

Diverse fox circovirus (*Circovirus canine*) variants circulate at high prevalence in grey wolves (*Canis lupus*) from the Northwest Territories, Canada

Marta Canuti^{1,*}, Abigail V.L. King², Giovanni Franzo³, H. Dean Cluff^{4,8}, Lars E. Larsen¹, Heather Fenton^{4,9}, Suzanne C. Dufour², Andrew S. Lang²

8
9 1. Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, 1870,
10 Denmark
11 2. Department of Biology, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
12 3. Department of Animal Medicine, Production and Health (MAPS), Padua University, 35020,
13 Legnaro, Italy
14 4. Environment and Climate Change – North Slave Region, Government of the Northwest
15 Territories, Yellowknife, NT X1A 2P9, Canada
16 ⁸Current address: Wildlife Analytics, 393 Gravelle Road, Sudbury, Ontario, P3E 4Y9, Canada
17 ⁹Current address: Australian Registry of Wildlife Health, Taronga Conservation Society, Mosman,
18 NSW 2088, Australia
19 *corresponding author: marta.canuti@gmail.com

20 Abstract

21 Canine circoviruses (CanineCV) have a worldwide distribution in dogs and are occasionally detected in wild
22 carnivores, indicating their ability for cross-species transmission. However, fox circovirus, a lineage of
23 CanineCV, has been identified exclusively in wild canids. We analyzed spleen samples from 159 grey wolves
24 from the Northwest Territories, Canada, to investigate the molecular epidemiology of CanineCV and
25 formulate hypotheses about virus ecology and evolution. Overall, 72 out of 159 (45.3%) animals tested
26 positive. Virus prevalence was similar between males and females, adults and juveniles, and across the
27 investigated years and locations. CanineCV infection was not associated with a poor body condition. While
28 the percentage of co-infections with canine parvoviruses, investigated in a previous study, was high (63/72,
29 87.5%), the rate of parvovirus infection in CanineCV-negative animals was significantly lower (42/87,
30 48.3%, $\chi^2 = 27.03$, $p < 0.001$), and CanineCV infection was associated with a 7.5- and 2.4-fold increase in
31 the risk of acquiring canine parvovirus 2 or canine bufavirus infections, respectively (odds ratios: 3.5-16.9
32 and 1.3-5.8). Although common risk factors cannot be ruled out, this suggests that CanineCV may facilitate
33 parvoviral super-infections. Sequencing revealed high CanineCV genetic diversity, further exacerbated by
34 recombination. Of the 69 sequenced strains, 87.5% were fox circoviruses, five were related to a fox
35 circovirus-like recombinant strain, and one belonged to a distant lineage. In the phylogenetic analysis, the
36 virus sequences were distributed according to sampling locations, with some viruses being geographically
37 restricted. Different clades of viruses were identified in the same areas and over multiple years (2007-
38 2019), indicating the co-existence of multiple endemic lineages in the investigated area. Phylogenetic
39 analysis of all available complete fox circovirus genomes (32 from foxes and 15 from wolves from North
40 America and Europe) demonstrated four lineages, each including sequences from this study. Within each
41 lineage, strains segregated geographically and not by host. This implies that, although multiple lineages co-
42 exist, viruses do not frequently move between locations. Finally, viruses from Europe and North America
43 were mixed, indicating that the origin of the four lineages might predate the segregation of European and
44 American wolf and fox populations. Given the high prevalence and diversity of fox circoviruses in wolves,
45 these animals should be considered reservoir hosts for these viruses. Although we cannot exclude a lower
46 susceptibility of dogs, the lack of fox circovirus in dogs could be due to environmental circumstances that
47 prevented its spread to dogs. Given the high diversity and wild host specificity, we presume a long-lasting
48 association between fox circovirus and canine hosts and hypothesize a higher likelihood of transmission
49 from dogs to wild animals than vice versa. Further studies should investigate other sympatric wild species

50 and additional locations to explore the possible existence of additional maintenance hosts and the reasons
51 behind the marked difference in cross-species transmission dynamics among CanineCV lineages.

52 **Introduction**

53 Circoviruses (family *Circoviridae*, genus *Circovirus*) are small viruses with circular, covalently closed,
54 single-stranded DNA genomes of approximately 2 Kb. The circoviral genome is ambisense and contains two
55 major open reading frames (ORFs), coding for the replication-associated (Rep) and the capsid (Cap)
56 proteins. The 5' ends of the two ORFs are separated by a non-coding region including a stem-loop structure
57 with a nonanucleotide motif marking the origin of DNA replication (Breitbart et al., 2017).

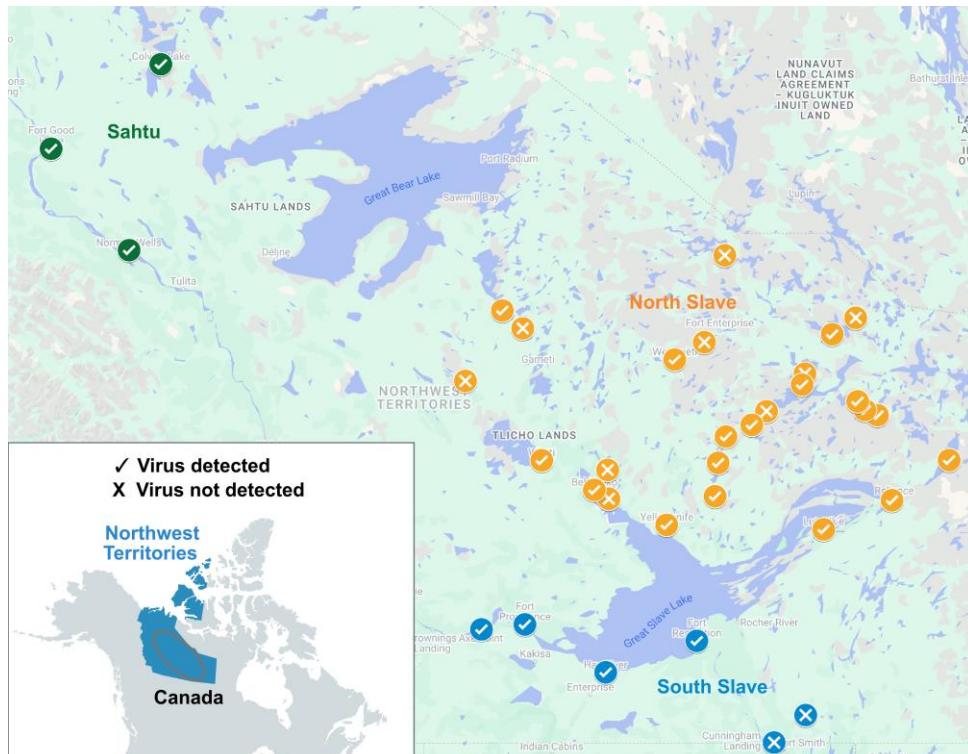
58 Circoviruses have been identified in many terrestrial and aquatic mammals, including most families of
59 the order Carnivora, such as ursids (Alex et al., 2020), viverrids (Nishizawa et al., 2018), mustelids (Lian et
60 al., 2014; Bandoo et al., 2021), herpestids (Gainor et al., 2021), felids (Payne et al., 2020; Cerna et al., 2023),
61 pinnipeds (Chiappetta et al., 2017; Patterson et al., 2021), and canids (Kapoor et al., 2012; Bexton et al.,
62 2015). Although 60 circoviral species have currently been defined, the pathogenic role and ecology of these
63 viruses, including their potential host ranges, have been only rarely investigated as most of them have been
64 discovered within the framework of metagenomic investigations.

65 The canine circovirus (CanineCV, species *Circovirus canine*) is the sole member of the genus containing
66 viruses currently known to infect canines. CanineCV was first identified in 2012 in serum and tissue samples
67 of North American dogs (Kapoor et al., 2012; Li et al., 2013), and subsequent epidemiological investigations
68 have confirmed its global presence in dogs (Gomez-Betancur et al., 2023). In these studies, clinical signs
69 indicative of gastroenteritis, respiratory disease, and hematological and immune disorders have been
70 found associated with CanineCV infection in domestic dogs. However, no conclusive evidence has yet
71 proven the involvement of this virus, alone or as a co-infecting agent, in clinical disease (Gomez-Betancur
72 et al., 2023). Nonetheless, some circoviruses, such as porcine circovirus 2 (PCV-2) or beak and feather
73 disease virus (BFDV), are known animal pathogens and are of high veterinary importance, especially
74 considering their capacity to induce marked immunosuppression (Fehér et al.). These viruses are also
75 considered a threat to wildlife (Kasimov et al., 2023). Therefore, the clinical importance of CanineCV should
76 not be underestimated.

77 The same strains of CanineCV that circulate in domestic animals have also been identified in wild
78 carnivorans, such as wolves, badgers, foxes, and jackals (Zaccaria et al., 2016; Arcangeli et al., 2020; Balboni
79 et al., 2021; de Villiers et al., 2023), indicating the occurrence of cross-species transmission among
80 sympatric wild species that is presumably also enabled by contacts between domestic and wild carnivorans.
81 A particular clade of viruses within the species *Circovirus canine*, known as fox circovirus, is notable because
82 it includes genetically distant viruses that were considered a separate species in the past. However, it is
83 now recognized that fox circoviruses do not fulfill the genetic requirements to obtain a distinct taxonomic
84 status and remain part of *Circovirus canine* (Breitbart et al., 2017). Nonetheless, it is intriguing that fox
85 circoviruses have only been identified in wild canids (foxes and wolves) across Europe and North America
86 and, as of now, never in dogs. In particular, the first fox circovirus was detected in red foxes with
87 meningoencephalitis in the United Kingdom (Bexton et al., 2015) and later on, fox circoviruses were also
88 identified in Croatian red foxes (Lojkić et al., 2016), in red foxes and wolves from Italy (Balboni et al., 2021;
89 Franzo et al., 2021), in Arctic foxes from Svalbard (Urbani et al., 2021), in red foxes from Northern Norway
90 (Urbani et al., 2021), and in red and Arctic foxes from Newfoundland and Labrador, Canada (Canuti,
91 Rodrigues, et al., 2022).

92 Despite their uncertain clinical significance, given their peculiar host distribution pattern, these viruses
93 offer an interesting perspective to study circovirus transmission dynamics and help understand viral
94 transmission dynamics between wild and domestic animals. In this study, we explored samples collected
95 from Canadian grey wolves (Northwest Territories) (Canuti, Fry, et al., 2022) to investigate the molecular
96 epidemiology of CanineCV in this previously unexplored region. Additionally, through comprehensive full
97 genome sequence analyses, the study also aimed to explore the international spread of fox circovirus and
98 formulate hypotheses about its ecological patterns and evolutionary pathways.

99


Material and methods

100

Samples

101 This study included samples of DNA previously isolated from the spleens of 159 gray wolves from
102 various locations within the Northwest Territories, Canada (Canuti, Fry, et al., 2022) (Figure 1). Wolf
103 carcasses were previously processed as part of ongoing scientific monitoring procedures by the
104 Department of Environment and Natural Resources (now Environment and Climate Change) of the
105 Government of the Northwest Territories (GNWT) under research permits WL003091, WL005627,
106 WL005634, WL005622, WL005761, WL005768, WL500098, WL500199, WL500289, WL500393, WL500481,
107 WL500666. Handling of samples at Memorial University of Newfoundland was done under Animal Use
108 Protocol 20-04-AL.

109 Harvest locations were recorded for all samples and three main sampling areas were defined using
110 large lakes as separation landmarks: west of Great Bear Lake (Sahtu, N = 7), the zone between Great Slave
111 Lake and Great Bear Lake (North Slave Region, NSR, N = 140), and the area south of Great Slave Lake (South
112 Slave Region, SSR, N = 12) (Figure 1). Samples were collected between 2007 and 2019 (2007: N = 17, 2008:
113 N = 19, 2009: N = 5, 2010: N = 24, 2011: N = 16, 2012: N = 2; 2013: N = 5, 2014: N = 1, 2016: N = 6, 2017: N
114 = 1; 2018: N = 3, 2019: N = 60), predominantly in winter (154/159: 96.9%). Sixty-five animals were female
115 (48.9%) and 94 were male (59.1%), while the age was recorded only for 70 animals, including 8 juveniles,
116 defined as animals \leq 2 years of age, and 62 adults. Body conditions were scored for 64 animals based on
117 internal and external body condition ranks (score of 0-4 with \geq 2 considered adequate). Finally, the positivity
118 of these animals to five species of dog parvoviruses (canine parvovirus 2: CPV-2, canine bufavirus: CBuV,
119 cachavirus: CachaV, minute virus of canines: MVC, canine bocavirus 2: CBoV-2) was known from a previous
120 investigation. Animal information details are described in (Canuti, Fry, et al., 2022).

121

122 **Figure 1** – Sample collection locations. The map on the bottom-left shows the location of the
123 Northwest Territories within Canada. The main map shows an enlargement of the circled region.
124 Approximate locations of sample collection are indicated by circles (each location could include
125 multiple samples) depicting a ✓ in case of virus detection and an X in case of lack of virus detection.
126 The three different investigated regions have been color-coded: green for Sahtu, orange for the North
127 Slave Region, or blue for the South Slave Region. The maps were created with MapChart © and
128 Google Map (Map data ©2019 Google)
129

130 **Screening and sequencing**

131 Specific primers designed to detect all currently known viruses within the species *Circovirus canine*
132 were designed for this study and used for screening DNA samples through a hemi-nested PCR. For the first
133 PCR (35 cycles), 2.5 μ l of DNA were used as input, and primers CCV_F1 (ARCGNAATGACTTACATGATGC) and
134 CCV_R1 (GCGAGAGGCCTTATYTYTC) were used to amplify a 578-nt portion of the Rep ORF; primers
135 CCV_F2 (TGGTGGGAYGGYTACGATGG) and CCV_R1 were used during the nested step (25 cycles) to amplify
136 a fragment of 324 nt. The complete genomic sequences of the strains with the highest viral loads (those
137 that were already positive after the first PCR) were obtained through sequencing two overlapping PCR
138 products obtained with primer pairs CCV_F4a (CTTGTRGCATTCCCTCTTCC) / CCV_R1 (1475 nt) and CCV_F7
139 (TTGGTAACAAGGAYGCCCTC) / CCV_R7 (CAGCATCTCCCACCRTTCAG) (803 nt). The addition of DMSO (5.2%)
140 was required for the amplification of the fragment included between primers CCV_F7 and CCV_R7. All PCRs
141 were run in a 25 μ l reaction volume at an annealing temperature of 50°C and using the DreamTaq Green
142 PCR Master Mix (Thermo Fisher Scientific). All obtained amplicons were purified with AMPure XP beads
143 (Agencourt) and outsourced for Sanger sequencing.

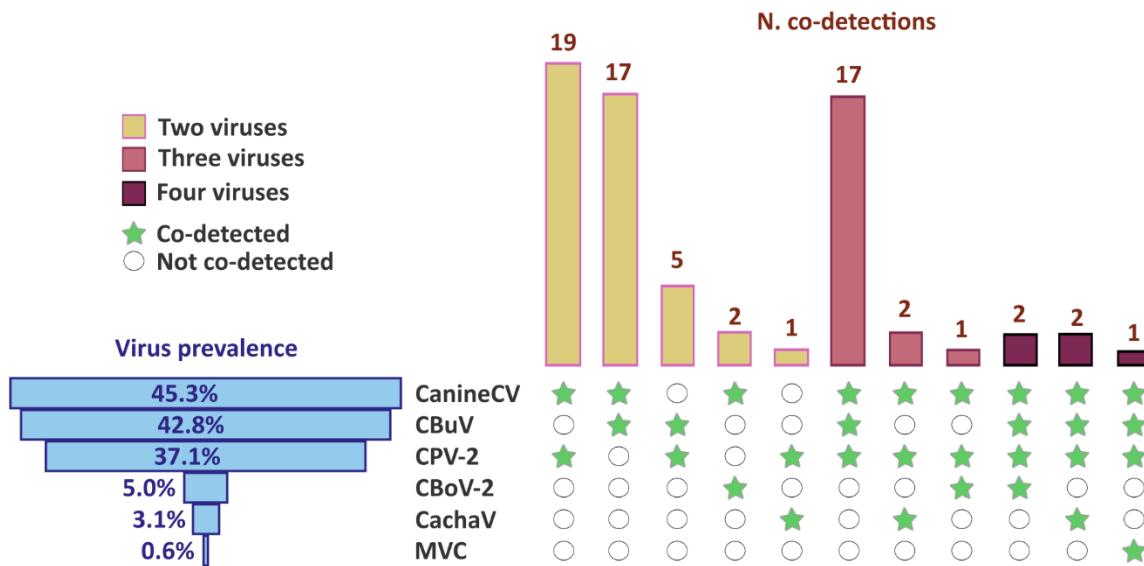
144 **Sequence analyses**

145 Assembly of obtained sequences and open reading frame (ORF) predictions were performed in
146 Geneious R11 (Biomatters). Reference sequences available in the GenBank database (accessed in
147 December 2023) were downloaded and used for comparisons (accession numbers available in
148 Supplementary Figure S1 in the Appendix). Sequence alignments were performed with MAFFT (Katoh &
149 Standley, 2013), and maximum-likelihood phylogenetic trees were inferred with IQ-TREE 2 (Minh et al.,
150 2020) using the substitution model with the lowest Bayesian information criterion calculated by
151 ModelFinder (Kalyaanamoorthy et al., 2017). Branch support was determined with ultrafast bootstrapping
152 (Hoang et al., 2018) and SH-like approximate likelihood ratio test (SH-aLRT) (Guindon et al., 2010).
153 Recombination analyses were performed with RDP version 5.53 (Martin et al., 2021) and SimPlot (Salminen
154 et al., 1995).

155 **Statistical analyses**

156 Categorical variables were expressed in percentages with relative 95% normal intervals (95% intervals
157 of confidence, 95% IC). Proportions were compared using the Chi-square (χ^2) test or Fisher's exact test
158 when appropriate. Two-sided p-values < 0.05 were considered statistically significant. Simple and multiple
159 logistic regression models were fitted to evaluate CanineCV positivity as a risk factor for poor body
160 conditions (internal body score or an average of internal and external body score <2, with CPV-2 and CBuV
161 included as co-variates) and for parvovirus infection, both overall and for single parvoviruses (with all other
162 parvoviruses included are co-variates). Odds ratios (OR) with relative 95% IC were considered as the
163 measure of effect and precision, respectively, while the Wald test was used to assess the significance of
164 the regression beta coefficient. Analyses were performed with Past version 4.08 (Hammer et al., 2001) and
165 JASP 0.17.1 (JASP Team, 2023).

166 **Results**


167 **CanineCV epidemiology among grey wolves**

168 Out of the 159 samples, 72 tested positive (prevalence: 45.3%, 95% CI: 37.6-53.0%). The prevalences
169 were similar between males and females (44/94, 46.8% vs. 28/65, 43.1%; $\chi^2 = 0.21$, $p = 0.6$), adults and
170 juveniles (22/62, 35.5%, vs. 5/8, 62.5%; Fisher's exact: $p = 0.3$), and among the investigated years (27/65,
171 41.5% in 2007-2010, 14/24, 62.5% in 2011-2015, and 31/70, 44.3% in 2016-2019; $\chi^2 = 2.05$, $p = 0.4$), months
172 (13/22, 59.1% in January, 15/37, 40.5% in February, 27/59, 45.8% in March, 6/9, 66.7% in November, and
173 9/27, 33.3% in December; $\chi^2 = 5.25$, $p = 0.3$), and locations (63/140, 45.0% in NSR, 5/7, 71.45% in Sahtu,
174 and 4/12, 33.3% in SSR, Fisher's exact: $p = 0.3$). Interestingly, the viral prevalence was higher around the
175 capital city of Yellowknife (NSR, 13/16, 81.3%). Finally, CanineCV positivity was not identified as a risk factor
176 for poor internal body conditions (non-adjusted OR: 0.9 (0.3-3.3); adjusted OR: 1.1 (0.3-4.7)) and average
177 internal and external poor body conditions (non-adjusted OR: 0.4 (0.1-1.2); adjusted OR: 0.4 (0.2-1.1)).

178 These animals were previously investigated for the presence of five species of dog parvoviruses (Canuti,
179 Fry, et al., 2022). A comprehensive list of the prevalence of the detected viruses as well as the number of

180 co-determinations for each virus in the investigated population is shown in Figure 2. Interestingly, as shown
181 in Table 1, the percentage of parvovirus-positive animals was significantly higher in the group of CanineCV-
182 positive animals (63/72, 87.5%) compared to the CanineCV-negative animals (42/87, 48.3%, $\chi^2 = 27.025$, p
183 < 0.001), potentially indicating a synergistic effect between CanineCV and parvovirus infection. This was
184 also true when evaluating the association between CanineCV and the two parvoviruses with the highest
185 prevalence, CPV-2 ($\chi^2 = 32.49$, p < 0.001) and CBuV ($\chi^2 = 6.96$, p = 0.008). Finally, CanineCV infection was
186 associated with a more than seven-fold increase in the risk of acquiring CPV-2 infection (non-adjusted OR:
187 7.5 (3.6-15.7); adjusted OR: 7.7 (3.5-16.9)) and with a more than two-fold increase in acquiring CBuV
188 infection (non-adjusted OR: 2.4 (1.2-4.5); adjusted OR: 2.8 (1.3-5.8)). No correlation was found between
189 CPV-2 and CBuV infections.

190

191
192
193
194
195
196
197
198

Figure 2 – Identified co-detections in the investigated population. The bars on the lower left represent the overall prevalence of each virus, while the bars on the top right represent the number of co-detections involving the viruses indicated by green stars. Co-detections are color-coded according to the number of identified viruses, as explained in the legend on the left. CanineCV: canine circovirus; CPV-2: canine parvovirus 2; CBuV: canine bufavirus; CachaV: cachavirus; MVC: minute virus of canines; CBoV-2: canine bocavirus 2

199

Table 1 – Evaluation of CanineCV infection as a risk factor for acquiring a parvovirus super-infection.

	CanineCV + (N=72)		CanineCV - (N=87)		P	Odds ratio ^a		
	N	%	N	%		OR	95% IC	P
CPV-2	44	61.1	15	17.2	< 0.001	7.5	3.6-15.7	< 0.001
CBuV	39	54.2	29	33.3	0.008	2.4	1.2-4.5	0.009
CachaV	4	5.6	1	1.2	0.1	5.1	0.6-46.3	0.2
CBoV-2	5	6.9	3	3.5	0.5	2.1	0.5-9.1	0.3
MVC	1	1.4	0	0.0	0.5	/	/	/
Any parvovirus	63	87.5	42	48.3	< 0.001	7.5	3.3-17.0	< 0.001

200
201
202
203
204

Note: CanineCV: canine circovirus; CPV-2: canine parvovirus 2; CBuV: canine bufavirus; CachaV: cachavirus; MVC: minute virus of canines; CBoV-2: canine bocavirus 2; N: number of positive samples; %: prevalence, OR: odds ratio for CanineCV infection; IC: interval of confidence on OR; /: number of positive samples too low

205
206
207
208

CanineCV diversity among grey wolves

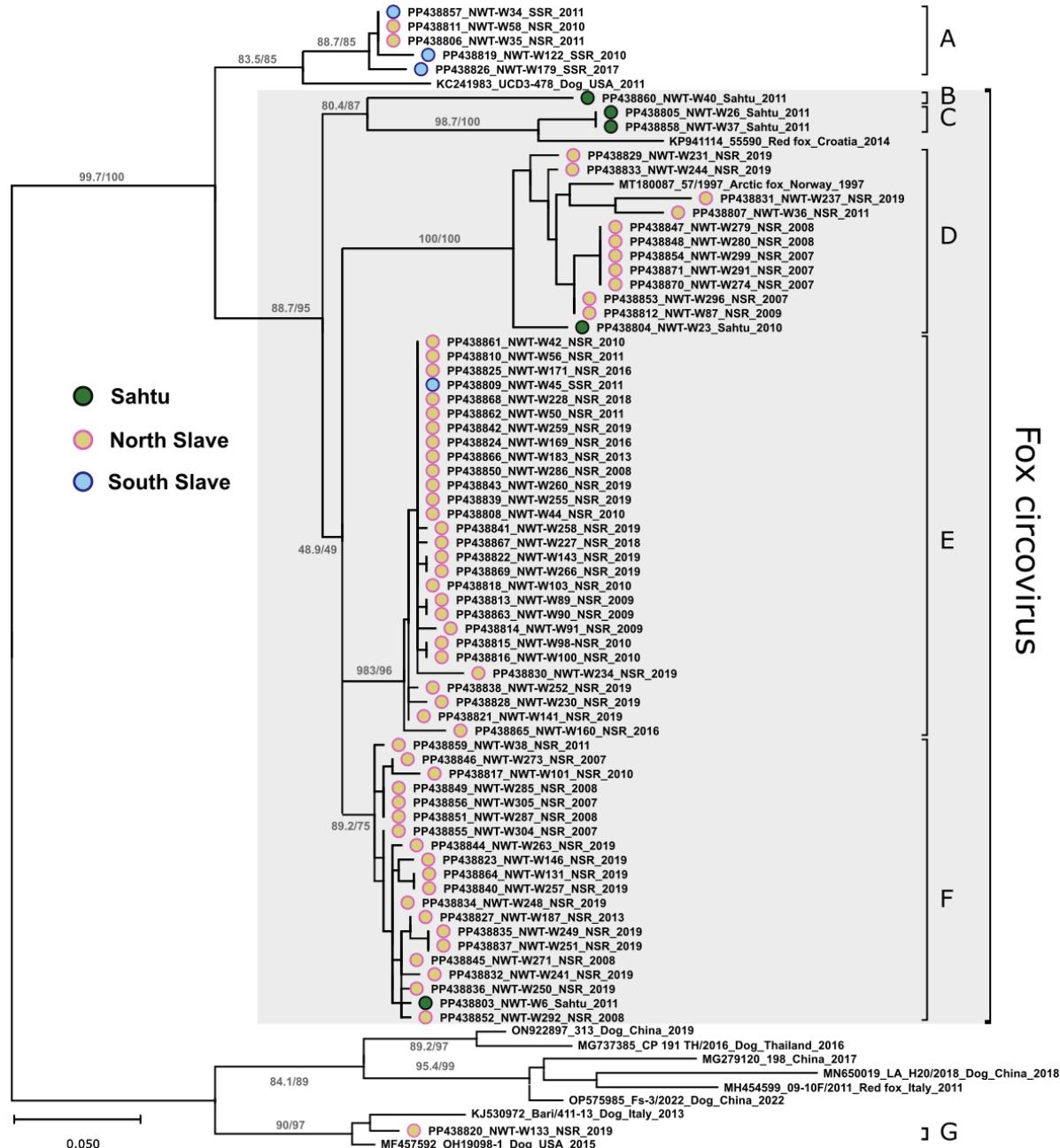
The amplicons obtained through the screening PCRs were all subjected to Sanger sequencing to molecularly type the viruses. Sequences obtained from three of the positive animals clearly showed the presence of multiple circoviral variants, as demonstrated by the presence of several polymorphic sites (co-

209 occurring peaks), while 69 viruses could be successfully typed. As shown in Figure 3, six animals were
210 infected with variants within highly supported clades containing viruses also detected in dogs. Five of these
211 (clade A) clustered together with a virus identified once in a dog from California (UCD3-478) (Li et al., 2013)
212 and thereafter recognized as a recombinant between a fox circovirus and a virus from another clade
213 (Canuti, Rodrigues, et al., 2022). Nonetheless, the 5 viruses from this study within this clade formed a
214 highly-supported monophyletic sub-clade. The other one (clade G) was part of a clade comprising several
215 viruses identified in dogs worldwide (China, Viet Nam, Iran, Italy, Germany, Namibia, USA, Argentina,
216 Colombia, Brazil) as well as in wildlife (wolf, badger and fox in Italy, and jackal in Namibia) (Supplementary
217 Figure S1 in the Appendix, support: 97.2/98). All other viruses (87.5%) could be classified with high support
218 as fox circovirus. These were distributed into five different clades (B-F), with clades E and F comprising the
219 majority (72.5%) of the identified strains.

220 Although a smaller number of samples was available from two of the three investigated areas (Figure
221 1), a certain clustering based on sampling location could be observed (Figure 3). Three out of four viruses
222 from SSR were included in clade A, indicating a predominance of viruses from this clade in that location.
223 Three out of five viruses from Sahtu were in clades B and C, which included only viruses from this region.
224 Another Sahtu virus clustered within another clade (D) that otherwise exclusively contained viruses from
225 NSR, although in a separate and basal branch. Finally, viruses from NSR were distributed across five clades
226 (i.e., A, D, E, F, and G), none of which was specific to this area. All three co-infected animals were from NSR.

227 While clades A, D, E, and F included multiple viruses sampled over various years, suggestive of
228 endemicity, the strain in clade G was unique and possibly not associated with onward transmission. No
229 patterns that related the year of sampling with tree topology were observed.

230 **Global epidemiology of fox circoviruses**


231 A total of 15 complete genomic sequences from circoviruses identified in this study were obtained.
232 These represented all the fox circovirus and recombinant clades identified in this study. Unfortunately, we
233 could not amplify the genome of the virus from clade G because of the low viral load.

234 Obtained sequences were compared to 271 sequences from members of the species *Circovirus canine*
235 available in public repositories. As expected, in the maximum likelihood phylogenetic tree all these
236 sequences clustered within a highly supported clade (red branches in Figure 4) including the sequences
237 UCD 478 and NWTW-34 (the recombinant strains) in a basal branch and all 47 so far completely sequenced
238 fox circovirus sequences grouped together. Complete genomes were 89.0-99.9% identical to each other
239 and showed a consistent genome organization. Rep proteins were more conserved (89.4-100%) compared
240 to Cap proteins (87.4-100%). Interestingly, the final 23 amino acids of the Rep protein had a higher
241 variability compared to the rest of the protein.

242 Fox circoviruses could be divided into four highly supported major clades, indicated by Roman numerals
243 in Figure 4 and Supplementary Table S1 in the Appendix. Interestingly, sequence NWT-W40 was identified
244 as a likely recombinant virus, containing a small (nt 780-1060) insert with low identity to any identified
245 strain, included within a backbone that was mostly clade II-like (Supplementary Figure S2 in the Appendix).
246 This also explains the different clustering of this sequence in the two phylogenetic trees shown in Figures
247 3 and 4. Additionally, sequence NWT-W34 was again identified as recombinant, together with UCD 478, as
248 previously reported (Canuti, Rodrigues, et al., 2022).

249 Because of its intriguing epidemiology, the global distribution and phylogeny of fox circovirus
250 sequences were examined in detail. All fox circoviruses identified so far were detected in wildlife, with 32
251 strains being from foxes (red foxes (*Vulpes vulpes*) from Newfoundland and Labrador in Canada, Croatia,
252 Italy, United Kingdom, and Arctic fox (*Vulpes lagopus*) Svalbard) and 15 from wolves (Italian wolf (*Canis*
253 *lupus italicus*) in Italy and grey wolf (*Canis lupus*) from the Northwest Territories). Sequences from the
254 Northwest Territories were the only ones represented in each of the identified clades. Viruses from Norway
255 showed the highest diversity after those from this study, being identified in two different clades, although
256 one clade was unique to one of the islands of Svalbard and the other one was unique to mainland Norway.
257 Although there was only one location where viruses from both wolves and foxes were present, we could
258 observe that the strains clearly segregated geographically and not by host, with viruses from the same
259 location consistently forming monophyletic subclades. In fact, the same host species were infected with
260 strains belonging to different clades (e.g., strains from clades I, II, and III detected in grey wolf), and viruses
261 of the same clade infected multiple hosts (e.g., clades II and III including viruses from wolf and fox).

262
263
264

265

266
267
268
269
270
271
272
273
274
275
276

Figure 3 - Molecular epidemiology of fox circovirus in wolves of the Northwest Territories, Canada. The tree shows the phylogenetic relationships between sequences of canine circoviruses from this study and some reference sequences representing each major clade of the species *Circovirus canis*. The tree, based on a 265-nt alignment of the Rep gene, was built with the maximum-likelihood method based on the TN+F+G4 model with IQ-Tree. The outcomes of the SH-aLRT and bootstrap tests (1000 replicates) are shown for the main nodes and branch lengths are proportional to genetic distances as indicated by the scale bar. Strains identified in this study are labeled with a dot colored based on the sampling location (blue: South Slave Region (SSR); orange: North Slave Region (NSR); green: Sahtu). Following the GenBank accession numbers, sequences are indicated by the strain name followed by the host (for reference sequences only), sampling location, and collection year. The tree built with all reference sequences is available in Supplementary Figure S1 in the Appendix.

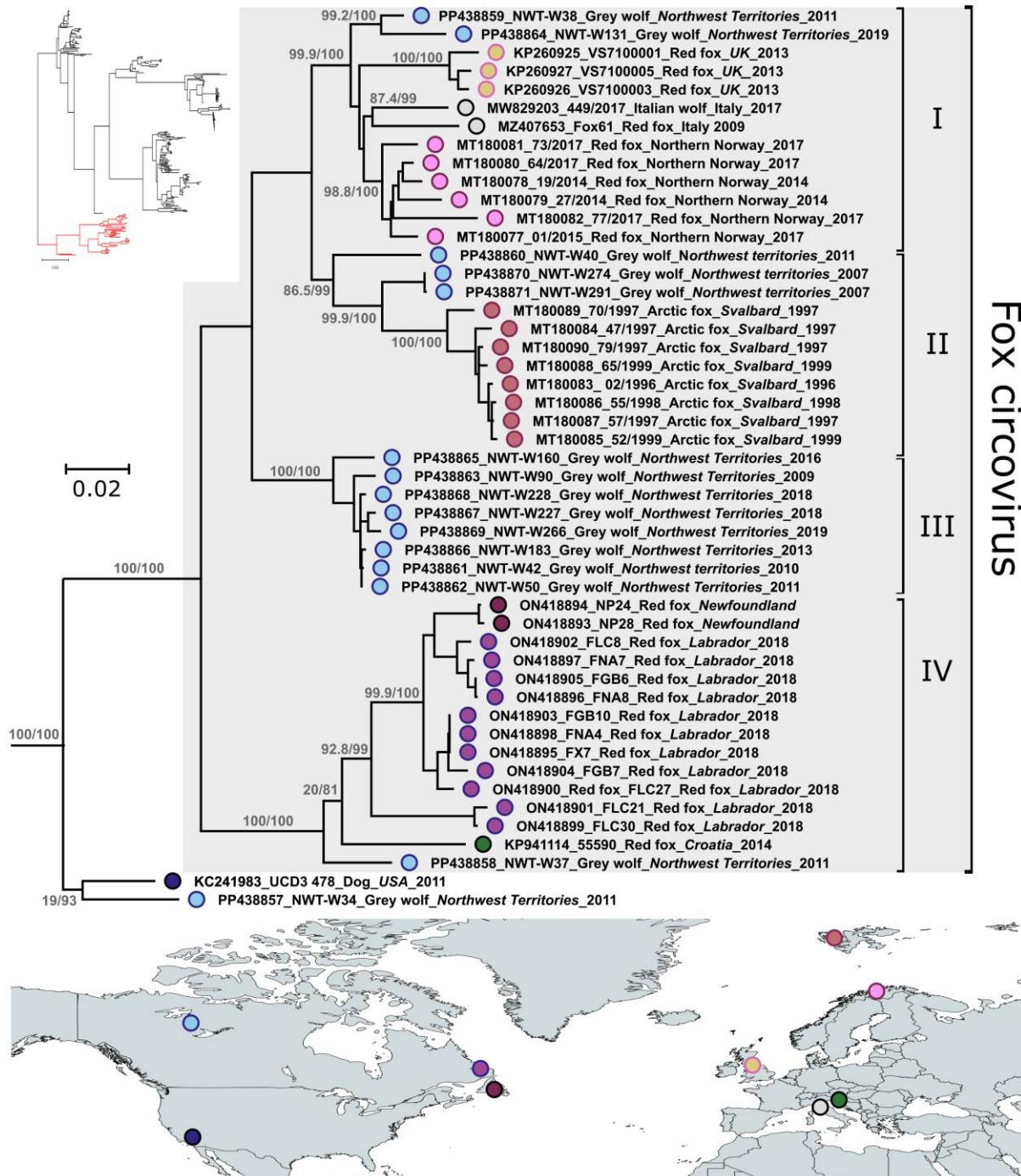
277

Discussion

278 Despite its relatively recent discovery (Kapoor et al., 2012; Li et al., 2013), several studies have
279 investigated the molecular epidemiology of CanineCV in dogs, demonstrating its high diversity and
280 worldwide distribution (Gomez-Betancur et al., 2023). On the contrary, only a few studies have evaluated
281 the presence of this virus in wild animals. Studying viruses in wild animals does not only have relevance for
282 wildlife conservation, but it is also important in terms of domestic animal health as wild animals can be
283 reservoir hosts for pathogens that can spill over into new hosts and negatively impact their health (Martin
284 et al., 2011). CanineCV strains have so far been identified in a few wild carnivorans (wolves, badgers, foxes,
285 and jackals) and the phylogeny of the various strains is driven by their geographic origin, rather than the
286 host source. This is an indication that cross-species transmission has occurred several times, in many
287 different locations (Zaccaria et al., 2016; Arcangeli et al., 2020; Urbani et al., 2021; Balboni et al., 2021;
288 Franzo et al., 2021; Canuti, Rodrigues, et al., 2022; de Villiers et al., 2023). Nonetheless, endemicity and
289 persistent transmission chains within wild animal populations have also been documented (de Villiers et
290 al., 2023).

291 **CanineCV is endemic among wolves of Northern Canada**

292 In our study, 45% of the investigated animals were CanineCV-positive, indicating endemic circoviral
293 circulation among wolves of the Northwest Territories. This number is in line with previous studies that
294 also identified high infection prevalence in wild animals (Bexton et al., 2015; Canuti, Rodrigues, et al., 2022;
295 de Villiers et al., 2023). Prevalence estimates could be affected by the type of analyzed sample, explaining
296 potential variation across studies (Canuti, Rodrigues, et al., 2022). In this study, we used DNA isolated from
297 spleens. While the presence of a virus in the spleen indicates a systemic infection, it does not necessarily
298 reflect an acute infection stage, as it can be the outcome of viral or DNA persistence. Indeed, the most
299 studied circovirus, PCV-2, is known to cause chronic infections, with the virus persisting for months after
300 the initial infection and being detectable in blood for long periods of time (Shibata et al., 2003; Opriessnig
301 et al., 2010). Nonetheless, our previous investigation showed that, in foxes, positivity rates for CanineCV
302 did not significantly differ between stool and spleen samples (Canuti, Rodrigues, et al., 2022).


303 Also consistently with our previous findings in Canadian foxes (Canuti, Rodrigues, et al., 2022), we
304 identified a high circoviral diversity among the investigated animals and the occurrence of recombination.
305 However, differently from foxes, viruses identified in wolves were not monophyletic and belonged to three
306 different CanineCV lineages and seven clades. Of these, viruses from four different clades were detected
307 in different areas and spanning multiple years (2007-2019), indicating the co-existence of multiple endemic
308 viral lineages across large distances. Some strains were unique to Sahtu, which is distant from the other
309 two regions (SSR and NSR) that are closer together and more interconnected. Interestingly, however,
310 strains from SSR were mostly included in only one of the clusters. This pattern may be the consequence of
311 bottleneck and geographical isolation and/or behavioral separation, resulting in some strains being
312 geographically restricted.

313 Finally, for one virus we found no evidence for spreading, although this was identified in a sample
314 collected in the final year of the study. This virus was part of a cluster that, unlike others, had been
315 previously detected in both dogs and wild animals, and we could speculate that this was a case of spillover
316 from a different host species with limited or no onward circulation. For this reason, investigating the origin
317 of this specific virus would be interesting. Regrettably, samples from sympatric species were unavailable
318 for this purpose.

319

320 **Does CanineCV facilitate a secondary parvoviral infection?**

321 One of the most interesting findings of our study was the intriguing relationship between CanineCV
322 and highly prevalent parvoviruses, which were investigated in the same wolf population in a different study
323 (Canuti, Fry, et al., 2022). A parvoviral co-infection was detected in 87.5% of CanineCV-positive animals,
324 and these mostly involved the two parvoviruses with the highest prevalences, CBuv and CPV-2.
325

326

327 **Figure 4** - Global molecular epidemiology of fox circovirus. The tree shows the phylogenetic
 328 relationships among fox circoviruses identified in various parts of the world. The tree is based on
 329 complete genome sequences and was built with the maximum-likelihood method with the
 330 TIM3+F+I+G4 model with IQ-Tree. The outcomes of the SH-aLRT and bootstrap test (1000 replicates)
 331 are shown for the main nodes and branch lengths are proportional to genetic distances as indicated
 332 by the scale bar. The tree on the top-left represents the global *Circovirus canis* phylogeny and red
 333 branches indicate the clade that is shown magnified on the right. Strains are labeled based on the
 334 collection site as shown in the map below (light blue: Northwest Territories; dark blue: California;
 335 purple: Labrador; magenta: Newfoundland; orange: UK; dark pink: Svalbard; light pink: mainland
 336 Norway; grey: Italy; green: Croatia). Following the GenBank accession numbers, sequences are
 337 indicated by the strain name followed by host, sampling location, and collection year. The map was
 338 indicated by the strain name followed by host, sampling location, and collection year. The map was
 created with MapChart ©

339 Remarkably, the percentage of CPV-2- and CBuV-positive animals was significantly higher ($p < 0.001$)
340 among CanineCV-positive animals compared to negative ones (48.3%). Additionally, CanineCV infection
341 was associated with more than seven-fold increase in the risk of acquiring a CPV-2 infection ($p < 0.001$) and
342 with more than two-fold increase in the risk of acquiring a CBuV infection ($p = 0.009$). These results could
343 indicate a possible synergistic effect between CanineCV and parvoviral infections, where CanineCV
344 infection favors a parvoviral co-infection, that co-infection with parvovirus triggers the CanineCV virus to
345 persist, or *vice versa*. However, the presence of common infection risk factors cannot be excluded either.
346 While CPV-2 is known to cause immune suppression and alterations of the enteric mucosa that could favor
347 super-infections (Shahbazi Asil et al., 2023), the effects of CBuV and CanineCV on the immune system are
348 unknown. However, some well-studied circoviruses, such as PCV-2, can induce marked
349 immunosuppression and favor the replication of other pathogens (Fehér et al.), and co-infections of PCV-
350 2 with porcine parvovirus (PPV) are also frequently detected (Kim et al., 2003).

351 Given the data available from this study, it is not possible to establish which one was the initial
352 infection; however, it was noticeable that no correlation was found between CPV-2 and CBuV-positive
353 animals. This may indicate that an earlier CanineCV infection leads to a predisposition to super-infections
354 by other pathogens, maybe also mediated by immunosuppression, as it has also been hypothesized in
355 other studies (Dankaona et al., 2022). Interestingly, a recent investigation showed that CanineCV infection
356 increases the replication level of CPV-2 *in vitro* (Hao et al., 2022) and our epidemiological data might
357 support those findings and extend them to CBuV. Undoubtedly, further investigations are required to
358 confirm this hypothesis. However, our analysis revealed no significant link between CanineCV infection and
359 poor body condition, a finding that is also consistent with what was identified for CPV-2 in the same
360 population (Canuti, Fry, et al., 2022). The apparent increased resilience to symptomatic clinical courses in
361 these wild animals warrants further investigation through dedicated studies.

362

363 **Viral hosts and ecology**

364 Not all CanineCV clades are alike, and strains classified as “fox circovirus” demonstrate a peculiar
365 epidemiological profile. Unlike all other CanineCV clades, fox circoviruses have so far been identified
366 exclusively in wild animals, specifically foxes and wolves (Franzo et al., 2021; Canuti, Rodrigues, et al.,
367 2022). In our population, out of the 69 successfully typed strains, 87.5% belonged to the fox circovirus
368 group, resulting in a prevalence specific for fox circovirus of 37.7%. An additional five strains belonged to
369 a clade of viruses that likely originated after recombination between a fox circovirus and a CanineCV from
370 another clade (Canuti, Rodrigues, et al., 2022). A virus in this clade was also identified once in a dog (Li et
371 al., 2013). Despite the unavailability of samples from sympatric species and the possible existence of
372 additional maintenance wild hosts preventing us from making assumptions generalizable to the whole
373 region, fox circoviruses and highly genetically related viruses appear the most common CanineCV strains
374 in wild wolves from this region of Northern Canada. Indeed, only one virus was identified in a different part
375 of the phylogenetic tree.

376 It is currently unclear whether the tight association between fox circoviruses and wildlife is a
377 consequence of a particular viral phenotypic feature and host adaptation or whether it is simply related to
378 epidemiological factors preventing or limiting effective contacts with domestic dogs (Franzo et al., 2021;
379 Canuti, Rodrigues, et al., 2022). However, viral endemicity in wolves, which belong to the same species as
380 domestic dogs, suggests that fox circoviruses are likely capable of infecting dogs. The lack of identification
381 in dogs is thus likely either the result of under-sampling or of environmental factors.

382 Our current findings, along with data from existing literature, suggest that the likelihood of CanineCV
383 transmission from domestic dogs to wild animals is greater than the reverse scenario of transmission from
384 wild animals to dogs. Indeed the likelihood of cross-species transmission between sympatric species may
385 differ for different viruses and hosts (Canuti et al., 2020). However, it is important to note that no samples
386 from dogs were available for our investigation and that viral diversity in wildlife is largely understudied, so
387 these conclusions could be biased by sample and sequence availability.

388 While fox circoviruses have so far only been identified in foxes and wolves and only in Europe and North
389 America, they may also have a broader host and geographic distribution. Overall, four different fox
390 circovirus lineages have been identified and only two locations were positive for viruses from more than
391 one lineage. Specifically, two lineages were found in Norway, although one lineage was unique to
392 continental Norway and another one to an island of the Svalbard archipelago (Urbani et al., 2021), and

393 viruses from all four lineages were identified in the Northwest Territories. Within each lineage, viruses
394 clustered geographically indicating that, although multiple lineages can co-exist in one location, viruses
395 tend to differentiate locally and do not (frequently) move between different locations. Being restricted to
396 wild animals, these viruses may not benefit from the remarkable mobility of domestic dogs, as happens for
397 other canine viruses (Mira et al., 2019; Alfano et al., 2022; Franzo et al., 2023), explaining the more
398 constrained distribution and stronger geographical clustering. Nonetheless, when comparing the data we
399 obtained here to those from our previous study performed with foxes from Labrador (Canuti, Rodrigues,
400 et al., 2022), it is noteworthy that the viruses identified in these two regions differ significantly, highlighting
401 a higher viral diversity in wolves from the Northwest Territories. Finally, strains from very distant locations
402 were intermingled together in the tree, indicating that the origin of the four fox circovirus clades possibly
403 pre-dates the segregation of European and American wolf and fox populations. However, the same pattern
404 could also be explained by viral transfer by yet undetected routes and further investigations examining
405 additional hosts and locations are required to verify this hypothesis.

406

407 **Conclusions**

408 Given the high prevalence and the high diversity of fox circoviruses in wolves, their role as reservoir
409 hosts for this virus can be stated, and a long-lasting virus-host association can be hypothesized. However,
410 future studies may evidence the existence of additional maintenance hosts. While the clinical impact of
411 these viruses on wild and domestic animals is debatable, circoviruses may enhance or facilitate the
412 infection of other viruses, particularly CPV-2 and CBuV, with relevant implications for wild animal health.
413 Intriguingly, fox circovirus, which is widespread across wild animal populations, has never been detected
414 in dogs and further studies should assess the presence of this virus among dogs and other wild sympatric
415 animal populations to clarify its ecology and transmission dynamics. The marked difference in cross-species
416 transmission dynamics between viruses belonging to different CanineCV clades is also investigation-
417 worthy. Given the high diversity and geographic segregation of fox circoviral strains, it is conceivable that
418 this virus has been circulating among wild carnivorans for a long time and it is likely that future research
419 involving additional carnivoran species and locations will reveal an even greater genetic diversity and wider
420 host range.

421

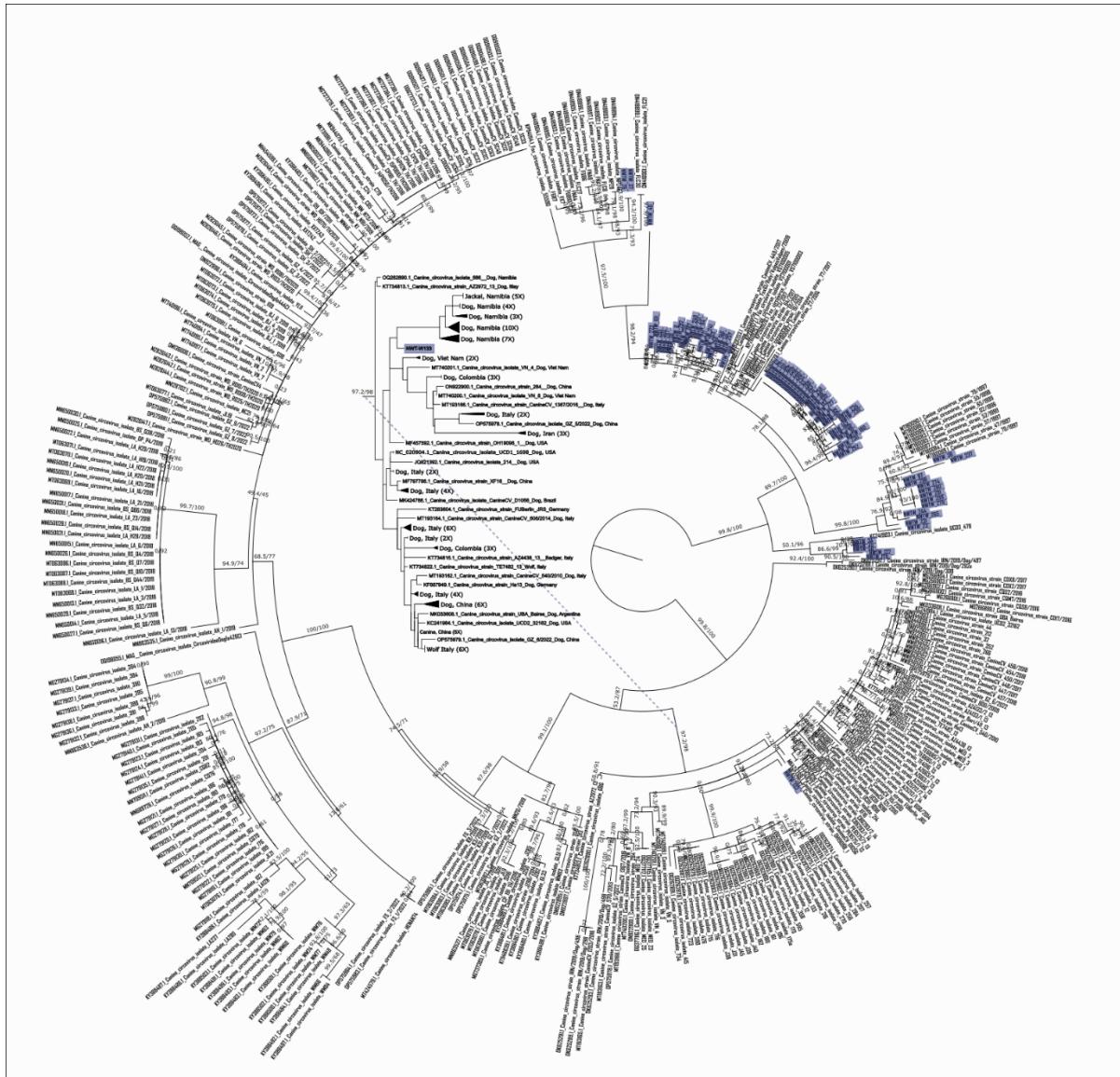
422

423

424

Appendix

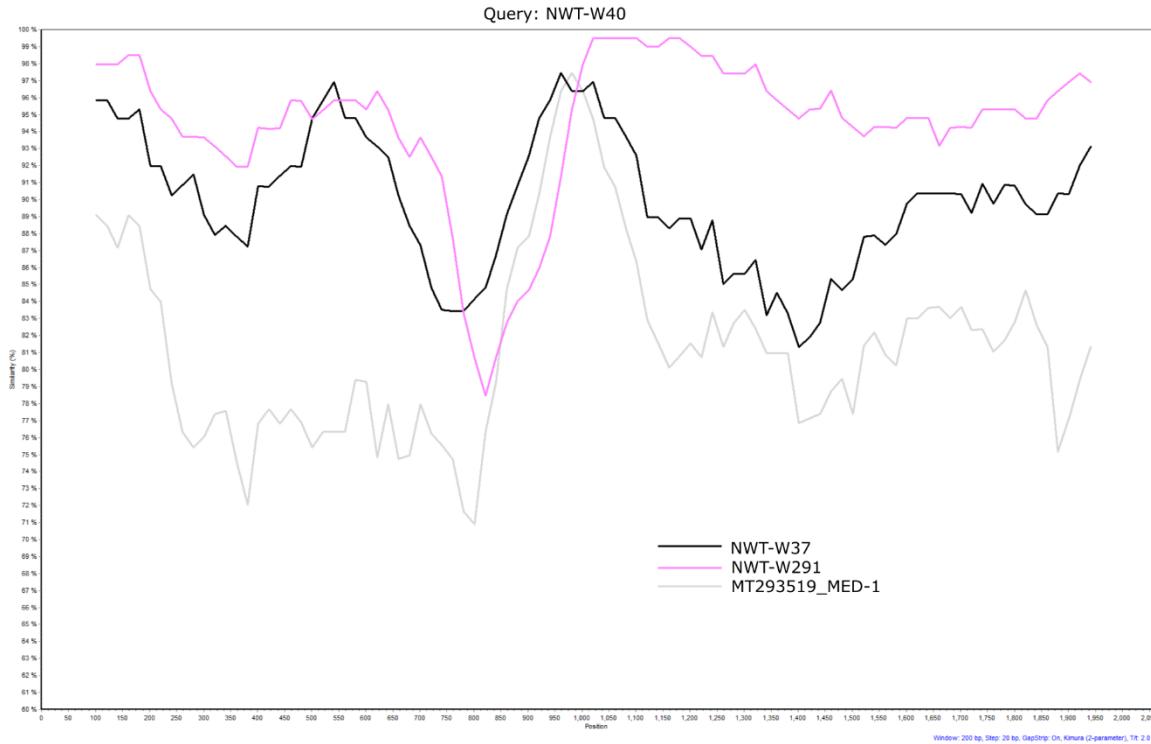
425


426

Supplementary Table S1 – Between and within (Italics) clade pairwise sequence identities,
expressed as a percentage of 1-p distance. Clades correspond to those shown in Figure 4.

	Clade I	Clade II	Clade III	Clade IV
Clade I	94.1-99.3			
Clade II	88.7-91.6	93.4-99.9		
Clade III	91.4-93.8	90.1-91.4	97.6-99.9	
Clade IV	89.1-91.9	91.9-94.6	91.6-93.1	93.1-99.9

427


428

429

430
431
432
433
434
435
436

Supplementary Figure S1 – Relationships between canine circoviruses of wolves of the Northwest Territories, Canada, with other *Circovirus canine* strains reported in the literature. The tree, based on a 265-nt alignment of the Rep gene, was built with the maximum-likelihood method based on the TIM3+F+I+G4 model with IQ-Tree. The outcomes of the SH-aLRT and bootstrap tests (1000 replicates) are shown for all nodes and branch lengths are proportional to genetic distances. The strains identified in this study are highlighted in purple. The branch including strain NWTW-133 is enlarged in the middle, where information about the host and location of reference strains is indicated.

437

438 **Supplementary Figure S2** – Similarity plot showing the recombinant nature of NWTW-40. The graph
439 shows the percentage identity (y-axis) across the whole genome (x-axis) between strain NWTW-40
440 (query) and fox circoviruses NWTW-37 and NWTW-291 and canine circovirus MED-1.

441

442 Acknowledgments

443 The authors would like to acknowledge logistical support from GNWT ECC personnel (Kandis Villebrun,
444 Madison Hurst, Stefan Goodman, Robert Mulders, Kelsey Stewart, and Karl Cox) and local harvesters. MC
445 would also like to acknowledge Dr. Marta Colaneri for insightful conversations about statistical methods.

446 Preprint version 2 of this article has been peer-reviewed and recommended by Peer Community In
447 Infections (<https://doi.org/10.24072/pci.infections.100200>; Jean-Francois Guégan, 2024).

448

Funding

449 This work received funding from the Ocean Frontier Institute (OFI) and Canada First Research
450 Excellence Fund (CFREF) through the Visiting Fellowship Program, awarded to MC.

451

Conflict of interest disclosure

452 The authors declare that they comply with the PCI rule of having no financial conflicts of interest in
453 relation to the content of the article. One author (MC) is a recommender for PCI Microbiology and PCI
454 Infections.

455

Author contribution

456 Conceptualization: MC; Data curation: MC; Formal analysis: MC; Funding acquisition: MC, LEL, SCD, ASL;
457 Investigation: MC, AVLK; Methodology: MC; Project administration: MC; Resources: HDC, HF; Visualization:
458 MC; Writing – original draft: MC; Writing – review and editing: AVLK, GF, HDC, LEL, HF, SCD, ASL.

459 Data, scripts, code, and supplementary information availability

460 Sequences obtained in this study are available in GenBank under accession numbers PP438803-
461 PP438871. Metadata are available online at <https://doi.org/10.5281/zenodo.10775336>; Canuti et al., 2024.

References

463 Alex CE, Fahsbender E, Altan E, Bildfell R, Wolff P, Jin L, Black W, Jackson K, Woods L, Munk B, Tse T, Delwart
464 E, Pesavento PA (2020) Viruses in unexplained encephalitis cases in American black bears (*Ursus*
465 *americanus*). *PLoS ONE*, **15**, e0244056. <https://doi.org/10.1371/journal.pone.0244056>

466 Alfano F, Lanave G, Lucibelli MG, Miletti G, D'Alessio N, Gallo A, Auriemma C, Amoroso MG, Lucente MS,
467 De Carlo E, Martella V, Decaro N, Fusco G (2022) Canine Distemper Virus in Autochthonous and
468 Imported Dogs, Southern Italy (2014–2021). *Animals*, **12**, 2852.
469 <https://doi.org/10.3390/ani12202852>

470 Arcangeli SD, Balboni A, Kaehler E, Urbani L, Verin R, Battilani M (2020) Genomic characterization of canine
471 circovirus detected in red oxes (*Vulpes vulpes*) from Italy using a new real-time PCR assay. *Journal*
472 *of Wildlife Diseases*, **56**, 239–242. <https://doi.org/10.7589/2018-11-270>

473 Balboni A, Urbani L, Delogu M, Musto C, Fontana MC, Merialdi G, Lucifora G, Terrusi A, Dondi F, Battilani
474 M (2021) Integrated use of molecular techniques to detect and genetically characterise DNA
475 viruses in Italian wolves (*Canis lupus italicus*). *Animals*, **11**, 2198.
476 <https://doi.org/10.3390/ani11082198>

477 Bandoo RA, Bautista J, Lund M, Newkirk E, Squires J, Varsani A, Kraberger S (2021) Identification of novel
478 circovirus and anelloviruses from wolverines using a non-invasive faecal sampling approach.
479 *Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in*
480 *Infectious Diseases*, **93**, 104914. <https://doi.org/10.1016/j.meegid.2021.104914>

481 Bexton S, Wiersma LC, Getu S, Run PR van, Verjans GMGM, Schipper D, Schapendonk CME, Bodewes R,
482 Oldroyd L, Haagmans BL, Koopmans MMP, Smits SL (2015) Detection of circovirus in foxes with
483 meningoencephalitis, United Kingdom, 2009–2013. *Emerging Infectious Disease*, **21**, 1205–1208.
484 <https://doi.org/10.3201/eid2107.150228>

485 Breitbart M, Delwart E, Rosario K, Segalés J, Varsani A, ICTV Report Consortium (2017) ICTV virus taxonomy
486 profile: *Circoviridae*. *Journal of General Virology*, **98**, 1997–1998.
487 <https://doi.org/10.1099/jgv.0.000871>

488 Canuti M, Fry K, Cluff HD, Mira F, Fenton H, Lang AS (2022) Co-circulation of five species of dog parvoviruses
489 and canine adenovirus type 1 among gray wolves (*Canis lupus*) in northern Canada. *Transboundary*
490 *and Emerging Diseases*, **69**, e1417–e1433. <https://doi.org/10.1111/tbed.14474>

491 Canuti M, Rodrigues B, Bouchard É, Whitney HG, Lang AS, Dufour SC, Verhoeven JTP (2022) Distinct
492 epidemiological profiles of porcine circovirus 3 and fox circovirus in Canadian foxes (*Vulpes* spp.).
493 *Current Research in Microbial Sciences*, **3**, 100161. <https://doi.org/10.1016/j.crmicr.2022.100161>

494 Canuti M, Todd M, Monteiro P, Van Osch K, Weir R, Schwantje H, Britton AP, Lang AS (2020) Ecology and
495 infection dynamics of multi-host amdoparvoviral and protoparvoviral carnivore pathogens.
496 *Pathogens*, **9**, 124. <https://doi.org/10.3390/pathogens9020124>

497 Cerna GM, Serieys LEK, Riley SPD, Richet C, Kraberger S, Varsani A (2023) A circovirus and cycloviruses
498 identified in feces of bobcats (*Lynx rufus*) in California. *Archives of Virology*, **168**, 23.
499 <https://doi.org/10.1007/s00705-022-05656-8>

500 Chiappetta CM, Cibulski SP, Lima FES, Varela APM, Amorim DB, Tavares M, Roehe PM (2017) Molecular
501 detection of circovirus and adenovirus in feces of fur seals (*Arctocephalus* spp.). *Ecohealth*, **14**, 69.
502 <https://doi.org/10.1007/s10393-016-1195-8>

503 Dankaona W, Mongkoldej E, Satthathum C, Piewbang C, Techangamsuwan S (2022) Epidemiology, genetic
504 diversity, and association of canine circovirus infection in dogs with respiratory disease. *Scientific*
505 *Reports*, **12**, 15445. <https://doi.org/10.1038/s41598-022-19815-z>

506 Fehér E, Jakab F, Bányai K Mechanisms of circovirus immunosuppression and pathogenesis with a focus on
507 porcine circovirus 2: a review. *The Veterinary Quarterly*, **43**, 1–18.
508 <https://doi.org/10.1080/01652176.2023.2234430>

509 Franzo G, Menandro ML, Tucciarone CM, Barbierato G, Crovato L, Mondin A, Libanora M, Obber F, Orusa
510 R, Robetto S, Citterio C, Grassi L (2021) Canine circovirus in foxes from Northern Italy: where did It
511 all begin? *Pathogens*, **10**. <https://doi.org/10.3390/pathogens10081002>

512 Franzo G, Mira F, Schirò G, Canuti M (2023) Not Asian Anymore: Reconstruction of the History, Evolution,
513 and Dispersal of the “Asian” Lineage of CPV-2c. *Viruses*, **15**, 1962.
514 <https://doi.org/10.3390/v15091962>

515 Gainor K, Becker AAMJ, Malik YS, Ghosh S (2021) Detection and complete genome analysis of circoviruses
516 and cycloviruses in the small Indian mongoose (*Urva auropunctata*): Identification of Novel
517 Species. *Viruses*, **13**, 1700. <https://doi.org/10.3390/v13091700>

518 Gomez-Betancur D, Vargas-Bermudez DS, Giraldo-Ramírez S, Jaime J, Ruiz-Saenz J (2023) Canine circovirus:
519 An emerging or an endemic undiagnosed enteritis virus? *Frontiers in Veterinary Science*, **10**,
520 1150636. <https://doi.org/10.3389/fvets.2023.1150636>

521 Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods
522 to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. *Systematic
523 Biology*, **59**, 307–321. <https://doi.org/10.1093/sysbio/syq010>

524 Hammer Ø, Harper DA, Ryan PD (2001) PAST: Paleontological statistics software package for education and
525 data analysis. *Palaeontologia Electronica*, **4**, 9.

526 Hao X, Li Y, Chen H, Chen B, Liu R, Wu Y, Xiao X, Zhou P, Li S (2022) Canine circovirus suppresses the type I
527 interferon response and protein expression but promotes CPV-2 replication. *International Journal
528 of Molecular Sciences*, **23**, 6382. <https://doi.org/10.3390/ijms23126382>

529 Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS (2018) UFBoot2: improving the ultrafast
530 bootstrap approximation. *Molecular Biology and Evolution*, **35**, 518–522.
531 <https://doi.org/10.1093/molbev/msx281>

532 JASP Team (2023) JASP.

533 Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model
534 selection for accurate phylogenetic estimates. *Nature Methods*, **14**, 587–589.
535 <https://doi.org/10.1038/nmeth.4285>

536 Kapoor A, Dubovi EJ, Henriquez-Rivera JA, Lipkin WI (2012) Complete genome sequence of the first canine
537 circovirus. *Journal of Virology*, **86**, 7018–7018. <https://doi.org/10.1128/JVI.00791-12>

538 Kasimov V, Wille M, Sarker S, Dong Y, Shao R, Hall C, Potvin D, Conroy G, Valenza L, Gillett A, Timms P,
539 Jelocnik M (2023) Unexpected pathogen diversity detected in Australian avifauna highlights
540 potential biosecurity challenges. *Viruses*, **15**, 143. <https://doi.org/10.3390/v15010143>

541 Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in
542 performance and usability. *Molecular Biology and Evolution*, **30**, 772–780.
543 <https://doi.org/10.1093/molbev/mst010>

544 Kim J, Choi C, Chae C (2003) Pathogenesis of postweaning multisystemic wasting syndrome reproduced by
545 co-infection with Korean isolates of porcine circovirus 2 and porcine parvovirus. *Journal of
546 Comparative Pathology*, **128**, 52–59. <https://doi.org/10.1053/jcpa.2002.0605>

547 Li L, McGraw S, Zhu K, Leutenegger CM, Marks SL, Kubiski S, Gaffney P, Jr FNDC, Wang C, Delwart E,
548 Pesavento PA (2013) Circovirus in tissues of dogs with vasculitis and hemorrhage. *Emerging
549 Infectious Diseases*, **19**, 534. <https://doi.org/10.3201/eid1904.121390>

550 Lian H, Liu Y, Li N, Wang Y, Zhang S, Hu R (2014) Novel Circovirus from Mink, China. *Emerging Infectious
551 Diseases*, **20**, 1548–1550. <https://doi.org/10.3201/eid2009.140015>

552 Lojkić I, Biđin M, Prpić J, Šimić I, Krešić N, Bedeković T (2016) Faecal virome of red foxes from peri-urban
553 areas. *Comparative Immunology, Microbiology and Infectious Diseases*, **45**, 10–15.
554 <https://doi.org/10.1016/j.cimid.2016.01.005>

555 Martin C, Pastoret P-P, Brochier B, Humblet M-F, Saegerman C (2011) A survey of the transmission of
556 infectious diseases/infections between wild and domestic ungulates in Europe. *Veterinary
557 Research*, **42**, 70. <https://doi.org/10.1186/1297-9716-42-70>

558 Martin DP, Varsani A, Roumagnac P, Botha G, Maslamaney S, Schwab T, Kelz Z, Kumar V, Murrell B (2021)
559 RDP5: a computer program for analyzing recombination in, and removing signals of recombination
560 from, nucleotide sequence datasets. *Virus Evolution*, **7**, veaa087.
561 <https://doi.org/10.1093/ve/veaa087>

562 Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R (2020) IQ-
563 TREE 2: new models and efficient methods for phylogenetic inference in the genomic era.
564 *Molecular Biology and Evolution*, **37**, 1530–1534. <https://doi.org/10.1093/molbev/msaa015>

565 Mira F, Purpari G, Bella SD, Colaianni ML, Schirò G, Chiaramonte G, Gucciardi F, Pisano P, Lastra A, Decaro
566 N, Guercio A (2019) Spreading of canine parvovirus type 2c mutants of Asian origin in southern
567 Italy. *Transboundary and Emerging Diseases*, **66**, 2297. <https://doi.org/10.1111/tbed.13283>

568 Nishizawa T, Sugimoto Y, Takeda T, Kodera Y, Hatano Y, Takahashi M, Okamoto H (2018) Identification and
569 full-genome characterization of novel circoviruses in masked palm civets (*Paguma larvata*). *Virus*
570 *Research*, **258**, 50–54. <https://doi.org/10.1016/j.virusres.2018.10.004>

571 Opriessnig T, Prickett JR, Madson DM, Shen H-G, Juhan NM, Pogranichnyi RM, Meng X-J, Halbur PG (2010)
572 Porcine circovirus type 2 (PCV2)-infection and re-inoculation with homologous or heterologous
573 strains: virological, serological, pathological and clinical effects in growing pigs. *Veterinary*
574 *Research*, **41**, 31. <https://doi.org/10.1051/vetres/2010003>

575 Patterson QM, Kraberger S, Martin DP, Shero MR, Beltran RS, Kirkham AL, Aleamotu'a M, Ainley DG, Kim
576 S, Burns JM, Varsani A (2021) Circoviruses and cycloviruses identified in Weddell seal fecal samples
577 from McMurdo Sound, Antarctica. *Infection, Genetics and Evolution: Journal of Molecular*
578 *Epidemiology and Evolutionary Genetics in Infectious Diseases*, **95**, 105070.
579 <https://doi.org/10.1016/j.meegid.2021.105070>

580 Payne N, Kraberger S, Fontenelle RS, Schmidlin K, Bergeman MH, Cassaigne I, Culver M, Varsani A, Van
581 Doorslaer K (2020) Novel Circoviruses Detected in Feces of Sonoran Felids. *Viruses*, **12**, 1027.
582 <https://doi.org/10.3390/v12091027>

583 Salminen MO, Carr JK, Burke DS, McCutchan FE (1995) Identification of breakpoints in intergenotypic
584 recombinants of HIV type 1 by bootscanning. *AIDS research and human retroviruses*, **11**, 1423–
585 1425.

586 Shahbazi Asil M, Zarifian N, Valafar A, Shirani D, Mehrzad J (2023) Noticeable immune dysregulation-and-
587 suppression in parvovirus affected dogs. *Veterinary Immunology and Immunopathology*, **265**,
588 110663. <https://doi.org/10.1016/j.vetimm.2023.110663>

589 Shibata I, Okuda Y, Yazawa S, Ono M, Sasaki T, Itagaki M, Nakajima N, Okabe Y, Hidejima I (2003) PCR
590 detection of Porcine circovirus type 2 DNA in whole blood, serum, oropharyngeal swab, nasal
591 swab, and feces from experimentally infected pigs and field cases. *The Journal of Veterinary*
592 *Medical Science*, **65**, 405–408. <https://doi.org/10.1292/jvms.65.405>

593 Urbani L, Tryland M, Ehrlich D, Fuglei E, Battilani M, Balboni A (2021) Ancient origin and genetic segregation
594 of canine circovirus infecting arctic foxes (*Vulpes lagopus*) in Svalbard and red foxes (*Vulpes vulpes*)
595 in Northern Norway. *Transboundary and Emerging Diseases*, **68**, 1283–1293.
596 <https://doi.org/10.1111/tbed.13783>

597 de Villiers L, Molini U, Coetzee LM, Visser L, Spangenberg J, de Villiers M, Berjaoui S, Khaiseb S, Lorusso A,
598 Franzo G (2023) Molecular epidemiology of Canine circovirus in domestic dogs and wildlife in
599 Namibia, Africa. *Infection, Genetics and Evolution*, **112**, 105458.
600 <https://doi.org/10.1016/j.meegid.2023.105458>

601 Zaccaria G, Malatesta D, Scipioni G, Di Felice E, Campolo M, Casaccia C, Savini G, Di Sabatino D, Lorusso A
602 (2016) Circovirus in domestic and wild carnivores: An important opportunistic agent? *Virology*,
603 **490**, 69–74. <https://doi.org/10.1016/j.virol.2016.01.007>

604