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Abstract  16 

Circulating metabolite levels have been associated with type 2 diabetes (T2D), but the extent to which 17 

these are affected by T2D and the involvement of genetics in mediating these relationships remain to 18 

be elucidated. In this study, we investigate the interplay between genetics, metabolomics and T2D risk 19 

in the UK Biobank dataset. We find 79 metabolites with a causal association to T2D, mostly spanning 20 

lipid-related classes, while twice as many metabolites are causally affected by T2D liability, including 21 

branched-chain amino acids. Secondly, using an interaction quantitative trait locus (QTL) analysis, we 22 
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describe four metabolites, consistently replicated in an independent dataset from the Estonian 23 

Biobank, for which genetic loci in two different genomic regions show attenuated regulation in T2D 24 

cases compared to controls. The significant variants from the interaction QTL analysis are significant 25 

QTLs for the corresponding metabolites in the general population, but are not associated with T2D 26 

risk, pointing towards consequences of T2D on the genetic regulation of metabolite levels. Finally, we 27 

find 165 metabolites associated with microvascular, macrovascular, or both types of T2D 28 

complications, with only a few discriminating between complication classes. Of the 165 metabolites, 29 

40 are not causally linked to T2D in either direction, suggesting biological mechanisms specific to the 30 

occurrence of complications. Overall, this work provides a map of the metabolic consequences of T2D 31 

and of the genetic regulation of metabolite levels and enable to better understand the trajectory of 32 

T2D leading to complications. 33 

 34 

Introduction 35 

Type 2 diabetes (T2D) is a common, complex disease, with a prevalence that is expected to increase 36 

dramatically, and for which the genetics has been largely described through genome-wide association 37 

study (GWAS) meta-analysis efforts1-3. The next step towards translating these associations into the 38 

clinic is to understand the biological mechanisms behind them. To this end, multi-omics data such as 39 

metabolite levels offer great promise, as they enable the study of molecular phenotypes closely 40 

implicated in the disease. A large number of metabolites have been associated with T2D, as highlighted 41 

in a recent study from Julkunen et al.4, which described 230 metabolites as nominally associated with 42 

incident and prevalent T2D. Consistent associations between T2D risk and metabolites across studies 43 

mostly cover increases in various amino acid levels, especially branched-chain amino acids (BCAAs)5-7, 44 

and dyslipidemia4,8. However, the predictive value of metabolite profiles in T2D risk is still debated. 45 

Improved prediction of various complex traits using metabolite profiles over genetic scores has been 46 

shown9, but this improvement is rather limited when compared to classical risk factors including age, 47 
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sex and family history of disease10,11. The limited prediction of metabolite profiles may be related to 48 

the uncertain causal role in modulating T2D risk, a question investigated using Mendelian 49 

randomization (MR)12. One particular example is BCAAs, for which some studies have described a 50 

causal effect of valine, leucine and/or isoleucine on T2D13-15, while more recent evidence has shown 51 

no causal effect of BCAAs on T2D risk in the UK Biobank (UKBB) cohort16. Conversely, increasing 52 

evidence of a causal effect of T2D liability on metabolite profiles has been shown, with increased 53 

alanine levels caused by increased T2D liability being consistently reported13,17,18. Conflicting 54 

conclusions exist for other metabolites, and little is known about the role of genetics in mediating 55 

these relationships. The genetic regulation of metabolite profiles is increasingly described, for example 56 

through the latest meta-analysis reporting over 400 independent loci associated with 233 metabolite 57 

levels19. These metabolite QTLs, also called mQTLs, are usually reported in the general population, and 58 

studies are starting to emerge on how they are modified by factors such as diet20. However, no study 59 

to date has investigated the question of whether the genetic regulation of metabolite levels is affected 60 

by the occurrence of T2D.  61 

A large part of the healthcare burden associated with T2D is due to subsequent complications of the 62 

disease. T2D complications span both microvascular complications, which refer to complications 63 

involving small vessels and have an estimated prevalence of 53%, and macrovascular complications 64 

which refer to complications involving large vessels such as arteries and veins with an estimated 65 

prevalence of 27%21. Increasing evidence is emerging that metabolite profiles are also associated with 66 

the risk of developing complications, such as the fatty acid biosynthesis pathway with retinal and renal 67 

complications22, two of the main microvascular complications of T2D, n-3 fatty acids with T2D 68 

macrovascular complications23, or amino acids with both types of T2D complications24. However, 69 

replication of these associations is still needed, as well as investigating whether the metabolites 70 

associated with T2D complications are distinct from the ones causally affected by T2D liability. 71 

Exploring the links between metabolite levels and T2D can help us gain insights into how these 72 
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relationships may influence trajectories towards T2D complications, for which underlying biological 73 

mechanisms are still to be unraveled.  74 

Here, we aim to address these questions and elucidate the metabolic consequences of T2D by 75 

investigating the links between metabolite profiles, genetics, and the risk of T2D and subsequent 76 

complications. For this, we considered profiles of 249 metabolites, characterized for almost 275,000 77 

participants from the UKBB cohort25 through two releases, which were here considered for discovery 78 

(n=117,967 individuals) and replication (n=156,385 individuals), or meta-analyzed when statistically 79 

appropriate. We first performed a bi-directional two sample MR analysis, using non-overlapping 80 

datasets for the SNP-exposure and SNP-outcome associations to limit potential bias12. Previous MR 81 

studies performed in the UKBB cohort have used only the first release of data for the 249 metabolites 82 

and were either limited to a few metabolites, or only investigated a single causal direction16,18,26. 83 

Secondly, we performed an interaction mQTL analysis to assess whether there is a different genetic 84 

regulation of metabolite levels between T2D patients and controls. Finally, we investigated how 85 

metabolite profiles are associated with T2D complications, and whether these associated metabolites 86 

overlap with the metabolites causally affected by T2D liability.  87 

 88 

Methods 89 

Data and quality control 90 

Genetic data from genotyping arrays and imputation are available for over 500,000 participants in the 91 

UKBB cohort. Quality control (QC) was performed at the variant level and at the sample (S1 File). We 92 

selected only variants with a minor allele frequency greater than 1% and with an imputation INFO 93 

score greater than 0.8. To maximize sample homogeneity and to minimize potential bias in MR due to 94 

differences between the exposure and outcome datasets, we chose to focus on individuals of European 95 

ancestry. In total, 408,194 individuals and 9,572,578 variants remained after QC. 96 
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A total of 249 metabolite levels obtained from the Nightingale platform using nuclear magnetic 97 

resonance (NMR) spectroscopy is available in the UKBB cohort as part of two different releases 98 

covering a total of 274,352 individuals: 117,967 in the first release, and 156,385 in the second release. 99 

Absolute concentrations cover 168 metabolites, with an additional set of 81 metabolite ratios and 100 

percentages, which are further derived from the absolute concentrations 101 

(https://biobank.ndph.ox.ac.uk/showcase/refer.cgi?id=1682). To perform metabolite QC, we used the 102 

ukbnmr R package (version 1.5) specifically developed to remove technical variations from NMR 103 

metabolite measurements in the UKBB27. For each release, we considered only metabolite data at the 104 

first timepoint, T0, corresponding to a total of 227,607 individuals and 249 metabolites after applying 105 

the ukbnmr QC (S1 File). All analyses have been performed on inverse normal transformed values to 106 

obtain normally distributed metabolite levels28, which correspond to ‘metabolite levels’ for the rest of 107 

the manuscript. 108 

Definition of phenotypes 109 

T2D status 110 

T2D status was defined based on the UKBB field 130708, which corresponds to the first date of T2D 111 

report (self-reported or ICD10 code). Status was defined at T0 to analyze metabolite profiles in the 112 

light of T2D status at the time of profiling (S1 Fig), prevalent cases corresponding to individuals having 113 

a T2D diagnosis date before the date of blood sample collection on which metabolites were assayed, 114 

and incident cases to individuals having a T2D diagnosis date after the date of blood sample collection. 115 

Considering that T2D is often diagnosed with a few years delay29, we considered HbA1c levels in 116 

addition of the field 130708 to recover individuals likely having undiagnosed T2D at T0 among T2D 117 

incident cases. We removed from the analysis individuals with any mention of T1D (ICD10 code E10*, 118 

field 130706) or gestational diabetes (ICD10 code O24*, field 132202), and individuals diagnosed with 119 

T2D before the age of 36 years, in accordance with previous guidelines30. Individuals with a mention 120 

of T1D or gestational diabetes were also removed from the controls. The final number of T2D cases 121 
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and controls included in the analyses, passing the genetic data QC and having measured metabolite 122 

levels are 3,088 and 88,244 for the first release and 4,302 and 118,555 for the second release, 123 

respectively.  124 

T2D complications  125 

We categorized prevalent cases of T2D at T0 into four mutually exclusive complication groups based 126 

on the occurrence of generalized vascular complication events: “microvascular”, “macrovascular”, 127 

“micro and macrovascular” complications, and “no complications”. “Microvascular” and 128 

“macrovascular” complications were defined based on ICD10 codes summarized in S1 Table. 129 

Individuals with an ICD10 code for both types of complications were attributed to the “micro and 130 

macrovascular” group and removed from the two other complication groups. We selected individuals 131 

with a diagnosis date of complications before the date of metabolite sample collection but after the 132 

T2D diagnosis date. If individuals had multiple ICD10 codes for the “microvascular” or the 133 

“macrovascular” complication group, the date of the first event was considered. For the “micro and 134 

macrovascular” group, the latest date between the “microvascular” and the “macrovascular” onset 135 

was considered. The total number of individuals in each complication group assayed in each of the 136 

release datasets is presented in Table 1. 137 

Table 1: Number of T2D patients per complication group for each of the released dataset 138 

Metabolite data 

release 

No 

complications 
Microvascular Macrovascular 

Micro- and 

macrovascular 

1st release dataset 1268 83 243 57 

2nd release dataset 1701 99 356 76 

 139 
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Statistical analyses 140 

General considerations 141 

All the analyses have been performed using R version 4.2.0 and adjusted for age, sex, and fasting time 142 

(only available in the UKBB), as well as for additional covariates in the analyses involving genetic data 143 

(S2 Table). To correct our analyses for multiple testing, we considered FDR-adjusted p-values 144 

(Benjamini-Hochberg method, referred to as q-values) to assess significance at 5%. All analyses were 145 

performed on the two release datasets separately and meta-analyzed, except for the MR analyses 146 

where the same T2D summary statistics were used for both MR analyses on the two release sets 147 

(details below).  148 

Mendelian randomization 149 

Two sample bi-directional MR was performed to assess the causal effects of metabolite levels on T2D 150 

risk (forward MR) and the causal effects of T2D liability on metabolite levels (reverse MR). MR was run 151 

separately on the two released datasets as it was not possible to perform meta-analysis due to the 152 

same outcome data being used in the two MR analyses, namely T2D DIAMANTE meta-analysis. For the 153 

first release dataset, we used mQTL summary statistics from Borges et al.31, and for the second release, 154 

we performed a mQTL analysis using the REGENIE software (version 2.2.4)32. For the associations 155 

between genetic variants and T2D, we used the DIAMANTE 2018 meta-analysis2, restricted to 156 

European ancestry samples, and without the UKBB cohort to avoid sample overlap between the 157 

exposure and the outcome data. 158 

Instrumental variables (IVs) were selected by first defining independent variants through LD-based 159 

clumping using plink33 with the following parameters: R2<0.001 in windows of 10Mb, a p-value 160 

threshold of 2.54x10-10 for the metabolite levels and of 5x10-8 for T2D. The threshold of 2.54x10-10 is a 161 

genome-wide threshold corrected by the number of effective tests34, estimated at 197, which enables 162 

to correct the analyses for multiple testing while considering the correlation between the metabolites. 163 

The strength of each IV was determined using F-statistics. For the first released dataset and T2D 164 
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summary statistics, the F-statistic was estimated using  
𝛽2

𝑠𝑒2⁄ , where beta is the effect estimate and 165 

se its corresponding standard error. For the second release dataset, individual-level data from the 166 

UKBB and the R package ivreg (version 0.6-1) were used to calculate the F-statistic. Only IVs with an F-167 

statistic larger than 10 were retained. 168 

MR was run using the R package TwoSampleMR35. RadialMR36 was used to assess heterogeneity and 169 

remove outliers for metabolites with a significant SNP heterogeneity. MR significance in the first 170 

release dataset was assessed based on the inverse variance weighted (IVW) method using q-values at 171 

a 5% threshold. Six additional MR methods (MR Egger, weighted median, simple mode, weighted 172 

mode, IVW fixed effect, IVW random effect and Steiger filtered IVW) were used as sensitivity analyses 173 

to check for concordant direction of causal effect estimate. We only considered metabolites having a 174 

non-significant heterogeneity and pleiotropy estimates, measured by the Q-statistic and the MR-Egger 175 

intercept, respectively. Significant metabolites were considered as replicated if they had an IVW 176 

q-value lower than 5% in the second release dataset with a concordant direction of effect of the IVW 177 

method with the first release dataset.  178 

Interaction QTL 179 

We performed an interaction QTL analysis to investigate the genetic regulation of metabolite levels in 180 

T2D cases and controls using the REGENIE software (version 2.2.4)32 and the following interaction test: 181 

𝑦 ~ 𝑆𝑁𝑃 + 𝑇2𝐷 + 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 + 𝑆𝑁𝑃 ∗ 𝑇2𝐷 182 

Where 𝑆𝑁𝑃 ∗ 𝑇2𝐷 represents the interaction term between T2D disease status and genotypes. Only 183 

the p-value of the interaction test (“ADD-INT_SNPxVAR” column from the REGENIE output) was 184 

assessed for statistical significance. Interaction analyses were run on each of the two release datasets 185 

separately and were then meta-analyzed using the software METAL37 to maximize statistical power. We 186 

considered suggestive variants if they had a meta-analysis p-value lower than the genome-wide 187 

significance threshold of 5x10-8, a nominally significant p-value in both release datasets, and a 188 
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concordant direction of effect between both datasets. To investigate whether the results from the 189 

interaction QTL analyses could be mediated by the effect of confounding variables, we performed 190 

sensitivity analyses where we sequentially adjusted for BMI, lipid-lowering medication, and metformin 191 

(File S1).  192 

Replication of interaction QTL effects in Estonian Biobank 193 

We replicated the interaction QTL analysis in the Estonian Biobank (EstBB), in which the same 194 

metabolite panel has been assayed, for the significant variants identified in the UKBB. The EstBB data 195 

freeze including altogether 211,728 biobank participants was applied. Individual level data analysis in 196 

the EBB was carried out under ethical approval [nr 1.1-12/3337] from the Estonian Committee on 197 

Bioethics and Human Research (Estonian Ministry of Social Affairs), using data according to release 198 

application [nr 6-7/GI/15486 T17] from the Estonian Biobank. 199 

The T2D cases were defined using the same approach as in the UKBB, where T2D diagnosis was based 200 

on the ICD10 codes E11* from electronic health registries (EHRs), and further on HbA1c levels for 201 

incident T2D cases. Individuals who have consumed insulin at least one year after the T2D diagnosis 202 

were excluded (EHRs do not have information about prescription of Insulins and analogies (the 203 

Anatomical Therapeutic Chemical code A10A*)). The control group was defined as follows: (1) they do 204 

not have ICD10 codes E10*, E11* or O24* marked in their EHRs, (2) they have not been prescribed any 205 

of the drugs with the following ATC codes: A10A*, A10BA02, A10BF01, A10BB07, A10BB03, V04CA01, 206 

A10BB01, A10BB09, A10BB12, A10BG01, A10BX02, A10BG03, A10BX03, A10BG02.  207 

Similar to UKBB, metabolite data is available from Nightingale NMR spectrometry platform, and a QC 208 

was performed on both these data and the genotyping data (S1 File). After QC, 6,237 T2D cases and 209 

92,381 controls were enrolled into the replication analysis. Replication interaction QTL analysis was 210 

conducted by fitting a linear model with the interaction term between SNP and T2D status, while using 211 

SNP dosage, T2D status, sex, age at agreement, spectrometer serial number and ten first genetic 212 

principal components as covariates on each pair of variant and metabolite. Analysis and data 213 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 3, 2024. ; https://doi.org/10.1101/2024.06.20.599832doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.20.599832
http://creativecommons.org/licenses/by-nc/4.0/


10 
 

processing was implemented into custom scripts and by using R v4.3.1. We considered replicated 214 

signals those with a q-value lower than 5% in the EstBB cohort and with a concordant direction of 215 

effect.  216 

Analysis of T2D complications 217 

We analyzed the differences between metabolite levels and the four complication groups defined 218 

previously (microvascular, macrovascular, micro and macrovascular, no complications) using a 219 

multinomial approach. We used the R package mlogit (version 1.1-1), with T2D individuals without 220 

complications representing the reference level. To increase statistical power, we meta-analyzed the 221 

results across the two release datasets for each complication group. We declared metabolites as 222 

having a significant effect between different complication groups if they had a q-value lower than 5% 223 

in the meta-analysis, and a nominal significant p-value in each of the release datasets with a 224 

concordant direction of effect. Finally, we performed forward one-sample MR analyses within the 225 

UKBB to assess the causal effect of metabolite levels on the risk of developing T2D complications using 226 

the R package ivreg (version 0.6-1). We used the same metabolite IVs as for the T2D bi-directional two-227 

sample MR, and only kept the ones having an F-statistic greater than 10 in the subset of T2D 228 

individuals. 229 

Results 230 

Causal associations 231 

Causal relationships between T2D and metabolites from the bi-directional MR that are significant in 232 

the first release dataset and replicated in the second release dataset are reported as an upset plot in 233 

Fig 1. This plot also includes the significant associations between metabolite levels and 234 

prevalent/incident T2D in the UKBB described by Julkunen et al.4 using the first metabolite release 235 

dataset. All metabolites that show a significant causal association in either MR direction in our analysis 236 

are also associated with prevalent or incident T2D reported by Julkunen et al.4, supporting the 237 
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observed MR effects. Interestingly, while among the metabolites significant in the reverse direction, 238 

i.e., causally affected by T2D liability, 172 are found to be associated with both incident and prevalent 239 

T2D, 8 are found to be associated only with incident T2D and not significant in the forward direction. 240 

This finding points to T2D predisposition affecting these 8 metabolites levels, which are all related to 241 

very low-density lipoproteins (VLDL). MR estimates from the IVW method in both directions are 242 

reported in S3 Table and shown in Fig 2 as circular plots for 168 absolute metabolite levels and 81 243 

derived ratios.  244 

 245 

Figure 1: Upset plot of the forward and reverse MR analyses, along with the association results from Julkunen et al. between 246 

metabolite levels and prevalent/incident T2D.  247 
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 248 

Figure 2: Circular plot of the forward and reverse MR analyses with estimates from the 1st metabolite set. Metabolites 249 

having increased levels associated with T2D occurrence are presented in yellow and the ones with decreased levels in blue. 250 

Non-significant metabolites, or metabolites not replicated in the 2nd metabolite set are colored in grey. Metabolites are 251 

grouped according to metabolite classes. 252 

We identify 78 metabolites that are significant in the forward direction, i.e., that show a causal 253 

association with T2D risk, mostly spanning lipid classes, especially low-density lipoproteins (LDL) with 254 

decreased levels increasing the risk of T2D. While counterintuitive, increasing evidence suggests that 255 

individuals with low LDL-C have indeed a higher risk of developing T2D38-40, and a recent study 256 

described genetic variants associated with both higher T2D risk and lower LDL levels41. The LDL and 257 

T2D associations described here are also concordant with previous work using data from the UKBB4,18. 258 

Glucose was the strongest signal in the first dataset (OR = 4.57 [3.15-6.63], p-value=8.73x10-16), which 259 

was replicated in the second released dataset. Additionally, some ratios in high density lipoproteins 260 

(HDL) and VLDL classes are found to be causally associated with T2D risk. We find no evidence of a 261 

causal role of absolute triglycerides (TG) levels on T2D, although it has been described as a predictor 262 

of T2D risk17,42. We replicate findings from Mosley et al.16, which do not find evidence of a causal role 263 

of BCAAs on the risk of T2D. Almost all of the significant metabolites in the forward direction are also 264 
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found to be associated in the reverse direction, highlighting the complex interplay between metabolite 265 

profiles and T2D liability.  266 

We find 183 metabolites to be significantly associated in the reverse direction, of which 114 are not 267 

found in the forward direction. This includes a negative effect of T2D liability on large and very large 268 

HDL, intermediate-density lipoproteins (IDL) and LDL, while the opposite trend is observed for large 269 

and extremely large VLDL. Consistent trends are observed for lipoprotein ratios with T2D liability being 270 

causally associated with decreases in cholesterol and cholesteryl esters fractions, and with increases 271 

in TG ratios. Fatty acids percentages were also affected by T2D liability, with decreases in PUFA and 272 

omega-6 percentages, but increases in MUFA percentage. Finally, we describe causal effects of T2D 273 

liability on all BCAAs, as well as on tyrosine and alanine. We further compared our results with a 274 

reverse MR study that was carried out by Smith et al. on the first release dataset of metabolites from 275 

the UKBB18 using T2D summary statistics that included UKBB samples, and observe a high correlation 276 

of the effect estimates and p-values with our study (S2 Fig). Here, we report replication of 93% of the 277 

findings from Smith et al. in the second release dataset of metabolites from the UKBB without a 278 

potential bias due to sample overlap (S3 Table).  279 

Interaction QTL 280 

We investigated whether causal effects of T2D liability on metabolite profiles could be mediated by a 281 

different genetic regulation of metabolite levels between T2D cases and controls through an 282 

interaction mQTL analysis. We identify 14 metabolites with variant having a significant interaction with 283 

T2D status, including glycine and various lipids. Of these, 40 variants were replicated in the EstBB (S4 284 

Table), corresponding to four metabolites: percentage of free cholesterol in small HDL (S_HDL_FC_pct), 285 

percentage of phospholipids in large LDL (L_LDL_PL_pct), percentage of triglycerides in large VLDL 286 

(L_VLDL_TG_pct) and percentage of free cholesterol in large VLDL (L_VLDL_FC_pct). These significant 287 

interactions map to two intergenic regions, one shared by all metabolites except S_HDL_FC_pct, and 288 

the second showing significant genetic interactions with T2D status only for S_HDL_FC_pct (S3 Fig). 289 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 3, 2024. ; https://doi.org/10.1101/2024.06.20.599832doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.20.599832
http://creativecommons.org/licenses/by-nc/4.0/


14 
 

The genetic associations of these variants with metabolite levels are stronger in the control group than 290 

in the T2D patients’ group, with some of the variants in the interaction regions being a significant mQTL 291 

only in the control group. For instance, rs6073958 is associated with lower levels of S_HDL_FC_pct in 292 

the controls group (beta = -0.146, p<1e-300), but not in the patients’ group (beta = -0.002, p = 0.93) 293 

(Fig 3).  294 

 295 

Figure 3: Boxplot showing metabolite levels according to the genotype in T2D patients and controls (the most significant 296 

variant for each of the four metabolites replicated in the EBB are represented). The metabolite levels represented are inverse-297 

normal transformed and adjusted for the covariates used in the interaction QTL analyses. For each variant, its frequency in 298 

the control and in the T2D patients’ group is provided, along with the beta and p-value of association with metabolite levels. 299 

The overall p-value of the interaction test is also given. 300 

L_VLDL_TG_pct is significant in both MR directions, while S_HDL_FC_pct and L_VLDL_FC_pct are only 301 

significant in the forward and reverse MR analysis respectively (Fig 4). The reverse MR estimates show 302 

evidence that T2D liability is causally associated with a decrease in S_HDL_FC_pct, and the major allele 303 

of the interacting variants are associated with increased levels of this metabolite. The opposite trend 304 

is observed for L_VLDL_TG_pct. These findings suggest that the causal effect of T2D liability identified 305 
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in the reverse MR might be, at least partly, due to a genetic dysregulation of metabolite levels following 306 

T2D occurrence. 307 

 308 

Figure 4: Bi-directional MR results for the four metabolites significant in the interaction QTL analysis. The top row corresponds 309 

to the forward MR (effects of metabolites on T2D), and the bottom row to the reverse MR (effects of T2D liability on 310 

metabolites). Effect sizes and standard error using IVW and the sensitivity methods are represented in red for the first set of 311 

metabolites, and in black for the second set of metabolites. 312 

To gain more insights into the link between the four replicated metabolites and T2D, we looked at the 313 

most significant interaction QTLs. The most significant interaction QTL for L_VLDL_TG_pct, rs3816117, 314 

is annotated by the variant effect predictor (VEP43) as a modifier variant for cholesteryl ester transfer 315 

protein, (CETP, S4 Fig), a protein targeted by drugs to increase HDL-C and decrease LDL-C levels. The 316 

significant interaction variant for S_HDL_FC_pct, rs6073958, is annotated as a modified lncRNA. All of 317 
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the interaction variants replicated in the EstBB are mQTLs for the corresponding metabolites in the 318 

overall UKBB cohort, but are not associated with T2D risk in the latest T2D GWAS meta-analysis3. These 319 

findings suggest that the different effect of genetics on the metabolite levels observed between T2D 320 

patients and controls is a consequence rather than a cause of the disease, in line with the results of 321 

the reverse MR for S_HDL_FC_pct and L_VLDL_TG_pct. The results remained consistent after 322 

adjustment for BMI, lipid medication or metformin medication (S5 Table). 323 

 324 

Metabolite profiles and T2D complications 325 

We sought to better understand whether alterations in metabolite levels causally affected by T2D 326 

liability are associated with the risk of developing T2D complications (comparing T2D patients without 327 

complications, with microvascular complications, with macrovascular complications, and with both 328 

types of complications). Out of the 249 tested metabolites, 165 (66%) are associated with at least one 329 

of the complication groups, of which 156 are associated with the macrovascular group (Fig 5A). Only 3 330 

and 6 signals are exclusive to the ‘microvascular’ and ‘both complications’ group, respectively. This 331 

pattern likely reflects the power of the analysis as the macrovascular group is three to five times larger 332 

than the two other complications groups (Table 1). Most of the significant metabolites are shared 333 

across multiple complication groups, showing that there is a metabolic signature associated with T2D 334 

complications.  335 
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 336 

Figure 5: Association analyses between metabolite levels and T2D complications. A: Venn diagram of the significant 337 

metabolites (meta-analysis q-values lower than 5%) across complications. B: log10(q-values) of associations between 338 

metabolite levels (separated into absolute levels and derived ratios) and each complication group. –log10(q-values) are 339 

represented for positive associations, and log10(q-values) are represented for negative associations. 340 

Four metabolites are more strongly associated with microvascular complications than with 341 

macrovascular complications. This is for example the case for creatinine, which is one of the strongest 342 

signals associated with microvascular complications (OR = 1.85 [1.58-2.18], p = 3.59x10-14). Creatinine 343 

is used in estimated glomerular filtration rate (eGFR) calculation, a measure used to assess kidney 344 

function, and known to be affected in nephropathy which is one of the main T2D microvascular 345 

complications44. Leucine is another example, for which significant association is found for the 346 

microvascular group (OR = 0.76 [0.65-0.89], p = 7.33x10-4), concordant with previous studies describing 347 

negative associations between leucine and kidney disease in T2D patients45. Increased levels of leucine 348 

were found to be putatively caused by an increased T2D liability in our reverse MR analysis, in line with 349 

the existing literature6, showing opposite associations of leucine with T2D and its complications. 350 

Overall, we find the profile of associations with metabolites to be similar with the MR estimates 351 

observed with T2D liability, with 78% of the metabolites associated with at least one complication and 352 
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significant in the reverse MR having concordant direction of association between the two analyses, 353 

including decreases in most cholesterol metabolites, apolipoprotein B and glycine. Out of the 165 354 

significantly associated metabolites, 54 and 118 are significant in the forward and reverse MR analyses, 355 

respectively. Of these, glycine and glycoprotein A are significant only in the reverse direction and 356 

associated with microvascular complications, suggesting that increased risk of these complications in 357 

T2D patients could be partly mediated by an impact of the T2D liability on metabolite levels. A total of 358 

40 metabolites were associated with complications but not significant in the MR analyses, including 359 

creatinine, glutamine, and apolipoprotein A1, which were all previously associated with microvascular 360 

complications in the literature44,46,47. This finding points towards molecular mechanisms involving 361 

these metabolites being more specific to disease complications rather than T2D itself. 362 

The metabolite associations with T2D complications stay stable upon adjustment, with 164, 158 and 363 

156 signals remaining significant upon lipid medication, BMI and metformin adjustment, respectively 364 

(S6 Table). Metabolites affected by metformin and BMI adjustment span VLDL and HDL classes, while 365 

for instance valine, total VLDL size, albumin and total BCAAs become significant after adjustment. 366 

When applying one-sample MR between metabolite levels and the risk of T2D complications, we find 367 

no evidence of causal associations, potentially due to the low statistical power associated of the 368 

within-T2D UKBB MR analysis. Altogether, these results show that some metabolites causally affected 369 

by T2D liability are also associated with T2D complications, while others are specific to the 370 

development of complications, even though causality is still to be demonstrated. 371 

Discussion 372 

In this study, we have investigated the links between plasma metabolite profiles, genetics, and the risk 373 

of T2D and subsequent complications, to evaluate the metabolic consequences of T2D. We have 374 

identified more metabolites as causally affected by T2D liability rather than having a causal effect on 375 

disease risk. Further, we have shown that the deregulation of metabolite levels following T2D 376 

occurrence may be partly due to different genetic effects in T2D patients and controls. Finally, we 377 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 3, 2024. ; https://doi.org/10.1101/2024.06.20.599832doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.20.599832
http://creativecommons.org/licenses/by-nc/4.0/


19 
 

describe that metabolite profiles are also associated with T2D complications, though no significant 378 

causal relationship could be demonstrated in the present study.  379 

Among the 183 metabolites causally affected by T2D liability, we found positive estimates with BCAAs, 380 

as well as with alanine and tyrosine, in agreement with previous studies13,18,26, but we did not find 381 

causal effects of BCAAs on T2D risk. Tyrosine was significant in both MR directions, but with opposite 382 

direction of effect, with decreased tyrosine levels being causally linked to increased T2D risk and T2D 383 

liability having a causal effect on increased tyrosine levels. These findings are in concordance with 384 

previous MR studies on the same cohort26 but not with observational studies, which describe positive 385 

associations between tyrosine levels and T2D risk6. Furthermore, we find negative associations 386 

between tyrosine levels and the three complications groups tested, in line with a previous study24, 387 

suggesting complex relationships between this metabolite and the risk of T2D complications. Further 388 

work is required to better disentangle the effect of tyrosine on T2D etiology. Glycine was significant 389 

only in the reverse MR analysis and associated with microvascular complications only. This amino acid 390 

has been already described as exhibiting lower levels in T2D patients, which could play a role in 391 

aggravating glucose dysregulation48. Even though not replicated in the EstBB, glycine presented the 392 

strongest signal in the interaction QTL analysis in the UKBB, with a weaker genetic regulation in T2D 393 

patients compared to controls. A genetic dysregulation of glycine levels might, therefore, be involved 394 

in T2D complications etiology, but replication is needed in an independent cohort.  395 

Our findings also provide insights into the role of lipoprotein classes in T2D etiology. For example, TG 396 

levels have been described to be positively associated with T2D41 and are known to positively correlate 397 

with glucose levels, a relationship that may be exacerbated in individuals with high polygenic risk 398 

scores for T2D49. TG levels, which we found to be causally affected by T2D liability and for some of the 399 

related percentages significant in our interaction QTL analysis, may therefore contribute to increased 400 

glucose levels. For all other types of lipoproteins that were significant in the reverse MR analyses, T2D 401 

liability had a causal effect on decreasing their levels. This includes absolute LDL levels and to a lesser 402 
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extent their related percentages, in line with previous studies4,18,38-40. However, these relationships are 403 

still debated, and caution is to be taken when interpreting results in studies not restricted to 404 

medication-free individuals. For example, Smith et al.18 showed in a similar reverse MR setting, using 405 

age as a proxy for medication use, that lipoprotein associations could be distorted upon medication 406 

use. Lipid-related medication adjusted T2D summary statistics are not available, and even if they were, 407 

care should be taken in interpreting results from such MR analyses using adjusted summary statistics 408 

due to potential collider bias50.  409 

We identify 165 associations between metabolite levels and the risk of developing T2D complications, 410 

most of which are shared across complication groups with only few, such as creatinine and glycine, 411 

being more strongly associated with microvascular than macrovascular outcomes despite smaller 412 

sample size of the microvascular group. A total of 118 metabolites were also found to be significant in 413 

the MR analyses, with similar profiles of association. A counter example of this is leucine, which 414 

showed associations in opposite directions between the reverse MR analysis and the differential level 415 

analysis with T2D complications. The discrepancies observed in our study between the two MR 416 

directions, as well as with the risk of complications, highlight the need for further work to better 417 

understand disease trajectories of T2D and its complications. A total of 40 metabolites were associated 418 

with at least one complication group while not being significant in any of the MR analyses with T2D, 419 

suggesting mechanisms specific to T2D complications. However, causal inference to disentangle 420 

causation from association in the risk of T2D complications is warranted but challenging given the 421 

limited statistical power of MR analysis restricted to T2D patients. 422 

In addition to investigating relationships between metabolite levels and T2D, we describe for the first 423 

time, to our knowledge, differences in their genetic regulation between T2D patients and controls for 424 

14 metabolites, of which four were replicated in an independent cohort. All of the significant variants 425 

identified are found to be significant mQTLs in the overall UKBB but are not associated with T2D risk3. 426 

These results suggest that deregulated levels of these metabolites are a consequence rather than a 427 
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cause of the disease, in line with the observations from the bi-directional MR, where evidence is found 428 

in the reverse direction for two of these four metabolites. We have performed an agnostic genome-429 

wide scan to look for interaction signals. Given the results using this approach, we have observed that 430 

all the interaction variants, which are mQTLs at a population-level, lead to a decreased magnitude of 431 

metabolite genetic regulation in the T2D patients’ group compared to the control group. This could be 432 

of clinical relevance, as for example some of the interaction variants identified in our study are 433 

regulators of CETP, a target of lipid-lowering drugs, which have been shown to correlate with diabetes 434 

incidence51.  435 

The present work presents some limitations. We have performed bi-directional MR using a similar 436 

framework to previous studies in the UKBB based on the first release dataset of metabolite data16,18, 437 

with the benefit of providing replication in the second release dataset. The use of the same outcome 438 

data for the two release datasets prevented the meta-analysis of the results. In this study, we are 439 

restricted to the European ancestry DIAMANTE study from 2018 because it is the latest one with 440 

summary statistics available without the UKBB samples, which enables us to avoid sample overlap 441 

between the exposure and outcome and to limit potential related bias12. Our results need to be 442 

extended to non-European populations, which will require global efforts to characterize the genetic 443 

regulation of molecular traits in these populations, along with methodological developments to deal 444 

with multi-ancestry data, especially in MR studies. Additionally, our findings warrant replication in 445 

cohorts external to the UKBB, especially for the MR analyses and complication associations. Finally, 446 

our study provides useful insights into the metabolic consequences of T2D but is limited by the assayed 447 

metabolite panel, which is mostly composed of lipid-related plasma metabolites. Additional 448 

metabolite classes, as well as metabolite levels from different tissue types would help in better 449 

unravelling biological mechanisms.  450 

While MR studies enable the assessment of causality between an exposure and an outcome, they are 451 

prone to false positives and based on the liability of the disease but not its occurrence. By using 452 
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interaction models, we went one step further to describe the consequences of T2D occurrence on 453 

metabolite levels and their genetic regulation. We highlight that changes in metabolite profiles can be 454 

useful to better understand T2D disease progression, as exemplified by the metabolites associated 455 

with the risk of developing T2D complications. Altogether, our results enable a deeper understanding 456 

of the metabolic consequences of T2D and provide future directions for the study of the genetic 457 

regulation of molecular levels in T2D and its complications to better capture disease trajectory.  458 

Data availability 459 

Summary statistics of the mQTL analysis in the second data release of the UKBB have been submitted 460 

to the GWAS catalog and will be released upon publication.  461 
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