **Figure S8E**). The expression
404 pattern for *AiE2359m*, as well other L6b enhancers we discovered, mirrors *Cplx3* expression whereas the
405 transgenic cross, *Cplx3-P2A-FlpO;Ai193* excludes *Cplx3+* cells in the lateral entorhinal area, and L1
406 interneurons, which also express this gene⁸². This effect is independent of the reporter line as we also observe
407 it with a different reporter in *Cplx3-P2A-FlpO;Ai65* (**Figure S8E**).

408 In summary, we provide a wealth of characterization data for the tools we created and underline the
409 importance of careful evaluation of each tool or a combination of tools for the intended purpose. We strongly
410 suggest evaluation of each tool/tool combination with more than one data modality, as some modalities have
411 modality-specific pitfalls that can be highlighted with a different modality.

413 **Discussion**

414 The definition of cell types and their taxonomy in the central nervous system and genetic access to
415 individual types are essential for our understanding of how they contribute to nervous system function and
416 dysfunction^{1,3,11,83}. We utilized single-cell transcriptomic and epigenomic data to identify marker genes for the
417 generation of new transgenic lines, as well as putative enhancers for the creation of enhancer AAVs.

418 Currently, the use of transgenic mouse lines is the main approach for gaining access to molecularly
419 identified cellular populations^{8,67,84,85}. Transgenic mouse lines are created by inserting exogenous DNA (e.g.,
420 fluorophore, recombinase or transcription factor) into the mouse genome. A subset of transgenic mouse lines,
421 the knock-in lines, are created by inserting a single copy of exogenous DNA, at a specific position, frequently
422 within a marker gene in the mouse genome^{67,86}. All the transgenic driver lines described in this paper were
423 generated by knocking-in a recombinase into the endogenous gene locus. This contrasts with randomly
424 integrated transgenes where the endogenous elements have been taken out of context and depending on the
425 size/regulatory elements included, copy number and insertion site, dramatic variations in labeling patterns may
426 occur^{74,87} or may even behave as enhancer traps⁸⁸.

427 The knock-in approach takes advantage of the endogenous genomic regulatory elements to enable
428 selective expression of various transgenes for cell labeling, monitoring and/or perturbation, and frequently
429 produces expected cell-type labeling. However the efficiency, specificity, and strength of cell type labeling by
430 transgenes generated in the same locus can vary depending on the exact components inserted^{68,89}, and we
431 report several examples of this phenomenon in this study. In a number of cases, the driver lines labeled
432 unintended cell types in which the marker gene expression was weak or not observed in adult mice, which is
433 important to note especially if functional reporters are to be driven by them⁹⁰. In order to restrict recombination
434 to the target population, we generated triple transgenic mice using two separate driver lines, whose
435 recombination patterns intersect only in the population of choice, with a dual reporter line requiring the presence
436 of both recombinases for its expression^{24,69,70,91}.

437 Generation, validation, and maintenance of transgenic lines is expensive and laborious. Transgenes are
438 integrated into the genome and although methods for their modification once established have become recently
439 available⁹², these are not widely utilized. Moreover, site-specific transgenesis in other mammalian species is
440 difficult and costly^{93,94}. Therefore, it is not practical to rely on transgenic lines for all experiments. The use of
441 enhancer AAVs^{17,18,22,30,95} and other viral^{32,96} or non-viral technologies⁹⁷ that do not require germline modification
442 can potentially circumvent all these obstacles. However, there are caveats to be considered when applying
443 enhancer AAVs: 1) even for the same vector, the degree of specificity and expression strength heavily depend,
444 among other factors, on the concentration, delivery method, and viral serotype, which can lead to larger variability
445 within and across experiments than with mouse transgenes; 2) access to some populations can be more difficult,
446 due to their decreased susceptibility to viral transduction (e.g., microglia)⁶⁴. For any untested crosses or
447 combinations of transgene and virus, we advise the user to characterize them before assuming specificity based
448 on the marker genes or enhancers used.

449 In this study, we provide a detailed and comprehensive report on the development, screening and use of
450 enhancer AAVs in the context of the mouse cortex. We demonstrate that, at the subclass level of cell-type
451 resolution, the mammalian species of origin appears to have little effect on enhancer performance, suggesting
452 that many of the enhancer sequences described here could be useful in other mammalian species, even if their
453 orthologs are not present in the species of interest. To evaluate enhancer specificity at a transcriptomic cell type
454 (cluster) resolution, we performed scRNA-seq on isolated cells labeled by individual enhancer AAVs. We
455 confirmed that many enhancer AAVs designated as 'promising' in primary screen showed high specificity for a

456 single cell type taxon either at the subclass or cluster level (**Figure 4, Figure S4A**). We also found that the SYFP
457 mRNA expression was significantly lower when driven by enhancer AAVs compared to the pan-neuronal hSyn1
458 promoter/enhancer, which could make enhancers insufficiently strong to drive functional cargo such as effectors
459 and indicators. However, we show that in many cases, this limitation can be overcome by optimization of
460 enhancers through core bashing and concatenation (**Figure 5**), expression of a recombinase (**Figure 6**) or by
461 delivering viral vectors using alternative routes, such as ICV or stereotactically (**Figures S5, S6**). We demonstrate
462 that all these approaches can lead to a marked increase in cargo expression, often with tolerable specificity loss.

463 The tools reported here, as well as the scaled and standardized process used to create and evaluate
464 them, provide an unprecedented resource that should enable diverse experimental strategies for understanding
465 mammalian cortex function, including access to many previously inaccessible cortical types. We are in the
466 process of making all materials, data and metadata associated with the study publicly available. Moreover, in an
467 associated study⁹⁸, our standardized experimental process for enhancer evaluation described here has
468 advanced our understanding of the basic features underlining enhancer performance.

469

470 **Materials and Methods**

471 Animals

472 Mice were housed in the Allen Institute Vivarium and all animal procedures were conducted in accordance with
473 the Institutional Animal Care and Use Committee (IACUC) protocols 1508, 1802, 1806, 2105, and 2406, with no
474 more than five animals per cage, maintained on a 14/10 h day/night cycle, with food and water provided *ad*
475 *libitum*. Both male and female mice were used for experiments and the minimal number of animals were used
476 for each experimental group. Animals with anophthalmia or microphthalmia were excluded from experiments.
477 Animals were maintained on a C57BL/6J genetic background. At the University of California, Berkeley,
478 experiments with mice were conducted under the campus's Animal Care and Use Committee Animal Use
479 Protocol # AUP-2016-08-9032. See **Table S2** for a full list of all transgenic mouse lines included in this study.

480 10x Genomics snMultiome data generation

481 Mice were anaesthetized with 2.5–3% isoflurane and transcardially perfused with cold, pH 7.4 HEPES buffer
482 containing 110 mM NaCl, 10 mM HEPES, 25 mM glucose, 75 mM sucrose, 7.5 mM MgCl₂, and 2.5 mM KCl. Mice
483 were anesthetized with 2.5–3.5% isoflurane. Following perfusion, brains were isolated quickly, and frozen for 2
484 minutes in liquid nitrogen vapor. Frozen brain samples were sectioned on a cryostat to obtain 300 µm sections.
485 Micro knives were used to microdissect the area of interest according to the Allen reference atlas. Images were
486 collected pre- and post-microdissection to document which brain regions were profiled. Dissectates were placed
487 in 12-well plates in the cryostat after collection.

488 Following dissection, nuclei were isolated with the RAISINs protocol (RNA-seq for Profiling Intact Nuclei with
489 Ribosome-bound mRNA) # PF0334⁹⁹ developed based on a previously published protocol¹⁰⁰. Briefly, tissue
490 samples were placed in CST buffer and single cell suspensions were obtained by chopping tissue using spring
491 scissors for 10 minutes in the buffer. Cell suspensions were centrifuged 500 rcf and resuspended in lysis buffer.
492 Nuclei were counted, resuspended, and processed according to the 10x multiome protocol from 10x Genomics.
493 Short-read sequencing was done with Illumina. Fastq generation and alignment to mm10 was done with Cell
494 Ranger ARC (version 2.0.0). Downstream data analysis was performed with scanpy (version 1.9.8).

495 Human MTG data were collected by subsetting healthy control data from the SEA-AD study²⁸. Briefly, brain
496 specimens were donated for research to the University of Washington BioRepository and Integrated
497 Neuropathology (BRaIN) laboratory from participants in the Adult Changes in Thought (ACT) study and the
498 University of Washington Alzheimer's Disease Research Center (ADRC). 10x multiome library preparation was
499 performed as per the 10x multiome protocol (10x Genomics). Sequencing was performed using a NovaSeq
500 6000, using either a NovaSeq-X or S4 flow cell. Fastq generation and data alignment to GRCh38 was done with
501 Cell Ranger ARC. Downstream data processing was done using the scanpy python package (version 1.9.1).

502 snMultiome: Mouse snRNA-seq data analysis

503 Cell clustering and filtering was performed using the standard scanpy workflow. Following this, individual
504 datasets across cortical regions were integrated using SCVI, using individual donors as the batch key. Final cell
505 type annotations for both species were derived from de novo clusters (scanpy). Low quality clusters (containing
506 doublets) were removed after clustering. This was done iteratively. Low quality cells (fewer than 2,000 genes
507 detected for neurons, and fewer than 1,000 genes detected for non-neuronal clusters) were removed. For each
508 de novo cluster, the predominant cell type was used to label the cluster with the appropriate cross-species

509 subclass label. Known marker genes as identified from the Tasic et al 2018 cortical taxonomy were used to
510 check cell type identities. Gene expression data were plotted using scanpy.pl.umap.

511 snMultiome: snATAC-seq data analysis

512 snMultiomic ATACseq data were analyzed using ArchR⁴⁰. Pseudobulk coverage data were used for identification
513 of peaks in VISp subclasses using Macs2 as implemented by ArchR (version 1.0.2)^{40,41}. Statistically significant
514 peaks were identified using ArchR. Bigwig files were used for enhancer selection, data visualization and for
515 determination of accessibility at putative enhancer sites. For downstream analyses, enhancer accessibility was
516 obtained by summing ATAC signal in subclass-specific bigwig files in all bins overlapping enhancer regions. This
517 was done using the GenomicRanges package in R. Accessibility was scaled across subclasses to obtain z-
518 scores for enhancer accessibility at each enhancer site. This measure was used to characterize enhancer target
519 populations in an unbiased way.

520 Cross-species analysis

521 Enhancer sequences were obtained from mm10 using genomic coordinates using the Biostrings package in R.
522 Mouse sequences were lifted over to hg38 and human sequences were lifted over to mm10. BLAST was
523 performed in a similar manner, using rBLAST using the following arguments: word size = 10; reward = 2; penalty
524 = 3; gapopen = 5; gapextend = 2; dust = no; soft masking = false. Enhancers that returned a match using both
525 liftover and BLAST were considered to have conserved sequence overall. Alignment statistics from BLAST
526 output were retained for each enhancer and were used to calculate a percent of bases in the original enhancer
527 sequences that overlapped with the aligned region. Accessibility correlation between mouse and human was
528 done for each enhancer, using signal from bigwig files across all cortical subclasses.

529 Enhancer cloning

530 Short enhancer sequences were nominated from the mouse or human genome based on selective chromatin
531 accessibility in either of the cortical subclasses, with preference for sequences found in proximity to marker
532 genes for that subclass. These sequences were subsequently amplified from purified genomic material of wt
533 C57BL6/J mice, cloned into an AAV2-minPromoter-SYFP2-WPRE-bGH backbone upstream of the minimal
534 promoter (BetaGlobin, CMV or Rho) along with a bovine growth hormone polyA (BGHPA), and a woodchuck
535 post-transcriptional regulatory element (WPRE or WPRE3)¹⁰¹. Cloning was carried out either using the Gibson
536 assembly method (NEB; Catalog# E2621L) or restriction digestion and ligation. The recombinant plasmids were
537 verified with Sanger sequencing. Select plasmids have been submitted or are in the process of being submitted
538 to Addgene for distribution. See **Table S3** for a full list of all plasmids included in this study.

539 AAV Production

540 Verified plasmids were packaged into AAV vectors by transient transfection of HEK 293T cells (ATCC CRL-
541 11268). The cells were seeded at 2×10^7 cells per 15-cm dish to achieve ~70% to 80% confluency before
542 transfection. Cells were maintained in DMEM (Thermo Fisher Scientific Cat#1995-065) with 10% Fetal Bovine
543 Serum (FBS; VWR Cat#89510-184) and 1% Antibiotic-Antimycotic solution (Sigma Cat#A5955). Each enhancer
544 AAV vector was mixed with pAdenoHelper and PHP.eB rep-cap plasmids in a ratio of 30:15:15 μ g in 1.35 ml of
545 OptiMem (Thermo Fisher Scientific Cat#51985-034), which was then supplemented with 150 μ l of 1 mg/mL
546 Polyethylenimine (PEI; Polysciences Cat#23966), incubated for 10 minutes and then added to a single 15 cm
547 plate of fully confluent cells. Twenty-four hours post transfection, the cell medium was changed to media
548 containing 1% FBS and 1% Antibiotic-Antimycotic in DMEM and 72 hours later, cells were harvested into a 50

549 ml-tube, subjected to three 20-minute long freeze-thaw cycles to lyse cells and release adeno-associated virus
550 (AAV) particles, and the resulting lysate was incubated with benzonase for an additional 30 minutes (Sigma-
551 Aldrich Cat#E1014) at 37°C, to remove non-encapsidated nucleic acids. The crude AAV-containing suspension
552 was centrifuged at 3000xg for 10 minutes to remove residual cell debris, and the supernatant was concentrated
553 using an Amicon Ultra-15 centrifugal filter (Sigma Cat # UFC910024) by centrifuging at 3000xg, until the volume
554 was reduced to below 150 μ l. This crude AAV prep was then aliquoted and kept at -80°C until use. ¹⁰²⁻¹⁰⁴.

555 For vectors intended for stereotaxic delivery, the transfected cells were pelleted and resuspended in 1 ml lysis
556 buffer containing 150 mM NaCl and 50 mM TrisHCl (pH=8), instead of in their growth media, and following the
557 freeze-thaw cycles and Benzonase treatment, the lysate was passed through a 0.22 μ m filter, to remove any
558 large debris which might clog the capillary.

559 AAV titer determination with dd-PCR

560 For measuring virus titers, we used ddPCR (Bio Rad; QX 200 Droplet Digital PCR System). We used primers
561 against AAV2 ITR for amplification. Seven serial dilutions with the factor of 10 ranging from 2.5×10^{-2} to 2.5×10^{-8}
562 were used for the measurement. Serial dilutions of 2.5×10^{-5} to 2.5×10^{-8} were used for fitting the linear dynamic
563 range. Viral titer was calculated by averaging virus concentration of two dilutions within the linear dynamic range.
564 A positive control of a known viral titer, and a negative control with no virus was also run along with all the
565 samples.

566 Retroorbital (RO), Intracerebroventricular (ICV) and Stereotaxic (STX) virus injections

567 RO injections were performed according to a previously described protocol⁴⁴: Male and female C57BL/6J mice,
568 aged P27–P33, were anesthetized using isoflurane. Each mouse received an injection of 5×10^{11} genome copies
569 (GC) diluted to 90 μ l with PBS, administered into the retro-orbital sinus.

570 Intracerebroventricular (ICV) injections were performed according to the previously described protocol¹⁰⁵: P0-2
571 mouse pups were anaesthetized by placing them on aluminum foil on ice and injected with 5×10^{10} GC diluted
572 to 5 μ l with PBS, targeting the lateral ventricles. The injection was made 1 mm lateral to the midline and
573 approximately 1 mm posterior to bregma. Mice were euthanized after a four-week incubation period.

574 For stereotaxic (STX) injections, male and female C57BL/6J mice, aged P45–P90, were anesthetized with
575 isoflurane before injecting with filtered PHP.eB-pseudotyped AAV unilaterally or bilaterally into the primary visual
576 cortex (V1Sp) using the following coordinates (in mm): anterior/posterior (A/P) -3, medial/lateral (M/L) ± 2 , and
577 dorsal/ventral (D/V) 0.45/0.65. A total volume of 300 nl containing 1.5×10^9 GC/ml virus was delivered at a rate
578 of 50 nl per pulse with Nanoinject II. Before incision, the animal was injected with Bupivacaine (2-6 mg/kg) and
579 post injection, the animal was injected with ketofen (2-5 mg/kg) and Lactated Ringer's Solution; LRS (up to 1 ml)
580 to provide analgesia. Mice that underwent STX injections were euthanized after 25-31 days, transcardially
581 perfused, and the brains were dissected for further analysis.

582 Brain tissue preparation and image acquisition

583 Mice were anaesthetized with isoflurane and perfused transcardially with 10 ml of 0.9% saline, followed by 50
584 ml of 4% PFA. The brain was removed, bisected sagittally along the midline, placed in 4% PFA overnight and
585 subsequently moved to a 30% sucrose in PBS solution until sectioning. From the left hemisphere, 30 μ m sections
586 were obtained along the entire mediolateral axis using a microtome. Five sections, roughly 0.5, 1, 1.5, 2.3 and
587 3.5 mm from the midline, were collected, stained by DAPI and/or PI to label nuclei and cellular RNA, and after

588 drying for 24 hours at 37 °C, mounted on a barcoded slide. Once the mounting medium hardened, the slides
589 were scanned with Aperio VERSA Brightfield epifluorescence microscope (Leica) in the UV, green, and red
590 channels, illuminated with a metal halide lamp. After passing QC, digitized images were analyzed by manual
591 scoring.

592 Primary screen scoring

593 Each enhancer vector was scored based on the labeling pattern it produced in the neocortex. First, each region
594 of the brain where labeling of cell somata was observed, was manually scored based on the labeling brightness
595 and density, classifying each into either low or high. In addition, we created 11 categories of different cell
596 populations within the neocortex, which could be visually distinguished one from the other, and whenever cortical
597 labeling was observed, in one or more of these populations, each was individually evaluated based on its own
598 brightness and density. Whereas brightness was classified based on whether the labeling was stronger or
599 weaker than the common brightness observed across all experiments, density was evaluated based on the
600 expected density of cells for each of the scored regions or populations, using the nuclear markers as reference.
601 To determine target specificity, we aligned each target cell population with the labeled population which best
602 matches its known anatomical location, distribution, and morphological characteristics. We determined an
603 enhancer to be “On-target” if the target population aligned with the labeled population, “Mixed” if labeling was
604 observed in populations other populations, in addition to the target one, “Off-target” if labeling was observed
605 exclusively in population/s other than the target one, and “no labeling” if no labeling was observed in the
606 neocortex, regardless of whether labeling was observed in other brain regions.

607 SMART-Seq v4 sample preparation and analysis

608 Sample preparation for SMART-Seq was performed using the SMART-Seq v4 kit (Takara Cat#634894) as
609 described previously⁹. In brief, single cells were sorted into 8-well strips containing SMART-Seq lysis buffer with
610 RNase inhibitor (0.17 U/µL; Takara Cat#ST0764) and were immediately frozen on dry ice for storage at -80°C.
611 SMART-Seq reagents were used for reverse transcription and cDNA amplification. Samples were fragmented
612 and indexed using a NexteraXT DNA Library Preparation kit (Illumina Cat#FC-131-1096) with NexteraXT Index
613 Kit V2 Set A (Illumina Cat#FC-131-2001) according to manufacturer’s instructions except for decreases in
614 volumes of all reagents, including cDNA, to 0.4 x recommended volume. Full documentation for the scRNA-seq
615 procedure is available in the ‘Documentation’ section of the Allen Institute data portal at <http://celltypes.brain-map.org/>. Samples were sequenced on an Illumina HiSeq 2500 as 50 bp paired end reads. Reads were aligned
616 to GRCm38 (mm10) using STAR v2.5.3¹⁰⁶ with the parameter “twopassMode,” and exonic read counts were
617 quantified using the GenomicRanges package for R as described in Tasic et al. (2018). To determine the
618 corresponding cell type for each scRNA-seq dataset, we utilized the scrattch.hicat package for R⁷²
619 (<https://github.com/AllenInstitute/scrattch.hicat>). We selected marker genes that distinguished each cluster, then
620 used this panel of genes in a bootstrapped centroid classifier which performed 100 rounds of correlation using
621 80% of the marker panel selected at random in each round. For plotting, we retained only cells that were assigned
622 to the same cluster in ≥ 80 of 100 rounds. Cells that did not map to the taxonomy confidently were excluded from
623 analysis and further data processing. Mapping results and scRNA-seq sample metadata, including the most-
624 frequently assigned cell type and the fraction of times each cell was assigned to that type, are included in
625 supplemental data.

627 For experiments involving enhancer AAVs, mice were injected retro-orbitally with the indicated AAV. One month
628 post injection, individual cells were FACS-isolated from cortical regions. In most cases this was mouse visual
629 cortex, cells were also collected from claustrum. In most cases, all VISp layers were isolated prior to FACS. In

630 others, two or more collections were made using an “upper” (layers 1-4) and a “lower” (layers 5-6) dissection
631 strategy, and the data were pooled. In summary, for transgenic lines, cells were summed across all layer
632 collections, which may include single layers or combinations. This may contribute to biases in cell-type
633 compositions reported.

634 Generation of driver lines at UC, Berkeley

635 To generate mouse lines bearing in-frame genomic insertions of P2A-FlpO or P2A-Cre, we engineered double-
636 strand breaks at the stop codons of the targeted genes using ribonucleoprotein (RNP) complexes composed of
637 SpCas9-NLS protein and in vitro transcribed sgRNA for the following gene targetings:

638 Cplx3-P2A-FlpO (sgRNA: GGGGAAGTGGTCACATGATA);
639 Cpne-P2A-FlpO (sgRNA: ATATGAATCGTCCCGGACAC);
640 Npnt-P2A-FlpO (sgRNA: GATGATGTGAGCTTGAAAAG);
641 Lamp5-P2A-FlpO (sgRNA: CCAGTACAAGCACATGGGCT);
642 Chodl-P2A-Cre (sgRNA: ATGGAGGTATAATAATGAAC);
643 Hpse-P2A-Cre (sgRNA: TCATATACAAGCAGCGATT);
644 Parm1-P2A-Cre (sgRNA: CGTTAAGAGTCATCGTAGAG);
645 Rxfp1-P2A-Cre (sgRNA: ACTCAATTCTTATTCGTAAC);
646 Slco2a1-P2A-Cre (sgRNA: CAGTCTGCAGGAGAATGCCT).

647 The RNP complexes were nucleofected into 10^6 v6.5 mouse embryonic stem cells (C57/BL6;129/sv; a gift from
648 R. Jaenisch) along with repair constructs in which P2A-FlpO or P2A-Cre was flanked with homologous
649 sequences 5' and 3' to the target site, thereby enabling homology-directed repair. Colonies grown from
650 transfected cells were screened by PCR for successful integration; proper insertion of the transgene was
651 confirmed by DNA sequencing. Cell lines with normal karyotypes were aggregated with albino morulae and
652 implanted into pseudopregnant females to produce germ line competent chimeric founders, which were then
653 bred to C57BL/6J mice for further analysis.

655 Generation of driver lines at Allen Institute

656 Knock-in driver lines contained components that were previously described^{67,68,70}. Targeting of the transgene
657 cassettes into an endogenous gene locus was accomplished via CRISPR/Cas9-mediated genome editing using
658 circularized targeting vector in combination with a gene-specific guide vector (Addgene plasmid #42230).
659 The 129S6B6F1 ES cell line, G4, was utilized directly for driver line targeting. Targeted ES cell clones were
660 subject to standard antibiotic selection and correctly targeted ES cells were identified using standard screening
661 approaches (PCR, qPCR, and Southern blots) and injected into blastocysts to obtain chimeras and subsequent
662 germline transmission. The resulting mice were crossed to the Rosa26-PhiC31 mice (JAX Stock # 007743) to
663 delete the pPGK-neo selection marker cassette, and then backcrossed to C57BL/6J mice and maintained in
664 C57BL/6J congenic background. Only mice heterozygous for both reporter and driver transgenes were used for
665 experiments.

666 Generation of TIGRE3.0 reporter lines

667 To target multiple transgene expression units into the *T/GRE* locus we employed a recombinase-mediated
668 cassette exchange (RMCE) strategy similar to that previously described⁷⁰, but instead of using Flp recombinase
669 for targeting, we used Bxb1 integrase¹⁰⁷ so that Flp recombinase could later be used for transgene expression
670 control. A new landing pad mouse embryonic stem (ES) cell line was generated by taking the 129S6B6F1 cell

line, G4¹⁰⁸, and engineering it to contain the components from 5' to 3' Bxb1 AttP-PhiC31 AttB-PGK promoter-gb2 promoter-Neomycin gene-PGK polyA-Bxb1 AttP-splice acceptor-3' partial hygromycin gene-SV40 polyA-PhiC31 AttP within the *TIGRE* genomic region. Southern blot, qPCR and junctional PCR analyses were performed on genomic DNA (gDNA) samples from modified ES cell clones to confirm proper targeting, copy number, and orientation of the components within the *TIGRE* locus. A Bxb1-compatible targeting vector with three independent and conditional expression units was then generated by standard molecular cloning techniques. The vector contained the following components from 5' to 3': gb2 promoter-Neo gene-Bxb1 AttB-partial GFP-2X HS4 Insulators-CAG promoter-LoxP-stop-LoxP-EGFP-WPRE-BGH polyA-2X HS4 Insulators-CAG promoter-FRT-stop-FRT-mOrange2-HA-WPRE-BGH polyA-PhiC31 AttB-WPRE-BGH polyA-2X HS4 Insulators-CAG-nox-stop-nox-mKate2-P2A-WPRE-PGK polyA-PhiC31 AttB-PGK promoter-5' hygromycin gene-splice donor-Bxb1 AttB. The sequence and integrity of the targeting vector was confirmed by Sanger sequencing, restriction digests and *in vitro* testing performed in HEK293T cells. The targeting vector (30 µg of DNA) was then co-electroporated with a plasmid containing a mouse codon optimized Bxb1 gene under the control of the cytomegalovirus (CMV) promoter (100 µg of DNA) into the Bxb1-landing pad ES cell line and following hygromycin drug selection at 100-150 µg/ml for 5 days, monoclonal populations of cells were hand-picked and expanded. Genomic DNA was prepared from the modified ES cell clones using a kit (Zymo Research Cat#D4071) and it was screened by qPCR and junctional PCR assays to confirm proper targeting into the *TIGRE* locus. Correctly targeted clones were injected into fertilized blastocysts at the University of Washington Transgenic Research Program (TRP) core to generate high percentage chimeras and then the chimeras were imported to the Institute, bred to C57BL/6J mice to produce F1 heterozygous reporter mice, and subsequently maintained in a C57BL/6J congenic background.

692 Statistical analyses

693 All values were shown as mean and error bars as ± SEM in Figures and reported as mean ± SD in the main text.
694 Statistical significance was tested with a 1-way ANOVA, followed a Tukey test for post-hoc comparisons, or by
695 the Chi square test for analysis of differences in group proportions. All p-values reported were corrected for
696 multiple comparisons using the Bonferroni correction. All calculations were performed in Microsoft Excel or R.
697 Statistical differences with p < 0.05 were considered significant. In Figures, a single asterisk (*), double asterisks
698 (**), and triple asterisks (***) indicate p < 0.05, p < 0.01, and p < 0.001, respectively.

699 Data Availability

700 Mouse 10x Multiome data and single-cell RNA-seq data are available at the Neuroscience Multi-omic Archive
701 (NeMO):

702 https://data.nemoarchive.org/biccn/grant/u19_zeng/zeng/multimodal/sncell/10xMultiome_RNAseq/mouse/raw
703 https://data.nemoarchive.org/biccn/grant/u19_zeng/zeng/multimodal/sncell/10xMultiome_ATACseq/mouse/raw

704 SSv4 scRNA-seq data are available at NeMO:

705 https://data.nemoarchive.org/biccn/grant/rf1_tasic/tasic/transcriptome/scell/SSv4/mouse/raw/

706 Primary screen epifluorescence and serial-two-photon tomography (STPT) data are available at the Brain
707 Image Library (BIL): <https://doi.org/10.35077/g.1162>

708 Primary screen epifluorescence data are available at BIL:

709 <https://download.brainimagedatabase.org/4e/fa/4efaa61008dfb900/>

710 Serial-two-photon tomography (STPT) data are available at BIL:

711 <https://download.brainimagedatabase.org/bc/59/bc59278fe0669df7/>

712

713 Code Availability

714

Analysis methods used in this manuscript include SCVI (<https://github.com/scverse/scvi-tools>) and Scanpy (<https://github.com/scverse/scanpy>) for data processing integration and visualization, ArchR for ATAC-seq analyses (<https://github.com/GreenleafLab/ArchR>), as well as scratcch.hicat and scratcch.bigcat for cell type mapping and identification (<https://github.com/AllenInstitute/scratcch.hicat>). Plots were generated using R packages ggplot2, dendextend, which are available from both CRAN and github. Additional code used for data processing and analysis in this manuscript will be made available upon request.

720

Author contributions

721

Conceptualization, T.L.D., H.Z., B.P.L., J.N., J.T.T., B.Tasic; **Methodology - Transgenic lines**, S.N., T.L.D., D.A.S., S.A., T.B., J.Bendrick, J. Bowlus, G.B., B.C., R.K.C., M.D., C.Halterman, O.H., C.Huang, R.L., A.Y.L., M.L., G.H.L., E.L., D.Rette, J.P.S., L.Shulga, L.Siverts, E.S., M.W., T.W., B.W., M.R., K.R., H.Z., B.Tasic; **Methodology - Viral vectors**, M.H., T.L.D., J.K.M., R.A.M., X.O., J.R.R., N.Donadio, L.G., N.G., F.H., S.H., S.K., E.K., R.K., G.H.L., D.N., K.S., C.T., N.W., T.Z., S.Y., B.P.L., J.T.T., B.Tasic; **Investigation**, Y.B., M.H., S.N., T.L.D., D.D., J.K.M., M.J.T., J.R.R., A.A., S.B., J.Bendrick, D.B., K.B., T.C., A.B.C., M.C., N.Dotson, T.E., A.G., J.Gloe, L.G., F.H., W.H., S.H., Z.J., M.K., G.H.L., N.L., J.M., R.M., E.M., K.N., V.O., A.Oyama, T.P., E.P., C.A.P., L.P., S.R., C.R., A.R., N.S., A.R.S., M.T., C.T., A.T., N.W., J.A., N.Deer, K.A.S., H.Z., B.P.L., J.T.T., B.Tasic; **Resources**, S.M.; **Formal Analysis**, Y.B., M.H., S.N., T.L.D., D.D., A.Oster, R.C., S.C., M.Gabitto, J.G., J.Goldy, B.B.G., L.G., A.H., N.J., B.K., C.L., N.L., E.M., D.Rocha, A.S., S.Somasundaram, C.T.J.V., M.E.W., Z.Y., B.P.L., J.T.T., B.Tasic; **Data curation**, Y.B., M.H., S.N., D.D., S.W.W., A.Oster, J.R.R., N.G., R.E.A.S., B.P.L., J.T.T.; **Project Administration**, A.Oster, T.M., R.E.A.S., S.M.S., B.Thyagarajan; **Visualization**, Y.B., M.H., S.N., D.D., B.Tasic; **Supervision**, Y.B., S.N., T.L.D., M.J.T., T.E.B., T.C., A.B.C., M.Gasperini, D.H., R.L., T.M., L.N., L.P., C.T.J.V., Z.Y., N.Deer, M.R., K.R., S.M., S.M.S., K.A.S., L.E., J.W., S.Y., E.S.L., H.Z., B.P.L., J.N., J.T.T., B.Tasic; **Writing – Original Draft**, Y.B., M.H., S.N., D.D., B.Tasic; **Writing – Review & Editing**, Y.B., M.H., S.N., D.D., S.W.W., B.P.L., J.T.T., B.Tasic; **Funding Acquisition**, E.S.L., H.Z., B.P.L., J.N., J.T.T., B.Tasic.

738

Acknowledgments

739

We are grateful to the In Vivo Sciences, Molecular Biology, Histology, Imaging, and Neurosurgery & Behavior teams at the Allen Institute for their technical support. We thank Robert Hunter for coordinating transgenic mouse production. We thank Bing Ren and colleagues for open access sharing of the CATlas resource for mouse brain snATAC-seq data. This work was funded by the Allen Institute for Brain Science in addition to the NIH grants U19MH114830 to H.Z., RF1MH121274 to B.T., and RF1MH114126 and UG3MH120095 to E.S.L., J.T., and B.P.L. The authors wish to thank the Allen Institute founder, Paul G. Allen, for his vision, encouragement, and support.

746

Declaration of Interests

747

H.Z. is on the scientific advisory board of MapLight Therapeutics, Inc. Allen Institute for Brain Science has filed patent applications for many enhancer AAVs described in this manuscript with multiple authors listed as inventors. B.P.L., B.B.G., J.K.M, and E.S.L. are founders of EpiCure Therapeutics, Inc. The other authors declare no competing interests.

751 **Declaration of generative AI and AI-assisted technologies in the writing process**

752 During the preparation of this work the authors used Microsoft Copilot in order to improve readability. After using
753 this tool/service, the authors reviewed and edited the content as needed and take full responsibility for the content
754 of the published article.

755

756 **References**

- 757 1. Zeng, H. (2022). What is a cell type and how to define it? *Cell* *185*, 2739–2755.
758 <https://doi.org/10.1016/j.cell.2022.06.031>.
- 759 2. DeNardo, L., and Luo, L. (2017). Genetic strategies to access activated neurons. *Curr. Opin. Neurobiol.* *45*, 121–129.
- 760 3. Luo, L., Callaway, E.M., and Svoboda, K. (2018). Genetic dissection of neural circuits: a decade of progress. *Neuron*
761 *98*, 256–281. <https://doi.org/10.1016/j.neuron.2018.03.040>.
- 762 4. Peng, H., Xie, P., Liu, L., Kuang, X., Wang, Y., Qu, L., Gong, H., Jiang, S., Li, A., Ruan, Z., et al. (2021). Morphological
763 diversity of single neurons in molecularly defined cell types. *Nature* *598*, 174–181.
- 764 5. Rudy, B., Fishell, G., Lee, S., and Hjerling-Leffler, J. (2011). Three groups of interneurons account for nearly 100% of
765 neocortical GABAergic neurons. *Devel Neurobiol* *71*, 45–61. <https://doi.org/10.1002/dneu.20853>.
- 766 6. Qiu, L., Zhang, B., and Gao, Z. (2022). Lighting Up Neural Circuits by Viral Tracing. *Neurosci. Bull.* *38*, 1383–1396.
767 <https://doi.org/10.1007/s12264-022-00860-7>.
- 768 7. Zeisel, A., Munoz-Manchado, A.B., Codeluppi, S., Lonnerberg, P., La Manno, G., Jureus, A., Marques, S., Munguba,
769 H., He, L., Betsholtz, C., et al. (2015). Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-
770 seq. *Science* *347*, 1138–1142.
- 771 8. Tasic, B., Menon, V., Nguyen, T.N., Kim, T.K., Jarsky, T., Yao, Z., Levi, B., Gray, L.T., Sorensen, S.A., Dolbeare, T., et al.
772 (2016). Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. *Nat Neurosci* *19*, 335–346.
773 <https://doi.org/10.1038/nn.4216>.
- 774 9. Tasic, B., Yao, Z., Graybuck, L.T., Smith, K.A., Nguyen, T.N., Bertagnolli, D., Goldy, J., Garren, E., Economo, M.N.,
775 Viswanathan, S., et al. (2018). Shared and distinct transcriptomic cell types across neocortical areas. *Nature* *563*,
776 72–78. <https://doi.org/10.1038/s41586-018-0654-5>.
- 777 10. Saunders, A., Macosko, E.Z., Wysoker, A., Goldman, M., Krienen, F.M., de Rivera, H., Bien, E., Baum, M., Bortolin,
778 L., Wang, S., et al. (2018). Molecular diversity and specializations among the cells of the adult mouse brain. *Cell*
779 *174*, 1015–1030. <https://doi.org/10.1016/j.cell.2018.07.028>.
- 780 11. Tasic, B. (2018). Single cell transcriptomics in neuroscience: cell classification and beyond. *Current Opinion in
781 Neurobiology* *50*, 242–249. <https://doi.org/10.1016/j.conb.2018.04.021>.
- 782 12. Liu, H., Zhou, J., Tian, W., Luo, C., Bartlett, A., Aldridge, A., Lucero, J., Osteen, J.K., Nery, J.R., Chen, H., et al. (2021).
783 DNA methylation atlas of the mouse brain at single-cell resolution. *Nature* *598*, 120–128.
784 <https://doi.org/10.1038/s41586-020-03182-8>.
- 785 13. Yao, Z., Liu, H., Xie, F., Fischer, S., Adkins, R.S., Aldridge, A.I., Ament, S.A., Bartlett, A., Behrens, M.M., Van den
786 Berge, K., et al. (2021). A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex. *Nature* *598*,
787 103–110. <https://doi.org/10.1038/s41586-021-03500-8>.
- 788 14. Luo, C., Liu, H., Xie, F., Armand, E.J., Siletti, K., Bakken, T.E., Fang, R., Doyle, W.I., Stuart, T., Hodge, R.D., et al.
789 (2022). Single nucleus multi-omics identifies human cortical cell regulatory genome diversity. *Cell Genom* *2*,
790 100106. <https://doi.org/10.1016/j.xgen.2022.100107>.

791 15. Li, Y.E., Preissl, S., Miller, M., Johnson, N.D., Wang, Z., Jiao, H., Zhu, C., Wang, Z., Xie, Y., Poirion, O., et al. (2023). A
792 comparative atlas of single-cell chromatin accessibility in the human brain. *Science* 382, eadf7044.
793 <https://doi.org/10.1126/science.adf7044>.

794 16. Yao, Z., van Velthoven, C.T.J., Kunst, M., Zhang, M., McMillen, D., Lee, C., Jung, W., Goldy, J., Abdelhak, A., Aitken,
795 M., et al. (2023). A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. *Nature*
796 624, 317–332. <https://doi.org/10.1038/s41586-023-06812-z>.

797 17. Graybuck, L.T., Daigle, T.L., Sedeño-Cortés, A.E., Walker, M., Kalmbach, B., Lenz, G.H., Morin, E., Nguyen, T.N.,
798 Garren, E., Bendrick, J.L., et al. (2021). Enhancer viruses for combinatorial cell-subclass-specific labeling. *Neuron*
799 109, 1449-1464.e13. <https://doi.org/10.1016/j.neuron.2021.03.011>.

800 18. Mich, J.K., Graybuck, L.T., Hess, E.E., Mahoney, J.T., Kojima, Y., Ding, Y., Somasundaram, S., Miller, J.A., Kalmbach,
801 B.E., Radaelli, C., et al. (2021). Functional enhancer elements drive subclass-selective expression from mouse to
802 primate neocortex. *Cell Rep.* 34, 108754.

803 19. Mich, J.K., Sunil, S., Johansen, N., Martinez, R.A., Leytze, M., Gore, B.B., Mahoney, J.T., Ben-Simon, Y., Bishaw, Y.,
804 Brouner, K., et al. (2023). Enhancer-AAVs allow genetic access to oligodendrocytes and diverse populations of
805 astrocytes across species. Preprint at bioRxiv, <https://doi.org/10.1101/2023.09.20.558718>
806 <https://doi.org/10.1101/2023.09.20.558718>.

807 20. Zu, S., Li, Y.E., Wang, K., Armand, E.J., Mamde, S., Amaral, M.L., Wang, Y., Chu, A., Xie, Y., Miller, M., et al. (2023).
808 Single-cell analysis of chromatin accessibility in the adult mouse brain. *Nature* 624, 378–389.
809 <https://doi.org/10.1038/s41586-023-06824-9>.

810 21. Furlanis, E., Dai, M., Garcia, B.L., Vergara, J., Pereira, A., Pelkey, K., Tran, T., Gorissen, B.L., Vlacho, A., Hairston, A.,
811 et al. (2024). An enhancer-AAV toolbox to target and manipulate distinct interneuron subtypes. Preprint at bioRxiv,
812 <https://doi.org/10.1101/2024.07.17.603924> <https://doi.org/10.1101/2024.07.17.603924>.

813 22. Dimidschstein, J., Chen, Q., Tremblay, R., Rogers, S.L., Saldi, G.-A., Guo, L., Xu, Q., Liu, R., Lu, C., Chu, J., et al.
814 (2016). A viral strategy for targeting and manipulating interneurons across vertebrate species. *Nat. Neurosci.* 19,
815 1743–1749.

816 23. Gong, L., Liu, X., Wu, J., and He, M. (2022). Emerging strategies for the genetic dissection of gene functions, cell
817 types, and neural circuits in the mammalian brain. *Mol Psychiatry* 27, 422–435. <https://doi.org/10.1038/s41380-021-01292-x>.

818 24. Zhang, Q., Liu, X., Gong, L., and He, M. (2023). Combinatorial genetic strategies for dissecting cell lineages, cell
819 types, and gene function in the mouse brain. *Dev Growth Differ* 65, 546–553. <https://doi.org/10.1111/dgd.12902>.

820 25. Bakken, T.E., Jorstad, N.L., Hu, Q., Lake, B.B., Tian, W., Kalmbach, B.E., Crow, M., Hodge, R.D., Krienen, F.M.,
821 Sorensen, S.A., et al. (2021). Comparative cellular analysis of motor cortex in human, marmoset and mouse. *Nature*
822 598, 111–119. <https://doi.org/10.1038/s41586-021-03465-8>.

823 26. Li, Y.E., Preissl, S., Hou, X., Zhang, Z., Zhang, K., Qiu, Y., Poirion, O.B., Li, B., Chiou, J., Liu, H., et al. (2021). An atlas of
824 gene regulatory elements in adult mouse cerebrum. *Nature* 598, 129–136. <https://doi.org/10.1038/s41586-021-03604-1>.

825 27. Gray, L.T., Yao, Z., Nguyen, T.N., Kim, T.K., Zeng, H., and Tasic, B. (2017). Layer-specific chromatin accessibility
826 landscapes reveal regulatory networks in adult mouse visual cortex. *Elife* 6.

827 828

829 28. Gabitto, M.I., Travaglini, K.J., Rachleff, V.M., Kaplan, E.S., Long, B., Ariza, J., Ding, Y., Mahoney, J.T., Dee, N., Goldy, J., et al. (2023). Integrated multimodal cell atlas of Alzheimer's disease. *Res Sq*, rs.3.rs-2921860.
830 https://doi.org/10.21203/rs.3.rs-2921860/v1.

831

832 29. Hrvatin, S., Tzeng, C.P., Nagy, M.A., Stroud, H., Koutsoumpa, C., Wilcox, O.F., Assad, E.G., Green, J., Harvey, C.D., Griffith, E.C., et al. (2019). A scalable platform for the development of cell-type-specific viral drivers. *Elife* 8.
833 https://doi.org/10.7554/elife.48089.

834

835 30. Vormstein-Schneider, D., Lin, J.D., Pelkey, K.A., Chittajallu, R., Guo, B., Arias-Garcia, M.A., Allaway, K., Sakopoulos, S., Schneider, G., Stevenson, O., et al. (2020). Viral manipulation of functionally distinct interneurons in mice, non-human primates and humans. *Nat. Neurosci.* 23, 1629–1636.

836

837

838 31. Lee, B.R., Dalley, R., Miller, J.A., Chartrand, T., Close, J., Mann, R., Mukora, A., Ng, L., Alfiler, L., Baker, K., et al. (2023). Signature morphoelectric properties of diverse GABAergic interneurons in the human neocortex. *Science* 382, eadf6484. https://doi.org/10.1126/science.adf6484.

839

840

841 32. Challis, R.C., Kumar, S.R., Chen, X., Goertsen, D., Coughlin, G.M., Hori, A.M., Chuapoco, M.R., Otis, T.S., Miles, T.F., and Grdinaru, V. (2022). Adeno-associated virus toolkit to target diverse brain cells. *Annual Review of Neuroscience* 45, 447–469. https://doi.org/10.1146/annurev-neuro-111020-100834.

842

843

844 33. Chan, K.Y., Jang, M.J., Yoo, B.B., Greenbaum, A., Ravi, N., Wu, W.-L., Sánchez-Guardado, L., Lois, C., Mazmanian, S.K., Deverman, B.E., et al. (2017). Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. *Nat. Neurosci.* 20, 1172–1179.

845

846

847 34. Deverman, B.E., Pravdo, P.L., Simpson, B.P., Kumar, S.R., Chan, K.Y., Banerjee, A., Wu, W.-L., Yang, B., Huber, N., Pasca, S.P., et al. (2016). Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. *Nat Biotechnol* 34, 204–209. https://doi.org/10.1038/nbt.3440.

848

849

850 35. Karnuta, J.M., and Scacheri, P.C. (2018). Enhancers: bridging the gap between gene control and human disease. *Hum Mol Genet* 27, R219–R227. https://doi.org/10.1093/hmg/ddy167.

851

852 36. Lu, T., Ang, C.E., and Zhuang, X. (2022). Spatially resolved epigenomic profiling of single cells in complex tissues. *Cell* 185, 4448-4464.e17. https://doi.org/10.1016/j.cell.2022.09.035.

853

854 37. Jorstad, N.L., Song, J.H.T., Exposito-Alonso, D., Suresh, H., Castro-Pacheco, N., Krienen, F.M., Yanny, A.M., Close, J., Gelfand, E., Long, B., et al. (2023). Comparative transcriptomics reveals human-specific cortical features. *Science* 382, eade9516. https://doi.org/10.1126/science.ade9516.

855

856

857 38. Xu, C., Lopez, R., Mehlman, E., Regier, J., Jordan, M.I., and Yosef, N. (2021). Probabilistic harmonization and annotation of single-cell transcriptomics data with deep generative models. *Molecular Systems Biology* 17, e9620. https://doi.org/10.15252/msb.20209620.

858

859

860 39. Hodge, R.D., Bakken, T.E., Miller, J.A., Smith, K.A., Barkan, E.R., Graybuck, L.T., Close, J.L., Long, B., Johansen, N., Penn, O., et al. (2019). Conserved cell types with divergent features in human versus mouse cortex. *Nature*. https://doi.org/10.1038/s41586-019-1506-7.

861

862

863 40. Granja, J.M., Corces, M.R., Pierce, S.E., Bagdatli, S.T., Choudhry, H., Chang, H.Y., and Greenleaf, W.J. (2021). ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. *Nat Genet* 53, 403–411. https://doi.org/10.1038/s41588-021-00790-6.

864

865

866 41. Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., Myers, R.M., Brown, M.,
867 Li, W., et al. (2008). Model-based analysis of ChIP-Seq (MACS). *Genome Biology* 9, R137.
868 <https://doi.org/10.1186/gb-2008-9-9-r137>.

869 42. Hinrichs, A.S., Karolchik, D., Baertsch, R., Barber, G.P., Bejerano, G., Clawson, H., Diekhans, M., Furey, T.S., Harte,
870 R.A., Hsu, F., et al. (2006). The UCSC genome browser database: update 2006. *Nucleic Acids Res* 34, D590-598.
871 <https://doi.org/10.1093/nar/gkj144>.

872 43. Kremers, G.-J., Goedhart, J., van Munster, E.B., and Gadella, T.W.J. (2006). Cyan and yellow super fluorescent
873 proteins with improved brightness, protein folding, and FRET Förster radius. *Biochemistry* 45, 6570–6580.
874 <https://doi.org/10.1021/bi0516273>.

875 44. Yardeni, T., Eckhaus, M., Morris, H.D., Huizing, M., and Hoogstraten-Miller, S. (2011). Retro-orbital injections in
876 mice. *Lab Anim* 40, 155–160. <https://doi.org/10.1038/labani0511-155>.

877 45. Zuin, J., Roth, G., Zhan, Y., Cramard, J., Redolfi, J., Piskadlo, E., Mach, P., Kryzhanovska, M., Tihanyi, G., Kohler, H.,
878 et al. (2022). Nonlinear control of transcription through enhancer–promoter interactions. *Nature* 604, 571–577.
879 <https://doi.org/10.1038/s41586-022-04570-y>.

880 46. Kwasnieski, J.C., Fiore, C., Chaudhari, H.G., and Cohen, B.A. (2014). High-throughput functional testing of ENCODE
881 segmentation predictions. *Genome Res* 24, 1595–1602. <https://doi.org/10.1101/gr.173518.114>.

882 47. Gasperini, M., Hill, A.J., McFainline-Figueroa, J.L., Martin, B., Kim, S., Zhang, M.D., Jackson, D., Leith, A., Schreiber, J.,
883 Noble, W.S., et al. (2019). A genome-wide framework for mapping gene regulation via cellular genetic screens. *Cell*
884 176, 377-390.e19. <https://doi.org/10.1016/j.cell.2018.11.029>.

885 48. Wang, Q., Ding, S.-L., Li, Y., Royall, J., Feng, D., Lesnar, P., Graddis, N., Naeemi, M., Facer, B., Ho, A., et al. (2020).
886 The Allen Mouse Brain Common Coordinate Framework: A 3D Reference Atlas. *Cell* 181, 936-953.e20.
887 <https://doi.org/10.1016/j.cell.2020.04.007>.

888 49. Gouwens, N.W., Sorensen, S.A., Baftizadeh, F., Budzillo, A., Lee, B.R., Jarsky, T., Alfiler, L., Baker, K., Barkan, E.,
889 Berry, K., et al. (2020). Integrated morphoelectric and transcriptomic classification of cortical GABAergic cells. *Cell*
890 183, 935-953.e19.

891 50. Sorensen, S.A., Gouwens, N.W., Wang, Y., Mallory, M., Budzillo, A., Dalley, R., Lee, B., Gliko, O., Kuo, H.-C., Kuang,
892 X., et al. (2023). Connecting single-cell transcriptomes to projectomes in mouse visual cortex. *bioRxiv*,
893 <https://doi.org/10.1101/2023.11.25.568393>.

894 51. Banerji, J., Rusconi, S., and Schaffner, W. (1981). Expression of a β -globin gene is enhanced by remote SV40 DNA
895 sequences. *Cell* 27, 299–308. [https://doi.org/10.1016/0092-8674\(81\)90413-X](https://doi.org/10.1016/0092-8674(81)90413-X).

896 52. Ragan, T., Kadiri, L.R., Venkataraju, K.U., Bahlmann, K., Sutin, J., Taranda, J., Arganda-Carreras, I., Kim, Y., Seung,
897 H.S., and Osten, P. (2012). Serial two-photon tomography for automated ex vivo mouse brain imaging. *Nat.*
898 *Methods* 9, 255–258.

899 53. Baliga, N.S. (2001). Promoter analysis by saturation mutagenesis. *Biol Proced Online* 3, 64–69.
900 <https://doi.org/10.1251/bpo24>.

901 54. Catarino, R.R., and Stark, A. (2018). Assessing sufficiency and necessity of enhancer activities for gene expression
902 and the mechanisms of transcription activation. *Genes Dev* 32, 202–223. <https://doi.org/10.1101/gad.310367.117>.

903 55. Hörnblad, A., Bastide, S., Langenfeld, K., Langa, F., and Spitz, F. (2021). Dissection of the Fgf8 regulatory landscape
904 by in vivo CRISPR-editing reveals extensive intra- and inter-enhancer redundancy. *Nat Commun* **12**, 439.
905 <https://doi.org/10.1038/s41467-020-20714-y>.

906 56. Rickels, R., and Shilatifard, A. (2018). Enhancer logic and mechanics in development and disease. *Trends Cell Biol*
907 **28**, 608–630. <https://doi.org/10.1016/j.tcb.2018.04.003>.

908 57. Heinz, S., Romanoski, C.E., Benner, C., and Glass, C.K. (2015). The selection and function of cell type-specific
909 enhancers. *Nat Rev Mol Cell Biol* **16**, 144–154. <https://doi.org/10.1038/nrm3949>.

910 58. Taskiran, I.I., Spanier, K.I., Dickmänen, H., Kempynck, N., Pančíková, A., Ekşi, E.C., Hulselmans, G., Ismail, J.N.,
911 Theunis, K., Vandepoel, R., et al. (2024). Cell-type-directed design of synthetic enhancers. *Nature* **626**, 212–220.
912 <https://doi.org/10.1038/s41586-023-06936-2>.

913 59. Bothma, J.P., Garcia, H.G., Ng, S., Perry, M.W., Gregor, T., and Levine, M. (2015). Enhancer additivity and non-
914 additivity are determined by enhancer strength in the *Drosophila* embryo. *eLife* **4**, e07956.
915 <https://doi.org/10.7554/eLife.07956>.

916 60. Hay, D., Hughes, J.R., Babbs, C., Davies, J.O.J., Graham, B.J., Hanssen, L.L.P., Kassouf, M.T., Oudelaar, A.M., Sharpe,
917 J.A., Suci, M.C., et al. (2016). Genetic dissection of the α -globin super-enhancer in vivo. *Nat Genet* **48**, 895–903.
918 <https://doi.org/10.1038/ng.3605>.

919 61. Hartung, M., and Kisters-Woike, B. (1998). Cre mutants with altered DNA binding properties. *Journal of Biological
920 Chemistry* **273**, 22884–22891. <https://doi.org/10.1074/jbc.273.36.22884>.

921 62. Grødem, S., Nymoen, I., Vatne, G.H., Rogge, F.S., Björnsdóttir, V., Lensjø, K.K., and Fyhn, M. (2023). An updated
922 suite of viral vectors for in vivo calcium imaging using intracerebral and retro-orbital injections in male mice. *Nat
923 Commun* **14**, 608. <https://doi.org/10.1038/s41467-023-36324-3>.

924 63. de Leeuw, C.N., Korecki, A.J., Berry, G.E., Hickmott, J.W., Lam, S.L., Lengyell, T.C., Bonaguro, R.J., Borretta, L.J.,
925 Chopra, V., Chou, A.Y., et al. (2016). rAAV-compatible minipromoters for restricted expression in the brain and eye.
926 *Mol Brain* **9**, 52. <https://doi.org/10.1186/s13041-016-0232-4>.

927 64. Shi, H., He, Y., Zhou, Y., Huang, J., Maher, K., Wang, B., Tang, Z., Luo, S., Tan, P., Wu, M., et al. (2023). Spatial atlas
928 of the mouse central nervous system at molecular resolution. *Nature* **622**, 552–561.
929 <https://doi.org/10.1038/s41586-023-06569-5>.

930 65. McGovern, D.J., Ly, A., Ecton, K.L., Huynh, D.T., Prévost, E.D., Gonzalez, S.C., McNulty, C.J., Rau, A.R., Hentges, S.T.,
931 Daigle, T.L., et al. (2022). Ventral tegmental area glutamate neurons mediate nonassociative consequences of
932 stress. *Mol Psychiatry*. <https://doi.org/10.1038/s41380-022-01858-3>.

933 66. Liwang, J.K., Kronman, F.A., Minteer, J.A., Wu, Y.-T., Vanselow, D.J., Ben-Simon, Y., Taormina, M., Parmaksiz, D.,
934 Way, S.W., Zeng, H., et al. (2023). epDevAtlas: Mapping GABAergic cells and microglia in postnatal mouse brains.
935 bioRxiv, 2023.11.24.568585. <https://doi.org/10.1101/2023.11.24.568585>.

936 67. Daigle, T.L., Madisen, L., Hage, T.A., Valley, M.T., Knoblich, U., Larsen, R.S., Takeno, M.M., Huang, L., Gu, H., Larsen,
937 R., et al. (2018). A suite of transgenic driver and reporter mouse lines with enhanced brain-cell-type targeting and
938 functionality. *Cell* **174**, 465–480.e22. <https://doi.org/10.1016/j.cell.2018.06.035>.

939 68. Madisen, L., Zwingman, T.A., Sunkin, S.M., Oh, S.W., Zariwala, H.A., Gu, H., Ng, L.L., Palmiter, R.D., Hawrylycz, M.J.,
940 Jones, A.R., et al. (2010). A robust and high-throughput Cre reporting and characterization system for the whole
941 mouse brain. *Nat Neurosci* 13, 133–140. <https://doi.org/10.1038/nn.2467>.

942 69. He, M., Tucciarone, J., Lee, S., Nigro, M.J., Kim, Y., Levine, J.M., Kelly, S.M., Krugikov, I., Wu, P., Chen, Y., et al.
943 (2016). Strategies and tools for combinatorial targeting of GABAergic neurons in mouse cerebral cortex. *Neuron*
944 91, 1228–1243. <https://doi.org/10.1016/j.neuron.2016.08.021>.

945 70. Madisen, L., Garner, A.R., Shimaoka, D., Chuong, A.S., Klapoetke, N.C., Li, L., van der Bourg, A., Niino, Y., Egolf, L.,
946 Monetti, C., et al. (2015). Transgenic mice for intersectional targeting of neural sensors and effectors with high
947 specificity and performance. *Neuron* 85, 942–958. <https://doi.org/10.1016/j.neuron.2015.02.022>.

948 71. Steinmetz, N.A., Buetfering, C., Lecoq, J., Lee, C.R., Peters, A.J., Jacobs, E.A.K., Coen, P., Ollerenshaw, D.R., Valley,
949 M.T., de Vries, S.E.J., et al. (2017). Aberrant Cortical Activity in Multiple GCaMP6-Expressing Transgenic Mouse
950 Lines. *eNeuro* 4, ENEURO.0207-17.2017. <https://doi.org/10.1523/ENEURO.0207-17.2017>.

951 72. Yao, Z., van Velthoven, C.T.J., Nguyen, T.N., Goldy, J., Sedeno-Cortes, A.E., Baftizadeh, F., Bertagnolli, D., Casper, T.,
952 Chiang, M., Crichton, K., et al. (2021). A taxonomy of transcriptomic cell types across the isocortex and
953 hippocampal formation. *Cell* 184, 3222-3241.e26. <https://doi.org/10.1016/j.cell.2021.04.021>.

954 73. Grimes, W.N., Seal, R.P., Oesch, N., Edwards, R.H., and Diamond, J.S. (2011). Genetic targeting and physiological
955 features of VGLUT3+ amacrine cells. *Vis. Neurosci.* 28, 381–392.

956 74. Gong, S., Doughty, M., Harbaugh, C.R., Cummins, A., Hatten, M.E., Heintz, N., and Gerfen, C.R. (2007). Targeting
957 Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. *J. Neurosci.* 27,
958 9817–9823. <https://doi.org/10.1523/JNEUROSCI.2707-07.2007>.

959 75. Vong, L., Ye, C., Yang, Z., Choi, B., Chua, S., and Lowell, B.B. (2011). Leptin action on GABAergic neurons prevents
960 obesity and reduces inhibitory tone to POMC neurons. *Neuron* 71, 142–154.
961 <https://doi.org/10.1016/j.neuron.2011.05.028>.

962 76. Dudok, B., Klein, P.M., Hwaun, E., Lee, B.R., Yao, Z., Fong, O., Bowler, J.C., Terada, S., Sparks, F.T., Szabo, G.G., et al.
963 (2021). Alternating sources of perisomatic inhibition during behavior. *Neuron* 109, 997-1012.e9.
964 <https://doi.org/10.1016/j.neuron.2021.01.003>.

965 77. Moriarty, S.R., Dittrich, L., Pasumarthi, R.K., Valladao, D., Heiss, J.E., Gerashchenko, D., and Kilduff, T.S. (2013). A
966 role for cortical nNOS/NK1 neurons in coupling homeostatic sleep drive to EEG slow wave activity. *Proceedings of
967 the National Academy of Sciences* 110, 20272–20277. <https://doi.org/10.1073/pnas.1314762110>.

968 78. Taniguchi, H., He, M., Wu, P., Kim, S., Paik, R., Sugino, K., Kvitsiani, D., Fu, Y., Lu, J., Lin, Y., et al. (2011). A resource
969 of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. *Neuron* 71, 995–1013.
970 <https://doi.org/10.1016/j.neuron.2011.07.026>.

971 79. Zhuang, J., Wang, Y., Ouellette, N.D., Turschak, E.E., Larsen, R.S., Takasaki, K.T., Daigle, T.L., Tasic, B., Waters, J.,
972 Zeng, H., et al. (2021). Laminar distribution and arbor density of two functional classes of thalamic inputs to
973 primary visual cortex. *Cell Rep* 37, 109826. <https://doi.org/10.1016/j.celrep.2021.109826>.

974 80. Tasic, B., Hippenmeyer, S., Wang, C., Gamboa, M., Zong, H., Chen-Tsai, Y., and Luo, L. (2011). Site-specific
975 integrase-mediated transgenesis in mice via pronuclear injection. *Proceedings of the National Academy of Sciences*
976 108, 7902–7907. <https://doi.org/10.1073/pnas.1019507108>.

977 81. Lein, E.S., Hawrylycz, M.J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., Boe, A.F., Boguski, M.S., Brockway, K.S.,
978 Byrnes, E.J., et al. (2007). Genome-wide atlas of gene expression in the adult mouse brain. *Nature* **445**, 168–176.
979 <https://doi.org/10.1038/nature05453>.

980 82. Ben-Simon, Y., Kaefer, K., Velicky, P., Csicsvari, J., Danzl, J.G., and Jonas, P. (2022). A direct excitatory projection
981 from entorhinal layer 6b neurons to the hippocampus contributes to spatial coding and memory. *Nat Commun* **13**,
982 <https://doi.org/10.1038/s41467-022-32559-8>.

983 83. Di Bella, D.J., Domínguez-Iturza, N., Brown, J.R., and Arlotta, P. (2024). Making Ramón y Cajal proud: Development
984 of cell identity and diversity in the cerebral cortex. *Neuron* **112**, 2091–2111.
985 <https://doi.org/10.1016/j.neuron.2024.04.021>.

986 84. Harris, J.A., Hirokawa, K.E., Sorensen, S.A., Gu, H., Mills, M., Ng, L.L., Bohn, P., Mortrud, M., Ouellette, B., Kidney, J.,
987 et al. (2014). Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation. *Front
988 Neural Circuits* **8**, 76. <https://doi.org/10.3389/fncir.2014.00076>.

989 85. Arias, A., Manubens-Gil, L., and Dierssen, M. (2022). Fluorescent transgenic mouse models for whole-brain imaging
990 in health and disease. *Front. Mol. Neurosci.* **15**. <https://doi.org/10.3389/fnmol.2022.958222>.

991 86. Doyle, A., McGarry, M.P., Lee, N.A., and Lee, J.J. (2012). The construction of transgenic and gene knockout/knockin
992 mouse models of human disease. *Transgenic Res* **21**, 327–349. <https://doi.org/10.1007/s11248-011-9537-3>.

993 87. Laboulaye, M.A., Duan, X., Qiao, M., Whitney, I.E., and Sanes, J.R. (2018). Mapping Transgene Insertion Sites
994 Reveals Complex Interactions Between Mouse Transgenes and Neighboring Endogenous Genes. *Front. Mol.
995 Neurosci.* **11**. <https://doi.org/10.3389/fnmol.2018.00385>.

996 88. Shima, Y., Sugino, K., Hempel, C.M., Shima, M., Taneja, P., Bullis, J.B., Mehta, S., Lois, C., and Nelson, S.B. (2016). A
997 mammalian enhancer trap resource for discovering and manipulating neuronal cell types. *eLife* **5**, e13503.
998 <https://doi.org/10.7554/eLife.13503>.

999 89. Qiu, L., Rivera-Pérez, J.A., and Xu, Z. (2011). A non-specific effect associated with conditional transgene expression
000 based on cre-loxp strategy in mice. *PLoS One* **6**, e18778. <https://doi.org/10.1371/journal.pone.0018778>.

001 90. Müller-Komorowska, D., Opitz, T., Elzoheiry, S., Schweizer, M., Ambrad Giovannetti, E., and Beck, H. (2020).
002 Nonspecific Expression in Limited Excitatory Cell Populations in Interneuron-Targeting Cre-driver Lines Can Have
003 Large Functional Effects. *Front. Neural Circuits* **14**. <https://doi.org/10.3389/fncir.2020.00016>.

004 91. Palicz, R., Pater, B., Truschow, P., Witte, M., and Staiger, J.F. (2024). Intersectional strategy to study cortical
005 inhibitory parvalbumin-expressing interneurons. *Sci Rep* **14**, 2829. <https://doi.org/10.1038/s41598-024-52901-y>.

006 92. Miura, H., Nakamura, A., Kurosaki, A., Kotani, A., Motojima, M., Tanaka, K., Kakuta, S., Ogiwara, S., Ohmi, Y.,
007 Komaba, H., et al. (2024). Targeted insertion of conditional expression cassettes into the mouse genome using the
008 modified i-PITT. *BMC Genomics* **25**, 568. <https://doi.org/10.1186/s12864-024-10250-0>.

009 93. Chenouard, V., Remy, S., Tesson, L., Ménoret, S., Ouisse, L.-H., Cherifi, Y., and Anegon, I. (2021). Advances in
010 Genome Editing and Application to the Generation of Genetically Modified Rat Models. *Front. Genet.* **12**.
011 <https://doi.org/10.3389/fgene.2021.615491>.

012 94. Feng, G., Jensen, F.E., Greely, H.T., Okano, H., Treue, S., Roberts, A.C., Fox, J.G., Caddick, S., Poo, M., Newsome, W.T., et al. (2020). Opportunities and limitations of genetically modified nonhuman primate models for neuroscience research. *Proc Natl Acad Sci U S A* **117**, 24022–24031. <https://doi.org/10.1073/pnas.2006515117>.

013 95. Tremblay, S., Acker, L., Afraz, A., Albaugh, D.L., Amita, H., Andrei, A.R., Angelucci, A., Aschner, A., Balan, P.F., Basso, M.A., et al. (2020). An Open Resource for Non-human Primate Optogenetics. *Neuron* **108**, 1075-1090.e6. <https://doi.org/10.1016/j.neuron.2020.09.027>.

018 96. Qian, Y., Li, J., Zhao, S., Matthews, E.A., Adoff, M., Zhong, W., An, X., Yeo, M., Park, C., Yang, X., et al. (2022). 019 Programmable RNA sensing for cell monitoring and manipulation. *Nature* **610**, 713–721. 020 <https://doi.org/10.1038/s41586-022-05280-1>.

021 97. Brown, D.W., Wee, P., Bhandari, P., Bukhari, A., Grin, L., Vega, H., Hejazi, M., Sosnowski, D., Ablack, J., Clancy, E.K., 022 et al. (2024). Safe and effective in vivo delivery of DNA and RNA using proteolipid vehicles. *Cell* **187**, 5357- 023 5375.e24. <https://doi.org/10.1016/j.cell.2024.07.023>.

024 98. Johansen, N.J., Kempynck, N., Zemke, N.R., Somasundaram, S., Winter, S.D., Hooper, M., Dwivedi, D., Lohia, R., 025 Wehbe, F., Li, B., et al. (2024). Evaluating Methods for the Prediction of Cell Type-Specific Enhancers in the 026 Mammalian Cortex. Preprint at bioRxiv, <https://doi.org/10.1101/2024.08.21.609075> 027 <https://doi.org/10.1101/2024.08.21.609075>.

028 99. Institute, A. (2023). RAISINs (RNA-seq for Profiling Intact Nuclei with Ribosome-bound mRNA) nuclei isolation from 029 mouse CNS tissue protocol.

030 100. Drokhlyansky, E., Smillie, C.S., Van Wittenberghe, N., Ericsson, M., Griffin, G.K., Eraslan, G., Dionne, D., Cuoco, M.S., 031 Goder-Reiser, M.N., Sharova, T., et al. (2020). The Human and Mouse Enteric Nervous System at Single-Cell 032 Resolution. *Cell* **182**, 1606-1622.e23. <https://doi.org/10.1016/j.cell.2020.08.003>.

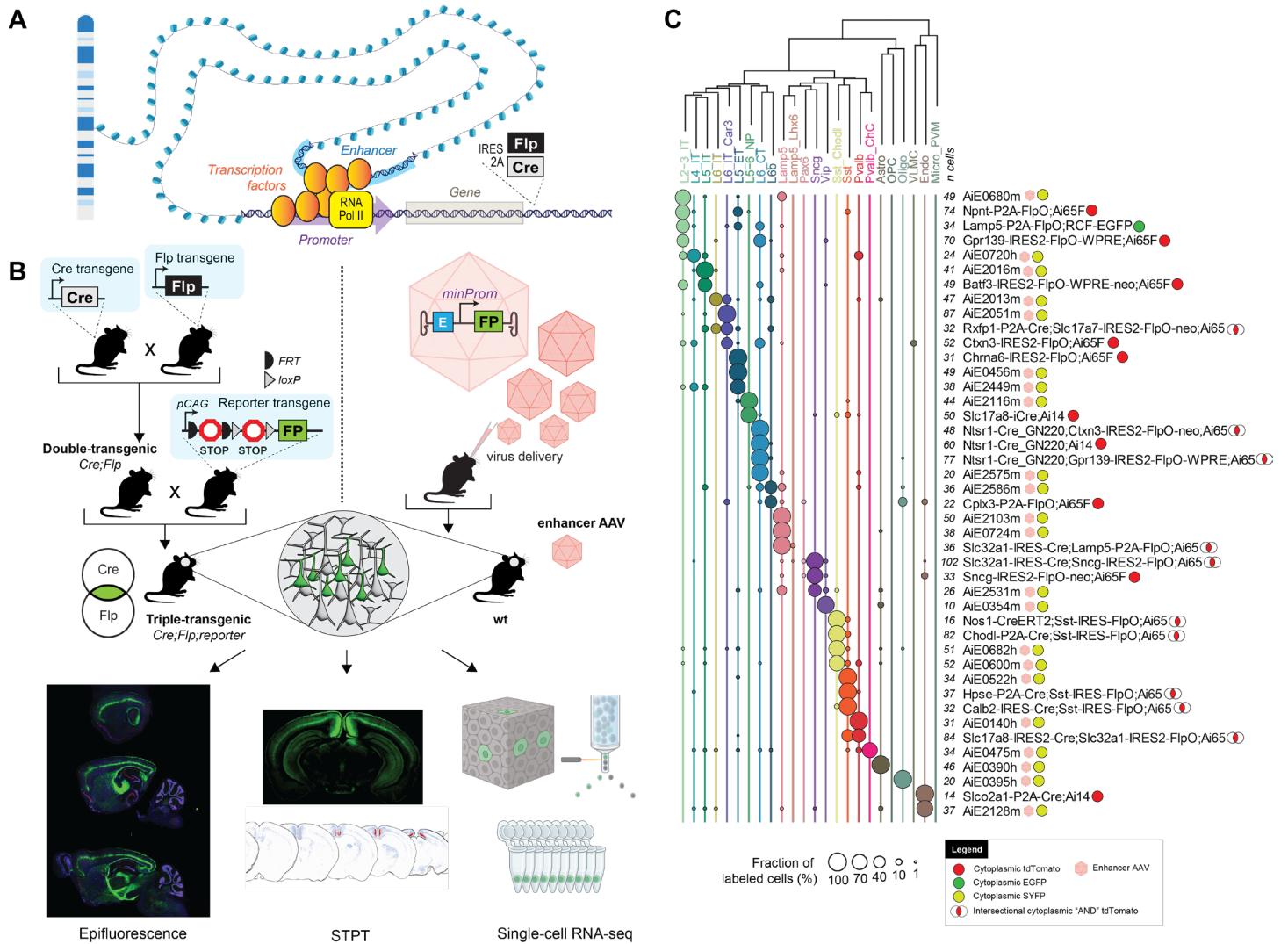
033 101. Choi, J.-H., Yu, N.-K., Baek, G.-C., Bakes, J., Seo, D., Nam, H.J., Baek, S.H., Lim, C.-S., Lee, Y.-S., and Kaang, B.-K. 034 (2014). Optimization of AAV expression cassettes to improve packaging capacity and transgene expression in 035 neurons. *Mol Brain* **7**, 17. <https://doi.org/10.1186/1756-6606-7-17>.

036 102. Protocols.io VC0002 Allen Institute for Brain Science (2024). Production of Crude AAV Virus Extract.

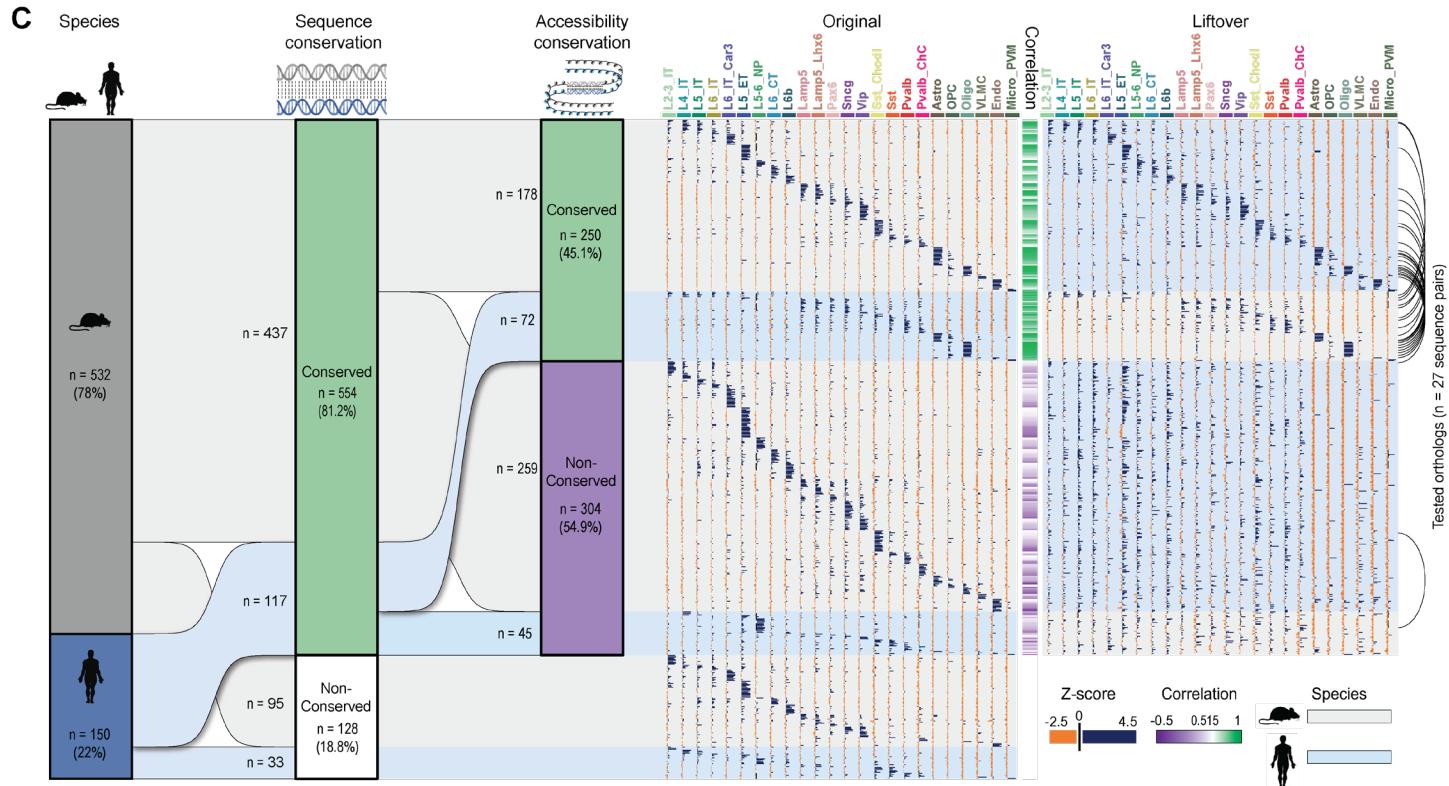
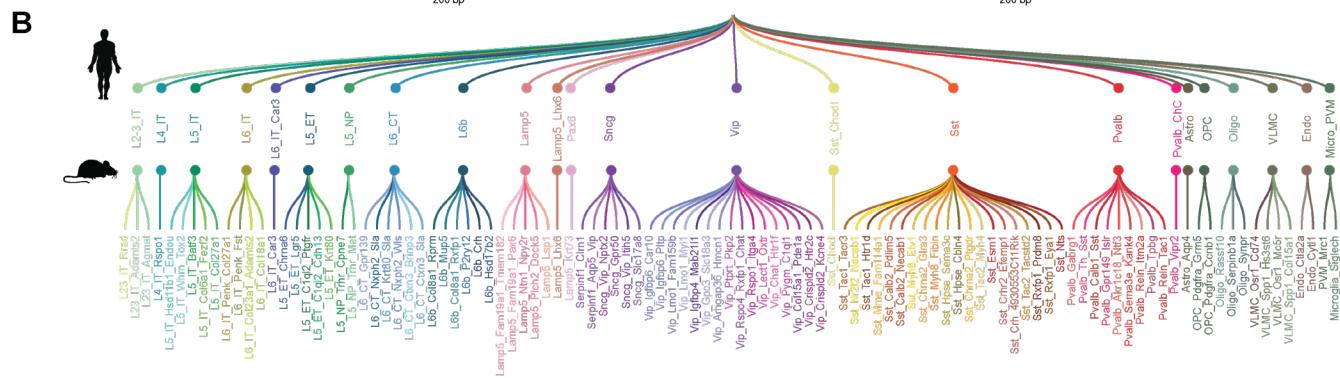
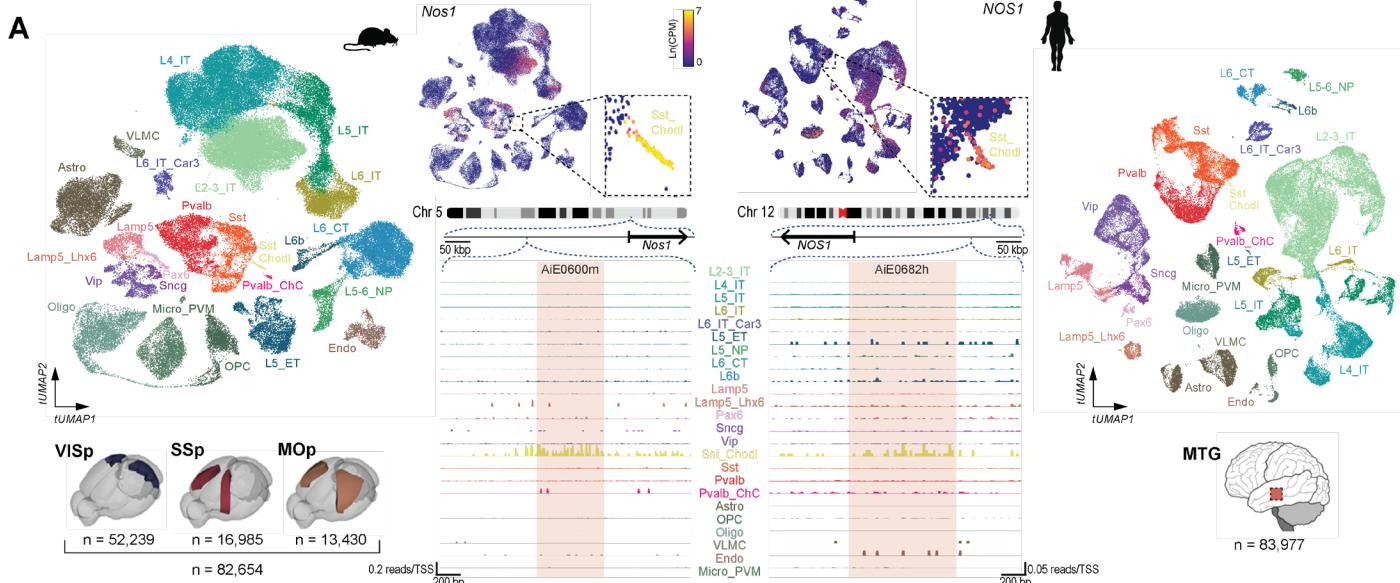
037 103. Protocols.io VC0003 Allen Institute for Brain Science (2024). Production of AAV Virus by Iodixanol Gradient 038 Ultracentrifugation.

039 104. Protocols.io VC0005 Allen Institute for Brain Science (2024). Viral Titer Quantification by Digital Droplet PCR.

040 105. Kim, J.-Y., Grunke, S.D., Levites, Y., Golde, T.E., and Jankowsky, J.L. (2014). Intracerebroventricular viral injection of 041 the neonatal mouse brain for persistent and widespread neuronal transduction. *J. Vis. Exp.* **2014/09/15**, 51863.


042 106. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T.R. 043 (2013). STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–21.

044 107. Zhu, F., Gamboa, M., Farruggio, A.P., Hippenmeyer, S., Tasic, B., Schüle, B., Chen-Tsai, Y., and Calos, M.P. (2014). 045 DICE, an efficient system for iterative genomic editing in human pluripotent stem cells. *Nucleic Acids Res.* **42**, e34.




046 108. George, S.H.L., Gertsenstein, M., Vintersten, K., Korets-Smith, E., Murphy, J., Stevens, M.E., Haigh, J.J., and Nagy, A.
047 (2007). Developmental and adult phenotyping directly from mutant embryonic stem cells. *Proc. Natl. Acad. Sci. U.*
048 *S. A.* *104*, 4455–4460.

049

050

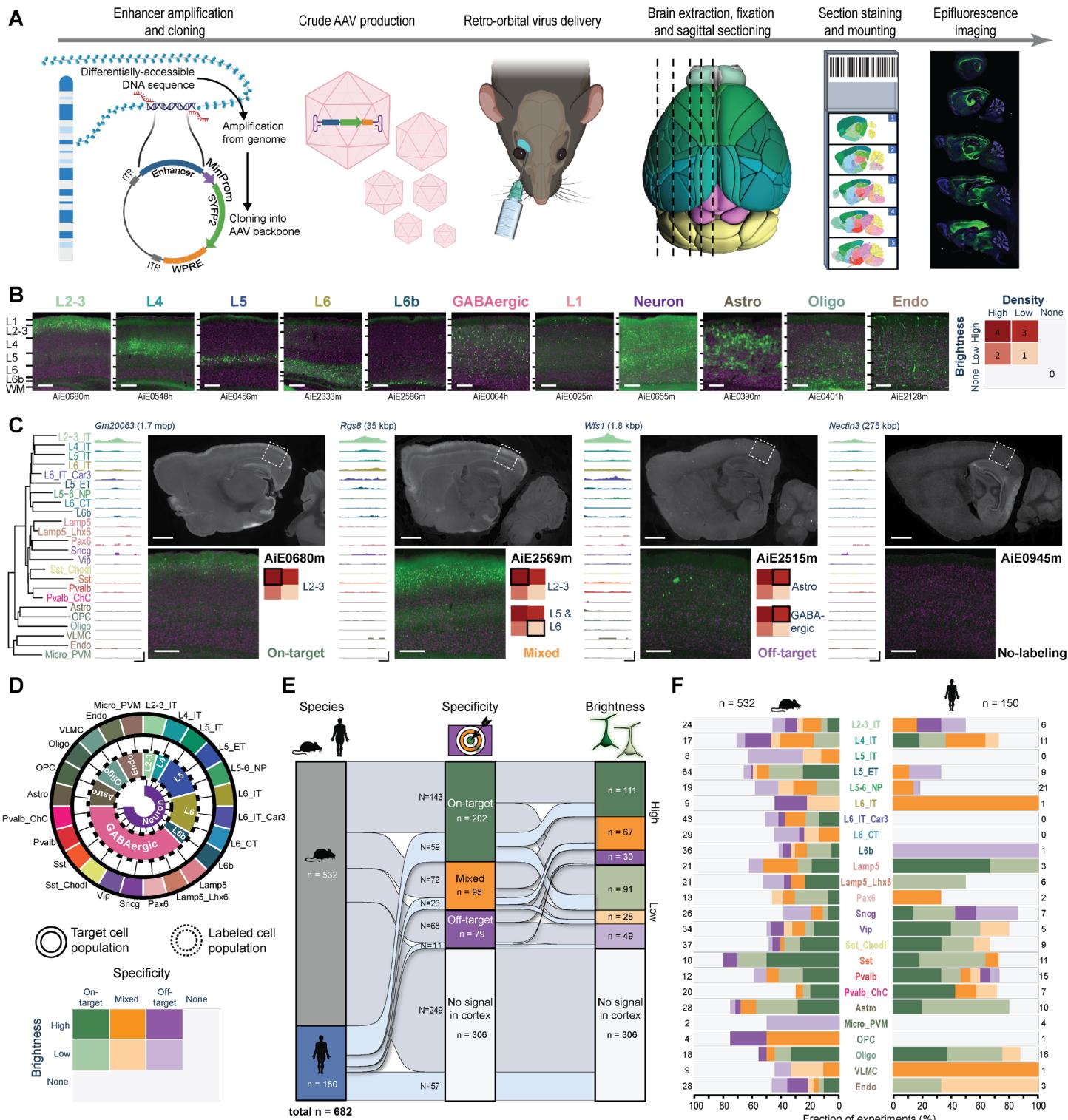
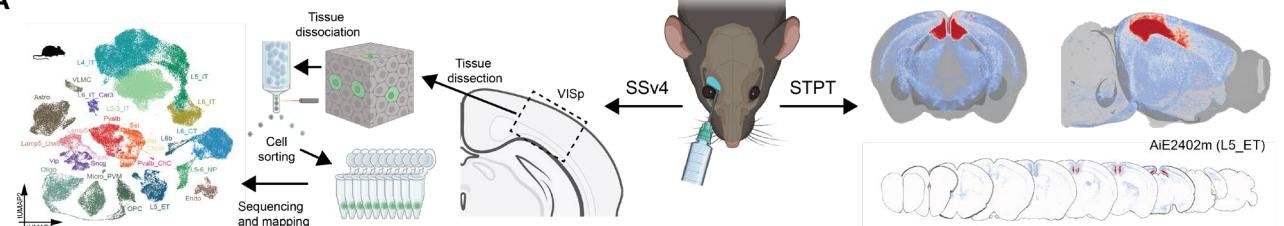
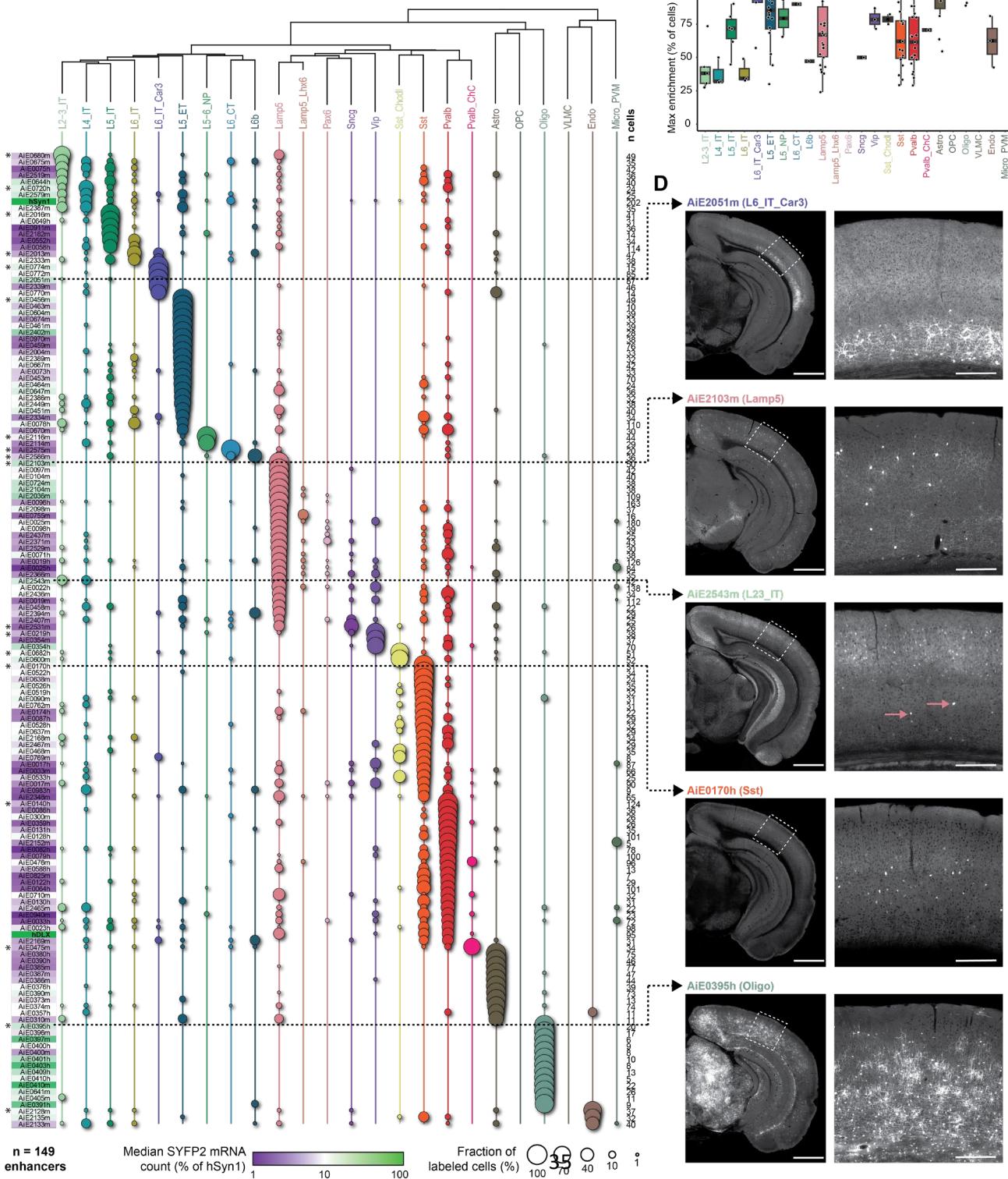


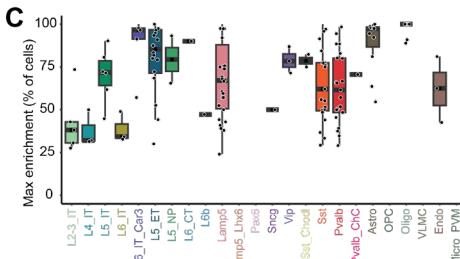
Figure 1: Cell-type-specific genetic tool design and characterization. **A.** A schematic illustration of gene regulation and location for recombinase insertions for knock-in transgenic mouse generation. **B.** Diagrams describing two strategies for genetic tool generation and characterization. *Left:* knock-in transgenic mouse lines are generated by insertions of recombinases into cell-type-specific differentially expressed genes. Generation of experimental animals requires one or more crosses to other recombinase lines and reporters. *Bottom:* The characterization of tool expression in brains of experimental animals is performed by three modalities: epifluorescence on select brain sections, serial-two-photon tomography (STPT) on whole brain, and single-cell RNA-seq on the visual cortex. *Right:* viral vectors utilize enhancers to achieve tool specificity. Generation of experimental animals requires retroorbital, intracerebroventricular or stereotaxic virus delivery to the animal. **C.** Single-cell RNA-seq data for some of the best tools reported in the study. Cortical taxonomy at the sub-class level is on top and fraction of cells labeled per tool is represented by circles. Total number of cells per experiment (*n cells*) is represented in front of each tool's name. Viruses are represented by pink hexagons. Other tools are transgenes.

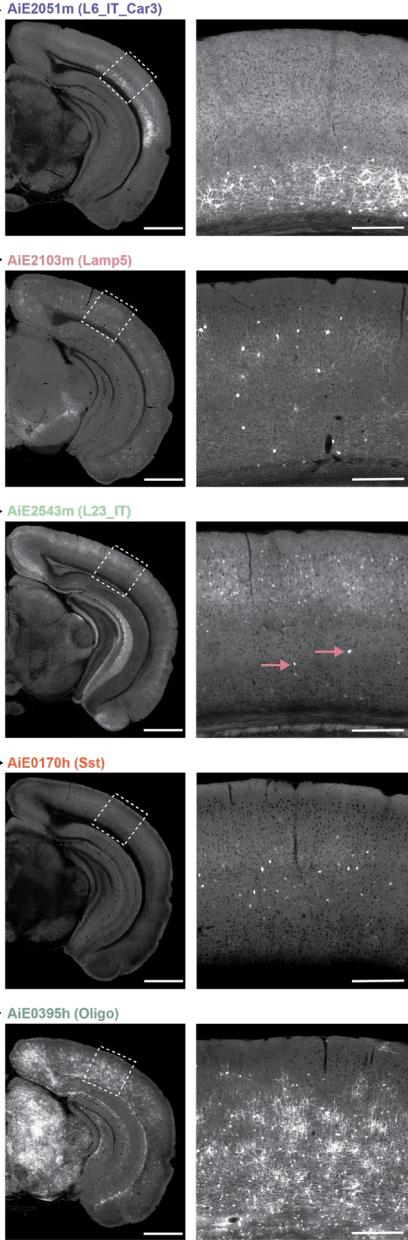
068 **Figure 2: Selection of putative enhancer sequences.** **A.** Mouse and human single-nucleus transcriptomes
069 obtained from single-nucleus multiomes represented in a transcriptomic UMAP and labeled according to cortical
070 cell subclasses. Mouse nuclei were collected from the primary visual (VISp), somatosensory (SSp) and motor
071 (MOp) cortices; human nuclei were collected from the middle temporal gyrus (MTG). Numbers of nuclei included
072 in the analysis are represented by 'n'. **B.** Simplified representation of the unified mouse-human taxonomy of
073 cortical cell subclasses, along with the cluster-level taxonomy for mouse only. **C.** Summary of all 'native' putative
074 enhancer sequences tested (n = 682), divided by the genome of origin, followed by cross-species conservation
075 of sequence and accessibility (left). The modified sequences produced by concatenation are not included. The
076 'Original' and 'Liftover' plots show relative accessibility of all individual sequences in each subclass in their
077 respective species, alongside the relative accessibility of its orthologous liftover sequence in the other species,
078 respectively. Correlation between the original and liftover accessibility data is shown as a green/purple heatmap
079 in the middle of these plots. Black arcs on the very right indicate instances where orthologs from both species
080 were tested.


081


084 **Figure 3: A pipeline for enhancer AAV screening in the mouse brain. A.** Graphical summary of the enhancer
085 screening pipeline. **B.** Representative images of the visual cortex, showing examples of 11 categories of visually
086 distinguishable cortical populations used to evaluate the labeling pattern of each enhancer AAV. Individual
087 enhancer IDs are shown beneath each image (left), and a scoring matrix for evaluating brightness of the
088 fluorescent signal and the labeling density, compared to the density expected for each category (right). **C.**
089 Representative tracks of chromatin accessibility for four individual enhancers targeting across the cortical
090 subclasses, demonstrating differential accessibility in L2-3_IT, alongside representative epifluorescence image
091 sets, showing the resulting labeling pattern, and the score given to each in VISp. The closest L2-3_IT marker
092 gene is shown above each set of tracks, along with the distance from the enhancer to its TSS. Scale bars below
093 the tracks represent 100 bp (horizontal) and 0.3 RPKM/cell (vertical). **D.** Schematic describing the approach
094 used to determine target specificity, according to the alignment between the TCP and LCP (top left) and a matrix
095 used for classifying all enhancers, based on a combination of their target specificity and signal brightness (bottom
096 left). **E.** Summary plot showing performance of all tested enhancers (n = 682) according to the categories (right).
097 > 50% of enhancers (n = 376) exhibited signal in the cortex, ~43% were putatively on-target or had mixed (on-
098 and off-target) labeling, and ~30% were putatively on-target (202/682). **F.** Proportion of enhancers in each of the
099 categories specified in (D), according to their genome of origin (top, n = 150 for human and 532 for mouse) and
100 TCP. Numerical values represent the number of tested enhancers in each column. For images, scale bars for
101 full section and expanded views are 1.0 and 0.2 mm, respectively.

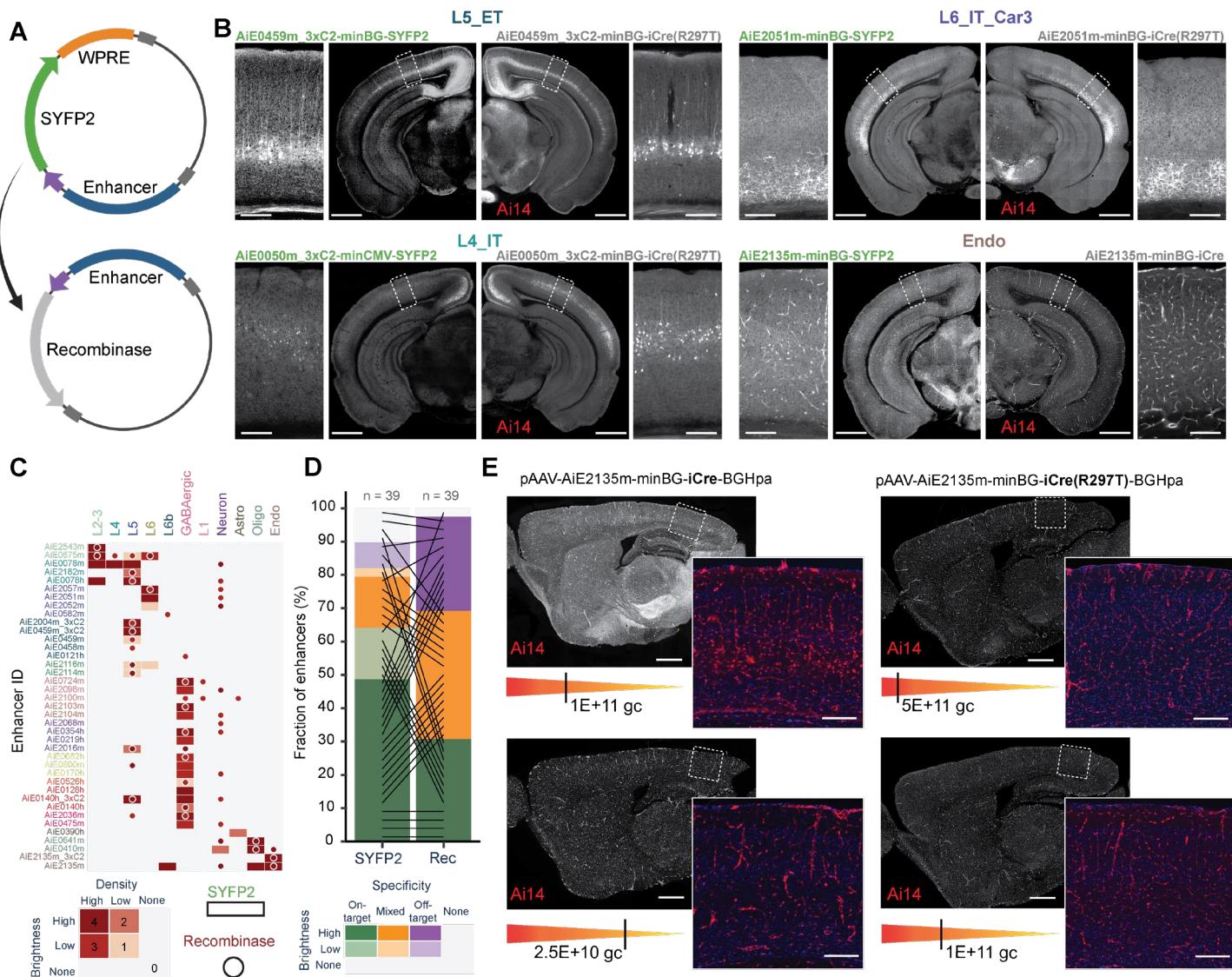
102
103


A

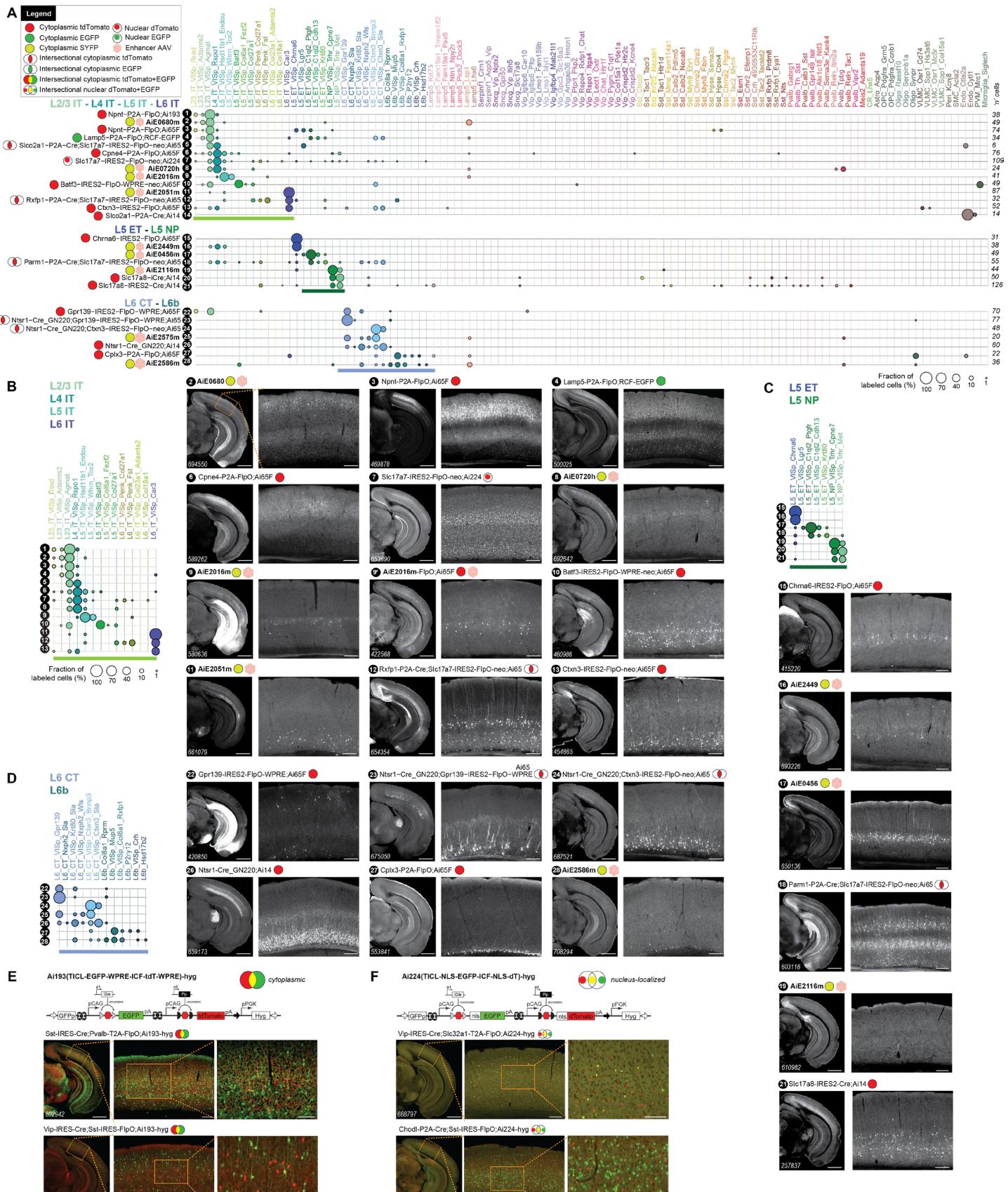

B

C

D


105 **Figure 4: Secondary validation of target specificity, with scRNA-seq and whole-brain imaging. A.**
106 Schematic of methods for secondary validation. **B.** scRNA-seq analysis using SSv4, of FACS-sorted SYFP2⁺
107 cells from the mouse visual cortex, following RO administration of the enhancer AAV. The fraction of cells
108 mapped to each cortical subclass corresponds to circle size, and the median SYFP2 mRNA count in each
109 experiment, relative to the hSyn1 promoter, is denoted by a purple-to-green color gradient. The number of
110 sequenced cells for each experiment is shown to the right of the table. Total number of enhancers examined is
111 n = 149. Asterisks denote the top performing enhancers for each subclass, i.e., the ones with highest proportion
112 of cells mapping to the subclass of interest. **C.** Box plot showing for each cortical population, all enhancer AAVs
113 for which that population was the main enriched target population. The thick black bars represent medians, color-
114 coded boxes represent top and bottom 25%, and whiskers represent top and bottom 10%. Data for individual
115 enhancers is shown as superimposed black circles. **D.** Representative STPT images for five enhancers, with an
116 expanded view of VISp displayed to the right. Dashed arrows connect each image set to its corresponding SSv4
117 data. In the case of AiE2543m, which labels L2-3_IT cells and Lamp5 cells, pink arrows point to sparse, yet
118 brightly labeled non-L2-3 neurons, which are likely the Lamp5 interneurons. These are overrepresented in SSv4
119 (B), likely due to the stringent gating strategy in FACS focusing on the highly fluorescent cells. For images, scale
120 bars for the hemisphere and the VISp magnified view are 1.0 and 0.2 mm, respectively.

121



123 **Figure 5: Optimization of enhancer activity through core bashing.** **A.** Schematic representation of the core
124 bashing approach for enhancer optimization (C = Core). **B.** Representative STPT images of coronal
125 hemisections, showing labeling pattern for four individual full-length enhancers (left) and their best bashed
126 version (right), which was selected according to the combination of brightness and specificity. A magnified view
127 of VISp is shown alongside each hemisection. Scale bars for full section and expanded view are 1.0 and 0.2
128 mm, respectively. **C.** Heatmap showing the scoring results of epifluorescence image sets of the full-length
129 enhancer (rectangles) alongside its best bashed version (circles); n = 82 pairs. **D.** Summary of the scoring data
130 in (C), sorted according to brightness and specificity of the full-length vs. the bashed enhancer (left) and for the
131 different cores tested (right). **E.** Dot plot of SSv4 data for full-length enhancers and their bashed counterpart
132 shown in pairs, with circle size denoting the fraction of cells mapped to each of the cortical subclasses in each
133 experiment. The color overlaying each pair name corresponds to the relative change in SYFP2 transcript count
134 of the bashed relative to the full-length enhancer; n = 24 pairs. **F.** Change in specificity vs. change in SYFP2
135 transcript count for all enhancer pairs in (E). Average and SEM for all experiments corresponds to the red dot
136 with error bars. Pairwise comparisons for individual enhancers correspond to white dots if no change in specificity
137 if observed. If the bashed version preferentially labeled a different subclass or class compared to the
138 corresponding full-length enhancer, the dots are grey or black, respectively.

139

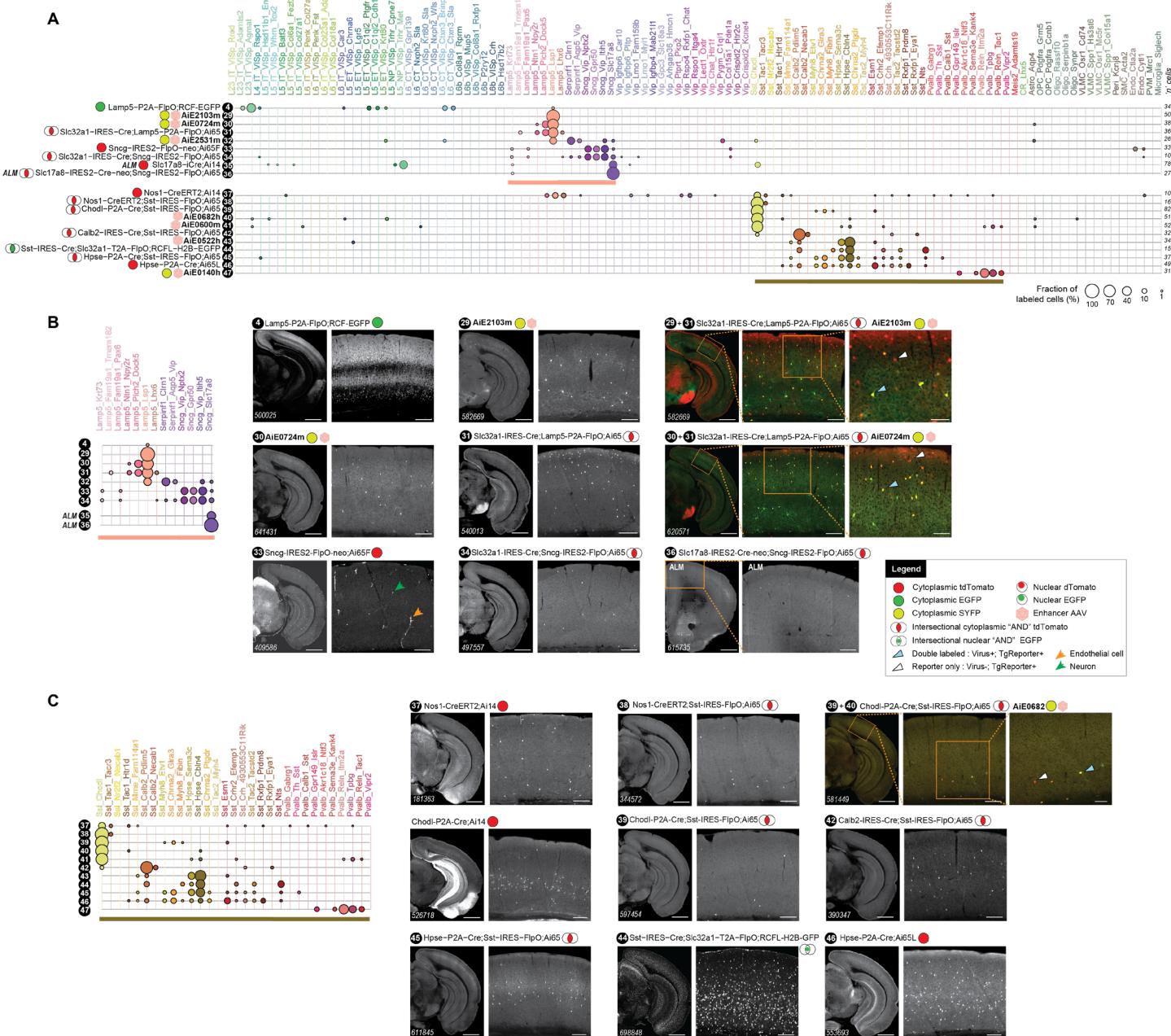
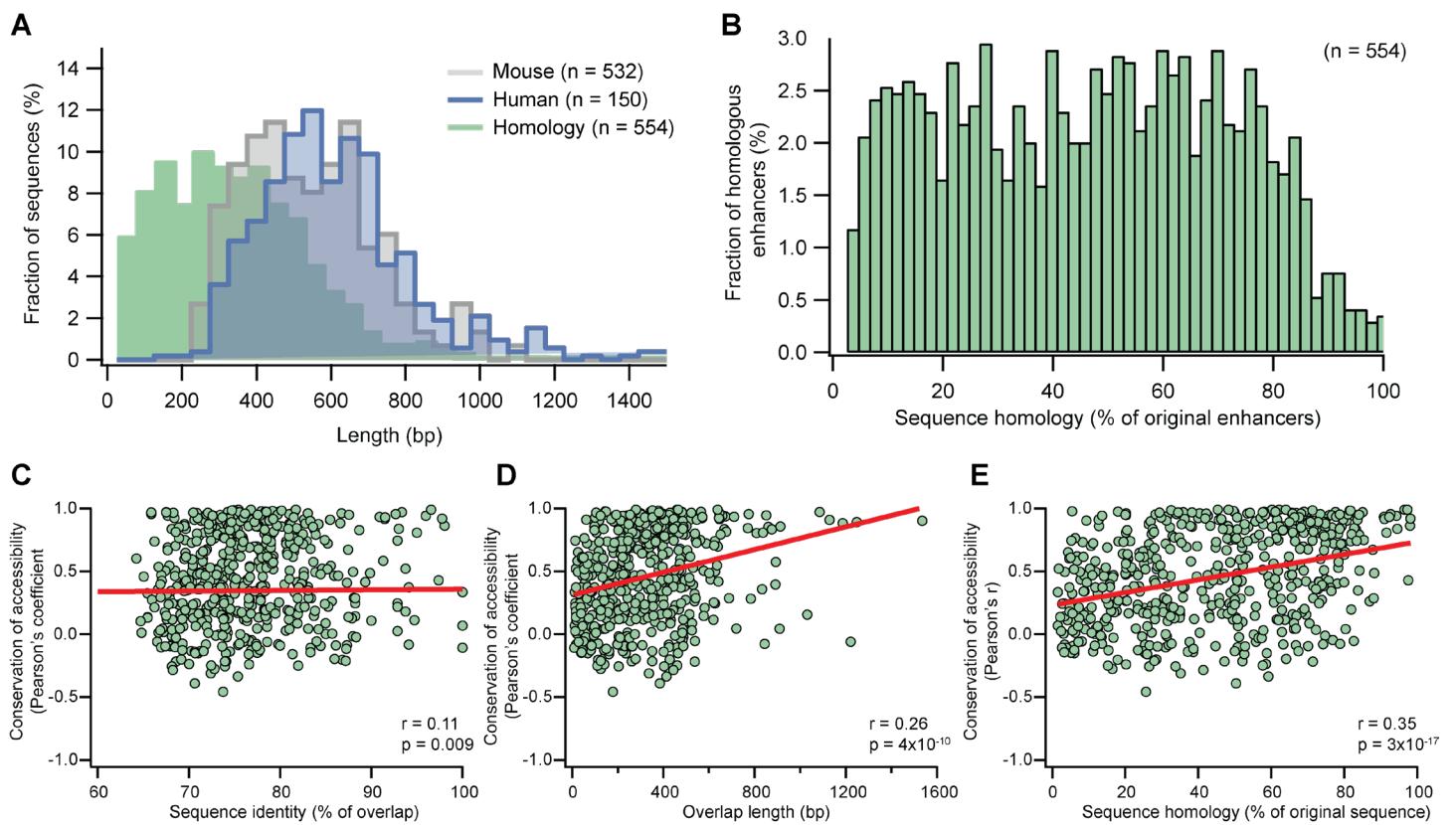
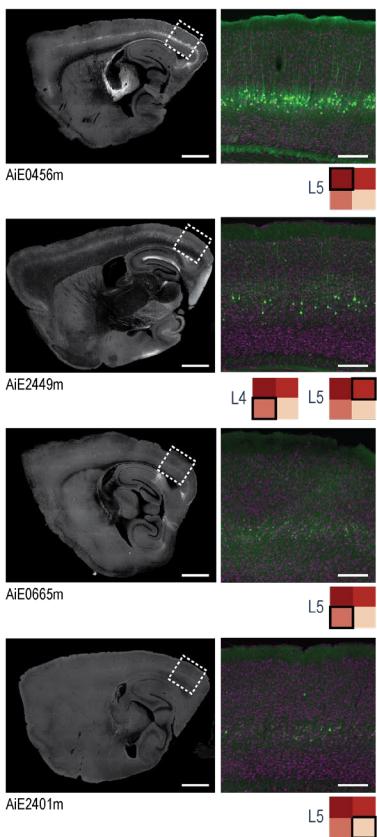


Figure 6: Recombinase-expressing enhancer-AAVs. **A.** Schematic representation of the vector design. **B.** Representative STPT images of coronal hemisections, showing labeling pattern for four individual enhancers expressing SYFP2 delivered to a wild-type mouse (left) and the same enhancers driving iCre(R297T), delivered to the *Ai14* reporter mouse (right). A magnified view of VISp is shown alongside each hemisection. **C.** Heatmap showing the scoring of epifluorescence imaging data of the enhancers driving SYFP2 (rectangles) or a recombinase (circles); $n = 39$ pairs. **D.** Summary plot of the scoring data in (C), comparing brightness and specificity of the SYFP or recombinase expression. **E.** Specificity of Cre-dependent recombination in endothelial cells with the *Ai2135m* enhancer is reduced in iCre compared to the mutated version iCre(R297T) and is more sensitive to the viral dose (gc, genome copies). Scale bars in (B) and (E), 1.0 and 0.2 mm for full section and expanded view, respectively.

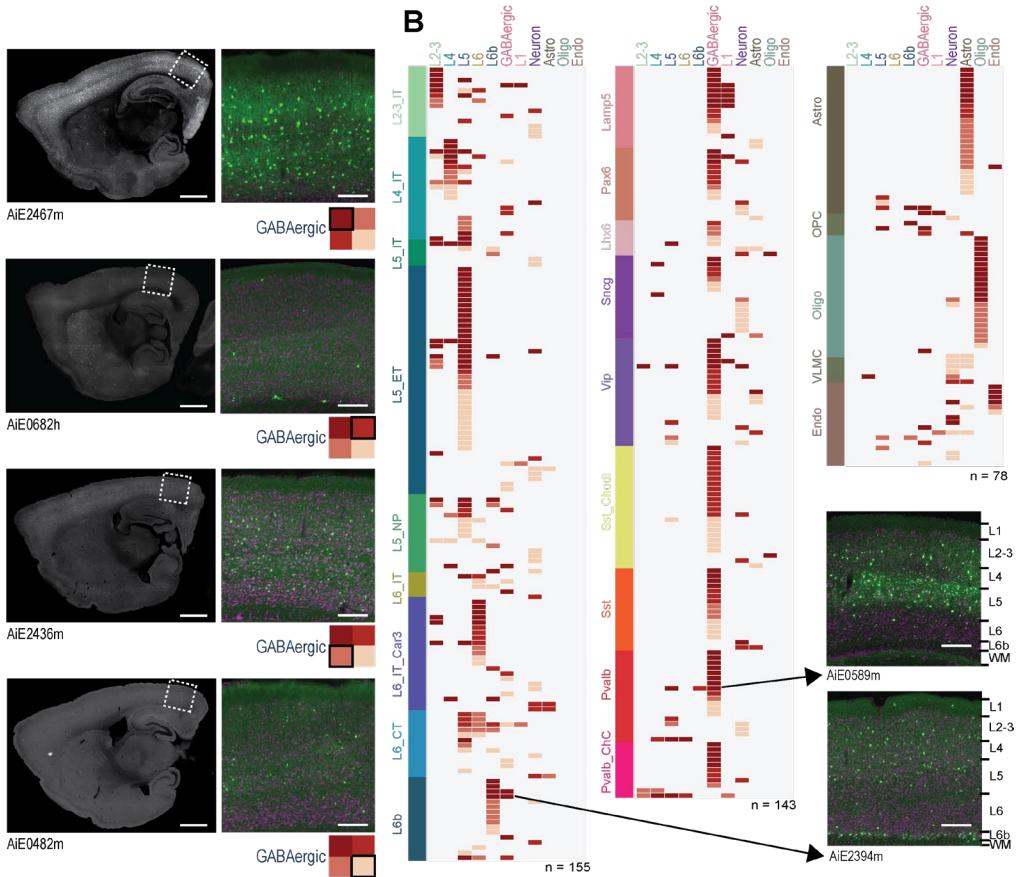


154 **Figure 7: Characterization of new transgenic driver lines, preferentially targeting glutamatergic**
155 **subclasses and clusters. A.** scRNA-seq (SSv4) data showing distribution of labeled cells mapped to the mouse
156 VISp taxonomy at the cluster level. 28 different experimental conditions (tools numbered **1-28**) were grouped
157 into panels according to predominant cell types labeled. They may include transgenic drivers and reporters as
158 indicated or may be wild-type animals that received a systemic delivery of enhancer viruses (marked by pink
159 hexagons). **B.** Focused view of tools **1-13** that label IT neurons from Layer 2-3, L4, L5 and L6, including the
160 previously reported enhancer AiE2016m (originally called mscRE16)²² expressing SYFP in a wild-type animal
161 (**9**) and driving a FlpO recombinase in Ai65F (**9***). **C.** Same as in (B) for tools **14-21** that label ET and NP neurons
162 in L5. **D.** Same as in (B) for tools **22-28** that label L6_CT and the L6b neurons. **E.** Schematics and representative
163 sections from STPT data for a new Flp-Cre:AND/OR reporter line, *Ai193* (TICL-EGFP-WPRE-ICF-tdT-WPRE)-
164 hyg. The line was tested in triple transgenic crosses with two recombinase lines. Cells that express the Cre
165 recombinase are EGFP-positive (green) and those that express FlpO are tdTomato-positive (red). Cells that
166 express both appear yellow. **F.** Same as in (E) for a new reporter line, *Ai224* (TICL-NLS-EGFP-ICF-NLS-dT)-
167 hyg, where fluorophores are nucleus-localized. Scale bars: 1.0 and 0.2 mm for full section and expanded view;
168 0.1 mm for further expanded view in (E) and (F).

169



171 **Figure 8: Characterization of new transgenic driver lines, preferentially targeting GABAergic subclasses**
172 **and clusters. A.** scRNA-seq (SSv4) data, same as in Figure 7A but for 20 lines (tools numbered 4, 29-34, 37-
173 47) targeting GABAergic types grouped into panels according to predominant cell types labeled. **B.** Focused
174 representation of the same data as in (A) for tools labeling clusters within Lamp5 and Sncg GABAergic cortical
175 subclasses. All data (tools numbered 4, 29-34) are from VISp, except for tools 35 and 36 that were characterized
176 in cortical area ALM. The tools 29+31 and 30+31 show expression of two different Lamp5-expressing viruses in
177 the triple transgenic mouse that expresses highly specifically only in Lamp5 interneurons (*Slc32a1-IRES-
178 Cre;Lamp5-P2A-FlpO:Ai65* – see tool 31). **C.** Focused representation of the same data as in (A) for tools 37-47
179 labeling clusters in Sst and Pvalb GABAergic cortical subclasses. Scale bars: 1.0 and 0.2 mm for full section and
180 expanded view; 0.1 mm for further expanded view for tools 29+31, 30+31, 39+40.



182
183 **Figure S1: Analysis of sequence alignment across species.** **A.** Histograms showing the proportion of mouse
184 (grey) and human (blue) sequences, according to their length along with a histogram showing the length
185 distribution of the liftover sequences (full green). Bin size = 50 bp. **B.** Histogram of the sequence homology,
186 calculated as the total number of identical base pairs (liftover length x percent identity) of the total length of the
187 original enhancer sequence. Bin size = 2%. **C-E.** Correlation analysis between the conservation of accessibility
188 and the percent identity between the overlapping sequence only (C), overlap length (D) and the sequence
189 homology relative to the length of the original sequence (E). Linear fit lines are shown in red, and the Pearson's
190 coefficient with its p-value are shown at the bottom right corner of each plot.

A

B

193

194

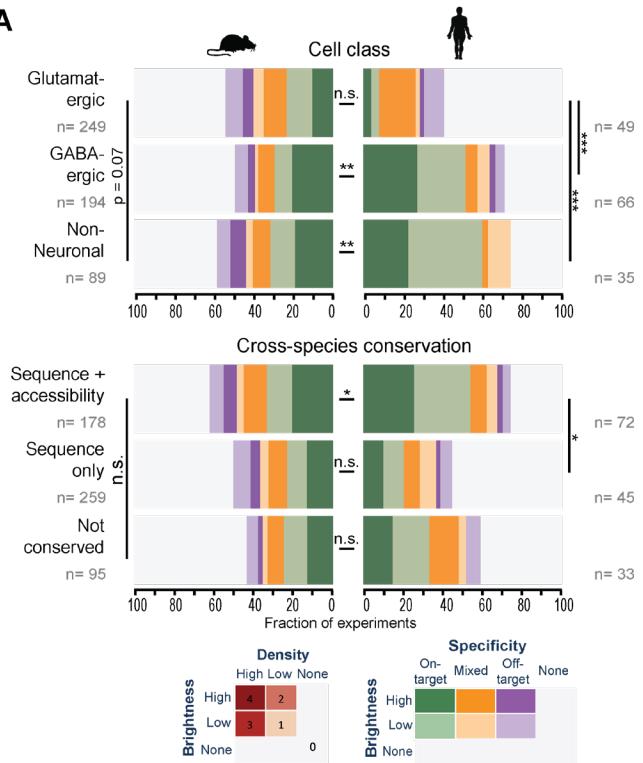
195

196

197

198

199


200

201

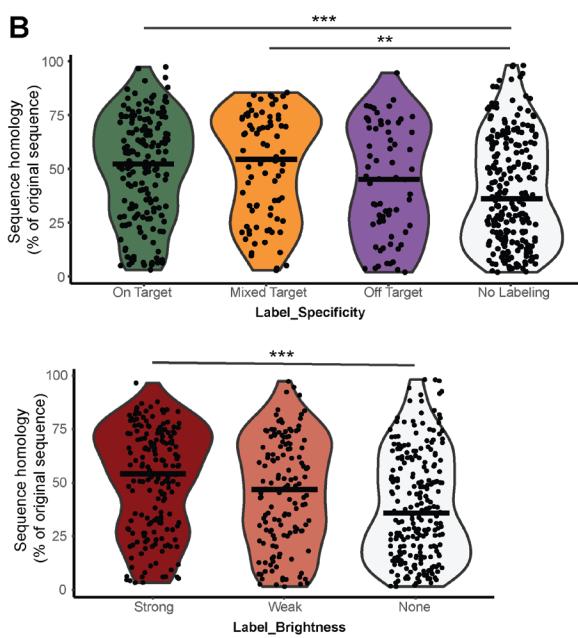
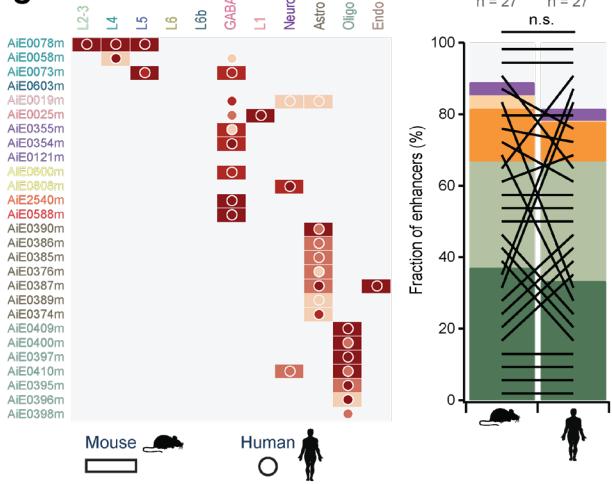
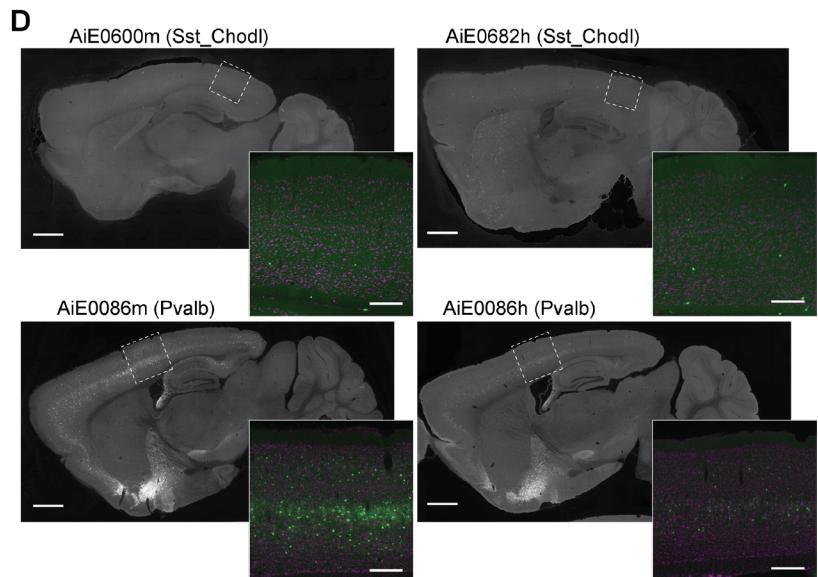
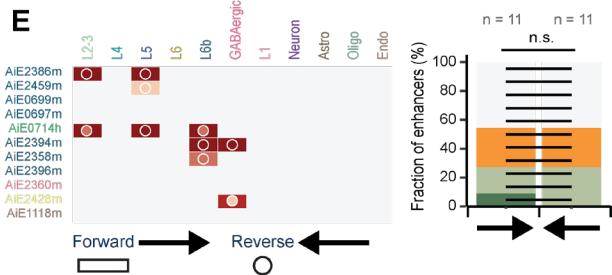
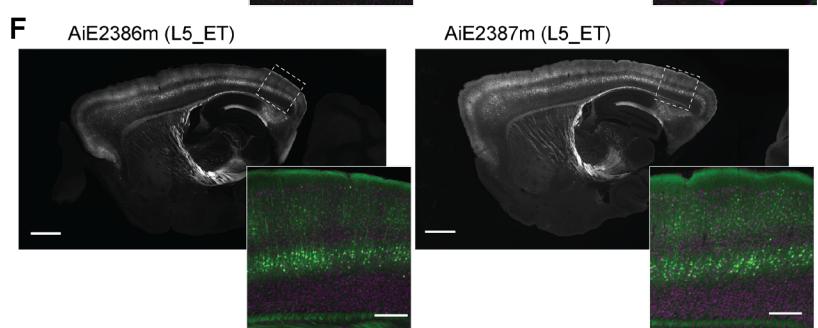

202

Figure S2: Enhancer scoring based on epifluorescence image sets. A. Representative sagittal images from eight experiments with focus on two cell categories: L5 (left column) or GABAergic (right). Scoring according to the scheme in Figure 3B is shown below each set of images. **B.** A heat map of all enhancers evaluated, which produced any labeling in the neocortex, arranged according to the cell population where their accessibility was highest, showing the identity of the labeled cell population and the labeling quality, according to the scheme in Figure 3B. The number of individual experiments in each category is shown below each plot (total n = 376). For images, scale bars for full section and expanded views are 1.0 and 0.2 mm, respectively.

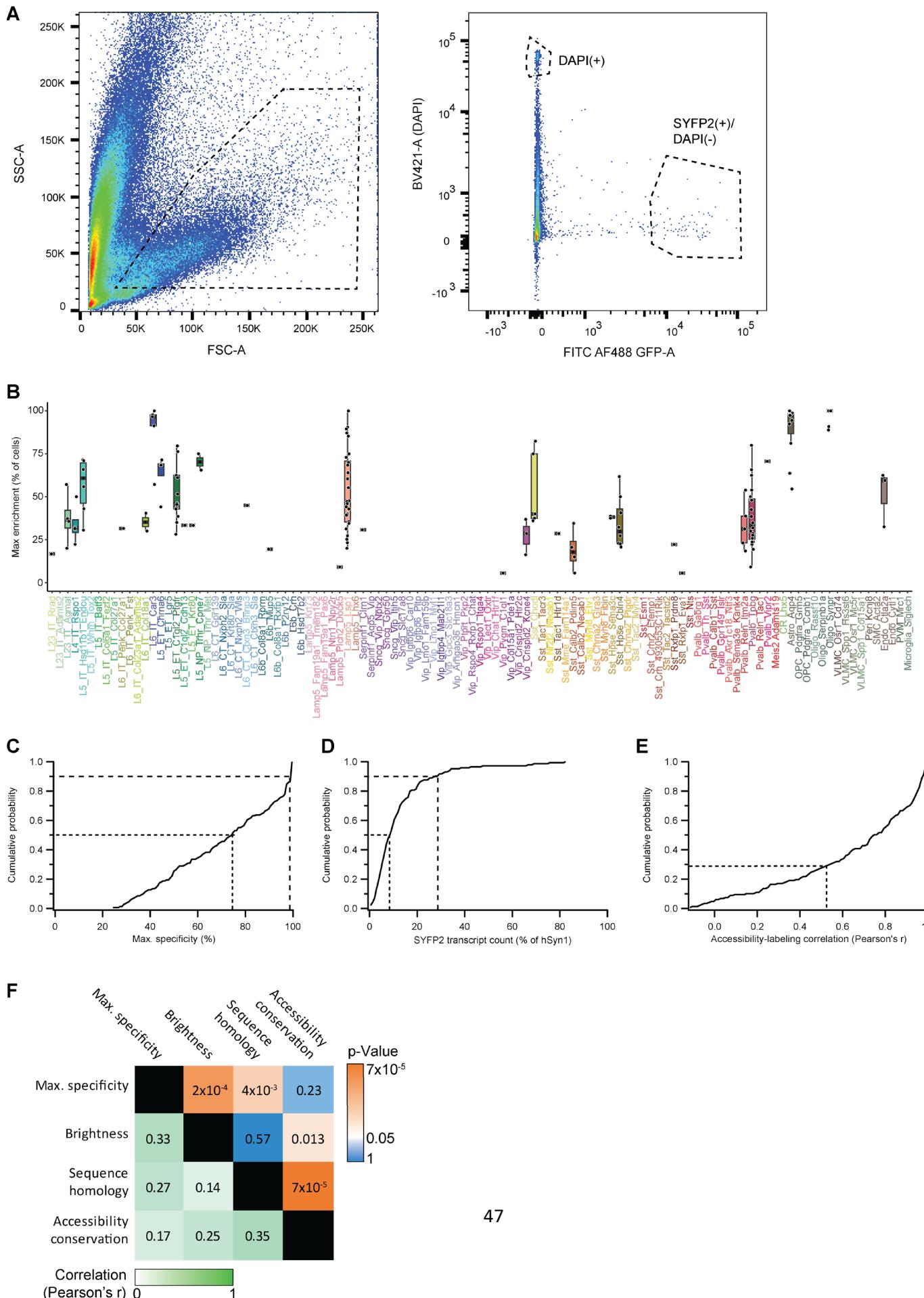

A


B

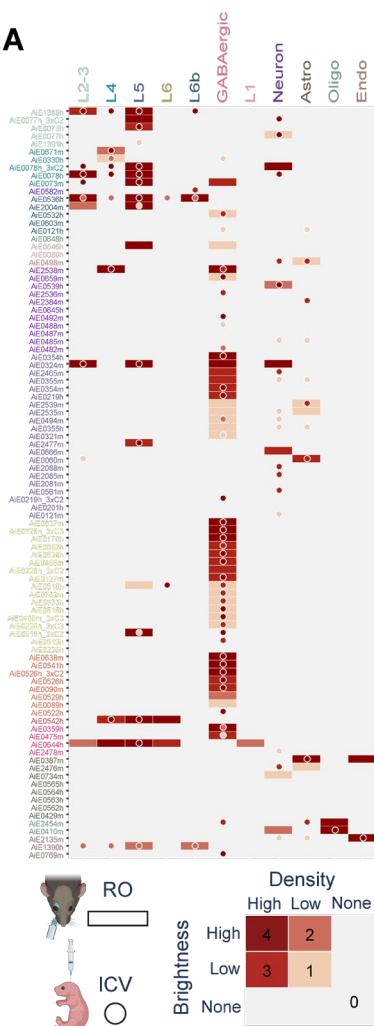

C


D

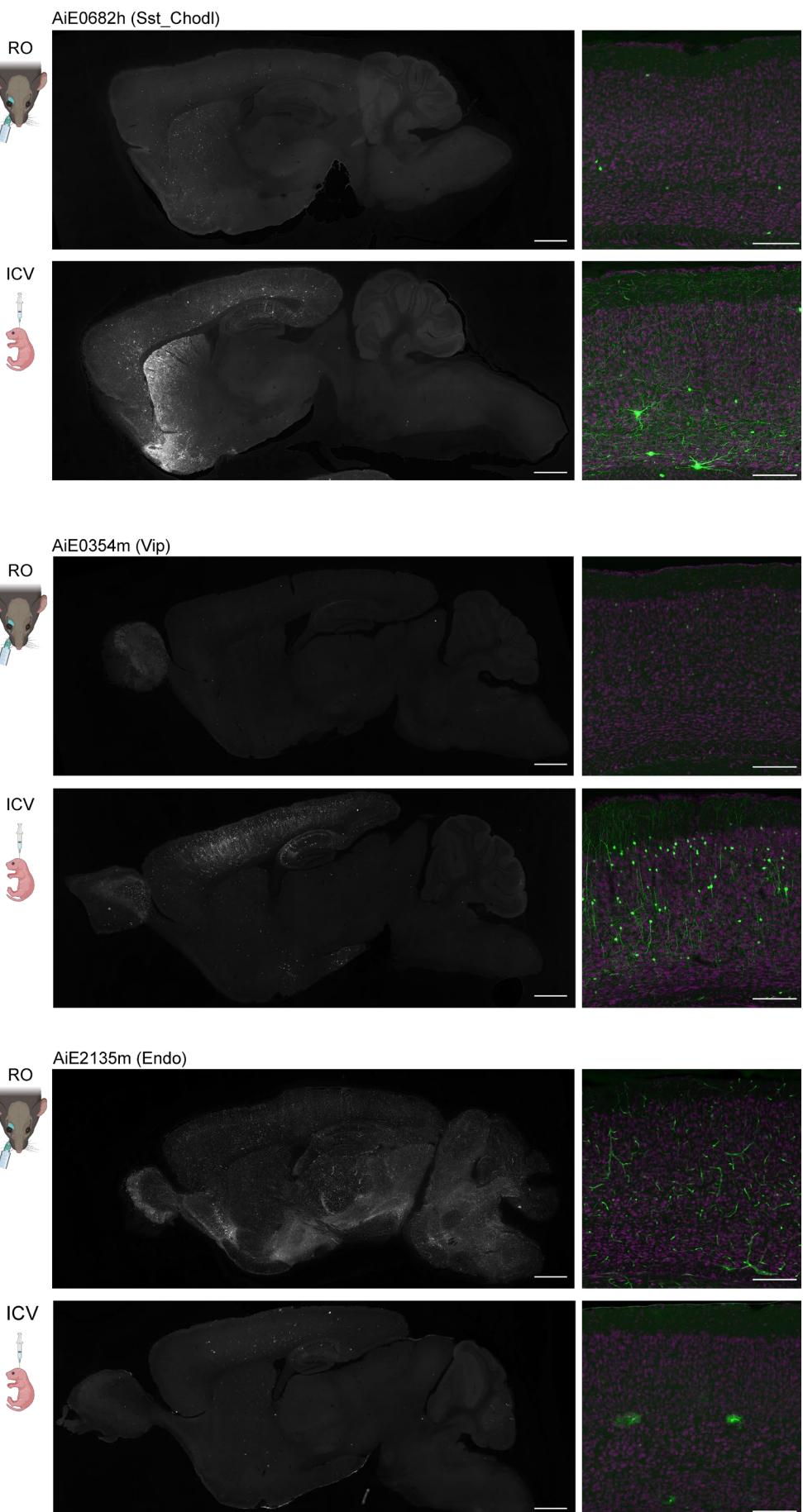
E


F

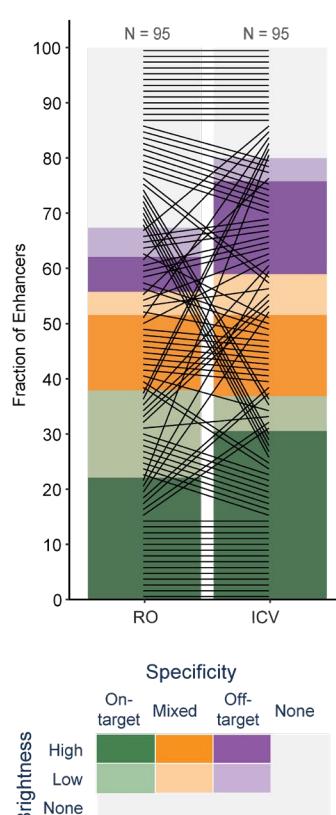
205 **Figure S3: Effects of cross-species conservation and sequence orientation on enhancer performance.**


206 **A.** Summary plot of enhancer scoring data according to their genome of origin (top) and cross-species
207 conservation of sequence and accessibility (bottom). **B.** Violin plots showing the degree of mouse-human
208 sequence homology according to the different specificity (top) and brightness (bottom) categories. P-values were
209 calculated with one-way ANOVA, followed by a pairwise post-hoc analysis (Tukey) corrected for multiple
210 comparisons (Bonferroni). Significance levels are the same as in (A). **C.** Summary plot of the scoring data for
211 mouse (rectangles) alongside its human (circles) orthologous sequence (Left) and a summary plot of the scoring
212 data according to the brightness and specificity, with black lines connecting each pair (Right). **D.** Representative
213 epifluorescence images of sagittal sections, showing labeling pattern for two individual mouse enhancers (left)
214 and their human orthologs (right). **E.** Summary plot of the scoring data for complementary oriented sequences
215 (left) and a summary plot of the scoring data according to the brightness and specificity, with black lines
216 connecting each pair (right). **F.** Representative epifluorescence images of sagittal sections, showing identical
217 labeling pattern for a complementary pair. P-values were calculated using a chi-squared test. P-values < 0.05,
218 < 0.01 and < 0.001 are denoted by *, **, ***, respectively, n.s. = not significant. Scale bars for full section and
219 higher-magnification view = 1.0 and 0.2 mm, respectively.

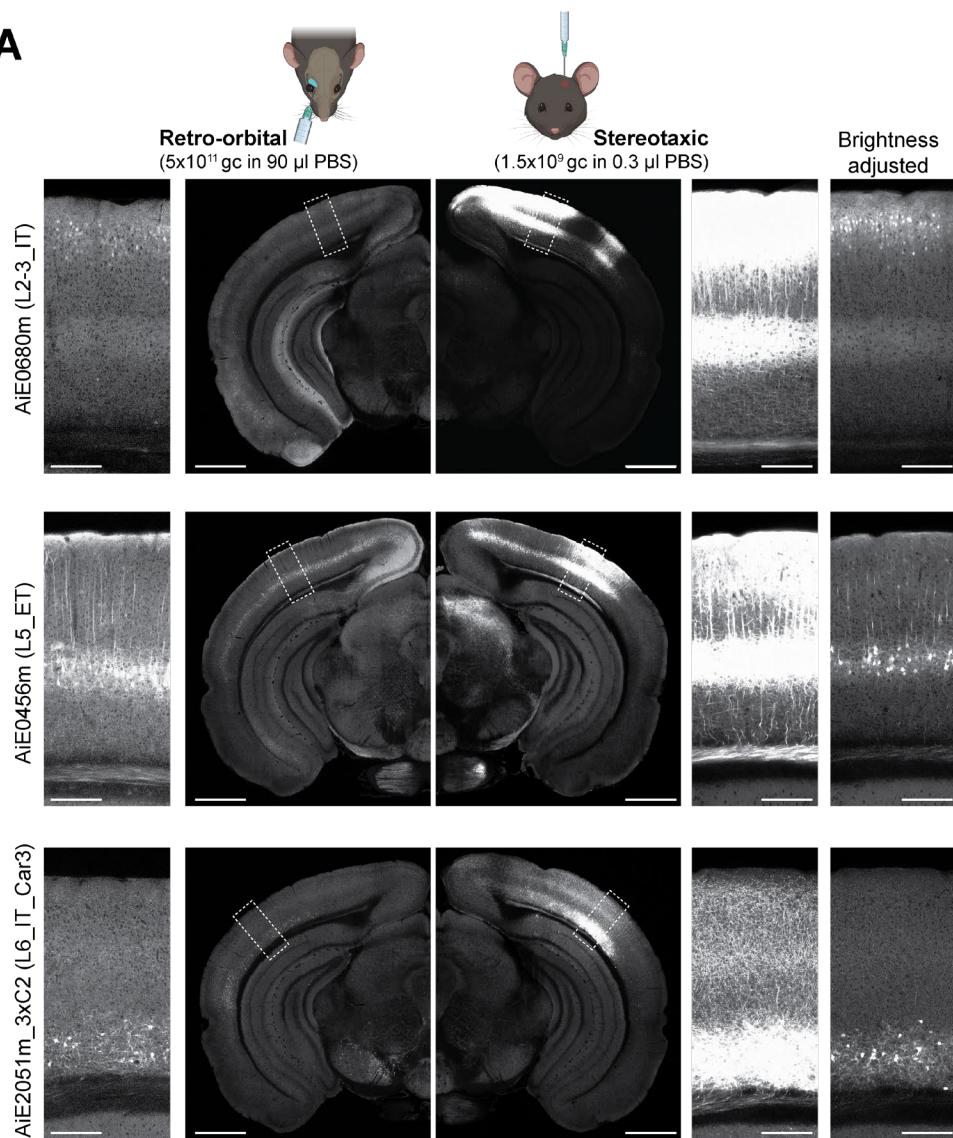
220

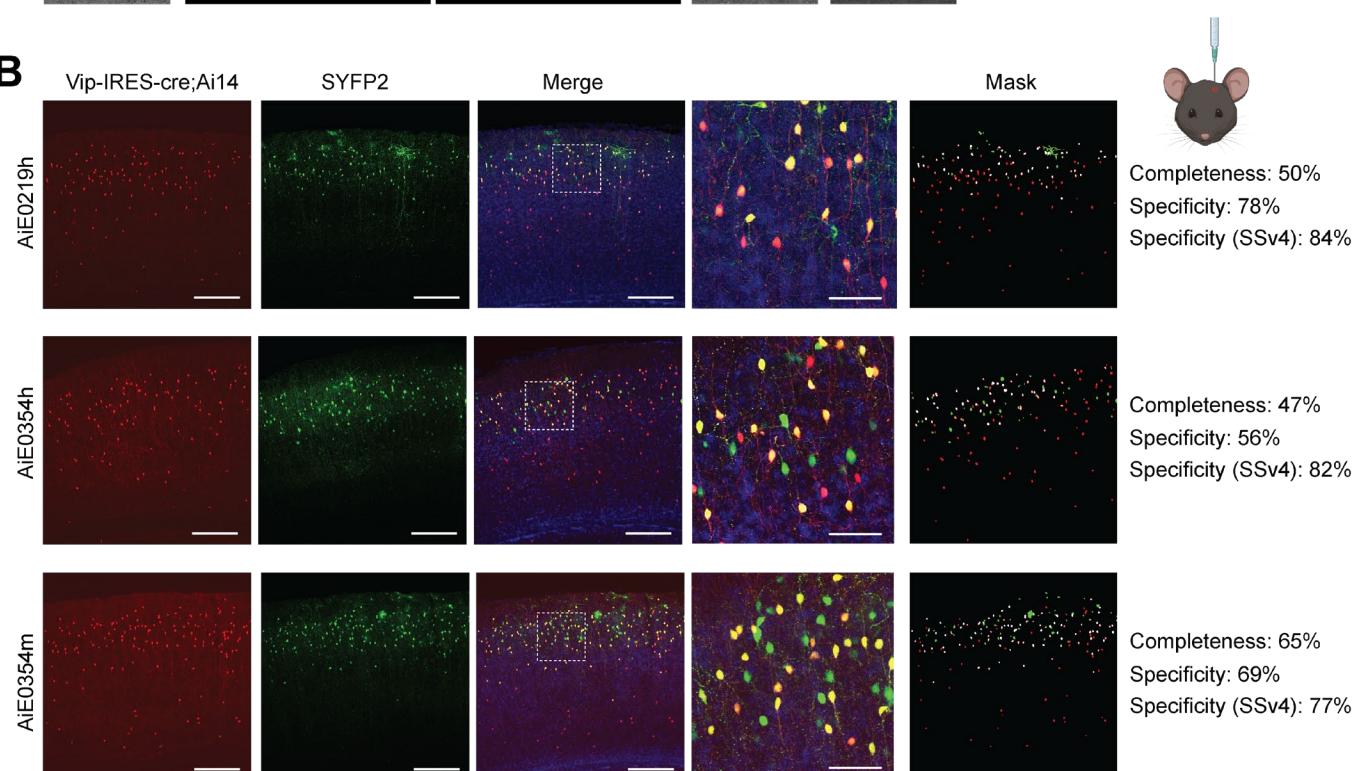


222 **Figure S4: Distribution of specificity and brightness across enhancer AAVs.** **A.** Representative plots of the
223 FACS gating strategy for selective collection of cells labeled by the Lamp5 enhancer AiE2103m: Forward (FSC-
224 A) and side scatter (SSC-A) were used to select objects matching size and granularity of cortical cells (left) and
225 this fraction was further separated according to signal detected in the DAPI and FITC channels (right), in order
226 to avoid collection of DAPI+ cells, whose membrane is likely compromised. Dashed boxes indicate the gates
227 applied for sample collection. **B.** Box plots showing the distribution of enhancer maximum specificity in each of
228 the cortical clusters. **C.** A cumulative distribution plot showing the fraction of enhancers as a function of their
229 specificity, estimated by the maximal fraction of labeled cells. **D.** A cumulative distribution plot showing the
230 fraction of enhancers as a function of their brightness, relative to hSyn1. **E.** A cumulative distribution plot showing
231 the fraction of enhancers as a function of correlation coefficient, between the distribution of labeled cells and
232 distribution of chromatin accessibility, across the cortical subclasses. **F.** Cross-correlation plot showing
233 correlation values (white-green scale, bottom left corner) and their respective p-values (blue-orange scale, top
234 right corner). Dashed lines in plots (A-C) show the median and top 10th percentile of enhancers. P-values in (D)
235 were corrected for multiple comparisons.


A

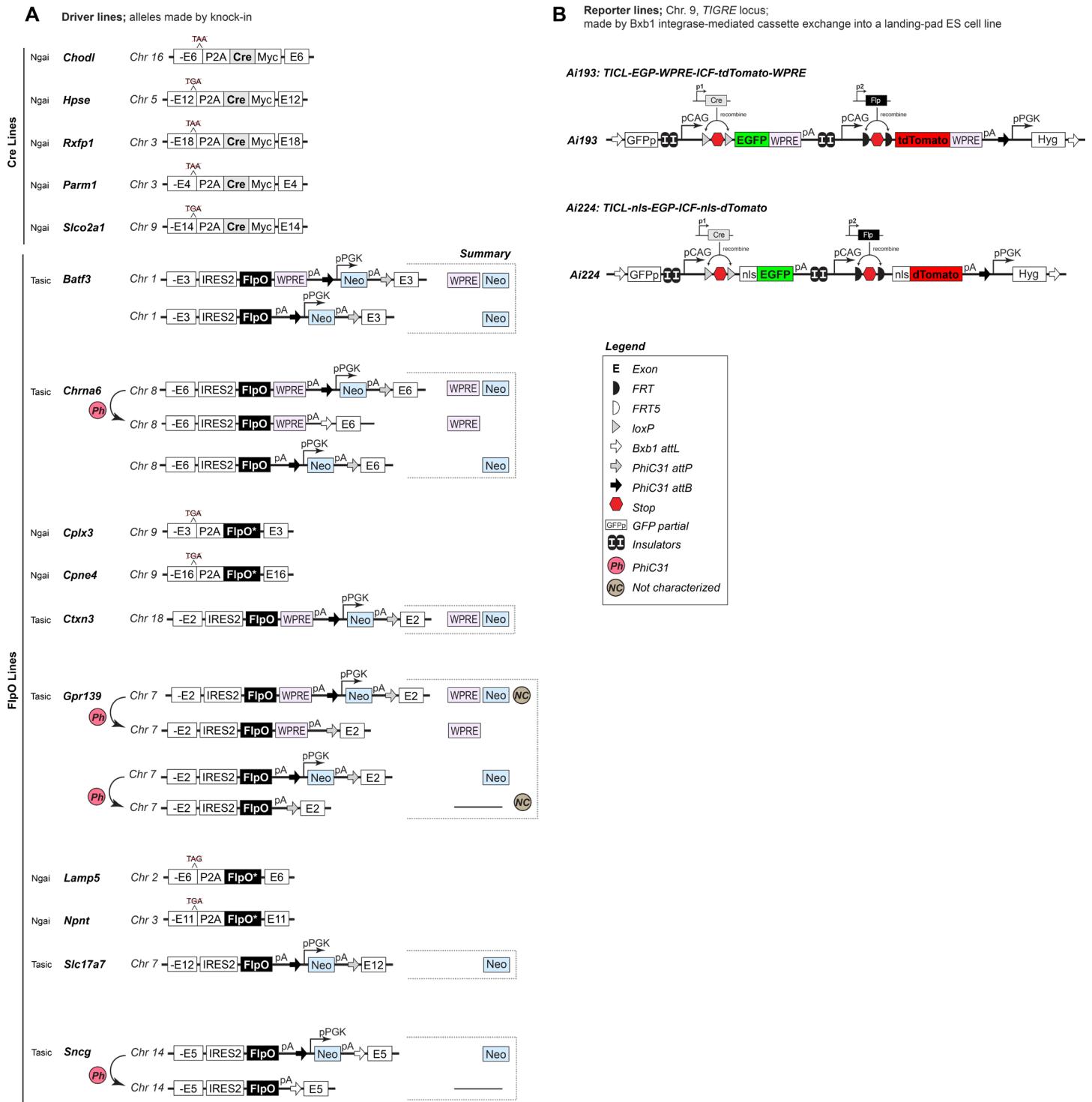
C


B


237 **Figure S5: Comparison RO and ICV viral delivery routes by image scoring data.** **A.** Heatmap of scoring
238 data for the same vectors, delivered RO (rectangles) or ICV (circles). **B.** Summary plot of the scoring data
239 according to the brightness and specificity, with black lines connecting each pair. **C.** Representative
240 epifluorescence images of sagittal sections of three individual enhancers, comparing labeling pattern when the
241 virus was delivered via the RO (top) or ICV (bottom) route. An expanded view of the visual cortex is displayed to
242 the right of the full-sized image. Scale bars for full section and expanded view = 1.0 and 0.2 mm, respectively.

243

A



B

245 **Figure S6: Stereotaxic delivery of enhancer AAVs. A.** Stereotaxic delivery into VISp of three enhancers AAVs
246 targeting different subclasses of glutamatergic neurons, resulted in strong, layer restricted SYFP2 expression.
247 Scale bars for full section and expanded view = 1.0 and 0.2 mm, respectively. **B.** Stereotaxic delivery of three
248 enhancers targeting Vip interneurons (green), delivered to the VISp of *Vip-IRES-Cre;Ai14* double transgenic line
249 (red). For each injection, completeness was calculated as the fraction of SYFP2⁺/tdTomato⁺ cells, of all
250 tdTomato⁺ cells at the injection site, and specificity was calculated as the fraction of SYFP2⁺/tdTomato⁺ cells, of
251 all SYFP2⁺ cells. Specificity results were compared with SSv4 measurements for each vector, following RO
252 delivery of 5×10^{11} genome copies (gc). n = 1 experimental animal for all experiments shown in this figure. Scale
253 bars for full VISp view and expanded view = 0.2 and 0.05 mm, respectively.

254

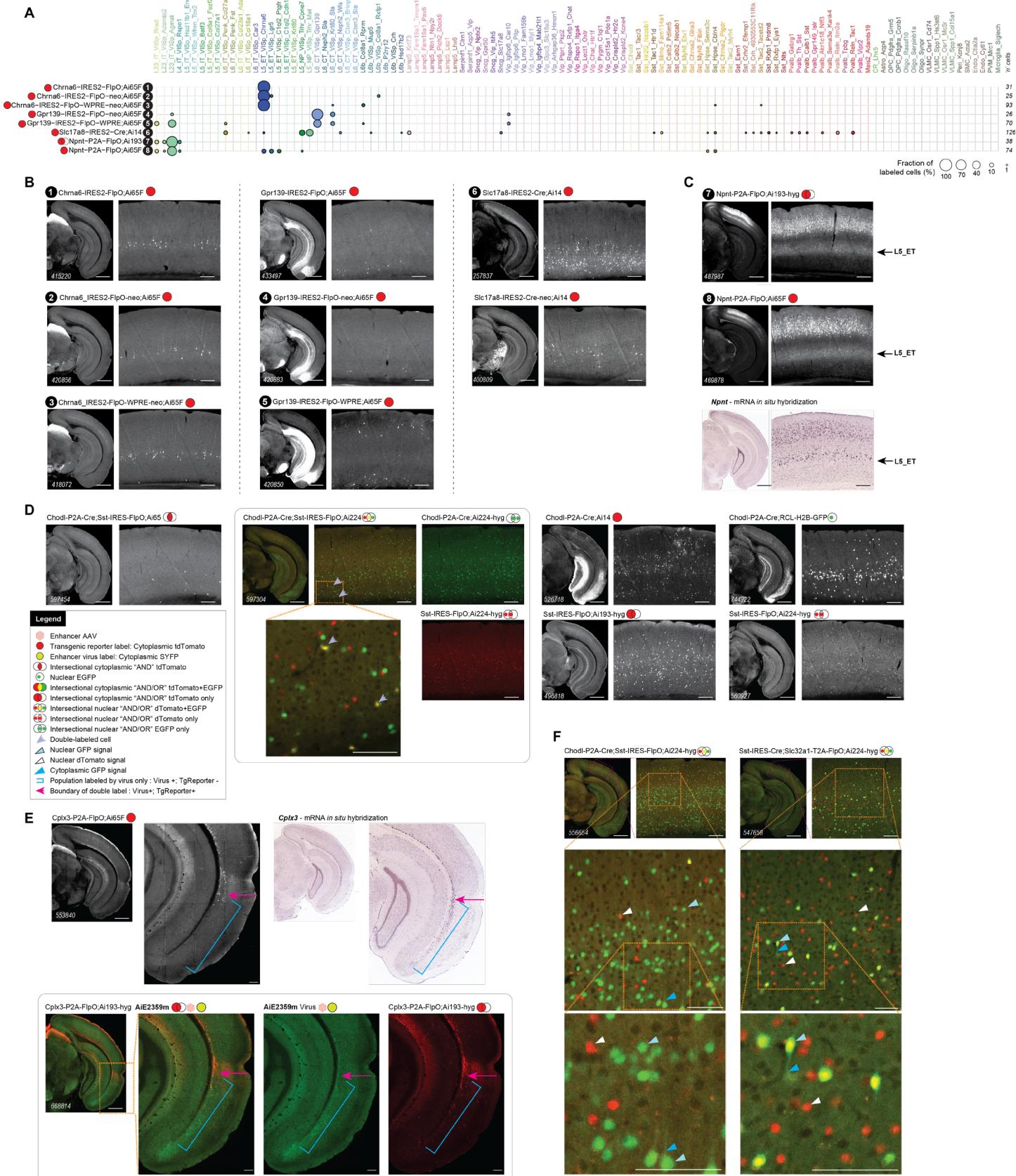
255

256

257

258

259


260

261

262

Figure S7: Transgenic line designs. A. Schematics depicting design of the 15 driver lines. Of these, five express Cre recombinase whereas 10 express FlpO. For some lines, such as *Chrna6*-IRES2-*FlpO*, we have versions with WPRE, with Neo present as well as with Neo removed allowing us to compare expression patterns in all three. In some instances, the driver lines were used as is and in others, they were crossed with *Rosa26-PhiC31* mice to delete the pPGK-neo selection cassette. **B.** Schematic depicting the design of the two new reporter mice *AI193* and *AI224*.

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

Figure S8. Factors influencing tool expression and evaluation. **A.** scRNA-seq (SSv4) data showing distribution of labeled cells from tools **1-8** mapped to mouse VISp taxonomy and displayed at the cluster level. **B.** Select STPT images for tools **1-6**, and additional related tools. **C.** Representative *Npnt* mRNA *in situ* hybridization and STPT images of *Npnt-P2A-FlpO* with two different reporters showing labeling of cells in L5, whereas the SSv4 data for the cross to *Ai193* (tool **7** in A) do not show L5 cells. This could be due to L5_PT cells not surviving FACS for this experiment. **D.** Representative STPT data for *Chodl-P2A-Cre*; *Sst-IRES-FlpO* crossed with previously characterized reporters (*Ai14* and *Ai65F*) and the new AND/OR reporters (*Ai193* and *Ai224*) both independently and as a triple transgenic. **E.** Representative STPT images showing *Cplx3-P2A-FlpO* with different reporters and *Cplx3* mRNA expression (blue brackets) by RNA *in situ* hybridization (<https://mouse.brain-map.org/experiment/show/70928340>). The expression pattern for the enhancer AAV, *AiE2359m*, mirrors *Cplx3* expression (blue brackets) by RNA *in situ* hybridization, whereas the expression of the transgenic line, *Cplx3-P2A-FlpO;Ai193* does not include *Cplx3*+ cells in the entorhinal area. **F.** Expression of nls-EGFP (Cre-dependent) and nls-dTomato (Flp-dependent) is faithful in the *Ai224* reporter line; however, nuclear localization is imperfect. The GFP appears mostly nuclear, but weak signal can be observed in the cytoplasm (light blue arrow) and processes (blue arrow). In comparison, nls-dTomato appears nuclear (white arrow). Scale bars: 1.0 and 0.2 mm for full section and expanded view; 0.1 mm for further expanded view in (C).

284

285 **Supplemental tables.**

286 **Table S1.** Summary of labeling patterns produced by transgenic mouse lines, *related to Figures 7 and 8.*

287 **Table S2.** Transgenic mouse lines used in the manuscript, *related to STAR methods.*

288 **Table S3.** AAV plasmids used in the manuscript, *related to STAR methods.*

289 **Table S4.** Unique enhancers evaluated in this manuscript, *related to STAR methods.*

290 **Table S5.** “Hall-of-fame” enhancer AAVs, *related to Figures 3-6.*

291

292

293