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Abstract

At the molecular level, most evolution is expected to be neutral. A key prediction of this expectation is that the level
of genetic diversity in a population should scale with population size. However, as was noted by Richard Lewontin in
1974 and reaffirmed by later studies, the slope of the population size-diversity relationship in nature is much weaker
than expected under neutral theory. We hypothesize that one contributor to this paradox is that current methods
relying on single nucleotide polymorphisms (SNPs) called from aligning short reads to a reference genome
underestimate levels of genetic diversity in many species. To test this idea, we calculated nucleotide diversity (π) and
k-mer-based metrics of genetic diversity across 112 plant species, amounting to over 205 terabases of DNA sequencing
data from 27,488 individual plants. We then compared how these different metrics correlated with proxies of
population size that account for both range size and population density variation across species. We found that our
population size proxies scaled anywhere from about 3 to over 20 times faster with k-mer diversity than nucleotide
diversity after adjusting for evolutionary history, mating system, life cycle habit, cultivation status, and invasiveness.
The relationship between k-mer diversity and population size proxies also remains significant after correcting for
genome size, whereas the analogous relationship for nucleotide diversity does not. These results suggest that variation
not captured by common SNP-based analyses explains part of Lewontin’s paradox in plants.

Lay Summary

Even after many revolutions in our ability to sequence and understand DNA, many important biological questions
remain unsolved. One such problem is Lewontin’s paradox, named after Richard Lewontin who first described it in
1974. The core of the paradox is a simple idea: species with more individuals should be more genetically diverse. The
reasoning is that more individuals means more replication of DNA, and thus more opportunities for mutation to
create new variation. However, species that differ massively in population size often have similar diversity levels.
Lewontin’s paradox has several potential, previously investigated mechanisms but what if one contributor is simply
that our measurements of genetic diversity are off? Most studies estimate diversity by comparing sample genomes to
a standard reference genome. While this approach is useful, it is impossible to measure variation in DNA that is not
represented in the reference - a phenomenon known as reference bias. We estimate metrics of diversity that are free of
reference-bias and re-investigate Lewontin’s paradox in plants. Overall, we find that reference-free diversity metrics
scale more with population size, compared to the reference-biased approach. While it is unlikely that reference-bias
fully explains Lewontin’s paradox, our analyses suggest that reference-bias plays an important role.
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Introduction 1

Understanding the determinants of genetic diversity within populations is key to informing species conservation [Cole, 2

2003] and breeding efforts [Sanchez et al., 2023]. However, most species have far less genetic diversity (commonly 3

estimated as pairwise nucleotide diversity, π) than expected [Frankham, 2012, Corbett-Detig et al., 2015, Buffalo, 4

2021]. If we assume that the vast majority of genetic variants are neutral, then the determinants of genetic diversity 5

are encapsulated in neutral theory [Kimura, 1983]: E[π] ≈ 4Neµ, where E[π] is the expected level of genetic diversity, 6

Ne is the effective size of a population, and µ is the mutation rate per base pair per generation. Mutations rates vary 7

relatively little across species (Cagan et al. [2022], Bergeron et al. [2023], reviewed in Quiroz et al. [2023]), while the 8

total number of individuals in a species varies massively [Buffalo, 2021]. Thus, under neutral theory, population size 9

should be a strong determinant of genetic diversity and species with larger population sizes should be more diverse. 10

However, even some of the most abundant species studied to date have low genetic diversity compared to neutral 11

theory expectations. For example, Drosophila simulans has an estimated population size > 1014 and a diversity of 12

π ≈ 0.01, but an expected diversity of π > 0.1 [Buffalo, 2021]. This mismatch between expected and observed levels 13

of neutral diversity across populations of varying size is known as Lewontin’s paradox, named after Richard Lewontin 14

who first described the phenomenon [Lewontin, 1974]. 15

The potential mechanisms underlying Lewontin’s paradox have been reviewed extensively [Leffler et al., 2012, 16

Slotte, 2014, Ellegren and Galtier, 2016, Charlesworth and Jensen, 2022]. Multiple selective and demographic 17

processes likely contribute to Lewontin’s paradox; however, determining the relative importance of these processes 18

remains a contentious area of research. The two most explored mechanisms are historic population size changes 19

[Charlesworth and Jensen, 2022] and linked selection - whereby fixation or purging of selected alleles causes the loss 20

of linked neutral alleles [Kojima and Schaffer, 1964, 1967, Smith and Haigh, 1974, Charlesworth et al., 1993, 21

Charlesworth, 1994]. Linked selection is expected to reduce diversity more in regions of lower recombination and 22

higher functional density [Slotte, 2014]. Thus, many studies have focused on measuring the correlations of 23

recombination rate or functional density with either intraspecific or interspecific diversity, often observing significant 24

correlations [Tenaillon et al., 2001, Hellmann et al., 2003, Nordborg et al., 2005, Roselius et al., 2005, Branca et al., 25

2011, Paape et al., 2012, Corbett-Detig et al., 2015, Silva-Junior and Grattapaglia, 2015, Wang et al., 2016, Phung 26

et al., 2016, Mackintosh et al., 2019]. However, not all studies observe strong correlations between recombination and 27

diversity [Schmid et al., 2005, Roselius et al., 2005, Flowers et al., 2012, Wang et al., 2016], especially studies focused 28

on plant species (reviewed in Slotte [2014]), and such correlations could be explained by an association between 29

recombination and mutation [Hellmann et al., 2003] (though the evidence for this is mixed, see Mackintosh et al. 30

[2019]). There is also both empirical and theoretical evidence that linked selection is unlikely to explain the entirety 31

of Lewontin’s paradox, suggesting that demographic factors play an important role [Coop, 2016, Buffalo, 2021, 32

Charlesworth and Jensen, 2022]. 33

There are three main types of demographic changes proposed to contribute to Lewontin’s paradox: contractions, 34

expansions, and cyclical population size changes [Charlesworth and Jensen, 2022]. Population contractions cause loss 35

of diversity. Thus, if many species’ populations recently contracted (due to human activity, for example), then their 36

contemporary diversity would be much lower than expected from their pre-contraction population sizes 37

[Exposito-Alonso et al., 2022]. Recent population expansions could cause a similar mismatch. Because it takes many 38

generations for populations to accumulate diversity compared to the timescale of typical expansions, contemporary 39

diversity levels for an expanded population would be much smaller than expected from a post-expansion population 40

size [Peart et al., 2020, Charlesworth and Jensen, 2022]. For a similar reason, species that have seasonal variation in 41

their population sizes will also tend to have diversity levels closer to what one would expect based on their minimum 42

size rather than their peak size [Wright, 1940]. Studies investigating Lewontin’s paradox would ideally try to jointly 43

infer these demographic histories alongside selective factors in natural populations. However, issues of model 44

complexity and identifiability often prevent such joint estimation [Johri et al., 2020, 2022b,a], suggesting further 45

explorations of Lewontin’s paradox will require new approaches. 46

One potential, but rarely explored, contributor to Lewontin’s paradox is that current methods for estimating 47

genetic diversity systematically underestimate the true levels of genetic diversity in most populations. Lewontin’s 48

original observations and earlier studies on the population size-diversity relationship were based on allozymes, which 49

detect variants in protein sequences [Lewontin, 1974, Nei and Graur, 1984]. More recent studies measure diversity 50

using SNPs at more neutral four-fold degenerate sites (i.e. sites where mutations do not affect protein sequences) in 51

DNA and generally observe greater within-species diversity and between-species divergence compared to allozymes [Li 52
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and Sadler, 1991, Maka lowski and Boguski, 1998, Bazin et al., 2006, Piganeau and Eyre-Walker, 2009]. However, 53

current SNP-based methods are not perfect either and there is significant evidence that SNPs capture a biased and 54

incomplete picture of genetic diversity. First, calling SNPs typically requires aligning reads to a reference genome, 55

meaning any SNPs in regions that are not present or highly diverged from the reference genome will be excluded from 56

analysis and thus downwardly bias diversity estimates [Golicz et al., 2020, Buffalo, 2021]. This downward bias is 57

typically assumed to have little effect on the qualitative relationship between diversity and Ne [Buffalo, 2021], but 58

recent pangenomic studies have uncovered troves of non-reference variation across a variety of species (Ebler et al. 59

[2022], Rice et al. [2023], reviewed in Bayer et al. [2020]). Second, many other classes of genetic variants contribute to 60

genetic diversity besides SNPs, and SNPs can actually be a cryptic sign of larger-scale variation. For example, a large 61

fraction of heterozygous SNP calls in Arabidopsis thaliana are actually the result of structural variation [Jaegle et al., 62

2023]. Finally, previous meta-analyses of population size and diversity data rely on scraping diversity estimates from 63

previously published studies (Frankham [2012], Buffalo [2021], except see Corbett-Detig et al. [2015]). However, many 64

studies report inaccurate SNP calls and diversity estimates due to errors in the handling of missing data [Korunes 65

and Samuk, 2021, Schmidt et al., 2021, Sopniewski and Catullo, 2024] and may filter genotype calls differently, 66

making comparisons across species difficult. Overall, errors in diversity calculations and omission of diversity in 67

genomic regions that are either difficult or impossible to align to could partially explain Lewontin’s paradox. 68

Re-analyzing whole genome sequencing data with a common pipeline would make diversity estimates across species 69

more comparable and easier to interpret [Buffalo, 2021, Mirchandani et al., 2024]. 70

One useful pangenomics tool for measuring non-reference variation that is readily applicable to common 71

short-read datasets is the k-mer. k-mers are subsequences of length k derived from a larger sequence and they have a 72

long history of use in computer science [Shannon, 1948], genome assembly [Turner et al., 2018], metagenomics [Benoit 73

et al., 2016], and quantitative genetics [Rahman et al., 2018, Voichek and Weigel, 2020, Kim et al., 2020, Mehrab 74

et al., 2021]. Recent studies have also demonstrated the utility of k-mers for measuring heterozygosity and genetic 75

differences between individuals (commonly referred to as ”dissimilarity” measures, Ondov et al. [2016], Vurture et al. 76

[2017], Ranallo-Benavidez et al. [2020], VanWallendael and Alvarez [2022]). Typical analysis of k-mers involves only 77

counting the presence/absence and/or frequencies of all k-mers in a set of reads, without aligning the reads to any 78

reference, then deriving measures of genetic difference from such counts [Benoit et al., 2016]. Avoiding alignment 79

allows one to incorporate sequences that would otherwise be omitted for lack of alignment to a reference genome. 80

We revisited Lewontin’s paradox in plants using k-mer-based measures of genetic difference, aiming to test 81

whether the inclusion of non-reference variation could partially resolve Lewontin’s paradox. We compared how k-mer 82

dissimilarity and typical SNP-based estimates of nucleotide diversity correlated with population size proxies across a 83

large panel of plant species - all processed through the same bioinformatic pipeline. Our expectation was that if 84

k-mers are better at capturing genomic variation than SNPs, k-mer dissimilarity would scale more rapidly with 85

population size compared to nucleotide diversity. 86

Materials and Methods 87

Our entire analysis is packaged as a snakemake workflow stored here: 88

https://github.com/milesroberts-123/tajimasDacrossSpecies. This workflow includes the code to reproduce all of the 89

steps individually explained below, along with instructions on how to run the code, and yaml files describing the 90

exact configurations of software we used at each step. It also includes an example directed acyclic graph showing the 91

order of steps a typical sample is processed through. The code detailing all initial, exploratory, and confirmatory data 92

analyses as well as figure creation can be found as an R-markdown file in the github repository. The parameters for 93

each software were kept constant across all datasets (except occasionally for the ”–ploidy” parameter in GATK 94

HaplotypeCaller) to ensure that variation in bioinformatic processing did not bias our results. All statistical analyses 95

used R v4.2.2 [R Core Team, 2022] and all color palettes used in figure creation come from the scico R package 96

[Pedersen and Crameri, 2023] to ensure color-blind accessibility. 97

Population-level sequencing data collection 98

We started by building a list of species with high quality, publicly available reference genomes as well as 99

population-level sequencing data. The source for the genome assembly and annotation used for each species in this 100
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study is listed in Table S1. We first downloaded all genomes in Phytozome (https://phytozome-next.jgi.doe.gov/) 101

with unrestricted data usage. We then downloaded all genomes for species from Ensembl plants 102

(https://plants.ensembl.org/index.html) that were not already represented in Phytozome. Next, we downloaded 103

genomes for additional species from the NCBI genome database (https://www.ncbi.nlm.nih.gov/genome/) that were 104

not already present in either Phytozome or Ensembl and met all of the following criteria: 105

• matched filters: eukaryotic, plants, land plants, and exclude partial 106

• included assemblies of nuclear DNA (i.e. not just plastid genomes) 107

• included annotations of coding sequences 108

We also downloaded a genome for Nicotiana tabaccum from the Sol genomics network (https://solgenomics.net/). 109

Finally, we omitted any species that had at least one chromosome longer than 229 bp (about 512 Mb) from all 110

downstream analyses because tabix indexing, which is often utilized for SNP-calling pipelines, does not support 111

chromosomes exceeding this length. In the end, we were left with genome assemblies and annotations for 112 plant 112

species (see Table S1). 113

Note that, similar to previous studies [Corbett-Detig et al., 2015, Buffalo, 2021], many of the plant species in this 114

set of 112 are domesticated (see Table S1). This means that many of the species in our dataset have likely undergone 115

recent demographic changes. However, we do not expect this to contribute to differences in the relationships between 116

population size and nucleotide or k-mer diversity, because past demography affects both nucleotide and k-mer 117

diversity. Furthermore, we include cultivation status in our downstream modeling to help account for systematic 118

differences between cultivated and wild species (see Statistical analysis). 119

For each species with a reference genome, we searched for DNA-seq runs in the National Center for Biotechnology 120

Information’s Sequence Read Archive (SRA) with a name in the organism field that matched the species name (e.g. 121

search for Arabidopsis lyrata[Organism] to get Arabidopsis lyrata runs). We downloaded the run info for each search 122

and found the study with most sequenced individuals for inclusion in our analysis. Most datasets came from 123

individual studies, with the exception of Zea mays, which included several studies described in Bukowski et al. [2017]. 124

The datasets used for each species are listed in Table S1. 125

We limited the size of each species’ dataset to no more than 7.5 × 1012 bp and no more than 1200 individuals 126

because this defined the amount of data our workflow could process without the peak memory limit exceeding 50 TB 127

and the time limit for genotype calling exceeding 7 days. If a species’ dataset exceeded either 1200 individuals or 128

7.5 × 1012 bp, we randomly downsampled runs such that both of these limits were satisfied. 129

We downloaded the SRA runs associated with each individual using the SRA toolkit (v2.10.7), then trimmed 130

low-quality base calls with fastp (v0.23.1, Chen et al. [2018]), requiring a minimum quality score of 20 and a 131

minimum read length of 30 base pairs. For each species, we summarized the results of fastp trimming using multiqc 132

(v1.18, Ewels et al. [2016]). After trimming, any fastq files that were technical replicates of the same individual were 133

concatenated. Concatenated fastq files were then processed through two different workflows: SNP-calling and k-mer 134

counting. 135

Single-nucleotide polymorphism calling 136

We aligned sequencing reads for each individual to their respective reference genome using BWA MEM (v0.7.17, Li 137

and Durbin [2009], Li [2013]), sorted the resulting BAM files with samtools (v1.11, Danecek et al. [2021]), and 138

marked optical duplicates with picardtools (picard-slim v2.22.1, Institute [2019]). Next, we called SNPs with GATK 139

HaplotypeCaller (v4.1.4.1, McKenna et al. [2010], Poplin et al. [2018]). We varied the –ploidy parameter for 140

HaplotypeCaller between species depending on the actual ploidy recorded in the literature and whether individual 141

subgenome assemblies were available. However, the vast majority of species in our dataset had a –ploidy paramter of 142

2. We restricted genotype calling to only 4-fold degenerate sites within the nuclear genome, as identified by 143

degenotate (v1.1.3, Mirchandani et al. [2024]), to focus solely on neutral diversity. Runs for each species were then 144

combined with GATK GenomicsDBImport, then genotyped with GATK GenotypeGVCFs, including invariant sites 145

as done in Korunes and Samuk [2021]. Variant and invariant sites were separated with bcftools (v1.17, Danecek et al. 146

[2021]) and then filtered separately, as recommended by Korunes and Samuk [2021]. Variant sites were removed from 147

our analyses if they met at least one of the following criteria: number of alleles > 2, indel status = TRUE, fraction of 148
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missing genotypes > 0.2, QD < 2.0, QUAL < 30.0, MQ < 40.00, FS > 60.0, HaplotypeScore > 13.0, MQRankSum < 149

-12.5, and ReadPosRankSum < -8.0 [Caetano-Anolles, 2023]. For each species, we also required that each variant site 150

have a minimum read depth of 5, but no more than 3 times the genome-wide average read depth at variant sites for 151

that species. Meanwhile, invariant sites were removed from our analyses if they met at least one of the following 152

criteria: QUAL > 100.0, read depth ≤ 5, or read depth ≥ 3 times the genome-wide average read depth at invariant 153

sites for that species. Finally, invariant and variant sites were concatenated into a single VCF file per scaffold using 154

bcftools. For Brassica napus and Miscanthus sinensis, scaffolds named ”LK032656” (195,249 bp) and ”scaffold04645” 155

(2,838 bp), respectively, were omitted from our analyses because an error in SLURM job cancellation caused 156

snakemake to prematurely delete intermediate files for these scaffolds. It is worth noting that different choices of 157

genotype callers and filtering parameters could lead to different estimates of nucleotide diversity. However, our 158

workflow is representative of SNP calling workflows used in many published population genetic analyses. 159

Using the SNP genotypes called from our pipeline, we then calculated genome-wide average nucleotide diversity at 160

four-fold degenerate sites (π̄) using the filtered set of variant and invariant sites. To do this, we first calculated 161

heterozygosity at each four-fold degenerate site (i) according to Hahn [2018]: 162

πi =

(
ni

ni − 1

)1 −
ai∑
j=1

p2ij

 (1)

where ni is the number of sequenced chromosomes with non-missing genotypes for site i, ai is the number of alleles 163

for site i, and pij is the frequency of the jth allele at site i. For each invariant site, the equation reduces to πi = 0 164

because pi1 = 1 and ai = 1. To get π̄, we then calculated the average value of πi across all M sites in the genome 165

(including both variant and invariant sites): 166

π̄ =

∑M
i=1 πi

M
(2)

k-mer counting 167

We chose to count k-mers of 30 base pairs (i.e. 30-mers) for all species in our dataset because previous k-mer-based 168

analyses in plants typically analyzed k-mers in the range of 20 - 40 base pairs [Voichek and Weigel, 2020, Kim et al., 169

2020, VanWallendael and Alvarez, 2022, Ruperao et al., 2023] and because k-mers in this range can be reliably 170

sequenced with short reads while capturing the majority of unique genomic sequences [Shajii et al., 2016, Ondov 171

et al., 2016]. For each species, we built a database of the 30-mers that were present in the coding sequences of their 172

reference genome using KMC (v3.2.1, Kokot et al. [2017]). Then, we counted 30-mers in each individuals’ sequencing 173

reads using KMC, removing any 30-mers that matched the database of 30-mers found in its corresponding set of 174

coding sequences. This step intended to focus our k-mers down to a set that is evolving more neutrally on average, 175

analogously to how we focused on only 4-fold degenerate SNPs in our SNP-calling pipeline. The justification for this 176

approach is that non-coding sequences generally have weaker signals of interspecies conservation compared to coding 177

sequences [Woolfe et al., 2005, Siepel et al., 2005, Johnsson et al., 2014]. Although, similarly to 4-fold degenerate 178

sites, many studies have observed non-coding sequences that appear to be under selective constraints [Margulies 179

et al., 2003, Guo et al., 2007]. Thus, similar to the common analysis of 4-fold degenerate sites, our analysis is limited 180

by an inability to completely remove the effects of selection on sequence diversity. 181

Although comparing our k-mer and nucleotide diversity metrics will be affected by differences between coding and 182

non-coding sequences, many previous studies have found that the average diversity of non-coding regions is often very 183

similar to average diversity at 4-fold degenerate sites [Moriyama and Powell, 1996, Maka lowski and Boguski, 1998, 184

Halushka et al., 1999, Zwick et al., 2000, Tenaillon et al., 2001, Nordborg et al., 2005, Branca et al., 2011, Williamson 185

et al., 2014, Wang et al., 2016, Phung et al., 2016, Mattila et al., 2017]. Previous investigations of Lewontin’s paradox 186

also found that diversity levels across species vary much more than diversity levels across different categories of 187

putatively neutral sequences [Leffler et al., 2012, Buffalo, 2021] and subsequently pooled estimates of neutral diversity 188

across different categories of sites. Similar to these previous studies, we thus assume that differences in linked 189

selection between coding and non-coding sequences are negligible. 190

For most species in this study, we identified hundreds of millions of unique 30-mers. It would be computationally 191

expensive to analyze all the 30-mers for every species. However, previous studies have shown that one can randomly 192
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downsample k-mer sets with very minimal effects on measures of genomic dissimilarity [Fofanov et al., 2004, Benoit 193

et al., 2020]. Thus, we randomly downsampled each species’ 30-mer list to 10 million 30-mers with a frequency ≥ 5 in 194

at least one sample in the species’ 30-mer list. The reason to include this frequency cut-off is to omit low frequency 195

k-mers that result from sequencing errors [Ranallo-Benavidez et al., 2020]. We also chose to subset our 30-mer matrix 196

to 10 million 30-mers to decrease disk space burden and because several previous studies show that subsets of only 1 197

million k-mers or less reliably estimate genetic dissimilarity in many systems [Ondov et al., 2016, Benoit et al., 2020, 198

VanWallendael and Alvarez, 2022]. We then joined the subset k-mer counts for each individual into a single matrix 199

for each species. We used this k-mer frequency matrix to measure genetic distance in two ways. First, we calculated 200

Jaccard dissimilarity (JD, Ondov et al. [2016]) between each pair of individuals in a species’ dataset as: 201

JD(X,Y ) = 1 − X ∩ Y

X ∪ Y
(3)

where X and Y represent sets of unique k-mers identified as present in two different read sets. A k-mer is defined as 202

present if it’s frequency in a sample is ≥ 5, but cutoffs anywhere from 2 - 10 are commonly used in the literature 203

[Voichek and Weigel, 2020, VanWallendael and Alvarez, 2022]. We used a frequency cutoff of 5 to make our workflow 204

amenable to lower mean coverage datasets. To get the genome-wide average Jaccard dissimilarity (J̄D), we took the 205

average of all the pairwise Jaccard dissimilarities. 206

Jaccard dissimilarity is likely the most commonly used k-mer-based diversity measure [Ondov et al., 2016]. 207

However, whether a k-mer reaches the frequency threshold needed to be identified as preset in a sample depends on 208

the sequencing depth for the sample [VanWallendael and Alvarez, 2022]. Thus, we also calculated Bray-Curtis 209

dissimilarity (BD) between each pair of individuals in a species’ dataset as: 210

BD(X,Y ) = 1 −
2
∑k

i min(m∗
i (X),m∗

i (Y ))∑k
i m

∗
i (X) + m∗

i (Y )
(4)

where m∗
i (X) gives the normalized frequency of k-mer i in genome X. The normalized frequencies are calculated by 211

taking each frequency mi(X) and dividing it by the sum of the raw frequencies as in Dubinkina et al. [2016]: 212

m∗
i (X) =

mi(X)∑
i mi(X)

(5)

This step accounts for variation in coverage between samples on k-mer frequency. To get the genome-wide average 213

Bray-Curtis dissimilarity (B̄D), we again took the average of all the pairwise Bray-Curtis dissimilarities. Note that 214

both Jaccard and Bray-Curtis dissimilarity are scaled in their denominators by either the total number of unique 215

k-mers or total number of k-mers respectively, analogous to how nucleotide diversity is scaled by the number of sites 216

included in the calculation. 217

Population size estimation 218

Following similar methods to Corbett-Detig et al. [2015] and Buffalo [2021], we defined current census population size 219

(N) as the product of species range size (R) in square kilometers and population density (D) in individuals per 220

square kilometer: 221

N = RD (6)

Estimation of both R and D are handled separately below. Importantly, these methods have the same drawback 222

as described in Corbett-Detig et al. [2015] and Buffalo [2021]: contemporary estimates of R and D do not necessarily 223

reflect the historical values of R and D. However, since nearly all the species in this study lack long-term historical 224

data on their population size, it is not currently possible to estimate long-term historical N without making strong 225

assumptions. 226

Range size estimation from GBIF occurrence data 227

We first estimated range size based on Global Biodiversity Information Facility (GBIF) occurrence data from the 228

rgbif package [Chamberlain and Boettiger, 2017]. For each species, we identified its GBIF taxon key(s). If the species 229
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is domesticated, we used the taxon key(s) for a wild relative with an overlapping range when possible. We then 230

downloaded all records associated with each taxon key that had an occurrence status of ”PRESENT”, had 231

coordinates that mapped to land, had any basis of record other than ”FOSSIL SPECIMEN”, and recorded anywhere 232

in a year ≥ 1943 and ≤ 2023. In addition, the records could not have any GBIF issue codes, except for the issue 233

codes listed in Supplemental Methods. Similar to previous studies [Corbett-Detig et al., 2015, Buffalo, 2021], we 234

estimated range size for domesticated species using GBIF occurrences from closely-related wild relatives because it is 235

difficult to distinguish the native and introduced ranges of globally cultivated crop species with only occurrence data. 236

Note, however, that we also used an additional method for estimating range size that is not burdened by this same 237

assumption (see Range size estimation from WCVP distribution maps). The relatives used for each 238

domesticated species is detailed in Table S1. 239

We followed methods of Buffalo [2021] to estimate range size from each species’ set of GBIF occurrence data using 240

the package alphahull [Pateiro-Lopez and Rodriguez-Casal, 2022]. We started with splitting the occurrence data by 241

continent, in order to avoid estimating ranges that overlapped with oceans. We also only kept occurrences with 242

unique latitude-longitude values to reduce the computational burden of alphahull’s algorithms. We then added a 243

small amount of random jitter (normally distributed with µ = 0 and σ = 1 × 10−3) to the latitude-longitude 244

coordinates of each unique occurrence to avoid errors in the triangulation algorithm of alphahull, which can break 245

when there are lots of colinear points. Finally, we filtered out any continents which had fewer than 20 unique 246

occurrences of a species. The only exceptions to this rule were Solanum stenotomum, Dioscorea alata, and 247

Rhododendron griersonianum, for which we only required 8, 6, and 3 occurrences respectively due to the rarity of 248

these species and thus a paucity of occurrence data. We then used alphahull to compute the alpha shape of each 249

continent subset, which can be thought of as the smallest possible convex shape that encloses a set of points in a 250

plane. We defined the alpha parameter for the alphahull package to be 200. We then used the R packages sf 251

[Pebesma, 2018] and rworldmap [South, 2011] to measure the sizes of the alpha shapes in square kilometers after 252

projecting them onto the Earth’s surface. Finally, we took the estimated range polygons and filtered out ones that 253

resided on continents in the introduced range of the species, as defined by the World Checklist of Vascular Plants 254

(WCVP) [Govaerts et al., 2021]. The sum of the areas of the remaining polygons was our estimate of range size. 255

Range size estimation from WCVP distribution maps 256

We also estimated range size from expert-drawn species distribution maps instead of species occurrence data. We 257

used the rWCVP package [Brown et al., 2023] to download distribution maps from WCVP [Govaerts et al., 2021]. We 258

then estimated range size for each species as either (1) the sum of the areas of all map elements labeled as ”native” or 259

”extinct” for that species or (2) the sum of the areas of all map elements labeled as ”native”, ”invaded”, or ”extinct” 260

for that species. Regions with an occurrence label of ”dubious” were excluded from downstream analyses. In contrast 261

to GBIF-derived ranges, we used distribution maps for domesticated species in this estimate of range size because the 262

maps discriminate between the native and introduced ranges of species. 263

Population density estimation from plant height 264

Similarly to previous studies, we use plant height as a proxy for plant population density [Corbett-Detig et al., 2015]. 265

While it would be ideal to use actual population densities in our analyses, we could not find published estimates of 266

population densities for many of the species in our dataset and all previous studies investigating Lewontin’s paradox 267

rely on population size proxies [Leffler et al., 2012, Corbett-Detig et al., 2015, Filatov, 2019, Buffalo, 2021]. We 268

elaborate further on the limitations of using proxies in the Discussion, but at the time of writing this manuscript 269

using proxies is the only way to achieve a sufficient sample size for investigating Lewontin’s paradox. 270

We decided to use plant height rather than plant mass [Deng et al., 2012] as our measure of body size because 271

plant height measurements are available for many more species in our dataset and also to make our results more 272

comparable to previous studies that also use plant height [Corbett-Detig et al., 2015]. According to theory outlined in 273

Deng et al. [2012], where D is population density, M is plant mass, and h is plant height, D ∝ M−3/4 and M ∝ h8/3. 274

Combining these two relationships gives D ∝ (h8/3)−3/4 which simplifies to D ∝ h−2. Adding this density-height 275

relation to equation 6 gives our main proxy for population size: 276

N ∝ R

h2
(7)
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In our subsequent analyses, we refer to Equation 7 as the range size-squared height ratio and we convert R to 277

square meters and h to meters to make the ratio unitless. As Equation 7 suggests, we do not expect the range 278

size-squared height ratio to exactly equal the true population size or be interpretable as a number of individuals. 279

Rather, it is a quantity we expect to scale with population size. To calculate the range size-squared height ratio for 280

each species, we downloaded plant height data from the EOL, which mainly comprised records summarized from the 281

TRY database. If no height measurements were available for a species in the EOL, then we used estimates we found 282

in published scientific literature. The only exceptions to this were Vanilla planifolia and Rhododendron 283

griersonianum, where our height estimates came from the Kew Botanical Gardens’ and the American Rhododendron 284

Society’s websites, respectively. The sources used for each height value are cited in Table S1. 285

Labeling species with genome size, mating system, ploidy, cultivation status, and life 286

cycle habit 287

Table S1 contains citations for all studies that were used to label each species in our study with a genome size, 288

mating system, ploidy level, cultivation status, and life-cycle habit. For determining genome size, we used estimates 289

from flow cytometry and k-mer-spectra analyses whenever possible instead of using assembly size, since most 290

assemblies do not contain the entire genome of the sequenced species. Most of our genome size estimates were 1C 291

values acquired from publications cited in the Plant DNA C-values Database [Pellicer and Leitch, 2020]. Any 292

estimates in terms of picograms (pg) of DNA were converted to base pairs using the following conversion factor: DNA 293

in Mb = DNA in pg ×0.978 × 109 [Doležel et al., 2003]. If genome sizes in terms of pg were not available for a 294

species, then we used the size of the species’ genome assembly as the genome size. 295

We next labeled each species with a mating system (selfing, outcrossing, mixed, or clonal), cultivation status (wild 296

or cultivated), and life cycle habit (annual, biennial, perennial, or mixed) because previous studies showed these 297

factors to be important determinants of diversity in plants [Chen et al., 2017]. For classifying species into different 298

mating systems, we used methods similar to a previous study [Opedal et al., 2023] and generally considered species 299

with outcrossing rate < 10 % as ”selfing”, species with outcrossing rate between 10 - 90 % as ”mixed”, and species 300

with outcrossing rate > 90 % as ”outcrossing” when estimates of outcrossing rates were available. In the absence of 301

outcrossing rate data, we also labeled species described as generally self-incompatible as ”outcrossing” and we labeled 302

species described as selfing as ”selfing”. The only exception to this was Oryza brachyantha for which we could not 303

find mating system descriptions in peer-reviewed literature. Thus, we assumed that this species was most likely 304

outcrossing because most of the other wild Oryza species in the dataset were classified as outcrossing. Because of the 305

low number of mixed (14) and clonal (2) species in our dataset, we collapsed the selfing, mixed, and clonal species 306

into a single ”not outcrossing” category for later downstream analysis. Similarly, for life cycle habit, our dataset 307

contained only 1 biennial species and 2 species that had a mixture of annual, biennial, and perennial forms. We 308

combined these species with the perennial category to create a single ”not annual” category. For cultivation status, 309

we looked up each species in the EOL and classified species that had documented human uses (such as for food, fiber, 310

fodder) or had some countries known to cultivate the species as ”cultivated”. All other species that did not meet 311

these criteria were classified as ”wild”. The only exception to this was Lactuca sativa, which did not have any human 312

uses listed in EOL at the time of writing this paper; however, it is commonly known as lettuce so we classified it as 313

”cultivated”. Finally, for ploidy levels, when more than one cytotype was described as present within a species we 314

labeled the species with it’s most common naturally-occurring cytotype. Citations to relevant literature used for each 315

classification decision can be found in Table S1. 316

Statistical analysis 317

The ultimate goal of our statistical analyses was to estimate the effect of our population size proxies on measures of 318

diversity, comparing the effects of using k-mer-based or nucleotide diversity. To do this, we took an approach similar 319

to Whitney et al. [2010] where we performed partial phylogenetic regressions controlling for evolutionary history 320

(using a phylogeny obtained from timetree.org, Kumar et al. [2017, 2022]), mating system (outcrossing vs not 321

outcrossing), cultivation status (wild vs cultivated), and life cycle habit (annual vs not annual). Similar to Whitney 322

et al. [2010], we also scaled the dependent variables to be unitless with a mean of zero and unit variance across 323

species (using the scale() function in R) before performing regression to make slopes more comparable across models 324
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and account for the inherent differences in unit between nucleotide and k-mer diversity metrics. This approach can 325

be summarized as follows: 326

scale(diversity) = β0 + β1×log10(population size proxy) + β2×mating system + β3×cultivation status + β4×life 327

cycle habit + ϵ 328

where population size proxy refers to either Equation 7 or it’s components (range size and plant height), covariance in 329

the residuals is given by V ar[ϵ] = Ω, diversity was estimated using either SNPs (log10(π̄)) or k-mers (J̄D or B̄D), and 330

the scale() function performs a z-transformation to make diversity unitless with mean of zero and unit variance. We 331

also constructed a separate set of models where we included genome size as a covariate: 332

scale(diversity) = β0 + β1×log10(population size proxy) + β2×mating system + β3×cultivation status + 333

β4×life cycle habit + β5×log10(genome size) + ϵ 334

We controlled for genome size in a separate set of models because we had conflicting expectations on whether 335

genome size would be a confounder or a mediator of the population size-diversity relationship. In other words, the 336

effect of population size on diversity could act through genome size, since small populations may not experience 337

strong enough selection to purge deleterious insertions [Lynch and Conery, 2003]. Including genome size as a 338

covariate in this case would artificially diminish the estimated effect of population size on diversity. Alternatively, 339

genome size could fundamentally alter the mode of adaptation in plant species [Mei et al., 2018], making genome size 340

a confounder of the population size-diversity relationship. 341

After constructing our models, we visualized the relationship between population size and diversity or genome size 342

and diversity with partial regression plots, following methods from Riddell [1977] and Blomberg et al. [2012]. 343

Beginning with our initial phylogenetic least squares model: 344

y = Xβ + ϵ (8)

where y is a vector of diversity values, X is the design matrix, β is a vector of regression coefficients, and ϵ is a 345

vector of residuals distributed normally about 0 with phylogenetic variance-covariance matrix Ω. Using the 346

variance-covariance matrix output from the caper R package [Orme et al., 2018], we first performed Cholesky 347

decomposition to get matrix C such that: 348

Ω = CCT (9)

We then took the inverse matrix C−1 and left-multiplied both sides of our regression equations to get: 349

C−1y = C−1Xβ + C−1ϵ (10)

Which we will rewrite as: 350

y∗ = X∗β + ϵ∗ (11)

where y∗ = C−1y, X∗ = C−1X, and ϵ∗ = C−1ϵ. In vector form, this equation is now: 351

y∗ = β0x
∗
0 + β1x

∗
1 + β2x

∗
2 + ... + βn−1x

∗
n−1 + ϵ∗ (12)

where β0x
∗
0 is our intercept (Note that x0 was initially a column of 1’s before being transformed by C−1). After 352

fitting this model to our data with the standard lm() function in R, we collected all terms besides the primary 353

variable of interest, x∗
k (which would be a population size proxy or genome size in our case), and subtracted them 354

from both sides of the equation to get: 355

y∗ −
∑
i ̸=k

βix
∗
i = βkx

∗
k + ϵ∗ (13)

We then plotted the values of x∗
k against y∗ −

∑
i ̸=k βix

∗
i , interpreting the slope as the effect of the primary 356

variable on the response, scaled for phylogenetic relationships and adjusted for the effects of confounding factors. 357
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Results 358

Low diversity species explained by low mean coverage 359

In total, we processed >205 terabases of publicly available sequencing data from the SRA over approximately 12 360

months of wall time, split between a maximum of 512 cores and 50 TB of disk space. There were 112 species in our 361

initial dataset, each with estimates of population size proxies, nucleotide diversity, and k-mer diversity (Fig. 1). Out 362

of these 112 species, 102 were diploids, 9 were tetraploids, and one was hexaploid, with haploid genome sizes ranging 363

from 105 Mb to 5.06 Gb (Table S1). These species were further broken down into 57 annual species vs 55 not annual 364

species (which were predominately perennial), 31 wild vs 81 cultivated species, and 55 outcrossing vs 57 not 365

outcrossing species (which were predominantly selfing). Species classified as annual also tended to not be classified as 366

outcrossing (χ2 = 18.9, p = 1.4 × 10−5, Fig. S1C). However, cultivation status was independent of both life cycle 367

habit (χ2 = 4.07 × 10−31, p = 1, Fig. S1A) and mating system (χ2 = 0.53, p = 0.47, Fig. S1B). There were no 368

missing values for any of the variables investigated in this study, but there were three species with zero variant sites 369

called that we omitted from all downstream analyses. 370

Before testing our central hypothesis, we investigated whether technical sequencing variables could explain any of 371

the diversity values observed in our dataset. As would be expected for a meta-analysis of previously published data, 372

sequencing parameters varied between species. The number of individuals sampled in each species varied from 3 to 373

1200 and the average depth of sequencing per individual varied from 0.028x to 79.7x (Fig. S2). Variation in the depth 374

of sequencing between individuals, quantified as the coefficient of variation in base pairs sequenced, varied about 375

50-fold from 0.030 to 1.6 (Fig. S2). Mean coverage correlated with both nucleotide diversity (ρ = 0.33, p = 0.00033, 376

Fig. S3A) and k-mer diversity (Jaccard: ρ= -0.53, p = 2.6×10−9, Fig. S3D; Bray-Curtis: ρ = -0.34, p = 0.00021, Fig. 377

S3G). Coefficient of variation in bp sequenced correlated strongly with k-mer diversity (Jaccard: ρ = 0.36, p = 378

0.00013, Fig. S3E; Bray-Curtis: ρ = 0.42, p = 4.7 × 10−6, Fig. S3H) but not nucleotide diversity (ρ = -0.088, p = 379

0.36, Fig. S3B). The number of individuals sequenced did not correlate with either nucleotide diversity or k-mer 380

diversity (Fig. S3C, S3F, S3I). 381

While screening the data for outliers, we expected that nucleotide diversity and k-mer-based diversity would be 382

positively correlated across species and that deviations from this expectation might result from technical variation in 383

how sequencing was performed. Overall, we observed that species with lower coverage did not follow the expected 384

positive relationship between nucleotide and k-mer diversity (Fig. 2A, Fig. S4A). In contrast, there was no clear 385

pattern in how the coefficient of variation in base pairs sequenced (Fig. S5) or the number of individuals sequenced 386

(Fig. S6) affected the correlation between k-mer dissimilarity and nucleotide diversity. Based on these results, we 387

removed 10 species from our dataset with mean coverage per individual ≤ 0.5x as well as 4 species with higher 388

coverage but fewer than 1000 variant sites called. This included three species (Capsicum annuum, Heliosperma 389

pusillum, and Papaver somniferum) with zero variant sites called. The correlation between nucleotide diversity and 390

k-mer diversity was much more significant after excluding these species (Jaccard: ρ = 0.34, p = 0.00068, Fig. S4B; 391

Bray-Curtis: ρ = 0.49, p = 3.6×10−7, Fig. 2B). In total, we kept data for 98 species for downstream hypothesis 392

testing. 393

Range size-squared height ratio varies over more orders of magnitude than nucleotide 394

diversity 395

We next investigated whether Lewontin’s paradox applied to our dataset by comparing diversity estimates against 396

population size proxies. For each species, we estimated range size using either GBIF occurrence data or WCVP range 397

maps. Estimates from these two methods were significantly correlated no matter whether invaded ranges (as defined 398

in the WCVP range maps) were included (ρ = 0.31, p = 0.00096, Fig. S7A) or excluded (ρ = 0.48, p = 7.3×10−8, 399

Fig S7B). The omission of invaded ranges lowered the range size of several plant species based on WCVP range maps 400

(Fig. S7C) but had less effect on ranges estimated from GBIF occurrence data (Fig. S7D). 401

We then calculated the ratio of range size to squared plant height (Equation 7) using height values from the EOL. 402

We used this ratio as our primary population size proxy in downstream analyses. After excluding species with < 0.5x 403

coverage and < 1000 variant sites called (Fig. 2), nucleotide diversity varied over about 4 orders of magnitude for the 404

species in our dataset (from 0.00021 to 0.117, Table S2), while the ratio of range size to squared plant height based 405

on WCVP and GBIF range estimation methods (including both native and invaded ranges) varied over 10 (from 406
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Figure 1. Our study includes 112 plant species across a wide range of population sizes and diversity
levels. Species labeled in purple were considered outliers and omitted from downstream analyses (see Fig. 2), but
species labeled in green were retained. The phylogenetic tree is scaled in millions of years. The WCVP full ratio is a
unitless population size proxy equal to the ratio of range area, estimated using WCVP range maps, to squared plant
height and is log-transformed (base 10). Nucleotide diversity is genome-wide average diversity at four-fold degenerate
sites, log-transformed (base 10). Capsicum annuum, Heliosperma pusillum, and Papaver somniferum had nucleotide
diversity values of zero and so have bars at the plotting limit (log(0) = −∞). Bray-Curtis dissimilarity is average
pairwise Bray-Curtis dissimilarity across all pairs of individuals in a species’ sample.
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Figure 2. Omitting species with low coverage and low numbers of variant calls increased the positive
correlation between nucleotide and k-mer diversity. (A) shows the relationship between k-mer diversity
and nucleotide diversity without omitting species with ≤ 0.5x coverage or ≤ 1000 SNP calls. (B) shows the same
relationship, except species with ≤ 0.5x coverage or ≤ 1000 SNP calls are omitted. Each data point is a species.
All species’ points are colored by the log (base 10) of average genome-wide coverage per individual for that species.
Purple lines are linear regressions with 95% confidence intervals shaded in gray. Values across the top of each plot are
Spearman correlation coefficients (ρ) and p-values that test whether each correlation coefficient differs from zero.
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8.9 × 108 to 1.7 × 1018) and 13 (from 8.6 × 105 to 1.5 × 1018) orders of magnitude, respectively (Table S2). Mean 407

pairwise Bray-Curtis dissimilarity values varied about 4.9-fold across species, from 0.13 to 0.64, while mean pairwise 408

Jaccard dissimilarity varied about 22-fold, from 0.040 to 0.87 (Table S2). Bray-Curtis dissimilarity values correlated 409

with Jaccard dissimilarity values across species (ρ = 0.76, p < 2.2 × 10−16, Fig. S8). 410

k-mer diversity scales with population size proxies more than nucleotide diversity 411

The core of Lewontin’s paradox is that a population’s diversity does not scale much with population size. If k-mers 412

capture a wider range of genetic variation compared to SNPs, population size will scale more with k-mer diversity 413

than nucleotide diversity. If we did not control for shared evolutionary history or any confounding variables (mating 414

system, life cycle habit, cultivation status, or genome size), then none of our diversity measures significantly correlated 415

with the range size-squared height ratio (Fig. S9). After controlling for confounding variables, nucleotide diversity 416

marginally scaled with the range size-squared height ratio (β = 0.14, SE = 0.056, p = 0.017, Fig. S10A). However, 417

the relationship between k-mer diversity and the range size-squared height ratio was highly significant, with generally 418

a greater slope (Jaccard: β = 0.64, SE = 0.096 p = 2.2 × 10−9, Fig. S10B; Bray-Curtis dissimilarity: β =0.79, SE = 419

0.11, p = 7.3× 10−11, Fig. S10C). We observed the same qualitative trend when we included both native and invaded 420

ranges in the range size-squared height ratio (Fig. S10D-F), or used the GBIF-based range estimates instead of 421

WCVP-based estimates (Fig. S11). Interestingly, we often observed Bray-Curtis dissimilarity having a larger slope 422

with the range size-squared height ratio compared to Jaccard dissimilarity (β = 0.64 vs 0.79 Fig. S10B-C), but 423

models where Bray-Curtis dissimilarity was the response variable generally had lower adjusted R2 (Table S4). 424

We also analyzed range size and plant height separately as population size proxies (Fig. S12-S14). Overall, 425

WCVP-estimated range size significantly affected nucleotide diversity (β = 0.29, SE = 0.072, p = 0.00011, Fig. S12A) 426

and k-mer diversity (Jaccard: β = 0.92, SE = 0.13, p = 9.9×10−11, Fig. S12B; Bray-Curtis: β = 1.2, SE = 0.13,p = 427

3.2×10−14, Fig. S12C), and this trend held when we estimated range size from GBIF occurrences (Fig. S13A-C) or 428

included invaded range area (Fig. S12D-F and Fig. S13D-F). On the other hand, plant height did not scale with 429

nucleotide diversity (β = 0.13, SE = 0.19, p = 0.5, Fig. S14A), but marginally scaled downward with increasing 430

k-mer diversity (Jaccard: β = −0.78, SE =0.38, p = 0.046, Fig. 14B; Bray-Curtis: β = −0.77, SE = 0.44, p = 0.088, 431

Fig. S14C). 432

Finally, we repeated our partial phylogenetic regressions controlling for genome size as an additional covariate. In 433

this case, nucleotide diversity did not scale with the range size-squared height ratio (β = 0.035, SE = 0.063, p = 0.58, 434

Fig. 3A), but k-mer diversity did (Jaccard: β = 0.54, SE = 0.093, p = 8.8 × 10−8, Fig. S15; Bray-Curtis: β = 0.7, 435

SE = 0.098, p = 2.2×10−10, Fig. 3B). Again, we got qualitatively similar results when we excluded invaded ranges in 436

our range size estimates (Fig. S16), used GBIF occurrences to estimate range size-squared height ratio (Fig. S17) or 437

used WCVP range size as the population size proxy (Fig. S18). However, GBIF range size by itself did not scale with 438

Jaccard dissimilarity (Fig. S19B, S19E). Increased plant height associated with decreased k-mer diversity, but had no 439

significant relationship with nucleotide diversity (Fig. S20). 440

k-mer diversity scales with genome size more than nucleotide diversity 441

We also investigated the relationship between diversity and genome size because we expected genome size to 442

potentially play a role in the mechanism underlying the greater scaling of k-mer diversity with population size. 443

Genome size is often a strong predictor of diversity [Lynch and Conery, 2003]. Among eukaryotes, variation in 444

genome size is largely explained by variation in transposable element abundance [Flavell et al., 1974, Kidwell, 2002, 445

Lynch and Conery, 2003, Muñoz-Diez et al., 2012, Tenaillon et al., 2011, Nystedt et al., 2013, Ibarra-Laclette et al., 446

2013], which contribute substantially to the repetitive sequence content of genomes and increase the difficulty of 447

aligning short reads to a reference genome (reviewed in Goerner-Potvin and Bourque [2018]). Thus, our expectation 448

was that k-mer-based diversity measures are more sensitive to genome size variation compared to nucleotide diversity. 449

Increasing genome size was associated with decreasing k-mer diversity (Jaccard: β = −3.7, SE = 0.42, p = 450

8.4×10−14, Fig. S21; Bray-Curtis: β = −4.2, SE = 0.45, p = 4.5×10−15, Fig. 4B) and nucleotide diversity (β − 1.8, 451

SE = 0.29, p = 1.4 × 10−8, Fig. 4A), after controlling for variation in the range size-squared height ratio, mating 452

system, life cycle habit, cultivation status, and evolutionary history. We got qualitatively similar results when the 453

population size proxy we corrected for excluded invaded ranges (Fig. S22), or if our population size proxy was based 454

on GBIF occurrences (Fig. S23), or we used range size or plant height individually to control for population size 455
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Figure 3. k-mer diversity scales with population size proxies after controlling for genome size, life
cycle habit, mating system, and cultivation status. WCVP full ratio is a population size proxy estimated as
the ratio of range size recorded in WCVP range maps (including invaded ranges) to squared plant height. Purple lines
are partial phylogenetic regression lines between diversity levels and the population size proxy (see Equation 13) after
scaling diversity levels to a standard normal distribution (mean = 0, variance = 1), followed by scaling diversity levels
and population sizes according to their phylogenetic relatedness, and finally adjusting for the confounding variables
(genome size, life cycle habit, mating system, and cultivation status). The values at the top of each plot give the
slope of the partial regression ± one standard error and p-values testing whether the slopes differ from zero. Dotted
lines show the partial regression slope ± one standard error.
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Figure 4. k-mer diversity is more sensitive to genome size variation than nucleotide diversity. Purple
lines are partial phylogenetic regression lines between diversity levels and genome size (see Equation 13) after scaling
diversity levels to a standard normal distribution (mean = 0, variance = 1), followed by scaling diversity levels and
population sizes according to their phylogenetic relatedness, and finally adjusting for the confounding effects of mating
system, cultivation status, life cycle habit, and population size. Here we used the ratio of range size to squared plant
height, where range size was estimated from ranges in WCVP range maps (including invaded ranges). The values at
the top of each plot give the slope of the partial regression ± one standard error and p-values testing whether the
slopes differ from zero. Dotted lines show the partial regression slope ± one standard error.

variation (Fig. S24-S26). Across all of these analyses, the partial regression relationship between genome size and 456

diversity was always significantly negative. 457

Discussion 458

Our primary goal was to investigate whether genomic approaches that can capture more genetic variation than 459

standard SNP-based methods can explain the longstanding observation that species with large population sizes have 460

less genetic variation than expected. After careful accounting for potential technical and phylogenetic confounding, 461

the slope between k-mer-based diversity and the range size-squared height ratio was up to 20 times larger than the 462

same slope for nucleotide diversity (β = 0.035 vs 0.7, Fig. 3). We observed similar results across the two different 463

measures of range size (Fig. S17) and k-mer diversity (Fig. S15). We also observed that k-mer-based diversity is 464

more sensitive to variation in genome size compared to nucleotide diversity (Fig. 4). Overall, these results suggests 465

that diversity missed by SNPs explains part of Lewontin’s paradox in plants, consistent with literature suggesting 466

that SNPs provide an incomplete picture of genome-wide polymorphism [Schmidt et al., 2021, VanWallendael and 467

Alvarez, 2022, Jaegle et al., 2023, Sopniewski and Catullo, 2024]. 468

One limitation of our investigation was that we were not able to compare our k-mer diversity scales to a neutral 469

expectation of how k-mer diversity scales with Ne. Doing so would have allowed us to estimate what proportion of 470

Lewontin’s paradox is explained by using k-mer diversity instead of nucleotide diversity measures. Instead we can 471

only compare the slopes of how k-mer and nucleotide diversity scale with population size proxies. We deliberately 472

avoided comparing our data to a neutral expectation for two main reasons. First, we can only estimate proxies of 473
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census size that are not interpretable as numbers of individuals, which is what a theoretical expectation would most 474

likely be based on. Furthermore, robustly estimating the diversity-census size relationship across species requires 475

controlling for evolutionary history and other confounding variables. This will transform the axes of a 476

diversity-population size partial regression plot into a scale that’s not interpretable in the units of the original 477

measures (see Equation 10). Thus, we must restrict our conclusions to whether k-mer diversity scales with census size 478

proxies faster than nucleotide diversity. This observation is consistent with the hypothesis that the exclusion of 479

non-reference variation explains a part of Lewontin’s paradox. However, exactly what proportion of the paradox is 480

explained by our results remains unknown. 481

As with all regression-based analyses, our results are also ultimately sensitive to error in the measurement of both 482

covariates (population size proxies, genome size, mating system, life cycle habit, or cultivation status) and outcome 483

variables (nucleotide or k-mer diversity). Random covariate measurement errors (i.e. error that is not systematically 484

higher/lower for different values of the covariate) bias regression coefficients toward zero [Hutcheon et al., 2010, Nab 485

et al., 2021]. Similarly, random measurement error in the outcome variables increases the standard errors of the 486

covariates, weakening the statistical significance of detected relationships [Hutcheon et al., 2010]. However, our 487

results remain statistically significant despite the potential for error. Our study is also unique in the multiple steps 488

we took to limit the influence of systematic measurement errors on our coefficients. First, we reanalyzed all 489

population-level sequencing data with a single pipeline to limit between-study variation and the impact of 490

bioinformatic parameter choices on our analysis [Mirchandani et al., 2024]. Second, to minimize error in both 491

nucleotide and k-mer diversity measures, we omitted species with coverage below 0.5x from our study, because having 492

low coverage strongly correlated with having low diversity (Fig. 2). This threshold is consistent with previous 493

k-mer-based phylogenetic studies that found dropping coverage to 0.5x changes tree topologies compared to coverage 494

levels ≥ 1x [Sandell et al., 2022]. Third, we accounted for the presence of missing data in calculations of nucleotide 495

diversity [Schmidt et al., 2021, Korunes and Samuk, 2021]. And finally, we estimated range size with two different 496

methods (WCVP range maps and GBIF occurrence records, Fig. S6). Although we could not control for some 497

covariates [Willis, 1922, Romiguier et al., 2014, Guo et al., 2024] due to a dearth of data, our study is still the largest 498

reanalysis of population-level sequencing data in plants that we know of to date. The availability of our workflow also 499

makes it easy for our study to be extended as more population-level sequencing data is released. 500

Another limitation of most investigations into Lewontin’s paradox is the assumption that contemporary 501

population size estimates are good proxies for historic population sizes [Corbett-Detig et al., 2015, Buffalo and Coop, 502

2020]. While the long-term harmonic mean of the effective population size determines diversity levels within a 503

population [Wright, 1940], population size proxies such as range size and plant height only reflect the current census 504

population size of a species. The separation of plant range maps into native and invaded ranges [Brown et al., 2023] 505

offered an opportunity to test the robustness of our results to invasion-related range size changes. Overall, our 506

observations were remarkably similar no matter whether we included or excluded invaded ranges in our population 507

size proxies (Fig. S17A-C vs Fig. S17D-F). Part of this apparent robustness was due to the insensitivity of our 508

GBIF-based range size estimates to the inclusion of invaded ranges (Fig. S7D). However, our WCVP-based range size 509

estimates were drastically altered by the inclusion of invaded ranges (Fig. S7C) and still yielded similar results (Fig. 510

3, S15, S16). Although we cannot rule out the possibility that older historical events have affected contemporary 511

diversity levels, our results appear to be robust to some recent human-caused population size changes. 512

Interestingly, the estimated effect of our population size proxies on diversity was often slightly larger for 513

Bray-Curtis dissimilarity than Jaccard dissimilarity (for example, β = 0.7 vs 0.54 from Fig. 3B vs Fig. S15, Table 514

S4). In contrast, the range size-squared height ratio was often slightly more predictive of Jaccard dissimilarity than 515

Bray-Curtis dissimilarity (Table S4). We could not test whether these trends were statistically significant, but the 516

benefits of different k-mer metrics in predicting measures of population size warrant further study. Our expectation is 517

that k-mer diversity measures based on frequency, such as Bray-Curtis dissimilarity, better capture diversity 518

compared to measures based on purely k-mer presence/absence, such as Jaccard dissimilarity, because they explicitly 519

measure copy number variation. However, accurately measuring k-mer frequencies likely requires higher sequencing 520

coverage than calling presence/absence, which could explain why Bray-Curtis dissimilarity generally scaled more with 521

population size but had a lower R2 compared to Jaccard dissimilarity (Table S4). Future studies using higher 522

coverage population level sequencing data could help test this hypothesis. 523

k-mer frequencies are known to be highly informative of genomic structure, with one common application of 524

k-mers being the estimation of genome size [Vurture et al., 2017, Pflug et al., 2020]. Similar to previous studies, we 525
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observed that nucleotide diversity was negatively correlated with genome size [Lynch and Conery, 2003, Chen et al., 526

2017], but we observed an even stronger negative correlation for k-mer diversity (β = −1.8, SE = 0.29 vs β = -3.7, 527

SE = 0.42 in Fig. 4). k-mers also appeared to explain diversity patterns that scaled with population size beyond 528

those explained by genome size, while nucleotide diversity did not. After controlling for genome size, the relationship 529

between our population size proxies and nucleotide diversity was not significant (Fig. 3A, S17-S19 panels A and D), 530

but the relationship between k-mer diversity and population size proxies was often still highly significant (Fig. 3B, 531

S17-S19 panels B; C; E; F). The only exception was that Jaccard dissimilarity did not significantly scale with 532

GBIF-based estimates of range size (Fig. S19B, S19E). This additional scaling of k-mer diversity with population size 533

beyond just the effects of genome size and confounding variables suggests that k-mers capture some element of the 534

population size-diversity relationship that is absent from nucleotide diversity. 535

Our results do not negate the fact that other important factors also underlie Lewontin’s paradox, such as past 536

demographic fluctuations and linked selection. However, our results do suggest that future studies of Lewontin’s 537

paradox would benefit from considering diversity outside one reference genome. The increasing availability of 538

pangenomes across species [Göktay et al., 2021, Zhou et al., 2022, Rice et al., 2023, Wang et al., 2023] offers many 539

opportunities to revisit this classic population genetics question. While our results suggest that including 540

non-reference variation may partially satisfy Lewontin’s paradox, exactly how much of the paradox is explained by 541

non-reference variation, whether our findings apply outside of plants, and the relative importance of non-reference 542

variation to other factors in explaining Lewontin’s paradox is still unknown. Ideal future studies would use 543

pangenomic genotyping methods across a wide range of species with a standardized pipeline, combined with multiple 544

proxies of population size. Altogether, these methodological developments will hopefully reveal a more wholistic 545

picture of variation across the tree of life. 546

Data availability 547

Our entire analysis is packaged as a snakemake workflow stored here: 548

https://github.com/milesroberts-123/tajimasDacrossSpecies. Table S1 contains the metadata for all of the datasets 549

used in this study, including sources for genome assemblies, genome annotations, population-level sequencing datasets, 550

and GBIF observations. Table S2 contains all of the covariate and response variable values used for fitting our 551

phylogenetic least squares models. Table S3 contains the estimated coefficients of all of our phylogenetic least squares 552

models and their related statistics, including p-values and standard errors. Table S4 contains the model-level 553

statistics for each phylogenetic least squares model, including R2 values and F-test results. If necessary, we are also 554

prepared to publish the following datasets upon acceptance of this manuscript in the accepting journal’s preferred 555

repository: matrices of k-mer counts (93 G), VCF files of filtered variants (202 G), multiqc reports of fastp read 556

trimming (244 M), species range maps (87M, downloaded from Plants of the World Online), and plant height values 557

(downloaded from Encyclopedia of Life), and our species tree (downloaded from timetree.org). 558
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J. Doležel, J. Bartoš, H. Voglmayr, and J. Greilhuber. Nuclear DNA content and genome size of trout and human.
Cytometry Part A, 51A(2):127–128, 2003. ISSN 1552-4930. doi: 10.1002/cyto.a.10013. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/cyto.a.10013. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cyto.a.10013.

V. B. Dubinkina, D. S. Ischenko, V. I. Ulyantsev, A. V. Tyakht, and D. G. Alexeev. Assessment of k-mer spectrum
applicability for metagenomic dissimilarity analysis. BMC Bioinformatics, 17(1):38, Jan. 2016. ISSN 1471-2105.
doi: 10.1186/s12859-015-0875-7. URL https://doi.org/10.1186/s12859-015-0875-7.

J. Ebler, P. Ebert, W. E. Clarke, T. Rausch, P. A. Audano, T. Houwaart, Y. Mao, J. O. Korbel, E. E. Eichler, M. C.
Zody, A. T. Dilthey, and T. Marschall. Pangenome-based genome inference allows efficient and accurate
genotyping across a wide spectrum of variant classes. Nature Genetics, 54(4):518–525, Apr. 2022. ISSN 1546-1718.
doi: 10.1038/s41588-022-01043-w. URL https://www.nature.com/articles/s41588-022-01043-w. Number: 4
Publisher: Nature Publishing Group.

H. Ellegren and N. Galtier. Determinants of genetic diversity. Nature Reviews Genetics, 17(7):422–433, July 2016.
ISSN 1471-0064. doi: 10.1038/nrg.2016.58. URL https://www.nature.com/articles/nrg.2016.58. Number: 7
Publisher: Nature Publishing Group.

P. Ewels, M. Magnusson, S. Lundin, and M. Käller. MultiQC: summarize analysis results for multiple tools and
samples in a single report. Bioinformatics, 32(19):3047–3048, Oct. 2016. ISSN 1367-4803. doi:
10.1093/bioinformatics/btw354. URL https://doi.org/10.1093/bioinformatics/btw354.

M. Exposito-Alonso, T. R. Booker, L. Czech, L. Gillespie, S. Hateley, C. C. Kyriazis, P. L. M. Lang, L. Leventhal,
D. Nogues-Bravo, V. Pagowski, M. Ruffley, J. P. Spence, S. E. Toro Arana, C. L. Weiß, and E. Zess. Genetic
diversity loss in the Anthropocene. Science, 377(6613):1431–1435, Sept. 2022. doi: 10.1126/science.abn5642. URL
https://www-science-org.proxy2.cl.msu.edu/doi/10.1126/science.abn5642. Publisher: American
Association for the Advancement of Science.

D. A. Filatov. Extreme Lewontin’s Paradox in Ubiquitous Marine Phytoplankton Species. Molecular Biology and
Evolution, 36(1):4–14, Jan. 2019. ISSN 0737-4038, 1537-1719. doi: 10.1093/molbev/msy195. URL
https://academic.oup.com/mbe/article/36/1/4/5142658.

R. B. Flavell, M. D. Bennett, J. B. Smith, and D. B. Smith. Genome size and the proportion of repeated nucleotide
sequence DNA in plants. Biochemical Genetics, 12(4):257–269, Oct. 1974. ISSN 1573-4927. doi:
10.1007/BF00485947. URL https://doi.org/10.1007/BF00485947.

J. M. Flowers, J. Molina, S. Rubinstein, P. Huang, B. A. Schaal, and M. D. Purugganan. Natural selection in
gene-dense regions shapes the genomic pattern of polymorphism in wild and domesticated rice. Molecular Biology
and Evolution, 29(2):675–687, Feb. 2012. ISSN 0737-4038. doi: 10.1093/molbev/msr225. URL
https://doi.org/10.1093/molbev/msr225.

20/29

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 8, 2024. ; https://doi.org/10.1101/2024.05.17.594778doi: bioRxiv preprint 

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002112
https://doi.org/10.1093/gigascience/giab008
https://www.pnas.org/doi/10.1073/pnas.1205663109
https://onlinelibrary.wiley.com/doi/abs/10.1002/cyto.a.10013
https://doi.org/10.1186/s12859-015-0875-7
https://www.nature.com/articles/s41588-022-01043-w
https://www.nature.com/articles/nrg.2016.58
https://doi.org/10.1093/bioinformatics/btw354
https://www-science-org.proxy2.cl.msu.edu/doi/10.1126/science.abn5642
https://academic.oup.com/mbe/article/36/1/4/5142658
https://doi.org/10.1007/BF00485947
https://doi.org/10.1093/molbev/msr225
https://doi.org/10.1101/2024.05.17.594778
http://creativecommons.org/licenses/by/4.0/


Y. Fofanov, Y. Luo, C. Katili, J. Wang, Y. Belosludtsev, T. Powdrill, C. Belapurkar, V. Fofanov, T.-B. Li,
S. Chumakov, and B. M. Pettitt. How independent are the appearances of n-mers in different genomes?
Bioinformatics, 20(15):2421–2428, Oct. 2004. ISSN 1367-4803. doi: 10.1093/bioinformatics/bth266. URL
https://doi.org/10.1093/bioinformatics/bth266.

R. Frankham. How closely does genetic diversity in finite populations conform to predictions of neutral theory?
Large deficits in regions of low recombination. Heredity, 108(3):167–178, Mar. 2012. ISSN 1365-2540. doi:
10.1038/hdy.2011.66. URL https://www.nature.com/articles/hdy201166. Number: 3 Publisher: Nature
Publishing Group.

P. Goerner-Potvin and G. Bourque. Computational tools to unmask transposable elements. Nature Reviews Genetics,
19(11):688–704, Nov. 2018. ISSN 1471-0064. doi: 10.1038/s41576-018-0050-x. URL
https://www.nature.com/articles/s41576-018-0050-x. Publisher: Nature Publishing Group.

A. A. Golicz, P. E. Bayer, P. L. Bhalla, J. Batley, and D. Edwards. Pangenomics comes of age: from bacteria to plant
and animal applications. Trends in Genetics, 36(2):132–145, Feb. 2020. ISSN 0168-9525. doi:
10.1016/j.tig.2019.11.006. URL https://www.sciencedirect.com/science/article/pii/S016895251930246X.

R. Govaerts, E. Nic Lughadha, N. Black, R. Turner, and A. Paton. The World Checklist of Vascular Plants, a
continuously updated resource for exploring global plant diversity. Scientific Data, 8(1):215, Aug. 2021. ISSN
2052-4463. doi: 10.1038/s41597-021-00997-6. URL https://www.nature.com/articles/s41597-021-00997-6.
Number: 1 Publisher: Nature Publishing Group.

Q. Guo, H. Qian, J. Zhang, and P. Liu. The relationships between species age and range size. Journal of
Biogeography, 00(n/a):1–9, Feb. 2024. ISSN 1365-2699. doi: 10.1111/jbi.14809. URL
https://onlinelibrary.wiley.com/doi/abs/10.1111/jbi.14809. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/jbi.14809.

X. Guo, Y. Wang, P. D. Keightley, and L. Fan. Patterns of selective constraints in noncoding DNA of rice. BMC
Evolutionary Biology, 7(1):208, Nov. 2007. ISSN 1471-2148. doi: 10.1186/1471-2148-7-208. URL
https://doi.org/10.1186/1471-2148-7-208.
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