
RIGATonI: An R software for Rapid Identification of Genomic Alterations in Tumors affecting lymphocyte 1

Infiltration 2

Running title: Identification of genomic variants and altered immune phenotypes in cancer 3

Raven Vella1,2,3,4, Emily L. Hoskins1,2,4, Lianbo Yu4,5, Julie W. Reeser1,4, Michele R. Wing1,4, Eric 4

Samorodnitsky1,4, Leah Stein1,2,4, Elizabeth G. Bruening6, Anoosha Paruchuri1,4, Michelle Churchman7, Nancy 5

Single4, Wei Chen4,8, Aharon G. Freud4,8, Sameek Roychowdhury1,4 6

1 Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, Columbus, OH 7
43210 8

2 Biological Sciences Graduate Program, The Ohio State University, Columbus, OH 43210 9

3 Medical Scientist Training Program, The Ohio State University, Columbus, OH 43210 10

4 Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 11

5 Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210 12

6The Bioinformatics Program, Loyola University Chicago, Chicago, IL 60660 13

7 Aster Insights, Tampa, FL 33612 14

8 Department of Pathology, The Ohio State University, Columbus, OH 43210 15

Corresponding author: Sameek Roychowdhury, Associate Professor, Department of Internal Medicine, 16

Division of Medical Oncology, Comprehensive Cancer Center and The James Cancer Hospital, The Ohio State 17

University, Columbus, OH 43210, USA. Tel: +1 614-685-5842; email: Sameek.roychowdhury@osumc.edu 18

Key words: Genomics, immune infiltration, machine learning, tumor immunity, bioinformatics 19

Word count: 4536 words 20

 21

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

mailto:Sameek.roychowdhury@osumc.edu
https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

Identification of genomic variants and altered immune phenotypes in cancer

2

ABSTRACT 22

Tumor genomic alterations have been associated with altered tumor immune microenvironments and 23

therapeutic outcomes. These studies raise a critical question: are there additional genomic variations altering 24

the immune microenvironment in tumors that can provide insight into mechanisms of immune evasion? This 25

question is the backbone of precision immuno-oncology. Current computational approaches to estimate 26

immunity in bulk RNA sequencing (RNAseq) from tumors include gene set enrichment analysis and cellular 27

deconvolution, but these techniques do not consider the spatial organization of lymphocytes or connect immune 28

phenotypes with gene activity. Our new software package, Rapid Identification of Genomic Alterations in Tumors 29

affecting lymphocyte Infiltration (RIGATonI), addresses these two gaps in separate modules: the Immunity 30

Module and the Function Module. Using pathologist-reviewed histology slides and paired bulk RNAseq 31

expression data, we trained a machine learning algorithm to detect high, medium, and low levels of immune 32

infiltration (Immunity Module). We validated this technique using a subset of pathologist-reviewed slides not 33

included in the training data, multiplex immunohistochemistry, flow cytometry, and digital staining of The Cancer 34

Genome Atlas (TCGA). In addition to immune infiltrate classification, RIGATonI leverages another novel machine 35

learning algorithm for the prediction of gain- and loss-of-function genomic alterations (Function Module). We 36

validated this approach using clinically relevant and function-impacting genomic alterations from the OncoKB 37

database. Combining these two modules, we analyzed all genomic alterations present in solid tumors in TCGA 38

for their resulting protein function and immune phenotype. We visualized these results on a publicly available 39

website. To illustrate RIGATonI’s potential to identify novel genomic variants with associated altered immune 40

phenotypes, we describe increased anti-tumor immunity in renal cell carcinoma tumors harboring 14q deletions 41

and confirmed these results with previously published single-cell RNA sequencing. Thus, we present our R 42

package and online database, RIGATonI: an innovative software for precision immuno-oncology research. 43

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

Identification of genomic variants and altered immune phenotypes in cancer

3

Immune surveillance is crucial for the eradication of cancer cells1. Investigating factors impacting the 44

tumor immune microenvironment can aid in understanding this process1. The tumor microenvironment is 45

composed of tumor cells, along with surrounding immune cells, stroma cells and tissue matrix, and microbiota1. 46

Each of these elements vary across patients and tumor types, producing a spectrum of immune phenotypes and, 47

consequently, clinical outcomes to immunotherapy1. In particular, the field of precision immuno-oncology 48

requires approaches designed to discover relationships between tumor genomic alterations and their associated 49

microenvironments2, 3. There are several techniques to assess the tumor immune microenvironment using bulk 50

tumor RNAseq data; however, there are no approaches designed to rapidly detect associations between tumor 51

genomic alterations and the quality of tumor inflammation in big data repositories. Thus, there is a need to 52

develop computational tools specifically designed to assess immunity in large databases of tumor 53

transcriptomes. 54

Current methods for detecting altered immunity in tumors (Figure 1A) include gene set enrichment 55

analyses (e.g., ImSig4, Thorsson et. al.5), cellular deconvolution techniques (e.g., MCP-counter6, quantiseqR7, 56

CIBERSORT8), and ensemble results provided in databases (e.g., TCIA9, TIMER2.010, TIMEDB11). Gene set 57

enrichment analysis involves assessing the expression of immune-related gene sets and then clustering cancers 58

based on the results. This is routinely employed in large studies of immunotherapy outcomes to reveal the tumor 59

features that underscore interpatient differences12, 13. These approaches are often not optimized for application 60

to data outside the study within which they are built because they are not intended for robust analysis across 61

databases. Alternatively, cellular deconvolution tools attempt to emulate flow cytometry or immunohistochemistry 62

by estimating the number of specific immune cells in a sample6-8. Importantly, cellular deconvolution does not 63

make clear distinctions between immune phenotypes broadly and rather leaves interpretation up to the user. 64

Databases of cellular deconvolution results have emerged, which include ensemble analyses across The Cancer 65

Genome Atlas (TCGA) and other sources10, 11. These databases provide information about associations between 66

genomic alterations and immune phenotypes; however, they do not separate analyses based on the functional 67

status of the genomic alteration instead combining all alterations in a gene of interest regardless of their 68

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

Identification of genomic variants and altered immune phenotypes in cancer

4

molecular impact9-11. None of these techniques were specifically developed to classify immune phenotypes and 69

discern associations with functionally relevant tumor genomic alterations. 70

To address these gaps, we developed Rapid Identification of Genomic Alterations in Tumors affecting 71

lymphocyte Infiltration (RIGATonI). RIGATonI is composed of two machine learning modules to connect 72

functional genomic alterations (Function Module) and altered immune phenotypes (Immunity Module) in an 73

unbiased manner. Our approach is distinct from currently available bulk RNAseq methods in four ways: 1) model 74

training with pathologist-defined immune infiltration as gold standard, 2) consideration for immune cell spatial 75

characteristics (e.g., tertiary lymphoid structures, dispersion characteristics, and degree of infiltration), 3) rapid, 76

robust, and precise immune phenotype classification across big data resources, and 4) gene candidate filtering 77

that evaluates protein function prediction rather than gene mutation status alone (Figure 1A). To build and 78

validate RIGATonI, we combined histologic features identified by computational staining14, pathologist-defined 79

immune infiltration, protein-protein interaction networks15, genomic data, proteomic data, and transcriptomic data 80

(Figure 1B). 81

First, we built the Immunity Module to predict immune phenotypes using bulk RNAseq expression. 82

Contrasting other approaches, this module was not built using exclusively immune-related genes; instead, we 83

performed unbiased feature selection to determine the best predictors (n=114) of tumor immunity (Figure 1A). 84

We validated and fine-tuned our approach using manually reviewed tumor histology by pathologists, 85

computational staining14, immunohistochemistry16, and flow cytometry16 (Figure 1A). Next, we developed the 86

Function Module which can accurately predict the function of genomic alterations (copy number alterations, 87

single nucleotide variations, and structural variations) from bulk RNAseq expression. We validated this module 88

using data from the largest collection of functionally impactful, clinically relevant genomic alterations in cancer: 89

OncoKB17. These two modules were combined to uncover connections between all the genomic alterations in 90

solid tumors in TCGA and the immune phenotypes of samples harboring these alterations (Figure 1B). We 91

created an interactive visualization interface (https://rigatoni.osc.edu) to help researchers access our TCGA 92

analysis results for individual genes (Figure 1B). 93

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

Identification of genomic variants and altered immune phenotypes in cancer

5

Figure 1. Overview of RIGATonI as a novel agnostic approach to measure immune infiltration from bulk tumor RNASeq. A.

Current approaches to estimate immunity from bulk tumor RNAseq include gene set enrichment4, 5 and cellular deconvolution6-8 based

methods. In contrast, RIGATonI utilizes a gene agnostic approach to classify immune cell infiltration in tumors by training on pathologist-
annotated digital slides. B. RIGATonI enables identification of candidate genomic alterations associated with altered immune infilration
in subsets of cancer through evaluation of gene expression, genomic alterations, pathologist-classified tumors, and protein validation.
The Immunity Module assesses immune infiltration from bulk RNAseq expression for individual samples. The Function Module predicts
the function (loss or gain) of individual samples for a given gene of interest using bulk RNAseq expression.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

Identification of genomic variants and altered immune phenotypes in cancer

6

Additionally, we built an R package which can be used to perform the RIGATonI analyses on any samples of 94

interest (Figure 1B). 95

To demonstrate the applications of the RIGATonI software, we explored a novel connection between 14q 96

deletion in renal cell carcinoma and increased anti-cancer immunity discovered by RIGATonI’s analysis of TCGA. 97

Using bulk RNA sequencing and single cell RNA sequencing from TCGA and Yu et. al.18 respectively, we show 98

increased infiltration of CD8+ T cells, decreased pro-tumor immune checkpoint signatures, and increased CD8+ 99

T cell proliferation, cytotoxicity, and inflammation. 100

Together, these results introduce RIGATonI: a unique and powerful tool designed with machine learning 101

to identify immunologically impactful genomic alterations in cancer. 102

RESULTS 103

RIGATonI predicts immune phenotypes by utilizing histology and bulk RNAseq with high accuracy 104

RIGATonI’s Immunity Module was trained and validated using a comprehensive, pan-cancer dataset 105

(OSU-ORIEN dataset) from The Ohio State University (OSU) including digital histology paired with bulk RNAseq 106

(sequenced by Oncology Research Information Exchange Network, ORIEN). To ensure the OSU-ORIEN dataset 107

included sufficient low, medium, and high immune phenotypes, we used a preliminary version of our machine 108

learning algorithm developed using computational staining14 output from TCGA. We succeeded in doing so and 109

produced a training data set of 403 tumors across 22 different cancer types (Supplemental Figure 1). Digital 110

histology slides from these tumors were reviewed independently by two pathologists and were classified into 111

low, medium, or high immune infiltration groups (Figure 2A). Pathologists used a semi-quantitative approach to 112

estimate the percentage of tumor area occupied by lymphocytes. They also considered the distribution of these 113

lymphocytes throughout the tumor area (e.g., deeply penetrating, semi-penetrating, or peripheral), and the 114

overall quality of inflammation (e.g., presence or absence of tertiary lymphoid structures, signs of cytotoxic killing 115

of tumor cells). To build the final model, we evaluated six different models using two different machine learning 116

approaches and pathologist annotations both together and separately (see Methods). We selected genes for 117

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

Identification of genomic variants and altered immune phenotypes in cancer

7

immune phenotype prediction within the Immunity Module using ElasticNet19, which yielded 114 transcriptomic 118

features (Supplemental Table 1). All bulk RNAseq expression for these 114 genes were extracted and 119

subsequent analyses utilized only this data. An XgBoost20 algorithm was trained using 334 of 403 tumors with 120

Bayesian parameter optimization21 to classify tumors’ immune infiltration. We assessed the accuracy of the 121

algorithm in a variety of ways. 122

First, we evaluated the accuracy of RIGATonI to classify 69 blind-set samples (Figure 2B). The overall 123

accuracy of the model was 71.01% (95% confidence interval 58.84%-81.31%). The balanced accuracy was 124

higher for tumors with high and low infiltration (82.04% and 82.58%, respectively) compared to those with 125

medium infiltration (63.4%). A similar trend was observed for sensitivity and specificity (Supplemental Table 2-126

4). The accuracy was significantly different from the no information rate (p<0.01), indicating that the overall 127

accuracy is significantly better than what could be achieved from random chance. We also failed to reject the 128

null hypothesis of McNemar’s test, which indicates there is insufficient evidence that the predictions made by the 129

algorithm are different from the true phenotypes (p>0.05). Detailed statistics and a confusion matrix of the results 130

are available in Supplemental Table 2-4. 131

RIGATonI’s Immunity Module corresponds with mIHC and flow cytometry features of increased 132

lymphocyte infiltration 133

We validated the Immunity Module with a set of 32 gastric tumors from a recent study which provided 134

matched multiplex immunohistochemistry (mIHC), flow cytometry, and bulk RNAseq16. Tumors classified “high” 135

by RIGATonI (RIGATonI-high) had higher immune cell counts detected by mIHC (Figure 2C). Further analysis 136

revealed that this increase was mainly due to a greater number of CD3+ cells in RIGATonI-high tumors compared 137

to RIGATonI-low tumors (Figure 2D/Supplemental Figure 2A). Further, flow cytometry data from the same 138

study confirmed our findings. RIGATonI-high tumors showed a significantly higher percentage of lymphocytes 139

(specifically CD3+ cells) compared to RIGATonI-low tumors (Figure 2E/Supplemental Figure 2B). Additionally, 140

we observed a significant increase in CD8+ T cells measured by mIHC in RIGATonI-high tumors compared to 141

RIGATonI-low tumors (Figure 2F). 142

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

Identification of genomic variants and altered immune phenotypes in cancer

8

Figure 2. Development and validation of RIGATONI immune infiltrate classification. A. To train RIGATonI, we selected tumor
samples based on a preliminary algorithm developed to identify a range of low to high lymphocyte infiltration phenotypes. Tumor samples
were selected across diverse cancer types and two pathologists independently classified them as high, medium, or low degrees of
infiltration. We built a machine learning model to predict these annotations and validated with a variety of data types. B. The accuracy
of the model (Y-axis) was validated using a blind dataset (X-axis) not used for training data. RIGATonI-high annotations were 82%
accurate for pathologist high and low annotations. RIGATonI-medium predictions were 63% accurate. C. Next, we investigated an
independent dataset of gastric tumors with mIHC, flow cytometry, and tumor RNAseq data16. RIGATonI -high and -low samples
corresponded to immune cell subsets as measured by mIHC. D. The counts of CD3+ T cells detected by mIHC were significantly
increased in RIGATonI-high samples. E. Flow cytometry of these tumors demonstrated an increase in CD3-positive lymphocytes in
RIGATonI -high vs. -low samples. F. The counts of CD8+ T cells detected by mIHC were significantly increased in RIGATonI-high
samples. G. We also investigated our algorithm’s association with histologic features detected by convolutional neural networks in 5,202

tumors from TCGA14. The percentage of tumor infiltrating lymphocytes were measured by Saltz et. al.14 and corresponded with

RIGATonI -low, -medium, and -high classifications. H. We evaluated spatial characteristics of lymphocyte infiltrates using Saltz et. al.14

approach. The overall distribution of spatial characteristics is significantly different across RIGATonI -low, -medium and -high subsets.
RIGATonI-high samples often displayed brisk diffuse lymphocyte patterns shown in maroon. Significance values: p≤0.05: *, p≤0.01: **,
p≤0.001: ***, p≤0.0001: ****.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

Identification of genomic variants and altered immune phenotypes in cancer

9

RIGATonI phenotypes aligned with findings from computational staining of lymphocytes 143

We applied the RIGATonI Immunity Module to 5,202 tumors from TCGA and examined the output of an 144

orthogonal approach for computational staining of digital pathology slides14. Saltz et. al.14 developed a 145

convolutional neural network to detect the percentage and distribution of lymphocytes on digital histology images. 146

First, we compared RIGATonI classifications to the predicted lymphocyte percentage on the slide (Figure 2G). 147

We saw that RIGATonI-high tumors displayed significantly greater lymphocyte percentages compared to 148

RIGATonI -medium or -low tumors (Figure 2G). Similarly, RIGATonI-medium tumors displayed significantly 149

greater lymphocyte percentages compared to RIGATonI-low tumors (Figure 2G). Next, we compared RIGATonI 150

classifications to five patterns of spatial attributes of tumors described by Saltz et. al.14: brisk band-like, brisk 151

diffuse, indeterminant, non-brisk focal, non-brisk multifocal, or none (Figure 2H). We observed a significant 152

difference in the spatial arrangements of lymphocytes between RIGATonI classifications (Figure 2H). 153

Lymphocytes from RIGATonI-high tumors were more likely to have a brisk diffuse arrangement than the 154

population (p<0.01), defined by a broad distribution of many lymphocytes throughout the histology slide14. 155

RIGATonI-medium tumors display brisk band-like arrangements more often than the population (p<0.01). Brisk 156

band-like infiltration patterns indicate the lymphocytes are clustered in a band across the slide, but that there are 157

many lymphocytes14. RIGATonI-low tumors displayed a higher proportion of non-brisk focal lymphocyte 158

arrangements (p<0.01). Non-brisk focal arrangements indicated negligible numbers of lymphocytes in a handful 159

of locations across the image14. In summary, RIGATonI-high tumors exhibited extensive lymphocyte infiltration 160

throughout the tissue slide, while RIGATonI-low tumors showed limited infiltration in isolated and/or scattered 161

spots (Figure 2H). 162

RIGATonI includes an innovative Function Module which can accurately classify genomic alterations 163

with molecular effects using protein-protein interaction networks 164

The Function Module first uses the STRING15 protein-protein interaction database to identify proteins 165

which have direct and validated interactions with the protein of interest (Figure 3A). Both proteins which act on 166

the protein of interest (upstream proteins) and proteins on which the protein of interest acts (downstream 167

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

Identification of genomic variants and altered immune phenotypes in cancer

10

proteins) are considered. Next, we collect the gene names corresponding to the proteins into two lists. These 168

two gene sets serve different purposes: upstream genes allow assessment of alterations which impact the 169

expression level of the gene of interest; downstream genes allow us to assess the impact of alterations which 170

may change the activity level of the gene of interest. We built a generalized linear model over a Poisson 171

distribution using the extracted RNAseq counts of upstream and downstream genes using samples with no 172

alteration in the gene of interest. These two models are then saved and used to predict the RNAseq counts of 173

the gene of interest within the mutant samples. 95% prediction intervals are created for both the upstream and 174

downstream models. Mutant samples with true counts below the 95% prediction interval of either model are 175

classified as “LOF”. Conversely, samples with counts exceeding the 95% prediction interval are classified as 176

“GOF”. Samples within the 95% prediction interval of both models are annotated as “unknown” (Figure 3A). 177

Figure 3: Function Module development and testing. A. The Function Module was developed using upstream

regulators and downstream targets of a given gene of interest from the STRING15 database. Parallel linear models

over a Poisson distribution were built. First, the model of the upstream regulators was assessed. Next, if the
expression of the gene of interest falls within the prediction interval, gene expression predicted by the downstream

targets was assessed. B. The Function Module was assessed using OncoKB17 as a ground truth. There were 291

genomic alterations with corresponding annotations in OncoKB17 and 96.8% of the gain-of-function calls (60/62) and

90.4% of the loss-of-function calls (207/229) were correctly classified.

To assess the Function Module’s accuracy, we analyzed genomic alterations from a total of 1008 178

oncogenes and tumor suppressor genes annotated by OncoKB17. When applied to 10,464 tumors from the 179

TCGA, our algorithm successfully identified 400 GOF alterations and 966 LOF genomic alterations (SNVs, 180

structural variations, and copy number variations) within these 1008 genes. Genomic alterations harbored by 181

fewer than five tumors were not assessed. Fusions were excluded due to the high potential for false positives as 182

many tumors harbored multiple fusions and imprecise breakpoints. 183

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

Identification of genomic variants and altered immune phenotypes in cancer

11

Of the 400 candidate GOF alterations uncovered, 62 were annotated in the OncoKB17 database. The 184

algorithm correctly categorized 60 of 62 as GOF, and two were incorrectly categorized as LOF, yielding an 185

accuracy of 96% for GOF (Figure 3B). Notably, 84.5% of the alterations annotated by the algorithm had no 186

information available in OncoKB17; most of these variants were whole gene amplifications (Supplemental Table 187

5). Similarly, we validated the accuracy of this algorithm for LOF alterations. Of the 966 LOF alterations 188

uncovered, only 229 were annotated in the OncoKB17 database. The algorithm correctly categorized 207 as LOF, 189

while 22 were incorrectly categorized as GOF, yielding an accuracy of 90% (Figure 3B). Further, 76% of the 190

candidate LOF alterations annotated by the algorithm had no information available in OncoKB17; most of these 191

variants were whole gene deletions or premature truncations (Supplemental Table 5). Overall, these findings 192

demonstrate our algorithm's effectiveness in accurately classifying known GOF and LOF mutations while also 193

identifying novel variants that are not well described in existing databases. 194

RIGATonI’s TCGA analysis is available for exploration online 195

Using the RIGATonI modules outlined above, we compiled and analyzed all genomic alterations 196

(structural variations, gene fusions, point mutations, and copy number alterations) in TCGA. In total, RIGATonI 197

identified 7,410 genomic alterations with possible immune effects among 5,746 genes. To determine the number 198

of novel results among the RIGATonI output, we performed text mining on 226,093 abstracts mentioning “cancer” 199

and “immunity” published between June 22nd, 2010, and June 22nd, 2023. We discovered that 2,773 (48%) of 200

the RIGATonI output genes had not been previously connected to cancer immunity (Figure 4A). Only 72 genes 201

(1%) had been mentioned in cancer immunity abstracts more than 100 times (Figure 4A). All results are available 202

online at https://rigatoni.osc.edu/. Users select a gene of interest to explore and can subset output with alterations 203

or cancer types of interest on the home page (Supplemental Figure 3). In the Transcriptomics page, the user 204

can explore the expression levels of different genes across patient groups (Supplemental Figure 4). Finally, we 205

provide cellular deconvolution results from quantiseqR7 on the Immunity page (Supplemental Figure 5). This 206

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://rigatoni.osc.edu/
https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

Identification of genomic variants and altered immune phenotypes in cancer

12

Figure 4. RIGATonI identifies novel genomic alterations of interest including 14q deletion associated with an increased
immune infiltrate and effector CD8+ T cells in renal cell carcinoma. A. Through analysis of TCGA and text mining of PubMed, 48%
(n = 2773) of genes harboring RIGATonI-identified genomic alterations (n = 5746) have never been associated with tumor immunity. B.
As an example, RIGATonI identified 14q deletion in renal cell carcinoma (RCC) samples which corresponded to an increased immune

infiltration compared to wildtype tumors. C. Using quanitseqR7, we corroborate our finding that there is a broad increase in immune

cells in 14q-deleted RCC tumors. D. With 19 scRNAseq RCC experiments, we investigated markers of CD8+ T cell exhaustion and a
“cold” immune microenvironment. CD8+ T cells from 14q-deleted tumors displayed decreased exhaustion marker KLRG1 and increased

anti-tumor immunity markers IL7R and IFNG22-24 E. Immune checkpoints, which are thought to promote tumor growth, are

downregulated across all T cells studied in 14q-deleted tumors compared to wildtype tumors. These checkpoint receptors include CD47,

CTLA4, HAVCR2, LAG3, PDCD1, TIGIT, and VSIR 25, 26. Significance values: p≤0.05: *, p≤0.01: **, p≤0.001: ***, p≤0.0001: ****

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

Identification of genomic variants and altered immune phenotypes in cancer

13

website is intended to assist researchers in understanding how the function of their gene of interest impacts 207

immunity in an unbiased and rapid manner. 208

RIGATonI identifies genomic alteration 14q deletion’s association with altered immune infiltration in 209

renal cell carcinoma 210

Exploring novel results from the TCGA analysis, we uncovered a group of genes (n=207) all located on 211

chromosome 14q which consistently showed the same patterns of deletion, in the same patients, and were 212

RIGATonI-high. Further investigation led us to discover that these alterations were part of a larger chromosomal 213

arm deletion of 14q. We observed this pattern in many cancer types, but one of the strongest relationships was 214

in renal cell carcinoma (RCC). 3% of RCC patients harboring a 14q deletion were highly infiltrated compared to 215

0.6% of 14q wildtype RCC patients (Figure 4B). We also corroborated these results using quantiseqR7 where 216

14q-deleted tumors displayed an increased immune infiltration compared to wildtype (Figure 4C). Although 217

these two bulk RNAseq methods show the same pattern, we also evaluated 14q deletion in an orthogonal dataset 218

with 19 RCC tumors with single cell RNAseq18. Using copyKat27, we discovered 8/19 patients harbored a 14q 219

deletion. We evaluated the immune cell compartment of these samples and observed that CD8+ T cells from 220

14q-deleted tumors displayed decreased KLRG1, increased IL7R, and increased IFNG expression (Figure 4D). 221

This pattern is indicative of increased T cell proliferation, cytotoxicity, and T cell-mediated anti-tumor immunity 222

among CD8+ T cells from 14q-deleted tumors22-24. We also investigated the expression of immune checkpoint 223

genes expressed on T cells (HAVCR2, TIGIT, LAG3, PDCD1, VSIR, and CD47) (Figure 4E)25, 26. Across all T 224

cells studied, expression of pro-tumor checkpoint genes is decreased in 14q-deleted tumors (Figure 4E). The 225

largest differences were in LAG3 (LAG-3) and HAVCR2 (TIM-3) (Figure 4E). CD4+ T cells were the only cell 226

type to have a significant decrease in PDCD1 (PD-1) within 14q-deleted tumors (Figure 4E). Together these 227

results indicate that 14q-deleted tumors contain more activated CD8+ T cells than wildtype as well as fewer 228

features of T cell exhaustion and pro-tumor immune activity. 229

DISCUSSION 230

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

Identification of genomic variants and altered immune phenotypes in cancer

14

RIGATonI is a novel tool to discover precision immuno-oncology targets using bulk RNAseq data in two 231

distinct modules: the Immunity Module (Figure 2A) and the Function Module (Figure 3A). The Immunity Module 232

addresses two key gaps not considered by current approaches 1) degree of immune cell dispersion alongside 233

infiltration, and 2) immune phenotyping across big data resources without user interpretation. The Immunity 234

Module uses a machine learning approach built with paired bulk RNAseq from pathologist reviewed histology 235

slides (Figure 2A). To our knowledge, this strategy has never been implemented before. The Function Module 236

classifies genomic alterations as LOF or GOF based on bulk RNAseq features (Figure 3A). RIGATonI is the first 237

approach we are aware of for estimating immunity which also estimates gene-level function. RIGATonI was 238

employed across the TCGA database and interesting results are visualized on our website 239

(https://rigatoni.osc.edu/) for public use. Finally, we demonstrated that these two modules can be combined to 240

discover novel connections between genomic alterations and immunity through further investigation of 14q 241

deletion in renal cell carcinoma (RCC) scRNAseq datasets. In summary, RIGATonI is a unique machine learning 242

approach specifically designed for precision immuno-oncology. 243

The Immunity Module considers features of cancer immunity not considered by available software tools. 244

Currently, gene set enrichment, cellular deconvolution, and ensemble approaches for estimating immunity from 245

bulk RNAseq have not been compared to benchmark pathologist review of tumor histology for degree and quality 246

of lymphocyte infiltration (Figure 1A)4-8. To build RIGATonI’s Immunity Module, we asked pathologists to review 247

tumor histology slides for degree of infiltration considering not only the absolute number of lymphocytes, but also 248

the presence or absence of tertiary lymphoid structures (TLS), signs of cytotoxicity, and the general distribution 249

across the tumor slide (deeply penetrating the tumor or on the periphery). By incorporating these nuanced 250

features into our algorithm training and validation, RIGATonI benchmarks aspects of immunity not evaluable with 251

either gene set enrichment or cellular deconvolution tools4-8. Furthermore, both cellular deconvolution and gene 252

set enrichment utilize genes with known connections to cancer immunity (Figure 1A). These genes are selected 253

either through literature review or single cell atlases5. Unfortunately, this approach does not allow for evaluation 254

of de novo mechanisms that impact tumor immunity. To address this gap, RIGATonI’s Immunity Module uses 255

expression of just 114 genes selected in an unbiased manner (Supplemental Table 1). These genes 256

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://rigatoni.osc.edu/
https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

Identification of genomic variants and altered immune phenotypes in cancer

15

consistently predict immune phenotypes across cancer types and databases (Figure 2B-H). In the future, we 257

will explore why this novel gene list can reproducibly predict cancer immune infiltration. 258

The Function Module’s prediction of protein-level effects of genomic alterations from bulk RNAseq 259

expression data is also novel. Most genomic alterations in tumors are variants of unknown significance28. 260

Therefore, a functional measure of associated gene activity can help to prioritize alterations that are most likely 261

to have a biological or immunological impact. eVIP2 is the only other method designed to determine the function 262

of genomic variants using bulk RNAseq29. Importantly, eVIP2 was validated using only two alterations in the 263

same gene of interest, whereas our validation set demonstrated remarkable accuracy involving 291 different 264

alterations across 207 different genes (Figure 3B)29. VIPER, another R package, utilizes cell specific “regulons” 265

for protein activity prediction and did assess scores for some genomic variants of interest; however, it was not 266

designed to analyze the functional impact of genomic alterations directly30. RIGATonI is the only available bulk 267

RNAseq method to assess protein function from gene expression validated with several hundred genomic 268

alterations across many different genes. In contrast to DNA-based annotation of mutations, the Function Module 269

has several benefits. First, although we applied the Function Module to groups with differing genomic alteration 270

status, the module assesses the function of a gene of interest in a testing group compared to a control group. 271

Thus, RIGATonI could be applied to any subsets of any other feature (e.g. methylation, alternative splicing, 272

treatment, etc.) (Figure 3A). Second, when evaluating genomic alterations, RIGATonI can assess novel variants 273

and mechanisms of altered expression. Third, not all patients with the same genomic alteration experience 274

identical molecular effects. The Function Module predicts the overall effects of alterations and makes specific 275

predictions for each sample, considering its unique molecular characteristics (Figure 3A). These unique features 276

make RIGATonI’s Function Module an effective tool for multi-omic research. 277

Like many computational approaches, RIGATonI is limited by sample size considerations. By using 278

pathologist assessment of tumor histology rather than computer vision as a ground truth for the Immunity Module, 279

we do limit the sample size of our training data. New approaches like Lunit SCOPE IO31 and that of Saltz et. al.14 280

use deep learning techniques to estimate immune cells on digital pathology slides. Lunit SCOPE IO was trained 281

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

Identification of genomic variants and altered immune phenotypes in cancer

16

on >17,000 H&E images across 24 cancer types31. This scale of training data would be impractical using manual 282

pathologist review. However, it is widely agreed that physician benchmarking is the gold standard against which 283

machine learning approaches should be measured32. Therefore, we believe the quality of the training data 284

classifications compensated for comparatively smaller sample size. Another sample size concern arose when 285

validating the Function Module. Validation of RIGATonI’s Function Module only took place on alterations with ≥5 286

instances of a candidate alterations to ensure that statistical tests could be performed to determine the functional 287

status. In the pan-TCGA analysis, we did not group together early terminations or different point mutations 288

occurring at the same locus out of an abundance of caution (early terminations at different loci may have different 289

effects; different point mutations at the same locus may have different effects). Without detailed knowledge of all 290

17,000 genes analyzed, we approached the first version of RIGATonI conservatively. Despite these sample size 291

concerns, our robust validations give us confidence in our tool’s performance. 292

RIGATonI identified 14q deletion as a potential novel biomarker for increased anti-tumor immunity in 293

renal cell carcinoma (RCC). 14q deletion has previously been identified as a negative prognostic indicator in 294

RCC; however, these studies were done prior to the broad adoption of PD-1/PD-L1 immunotherapy in RCC33, 34. 295

RIGATonI indicates 14q deletions are associated with a highly infiltrated immune microenvironment in TCGA 296

(Figure 4B). These results were further supported using the cellular deconvolution tool quantiseqR7 which 297

demonstrates enhanced immunity in 14q-deleted samples (Figure 4C). We were able to orthogonally assess 298

14q through analysis of scRNAseq data for 19 RCC patients18. We first explored the CD8+ T cells between 14q-299

deleted and wildtype tumors. CD8+ T cells from 14q-deleted tumors displayed evidence of superior cytotoxicity, 300

increased release of interferon-gamma, and increased proliferation22-24. We also explored whether pro-tumor 301

immune checkpoint receptors and ligands were more highly expressed in T cells from 14q-deleted vs wildtype 302

tumors. Wholistically, we see that pro-tumor immune checkpoint receptors are decreased in 14q-deleted tumors 303

compared to wildtype tumors across all cell types explored (Figure 4E)25, 26. Identification of 14q deletion in RCC 304

demonstrates a successful application of RIGATonI to discover genomic alterations associated with altered 305

tumor immunity. 306

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

Identification of genomic variants and altered immune phenotypes in cancer

17

In summary, RIGATonI is a powerful software leveraging tumor RNAseq in novel ways to accelerate 307

discoveries in precision immuno-oncology research. RIGATonI can be applied across big data sources to 308

understand tumor-driven mechanisms of immunity, identify novel biomarkers for immunotherapy treatment, and 309

discover novel drug targets for future immunotherapies. In summary, we are pleased to introduce RIGATonI: an 310

innovative approach for discovery novel genomic variants with associated altered immune phenotypes. 311

ONLINE METHODS 312

Tumor sequencing data. All data shown here were previously published or made available by a big-data source 313

(described below). Secondary analyses were performed on the Pitzer cluster R studio v4.3.0 within Ohio 314

Supercomputer Center (https://www.osc.edu/). Data sources include The Cancer Genome Atlas (TCGA) and the 315

Oncology Research Information Exchange Network (ORIEN). RNAseq count data were downloaded from TCGA 316

using GenomicDataCommons35 and batch corrected with ComBat-seq36 using institution of origin as the batch. 317

Genomic variant calling data was downloaded in the form of combined .maf files. Copy number alteration data 318

were downloaded in the form of gene based raw copy number. Finally, all whole genome .bam files were 319

downloaded from TCGA and then processed with parliament237 using Delly38, Manta39, breakdancer40, and 320

breakseq41 to assess for structural variants. Results from parliament237 were combined using SURVIVOR42 with 321

default settings. RNAseq data was also obtained from ORIEN and batch corrected with ComBat-seq36 according 322

to the RNAseq batch information made available through Aster Insights. Copy number alterations were 323

downloaded from ORIEN in the form of gene based raw copy number. Demographic information was 324

downloaded from ORIEN as well. ORIEN data is managed by Aster Insights, requests for this data should be 325

sent to Aster Insights. 326

RIGATONI immune phenotyping algorithm development and validation with pathologist review. Two 327

pathologists independently reviewed 403 tumor slides assessing lymphocyte infiltration characteristics. Pertinent 328

characteristics included percentage of space not occupied by tumors or stroma, which was occupied by 329

lymphocytes, dispersion of lymphocytes within tumor, and presence or absence of tertiary lymphoid structures. 330

Taking into consideration all these characteristics, each pathologist annotated the slide either high, medium, or 331

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

Identification of genomic variants and altered immune phenotypes in cancer

18

low infiltration. Paired RNA sequencing was collected and used along with annotations to build a series of models 332

predicting immune phenotypes from bulk RNAseq counts. First, important features were selected using 333

multinomial ElasticNet19 via the R package glmnet43. Next, these features were used as predictors for six different 334

machine learning models. Three models were built via the R package XgBoost20 using 10-fold cross validation 335

alongside Bayesian parameter optimization21 via the R package ParBayesianOptimization44. Three separate 336

models were built with the R package ordinalForest45. Two models of the above six models were built considering 337

both pathologists’ predictions, two considering just pathologist-one and other two considering only pathologist-338

two. The classification accuracy of each algorithm for each group is available in Supplemental Table 6. Each 339

algorithm uses the same cohort of 334 samples for training and 69 samples for testing. The algorithm with the 340

best performance (determined with caret46) on the testing data was selected to be used going forward. More 341

specific information is provided in Supplemental Table 6. Accuracy of the testing data for the model selected 342

were visualized using ggplot247 and ggpubr48. 343

Gastric cancer multiplex immunohistochemistry (mIHC) and flow cytometry. RNAseq count data was 344

downloaded from Saito et. al.16 along with flow cytometry and IHC outputs. These include 32 patients with gastric 345

cancer in Tokyo16. These results were processed as previously described in Saito et al.16 Using this resource, 346

we used a MANOVA49 to compare the IHC counts to determine if there were any significant differences between 347

groups. Next, we used a Wilcox test50 to assess the counts of each subset of IHC-marked cells to find significant 348

differences. We performed pairwise comparisons of flow cytometry results using Wilcox tests50. Results were 349

visualized using ggplot247 and ggpubr48. 350

Determine resulting immune phenotype of each genomic alteration using RNAseq data. An R function 351

was created which converts RNAseq count data to TPM using the R packages DESeq251 (to correct size factors) 352

and DGE.obj.utils52 (to convert to TPM), and then filters the data down to only the genes selected by ElasticNet19. 353

The immune phenotype of each sample was predicted using XgBoost20. The proportion of high and low tumors 354

for each cancer type were calculated. To analyze a genomic alteration, all mutant samples provided to the 355

function are compiled, and a 1-proportion z-test is performed where the null hypothesis is that the proportion of 356

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

Identification of genomic variants and altered immune phenotypes in cancer

19

hot samples will be equal to the population proportion within that cancer type and the alternative hypothesis is 357

that the proportion of high samples is greater than the population proportion. If the null hypothesis is rejected 358

(p<0.05), the genomic alteration is annotated RIGATonI-high. If not, a second 1-proportion z-test is performed 359

where the null hypothesis is that the proportion of low samples will be equal to the population proportion and the 360

alternative hypothesis is that the proportion of low samples is greater than the population proportion within that 361

cancer type. If this null hypothesis is rejected (p<0.05), the genomic alteration is annotated RIGATonI-low. If not, 362

the alteration is annotated “Unknown”. 363

Determining functional status of each genomic alteration using RNAseq data. The STRING15 database’s 364

protein action version 10.5 was downloaded. The list of protein actions is subset to include only actions on or by 365

the protein of interest (POI). These actions are further filtered into two lists: an upstream protein list with only 366

proteins that act to affect the expression of the POI, and a downstream protein list including all genes the POI 367

activates, inhibits, or alters expression. The upstream gene list is used to model the RNAseq counts of the POI 368

using modulators of the POI’s expression. The downstream gene list is used to model the RNAseq counts of the 369

POI using downstream genes as indicators of its activity. 370

To model typical expression patterns of the POI, all samples with no alteration (control samples) in the gene of 371

interest (GOI) are collected, and two generalized linear models are created over a Poisson distribution to predict 372

the RNA counts of the POI/GOI. One model uses the upstream protein list as predictors, and another uses the 373

downstream protein list. Both models predict the RNAseq counts of the POI. 374

Next, the RNAseq counts of the GOI within samples harboring mutations (mutant sample) predicted separately 375

with each regression model. If, in either model, the expression of the GOI is lower than the lower bound of the 376

95% prediction interval (created by ciTools53), the mutant sample is annotated loss of function (LOF). On the 377

other hand, if, in either model, the expression of the GOI is higher than the upper bound of the 95% prediction 378

interval, the mutant sample is annotated gain-of-function (GOF). Falling outside the bounds of these prediction 379

intervals indicates that the mutant sample’s GOI expression or activity is more different than that of a control 380

sample than we would expect from random chance. If the mutant sample’s GOI expression falls within the bounds 381

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

Identification of genomic variants and altered immune phenotypes in cancer

20

of both these prediction intervals, we can conclude that there is not enough evidence to indicate the mutation is 382

causing abnormal expression or activity in that sample. 383

Next, all mutant samples provided are compiled, and a 2-proportion z-test is performed (null hypothesis z=0.5) 384

comparing the proportion of LOF and GOF annotations. If the null hypothesis is rejected (p<0.05), the genomic 385

alteration is annotated with the more frequent sample level annotation. If not, the alteration is annotated 386

“Unknown.” 387

Function annotation algorithm validation. OncoKB17 provides a list of oncogenes with either targeting drugs 388

or known oncogenic mutations. All alterations in these 1008 genes were analyzed in parallel. The results were 389

filtered to only include GOF and LOF calls from the algorithm. Various alterations are called Unknown due to low 390

sample count, confounding variables, or lack of known connections in STRING15. We did not include these 391

samples in the pan-cancer analysis of TCGA, however users can elect to include them in their own analysis. 392

Additionally, gene fusions were removed due to complexity of their calling. This left 1366 genomic alterations to 393

investigate. We manually searched OncoKB17 for information about each alteration and, if available, recorded 394

the true function of the variant. Results were visualized with ggplot247 and ggpubr48. 395

Building the R package. Functions were created with the R package devtools54 which create an upstream and 396

downstream gene list from STRING17, determine the function of a group of samples using RNA expression data 397

from bulk RNAseq, and the sample level immune phenotype using RNA expression data from bulk RNAseq. 398

These functions are described in detail above. The R package along with relevant documentation is available at 399

https://github.com/OSU-SRLab/RIGATONI. 400

Comprehensive analysis of genomic alterations in TCGA. All mutation information in TCGA was downloaded 401

and compiled. A sample is said to have a copy number variation (CNV) if the total number of copies is ≥6 or <2. 402

We also considered the sex of the patient in question if the gene of interest was on the X or Y chromosome, and 403

we were considering a copy number loss. For male patients, genes on the X chromosome were said to be deleted 404

if there were zero copies. For female patients, no genes on the Y chromosome were considered deleted. For 405

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://github.com/OSU-SRLab/RIGATONI
https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

Identification of genomic variants and altered immune phenotypes in cancer

21

any patients without biological sex available, we excluded them from the copy number analysis of genes on the 406

X or Y chromosome. Next, all genomic alterations were analyzed in parallel through the RIGATonI R package 407

described above. We ensured to analyze each alteration within each cancer type for both functional annotations 408

and immune phenotyping. The population proportions used for immune phenotype were those of the cancer type 409

being analyzed. Finally, we stored significant results from TCGA to be visualized by our online tool. The 410

RIGATonI website is located at https://rigatoni.osc.edu/ and is managed by the Roychowdhury lab group and 411

the Ohio Supercomputer Center. The website is built with the R package shiny55, all graphs are visualized with 412

ggplot247 and ggpubr48. The website input is a user provided GOI, and the website compiles gene level copy 413

number, fusion, and simple single nucleotide variation results from the pan TCGA analysis. Next, we provide 414

various visualizations to the user (quantiseqR7 cell type proportions, RNAseq count data, and primary site 415

prevalence) along with a table describing the different genomic alterations which were both functional and 416

immunogenic within the GOI. 417

Text mining of PubMed abstracts to estimate novelty of RIGATONI TCGA output. PubMed abstracts 418

containing the words “cancer” and “immunity” or “immunology” or “immune” since June 12th, 2010, were 419

downloaded using the R package pubmed.mineR56. The function gene_atomization was used to perform text 420

mining annotation of each gene mentioned. The RIGATonI results were extracted, and each gene was annotated 421

with their frequency of appearance. Preprint publications were excluded from this analysis. 226,093 abstracts 422

were analyzed. Results were visualized with ggplot247 and ggpubr48. 423

ScRNAseq analysis of renal cell carcinoma. The data was analyzed using Seurat57-60 Quality control 424

measures were performed as follows: remove cells with <5x the standard deviation below median feature count, 425

>5x the standard deviation above median feature count, <5x median total count, and <10% mitochondrial gene 426

expression. We performed quality control steps for each sample individually. To mitigate experimental batch 427

effect, we used harmony61 and clustered using clustree62. To perform cell typing, we clustered all experiments 428

together using UMAP with the Seurat57-60 package. We then cell typed using the “kidney” tissue designation from 429

ScType63. Any cells which were not able to be typed using the “kidney” designation were separated, clustered 430

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://rigatoni.osc.edu/
https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

Identification of genomic variants and altered immune phenotypes in cancer

22

again using UMAP and Seurat57-60, and re-typed using “Immune system” as the tissue of origin. Using copyKat27, 431

a scRNA-seq method to detect copy number alterations, we have identified 14q deleted tumors by using 432

hematopoietic cells as a somatic control. We choose 14q deletion based on average copyKat score across 433

chromosome 14q. If the score was less than zero on average, we determined that the sample harbored a 14q 434

deletion. Additionally, we confirmed this by comparing the expression of all suspected 14q deleted tumor cells 435

to all suspected wildtype tumor cells for each gene on chromosome 14q. For each gene, the 14q deleted tumors 436

displayed significantly lower expression, Finally, using the FindAllMarkers function from Seurat57-60, we 437

investigated cell markers which were differentially expressed between 14q deleted and wildtype samples. These 438

results were visualized using base Seurat57-60 functions, ggplot247, and ggpubr48. 439

Acknowledgements. The results published here are in whole or part based upon data generated by the TCGA 440

Research Network: https://www.cancer.gov/tcga. All computational analyses were done on the Pitzer cluster at 441

the Ohio Supercomputer Center (OSC) (https://www.osc.edu/). OSC also assisted in developing and hosting the 442

RIGATonI website. 443

Author Contributions. RV conceived the idea for RIGATonI, developed the algorithms, wrote all R code for the 444

project, wrote all Linux code along with ELH and ES, managed data, reviewed data analyses, and 445

wrote/revised/edited the manuscript. ELH assisted with RIGATonI algorithm development, assisted with Linux 446

coding, assisted with data management, and revised/edited the manuscript. LY assisted with RIGATonI 447

algorithm development, assisted with data management, and revised/edited the manuscript. JWR, MRW, LS, 448

and AP reviewed data analyses, revised/edited the manuscript. ES assisted with Linux coding, wrote all python 449

code, and revised/edited the manuscript. EGB reviewed OncoKB and annotated the RIGATonI function 450

algorithm’s validation output. MC and NS enabled access and sequencing of the OSU-ORIEN dataset’s RNAseq. 451

WC and AF performed pathologist review of the OSU-ORIEN digital pathology images. SR conceived the idea 452

for RIGATonI, reviewed data analyses, and wrote/revised/edited the manuscript. 453

 454

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://www.cancer.gov/tcga
https://www.osc.edu/
https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

Identification of genomic variants and altered immune phenotypes in cancer

23

References 455

1. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al. Understanding the tumor 456
immune microenvironment (TIME) for effective therapy. Nature Medicine. 2018;24(5):541-50. 457
2. Haslam A, Prasad V. Estimation of the Percentage of US Patients With Cancer Who Are Eligible for 458
and Respond to Checkpoint Inhibitor Immunotherapy Drugs. JAMA network open. 2019;2(5):e192535. 459
3. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, et al. The Immune Landscape of 460
Cancer. Immunity. 2018;48(4):812-30.e14. 461
4. Nirmal AJ, Regan T, Shih BB, Hume DA, Sims AA-O, Freeman TC. Immune Cell Gene Signatures for 462
Profiling the Microenvironment of Solid Tumors. (2326-6074 (Electronic)). 463
5. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, et al. The Immune Landscape of 464
Cancer. (1097-4180 (Electronic)). 465
6. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al. Estimating the population 466
abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome biology. 467
2016;17(1):218. 468
7. Finotello F, Mayer C, Plattner C, Laschober G, Rieder D, Hackl H, et al. Molecular and pharmacological 469
modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Medicine. 470
2019;11(1):34. 471
8. Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling Tumor Infiltrating Immune Cells 472
with CIBERSORT. Methods in molecular biology (Clifton, NJ). 2018;1711:243-59. 473
9. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, et al. Pan-cancer 474
Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to 475
Checkpoint Blockade. Cell Reports. 2017;18(1):248-62. 476
10. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2.0 for analysis of tumor-infiltrating immune 477
cells. (1362-4962 (Electronic)). 478
11. Wang X, Chen L, Liu W, Zhang Y, Liu D, Zhou C, et al. TIMEDB: tumor immune micro-environment cell 479
composition database with automatic analysis and interactive visualization. Nucleic acids research. 480
2023;51(D1):D1417-D24. 481
12. Motzer RJ, Robbins PB, Powles T, Albiges L, Haanen JB, Larkin J, et al. Avelumab plus axitinib versus 482
sunitinib in advanced renal cell carcinoma: biomarker analysis of the phase 3 JAVELIN Renal 101 trial. Nature 483
Medicine. 2020;26(11):1733-41. 484
13. Motzer RJ, Powles T, Atkins MB, Escudier B, McDermott DF, Alekseev BY, et al. Final Overall Survival 485
and Molecular Analysis in IMmotion151, a Phase 3 Trial Comparing Atezolizumab Plus Bevacizumab vs 486
Sunitinib in Patients With Previously Untreated Metastatic Renal Cell Carcinoma. (2374-2445 (Electronic)). 487
14. Saltz J, Gupta R, Hou L, Kurc T, Singh P, Nguyen V, et al. Spatial Organization and Molecular 488
Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images. (2211-1247 489
(Electronic)). 490
15. Szklarczyk D, Kirsch R, Koutrouli MA-O, Nastou KA-O, Mehryary FA-O, Hachilif R, et al. The STRING 491
database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced 492
genome of interest. (1362-4962 (Electronic)). 493
16. Saito N, Sato Y, Abe H, Wada I, Kobayashi Y, Nagaoka K, et al. Selection of RNA-based evaluation 494
methods for tumor microenvironment by comparing with histochemical and flow cytometric analyses in gastric 495
cancer. Scientific Reports. 2022;12(1):8576. 496
17. Chakravarty D, Gao J, Phillips SM, Kundra R, Zhang H, Wang J, et al. OncoKB: A Precision Oncology 497
Knowledge Base. LID - 10.1200/PO.17.00011 [doi] LID - PO.17.00011. (2473-4284 (Print)). 498
18. Yu ZA-O, Lv YA-O, Su CA-O, Lu WA-O, Zhang RA-OX, Li JA-O, et al. Integrative Single-Cell Analysis 499
Reveals Transcriptional and Epigenetic Regulatory Features of Clear Cell Renal Cell Carcinoma. (1538-7445 500
(Electronic)). 501
19. Zou H, Hastie T. Regularization and Variable Selection Via the Elastic Net. Journal of the Royal 502
Statistical Society Series B: Statistical Methodology. 2005;67(2):301-20. 503

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

Identification of genomic variants and altered immune phenotypes in cancer

24

20. Chen T, Guestrin C, editors. Xgboost: A scalable tree boosting system. Proceedings of the 22nd acm 504
sigkdd international conference on knowledge discovery and data mining; 2016. 505
21. Jasper Snoek HL, Ryan P. Adams. Practical Bayesian Optimization of Machine Learning Algorithms. 506
arXiv. 2012. 507
22. Voehringer D, Koschella M Fau - Pircher H, Pircher H. Lack of proliferative capacity of human effector 508
and memory T cells expressing killer cell lectinlike receptor G1 (KLRG1). (0006-4971 (Print)). 509
23. Shin MS, Park H-J, Young J, Kang I. Implication of IL-7 receptor alpha chain expression by CD8+ T 510
cells and its signature in defining biomarkers in aging. Immunity & Ageing. 2022;19(1):66. 511
24. Fenton SE, Saleiro DA-O, Platanias LC. Type I and II Interferons in the Anti-Tumor Immune Response. 512
LID - 10.3390/cancers13051037 [doi] LID - 1037. (2072-6694 (Print)). 513
25. Wei SC, Duffy CR, Allison JP. Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. 514
Cancer Discovery. 2018;8(9):1069-86. 515
26. Huang J, Liu F, Li C, Liang X, Li C, Liu Y, et al. Role of CD47 in tumor immunity: a potential target for 516
combination therapy. Scientific Reports. 2022;12(1):9803. 517
27. Gao R, Bai S, Henderson YC, Lin Y, Schalck A, Yan Y, et al. Delineating copy number and clonal 518
substructure in human tumors from single-cell transcriptomes. Nature Biotechnology. 2021;39(5):599-608. 519
28. van Marcke C, Collard A, Vikkula M, Duhoux FP. Prevalence of pathogenic variants and variants of 520
unknown significance in patients at high risk of breast cancer: A systematic review and meta-analysis of gene-521
panel data. Critical Reviews in Oncology/Hematology. 2018;132:138-44. 522
29. Thornton AM, Fang L, Lo A, McSharry M, Haan D, O’Brien C, et al. eVIP2: Expression-based variant 523
impact phenotyping to predict the function of gene variants. PLOS Computational Biology. 524
2021;17(7):e1009132. 525
30. Alvarez MJ, Shen Y, Giorgi FM, Lachmann A, Ding BB, Ye BH, et al. Functional characterization of 526
somatic mutations in cancer using network-based inference of protein activity. Nature genetics. 527
2016;48(8):838-47. 528
31. Lim Y, Choi S, Oh HJ, Kim C, Song S, Kim S, et al. Artificial intelligence-powered spatial analysis of 529
tumor-infiltrating lymphocytes for prediction of prognosis in resected colon cancer. npj Precision Oncology. 530
2023;7(1):124. 531
32. Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. (2514-6645 (Print)). 532
33. Kroeger N, Klatte T, Chamie K, Rao PN, Birkhäuser FD, Sonn GA, et al. Deletions of chromosomes 3p 533
and 14q molecularly subclassify clear cell renal cell carcinoma. Cancer. 2013;119(8):1547-54. 534
34. Monzon FA, Alvarez K Fau - Peterson L, Peterson L Fau - Truong L, Truong L Fau - Amato RJ, Amato 535
Rj Fau - Hernandez-McClain J, Hernandez-McClain J Fau - Tannir N, et al. Chromosome 14q loss defines a 536
molecular subtype of clear-cell renal cell carcinoma associated with poor prognosis. (1530-0285 (Electronic)). 537
35. Martin Morgan SD, Marcel Ramos. GenomicDataCommons. 1.26.0 ed2023. 538
36. Zhang Y, Parmigiani G, Johnson WE. ComBat-seq: batch effect adjustment for RNA-seq count data. 539
NAR Genomics and Bioinformatics. 2020;2(3):lqaa078. 540
37. Zarate S, Carroll A, Mahmoud M, Krasheninina O, Jun G, Salerno WJ, et al. Parliament2: Accurate 541
structural variant calling at scale. GigaScience. 2020;9(12):giaa145. 542
38. Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO. DELLY: structural variant discovery by 543
integrated paired-end and split-read analysis. Bioinformatics (Oxford, England). 2012;28(18):i333-i9. 544
39. Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Källberg M, et al. Manta: rapid detection 545
of structural variants and indels for germline and cancer sequencing applications. Bioinformatics (Oxford, 546
England). 2016;32(8):1220-2. 547
40. Fan X, Abbott TE, Larson D, Chen K. BreakDancer: Identification of Genomic Structural Variation from 548
Paired-End Read Mapping. (1934-340X (Electronic)). 549
41. Lam HYK, Mu XJ, Stütz AM, Tanzer A, Cayting PD, Snyder M, et al. Nucleotide-resolution analysis of 550
structural variants using BreakSeq and a breakpoint library. Nature Biotechnology. 2010;28(1):47-55. 551
42. Jeffares DA-O, Jolly C, Hoti M, Speed DA-O, Shaw L, Rallis C, et al. Transient structural variations 552
have strong effects on quantitative traits and reproductive isolation in fission yeast. (2041-1723 (Electronic)). 553

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

Identification of genomic variants and altered immune phenotypes in cancer

25

43. Friedman J, Hastie T, Tibshirani R, Narasimhan B, Tay K, Simon N, et al. glmnet: Lasso and Elastic-554
Net Regularized Generalized Linear Models. cran2023. 555
44. Wilson S. ParBayesianOptimization: Parallel Bayesian Optimization of Hyperparameters. 1.2.6 ed2022. 556
45. Hornung R. Ordinal Forests. Journal of Classification. 2020;37(1):4-17. 557
46. Kuhn M. Building Predictive Models in R Using the caret Package. Journal of Statistical Software. 558
2008;28(5):1 - 26. 559
47. Wickham H. ggplot2: Elegant Graphics for Data Analysis: Springer-Verlag New York; 2016. Available 560
from: https://ggplot2.tidyverse.org. 561
48. Kassambara A. ggpubr: 'ggplot2' Based Publication Ready Plots. 2023. 562
49. Smith H, Gnanadesikan R, Hughes JB. Multivariate Analysis of Variance (MANOVA). Biometrics. 563
1962;18(1):22-41. 564
50. Wilcoxon F. Individual comparisons by ranking methods. Biom. Bull., 1, 80–83. 1945. 565
51. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data 566
with DESeq2. Genome biology. 2014;15(12):550. 567
52. Law CW, Alhamdoosh MA-O, Su S, Dong X, Tian LA-O, Smyth GA-O, et al. RNA-seq analysis is easy 568
as 1-2-3 with limma, Glimma and edgeR. LID - ISCB Comm J-1408 [pii] LID - 10.12688/f1000research.9005.3 569
[doi]. (2046-1402 (Electronic)). 570
53. John Haman MA, Institute for Defense Analyses. ciTools: Confidence or Prediction Intervals, Quantiles, 571
and Probabilities for Statistical Models. 2020. 572
54. Hadley Wickham JH, Winston Chang, Jennifer Bryan, RStudio. devtools: Tools to Make Developing R 573
Packages Easier. 2.4.5 ed2022. 574
55. Winston Chang JC, JJ Allaire, Carson Sievert, Barret Schloerke, Yihui Xie, Jeff Allen, Jonathan 575
McPherson, Alan Dipert, Barbara Borges, Posit Software, PBC, jQuery Foundation, jQuery contributors, jQuery 576
UI contributors, Mark Otto, Jacob Thornton, Bootstrap contributors, Twitter, Inc, Prem Nawaz Khan, Victor 577
Tsaran, Dennis Lembree, Srinivasu Chakravarthula, Cathy O'Connor, PayPal, Inc, Stefan Petre, Andrew 578
Rowls, Brian Reavis, Salmen Bejaoui, Denis Ineshin, Sami Samhuri, SpryMedia Limited, John Fraser, John 579
Gruber, Ivan Sagalaev, R Core Team. shiny: Web Application Framework for R. 1.8.0 ed2023. 580
56. Rani J, Shah Ab Fau - Ramachandran S, Ramachandran S. pubmed.mineR: an R package with text-581
mining algorithms to analyse PubMed abstracts. (0973-7138 (Electronic)). 582
57. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, 3rd, Zheng S, Butler A, et al. Integrated analysis of 583
multimodal single-cell data. Cell. 2021;184(13):3573-87.e29. 584
58. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, 3rd, et al. Comprehensive 585
Integration of Single-Cell Data. Cell. 2019;177(7):1888-902.e21. 586
59. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across 587
different conditions, technologies, and species. Nature Biotechnology. 2018;36(5):411-20. 588
60. Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene 589
expression data. Nature Biotechnology. 2015;33(5):495-502. 590
61. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast, sensitive and accurate 591
integration of single-cell data with Harmony. Nature Methods. 2019;16(12):1289-96. 592
62. Zappia L, Oshlack A. Clustering trees: a visualization for evaluating clusterings at multiple resolutions. 593
GigaScience. 2018;7(7):giy083. 594
63. Ianevski A, Giri AK, Aittokallio T. Fully-automated and ultra-fast cell-type identification using specific 595
marker combinations from single-cell transcriptomic data. Nature Communications. 2022;13(1):1246. 596

 597

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

Supplemental Software File for RIGATonI

Raven Vella, Emily Hoskins, and Eric Samorodnitsky

Contents

Libraries 2

Part 1: Process simple nucleotide variations (SNVs), copy number variations (CNVs),
Structural Variants (SVs), and gene fusion outputs from TCGA 3

1.1: Download SNV, CNV, and fusion outputs from TCGA . 3

1.2: Process SNV outputs into a list . 4

1.3: Process fusion outputs into a list . 5

1.4: Process CNV outputs into a list . 9

1.5: Get parliament2 results for whole genome samples . 10

1.6: Process SV outputs into a list . 14

Part 2: Batch Correction on TCGA expression files 16

Part 3: Build hot/cold detection algorithm 19

3.1: Preprocessing input data . 19

3.2 ElasticNet feature selection . 21

3.3 OrdinalForest Machine learning . 23

3.4 XgBoost machine learning . 24

Part 4: Build RIGATONI package functions 27

4.1: Download STRING database connections . 27

4.2: Create the regression models themselves . 29

4.3: Predict the function of each mutant sample . 30

4.4: Predict the immune phenotype of each sample . 36

4.5: Evaluate mutants for users . 37

4.6. Run RIGATonI all together . 37

Part 5: Performing RIGATonI validations (Fig 2 and 3) 40

5.1: Validation of Immunity Module with IHC and Flow (Fig 2) 40

5.2: Validation of Immunity Module with Saltz Et Al output (Fig 2) 50

5.3: Validation of Function Module with OncoKB (Fig 3) . 51

1

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

Part 6: Analyze all of TCGA using RIGATONI 51

6.1: Create functions specific to the analysis of TCGA data . 51

6.2: Run RIGATONI for all genes . 74

Part 7: Text mining (Fig 4) 75

Part 8: 14q deletion in renal cell carcinoma (Fig 4) 77

8.1 Preprocessing . 77

8.2 Cell typing for normal and tumor groups . 80

8.3 Copy number analysis . 82

8.4: Immune cell analysis . 85

Libraries

Load necessary libraries:

library(maftools)
library(vcfR)
library(foreach)
library(TCGAutils)
library(GenomicDataCommons)
library(glmnet)
library(ordinalForest)
library(xgboost)
library(ParBayesianOptimization)
library(data.table)
library(readr)
library(sva)
library(pROC)
library(caret)
library(DGEobj.utils)
library(MASS)
library(ordinalForest)
library(ciTools)
library(biomaRt)
library(DESeq2)
library(DGEobj.utils)
library(TCGAutils)
library(pubmed.mineR)
library(ggrepel)
library(scales)
library(ggplot2)
library(ggpubr)
library(Seurat)
library(harmony)
library(clustree)
library(dplyr)
library(openxlsx)
library(HGNChelper)

2

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

library(parallel)
library(copykat)

Part 1: Process simple nucleotide variations (SNVs), copy num-
ber variations (CNVs), Structural Variants (SVs), and gene fusion
outputs from TCGA

In order to run RIGATONI on an entire database, you need to have all the fusion, SNV, CNV, and SV
outputs from said database in list format. I used the outputs directly from TCGA for the SNV, CNV, and
Fusions callers. I processed the whole genome samples using parliament2 for SVs myself. Shown below are
the steps for collating and organizing the SNVs, CNVs, and fusions.

1.1: Download SNV, CNV, and fusion outputs from TCGA

First, I downloaded the SNV, CNV, and fusion outputs from TCGA. I created manifests using the GDC
database and downloaded the files as shown below.

read in manifest file and call it mani
mani = read.table('<manifest name>', sep = "\t", header = T)

save the token as an environment variable in R
Sys.setenv(GDC_TOKEN = readLines('<token file name>'))

set cache and gdc_client software paths
options(gdc_client = "<client location>")
gdc_set_cache(directory = '<output location>')

download each item in the manifest, if you do not have access to the item,
skip it and move on
fnames = lapply(mani$id, function(x)

tryCatch(
suppressMessages(

gdcdata(
x,
progress = FALSE,
access_method = "api",
use_cached = FALSE,
token = gdc_token()

)

),

error = function(e) {

message(paste0('No access to ', x))
return(NA)

3

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

}
))

1.2: Process SNV outputs into a list

read in list of genes for which we have expresssion data
genes = readLines('<TCGA-genes>')

go to directory where maf files are located
setwd("<maf location>")

list all directories there
dir = list.dirs()

filter out the directory "."
dir = dir[2:length(dir)]

l <- foreach(x = dir) %do% {
enter each directory
setwd(paste0(x))

if (length(list.files(pattern = "*.maf.gz")) > 0) {
if there is a maf file there, read it in. If not, skip it
y <-

tryCatch(

maftools::read.maf(list.files(pattern = "*.maf.gz")),

error = function(e) {
return(NA)

}

)

return(y)
}

go back to the initial directory
setwd("<maf location>")

}

remove NA entries from the list
l = l[!(is.na(l))]

go to the directory where the list should be stored
setwd('<final location>')

save the initial list in case R crashes
(this is a large file, and functions on it sometimes exceed available ram)
saveRDS(l, 'MafsTogether.RDS')

stack all the individual files together into one data frame

4

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

l = do.call(rbind, l)

split the dataframe based on the gene symbol of the alteration call
l = split(l, l$Hugo_Symbol)

remove entries for which we do not have expression data
l = l[names(l) %in% genes]

#Save this final list
saveRDS(l, 'MafsTogether2.RDS')

1.3: Process fusion outputs into a list

#Go to directory where fusion files are located
setwd("<fusions location>")

list directories
dir = list.dirs()

remove directories which are "logs" of the downloads
dir = dir[!(grepl("logs", dir))]

remove the directory "."
dir = dir[2:length(dir)]

initiate empty vector "names"
names = c()

fus <- foreach(x = dir) %do% {
for each directopry, go to the fusion parent directory
setwd("<fusions location>")

enter the directory of interest
setwd(x)

if there are no fusion outputs (files ending in .tsv),
skip this directory
if (length(list.files(pattern = "*.tsv")) > 0) {

for (f in list.files(pattern = "*.tsv")) {
read the fusion output file and store it as a dataframe "y"
y <- read.delim(f,

sep = "\t",
header = T,
check.names = FALSE)

If y has no rows (no fusion calls) skip it.
if (nrow(y) > 0) {

if (colnames(y)[2] == 'gene2') {

5

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

if y is an ARRIBA output,
filter y to include only the columns listed
y = y[, c("#gene1", "gene2", "breakpoint1", "breakpoint2")]

} else {

if y is an STAR fusion output,
filter y to include only the columns listed
y = y[, c("LeftGene",

"RightGene",
"LeftBreakpoint",
"RightBreakpoint")]

remove "ˆ" characters from the gene names
y$LeftGene = gsub("\\ˆ..*", "", y$LeftGene)
y$RightGene = gsub("\\ˆ..*", "", y$RightGene)

}

rename the columns of y
colnames(y) = c("gene1", "gene2", "breakpoint1", "breakpoint2")

create new column called chr1 made up of the chromosome
from breakpoint 1
y$chr1 = unlist(lapply(y$breakpoint1, function(x) {

return(strsplit(x, ":")[[1]][1])
}))

edit breakpoint 1 to only be location on the chromosome
y$breakpoint1 = unlist(lapply(y$breakpoint1, function(x) {

return(as.numeric(strsplit(x, ":")[[1]][2]))
}))

create new column called chr2 made up of the chromosome
from breakpoint 2
y$chr2 = unlist(lapply(y$breakpoint2, function(x) {

return(strsplit(x, ":")[[1]][1])
}))

edit breakpoint 2 to only be location on the chromosome
y$breakpoint2 = unlist(lapply(y$breakpoint2, function(x) {

return(as.numeric(strsplit(x, ":")[[1]][2]))
}))

add sample id using file name
y$SampleID = f

convert file name to case ID
y$CaseID = UUIDtoUUID(filenameToBarcode(f)[1, 2],

to_type = 'case_id')[1, 2]

append filename to the names vector
names = c(names, f)

6

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

remove rows from y which contain genes for which we have
no expression data
out = unlist(lapply(1:nrow(y), function(r) {

if (y[r, 1] %in% genes && y[r, 2] %in% genes) {

return(T)

} else {

return(F)

}
}))

y = y[out,]

only return y if the final dataframe has more than 0 rows
if (nrow(y) > 0) {

return(y)

} else {

return(NA)

}
} else {

return(NA)
}

}
} else {

#return to the parent directory
setwd("<fusions location>")

}
}

set names of the fus list to the file names
names(fus) = names

remove skipped entries from the fus list
fus = fus[!(is.na(fus))]

return to the directory where the list should be stored
setwd('<final location>')

stack the fusion outputs together into a dataframe
fus = do.call(rbind, fus)

save the fusion dataframe in case of ram issues
saveRDS(fus, 'FusTogether.RDS')

7

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

double check that all genes have accompanying expression data
fus = fus[fus$gene1 %in% genes,]
fus = fus[fus$gene2 %in% genes,]

create a new column "Combo" that names each fusion using the two genes
fus$Combo = paste0(fus$gene1, "-", fus$gene2)

create new list by splitting the fusion dataframe by fusion name
fus2 = split(fus, fus$Combo)

for (x in 1:length(fus2)) {
for each fusion, save the dataframe as new
new = fus2[[x]]

split new into subdataframe based on the case ID
new = split(new, new$CaseID)

for (y in 1:length(new)) {
for each case ID, save the dataframe as newnew
newnew = new[[y]]

if (nrow(newnew) > 1) {
if newnew has more than 1 row, this means there are multiple calls
for the same fusion create 2 matrices comparing each call's
first and second breakpoint
br1 = as.data.frame(expand.grid(newnew$breakpoint1, newnew$breakpoint1))
br2 = as.data.frame(expand.grid(newnew$breakpoint2, newnew$breakpoint2))

create new columns with the difference of these breakpoints
br1$dif = abs(br1[, 1] - br1[, 2])
br2$dif = abs(br2[, 1] - br2[, 2])

remove rows from each matrix where the breakpoints are
at most 100 bp apart
br1 = br1[br1$dif >= 100 ||

br1$dif == 0,]
br2 = br2[br2$dif >= 100 ||

br2$dif == 0,]

take only the first column of each dataframe
br1s = br1[, 1]
br2s = br2[, 1]

subset newenw to only contain these filtered breakpoints
newnew = newnew[newnew$breakpoint1 %in% br1s &&

newnew$breakpoint2 %in% br2s,]

}
replace the previous version of newnew with the filtered version
new[[y]] = newnew

}
stack the filtered versions together to created filtered

8

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

dataframe for the fusion
new = do.call(rbind, new)

replace previous fusion dataframe with filtered version
fus2[[x]] = new

}

stack filtered fusions on top of each other to create new dataframe fus2
fus2 = do.call(rbind, fus2)

add the chromosome of each breakpoint back into the breakpoint columns
fus2$breakpoint1 = paste0(fus2$chr1, ":", fus2$breakpoint1)
fus2$breakpoint2 = paste0(fus2$chr2, ":", fus2$breakpoint2)

remove the now redundant breakpoint columns
fus2 = fus2[, c('gene1',

'gene2',
'breakpoint1',
'breakpoint2',
'CaseID',
'Combo')]

split by the fusion name
fus2 = split(fus2, fus2$Combo)

return to where you are storing the lists
setwd('<final location>')

save the new fusion list
saveRDS(fus2, 'FusTogether2.RDS')

1.4: Process CNV outputs into a list

go to where the copy number outputs are stored
setwd('<copy number location>')

list files in this directory
ls = list.files()

go through the list of files individually
ls1 = lapply(ls, function(x) {

read the file in and store it as dataframe cn
cn = read.delim(x, header = T, sep = '\t')

remove empty rows
cn = cn[!(is.na(cn$copy_number)),]

create list of rows which have either CNV gain or loss
use = unlist(lapply(1:nrow(cn), function(r) {

9

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

if (cn$copy_number[r] < 2 ||
cn$copy_number[r] >= 6 &&
cn$gene_name[r] %in% genes) {

return(T)

} else {

return(F)

}
}))

subset the dataframe to only contain those rows identified above
cn = cn[use,]

include only columns listed
cn = cn[, c('gene_name', 'start', 'end', "copy_number")]

edit copy number column to contain the string "CNV"
cn$copy_number = paste0("CNV: ", cn$copy_number)

add a case ID column using the file name
cn$CaseID = UUIDtoUUID(gsub("\\..*", "", x))[1, 2]

return(cn)
})

stack the entries in the list on top of each other in dataframe ls1
ls1 = do.call(rbind, ls1)

split the new ls1 datafream by gene_name
ls1 = split(ls1, ls1$gene_name)

go to desired directory
setwd('<final location>')

store the resulting list
saveRDS(ls, "CopyTogether2.RDS")

1.5: Get parliament2 results for whole genome samples

First you need to get the parliament2 image from dnanexus

singularity pull docker://dnanexus/parliament2

Next I wrote the following script to run parliament2 on all whole genome samples in parallel

#!/bin/sh
#SBATCH --account=PAS0854
#SBATCH --time=96:00:00

10

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

#SBATCH --ntasks=3

Help()
{
Display Help
echo "Run the SV calls on all TCGA bams"
echo
echo "Syntax: GridssAll.sh [-h|o|r|p|u|k]"
echo "options:"
echo "h Print help."
echo "o Output path"
echo "r Reference Path"
echo "p Paired bam file name"
echo "u Username"
echo "k Token path"
echo
}

while getopts "h:o:r:p:u:k:" option; do
case $option in
h) # display Help
Help
exit;;
u) #store the user name
user=$OPTARG
;;
o) #store the output path
out=$OPTARG
;;
r) #store reference path
ref=$OPTARG
;;
p) #store bam UUID name
pair=$OPTARG
;;
k) #store token path
token=$OPTARG
;;
\?) #invalid option
echo 'Error: Invalid input, please use -h for help'
exit;;
esac
done

go line by line through the bam list
while IFS= read line;
do

cond=`squeue -u $user | wc -l`
check that we are not going to exceed 1000 jobs
while [$cond -ge 990];
do

if we are, wait 30 min and check again
echo "Waiting: SV called";

11

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

sleep 10m;
cond=`squeue -u $user | wc -l`;

done;
sbatch runCallers.sh \
-t `echo $line` -r $ref -o $out -k $token;

done < $pair

To run this script, I would use the line of code below (replaceing with the appropriate file paths).

sbatch getSVresults.sh -u <osc_username> -o <output_path> -r <reference_path> \
-p <uuid_list> -t <token_path>

The runCallers.sh script is shown below.

#!/bin/sh
#SBATCH --account=PAS0854
#SBATCH --time=12:00:00
#SBATCH --ntasks=5

Help()
{
Display Help
echo "Run the callers on a bam"
echo
echo "Syntax: runCallers.sh [-h|o|r|t|n|s|k]"
echo "options:"
echo "h Print help."
echo "o Output path"
echo "r Reference Path"
echo "t Tumor bam file name"
echo "s Somatic bam file name"
echo "k Token file name"
echo
}

while getopts "h:o:r:t:n:s:k:" option; do
case $option in
h) # display Help
Help
exit;;
o) #store the output path
out=$OPTARG
;;
r) #store reference path
ref=$OPTARG
;;
t) #store paired bam file name
tumor=$OPTARG
;;
k) #store token
token=$OPTARG
;;
\?) #invalid option

12

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

echo 'Error: Invalid input, please use -h for help'
exit;;
esac
done

#navigate to the ouput location
cd $out

#create working directory for the tumor sample
mkdir $tumor.working/

#temporarily copy the reference files to the working directory
cp $ref.gz $tumor.working/$ref.gz
cp $ref.fai $tumor.working/$ref.fai

#enter the working directory
cd $tumor.working

#make a new directory for the output
mkdir output/

#store current directory in variable $dir
dir=$(pwd)

#store token in variable $token
token=$(<$token)

#download the tumor bam from GDC
curl -o ./$tumor.bam --header "X-Auth-Token: $token" \
'https://api.gdc.cancer.gov/data/'$tumor

#load samtools
module load samtools

#index the bam
samtools index ./$tumor.bam ./$tumor.bam.bai

#run parliament2 with manta, delly, breakdancer, and breakseq
singularity run --bind $dir:/home/dnanexus/in,$dir/output:parliament2_latest.sif \
--bam $tumor.bam \
--bai $tumor.bam.bai --fai $ref.fai -r $ref.gz \
--manta --delly_deletion --delly_insertion --delly_inversion \
--delly_duplication --breakdancer --breakseq --genotype

#move the output files to the initial out directory
mv ./output/$tumor.survivor_sorted.vcf $out/$tumor.survivor_sorted.vcf

#go back to the out directory
cd $out

#remove the temporary files
rm -r $tumor.working/

13

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

1.6: Process SV outputs into a list

#go to the directory where the SV results are stored.
setwd('<structural variant location>')

#create a list of the .vcf files in this directory
lsv = list.files(pattern = "*.annotated")

lsv <- foreach(i = lsv) %do% {
#for each vcf file, attempt to read it in, if an error is returned, skip it
a <-

tryCatch(

vcfR::read.vcfR(i, verbose = FALSE),

error = function(e) {

return(NA)

}
)

return(a)
}

#set the names of the list to the names of the files
names(lsv) = list.files(pattern = "*.annotated")

#removed skipped values
lsv = lsv[!(is.na(lsv))]

newlsv <- foreach(i = 1:length(lsv)) %do% {
#for each entry in the list, store the name of the entry as nam
nam = names(lsv)[i]

#next store the object as i
i = lsv[[i]]

#turn i into a tidy
i = vcfR::vcfR2tidy(i)

#extract the data frame
i = i$fix

#remove entries that do not effect a gene
i = i[!(is.na(i$GENE)),]

#add a column with the name of the file
i$SampleID = nam

return(i)
}

14

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

#create list of objects in the list with no SV results
out = unlist(lapply(newlsv, function(x) {

if (nrow(x) == 0) {

return(F)

} else {

return(T)

}
}))

#remove the entries with no SV results
sv = newlsv[out]

#go to desired directory
setwd('<final location>')

#store this list in case of ram issues
saveRDS(sv, "SVTogether.RDS")

#create biomart object with ensembl names
mart <- useDataset("hsapiens_gene_ensembl", useMart("ensembl"))

#create empty list sv2
sv2 = list()

for (x in sv) {
#for each dataframe in sv, store it as a new variable dat
dat = x

#store the gene names in a vector called rid
rid = dat$GENE

#remove genes that are not listed as mRNA transcripts
rid = rid[grepl('NM', rid)]

#remove isoform information
rid = gsub("\\..*", "", rid)

#create new dataframe with entries in rid along with corresponding hgnc symbols names
refseq_mapping <-

biomaRt::getBM(
attributes = c("refseq_mrna", "hgnc_symbol"),
filters = "refseq_mrna",
values = rid,
mart = mart

)
#create a new data frame from gene information in dat without isoform infromation
rid2 = gsub("\\..*", "", dat$GENE)

15

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

#replace the entries in the new list with the hgnc symbols
for (i in 1:nrow(refseq_mapping)) {

rid2 = replace(rid2, which(rid2 == refseq_mapping[i, 1]), refseq_mapping[i, 2])
}

#replace ensemble symbols in dat with the hgnc symbols
dat$GENE = rid2

#remove genes for which we have no expression information
dat = dat[dat$GENE %in% genes,]

#fine case ID using the file name
caseID = UUIDtoUUID(gsub("\\..*", "", dat$SampleID[1]),

to_type = 'case_id')[1, 2]

#subset dat to only include columns listed
dat = dat[, c('POS', 'END', 'GENE', 'ALT')]

#add column with the case ID information
dat$CaseID = caseID

#append dat to the new list sv2
sv2[[length(sv2) + 1]] = dat

}

#stack dataframes in sv2 on top of eachother
sv2 = do.call(rbind, sv2)

#split the sv2 dataframe into a list by gene
sv2 = split(sv2, sv2$GENE)

#navigate to desired directory
setwd('<final location')

#save sv2
saveRDS(sv2, 'SVTogether2.RDS')

Part 2: Batch Correction on TCGA expression files

In order to analyze the RNA seq data all together from TCGA, batch correction was performed by institution.
First all RNA expression files must be downloaded. To do this, I went to GDC, created a manifest and
downloaded them as shown below.

#read in manifest file and call it mani
mani = read.table('<manifest name>', sep = "\t", header = T)

#save the token as an environment variable in R
Sys.setenv(GDC_TOKEN = readLines('<token file name>'))

#set cache and gdc_client software paths
options(gdc_client = "<client location>")

16

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

gdc_set_cache(directory = '<output location>')

download each item in the manifest, if you do not
have access to the item, skip it and move on
fnames = lapply(mani$id, function(x)

tryCatch(

suppressMessages(

gdcdata(
x,
progress = FALSE,
access_method = "api",
use_cached = FALSE,
token = gdc_token()

)

),

error = function(e) {

message(paste0('No access to ', x))

return(NA)

}
))

Next, you need to unpack all the directories.

cd <path/to/directories>
find . -maxdepth 1 -exec mv {} .. \;

Next, I ran combat-seq from SVA as shown below.

#Go to the location of the RNA seq data
setwd("<location of gene expression files>")

#get list of the counts files
fl = list.files(pattern = '*star_gene_counts.tsv')

#read in each file
counts = lapply(fl, function(x) {

#read in the tsv file skipping the header line
test = as.data.frame(read_tsv(x, skip = c(1)))

#select only the gene name and counts columns
test = test[, c(2, 4)]

#remove rows with NA entries
test = test[!(is.na(test$gene_name)),]
test = test[!(is.na(test$unstranded)),]

17

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

#make sure the counts column is numeric
test$unstranded = as.numeric(as.character(test$unstranded))

#aggregate reads together by gene name
test = aggregate(test$unstranded, list(test$gene_name), sum)

#save the gene names
names = test$Group.1

#remove the first column of gene names
test = test[,-1]

#convert to a dataframe
test = as.data.frame(test)

#add rownames (gene names) back to the file
rownames(test) = names

#return data frame
return(test)

})

#combine counts side by side
counts = do.call(cbind, counts)

#get the barcodes from the file names
fl = filenameToBarcode(fl)
fl = fl$aliquots.submitter_id

#set the column names to the barcodes
colnames(counts) = fl

setwd("<final location>")

#save the row names (gene names)
fConn = file('Gene_Names.txt')
writeLines(rownames(counts), fConn)
close(fConn)

#Create your batches
bat = unlist(lapply(fl, function(x) {

#the center is the 7th entry in the barcode
return(strsplit(x, "-")[[1]][7])

}))

#run combat
adj_counts = ComBat_seq(counts, bat)

#save the results
setwd('<final location>')
lapply(1:ncol(adj_counts), function(x){

18

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

write.csv(
adj_counts[, x],
file = paste0(colnames(adj_counts)[x], "_batch_corrected.csv"),
row.names = T)

})

Part 3: Build hot/cold detection algorithm

3.1: Preprocessing input data

First I combine the pathologist annotations and gather the paired RNA for each sample.

#read in the data
tru1 = readxl::read_xlsx('<path 1>', sheet = 1)
tru1 = as.data.frame(tru1)
tru2 = readxl::read_xlsx('<path 2>', sheet = 1)
tru2 = as.data.frame(tru2)
colnames(tru2) = colnames(tru1)

#remove first three columns of notes
tru2 = tru2[-c(1:3),]

#remove question marks from pathologist annotations
tru2$`Lymphocyte Annot.` = gsub("\\?", "", tru2$`Lymphocyte Annot.`)

#convert annotations to ordered values
tru1$`Lymphocyte Annot.` = ifelse(tru1$`Lymphocyte Annot.` == 'hot',

2,
ifelse(tru1$`Lymphocyte Annot.` == 'cold',

0,
1))

tru2$`Lymphocyte Annot.` = ifelse(tru2$`Lymphocyte Annot.` == 'hot',
2,
ifelse(tru2$`Lymphocyte Annot.` == 'cold',

0,
1))

#combine the two data tables
tru = as.data.frame(cbind(tru1, tru2$`Lymphocyte Annot.`))
colnames(tru)[ncol(tru)] = 'path1'
colnames(tru)[ncol(tru) - 2] = 'path2'

#remove initial data
rm(tru1)
rm(tru2)

#combine the pathologist annotations into one final column
tru$true = sum(tru$path1, tru$path1)

#read in RNA
rna = readRDS('<batch adjusted RNA counts>')

19

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

#Make sure the RNA columns match the annotation rows
rna = as.data.frame(rna)
rna = rna[, colnames(rna) %in% tru$`RNASeq SLID`]
rna = rna[, match(tru$`RNASeq SLID`, colnames(rna))]

#create new column with final annotations using both pathologist reviews
tru$group = ifelse(tru$true == 0,

'low',
ifelse(tru$true == 4,

'high',
'medium'))

#save tru for future use
saveRDS(tru, '<true annotations>')

#create balanced list of samples to use for training (80% of high, medium, and low)
train = split(tru, as.character(tru$group))
train = lapply(train, function(x) {

ids = sample(1:nrow(x), nrow(x) * .8)

return(x[ids,])
})

#record the training data list for future use
train = do.call(rbind, train)
saveRDS(train, 'training.ORIEN.RDS')

Prior to training the algorithm, some normalization steps are required.
First we filter the genes available to include those in the validation data sets.
Next we normalize the data according to size factors and convert to TPM.
These steps ensure the algorithm will work consistently across data sources

#load gene lengths
geneLen = readRDS('<gene lengths>')

#filter to inlcude only genes present across different datasets
genes_TCGA = readLines("<Gene Names TCGA>")
genes_IHC = readRDS('<raw.data gastric_IHC.RDS>')
genes_IHC = genes_IHC$TPM
genes_IHC = rownames(genes_IHC)
genes = intersect(intersect(geneLen$Gene_Symbol, genes_TCGA), genes_IHC)

#filter RNA to only include genes in the IHC dataset, ORIEN, and TCGA
rna = rna[rownames(rna) %in% genes,]

#create new dataframe with annotations from tru
coldata = as.character(tru$true)
coldata = as.data.frame(coldata)
colnames(coldata) = c('condition')
coldata$condition = as.factor(coldata$condition)

#create count data frame with size normalization

20

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

t_rna = DESeqDataSetFromMatrix(countData = rna,
colData = coldata,
design = ~ condition)

t_rna <- estimateSizeFactors(t_rna)
t_rna = counts(t_rna, normalized = T)

#make sure the gene lengths are in the same order as the rownames from t_rna
geneLen = readRDS('/fs/ess/PAS0854/Raven/immune-genomics/ValidateRiga/GeneLengths.RDS')
geneLen = geneLen[geneLen$Gene_Symbol %in% rownames(t_rna),]
geneLen = geneLen[match(rownames(t_rna), geneLen$Gene_Symbol),]

#convert the normliazed RNA to counts
t_rna = convertCounts(as.matrix(t_rna), 'TPM', geneLen$Length)
t_rna = t(t_rna)

#save the RNA for future use
saveRDS(t_rna, 'RNA.Orien.All.RDS')

3.2 ElasticNet feature selection

Next we will select features for our machine learning algorithm using elastic net. This was done for all 3
types of annotations (pathologist 1, pathologist 2, and the combination.)

#create new variable x.vars using t_rna
x.vars = t_rna

the following is based on the tutorial found at "https://rpubs.com/jmkelly91/881590"
first we will tune the parameter alpha
models <- list()

for (i in 0:20) {
print alpha
name <- paste0("alpha", i / 20)

create model for the given alpha value
models[[name]] <-

cv.glmnet(as.matrix(x.vars[train$`RNASeq SLID`,]),
train$true,
family = "poisson",
alpha = i / 20)

}

store the error in a results table for each alpha
results <- data.frame()

for (i in 0:20) {
print alpha
name <- paste0("alpha", i / 20)

record the predicted values for each sample
test = cbind(

train$true,

21

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

predict(
models[[name]],
lambda = 'lambda.min',
newx = as.matrix(x.vars[train$`RNASeq SLID`,]),
type = 'response'

)
)
test = as.data.frame(test)
colnames(test) = c('Actual', 'Predicted')
true = test$Actual
predicted = test$Predicted

#calculate the mean squared error for each sample
mse <- mean((true - predicted) ˆ 2)

Store the results
temp <- data.frame(alpha = i / 20,

mse = mse,
name = name)

results <- rbind(results, temp)
}

plot(results$alpha, results$mse)

#choose model with lowest MSE
best_model = models[["alpha0"]]
best_alpha = 0.00

#record the lambda min for the model selected
best_lam <- best_model$lambda.min

#build the new model using the alpha and lambda values selected
lasso_best <-

glmnet(
as.matrix(x.vars[train$`RNASeq SLID`,]),
train$true,
family = "poisson" ,
alpha = best_alpha,
lambda = best_lam

)

extract the features from from the best lasso model.
mat = coef(lasso_best)
mat = as.matrix(mat)
mat = mat[mat[, 1] != 0,]
mat = mat[-1]
mat = mat[order(-abs(mat))]
genes = names(mat[abs(mat) > .01])

#record the genes for future use
saveRDS(genes, 'genes.RDS')

22

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

3.3 OrdinalForest Machine learning

After all the genes are collected, we built two kinds of machine learning models for each annotation: Ordi-
nalForest and XgBoost. The process for OrdinalForest is shown below

#filter t_rna to only include genes from the elastic net output
t_rna = t_rna[, colnames(t_rna) %in% genes]

#create new variable x.vars with t_rna
x.vars = as.data.frame(t_rna)

#add the tru annotation of interest to the data
x.vars$Status = tru$group_of_interest

#change the factor levels
x.vars$Status = factor(x.vars$Status,

levels = c('low', 'medium', 'high'))

#run orindal forest
m <-

ordfor(depvar = 'Status',
data = x.vars[train$`RNASeq SLID`,],
perffunction = "probability")

#save the model
saveRDS(m, 'model.RDS')

#create a list of testing samples excluding the training data
test = tru$`RNASeq SLID`[!(tru$`RNASeq SLID` %in% train$`RNASeq SLID`)]

#filter x.vars to only include the testing data set
test = x.vars[test,]

#remove the status for evaluation with the new ordinal forest model
test = test[, colnames(test) != 'Status']

#predict the new values
pred = predict(m, newdata = test, type = 'class')

#combine the prediction with the true values for the testing data
final <-

cbind(as.character(pred$ypred),
tru[match(rownames(test), tru$`RNASeq SLID`), 'group'])

colnames(final) = c('Predicted', 'Actual')
final = as.data.frame(final)

#make sure the factor levels are in the desired order
final$Predicted = factor(final$Predicted,

levels = c('high', 'medium', 'low'))
final$Actual = factor(final$Actual,

levels = c('high', 'medium', 'low'))

#evaluate with a confusion matrix from caret
confusionMatrix(final$Predicted, final$Actual)

23

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

3.4 XgBoost machine learning

Below is shown the process for machine learning with XgBoost. This is based on a tutorial found at
“https://www.r-bloggers.com/2022/01/using-bayesian-optimisation-to-tune-a-xgboost-model-in-r/”

#filter t_rna to only include genes from the elastic net output
t_rna = t_rna[, colnames(t_rna) %in% genes]

#create the training data as an xgboost matrix
dtrain <- xgb.DMatrix(t_rna[train$`RNASeq SLID`,],

label = train$group_of_interest)

build the objective function for the optimization
obj_func <-

function(eta,
max_depth,
min_child_weight,
subsample,
lambda,
alpha) {

#create a param list
param <- list(

Hyter parameters
eta = eta,
max_depth = max_depth,
min_child_weight = min_child_weight,
subsample = subsample,
lambda = lambda,
alpha = alpha,
booster = "gbtree",
objective = 'multi:softmax',
eval_metric = "auc",
num_class = 3

)

run a cross validated xgboost with the set parameters
xgbcv <- xgboost::xgb.cv(

params = param,
data = dtrain,
nrounds = 500,
nfold = 5,
stratified = T,
early_stopping_rounds = 10,
verbose = 0,
maximize = TRUE

)

lst <- list(
First argument must be named as "Score"
Score = max(xgbcv$evaluation_log$test_auc_mean),

Get number of trees for the best performing model
nrounds = xgbcv$best_iteration

24

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://www.r-bloggers.com/2022/01/using-bayesian-optimisation-to-tune-a-xgboost-model-in-r/
https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

)

return(lst)
}

create boundaries for the parameters to optimize
bounds <- list(

eta = c(0.001, 0.4),
max_depth = c(2L, 20L),
min_child_weight = c(1, 50),
subsample = c(0.1, 1),
lambda = c(1, 10),
alpha = c(1, 10)

)

set.seed(1000)

#perform the optimization
bayes_out <-

bayesOpt(
FUN = obj_func,
bounds = bounds,
initPoints = length(bounds) + 2,
iters.n = 8,
iters.k = 4,
verbose = 2

)

data.frame(getBestPars(bayes_out))
look at the best values and reset the bounds to tune further

bounds <- list(
eta = c(0.1, 0.2),
max_depth = c(15L, 25L),
min_child_weight = c(1, 3),
subsample = c(0.5, 0.9),
lambda = c(5, 7),
alpha = c(1, 3)

)

bayes_out <-
bayesOpt(

FUN = obj_func,
bounds = bounds,
initPoints = length(bounds) + 2,
iters.n = 8,
iters.k = 4,
verbose = 2

)

#record the best parameters
pars = getBestPars(bayes_out)
opt_params <- append(

25

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

list(
booster = "gbtree",
objective = "multi:softmax",
eval_metric = "auc",
num_class = 3

),
pars

)

extract model
xgbcv <- xgb.cv(

params = opt_params,
data = dtrain,
nround = 500,
nfold = 5,
stratified = T,
prediction = TRUE,
early_stopping_rounds = 10,
maximize = T

)

Get optimal number of rounds
nrounds = xgbcv$best_iteration

Fit a xgb model
mdl <- xgboost(

data = dtrain,
params = opt_params,
maximize = T,
early_stopping_rounds = 10,
nrounds = nrounds

)

#save the model for future use
saveRDS(mdl, 'model.RDS')

#create a list of testing samples using tru and train
test = tru$`RNASeq SLID`[!(tru$`RNASeq SLID` %in% train$`RNASeq SLID`)]

#filter x.vars to only include the testing data set
test = x.vars[test,]

#remove the status for evaluation with the new ordinal forest model
test = test[, colnames(test) != 'Status']

#predict the new values
pred = predict(m, newdata = test, type = 'class')

#combine the prediction with the true values for the testing data
final <-

cbind(as.character(pred$ypred),
tru[match(rownames(test), tru$`RNASeq SLID`), 'group'])

colnames(final) = c('Predicted', 'Actual')

26

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

final = as.data.frame(final)

#make sure the factor levels are in the desired order
final$Predicted = factor(final$Predicted,

levels = c('high', 'medium', 'low'))
final$Actual = factor(final$Actual,

levels = c('high', 'medium', 'low'))

#evaluate with a confusion matrix from caret
confusionMatrix(final$Predicted, final$Actual)

All 6 models were saved and ultimately model 6 was chosen because of its performance in the testing data.

Part 4: Build RIGATONI package functions

We have all the elements needed to put together the RIGATONI r package. Now we must put them together
to build functions that will be useful to our users.

4.1: Download STRING database connections

First we download the string protein-protein interaction database (https://string-db.org/) and change the
gene names

#download the file 9606.protein.actions.v10.5.txt from STRING.
#load it into R
stringdb <-

read.table('9606.protein.actions.v10.5.txt',
sep = '\t',
header = T)

#create new mart using the ensembl genes
mart <- useDataset("hsapiens_gene_ensembl", useMart("ensembl"))

#get the list of genes (not isoforms) from the stringdb dataframe
genes <- gsub(".*\\.", "", stringdb$item_id_a)

#get the list of hgnc symbols from this list of genes
G_list <-

getBM(
filters = "ensembl_peptide_id",
attributes = c("ensembl_peptide_id", "hgnc_symbol"),
values = genes,
mart = mart

)

#remove duplicated values
G_list <- G_list[!(duplicated(G_list$ensembl_peptide_id)),]

#remove isoform information from both gene columns of stringdb
stringdb$item_id_a <- gsub(".*\\.", "", stringdb$item_id_a)
stringdb$item_id_b <- gsub(".*\\.", "", stringdb$item_id_b)

27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://string-db.org/
https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

#filter stringdb to only include interactions interesting to you
stringdb = stringdb[stringdb$mode %in% c('inhibition',

'activation',
'expression'),]

#replace the ensembl_peptide_id's with the hgnc symbols
for (x in 1:nrow(G_list)) {

ids = which(stringdb$item_id_a == G_list[x, 1])
stringdb$item_id_a = replace(stringdb$item_id_a, ids, G_list[x, 2])
ids = which(stringdb$item_id_b == G_list[x, 1])
stringdb$item_id_b = replace(stringdb$item_id_b, ids, G_list[x, 2])

}

#save the final table
write.table(stringdb, '9606.protein.actions.v10.5.txt')

After this, we need a way to filter the STRING output for a particular gene.

makeGeneList <- function(gene, string = sdb) {

#sbd is the string database file
#gene is the name of the gene of interest
if (!(gene %in% c(string$item_id_a, string$item_id_b)))

stop(
'Sadly, we do not have enough protein connections in STRING to analyze
you gene-of-interest using runRIGATONI. \nPlease build your own gene
list using prior knowledge or literature review.'

)

#filter sdb to only include rows which include the gene of interest
sdb_goi <- string[string$item_id_a == gene |

string$item_id_b == gene,]

#remove rows where the acting gene (item_id_a) is absent
sdb_goi = sdb_goi[!(is.na(sdb_goi$item_id_a)),]

create the upstream database by searching for cases where the acting gene
is gene a, the gene being acted on is the gene of interest,
and the mode is expression.
upstream = sdb_goi[sdb_goi$item_id_b == gene &

sdb_goi$a_is_acting == 't' &
sdb_goi$mode == 'expression',]

#create one version of downstream where the gene of interest is acting
downstream_1 = sdb_goi[sdb_goi$item_id_a == gene &

sdb_goi$a_is_acting == 't',]

create another downstream where the gene of interest is not necessarily acting,
but expression is not being effected
downstream_2 = sdb_goi[sdb_goi$item_id_b == gene &

sdb_goi$a_is_acting == 't' &
sdb_goi$mode != 'expression',]

28

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

#combine the two downstream gene lists
downstream = c(downstream_2$item_id_a, downstream_1$item_id_b)
downstream = downstream[downstream != '']

#extract the gene list from the upstream data
upstream = upstream$item_id_a
upstream = upstream[upstream != '']

#add both the upstream and downstream lists to a master list l
l = list(upstream, downstream)

#name both entries
names(l) = c('upstream', 'downstream')

#return the master list
return(l)

}

4.2: Create the regression models themselves

After this, we need to create the regression models for the gene of interest using the control data.

first use a parent function to get each regression from the
upstream and downstream gene lists
getRegression <- function(gene_list_ppi, gene, ControlRNA) {

#check that the length of the upstream gene list is greater than 0
if (length(gene_list_ppi$upstream) > 0) {

#if it is greater than 0, build the regression model for the upstream list
RegressionUpstream <-

buildRegression(ControlRNA, gene, gene_list_ppi$upstream)

} else {

#if not, call the regression model "skip"
RegressionUpstream = 'Skip'

}

#check that the length of the downstream gene list is greater than 0

if (length(gene_list_ppi$downstream) > 0) {

#if it is greater than 0, build the regression model for the downstream list

RegressionDownstream <-
buildRegression(ControlRNA, gene, gene_list_ppi$downstream)

} else {

#if not, call the regression model "skip"

29

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

RegressionDownstream = 'Skip'

}

#store each regression model in a master list
l = list(RegressionUpstream, RegressionDownstream)

#name each model
names(l) = c('RegressionUpstream', 'RegressionDownstream')

#return the list
return(l)

}

#in this function, we build the regression models themselves
buildRegression <- function(ControlRNA, gene, gene_list) {

#create a vector of the counts of the gene of interest called cd
cd = t(ControlRNA[rownames(ControlRNA) == gene,])

#name the entries after the colnames of the control RNA
rownames(cd) = colnames(ControlRNA)

#turn the vector into a dataframe
cd = as.data.frame(cd)

#create the x.vars as a dataframe with genes as columns and sample names as rows
#the genes in this dataframe should only be in the gene_list provided
x.vars = as.data.frame(t(ControlRNA[rownames(ControlRNA) %in% gene_list,]))

#combine the x.vars dataframe with the gene of interest counts
x.vars = cbind(x.vars, cd[, 1])

#rename the gene of interest column GOI
colnames(x.vars)[ncol(x.vars)] = 'GOI'

#replace any NA entries with 0
x.vars[is.na(x.vars)] = 0

create the model using the GOI column as a response and all
other columns as predictors using a poisson distribution
model = stats::glm(GOI ~ ., data = x.vars, family = stats::poisson())

#return the model
return(model)

}

4.3: Predict the function of each mutant sample

After creating the models, we need to use the models to predict the functional status of each mutant sample

30

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

this function uses the regression models created previously (Regression)
and a RNA from the mutant samples (MasterRNA) to determine the the gene of
interest (gene) count is outside the 95% prediction interval for
each regression model
mutantRegression <- function(Regression, MasterRNA, gene) {

if (Regression$RegressionUpstream != 'Skip') {
#generate the gene names in the upstream regression
names_up = names(Regression$RegressionUpstream$coefficients)

} else {

#if the upstream regression was skipped, make the names_up vector empty
names_up = c()

}
if (Regression$RegressionDownstream != 'Skip') {

#generate the gene names in the downstream regression
names_down = names(Regression$RegressionDownstream$coefficients)

} else {

#if the downstream regression was skipped, make the names_up vector empty
names_down = c()

}

#store the genes in upstream and downstream together in gene_list
gene_list <- c(names_up, names_down)
rownames(MasterRNA) = gsub("\\-", "\\.", rownames(MasterRNA))

#store the regressions respectively
upstream = Regression$RegressionUpstream
downstream = Regression$RegressionDownstream

#create a dataframe with the counts of the gene of interest (cd)
cd = t(MasterRNA[rownames(MasterRNA) == gene,])

#save the sample names as rownames of the GOI dataframe (cd)
rownames(cd) = colnames(MasterRNA)
cd = as.data.frame(cd)

#create the x.vars as a dataframe with genes as columns and sample names as rows
#the genes in this dataframe should only be in the gene_list provided
x.vars = as.data.frame(t(MasterRNA[rownames(MasterRNA) %in% gene_list,]))

#rename the gene of interest column GOI
x.vars$GOI = cd[, 1]

#create prediction intervals for each sample, for each regression model
#alpha = .1 means you are creating a 95% prediction interval
#nsims is the number of simulations of prediction to complete
if (upstream != 'Skip') {

31

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

fitted_up <-
suppressWarnings(ciTools::add_pi(x.vars, upstream, alpha = 0.1, nsims = 20000))

} else {

#if no upstream model is present, skip it
fitted_up <- 'Skip'

}
if (downstream != 'Skip') {

fitted_down <-
suppressWarnings(ciTools::add_pi(x.vars, downstream, alpha = 0.1, nsims = 20000))

} else {

#if no downstream model is present, skip it
fitted_down <- 'Skip'

}

#put the fittered dataframes in to a list called l
l = list(fitted_up, fitted_down)

#for each dataframe in l
l = lapply(l, function(f) {

if (f != 'Skip') {

#as long as the entry of l is not "skip"
#select only the columns listed below
f = f[, colnames(f) %in% c('GOI', 'LPB0.05', 'UPB0.95')]

#initialize a new vector called anno
anno = c()

for (x in 1:nrow(f)) {

#for each sample
#if the true GOI count is outside the 95% prediction interval mark it F
if (f$GOI[x] < f$LPB0.05[x] |

f$GOI[x] > f$UPB0.95[x]) {

anno = c(anno, F)

} else {

anno = c(anno, T)

}
}

#add a column to f called Annotation with the entries of anno

32

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

f$Annotation = anno

return(f)

} else {

#if the model was empty, skip it
return('Skip')

}
})

#rename the entries of l
names(l) = c('upstream', 'downstream')

#return l
return(l)

}

#This function determines the function of each sample
getMutantFunction <- function(Regression, MasterRNA, gene) {

first the function using mutantRegression function (above) to
determine which samples are outside the 95% prediction interval
Mutant_Regression <-

suppressWarnings(mutantRegression(Regression, MasterRNA, gene))

#remove the entries of the list that we should "skip"
Mutant_Regression_1 = Mutant_Regression[Mutant_Regression != 'Skip']

if (length(Mutant_Regression_1) > 1) {

if both regression models are working, combine them into a
master data frame called Anno
Anno <- do.call(cbind, Mutant_Regression)
Anno = as.data.frame(Anno)

} else {

#if at one regression model is skipped, rename the remaining model "Anno"
Anno = Mutant_Regression_1[[1]]

}
#initialize empty vector fun
fun <- c()

if (Mutant_Regression$downstream != 'Skip') {

#if the downstream regression was able to be created continue below
for (x in 1:nrow(Anno)) {

#for each sample
#create new vector with the GOI counts

33

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

downstream.GOI = ifelse((T %in% grepl('downstream', colnames(Anno))),
Anno$downstream.GOI[x],
Anno$GOI[x])

#create new vector with lower prediction interval bound
downstream.LPB0.05 = ifelse((T %in% grepl('downstream', colnames(Anno))),

Anno$downstream.LPB0.05[x],
Anno$LPB0.05[x])

#create new vector with upper prediction interval bound
downstream.UPB0.95 = ifelse((T %in% grepl('downstream', colnames(Anno))),

Anno$downstream.UPB0.95[x],
Anno$UPB0.95[x])

if (downstream.GOI < downstream.LPB0.05) {

#if the true value is less than the lower bound, this is a LOF sample
fun = c(fun, 'LOF')

} else if (downstream.GOI > downstream.UPB0.95) {

#if the true value is greater than the upper bound, this is a GOF sample
fun = c(fun, 'GOF')

} else {

if the downstream predictions are within the boundaries,
keep checking with the upstream samples
fun = c(fun, 'keepchecking')

}
}

#remove the solved samples, call them solved
AnnoSolved <- Anno[which(fun != 'keepchecking'),]

#create new column with the function data
AnnoSolved$Function = fun[which(fun != 'keepchecking')]

#put the samples that need to be rechecked into their own dataframe
AnnoKeep <- Anno[which(fun == 'keepchecking'),]

} else {

#if there are no downstream values, annosovled should be empty
AnnoSolved = NULL

#annokeep should be the entirety of anno
AnnoKeep = Anno

}
if (Mutant_Regression$upstream != 'Skip') {

34

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

#if the upstream regression is present
#initialize the empty fun vector
fun = c()

#as long as the downstream didn't solve everything
if (nrow(AnnoKeep > 0)) {

for (x in 1:nrow(AnnoKeep)) {

#for each sample
#create new vector with the GOI counts
upstream.GOI = ifelse((T %in% grepl('upstream', colnames(Anno))),

AnnoKeep$upstream.GOI[x],
AnnoKeep$GOI[x])

#create new vector with lower prediction interval bound
upstream.LPB0.05 = ifelse((T %in% grepl('upstream', colnames(Anno))),

AnnoKeep$upstream.LPB0.05[x],
AnnoKeep$LPB0.05[x])

#create new vector with upper prediction interval bound
upstream.UPB0.95 = ifelse((T %in% grepl('upstream', colnames(Anno))),

AnnoKeep$upstream.UPB0.95[x],
AnnoKeep$UPB0.95[x])

if (upstream.GOI < upstream.LPB0.05) {

#If the true value is less than lowerbound, this is a LOF sample
fun = c(fun, 'LOF')

} else if (upstream.GOI > upstream.UPB0.95) {

#if the true value is greater than the upperbound, this is a GOF sample
fun = c(fun, 'GOF')

} else {

#if we cannot decide, call it skipq
fun = c(fun, "Skipq")

}
}

}

#replace skipq with "unknown
fun[fun == 'Skipq'] = 'Unknown'

#create new column called Function with the vector
AnnoKeep$Function = fun

}

if (!('Function' %in% colnames(AnnoKeep))) {

35

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

if we had no upstream regression, initialize columnn Function with
all entries "unknown"
AnnoKeep$Function = rep('Unknown', nrow(AnnoKeep))

}

#combine the solved and kept dataframes into Mutant_Function
Mutant_Function <- rbind(AnnoSolved, AnnoKeep)

#remove extraneous columns
Mutant_Function <-

as.data.frame(cbind(rownames(Mutant_Function), Mutant_Function$Function))

#return mutant function
return(Mutant_Function)

}

4.4: Predict the immune phenotype of each sample

predict the immune phenotype using the genes selected by Elastic Net (lasso_best)
using the model created by Ordinal forect (m) and the RNA seq data of the
mutant samples (MasterRNA)
getImmuneProb <- function(MasterRNA, model = m) {

#filter MasterRNA so that the only genes are those that are in the model
MasterRNA = MasterRNA[rownames(MasterRNA) %in% m$feature_names,]

#make sure the order of the genes match
MasterRNA = MasterRNA[match(m$feature_names, rownames(MasterRNA)),]

#make the prediction
pred <- predict(m, newdata = t(MasterRNA), type = 'class')

#Add sample names to the prediction
pred = cbind(colnames(MasterRNA), pred)

#create data frame
pred = as.data.frame(pred)

#add column names
colnames(pred) = c('Names', 'Prob')

#annotate with meaningful naems
pred$Prob = ifelse(pred$Prob == 0, 'Low', ifelse(pred$Prob == 2, 'High', 'Medium'))

#return data
return(pred)

}

36

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

4.5: Evaluate mutants for users

#evaluate the mutant samples provided by the user
evaluateMutants <- function(Function, ImmuneProb, ControlRNA) {

get the immune phenotypes of the control samples
con = suppressMessages(getImmuneProb(ControlRNA, model = m))

get the number of GOF and LOF mutant samples
nGOF = nrow(Function[Function[, 2] == 'GOF',])
nLOF = nrow(Function[Function[, 2] == 'LOF',])

get the number of High and Low mutant samples
nHigh = nrow(ImmuneProb[ImmuneProb[, 2] == 'High',])
nLow = nrow(ImmuneProb[ImmuneProb[, 2] == 'Low',])

Get the proportion of High and Low control samples
conPropH = nrow(con[con[, 2] == 'High']) / nrow(con)
conPropL = nrow(con[con[, 2] == 'Low']) / nrow(con)

determine if there are more GOFs than 50%
pf = prop.test(nGOF, sum(nGOF, nLOF), .5)

record this result in an intuitive way
Fun = ifelse(pf$p.value < .05, ifelse(nGOF > nLOF, 'GOF', 'LOF'), 'Unknown')

determine if there is higher proportion of high or low samples
in the mutant group than in controls
pih = prop.test(nHigh, nrow(out), conPropH, 'greater')
pil = prop.test(nLow, nrow(out), conPropL, 'greater')

record this result in an intuitive way
Imm = ifelse(pih$p.value < .05,

'High',
ifelse(pil$p.value < .05, 'Low', 'Unknown'))

record the p values
pi = ifelse(Imm == 'High',

pih$p.value,
ifelse(Imm == 'Low', pil$p.value, min(pil$p.value, pih$p.value)))

#store and return these values
out = list(Fun, pf, Imm, pi)
names(out) = c('Function', 'p.val.func', 'ImmunePhenotype', 'p.val.immune')
return(out)

}

4.6. Run RIGATonI all together

runRIGATONI <- function(gene,
ControlRNA,

37

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

MasterRNA,
model = m,
string = sdb,
geneList = NULL) {

catch any issues with the function prior
if (any(class(ControlRNA) != 'data.frame',

class(MasterRNA) != 'data.frame'))
stop('RNA files should be data.frame objects')

if (any(!(rownames(ControlRNA) == rownames(MasterRNA))))
stop('Gene names in ControlRNA are not the same as MasterRNA')

if (!(gene %in% rownames(ControlRNA)))
stop('Gene of interest TPM data is not included in RNA provided')

if (!(m$feature_names %in% rownames(MasterRNA)))
stop(

'The genes required for immune phenotype calculation are not
all present in the data provided. \nPlease check that all your gene names
are uppercase and the rownames of your RNA TPM data.'

)

message(paste0('Starting gene: ', gene))

if (is.null(geneList) == T) {

if there is no gene list provided by the suer, make one
message('Making Initial Gene List')
gene_list_ppi = makeGeneList(gene, string = sdb)

filter the gene list to include only genes for which there is
transcript information in the control RNA
message('Filtering Gene List')
gene_list_ppi = lapply(gene_list_ppi, function(x) {

out = x[x %in% rownames(ControlRNA)]

return(out)

})

if there are no connections in string, tell the user
if (length(unlist(gene_list_ppi)) > 0)

stop(
'Sadly, we do not have enough protein connections in STRING to analyze
your gene-of-interest using runRIGATONI. \nPlease build your own gene
list using prior knowledge or literature review.'

)

} else {

if the user provided their own gene list, store it

38

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

gene_list_ppi = geneList
message('Filtering Gene List')

filter the gene list to include only genes for which there is
transcript information in the control RNA
gene_list_ppi = lapply(gene_list_ppi, function(x) {

out = x[x %in% rownames(ControlRNA)]

return(out)
})

if there is nothing left after filtering, tell the user to try
again with default settings
if (length(unlist(gene_list_ppi)) > 0)

stop(
'Your gene list is either empty or does not contain genes in your RNA
TPM data. \nPlease re-run RIGATONI with default settings and allow us
to make the geneList using STRING.'

)

}
build control regression model
message('Building regression model')
Regression <-

suppressWarnings(getRegression(gene_list_ppi, gene, ControlRNA))

predict mutant function
message('Predicting mutant function')
Mutant_Function <-

suppressWarnings(getMutantFunction(Regression, MasterRNA, gene))

predict immune phenotypes
message('Predicting immune phenotype')
ImmuneProb <- suppressMessages(getImmuneProb(MasterRNA, model = m))
con = suppressMessages(getImmuneProb(MasterRNA, model = m))

put together final output for the user
message('Getting final output')
out = cbind(colnames(MasterRNA), Mutant_Function[, 2], ImmuneProb[, 2])
colnames(out) = c('SampleID', 'Function', 'ImmunePhenotype')
out = as.data.frame(out)

calculate the mutant function and phenotype
message('Calculating Alteration Function and Phenotype')
muts = evaluateMutants(Mutant_Function, ImmuneProb, ControlRNA)

inform the user of the results in an intuitive way
message(cat(

paste0(
'Function of Variant: ',
muts$Function,

39

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

", p = ",
muts$p.val.func,
"\n",
"Immune Phenotype of Variant: ",
muts$ImmunePhenotype,
", p = ",
muts$p.val.immune

)

))

#return results to the user
message('Done!')
return(out)

}

Part 5: Performing RIGATonI validations (Fig 2 and 3)

5.1: Validation of Immunity Module with IHC and Flow (Fig 2)

All data shown here is from the paper “https://www.nature.com/articles/s41598-022-12610-w#Abs1” First
we downloaded the raw fastqs from dbGaP (the accession number is provided under “Data Availability” in
the paper). Next we ran Salmon to extract RNA TPM from the fastqs; code shown below.

#!/bin/sh
#SBATCH --account=PAS0854
#SBATCH --time=10:00:00
#SBATCH --nodes=1
#SBATCH --ntasks=10

echo "<STARTING_PIPELINE>: $(date)" && \

mkdir -p Salmon && \
cd Salmon && \

Copy input files to $TMPDIR
echo "--" && \
echo -ne "$(date): Starting command 'cp Sample 1 Run'\n" && \
cp sample_* .fastq $TMPDIR && \
echo -ne "$(date): Ending command 'cp Sample 1 Run'\n" && \
echo "--" && \

cd $TMPDIR && \
echo "Working on $(pwd) with input files:" && \
echo "$(ls)" && \

echo "--" && \
echo -ne "$(date): Starting command 'salmon quant salmon_index'\n" && \
Software/salmon/salmon-latest_linux_x86_64/bin/salmon quant \
-i Reference_Data/salmon_reference_data_20190517/salmon_index -l A \
-1 sample_1.fastq \

40

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://www.nature.com/articles/s41598-022-12610-w#Abs1
https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

-2 sample_2.fastq -p 10 --validateMappings -o salmon_results && \
echo -ne "$(date): Ending command 'salmon quant salmon_index'\n" && \
echo "--" && \

echo "--" && \
echo -ne "$(date): Starting command 'mv quant.sf .'\n" && \
mv salmon_results/quant.sf . && \
echo -ne "$(date): Ending command 'mv quant.sf .'\n" && \
echo "--" && \

rm -rf salmon_results && \
echo "--" && \
echo -ne "$(date): Starting command 'bedtools intersect'\n" && \
Software/bedtools-2.17.0/bin/bedtools intersect \
-a Reference_Data/bedfiles/dna/exome_bedfiles/sorted_merged.bed \
-b Reference_Data/refFlat_hg19.sorted.bed -wa -wb \
> targetbed_refflat_intx.bed && \
echo -ne "$(date): Ending command 'bedtools intersect'\n" && \
echo "--" && \

echo "--" && \
echo -ne "$(date): Starting command 'python annotate_salmon.py'\n" && \
python annotate_salmon.py --in_file quant.sf \
--gtf Reference_Data/cuffcmp.combined.converted.gtf \
--bed_refflat_intx targetbed_refflat_intx.bed && \
echo -ne "$(date): Ending command 'python annotate_salmon.py'\n" && \
echo "--" && \

Once salmon has run, we use a python script (annotate_salmon.py) to transform RefSeq ID to gene names
shown below

"""
The purpose of this script is to get the gene names for the Salmon output,
since Salmon only provides RefSeq IDs. It will mark whether the gene is in
the BED file.
"""

import sys
import string
import os
import getopt
import argparse
import glob

##
Parse command line arguments
##

class DefaultHelpParser(argparse.ArgumentParser):
def error(self, message):

sys.stderr.write('ERROR: %s\n' % message)
self.print_help()
sys.exit(2)

41

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

parser = DefaultHelpParser(formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('--in_file', required = True, help = 'Input file that was '+\

'produced from Salmon.')
parser.add_argument('--gtf', required = True, help = 'GTF file for transcript a'+\

'nnotation.')
parser.add_argument('--bed_refflat_intx', required = True, help = 'BEDTools '+\

'intersection of the target-BED with the refFlat BED.')
args = parser.parse_args(sys.argv[1:])

##
Function definitions
##

"""
The purpose of this function is to get a list of genes within the input BED
region using the intersection with the input BED and the refFlat BED.
"""
def get_in_target_genes(bed_refflat_intx):

bed_genes_set = set()

for line in open(bed_refflat_intx):
line1 = line.strip().split('\t')
gene = line1[-1].split('_')[0]
bed_genes_set.add(gene)

return bed_genes_set

"""
The purpose of this function is to collect the RefSeq IDs and match them
to the gene name.
"""
def get_refseq_ids(gtf):

refseq_dict = {}

for line in open(gtf):
line1 = line.strip().split('\t')
annots = line1[8].split(';')

for entry in annots:
if entry == '': continue

entry1 = entry.strip()

if entry1.startswith('gene_name'):
entry2 = entry1.split(' ')
gene_name = entry2[1].replace('"', '')

elif entry1.startswith('transcript_id'):
entry2 = entry1.split(' ')
transcript_id = entry2[1].replace('"', '')

refseq_dict[transcript_id] = gene_name

42

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

return refseq_dict

"""
The purpose of this function is to annotate the Salmon output file with gene
names.
"""
def annotate(in_file, refseq_dict, bed_genes_set):

fp = open("Salmon_final.txt", 'w')
header = ["Gene", "RefSeq ID", "TPM", "Gene In Target"]
fp.write(string.join(header, '\t') + '\n')

all_values = []

for c,line in enumerate(open(in_file)):
if c==0: continue
line1 = line.strip().split('\t')

tpm = float(line1[3])
tpm = float('%4.2f' % tpm)
refseq_id = line1[0]

try:
gene = refseq_dict[refseq_id]

except KeyError : continue

info = [gene, refseq_id, tpm, gene in bed_genes_set]
all_values.append(info)

all_values.sort(key=lambda x:x[2])
all_values.reverse()

for info in all_values:
info1 = map(lambda x:str(x), info)
fp.write(string.join(info1, '\t') + '\n')

fp.close()

##
Main program
##

if __name__ == '__main__':
in_file = os.path.abspath(args.in_file)
gtf = os.path.abspath(args.gtf)
bed_refflat_intx = os.path.abspath(args.bed_refflat_intx)

bed_genes_set = get_in_target_genes(bed_refflat_intx)
refseq_dict = get_refseq_ids(gtf)
annotate(in_file, refseq_dict, bed_genes_set)

After downloading and performing salmon, I then combined and analyzed the IHC, flow, and RNAseq results.

43

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

Processed data was downlaoded from the supplemental data at this link https://static-content.springer.com/
esm/art%3A10.1038%2Fs41598-022-12610-w/MediaObjects/41598_2022_12610_MOESM2_ESM.xlsx.

read in the data
gas = lapply(2:15, function(x) {

readxl::read_xlsx('gastric_IHC.xlsx', sheet = x)
})

name each element of the list
names(gas) <- c(

'Patients characteristics (BKT cohort)',
'Transcriptome-based immune cell quantification',
'IHC-based immune cell quantification',
'FCM-based immune cell quantification',
'The ratio of indicated cell densities at the Core
(CT)-to-invasive margin (IM) of the tumor',
'TIDE dysfunction and exclusion scores',
'The percentage of cytokineproducing cells',
'Individual patient´s Ki-67 related score measured by IHC',
'The number of damaged cells in 12 areas of 0.25 mm2',
'Individual patients data (TCGA cohort)',
'Comparison between Immunogram classification and transcriptome-based
TME classification',
'Gene sets used in this study',
'Correspondence between the subtypes of bulk RNA-seq immune cells
estimation and the values measured by IHC',
'Correspondence between the subtypes of bulk RNA-seq immune cells
estimation and the values measured by FCM'

)

save for future use
saveRDS(gas, 'gastric_IHC.RDS')

gather the processed TPM data
d = list.dirs('<path to TPM data>')
d = d[grepl('Salmon', d)]
d = d[d != '<scratch directory>']

read in each file
t = lapply(d, function(x) {

tryCatch({
list the files in the folder
l = list.files(x)

select only the final output
l = l[grepl('_final', l)]

#read it in and summarize
t = read.table(paste0(x, '/', l[1]), header = T, sep = '\t')
t = aggregate(t[, 3], by = list(t[, 1]), sum)
colnames(t)[2] = strsplit(l, '_')[[1]][2]

#return

44

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-022-12610-w/MediaObjects/41598_2022_12610_MOESM2_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-022-12610-w/MediaObjects/41598_2022_12610_MOESM2_ESM.xlsx
https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

return(t)

}, error = function(e) {

#if the file is unreadable return nothing
return(NA)

})
})

remove file which are not needed
t = t[1:57]

make a key of the gene names
key = t[[1]]$Group.1

ensure each file has the same order of genes
t2 = lapply(1:length(t), function(x) {

#using the first file as a key
if (x == 1) {

just return the first one
return(t[[x]])

} else {

match the genes to the first file
x = t[[x]]
nam = colnames(x)[2]
x = x[match(key, x$Group.1),]
x = as.data.frame(x[, 2])
colnames(x) = nam

return(x)
}

})

combine together all the files
t2 = do.call(cbind, t2)

set the rownames to the gene names located in the first column
rownames(t2) = t2[, 1]
t2 = t2[,-1]
rna = t2

rm(t2)
rm(t)
rm(d)
rm(key)

there were many sample IDs in this data set which did not match across
groups. The next section is primarily for organizing these sample IDs across
the different data tables available

45

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

read in the sample IDs
ids = readLines('GastricRNA.txt')

keep only RNA which have accompanying IHC and flow
rna = rna[, colnames(rna) %in% ids]

read in the run table
ids = read.table('SraRunTable.txt', sep = ',', header = T)

filter the run table to inclue only runs in the RNA
ids = ids[ids$Run %in% colnames(rna),]

match the run table order to the RNA order
ids = ids[match(colnames(rna), ids$Run),]

extract clinical data from the excel files
clin = gas$`Patients characteristics (BKT cohort)`

#remove rows with no study ID
clin = clin[!(is.na(clin$`Study ID`)),]

get the new study IDs
studyID = readxl::read_xlsx('BKT_STAD.xlsx')

add in the study ID to the clinical data
clin$STAD = unlist(lapply(clin$`Study ID`, function(x) {

id = which(studyID$`patient ID` == x)

return(studyID$`file ID`[id])
}))

add in run information to the clinical data
clin$run = unlist(lapply(clin$STAD, function(x) {

id = which(gsub("\\..*", '', ids$Sample_Name) == x)

return(ids$Run[id])
}))

make the RNA columns match the order of the clinical data
rna = rna[, match(clin$run, colnames(rna))]

change the column names of the RNA to match the study ID
colnames(rna) = clin$`Study ID`

add the TPM to the gastric IHC object
gas$TPM = rna

save for future use
saveRDS(gas, 'gastric_IHC.RDS')

get the gastric data RIGATonI scores

46

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

riga = getImmuneProb(gas$TPM, m)
add that output to the clincal data
checking = !(is.na(gas$`Patients characteristics (BKT cohort)`$`Study ID`))
gas$`Patients characteristics (BKT cohort)` =

gas$`Patients characteristics (BKT cohort)`[checking,]
gas$`Patients characteristics (BKT cohort)`$RIGATONI_score = riga$Prob

save for future use
saveRDS(gas, 'gastric_IHC.RDS')

extract the IHC information
ihc = gas$`IHC-based immune cell quantification`

extract the measure names
measure = colnames(ihc)

fix the column names
colnames(ihc) = ihc[1,]
ihc = ihc[-1,]

make IHC a data frame
ihc = as.data.frame(t(ihc))

fix the new column names
colnames(ihc) = ihc[1,]
ihc = ihc[-1,]

get measures of interest
measure = measure[2:length(measure)]

make sure measures are readable
measure = gsub("\\..*", "", measure)

add measures as a new column
ihc$measure = measure

split IHC based on the measures
ihc = split(ihc, ihc$measure)

now we will make the data more readable
ihc = lapply(1:length(ihc), function(x) {

for each measure
record the measure
mes = names(ihc)[x]
make new data frame
x = ihc[[x]][,-ncol(ihc[[x]])]
nams = colnames(x)
transpose and convert to numeric
x = as.data.frame(t(x))
x = apply(x, 2, as.numeric)
x = as.data.frame(x)
colnames(x) = gsub("\\..*", "", colnames(x))
change the name of one column

47

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

if ('Nkp46' %in% colnames(x)) {
id = which(colnames(x) == 'Nkp46')
colnames(x)[id] = 'NKp46'

}
rownames(x) = nams
add the rigatoni status
x$RIGATONI_status = gas$`Patients characteristics (BKT cohort)`$RIGATONI_score
add the measure as a varaible
x$measure = mes
return(x)

})

extract counts
count = ihc[[2]]

melt the counts
countm = reshape::melt(count, id.vars = 'RIGATONI_status')

aggregate based on measure and RIGATonI status
countm = aggregate(value ~ variable + RIGATONI_status,

data = countm,
FUN = mean)

fix order of values
countm$RIGATONI_status = factor(countm$RIGATONI_status, levels = c('Low', 'High'))

Figure 2C
g = ggplot(countm, aes(x = RIGATONI_status, y = value, fill = variable)) +

geom_bar(stat = 'identity') +
scale_fill_manual(values = grDevices::colors()[grep('gr(a|e)y',

grDevices::colors(),
invert = T)] %>%

sample(10, replace = FALSE)) +
theme_classic()

saveRDS(g, '<figure 2c>')

remake the melted data
countm = reshape::melt(count, id.vars = 'RIGATONI_status')

Figure 2D
cd8 = countm[countm$variable == 'CD8',]

cd8$RIGATONI_status = factor(cd8$RIGATONI_status, levels = c('Low', 'High'))

g = ggplot(cd8, aes(x = RIGATONI_status, y = value, fill = RIGATONI_status)) +
geom_boxplot() +
theme_classic() +
stat_compare_means(

label = 'p.signif',
label.x = 1.5,
size = 10,
label.y = 4e+05

48

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

)

saveRDS(g, '<figure 2d>')

Figure 2F
cd3 = countm[countm$variable == 'CD3',]

cd3$RIGATONI_status = factor(cd3$RIGATONI_status, levels = c('Low', 'High'))

g = ggplot(cd3, aes(x = RIGATONI_status, y = value, fill = RIGATONI_status)) +
geom_boxplot() +
theme_classic() +
stat_compare_means(

label = 'p.signif',
label.x = 1.5,
size = 10,
label.y = 4e+05

)

saveRDS(g, '<figure 2f>')

now we will do the flow data
extract the flow data
flow = gas$`FCM-based immune cell quantification`

fix the colnames so they are not the first row
colnames(flow) = flow[1,]
flow = flow[-1,]

add in the RIGATonI scores
flow$RIGATONI = gas$`Patients characteristics (BKT cohort)`$RIGATONI_score

melt the data
flow = reshape2::melt(flow, id.vars = 'RIGATONI')

remove the study IDs from the variables
flow = flow[flow$variable != 'Study ID',]

transform the numbers from characters to numerics
flow$value = as.numeric(as.character(flow$value))

remove NA values
flow = flow[!(is.na(flow$value)),]

fix the factor levels
flow$RIGATONI = factor(flow$RIGATONI, levels = c('Low', 'High'))

change the levels to be more readable
levels(flow$variable) = c(

'studyID',
'Lymphocytes',
'CD4+ T cells',
'CD8+ T cells',

49

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

'B Cells',
'NK Cells',
'Monocytes\nMacrophages'

)

Figure 2E
test = flow[flow$variable == 'Lymphocytes',]

g = ggplot(test, aes(x = RIGATONI, y = value, fill = RIGATONI)) +
geom_boxplot() +
stat_compare_means(

label = 'p.signif',
size = 5,
label.x = 1.5,
method.args = list(alternative = 'greater')

) +
theme_classic()

saveRDS(g, '<Figure 2E>')

5.2: Validation of Immunity Module with Saltz Et Al output (Fig 2)

All data shown here is from the paper “https://www.sciencedirect.com/science/article/pii/S2211124718304479?
via%3Dihub” First we downloaded the output from Saltz et al found at “https://ars.els-cdn.com/content/
image/1-s2.0-S2211124718304479-mmc2.xlsx” Then the following code was run.

read in the saltz data containing TIL, case ID, and spatial categorization
sal = read.csv('saltzdata.csv')

convert the barcodes to UUIDs to match our master data
sal$caseIDs = barcodeToUUID(sal$ParticipantBarcode)[, 2]

load the list of cases and phenotypes
riga = readRDS('<TCGA all scores>')

make the order and cases match for both data tables
riga = riga[riga$caseIDs %in% sal$caseIDs,]
sal = sal[sal$caseIDs %in% riga$caseIDs,]
riga = riga[match(sal$caseIDs, riga$caseIDs),]

add the RIGATonI scores to the saltz output
sal$riga = riga$Prob

#Figure 2G
g = ggplot(sal, aes(x = riga, y = til_percentage, fill = riga)) +

geom_boxplot() +
stat_compare_means(

label = 'p.signif',
size = 5,
label.x = 1.5,
method.args = list(alternative = 'greater'),
comparisons = list(c('Low', 'Medium'),

50

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://www.sciencedirect.com/science/article/pii/S2211124718304479?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2211124718304479?via%3Dihub
https://ars.els-cdn.com/content/image/1-s2.0-S2211124718304479-mmc2.xlsx
https://ars.els-cdn.com/content/image/1-s2.0-S2211124718304479-mmc2.xlsx
https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

c('Medium', 'High'),
c('Low', 'High'))

) +
theme_classic()

saveRDS(g, '<Figure 2G>')

Figure 2H
g = ggplot(sal, aes(x = riga, fill = Global_Pattern)) +

geom_bar(position = 'fill') +
scale_fill_manual(values = grDevices::colors()[grep('gr(a|e)y',

grDevices::colors(),
invert = T)] %>%

sample(6, replace = FALSE)) +
theme_classic()

saveRDS(g, '<Figure 2H>')

5.3: Validation of Function Module with OncoKB (Fig 3)

First, the Function Module was run using the functions described in section 4 on OncoKB genes. Results
were manually annotated using the OncoKB database. The complete results can be found in Supplementary
table 3.

read in the genomic alteration annotations
onco = read.csv('SupplementaryTable3.csv')

remove any that are unknown to oncokb
onco = onco[onco$`OncoKB annotation` != 'unk',]

#mark correct or incorrect for each GA
onco$correct = ifelse(

onco$RIGATONI_annotation == 'GOF',
ifelse(onco$`OncoKB annotation` == 'GOF', 'Correct', 'Incorrect'),
ifelse(onco$`OncoKB annotation` == 'LOF', 'Correct', 'Incorrect')

)

Figure 3B
g = ggplot(onco, aes(x = `OncoKB annotation`, fill = correct)) +

geom_bar(position = 'fill') +
theme_classic()

saveRDS(g, '<Figure 3B>')

Part 6: Analyze all of TCGA using RIGATONI

6.1: Create functions specific to the analysis of TCGA data

I created a series of functions to make analysis of TCGA data easier. They are shown below.

51

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

In makeMaster, filterMaster, addPrimarySite, addSex, and getMaster,
we parse the lists created in Part 1 to create a Master data frame
Each row of the dataframe represents and individual alteration.
each row contains the name of the sample, the kind of alteration,
the name of the alteration, the location of the alteration and primary
site of the tumor.

makeMaster <- function(input_dir, gene) {

#go to the input_dir and collect the mutation files
setwd(input_dir)
l = lapply(list.files(pattern = "Together2.RDS"), function(x)

readRDS(x))
names(l) = list.files(pattern = "Together2.RDS")

#put the results from your GOI into a list called alts
alts = list()
nams = c()
for (x in 1:length(l)) {

check to see if there are any alterations in that gene of the given type
if (T %in% grepl(gene, names(l[[x]]))) {

if there are, extract them
nam = names(l)[x]
id = which(grepl(gene, names(l[[x]])) == T)

if (nam == 'FusTogether2.RDS') {

fusions are special and have a different rule
create new data frame with the fusion results results
fusions = names(l[[x]])[id]

split so the genes involved are listed separately
fusions = strsplit(fusions, "-")

id = lapply(fusions, function(x) {

find the fusions in the given gene
test = which(x == gene)

if (length(test) > 0) {
return that list
return(x)

} else {

if there are none, return nothing
return(NA)

}
})

52

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

get final list of list indexes
id = id[!(is.na(id))]

concatenate together the IDs of interest
id = unlist(lapply(id, function(i)

paste0(i, collapse = "-")))

if (length(id) > 0) {

get all the lists together
alts = append(alts, l[[x]][id])

record the names of the alteration
nams = c(nams, paste0(rep(nam, length(id)), ".", 1:length(id)))

}
} else {

get the ID that exactly matches the gene
id = which(names(l[[x]]) == gene)

if there is at least 1 ID
if (length(id) > 0) {

add the new element to the alts list
alts[[length(alts) + 1]] = l[[x]][[id]]

#record the name
nams = c(nams, nam)

}
}

}
}

#name the elements of alts after their file names
names(alts) = nams

#record the caseIDs of each list in alts
CaseIDs = c()
for (x in alts) {

CaseIDs = c(CaseIDs, x$CaseID)
}

#now collect the necesary fields from each dataframe in the list
#the fields are as follows
SV - c('POS', ' END', 'ALT')
CNV - c("copy_number", 'start', 'end')
SNV - c('Alt', 'Position')
Fusions - c('gene1', 'gene2', 'br1', 'br2')
SampleAlts = c()
Types = c()

53

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

Places = c()
for (x in names(alts)) {

put together the names of the alterations according the rules described
for each alteration type
if (x == 'SVTogther2.RDS') {

place = paste0(alts[[x]]$POS, "-", alts[x]$END)
alt = paste0(alts[[x]]$ALT)
type = rep('SV', length(alt))

} else if (x == "CopyTogether2.RDS") {

place = paste0(alts[[x]]$start, "-", alts[x]$end)
alt = paste0(alts[[x]]$copy_number)
type = rep('CNV', length(alt))

} else if (x == "MafsTogether2.RDS") {

place = alts[[x]]$Position
alt = paste0(alts[[x]]$Alt)
type = rep('SNV', length(alt))

} else {

place = paste0(alts[[x]]$breakpoint1, "-", alts[[x]]$breakpoint2)
alt = paste0(alts[[x]]$gene1, "-", alts[[x]]$gene2)
type = rep('FUS', length(alt))

}
record the new values
SampleAlts = c(SampleAlts, alt)
Types = c(Types, type)
Places = c(Places, place)

}

#put all these into Master
Master = cbind(CaseIDs, Types, Places, SampleAlts)
Master = as.data.frame(Master)
colnames(Master) = c('CaseIDs', 'Class', 'Location', 'Alteration')
return(Master)

}

filterMaster <- function(Master, rna) {

#get the case IDs from your RNA list
rnaCaseIDs = rna[, 3]

#check to see that all entries in Master are in the list
out = c()
for (x in 1:nrow(Master)) {

54

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

if (Master$CaseIDs[x] %in% rnaCaseIDs) {

out = c(out, T)

} else {

out = c(out, F)

}
}

#Take out the entries that do not have accompanying RNA
Master = Master[out,]
return(Master)

}

addPrimarySite <- function(Master) {

#record the caseIDs in Master
caseIDs = unique(Master$CaseIDs)

#find the clinical data associated with those IDs
clin = readRDS('<case IDS and project list>')
clin = clin[clin$caseIDs %in% caseIDs,]

#Make a new column in Master with the case IDs
Master$Cancer = unlist(lapply(Master$CaseIDs, function(x) {

return(clin$project[which(clin$caseIDs == x)])

}))

#remove heme cancers
out = c('TCGA-THYM', 'TCGA-DLBC', 'TCGA-LAML', 'TCGA-LCML')
Master = Master[!(Master$Cancer %in% out),]

return(Master)
}

addSex <- function(Master) {

#record the caseIDs in Master
caseIDs = unique(Master$CaseIDs)

#find the clinical data associated with those IDs
clin = readRDS('<TCGA case IDs and biological sex>')
clin = clin[clin$V1 %in% caseIDs,]

#Make a new column in Master with the case IDs
Master$Sex = unlist(lapply(Master$CaseIDs, function(x) {

return(clin$V2[which(clin$V1 == x)])

55

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

}))

Master$Sex[is.na(Master$Sex)] = 'Unknown'
return(Master)

}

getMaster <- function(input_dir, gene, rna) {
#create first Master dataframe
Master <- makeMaster(input_dir, gene)

#filter Master to contain only samples with RNA available
Master <- filterMaster(Master, rna)

#Add primary site information to master
Master <- addPrimarySite(Master)
Master <- addSex(Master)

for genes on the X and Y chromosome there are different rules for men v women
sex_genesY = readRDS('<genes on Y chromosome>')
sex_genesX = readRDS('<genes on X chromosome>')

#annotate the copy number alterations
Master$Alteration = unlist(lapply(1:nrow(Master), function(r) {

record the sex and number of copies
sex = Master$Sex[r]
alt = Master$Alteration[r]

if (T %in% grepl('CNV', alt)) {

extract the copies
alt = gsub('CNV: ', "", alt)
alt = as.numeric(alt)

if (alt >= 6) {

if there are more than 6 copies, its a gain
return('Gain')

} else if (alt < 2) {

if there are less than 2 copies, we have to check the chromosome status
if (sex == 'Unknown') {

if (gene %in% c(sex_genesY, sex_genesX)) {

if we don't know the sex, and the gene on on the x or y chromosome,
we cannot determine anything
return(NA)

} else {

if the gene is not on X or Y it doesn't matter if we know the sex
of the patient

56

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

return('Loss')

}

} else {

if (sex == 'female') {
if (gene %in% sex_genesY) {

if a woman has no copies of a Y chromsome gene, that's not a GA
return(NA)

} else {

return('Loss')

}

} else {

if (gene %in% sex_genesX) {

however if the patient is male, they need less than 1 copy of an
X chromosome gene
return(ifelse(alt < 1, 'Loss', NA))

} else {

return('Loss')

}
}

}

} else {

return(NA)

}
} else {

return(alt)

}
}))

#put together the data and return Master
Master = Master[!(is.na(Master$Alteration)),]
Master = Master[, colnames(Master) != 'Sex']
Master = Master[Master$Alteration != "",]
return(Master)

}

57

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

In getControlRNA, we determine a list of samples NOT present in Master and
then extract the batch corrected RNA seq files into a list of dataframes
divided by cancer type
each row of each dataframe is a gene
each column of each dataframe is a sample

getControlRNA <- function(Master, rna, proj) {

extract WT sample IDs
fileIDs = rna[!(rna[, 3] %in% Master$CaseIDs),]

filter the IDs for the given cancer type
fileIDs = rna[rna$Cancer == proj,]

remove any duplicates
fileIDs = fileIDs[!(duplicated(fileIDs$caseIDs)),]

#get the file names
names = fileIDs$caseIDs
fileIDs = paste0(fileIDs$Names, '_batch_corrected.csv')

#create dataframe with those RNA files and add row/column names
ControlRNA = lapply(fileIDs, function(x)

fread(
paste0('/fs/ess/PAS0854/Active_projects/TCGA_BatchResult/', x),
select = 'x'

)
)
ControlRNA = do.call(cbind, ControlRNA)
colnames(ControlRNA) = names
genes = readLines('/fs/ess/PAS0854/Active_projects/Gene_Names_TCGABatch.txt')
ControlRNA = cbind(genes, ControlRNA)
colnames(ControlRNA)[1] = 'gene_symbol'
ControlRNA = as.data.frame(ControlRNA)
rownames(ControlRNA) = ControlRNA[, 1]
ControlRNA = ControlRNA[, -1]

#return the data
return(ControlRNA)

}

In getMasterRNA, we determine a list of samples ARE present in Master and then
extract the batch corrected RNA seq files into a dataframe
each row of the dataframe is a gene
each column of the dataframe is a sample

getMasterRNA <- function(Master, rna) {

#get rna case IDs that are available
fileIDs = rna[rna[, 3] %in% Master$CaseIDs,]

#get the file names
names = fileIDs$caseIDs

58

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

fileIDs = paste0(fileIDs$Names, '_batch_corrected.csv')

#read in all the rna files
MasterRNA = lapply(fileIDs, function(x)

fread(
paste0('/fs/ess/PAS0854/Active_projects/TCGA_BatchResult/', x),
select = 'x'

))
#put them together in a data frame
MasterRNA = do.call(cbind, MasterRNA)
colnames(MasterRNA) = names
genes = readLines('/fs/ess/PAS0854/Active_projects/Gene_Names_TCGABatch.txt')
MasterRNA = cbind(genes, MasterRNA)
colnames(MasterRNA)[1] = 'gene_symbol'
MasterRNA = as.data.frame(MasterRNA)
rownames(MasterRNA) = MasterRNA[, 1]
MasterRNA = MasterRNA[, -1]

#return data
return(MasterRNA)

}

In makeRNAright we normalize the gene counts and convert the count dataframe
to TPM to keep consistent with the data format from our model building

makeRNAright <- function(rna) {

create a pseudo annotation dataframe to normalize data
coldata = rep('mutant', ncol(rna))
coldata = as.data.frame(coldata)
colnames(coldata) = c('condition')
coldata$condition = as.factor(coldata$condition)

normalize counts
t_rna = DESeqDataSetFromMatrix(countData = rna,

colData = coldata,
design = ~ 1)

t_rna <- estimateSizeFactors(t_rna)
t_rna = counts(t_rna, normalized = T)

read in gene lengths
geneLen = readRDS('<gene lengths>')

match the order of gene lengths to the order of the RNA
geneLen = geneLen[geneLen$Gene_Symbol %in% rownames(t_rna),]
t_rna = t_rna[rownames(t_rna) %in% geneLen$Gene_Symbol,]
geneLen = geneLen[match(rownames(t_rna), geneLen$Gene_Symbol),]

convert rna to TPM
t_rna = convertCounts(as.matrix(t_rna), 'TPM', geneLen$Length)
t_rna = as.data.frame(t_rna)

#return the RNA

59

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

return(t_rna)
}

In addFunction and addImmuneProb, we add a column to Master which has the
function or immune phenotype respectively of the sample in which the
alteration is present.

addFunction <- function(Master, Mutant_Function) {

#Make sure cases match
Mutant_Function = Mutant_Function[Mutant_Function[, 1] %in% Master$CaseIDs,]

#create new column function made of case IDs
Master$Function = Master$CaseIDs

#use Mutant_Function as a key to replace case IDs with functions
for (i in 1:nrow(Mutant_Function)) {

Master$Function = replace(Master$Function,
which(Master$Function == Mutant_Function[i, 1]),
Mutant_Function[i, 2])

}

return(Master)
}

addImmuneProb <- function(Master, ImmuneProb) {

check the immuneProb you made matches
ImmuneProb = ImmuneProb[ImmuneProb$Names %in% Master$CaseIDs,]

#create new column function made of case IDs
Master$Immune = Master$CaseIDs

#use ImmuneProb as a key to replace case IDs with functions
for (i in 1:nrow(ImmuneProb)) {

#replace each caseID with the immune phenotype
id = which(Master$Immune == ImmuneProb[i, 1])
Master$Immune[id] = ImmuneProb[i, 2]

}

return(Master)
}

In check conditions we ensure the mutation is evaluable
In getAltImmuneTesting we test each mutant group's immune
phenotypes within the same cancer type
In getAltFunctionTesting we test each mutants group's functional
phenotypes overall
In getAltFunctionImmuneTesting we run the previous functions an tally the
results together in a reasonable table

60

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

checkConditions <- function(splitedMaster) {

check that there are at least 5 instances of the alteration in the cancer type
check that all the function annoatations are not "unknown"
out = c(nrow(splitedMaster) >= 5,

T %in% (splitedMaster$Function != 'Unknown'))

if (F %in% out) {

return(NA)

} else {

return(splitedMaster)

}
}

getAltImmuneTesting <- function(Master, props) {

split master based on alteration and cancer type
master.split <-

split(Master, paste0(Master$Alteration, "_", Master$Cancer))

check that each combination is evaluable
master.split <- lapply(master.split, checkConditions)

remove unevaluable alterations
master.split = master.split[!(is.na(master.split))]

if (length(master.split) == 0) {

if nothing is evaluavkle
resplit
master.split <-

split(Master, paste0(Master$Alteration, "_", Master$Cancer))

alts = names(master.split)
nHots = c()
nColds = c()
totals = c()
sigsI = c()
im = c()
record number of each group (GOF, LOF, High, Low)

for (x in alts) {

tmp = master.split[[x]]
total = nrow(tmp)
nHot = nrow(tmp[tmp$Immune == 'High',])
nCold = nrow(tmp[tmp$Immune == 'Low',])
nHots = c(nHots, nHot)
nColds = c(nColds, nCold)

61

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

sigsI = c(sigsI, 1)
im = c(im, 'Unknown')
totals = c(totals, total)

}

} else {

if there is at least 1 evaluable alteration
alts = names(master.split)
nHots = c()
nColds = c()
totals = c()
sigsI = c()
im = c()

go through each alteration that you can evaluate
for (x in alts) {

store data for manipulation
tmp = master.split[[x]]

record the total number of samples
total = nrow(tmp)

record the porportions of high and low sampes in the parent cancer type
props_can = props[props$Cancer == tmp$Cancer[1],]
prop_high = props_can[1, 3] / props_can[1, 2]
prop_low = props_can[1, 4] / props_can[1, 2]

#if any are 0 or 1, offset by .01 to allow for evaluation
prop_high = ifelse(prop_high == 0, .01, prop_high)
prop_low = ifelse(prop_low == 1, .99, prop_low)

record number of each group (High, Low)
nHot = nrow(tmp[tmp$Immune == 'High',])
nCold = nrow(tmp[tmp$Immune == 'Low',])

determine if the proportion of hot samples is greater than expected
z = prop.test(

nHot,
total,
p = prop_high,
alternative = "greater",
correct = TRUE

)

if (z$p.value < .05) {

if it is greater than expected record the number of highs and lows
totals = c(totals, total)
nHots = c(nHots, nHot)
nColds = c(nColds, nCold)

62

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

record the pvalue
sigsI = c(sigsI, z$p.value)

record "high" annoation
im = c(im, 'High')

} else {

if there is not more highs than expected, test lows
z = prop.test(

nCold,
total,
p = prop_low,
alternative = "greater",
correct = TRUE

)

if (z$p.value < .05) {

if there are more lows than expected record the number of highs and lows
totals = c(totals, total)
nHots = c(nHots, nHot)
nColds = c(nColds, nCold)

record the pvalue
sigsI = c(sigsI, z$p.value)

record "high" annoation
im = c(im, 'Low')

} else {

if there is no difference in lows either record everything
totals = c(totals, total)
nHots = c(nHots, nHot)
nColds = c(nColds, nCold)
sigsI = c(sigsI, z$p.value)

record the annotation unknown
im = c(im, 'Unknown')

}
}

}
}
collect all the annotations
alt <- cbind(alts, totals, nHots, nColds, sigsI, im)
colnames(alt) = c('Alt.ID',

'Total.Samples',
'nHighs',
'nLows',
'Immu.Sig',
'Immune')

63

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

return them all in a dataframe
alt = as.data.frame(alt)

return(alt)
}

getAltFunctionTesting <- function(Master) {

split master based on alteration
master.split <- split(Master, Master$Alteration)

check that each combination is evaluable
master.split <- lapply(master.split, checkConditions)
master.split = master.split[!(is.na(master.split))]

if (length(master.split) == 0) {

if nothing is evaluavkle
resplit
master.split <- split(Master, Master$Alteration)
alts = names(master.split)
nGOFs = c()
nLOFs = c()
sigsF = c()
fun = c()

for (x in alts) {

record number of each group (GOF, LOF, High, Low)
tmp = master.split[[x]]
nGOF = nrow(tmp[tmp$Function == 'GOF',])
nLOF = nrow(tmp[tmp$Function == 'LOF',])
nGOFs = c(nGOFs, nGOF)
nLOFs = c(nLOFs, nLOF)
sigsF = c(sigsF, 1)
fun = c(fun, 'Unknown')

}
} else {

if there is at least 1 evaluable alteration
alts = names(master.split)
nGOFs = c()
nLOFs = c()
sigsF = c()
fun = c()

go through each alteration that you can evaluate
for (x in alts) {

record the number of GOFs and LOFs
tmp = master.split[[x]]
nGOF = nrow(tmp[tmp$Function == 'GOF',])

64

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

nLOF = nrow(tmp[tmp$Function == 'LOF',])

determine if there are more or less GOFs than expected by random chance
z = prop.test(

nGOF,
sum(nLOF, nGOF),
p = NULL,
alternative = "two.sided",
correct = TRUE

)

if (z$p.value < .05) {

if there are an unexpected number of GOFs
if (nGOF > nLOF) {

if there are more GOFs than LOFs
record all the numbers
nGOFs = c(nGOFs, nGOF)
nLOFs = c(nLOFs, nLOF)
sigsF = c(sigsF, z$p.value)

record the annotation GOF
fun = c(fun, 'GOF')

} else {

if there are more LOFs than GOFs
record all the numbers
nGOFs = c(nGOFs, nGOF)
nLOFs = c(nLOFs, nLOF)
sigsF = c(sigsF, z$p.value)

record the annotation LOF
fun = c(fun, 'LOF')

}
} else {

there are about as many GOFs we would expect
record all the numbers
nGOFs = c(nGOFs, nGOF)
nLOFs = c(nLOFs, nLOF)
sigsF = c(sigsF, z$p.value)

record the annotation "unknown"
fun = c(fun, 'Unknown')

}
}

}

record all the values together

65

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

alt <- cbind(alts, nGOFs, nLOFs, sigsF, fun)
colnames(alt) = c('Alt.ID', 'nGOFs', 'nLOFs', 'Func.Sig', 'Function')

return the data together
alt = as.data.frame(alt)
return(alt)

}

getAltFunctionImmuneTesting <- function(Master, props) {

get the function results
alt.data.f = getAltFunctionTesting(Master)

get the immune results
alt.data.i = getAltImmuneTesting(Master, props)

colect all the function results for each alteartion in the immune results
out = lapply(gsub("_TCGA.*", "", alt.data.i$Alt.ID), function(x) {

id = which(alt.data.f$Alt.ID == x)
return(alt.data.f[id,])

})

combine all the results together
out = do.call(rbind, out)
alt.data = cbind(alt.data.i, out[,-1])

make the column names be a particular order
alt.data = alt.data[, match(

c(
'Alt.ID',
'Total.Samples',
'nGOFs',
'nLOFs',
'Func.Sig',
'Function',
'nHighs',
'nLows',
'Immu.Sig',
'Immune'

),
colnames(alt.data)

)]

return the resulting data frame
return(alt.data)

}

getAltFunctionImmuneFinal <- function(alt) {

some of the rows from the alt produced by getAltFunctionImmuneTesting
have unnecessary rows

66

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

filter to only include the needed rows
alt = data.frame(

Alt.ID = alt[1, 1],
Total.Samples = sum(as.numeric(alt[, 2])),
nGOFs = sum(as.numeric(alt[, 3])),
nLOFs = sum(as.numeric(alt[, 4])),
Func.Sig = mean(as.numeric(alt[, 5])),
Function = alt[1, 6],
nHighs = sum(as.numeric(alt[, 7])),
nLows = sum(as.numeric(alt[, 8])),
Immu.Sig = mean(as.numeric(alt[, 9])),
Immune = alt[1, 10],
Cancer = paste0(alt[, 11], collapse = ", ")

)

return(alt)
}

#In filterResults we create the necesary dataframes for the graphs created in R shiny.

filterResults <-
function(Master,

MasterRNA,
ControlRNA,
Cancers = 'all',
Mutations = 'all') {

#record the caseIDs in ControlRNA
caseIDs = colnames(ControlRNA)

#find the clinical data associated with those IDs
clin = readRDS('<clinical data>')

filter clin to only cinlude the data in ControlRNA
clin = clin[clin$caseIDs %in% caseIDs,]
clin = clin[match(colnames(ControlRNA), clin$caseIDs),]

store the cancer types in ControlCan
ControlCan = as.data.frame(cbind(colnames(ControlRNA), clin$project))
colnames(ControlCan) = c('CaseIDs', 'Cancers')

if (Cancers != 'all') {

if the cancer parameter is changed, filter accordingly
Master = Master[Master$Cancer %in% Cancers,]
MasterRNA = MasterRNA[, colnames(MasterRNA) %in% Master$CaseIDs]
ControlCan = ControlCan[ControlCan[, 2] %in% Cancers,]
ControlRNA = ControlRNA[, colnames(ControlRNA) %in% ControlCan[, 1]]

}
if (Mutations != 'all') {

if the Mutations parameter is changed, filter accordingly

67

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

Master = Master[Master$Alteration %in% Mutations,]
MasterRNA = MasterRNA[, colnames(MasterRNA) %in% Master$CaseIDs]

}
if (ncol(ControlRNA) < 500) {

combine the RNA for graphing
rna = cbind(ControlRNA, MasterRNA)

ensure there are no inadvertant duplicated rows
funs = Master[!(duplicated(Master$CaseIDs)), 1]
funs = funs[match(colnames(MasterRNA), funs)]

make mutant data metadata for function
for (i in 1:nrow(Master)) {

funs = replace(funs, which(funs == Master[i, 1]), Master[i, 6])

}

imm = Master[!(duplicated(Master$CaseIDs)), 1]
imm = imm[match(colnames(MasterRNA), imm)]

make mutant data metadata for immune
for (i in 1:nrow(Master)) {

imm = replace(imm, which(imm == Master[i, 1]), Master[i, 7])

}

make immune and function control RNA metadata for graphing
metadata1 = c(rep('Control', ncol(ControlRNA)), funs)
metadata2 = c(rep('Control', ncol(ControlRNA)), imm)

} else {

if there are more than 500 samples in the control data, randomly
select 500 to preserve RAM on the web portal
rna = cbind(ControlRNA[, sample(1:ncol(ControlRNA), 500)], MasterRNA)

ensure there are no inadvertant duplicated rows
funs = Master[!(duplicated(Master$CaseIDs)), 1]
funs = funs[match(colnames(MasterRNA), funs)]

make mutant data metadata for function
for (i in 1:nrow(Master)) {

funs = replace(funs, which(funs == Master[i, 1]), Master[i, 6])

}
imm = Master[!(duplicated(Master$CaseIDs)), 1]
imm = imm[match(colnames(MasterRNA), imm)]

68

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

make mutant data metadata for immune
for (i in 1:nrow(Master)) {

imm = replace(imm, which(imm == Master[i, 1]), Master[i, 7])

}

make immune and function control RNA metadata for graphing
metadata1 = c(rep('Control', ncol(ControlRNA)), funs)
metadata2 = c(rep('Control', ncol(ControlRNA)), imm)

}

#put together the meta data
metadata = cbind(metadata1, metadata2, colnames(rna))
metadata = as.data.frame(metadata)
colnames(metadata) = c('Function', 'Immune', 'IDs')

put together all the data for the final product
l = list(rna, metadata, Master, ControlRNA, MasterRNA, ControlCan)
names(l) = c('rna',

'metadata',
'Master',
'ControlRNA',
'MasterRNA',
'ControlCan')

return(l)
}

in runRIGATONI we perform all the functions of RIGATONI and all
the parts of the TCGA analysis.

runRIGATONI <- function(gene, input_dir) {

read in all genes in the TCGA RNA
all_genes = readLines('<TCGA genes>')

if (gene %in% all_genes) {

if the gene you are trying to evaluate is in the list
remove the list of genes
rm(all_genes)
message(paste0('Starting gene: ', gene))
message('Setting up')

load the RNA master list and the string database data
sdb <- readRDS('<string data>')
rna <- readRDS('<rna available>')

#make the master dataframe
message('Making master dataframe for mutant samples')
Master <- suppressWarnings(getMaster(input_dir, gene, rna))

69

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

Master = Master[!(duplicated(Master$CaseIDs)),]

get the control RNA
message('Gathering wild-type control RNA')
ControlRNA <-

suppressMessages(lapply(unique(Master$Cancer), function(x) {
c = getControlRNA(Master, rna, x)
return(makeRNAright(c))

}))
names(ControlRNA) = unique(Master$Cancer)

#get the mutant RNA
message('Gathering mutant RNA')
MasterRNA <- suppressMessages(getMasterRNA(Master, rna))
MasterRNA = makeRNAright(MasterRNA)
rm(rna)

make gene list
message('Making Initial Gene List')
gene_list_ppi = makeGeneList(gene, sdb)

if (length(unlist(gene_list_ppi)) > 0) {

rm(sdb)

build the regression model
message('Building regression model')

Regression <- lapply(ControlRNA, function(x) {

build each regression within each cancer type
suppressWarnings(getRegression(gene_list_ppi, gene, x))

})
names(Regression) <- names(ControlRNA)

predict mutant function
message('Predicting mutant function')
Mutant_Function <- lapply(unique(Master$Cancer), function(x) {

predict mutant function within each cancer type individually
create psuedo Master_1 for evaluation
Master_1 = Master[Master$Cancer == x,]

create psuedo MasterRNA_1 for evaluation
MasterRNA_1 = MasterRNA[, colnames(MasterRNA) %in% Master_1$CaseIDs]

extract the control regression matching the cancer type
Regression_1 = Regression[[x]]

determine mutant function
out = tryCatch({

70

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

return(suppressWarnings(getMutantFunction(
Regression_1, MasterRNA_1, gene

)))

}, error = function(e) {

return(cbind(Master_1$CaseIDs, 'Unknown'))

})

return(out)
})

put together all the mutant functions
Mutant_Function = do.call(rbind, Mutant_Function)

add the mutant functions to master
Master <- addFunction(Master, Mutant_Function)

predict immune phenotype
message('Predicting immune phenotype')
ImmuneProb <- suppressMessages(getImmuneProb(MasterRNA, m))
Master <- suppressMessages(addImmuneProb(Master, ImmuneProb))

predict alteration level data
message('Predicting alteration function and immune phenotype')

get pre-recorded cancer type immune phenotype proportions
props = readRDS('/fs/ess/PAS0854/Raven/immune-genomics/TCGA_Proportions.RDS')

get the initial alt data frame
alt.data <-

suppressWarnings(getAltFunctionImmuneTesting(Master, props))
alt.data = as.data.frame(alt.data)

keep raw results in alt.data.keep for record keeping
alt.data.keep = alt.data
alt.data.keep$gene = gene

filter alt.data for interesting results
alt.data = alt.data[alt.data$Function != 'Unknown',]
alt.data = alt.data[alt.data$Immune != 'Unknown',]

if (nrow(alt.data) == 0) {

if alt.data is empty
just keep alt.data.keep
message(

paste0(
gene,
' has no functional, immune-affecting alterations after filtering'

)
)

71

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

l = list(alt.data.keep)

names(l) = c('alt.data.keep')

return(l)

} else {

if alt.data is not empty
message('Getting final output')

filter Master so it just has the positive results
Master = Master[paste0(Master$Alteration, "_", Master$Cancer) %in%

alt.data$Alt.ID,]

add a cancer column
alt.data$Cancer = unlist(lapply(alt.data$Alt.ID, function(x) {

out = strsplit(x, "_")[[1]][2]
}))

fix the alt.ID column to not contain cancer information now in cancer column
alt.data$Alt.ID = unlist(lapply(alt.data$Alt.ID, function(x) {

out = strsplit(x, "_")[[1]][1]
}))

for each group of cancers which behaves the same, separate them into
sub-data frames
alt.data = split(

alt.data,
paste0(

alt.data$Alt.ID,
"_",
alt.data$Function,
"_",
alt.data$Immune

)
)

summarize each sub-dataframe
alt.data = lapply(alt.data, function(x)

return(getAltFunctionImmuneFinal(x)))

combine all summarized data
alt.data = do.call(rbind, alt.data)
rownames(alt.data) = NULL

filter MasterRNA to include only data from interesting results
MasterRNA = MasterRNA[, colnames(MasterRNA) %in% Master$CaseIDs]

remove cancer types with no interesting results from ControlRNA
ControlRNA = ControlRNA[names(ControlRNA) %in% Master$Cancer]

combine ControlRNA into one dataframe

72

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

ControlRNA = do.call(cbind, ControlRNA)

colnames(ControlRNA) = unlist(lapply(colnames(ControlRNA), function(x) {

remove cancer types from column names
x = strsplit(x, "\\.")[[1]][2]

return(x)

}))

create the final output
forGraphs <-

suppressMessages(filterResults(Master, MasterRNA, ControlRNA))

l = list(
Master,
MasterRNA,
ControlRNA,
alt.data,
forGraphs[['rna']],
forGraphs[['metadata']],
forGraphs[['ControlCan']],
alt.data.keep

)

message('Done!')

names(l) = c(
'Master',
'MasterRNA',
'ControlRNA',
'alt.data',
'rna',
'metadata',
'ControlCan',
'alt.data.keep'

)

return
return(l)

}
} else {

message(paste0(gene, ': no mapped genes :('))
return(NA)

}
} else {

message(paste0(gene, " Not in gene list"))
return(NA)

}
}

73

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

6.2: Run RIGATONI for all genes

In order to run RIGATONI for all genes, I created a plain text file with a new gene to run on each line of
the file and two batch scripts to run each gene through my pipeline in parallel.

In the first batch script, I run each batch job individually and ensure I do not excede batch limits.

#!/bin/sh
#SBATCH --account=PAS0854
#SBATCH --time=30:00:00
#SBATCH --ntasks=5

input_dir='/fs/ess/PAS0854/Active_projects/TCGA_novel_icktps'
output_dir='/fs/scratch/PAS0854/vella12/RIGATONI_Shiny'

while IFS= read line;
do

sbatch Evaluation.sh $line `echo $input_dir` `echo $output_dir`
cond=`squeue -u vella12 | grep 'Val' | wc -l`
while [$cond -gt 998];
do

echo "Waiting";
sleep 10m;
cond=`squeue -u vella12 | grep 'Val' | wc -l`;

done
done < <TCGA gene names>

In the next batch script, I simply run the evaluation script in R described in detail in 5.1

#!/bin/sh
#SBATCH --account=PAS0854
#SBATCH --time=30:00:00
#SBATCH --ntasks=10

module load R/4.1.0-gnu9.1

Rscript evaluationUsingGenes.R $1 $2 $3

The evaluationUsingGenes.R script simply loads each function described in 5.1, and the R package described
in 4 and then executes the following code:

read in the command line arguments
args = commandArgs(trailingOnly = T)
gene = as.character(args[1])
gene = gsub('[\r\n]', '', gene)
input_dir = as.character(args[2])
output_dir = as.character(args[3])

run RIGATONI
RIGA <- runRIGATONI(gene, input_dir)

check the RIGATONI ran all the way through
if (class(RIGA[[1]]) == 'data.frame') {

74

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

if (length(RIGA) == 1) {

if there is only 1 element, that means there were no important alterations
keep the record

write.csv(
RIGA$alt.data.keep,
paste0(

'/fs/ess/PAS0854/Raven/all.alt.data/',
gene,
'.alt.data.csv'

)
)

} else if (length(RIGA) > 1) {
if there are more than 1 elements, that means it ran to completion
keep the record

write.csv(
RIGA$alt.data.keep,
paste0(

'/fs/ess/PAS0854/Raven/all.alt.data/',
gene,
'.alt.data.csv'

)
)

remove the record
RIGA = RIGA[1:7]

#create directory for the results
dir.create(paste0(output_dir, "/", gene))

go to the directory and save the object
setwd(paste0(output_dir, "/", gene))
saveRDS(object = RIGA,

file = 'RIGA.rdata',
compress = T)

}
}

Part 7: Text mining (Fig 4)

We extracted all the results from the Pan TCGA analysis and then performed text mining to understand
how our results compare to existing literature. First we ran the following in linux.

esearch -db pubmed -query "(((immunity) OR (immunology) OR (immune)) \
AND (cancer) NOT (Review[Publication Type]) NOT (Preprint[Publication Type])) \
AND (("2010/12/6"[Date - Publication] : "3000"[Date - Publication]))" |
efetch -format abstract >> abstracts.test.txt

Next we did the following in R

75

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

read in the abstracts file created before
abstracts <- readabs('abstracts.test.txt')

226093 total papers analyzed
annotate how many times each gene appears in the abstract object
genes = gene_atomization(abstracts)

convert to a data frame
genes = data.frame(genes)

save for future use
saveRDS(genes, 'PubMedGenes.RDS')

go to the location of all the recording keeping files stored in section 6
riga_visualize = list.files('/fs/ess/PAS0854/Raven/all.alt.data/')

read each file
riga_visualize = lapply(riga_visualize, read.csv)

combine all the files together
riga_visualize = do.call(rbind, riga_visualize)

#filter for only interesting results
riga_visualize = riga_visualize[riga_visualize$Function != 'Unknown',]
riga_visualize = riga_visualize[riga_visualize$Immune != 'Unknown',]

filter the pubmed genes to include only genes in our output
genes = genes[genes$Gene_symbol %in% riga_visualize$gene,]
riga_visualize$PubMedref = unlist(lapply(riga_visualize$gene, function(gene) {

for each gene
if (gene %in% genes$Gene_symbol) {

id = which(genes$Gene_symbol == gene)

#record the number of times the gene appeared
return(genes$Freq[id])

} else {

if it did not appear, record 0
return(0)

}
}))

remove any duplicated values
riga_visualize = riga_visualize[!(duplicated(riga_visualize$gene)),]

make sure the number of references is numeric
riga_visualize$PubMedref = as.numeric(as.character(riga_visualize$PubMedref))

convert to log10

76

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

riga_visualize$PubMedref = log10(riga_visualize$PubMedref)

if the value is non-finite after converting with log10, convert to 0
riga_visualize$PubMedref[!(is.finite(riga_visualize$PubMedref))] = 0

Figure 4A
p1 = ggplot(riga_visualize, aes(x = PubMedref)) +

geom_histogram(
data = riga_visualize,
color = 'black',
fill = 'gray',
binwidth = 1,
alpha = .5

) +
geom_text(

aes(label = ifelse(after_stat(count) > 0, after_stat(count))),
y = c(2880, 2200, 900, 150, 80),
stat = "bin",
binwidth = 1,
size = 5

) +
theme_classic() +
scale_x_continuous(

breaks = c(0, 1, 2, 3, 4),
labels = c("0", '1-10', '11-100', '101-1,000', '1,000-10,000'),
expand = c(.04, .04)

) +
scale_y_continuous(expand = expansion(mult = c(.01, .08))) +
xlab('PubMed References Connecting \nGOI to Cancer Immunity') +
ylab('Number of Genes (n=5746)') +
theme(text = element_text(size = 15),

axis.text.x = element_text(
angle = 45,
vjust = 1,
hjust = 1

))
saveRDS(p1, "<Figure 4A>")

Part 8: 14q deletion in renal cell carcinoma (Fig 4)

All data shown here is from the paper found at “https://aacrjournals.org/cancerres/article/83/5/700/
716683/Integrative-Single-Cell-Analysis-Reveals” The bulk RNAseq results for 14q deletions shown in figures
4B and 4C are extracted from the pan-TCGA analysis described in section 6. The single cell analysis is shown
here. All data was downloaded from “https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE207493”

8.1 Preprocessing

this function reads in all the data and performs quality control filtering
read_data <- function(RCC) {

#read the data in

77

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://aacrjournals.org/cancerres/article/83/5/700/716683/Integrative-Single-Cell-Analysis-Reveals
https://aacrjournals.org/cancerres/article/83/5/700/716683/Integrative-Single-Cell-Analysis-Reveals
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE207493
https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

out.data <- Read10X(data.dir = paste0("./", RCC))

#turn the file into a Seurat object
out <-

CreateSeuratObject(
counts = out.data,
project = "mRCC81",
min.cells = 8,
min.features = 200

)

record the percent of mitochondrial genes
out[["percent.mt"]] <- PercentageFeatureSet(out, pattern = "ˆMT-")

#record the lower bound of the feature count
low = median(out$nFeature_RNA) - 5 * (sd(out$nFeature_RNA))

if (low < 0) {
if the calculated lower bound is below 0, set to 200
low = 200

}

calculate the upper bound of feature count
high = median(out$nFeature_RNA) + 5 * (sd(out$nFeature_RNA))

if (high > max(out$nFeature_RNA)) {
if the upper bound is higher than the max, set the max to the max + 1
high = max(out$nFeature_RNA) + 1

}

calculate the upper bound of counts
high_c = median(out$nCount_RNA) + 5 * (sd(out$nCount_RNA))

if (high_c > max(out$nCount_RNA)) {
if the upper bound is higher than the max, set the max to the max + 1
high_c = max(out$nCount_RNA) + 1

}

remove cells outside the calculated bounds and
with percent.mt greater than or equal to 10
out <-

subset(out,
subset = nFeature_RNA > low &

nFeature_RNA < high & percent.mt < 10 & nCount_RNA < high_c)

#set the orig.ident to the sample name
out$orig.ident = factor(rep(RCC, length(out$orig.ident)), levels = c(RCC))

#return the object
return(out)

}

78

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

list all the samples to study
ls = list.dirs()

put them into the correct format
ls = gsub('\\./', "", ls)

get just the RCC samples
ls = ls[grepl('RCC', ls)]

read in all the data
mRcc = lapply(ls, read_data)

merge together all the experiments
mRcc = merge(x = mRcc[[1]], y = mRcc[2:length(mRcc)])
mRcc[["joined"]] <- JoinLayers(mRcc[["RNA"]])

check the quality control filtering
mRcc[["percent.mt"]] <- PercentageFeatureSet(mRcc, pattern = "ˆMT-")
VlnPlot(

mRcc,
features = c("nFeature_RNA", "nCount_RNA", "percent.mt"),
ncol = 3,
pt.size = 0

)

record the genes for the S and G2M phases of the cell cycle
s.genes <- cc.genes$s.genes
g2m.genes <- cc.genes$g2m.genes

this is based on a tutorial from https://satijalab.org/seurat/articles/
cell_cycle_vignette
normalize and predict malignant cells
mRcc <- NormalizeData(mRcc, assay = 'joined')
mRcc <- FindVariableFeatures(mRcc, selection.method = "vst", nfeatures = 2000,

assay = 'joined')
mRcc <- CellCycleScoring(mRcc, s.features = s.genes,

g2m.features = g2m.genes,
set.ident = TRUE,
assay = 'joined')

mRcc <- ScaleData(mRcc, vars.to.regress = c("S.Score", "G2M.Score"),
assay = 'joined')

set the default assay to the joined data
DefaultAssay(mRcc) = 'joined'

run PCA
mRcc <-

RunPCA(
mRcc,
pc.genes = VaribaleFeatures(mRcc, assay = 'joined'),
npcs = 30,
verbose = FALSE

)

79

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

explore best dimensions for clustering with a heatmap
DimHeatmap(mRcc,

dims = 1:15,
cells = 500,
balanced = TRUE)

explore best dimensions for clustering with a elbow plot
ElbowPlot(mRcc)

8.2 Cell typing for normal and tumor groups

The following is based on tutorials from “https://hbctraining.github.io/scRNA-seq_online/lessons/06a_
integration_harmony.html” and “https://github.com/IanevskiAleksandr/sc-type”

mRcc <- mRcc %>%
harmonize to remove batch effect
RunHarmony("orig.ident", plot_convergence = TRUE)

find optimal clustering
resolution.range <- seq(from = 0, to = 1, by = 0.2)

use the dimensions selected from the elbow plot and heatmap in 8.1
mRcc <- mRcc %>%

run UMAP on the harmonized data
RunUMAP(reduction = "harmony", dims = 1:7) %>%

find the nearest neighbors for the UMAP object
FindNeighbors(reduction = "harmony", dims = 1:7) %>%

find the clusters of the UMAP object across the resolution range
FindClusters(resolution = resolution.range) %>%
identity()

display the clustree
clustree(mRcc, prefix = "joined_snn_res.")
choose an ideal clustering based on probabilities

Idents(mRcc) = mRcc$joined_snn_res.0.4

rm(g2m.genes)
rm(ls)
rm(resolution.range)
rm(s.genes)

smRcc.markers <- FindAllMarkers(mRcc, only.pos = TRUE)

load gene set preparation function
source(

"https://raw.githubusercontent.com/IanevskiAleksandr/sc-type/master/R
/gene_sets_prepare.R"

)

80

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://hbctraining.github.io/scRNA-seq_online/lessons/06a_integration_harmony.html
https://hbctraining.github.io/scRNA-seq_online/lessons/06a_integration_harmony.html
https://github.com/IanevskiAleksandr/sc-type
https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

load cell type annotation function
source(

"https://raw.githubusercontent.com/IanevskiAleksandr/sc-type/master/R
/sctype_score_.R"

)
DB file
db_ <-

"https://raw.githubusercontent.com/IanevskiAleksandr/sc-type/master
/ScTypeDB_full.xlsx"

tissue <- "Kidney"

prepare gene sets
gs_list <- gene_sets_prepare(db_, tissue)

check Seurat object version (scRNA-seq matrix extracted differently in Seurat v4/v5)
seurat_package_v5 <-

isFALSE('counts' %in% names(attributes(mRcc[["joined"]])))

extract scaled scRNA-seq matrix
scRNAseqData_scaled <-

if (seurat_package_v5) {
as.matrix(mRcc[["joined"]]$scale.data)

} else {
as.matrix(mRcc[["joined"]]@scale.data)

}

run ScType
es.max <-

sctype_score(
scRNAseqData = scRNAseqData_scaled,
scaled = TRUE,
gs = gs_list$gs_positive,
gs2 = gs_list$gs_negative

)

merge by cluster
cL_resutls <-

do.call("rbind", lapply(unique(mRcc@meta.data$joined_snn_res.0.4),
function(cl) {

es.max.cl = sort(rowSums(es.max[, rownames(mRcc@meta.data[
mRcc@meta.data$joined_snn_res.0.4 == cl,])
]),
decreasing = !0)

head(data.frame(
cluster = cl,
type = names(es.max.cl),
scores = es.max.cl,
ncells = sum(mRcc@meta.data$joined_snn_res.0.4 == cl)

),
10)

}))

81

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

collect the top cell type for each cluster
sctype_scores <-

cL_resutls %>% group_by(cluster) %>% top_n(n = 1, wt = scores)
sctype_scores = as.data.frame(sctype_scores)

there is one cluster that has a variety of scores close together,
one of these scores being cancer stem cells
based on the results, I believe these to be cancer stem cells and
I'm manually changing that annotation
sctype_scores[8,] = c(4, 'Cancer stem cells', 12590.768, 9015)

set low-confident (low ScType score) clusters to "unknown"
sctype_scores$type[as.numeric(as.character(sctype_scores$scores)) <

as.numeric(as.character(sctype_scores$ncells)) /
4] <- "Unknown"

add a new metadata slot which includes the sctype classification
mRcc@meta.data$sctype_classification = ""
for (j in unique(sctype_scores$cluster)) {

cl_type = sctype_scores[sctype_scores$cluster == j,]

mRcc@meta.data$sctype_classification[mRcc@meta.data$joined_snn_res.0.4 == j]
= as.character(cl_type$type[1])

}

set the ident back to the sample level information
Idents(mRcc) = mRcc$orig.ident

8.3 Copy number analysis

test = lapply(unique(mRcc$orig.ident), function(x) {

print(x)

separate the sample you would like to work on
out = subset(mRcc, idents = x)

reset the Ident to the cell type
Idents(out) = out$sctype_classification

collect the normal cells
norm_names = names(out$sctype_classification[out$sctype_classification ==

'Hematopoietic cells'])

keep only the normal cells and tumor cells
out = subset(out, idents = c('Cancer stem cells', 'Hematopoietic cells'))

extract the RNA
out = out@assays$joined$counts
out = as.matrix(out)

82

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

keep the RNA and the normal names
out = list(out, norm_names)
names(out) = c('matrix', 'normal_names')
return(out)

})

save for future use
names(test) = unique(mRcc$orig.ident)
save(test, file = 'copyKatInput.rdata')

run copykat
copykat.output = mclapply(1:length(test), function(x) {

record the sample name
nam = names(test)[x]
use = test[[x]]
print(nam)

run copykat
out = c(

rawmat = use$matrix,
id.type = "S",
ngene.chr = 5,
win.size = 25,
KS.cut = 0.1,
sam.name = nam,
norm.cell.names = use$normal_names,
distance = "euclidean",
output.seg = "FLASE",
plot.genes = "FALSE",
genome = "hg20",
n.cores = 2

)

return(out)
})

save for future use
save(copykat.output, file = 'copyKatOutput.rdata')

collect the copy number output
ls = list.files(pattern = '*_copykat_CNA_raw_results_gene_by_cell.txt')

read each copy number result in
ls = lapply(ls, function(x) {

read.table(x, header = T, row.names = NULL)
})
names(ls) = gsub('_.*',

'',
list.files(pattern = '*_copykat_CNA_raw_results_gene_by_cell.txt'))

combine all the results by chromosome

83

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

ls = lapply(ls, function(x) {

aggregate together the output by chromosome
out = aggregate(x[, 8:ncol(x)], by = list(x$chromosome_name), mean)
rownames(out) = out[, 1]
out = out[,-1]

record the mean values for each chromosome
out = apply(out, 1, mean)
return(out)

})

combine all the results together
ls = do.call(cbind, ls)

record values with chr14 deletion
fourteen = ls[14,] < 0
fourteen = as.factor(fourteen)
levels(fourteen) = c('Wildtype', 'Deleted')

record the original samples into a new metadata characteristic called fourteen
mRcc$fourteen = mRcc$orig.ident

record the names of the original samples
nams = unique(mRcc$fourteen)

make sure the order of fourteen matches the order of nams
fourteen = fourteen[match(nams, names(fourteen))]

make sure fourteen is a character not a factor
fourteen = as.character(fourteen)

write function to sub in deleted or wildtype for each sample
subin <- function(vector, list){

for each element in the list, replace the element of the vector which matches
the named element of the list with the element of the list
for (x in 1:length(list)){

vector[vector == names(list)[x]] = list[[x]]
}

return the vector
return(vector)

}

store fourteen
mRcc$fourteen = subin(mRcc$fourteen, fourteen)

84

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

8.4: Immune cell analysis

extract the immune compartment from the mRCC object
imm = subset(mRcc,

sctype_classification %in% c('Unknown',
'Immune cells',
'Hematopoietic cells'))

get the new variable features of the data
imm <- FindVariableFeatures(imm,

selection.method = "vst",
nfeatures = 2000,
assay = 'joined')

run PCA
imm <-

RunPCA(imm,
features = VariableFeatures(object = imm, assay = 'joined'))

make sure the default assay is joined
DefaultAssay(imm) = 'joined'

make a heatmap to help decide on the clusters
DimHeatmap(imm,

dims = 1:15,
cells = 500,
balanced = TRUE)

make an elbow plot to help decide on number of clustering dimensions
ElbowPlot(imm)

set the resolution range
resolution.range <- seq(from = 0, to = 1, by = 0.2)

imm <- imm %>%

run UMAP using harmoney
RunUMAP(reduction = "harmony", dims = 1:6) %>%

find the nearest neighbors
FindNeighbors(reduction = "harmony", dims = 1:6) %>%

find the clusters across the resolution range
FindClusters(resolution = resolution.range) %>%
identity()

display clustree
clustree(imm, prefix = "joined_snn_res.")
choose an ideal clustering based on probabilities

Idents(imm) = imm$joined_snn_res.0.4

load gene set preparation function

85

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

source(
"https://raw.githubusercontent.com/IanevskiAleksandr/sc-type/master/R
/gene_sets_prepare.R"

)
load cell type annotation function
source(

"https://raw.githubusercontent.com/IanevskiAleksandr/sc-type/master/R
/sctype_score_.R"

)
DB file
db_ <-

"https://raw.githubusercontent.com/IanevskiAleksandr/sc-type/master
/ScTypeDB_full.xlsx"

tissue <- "Immune system"

prepare gene sets
gs_list <- gene_sets_prepare(db_, tissue)

check Seurat object version (scRNA-seq matrix extracted differently in Seurat v4/v5)
seurat_package_v5 <-

isFALSE('counts' %in% names(attributes(imm[["joined"]])))

extract scaled scRNA-seq matrix
scRNAseqData_scaled <-

if (seurat_package_v5) {
as.matrix(imm[["joined"]]$scale.data)

} else {
as.matrix(imm[["joined"]]@scale.data)

}

run ScType
es.max <-

sctype_score(
scRNAseqData = scRNAseqData_scaled,
scaled = TRUE,
gs = gs_list$gs_positive,
gs2 = gs_list$gs_negative

)

merge by cluster
cL_resutls <-

do.call("rbind", lapply(unique(imm@meta.data$joined_snn_res.0.4),
function(cl) {

es.max.cl = sort(rowSums(es.max[, rownames(imm@meta.data[
imm@meta.data$joined_snn_res.0.4 ==cl,
])]), decreasing = !0)

head(data.frame(
cluster = cl,
type = names(es.max.cl),
scores = es.max.cl,
ncells = sum(imm@meta.data$joined_snn_res.0.4 == cl)

86

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

),
10)

}))

collect the most likely cell type for each cluster
sctype_scores <-

cL_resutls %>% group_by(cluster) %>% top_n(n = 1, wt = scores)
sctype_scores = as.data.frame(sctype_scores)

set low-confident (low ScType score) clusters to "unknown"
sctype_scores$type[as.numeric(as.character(sctype_scores$scores)) <

as.numeric(as.character(sctype_scores$ncells)) /
4] <- "Unknown"

add a new metadata slot which includes the sctype classification
imm@meta.data$sctype_classification = ""
for (j in unique(sctype_scores$cluster)) {

cl_type = sctype_scores[sctype_scores$cluster == j,]

imm@meta.data$sctype_classification[imm@meta.data$joined_snn_res.0.4 == j] =
as.character(cl_type$type[1])

}

reset the Idents to match the new cell types
Idents(imm) = imm$sctype_classification

save for future reference
save(imm, file = './immRCC.rdata')

now find markers for each cell type between wildtype and deleted samples
markers = lapply(unique(imm$sctype_classification), function(x) {

extract the given cell type
out = subset(imm, sctype_classification == x)

set Idents to fourteen
Idents(out) = out$fourteen

find all markers with no filters
marks <- FindAllMarkers(

out,
only.pos = F,
return.thresh = 1,
logfc.threshold = 0

)
return(marks)

})

extract only comparisons with at least one differentially expressed gene
names(markers) = unique(imm$sctype_classification)
markers = markers[unlist(lapply(markers, function(x) nrow(x) > 0))]

collect the genes of interset for graphing

87

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

genes_receptor = c('HAVCR2',
'TIGIT',
'LAG3',
'CTLA4',
'PDCD1',
'VSIR',
'CD47')

get the markers which correspond the genes of interest for T cells
t.cells = markers[c(2,3,5)]

extract only interesting genes
t.cells = lapply(t.cells, function(x) return(x[x$gene %in% genes_receptor,]))

combine the T cells together
t.cells = do.call(rbind, t.cells)

make the cell names more readable
t.cells$cell = gsub("\\..*", "", rownames(t.cells))

add a column called group
t.cells$group = 'T cells'

Figure 4E
tc = ggplot(t.cells, aes(

x = gene,
y = cell,
size = -log(p_val_adj, 10),
color = avg_log2FC

)) +
geom_point() +
ggh4x::facet_grid2(~ cluster, scales = 'free', independent = 'x') +
theme_classic() +
theme(text = element_text(size = 15),

axis.text.x = element_text(
angle = 90,
vjust = 0.5,
hjust = 1

)) +
scale_colour_gradient2(

low = "blue",
mid = "gray",
high = "red",
midpoint = 0,
space = "Lab",
na.value = "grey50",
guide = "colourbar",
aesthetics = "colour"

) +
xlab('') +
ylab('')

saveRDS(tc, '<figure 4e>')

88

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

extract the T cell compartment of the imm object
t.cell = subset(imm, sctype_classification == 'Naive CD8+ T cells')

set the Ident to fourteen
Idents(t.cell) = t.cell$fourteen

Figure 4D
gridExtra::grid.arrange(

VlnPlot(t.cell, features = c('KLRG1'), pt.size = 0) +
stat_compare_means(label = 'p.signif', label.x = 1.5) +
scale_y_continuous(expand = c(0, .2)) +
theme(

legend.position = 'none',
axis.text.x = element_text(angle = 0, hjust = .5)

) +
xlab('') +
scale_fill_manual(values = c('black', 'purple')),

VlnPlot(t.cell, features = c('IL7R'), pt.size = 0) +
stat_compare_means(label = 'p.signif', label.x = 1.5) +
scale_y_continuous(expand = c(0, .2)) +
theme(

legend.position = 'none',
axis.text.x = element_text(angle = 0, hjust = .5)

) +
xlab('') +
scale_fill_manual(values = c('black', 'purple')),

VlnPlot(t.cell, features = c('IFNG'), pt.size = 0) +
stat_compare_means(label = 'p.signif', label.x = 1.5) +
scale_y_continuous(expand = c(0, .2)) +
theme(

legend.position = 'none',
axis.text.x = element_text(angle = 0, hjust = .5)

) +
xlab('') +
scale_fill_manual(values = c('black', 'purple')),

nrow = 1
)

89

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.02.583103doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

