~

10

11

12

13

14

15

16

17

18

19

20

21

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.
RIGATonl: An R software for Rapid Identification of Genomic Alterations in Tumors affecting lymphocyte

Infiltration

Running title: Identification of genomic variants and altered immune phenotypes in cancer

Raven Vellal?34, Emily L. Hoskins'?#, Lianbo Yu*5 Julie W. Reeser'# Michele R. Wing'# Eric
Samorodnitsky4, Leah Stein'?4, Elizabeth G. Bruening®, Anoosha Paruchurit#, Michelle Churchman’, Nancy

Single*, Wei Chen*8, Aharon G. Freud*8, Sameek Roychowdhury!#

1 Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, Columbus, OH
43210

2 Biological Sciences Graduate Program, The Ohio State University, Columbus, OH 43210

3 Medical Scientist Training Program, The Ohio State University, Columbus, OH 43210

4 Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210

> Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210

5The Bioinformatics Program, Loyola University Chicago, Chicago, IL 60660

7 Aster Insights, Tampa, FL 33612

8 Department of Pathology, The Ohio State University, Columbus, OH 43210

Corresponding author: Sameek Roychowdhury, Associate Professor, Department of Internal Medicine,
Division of Medical Oncology, Comprehensive Cancer Center and The James Cancer Hospital, The Ohio State

University, Columbus, OH 43210, USA. Tel: +1 614-685-5842; email: Sameek.roychowdhury@osumc.edu

Key words: Genomics, immune infiltration, machine learning, tumor immunity, bioinformatics

Word count: 4536 words

mailto:Sameek.roychowdhury@osumc.edu
https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Identification of genomic variants and altered immune phenotypes in cancer

ABSTRACT

Tumor genomic alterations have been associated with altered tumor immune microenvironments and
therapeutic outcomes. These studies raise a critical question: are there additional genomic variations altering
the immune microenvironment in tumors that can provide insight into mechanisms of immune evasion? This
guestion is the backbone of precision immuno-oncology. Current computational approaches to estimate
immunity in bulk RNA sequencing (RNAseq) from tumors include gene set enrichment analysis and cellular
deconvolution, but these techniques do not consider the spatial organization of lymphocytes or connect immune
phenotypes with gene activity. Our new software package, Rapid Identification of Genomic Alterations in Tumors
affecting lymphocyte Infiltration (RIGATonl), addresses these two gaps in separate modules: the Immunity
Module and the Function Module. Using pathologist-reviewed histology slides and paired bulk RNAseq
expression data, we trained a machine learning algorithm to detect high, medium, and low levels of immune
infiltration (Immunity Module). We validated this technique using a subset of pathologist-reviewed slides not
included in the training data, multiplex immunohistochemistry, flow cytometry, and digital staining of The Cancer
Genome Atlas (TCGA). In addition to immune infiltrate classification, RIGATonl leverages another novel machine
learning algorithm for the prediction of gain- and loss-of-function genomic alterations (Function Module). We
validated this approach using clinically relevant and function-impacting genomic alterations from the OncoKB
database. Combining these two modules, we analyzed all genomic alterations present in solid tumors in TCGA
for their resulting protein function and immune phenotype. We visualized these results on a publicly available
website. To illustrate RIGATonI’s potential to identify novel genomic variants with associated altered immune
phenotypes, we describe increased anti-tumor immunity in renal cell carcinoma tumors harboring 14q deletions
and confirmed these results with previously published single-cell RNA sequencing. Thus, we present our R

package and online database, RIGATonl: an innovative software for precision immuno-oncology research.

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Identification of genomic variants and altered immune phenotypes in cancer

Immune surveillance is crucial for the eradication of cancer cells. Investigating factors impacting the
tumor immune microenvironment can aid in understanding this process!. The tumor microenvironment is
composed of tumor cells, along with surrounding immune cells, stroma cells and tissue matrix, and microbiota®.
Each of these elements vary across patients and tumor types, producing a spectrum of immune phenotypes and,
consequently, clinical outcomes to immunotherapy®. In particular, the field of precision immuno-oncology
requires approaches designed to discover relationships between tumor genomic alterations and their associated
microenvironments? 3. There are several techniques to assess the tumor immune microenvironment using bulk
tumor RNAseq data; however, there are no approaches designed to rapidly detect associations between tumor
genomic alterations and the quality of tumor inflammation in big data repositories. Thus, there is a need to
develop computational tools specifically designed to assess immunity in large databases of tumor

transcriptomes.

Current methods for detecting altered immunity in tumors (Figure 1A) include gene set enrichment
analyses (e.g., ImSig?#, Thorsson et. al.5), cellular deconvolution techniques (e.g., MCP-counter®, quantiseqR’,
CIBERSORT?), and ensemble results provided in databases (e.g., TCIA?, TIMER2.0%°, TIMEDB!?!). Gene set
enrichment analysis involves assessing the expression of immune-related gene sets and then clustering cancers
based on the results. This is routinely employed in large studies of immunotherapy outcomes to reveal the tumor
features that underscore interpatient differences'? 3. These approaches are often not optimized for application
to data outside the study within which they are built because they are not intended for robust analysis across
databases. Alternatively, cellular deconvolution tools attempt to emulate flow cytometry or immunohistochemistry
by estimating the number of specific immune cells in a sample®8. Importantly, cellular deconvolution does not
make clear distinctions between immune phenotypes broadly and rather leaves interpretation up to the user.
Databases of cellular deconvolution results have emerged, which include ensemble analyses across The Cancer
Genome Atlas (TCGA) and other sources!® 11, These databases provide information about associations between
genomic alterations and immune phenotypes; however, they do not separate analyses based on the functional

status of the genomic alteration instead combining all alterations in a gene of interest regardless of their

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Identification of genomic variants and altered immune phenotypes in cancer

molecular impact®*. None of these techniques were specifically developed to classify immune phenotypes and

discern associations with functionally relevant tumor genomic alterations.

To address these gaps, we developed Rapid Identification of Genomic Alterations in Tumors affecting
lymphocyte Infiltration (RIGATonl). RIGATonl is composed of two machine learning modules to connect
functional genomic alterations (Function Module) and altered immune phenotypes (Immunity Module) in an
unbiased manner. Our approach is distinct from currently available bulk RNAseq methods in four ways: 1) model
training with pathologist-defined immune infiltration as gold standard, 2) consideration for immune cell spatial
characteristics (e.g., tertiary lymphoid structures, dispersion characteristics, and degree of infiltration), 3) rapid,
robust, and precise immune phenotype classification across big data resources, and 4) gene candidate filtering
that evaluates protein function prediction rather than gene mutation status alone (Figure 1A). To build and
validate RIGATonl, we combined histologic features identified by computational staining!4, pathologist-defined
immune infiltration, protein-protein interaction networks?®, genomic data, proteomic data, and transcriptomic data

(Figure 1B).

First, we built the Immunity Module to predict immune phenotypes using bulk RNAseq expression.
Contrasting other approaches, this module was not built using exclusively immune-related genes; instead, we
performed unbiased feature selection to determine the best predictors (n=114) of tumor immunity (Figure 1A).
We validated and fine-tuned our approach using manually reviewed tumor histology by pathologists,
computational staining4, immunohistochemistry*®, and flow cytometry'® (Figure 1A). Next, we developed the
Function Module which can accurately predict the function of genomic alterations (copy number alterations,
single nucleotide variations, and structural variations) from bulk RNAseq expression. We validated this module
using data from the largest collection of functionally impactful, clinically relevant genomic alterations in cancer:
OncoKB?'’. These two modules were combined to uncover connections between all the genomic alterations in
solid tumors in TCGA and the immune phenotypes of samples harboring these alterations (Figure 1B). We
created an interactive visualization interface (https://rigatoni.osc.edu) to help researchers access our TCGA

analysis results for individual genes (Figure 1B).

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Identification of genomic variants and altered immune phenotypes in cancer

A

Gene Set Enrichment

Cellular Deconvolution

RIGATonl Immunity
Module

Goal

Feature Selection

Protein Validation

Clinical Validation

Find subgroups of
cancer

Known immunity
gene sets

Predict number of each
immune cell subtype

Known immunity gene
sets

Correlation with flow

cytometry data or liquid

cell suspensions

Agnostic gene selection
with machine learning

Pathologist annotation
of lymphocyte
infiltration

RIGATONI
Development

RIGATONI
R Package

Machine
Learning

NDINDY

DNA Mutation

-
. Flow cytometry

Output

Figure 1. Overview of RIGATonl as a novel agnostic approach to measure immune infiltration from bulk tumor RNASeq. A.

Current approaches to estimate immunity from bulk tumor RNAseq include gene set enrichment* ® and cellular deconvolution®-® based
methods. In contrast, RIGATonl utilizes a gene agnostic approach to classify immune cell infiltration in tumors by training on pathologist-
annotated digital slides. B. RIGATonl enables identification of candidate genomic alterations associated with altered immune infilration
in subsets of cancer through evaluation of gene expression, genomic alterations, pathologist-classified tumors, and protein validation.
The Immunity Module assesses immune infiltration from bulk RNAseq expression for individual samples. The Function Module predicts

RNA P I
TCGA data eézg\a
Function e Immunity
Module Module
RIGATONI Sample level
website results

¢ All genes in all bulk RNA seq
samples analyzed

« Genes with functional and
TIME changes visualized

« Sample level function annotation
e Sample level immmune phenotype
score

the function (loss or gain) of individual samples for a given gene of interest using bulk RNAseq expression.

5

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Identification of genomic variants and altered immune phenotypes in cancer

Additionally, we built an R package which can be used to perform the RIGATonl analyses on any samples of

interest (Figure 1B).

To demonstrate the applications of the RIGATonl software, we explored a novel connection between 14q
deletion in renal cell carcinoma and increased anti-cancer immunity discovered by RIGATonl’s analysis of TCGA.
Using bulk RNA sequencing and single cell RNA sequencing from TCGA and Yu et. al.!® respectively, we show
increased infiltration of CD8+ T cells, decreased pro-tumor immune checkpoint signatures, and increased CD8+

T cell proliferation, cytotoxicity, and inflammation.

Together, these results introduce RIGATonl: a unique and powerful tool designed with machine learning

to identify immunologically impactful genomic alterations in cancer.

RESULTS

RIGATonl predicts immune phenotypes by utilizing histology and bulk RNAseq with high accuracy

RIGATonlI’s Immunity Module was trained and validated using a comprehensive, pan-cancer dataset
(OSU-ORIEN dataset) from The Ohio State University (OSU) including digital histology paired with bulk RNAseq
(sequenced by Oncology Research Information Exchange Network, ORIEN). To ensure the OSU-ORIEN dataset
included sufficient low, medium, and high immune phenotypes, we used a preliminary version of our machine
learning algorithm developed using computational staining* output from TCGA. We succeeded in doing so and
produced a training data set of 403 tumors across 22 different cancer types (Supplemental Figure 1). Digital
histology slides from these tumors were reviewed independently by two pathologists and were classified into
low, medium, or high immune infiltration groups (Figure 2A). Pathologists used a semi-quantitative approach to
estimate the percentage of tumor area occupied by lymphocytes. They also considered the distribution of these
lymphocytes throughout the tumor area (e.g., deeply penetrating, semi-penetrating, or peripheral), and the
overall quality of inflammation (e.qg., presence or absence of tertiary lymphoid structures, signs of cytotoxic killing
of tumor cells). To build the final model, we evaluated six different models using two different machine learning

approaches and pathologist annotations both together and separately (see Methods). We selected genes for
6

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Identification of genomic variants and altered immune phenotypes in cancer

immune phenotype prediction within the Immunity Module using ElasticNet'®, which yielded 114 transcriptomic
features (Supplemental Table 1). All bulk RNAseq expression for these 114 genes were extracted and
subsequent analyses utilized only this data. An XgBoost?° algorithm was trained using 334 of 403 tumors with
Bayesian parameter optimization?! to classify tumors’ immune infiltration. We assessed the accuracy of the

algorithm in a variety of ways.

First, we evaluated the accuracy of RIGATonl to classify 69 blind-set samples (Figure 2B). The overall
accuracy of the model was 71.01% (95% confidence interval 58.84%-81.31%). The balanced accuracy was
higher for tumors with high and low infiltration (82.04% and 82.58%, respectively) compared to those with
medium infiltration (63.4%). A similar trend was observed for sensitivity and specificity (Supplemental Table 2-
4). The accuracy was significantly different from the no information rate (p<0.01), indicating that the overall
accuracy is significantly better than what could be achieved from random chance. We also failed to reject the
null hypothesis of McNemar’s test, which indicates there is insufficient evidence that the predictions made by the
algorithm are different from the true phenotypes (p>0.05). Detailed statistics and a confusion matrix of the results

are available in Supplemental Table 2-4.

RIGATonl’s Immunity Module corresponds with mIHC and flow cytometry features of increased

lymphocyte infiltration

We validated the Immunity Module with a set of 32 gastric tumors from a recent study which provided
matched multiplex immunohistochemistry (mIHC), flow cytometry, and bulk RNAseq*®. Tumors classified “high”
by RIGATonl (RIGATonl-high) had higher immune cell counts detected by mIHC (Figure 2C). Further analysis
revealed that this increase was mainly due to a greater number of CD3+ cells in RIGATonl-high tumors compared
to RIGATonl-low tumors (Figure 2D/Supplemental Figure 2A). Further, flow cytometry data from the same
study confirmed our findings. RIGATonl-high tumors showed a significantly higher percentage of lymphocytes
(specifically CD3+ cells) compared to RIGATonl-low tumors (Figure 2E/Supplemental Figure 2B). Additionally,
we observed a significant increase in CD8+ T cells measured by mIHC in RIGATonl-high tumors compared to

RIGATonl-low tumors (Figure 2F).

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Identification of genomic variants and altered immune phenotypes in cancer

— Training Data —
A

B mHigh Medium 1 Low

2 = N/ .
(ng? RIGATONI p Pk - _ 1.00] mm—
N T

: B (R P
Medﬁn e T} & .j Cowmaul:‘am‘;nat pa&';?fﬁ‘i‘s‘

: S [T o

mIHC
" Flow Cytometry _ \

4
]
o

Pa!hologlst
Review

Low

o
N
o

Sample Proportion
o
@
o

g
o
S

[Sample Selection] [Model Training] [Model Testing]

| A A Low Medium High

Pathologist Annotation

— Saito et. al. —

o D . E % F "
- 4e+05 90 4e+05
(2]
~ 15406 P 2y]
5 1 cD3 > s o
Q CD4 o 3e+05 C =80 I = 3e+05
&) CDs *o S &~
T O 1.0e+06| [N CD45R0 R O o) o
8z 1 FOXPS O 53 oI
o £ I CD20 o« g 2e+05 =070 o« E 2e+05
5] [})
o= I NKp46 = Sz £
o —_— CD68) <) o
Qg 5.0e+05 1 88162 _g i _g
x e - 20 £ 1e+05 8 60 = 1e+05
 — z z
0.0e+00 0e+00 . 0e+00
Low High Low High Low High Low High
RIGATONI RIGATONI RIGATONI RIGATONI
Saltz et. al.
G80 . 1.00 Chi Squared Test P Value < 2.2e-16
] ’
-
(] I Rl . . .
© 60 : £0.75 Spatial Categorization
g . e Brisk Band-lik
= o i a risk Band-like
[. b o M Brisk Diffuse
S 40 0. 0.50 Indeterminate
& o B Non-Brisk Focal
a Qo Non-Brisk Multifocal
= IS
= 20 & 0.25 H None
n]
0 0.00
Low Medium High Low Medium High
RIGATONI RIGATONI

Figure 2. Development and validation of RIGATONI immune infiltrate classification. A. To train RIGATonl, we selected tumor
samples based on a preliminary algorithm developed to identify a range of low to high lymphocyte infiltration phenotypes. Tumor samples
were selected across diverse cancer types and two pathologists independently classified them as high, medium, or low degrees of
infiltration. We built a machine learning model to predict these annotations and validated with a variety of data types. B. The accuracy
of the model (Y-axis) was validated using a blind dataset (X-axis) not used for training data. RIGATonl-high annotations were 82%
accurate for pathologist high and low annotations. RIGATonl-medium predictions were 63% accurate. C. Next, we investigated an
independent dataset of gastric tumors with mIHC, flow cytometry, and tumor RNAseq data'®. RIGATonl -high and -low samples
corresponded to immune cell subsets as measured by mIHC. D. The counts of CD3+ T cells detected by mIHC were significantly
increased in RIGATonl-high samples. E. Flow cytometry of these tumors demonstrated an increase in CD3-positive lymphocytes in
RIGATonl -high vs. -low samples. F. The counts of CD8+ T cells detected by mIHC were significantly increased in RIGATonl-high
samples. G. We also investigated our algorithm’s association with histologic features detected by convolutional neural networks in 5,202
tumors from TCGA. The percentage of tumor infiltrating lymphocytes were measured by Saltz et. al.1* and corresponded with
RIGATonl -low, -medium, and -high classifications. H. We evaluated spatial characteristics of lymphocyte infiltrates using Saltz et. al.1*
approach. The overall distribution of spatial characteristics is significantly different across RIGATonl -low, -medium and -high subsets.
RIGATonl-high samples often displayed brisk diffuse lymphocyte patterns shown in maroon. Significance values: p<0.05: *, p<0.01: **,
p<0.001: ***, p<0.0001: ****.
8

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Identification of genomic variants and altered immune phenotypes in cancer

RIGATonl phenotypes aligned with findings from computational staining of lymphocytes

We applied the RIGATonl Immunity Module to 5,202 tumors from TCGA and examined the output of an
orthogonal approach for computational staining of digital pathology slides!4. Saltz et. al.'* developed a
convolutional neural network to detect the percentage and distribution of lymphocytes on digital histology images.
First, we compared RIGATonl classifications to the predicted lymphocyte percentage on the slide (Figure 2G).
We saw that RIGATonl-high tumors displayed significantly greater lymphocyte percentages compared to
RIGATonl -medium or -low tumors (Figure 2G). Similarly, RIGATonl-medium tumors displayed significantly
greater lymphocyte percentages compared to RIGATonl-low tumors (Figure 2G). Next, we compared RIGATonl|
classifications to five patterns of spatial attributes of tumors described by Saltz et. al.}*: brisk band-like, brisk
diffuse, indeterminant, non-brisk focal, non-brisk multifocal, or none (Figure 2H). We observed a significant
difference in the spatial arrangements of lymphocytes between RIGATonl classifications (Figure 2H).
Lymphocytes from RIGATonl-high tumors were more likely to have a brisk diffuse arrangement than the
population (p<0.01), defined by a broad distribution of many lymphocytes throughout the histology slide!4.
RIGATonI-medium tumors display brisk band-like arrangements more often than the population (p<0.01). Brisk
band-like infiltration patterns indicate the lymphocytes are clustered in a band across the slide, but that there are
many lymphocytes!4. RIGATonl-low tumors displayed a higher proportion of non-brisk focal lymphocyte
arrangements (p<0.01). Non-brisk focal arrangements indicated negligible numbers of lymphocytes in a handful
of locations across the image'*. In summary, RIGATonl-high tumors exhibited extensive lymphocyte infiltration
throughout the tissue slide, while RIGATonl-low tumors showed limited infiltration in isolated and/or scattered

spots (Figure 2H).

RIGATonl includes an innovative Function Module which can accurately classify genomic alterations

with molecular effects using protein-protein interaction networks

The Function Module first uses the STRING?® protein-protein interaction database to identify proteins
which have direct and validated interactions with the protein of interest (Figure 3A). Both proteins which act on

the protein of interest (upstream proteins) and proteins on which the protein of interest acts (downstream
9

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Identification of genomic variants and altered immune phenotypes in cancer

proteins) are considered. Next, we collect the gene names corresponding to the proteins into two lists. These
two gene sets serve different purposes: upstream genes allow assessment of alterations which impact the
expression level of the gene of interest; downstream genes allow us to assess the impact of alterations which
may change the activity level of the gene of interest. We built a generalized linear model over a Poisson
distribution using the extracted RNAseq counts of upstream and downstream genes using samples with no
alteration in the gene of interest. These two models are then saved and used to predict the RNAseq counts of
the gene of interest within the mutant samples. 95% prediction intervals are created for both the upstream and
downstream models. Mutant samples with true counts below the 95% prediction interval of either model are
classified as “LOF”. Conversely, samples with counts exceeding the 95% prediction interval are classified as

“GOF”. Samples within the 95% prediction interval of both models are annotated as “unknown” (Figure 3A).

A . = — B ™ Incorrect [Correct
(" Upstream
@ L GOl J @ Upstream
Frediction. Prediction Interval 1.00
. ~ 0 0
Upstream o F 4
Regulators Sis/ e & &
v = 0.75
.0
L LOF GOF %
N d Q_0'50
® o
Downstream L
” Prediction Interval o 0.25
Downstream S 0 o :
Effects 2o ie i = = @ &
Downstream 0 . 0 0
rosiction LOF i GOF Gain of Function Loss of Function
S

Actual

Figure 3: Function Module development and testing. A. The Function Module was developed using upstream

regulators and downstream targets of a given gene of interest from the STRING*® database. Parallel linear models
over a Poisson distribution were built. First, the model of the upstream regulators was assessed. Next, if the
expression of the gene of interest falls within the prediction interval, gene expression predicted by the downstream

targets was assessed. B. The Function Module was assessed using OncokB'? as a ground truth. There were 291
genomic alterations with corresponding annotations in OncoKB™’ and 96.8% of the gain-of-function calls (60/62) and
90.4% of the loss-of-function calls (207/229) were correctly classified.

To assess the Function Module’s accuracy, we analyzed genomic alterations from a total of 1008
oncogenes and tumor suppressor genes annotated by OncoKB'’. When applied to 10,464 tumors from the
TCGA, our algorithm successfully identified 400 GOF alterations and 966 LOF genomic alterations (SNVs,
structural variations, and copy number variations) within these 1008 genes. Genomic alterations harbored by
fewer than five tumors were not assessed. Fusions were excluded due to the high potential for false positives as

many tumors harbored multiple fusions and imprecise breakpoints.

10

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Identification of genomic variants and altered immune phenotypes in cancer

Of the 400 candidate GOF alterations uncovered, 62 were annotated in the OncoKB?!’ database. The
algorithm correctly categorized 60 of 62 as GOF, and two were incorrectly categorized as LOF, yielding an
accuracy of 96% for GOF (Figure 3B). Notably, 84.5% of the alterations annotated by the algorithm had no
information available in OncoKB'’; most of these variants were whole gene amplifications (Supplemental Table
5). Similarly, we validated the accuracy of this algorithm for LOF alterations. Of the 966 LOF alterations
uncovered, only 229 were annotated in the OncoKB*’ database. The algorithm correctly categorized 207 as LOF,
while 22 were incorrectly categorized as GOF, yielding an accuracy of 90% (Figure 3B). Further, 76% of the
candidate LOF alterations annotated by the algorithm had no information available in OncoKB?'’; most of these
variants were whole gene deletions or premature truncations (Supplemental Table 5). Overall, these findings
demonstrate our algorithm's effectiveness in accurately classifying known GOF and LOF mutations while also

identifying novel variants that are not well described in existing databases.

RIGATonl’'s TCGA analysis is available for exploration online

Using the RIGATonl modules outlined above, we compiled and analyzed all genomic alterations
(structural variations, gene fusions, point mutations, and copy number alterations) in TCGA. In total, RIGATonl
identified 7,410 genomic alterations with possible immune effects among 5,746 genes. To determine the number
of novel results among the RIGATonl output, we performed text mining on 226,093 abstracts mentioning “cancer”
and “immunity” published between June 22nd, 2010, and June 22nd, 2023. We discovered that 2,773 (48%) of
the RIGATonl output genes had not been previously connected to cancer immunity (Figure 4A). Only 72 genes
(1%) had been mentioned in cancer immunity abstracts more than 100 times (Figure 4A). All results are available

online at https://rigatoni.osc.edu/. Users select a gene of interest to explore and can subset output with alterations

or cancer types of interest on the home page (Supplemental Figure 3). In the Transcriptomics page, the user
can explore the expression levels of different genes across patient groups (Supplemental Figure 4). Finally, we

provide cellular deconvolution results from quantiseqR’ on the Immunity page (Supplemental Figure 5). This

11

https://rigatoni.osc.edu/
https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Identification of genomic variants and altered immune phenotypes in cancer

B 05

A]
2773 B Wildtype [l Deleted
=
- I 4] e——
wn o o
) 2094 23 S
% 2000 o 8 —
4
oD g - 5038
Y= = 23
(@] M=
° < 2 g€
= @
(TR O 7502
-g 807 e wo
=]] g
=t <
L 71 4 T I
0 ©
S X & & ¢ 8 0.0
N N NS [0 Wildtype Deleted
SR~ oo
N & 14q status
N i Wildtype Deleted I Bcells I Denditic cells | Macrophages M1
PubMed References Conn?Ctlﬂg 14 tat Macrophages M2 | Monocytes I Neutrophils
GOl to Cancer Immunity q status NK cells I TcellsCD4 1T cells CD8
Tregs
— Yu et. al. —
KLRG1 IL7R IFNG
3
| | 4 l l E4 l
> > >
® o B
] 4, 3
c 2 c c
.0 ° .o
[} (7] (7]
7] [} [}
o o2 22
[=% (=9 a
> > >
w ! N L
1
0 0 0
Wildtype Deleted Wildtype Deleted Wildtype Deleted
E Wildtype H Deleted | avg_log2FC
. 0.5
Naive CD8+ T cells [] ® o [] L 0.0
I 05
Naive CD4+ T cells ® [) ® { L e
-log(p_val_adj, 10)
CD8+ NKT-like cells e o e o * 0
® 20
® w0
M~ Ao s o (3] - = E ~ < o (o] - = E 60
§ £ 83 3¢ ¢ §32¢8 5 3¢gz¢ ®
o E e o % g

Figure 4. RIGATonl identifies novel genomic alterations of interest including 14q deletion associated with an increased
immune infiltrate and effector CD8+ T cells in renal cell carcinoma. A. Through analysis of TCGA and text mining of PubMed, 48%
(n = 2773) of genes harboring RIGATonl-identified genomic alterations (n = 5746) have never been associated with tumor immunity. B.
As an example, RIGATonl identified 14q deletion in renal cell carcinoma (RCC) samples which corresponded to an increased immune
infiltration compared to wildtype tumors. C. Using quanitseqR’, we corroborate our finding that there is a broad increase in immune
cells in 14g-deleted RCC tumors. D. With 19 scRNAseq RCC experiments, we investigated markers of CD8+ T cell exhaustion and a
“cold” immune microenvironment. CD8+ T cells from 14q-deleted tumors displayed decreased exhaustion marker KLRG1 and increased
anti-tumor immunity markers IL7R and IFNG?22* E. Immune checkpoints, which are thought to promote tumor growth, are
downregulated across all T cells studied in 14g-deleted tumors compared to wildtype tumors. These checkpoint receptors include CD47,
CTLA4, HAVCR2, LAG3, PDCD1, TIGIT, and VSIR 2% 26, Significance values: p<0.05: *, p<0.01: **, p<0.001: ***, p<0.0001: ****

12

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Identification of genomic variants and altered immune phenotypes in cancer

website is intended to assist researchers in understanding how the function of their gene of interest impacts

immunity in an unbiased and rapid manner.

RIGATonl identifies genomic alteration 14q deletion’s association with altered immune infiltration in

renal cell carcinoma

Exploring novel results from the TCGA analysis, we uncovered a group of genes (n=207) all located on
chromosome 14q which consistently showed the same patterns of deletion, in the same patients, and were
RIGATonI-high. Further investigation led us to discover that these alterations were part of a larger chromosomal
arm deletion of 14q. We observed this pattern in many cancer types, but one of the strongest relationships was
in renal cell carcinoma (RCC). 3% of RCC patients harboring a 14q deletion were highly infiltrated compared to
0.6% of 14q wildtype RCC patients (Figure 4B). We also corroborated these results using quantiseqR’ where
14g-deleted tumors displayed an increased immune infiltration compared to wildtype (Figure 4C). Although
these two bulk RNAseq methods show the same pattern, we also evaluated 14q deletion in an orthogonal dataset
with 19 RCC tumors with single cell RNAseq?!®. Using copyKat?’, we discovered 8/19 patients harbored a 14q
deletion. We evaluated the immune cell compartment of these samples and observed that CD8+ T cells from
14q9-deleted tumors displayed decreased KLRG1, increased IL7R, and increased IFNG expression (Figure 4D).
This pattern is indicative of increased T cell proliferation, cytotoxicity, and T cell-mediated anti-tumor immunity
among CD8+ T cells from 14q-deleted tumors??24, We also investigated the expression of immune checkpoint
genes expressed on T cells (HAVCR2, TIGIT, LAG3, PDCD1, VSIR, and CD47) (Figure 4E)?> 26, Across all T
cells studied, expression of pro-tumor checkpoint genes is decreased in 14g-deleted tumors (Figure 4E). The
largest differences were in LAG3 (LAG-3) and HAVCR2 (TIM-3) (Figure 4E). CD4+ T cells were the only cell
type to have a significant decrease in PDCD1 (PD-1) within 14g-deleted tumors (Figure 4E). Together these
results indicate that 14g-deleted tumors contain more activated CD8+ T cells than wildtype as well as fewer

features of T cell exhaustion and pro-tumor immune activity.

DISCUSSION

13

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Identification of genomic variants and altered immune phenotypes in cancer

RIGATonl is a novel tool to discover precision immuno-oncology targets using bulk RNAseq data in two
distinct modules: the Immunity Module (Figure 2A) and the Function Module (Figure 3A). The Immunity Module
addresses two key gaps not considered by current approaches 1) degree of immune cell dispersion alongside
infiltration, and 2) immune phenotyping across big data resources without user interpretation. The Immunity
Module uses a machine learning approach built with paired bulk RNAseq from pathologist reviewed histology
slides (Figure 2A). To our knowledge, this strategy has never been implemented before. The Function Module
classifies genomic alterations as LOF or GOF based on bulk RNAseq features (Figure 3A). RIGATonl is the first
approach we are aware of for estimating immunity which also estimates gene-level function. RIGATonl was
employed across the TCGA database and interesting results are visualized on our website

(https://rigatoni.osc.edu/) for public use. Finally, we demonstrated that these two modules can be combined to

discover novel connections between genomic alterations and immunity through further investigation of 14q
deletion in renal cell carcinoma (RCC) scRNAseq datasets. In summary, RIGATonl is a unique machine learning

approach specifically designed for precision immuno-oncology.

The Immunity Module considers features of cancer immunity not considered by available software tools.
Currently, gene set enrichment, cellular deconvolution, and ensemble approaches for estimating immunity from
bulk RNAseq have not been compared to benchmark pathologist review of tumor histology for degree and quality
of lymphocyte infiltration (Figure 1A)*®. To build RIGATonl’s Immunity Module, we asked pathologists to review
tumor histology slides for degree of infiltration considering not only the absolute number of lymphocytes, but also
the presence or absence of tertiary lymphoid structures (TLS), signs of cytotoxicity, and the general distribution
across the tumor slide (deeply penetrating the tumor or on the periphery). By incorporating these nuanced
features into our algorithm training and validation, RIGATonl benchmarks aspects of immunity not evaluable with
either gene set enrichment or cellular deconvolution tools*®. Furthermore, both cellular deconvolution and gene
set enrichment utilize genes with known connections to cancer immunity (Figure 1A). These genes are selected
either through literature review or single cell atlases®. Unfortunately, this approach does not allow for evaluation
of de novo mechanisms that impact tumor immunity. To address this gap, RIGATonI’s Immunity Module uses

expression of just 114 genes selected in an unbiased manner (Supplemental Table 1). These genes
14

https://rigatoni.osc.edu/
https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Identification of genomic variants and altered immune phenotypes in cancer

consistently predict immune phenotypes across cancer types and databases (Figure 2B-H). In the future, we

will explore why this novel gene list can reproducibly predict cancer immune infiltration.

The Function Module’s prediction of protein-level effects of genomic alterations from bulk RNAseq
expression data is also novel. Most genomic alterations in tumors are variants of unknown significance?®.
Therefore, a functional measure of associated gene activity can help to prioritize alterations that are most likely
to have a biological or immunological impact. eVIP2 is the only other method designed to determine the function
of genomic variants using bulk RNAseq?®. Importantly, eVIP2 was validated using only two alterations in the
same gene of interest, whereas our validation set demonstrated remarkable accuracy involving 291 different
alterations across 207 different genes (Figure 3B)?°. VIPER, another R package, utilizes cell specific “regulons”
for protein activity prediction and did assess scores for some genomic variants of interest; however, it was not
designed to analyze the functional impact of genomic alterations directly®°. RIGATonl is the only available bulk
RNAseq method to assess protein function from gene expression validated with several hundred genomic
alterations across many different genes. In contrast to DNA-based annotation of mutations, the Function Module
has several benefits. First, although we applied the Function Module to groups with differing genomic alteration
status, the module assesses the function of a gene of interest in a testing group compared to a control group.
Thus, RIGATonI could be applied to any subsets of any other feature (e.g. methylation, alternative splicing,
treatment, etc.) (Figure 3A). Second, when evaluating genomic alterations, RIGATonl can assess novel variants
and mechanisms of altered expression. Third, not all patients with the same genomic alteration experience
identical molecular effects. The Function Module predicts the overall effects of alterations and makes specific
predictions for each sample, considering its unique molecular characteristics (Figure 3A). These unique features

make RIGATonl’s Function Module an effective tool for multi-omic research.

Like many computational approaches, RIGATonl is limited by sample size considerations. By using
pathologist assessment of tumor histology rather than computer vision as a ground truth for the Immunity Module,
we do limit the sample size of our training data. New approaches like Lunit SCOPE 103! and that of Saltz et. al.'*

use deep learning techniques to estimate immune cells on digital pathology slides. Lunit SCOPE 10 was trained

15

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Identification of genomic variants and altered immune phenotypes in cancer

on >17,000 H&E images across 24 cancer types?!. This scale of training data would be impractical using manual
pathologist review. However, it is widely agreed that physician benchmarking is the gold standard against which
machine learning approaches should be measured®?. Therefore, we believe the quality of the training data
classifications compensated for comparatively smaller sample size. Another sample size concern arose when
validating the Function Module. Validation of RIGATonlI’s Function Module only took place on alterations with =5
instances of a candidate alterations to ensure that statistical tests could be performed to determine the functional
status. In the pan-TCGA analysis, we did not group together early terminations or different point mutations
occurring at the same locus out of an abundance of caution (early terminations at different loci may have different
effects; different point mutations at the same locus may have different effects). Without detailed knowledge of all
17,000 genes analyzed, we approached the first version of RIGATonl conservatively. Despite these sample size

concerns, our robust validations give us confidence in our tool’s performance.

RIGATonl identified 14q deletion as a potential novel biomarker for increased anti-tumor immunity in
renal cell carcinoma (RCC). 14q deletion has previously been identified as a negative prognostic indicator in
RCC; however, these studies were done prior to the broad adoption of PD-1/PD-L1 immunotherapy in RCC33 34,
RIGATonl indicates 149 deletions are associated with a highly infiltrated immune microenvironment in TCGA
(Figure 4B). These results were further supported using the cellular deconvolution tool quantiseqR” which
demonstrates enhanced immunity in 14q-deleted samples (Figure 4C). We were able to orthogonally assess
14q through analysis of scRNAseq data for 19 RCC patients®. We first explored the CD8+ T cells between 14qg-
deleted and wildtype tumors. CD8+ T cells from 14q-deleted tumors displayed evidence of superior cytotoxicity,
increased release of interferon-gamma, and increased proliferation?24. We also explored whether pro-tumor
immune checkpoint receptors and ligands were more highly expressed in T cells from 14qg-deleted vs wildtype
tumors. Wholistically, we see that pro-tumor immune checkpoint receptors are decreased in 14g-deleted tumors
compared to wildtype tumors across all cell types explored (Figure 4E)?> 26, |dentification of 14q deletion in RCC
demonstrates a successful application of RIGATonl to discover genomic alterations associated with altered

tumor immunity.

16

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Identification of genomic variants and altered immune phenotypes in cancer

In summary, RIGATonl is a powerful software leveraging tumor RNAseq in novel ways to accelerate
discoveries in precision immuno-oncology research. RIGATonl can be applied across big data sources to
understand tumor-driven mechanisms of immunity, identify novel biomarkers for immunotherapy treatment, and
discover novel drug targets for future immunotherapies. In summary, we are pleased to introduce RIGATonl: an

innovative approach for discovery novel genomic variants with associated altered immune phenotypes.

ONLINE METHODS

Tumor sequencing data. All data shown here were previously published or made available by a big-data source
(described below). Secondary analyses were performed on the Pitzer cluster R studio v4.3.0 within Ohio
Supercomputer Center (https://www.osc.edu/). Data sources include The Cancer Genome Atlas (TCGA) and the
Oncology Research Information Exchange Network (ORIEN). RNAseq count data were downloaded from TCGA
using GenomicDataCommons®® and batch corrected with ComBat-seq3® using institution of origin as the batch.
Genomic variant calling data was downloaded in the form of combined .maf files. Copy number alteration data
were downloaded in the form of gene based raw copy number. Finally, all whole genome .bam files were
downloaded from TCGA and then processed with parliament23” using Delly®®, Manta®®, breakdancer*®, and
breakseq*! to assess for structural variants. Results from parliament23” were combined using SURVIVOR*? with
default settings. RNAseq data was also obtained from ORIEN and batch corrected with ComBat-seq®¢ according
to the RNAseq batch information made available through Aster Insights. Copy number alterations were
downloaded from ORIEN in the form of gene based raw copy number. Demographic information was
downloaded from ORIEN as well. ORIEN data is managed by Aster Insights, requests for this data should be

sent to Aster Insights.

RIGATONI immune phenotyping algorithm development and validation with pathologist review. Two
pathologists independently reviewed 403 tumor slides assessing lymphocyte infiltration characteristics. Pertinent
characteristics included percentage of space not occupied by tumors or stroma, which was occupied by
lymphocytes, dispersion of lymphocytes within tumor, and presence or absence of tertiary lymphoid structures.

Taking into consideration all these characteristics, each pathologist annotated the slide either high, medium, or
17

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Identification of genomic variants and altered immune phenotypes in cancer

low infiltration. Paired RNA sequencing was collected and used along with annotations to build a series of models
predicting immune phenotypes from bulk RNAseq counts. First, important features were selected using
multinomial ElasticNet!® via the R package gimnet*3. Next, these features were used as predictors for six different
machine learning models. Three models were built via the R package XgBoost?° using 10-fold cross validation
alongside Bayesian parameter optimization?! via the R package ParBayesianOptimization*4. Three separate
models were built with the R package ordinalForest*>. Two models of the above six models were built considering
both pathologists’ predictions, two considering just pathologist-one and other two considering only pathologist-
two. The classification accuracy of each algorithm for each group is available in Supplemental Table 6. Each
algorithm uses the same cohort of 334 samples for training and 69 samples for testing. The algorithm with the
best performance (determined with caret*6) on the testing data was selected to be used going forward. More
specific information is provided in Supplemental Table 6. Accuracy of the testing data for the model selected

were visualized using ggplot24” and ggpubr.

Gastric cancer multiplex immunohistochemistry (mIHC) and flow cytometry. RNAseq count data was
downloaded from Saito et. al.'6 along with flow cytometry and IHC outputs. These include 32 patients with gastric
cancer in Tokyo'®. These results were processed as previously described in Saito et al.*® Using this resource,
we used a MANOVA# to compare the IHC counts to determine if there were any significant differences between
groups. Next, we used a Wilcox test>® to assess the counts of each subset of IHC-marked cells to find significant
differences. We performed pairwise comparisons of flow cytometry results using Wilcox tests®C. Results were

visualized using ggplot24” and ggpubr*é.

Determine resulting immune phenotype of each genomic alteration using RNAseq data. An R function
was created which converts RNAseq count data to TPM using the R packages DESeq?2°! (to correct size factors)
and DGE.obj.utils%? (to convert to TPM), and then filters the data down to only the genes selected by ElasticNet!®.
The immune phenotype of each sample was predicted using XgBoost?°. The proportion of high and low tumors
for each cancer type were calculated. To analyze a genomic alteration, all mutant samples provided to the

function are compiled, and a 1-proportion z-test is performed where the null hypothesis is that the proportion of

18

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Identification of genomic variants and altered immune phenotypes in cancer

hot samples will be equal to the population proportion within that cancer type and the alternative hypothesis is
that the proportion of high samples is greater than the population proportion. If the null hypothesis is rejected
(p<0.05), the genomic alteration is annotated RIGATonl-high. If not, a second 1-proportion z-test is performed
where the null hypothesis is that the proportion of low samples will be equal to the population proportion and the
alternative hypothesis is that the proportion of low samples is greater than the population proportion within that
cancer type. If this null hypothesis is rejected (p<0.05), the genomic alteration is annotated RIGATonlI-low. If not,

the alteration is annotated “Unknown”.

Determining functional status of each genomic alteration using RNAseq data. The STRING?*® database’s
protein action version 10.5 was downloaded. The list of protein actions is subset to include only actions on or by
the protein of interest (POI). These actions are further filtered into two lists: an upstream protein list with only
proteins that act to affect the expression of the POI, and a downstream protein list including all genes the POI
activates, inhibits, or alters expression. The upstream gene list is used to model the RNAseq counts of the POI
using modulators of the POI’s expression. The downstream gene list is used to model the RNAseq counts of the

POI using downstream genes as indicators of its activity.

To model typical expression patterns of the POI, all samples with no alteration (control samples) in the gene of
interest (GOI) are collected, and two generalized linear models are created over a Poisson distribution to predict
the RNA counts of the POI/GOI. One model uses the upstream protein list as predictors, and another uses the

downstream protein list. Both models predict the RNAseq counts of the POI.

Next, the RNAseq counts of the GOI within samples harboring mutations (mutant sample) predicted separately
with each regression model. If, in either model, the expression of the GOl is lower than the lower bound of the
95% prediction interval (created by ciTools®?), the mutant sample is annotated loss of function (LOF). On the
other hand, if, in either model, the expression of the GOl is higher than the upper bound of the 95% prediction
interval, the mutant sample is annotated gain-of-function (GOF). Falling outside the bounds of these prediction
intervals indicates that the mutant sample’s GOI expression or activity is more different than that of a control

sample than we would expect from random chance. If the mutant sample’s GOl expression falls within the bounds
19

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Identification of genomic variants and altered immune phenotypes in cancer

of both these prediction intervals, we can conclude that there is not enough evidence to indicate the mutation is

causing abnormal expression or activity in that sample.

Next, all mutant samples provided are compiled, and a 2-proportion z-test is performed (null hypothesis z=0.5)
comparing the proportion of LOF and GOF annotations. If the null hypothesis is rejected (p<0.05), the genomic
alteration is annotated with the more frequent sample level annotation. If not, the alteration is annotated

“Unknown.”

Function annotation algorithm validation. OncoKB?’ provides a list of oncogenes with either targeting drugs
or known oncogenic mutations. All alterations in these 1008 genes were analyzed in parallel. The results were
filtered to only include GOF and LOF calls from the algorithm. Various alterations are called Unknown due to low
sample count, confounding variables, or lack of known connections in STRING!®. We did not include these
samples in the pan-cancer analysis of TCGA, however users can elect to include them in their own analysis.
Additionally, gene fusions were removed due to complexity of their calling. This left 1366 genomic alterations to
investigate. We manually searched OncoKB*’ for information about each alteration and, if available, recorded

the true function of the variant. Results were visualized with ggplot24’” and ggpubr.

Building the R package. Functions were created with the R package devtools®* which create an upstream and
downstream gene list from STRING?'’, determine the function of a group of samples using RNA expression data
from bulk RNAseq, and the sample level immune phenotype using RNA expression data from bulk RNAseq.
These functions are described in detail above. The R package along with relevant documentation is available at

https://github.com/OSU-SRLab/RIGATONI.

Comprehensive analysis of genomic alterations in TCGA. All mutation information in TCGA was downloaded
and compiled. A sample is said to have a copy number variation (CNV) if the total number of copies is =26 or <2.
We also considered the sex of the patient in question if the gene of interest was on the X or Y chromosome, and
we were considering a copy number loss. For male patients, genes on the X chromosome were said to be deleted

if there were zero copies. For female patients, no genes on the Y chromosome were considered deleted. For

20

https://github.com/OSU-SRLab/RIGATONI
https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Identification of genomic variants and altered immune phenotypes in cancer

any patients without biological sex available, we excluded them from the copy number analysis of genes on the
X or Y chromosome. Next, all genomic alterations were analyzed in parallel through the RIGATonl R package
described above. We ensured to analyze each alteration within each cancer type for both functional annotations
and immune phenotyping. The population proportions used for immune phenotype were those of the cancer type
being analyzed. Finally, we stored significant results from TCGA to be visualized by our online tool. The

RIGATonl website is located at https://rigatoni.osc.edu/ and is managed by the Roychowdhury lab group and

the Ohio Supercomputer Center. The website is built with the R package shiny®5, all graphs are visualized with
ggplot24” and ggpubr®. The website input is a user provided GOI, and the website compiles gene level copy
number, fusion, and simple single nucleotide variation results from the pan TCGA analysis. Next, we provide
various visualizations to the user (quantiseqR’ cell type proportions, RNAseq count data, and primary site
prevalence) along with a table describing the different genomic alterations which were both functional and

immunogenic within the GOI.

Text mining of PubMed abstracts to estimate novelty of RIGATONI TCGA output. PubMed abstracts
containing the words “cancer” and “immunity” or “immunology” or “immune” since June 12", 2010, were
downloaded using the R package pubmed.mineR®¢. The function gene_atomization was used to perform text
mining annotation of each gene mentioned. The RIGATonl results were extracted, and each gene was annotated
with their frequency of appearance. Preprint publications were excluded from this analysis. 226,093 abstracts

were analyzed. Results were visualized with ggplot24” and ggpubre.

ScRNAseq analysis of renal cell carcinoma. The data was analyzed using Seurat®”¢° Quality control
measures were performed as follows: remove cells with <5x the standard deviation below median feature count,
>5x the standard deviation above median feature count, <5x median total count, and <10% mitochondrial gene
expression. We performed quality control steps for each sample individually. To mitigate experimental batch
effect, we used harmony®! and clustered using clustree®?. To perform cell typing, we clustered all experiments
together using UMAP with the Seurat®’-¢° package. We then cell typed using the “kidney” tissue designation from
ScType®2. Any cells which were not able to be typed using the “kidney” designation were separated, clustered

21

https://rigatoni.osc.edu/
https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Identification of genomic variants and altered immune phenotypes in cancer

again using UMAP and Seurat®>’-%°, and re-typed using “Immune system” as the tissue of origin. Using copyKat?”,
a scRNA-seq method to detect copy number alterations, we have identified 14q deleted tumors by using
hematopoietic cells as a somatic control. We choose 14q deletion based on average copyKat score across
chromosome 14q. If the score was less than zero on average, we determined that the sample harbored a 14q
deletion. Additionally, we confirmed this by comparing the expression of all suspected 14q deleted tumor cells
to all suspected wildtype tumor cells for each gene on chromosome 14q. For each gene, the 14q deleted tumors
displayed significantly lower expression, Finally, using the FindAllMarkers function from Seurat®’-%°, we
investigated cell markers which were differentially expressed between 14q deleted and wildtype samples. These

results were visualized using base Seurat®”-%° functions, ggplot24’, and ggpubr®.

Acknowledgements. The results published here are in whole or part based upon data generated by the TCGA

Research Network: https://www.cancer.gov/tcga. All computational analyses were done on the Pitzer cluster at

the Ohio Supercomputer Center (OSC) (https://www.osc.edu/). OSC also assisted in developing and hosting the

RIGATonl website.

Author Contributions. RV conceived the idea for RIGATonl, developed the algorithms, wrote all R code for the
project, wrote all Linux code along with ELH and ES, managed data, reviewed data analyses, and
wrote/revised/edited the manuscript. ELH assisted with RIGATonl algorithm development, assisted with Linux
coding, assisted with data management, and revised/edited the manuscript. LY assisted with RIGATonl
algorithm development, assisted with data management, and revised/edited the manuscript. JWR, MRW, LS,
and AP reviewed data analyses, revised/edited the manuscript. ES assisted with Linux coding, wrote all python
code, and revised/edited the manuscript. EGB reviewed OncoKB and annotated the RIGATonl function
algorithm’s validation output. MC and NS enabled access and sequencing of the OSU-ORIEN dataset’s RNAseq.
WC and AF performed pathologist review of the OSU-ORIEN digital pathology images. SR conceived the idea

for RIGATonI, reviewed data analyses, and wrote/revised/edited the manuscript.

22

https://www.cancer.gov/tcga
https://www.osc.edu/
https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

455

456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Identification of genomic variants and altered immune phenotypes in cancer

References

1. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al. Understanding the tumor
immune microenvironment (TIME) for effective therapy. Nature Medicine. 2018;24(5):541-50.

2. Haslam A, Prasad V. Estimation of the Percentage of US Patients With Cancer Who Are Eligible for
and Respond to Checkpoint Inhibitor Immunotherapy Drugs. JAMA network open. 2019;2(5):e192535.

3. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, et al. The Immune Landscape of
Cancer. Immunity. 2018;48(4):812-30.e14.

4, Nirmal AJ, Regan T, Shih BB, Hume DA, Sims AA-O, Freeman TC. Immune Cell Gene Signatures for
Profiling the Microenvironment of Solid Tumors. (2326-6074 (Electronic)).

5. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, et al. The Immune Landscape of
Cancer. (1097-4180 (Electronic)).

6. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al. Estimating the population
abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome biology.
2016;17(1):218.

7. Finotello F, Mayer C, Plattner C, Laschober G, Rieder D, Hackl H, et al. Molecular and pharmacological
modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Medicine.
2019;11(1):34.

8. Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling Tumor Infiltrating Immune Cells
with CIBERSORT. Methods in molecular biology (Clifton, NJ). 2018;1711:243-59.
9. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, et al. Pan-cancer

Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to
Checkpoint Blockade. Cell Reports. 2017;18(1):248-62.

10. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMERZ2.0 for analysis of tumor-infiltrating immune
cells. (1362-4962 (Electronic)).

11. Wang X, Chen L, Liu W, Zhang Y, Liu D, Zhou C, et al. TIMEDB: tumor immune micro-environment cell
composition database with automatic analysis and interactive visualization. Nucleic acids research.
2023;51(D1):D1417-D24.

12. Motzer RJ, Robbins PB, Powles T, Albiges L, Haanen JB, Larkin J, et al. Avelumab plus axitinib versus
sunitinib in advanced renal cell carcinoma: biomarker analysis of the phase 3 JAVELIN Renal 101 trial. Nature
Medicine. 2020;26(11):1733-41.

13. Motzer RJ, Powles T, Atkins MB, Escudier B, McDermott DF, Alekseev BY, et al. Final Overall Survival
and Molecular Analysis in IMmotion151, a Phase 3 Trial Comparing Atezolizumab Plus Bevacizumab vs
Sunitinib in Patients With Previously Untreated Metastatic Renal Cell Carcinoma. (2374-2445 (Electronic)).
14. Saltz J, Gupta R, Hou L, Kurc T, Singh P, Nguyen V, et al. Spatial Organization and Molecular
Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images. (2211-1247
(Electronic)).

15. Szklarczyk D, Kirsch R, Koutrouli MA-O, Nastou KA-O, Mehryary FA-O, Hachilif R, et al. The STRING
database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced
genome of interest. (1362-4962 (Electronic)).

16. Saito N, Sato Y, Abe H, Wada |, Kobayashi Y, Nagaoka K, et al. Selection of RNA-based evaluation
methods for tumor microenvironment by comparing with histochemical and flow cytometric analyses in gastric
cancer. Scientific Reports. 2022;12(1):8576.

17. Chakravarty D, Gao J, Phillips SM, Kundra R, Zhang H, Wang J, et al. OncoKB: A Precision Oncology
Knowledge Base. LID - 10.1200/P0.17.00011 [doi] LID - PO.17.00011. (2473-4284 (Print)).

18. Yu ZA-0O, Lv YA-O, Su CA-O, Lu WA-O, Zhang RA-OX, Li JA-O, et al. Integrative Single-Cell Analysis
Reveals Transcriptional and Epigenetic Regulatory Features of Clear Cell Renal Cell Carcinoma. (1538-7445
(Electronic)).

19. Zou H, Hastie T. Regularization and Variable Selection Via the Elastic Net. Journal of the Royal
Statistical Society Series B: Statistical Methodology. 2005;67(2):301-20.

23

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Identification of genomic variants and altered immune phenotypes in cancer

20. Chen T, Guestrin C, editors. Xgboost: A scalable tree boosting system. Proceedings of the 22nd acm
sigkdd international conference on knowledge discovery and data mining; 2016.

21. Jasper Snoek HL, Ryan P. Adams. Practical Bayesian Optimization of Machine Learning Algorithms.
arXiv. 2012.

22. Voehringer D, Koschella M Fau - Pircher H, Pircher H. Lack of proliferative capacity of human effector
and memory T cells expressing killer cell lectinlike receptor G1 (KLRG1). (0006-4971 (Print)).

23. Shin MS, Park H-J, Young J, Kang I. Implication of IL-7 receptor alpha chain expression by CD8+ T
cells and its signature in defining biomarkers in aging. Immunity & Ageing. 2022;19(1):66.

24. Fenton SE, Saleiro DA-O, Platanias LC. Type | and Il Interferons in the Anti-Tumor Immune Response.
LID - 10.3390/cancers13051037 [doi] LID - 1037. (2072-6694 (Print)).

25. Wei SC, Duffy CR, Allison JP. Fundamental Mechanisms of Immune Checkpoint Blockade Therapy.
Cancer Discovery. 2018;8(9):1069-86.

26. Huang J, Liu F, Li C, Liang X, Li C, Liu Y, et al. Role of CD47 in tumor immunity: a potential target for
combination therapy. Scientific Reports. 2022;12(1):9803.

27. Gao R, Bai S, Henderson YC, Lin Y, Schalck A, Yan Y, et al. Delineating copy nhumber and clonal
substructure in human tumors from single-cell transcriptomes. Nature Biotechnology. 2021;39(5):599-608.

28. van Marcke C, Collard A, Vikkula M, Duhoux FP. Prevalence of pathogenic variants and variants of
unknown significance in patients at high risk of breast cancer: A systematic review and meta-analysis of gene-
panel data. Critical Reviews in Oncology/Hematology. 2018;132:138-44.

29. Thornton AM, Fang L, Lo A, McSharry M, Haan D, O’'Brien C, et al. eVIP2: Expression-based variant
impact phenotyping to predict the function of gene variants. PLOS Computational Biology.
2021;17(7):e1009132.

30. Alvarez MJ, Shen Y, Giorgi FM, Lachmann A, Ding BB, Ye BH, et al. Functional characterization of
somatic mutations in cancer using network-based inference of protein activity. Nature genetics.
2016;48(8):838-47.

31. Lim Y, Choi S, Oh HJ, Kim C, Song S, Kim S, et al. Artificial intelligence-powered spatial analysis of
tumor-infiltrating lymphocytes for prediction of prognosis in resected colon cancer. npj Precision Oncology.
2023;7(1):124.

32. Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. (2514-6645 (Print)).

33. Kroeger N, Klatte T, Chamie K, Rao PN, Birkhduser FD, Sonn GA, et al. Deletions of chromosomes 3p
and 14q molecularly subclassify clear cell renal cell carcinoma. Cancer. 2013;119(8):1547-54.

34. Monzon FA, Alvarez K Fau - Peterson L, Peterson L Fau - Truong L, Truong L Fau - Amato RJ, Amato
Rj Fau - Hernandez-McClain J, Hernandez-McClain J Fau - Tannir N, et al. Chromosome 14q loss defines a
molecular subtype of clear-cell renal cell carcinoma associated with poor prognosis. (1530-0285 (Electronic)).
35. Martin Morgan SD, Marcel Ramos. GenomicDataCommons. 1.26.0 ed2023.

36. Zhang Y, Parmigiani G, Johnson WE. ComBat-seq: batch effect adjustment for RNA-seq count data.
NAR Genomics and Bioinformatics. 2020;2(3):lgaa078.

37. Zarate S, Carroll A, Mahmoud M, Krasheninina O, Jun G, Salerno WJ, et al. Parliament2: Accurate
structural variant calling at scale. GigaScience. 2020;9(12):giaal45.

38. Rausch T, Zichner T, Schlattl A, Stitz AM, Benes V, Korbel JO. DELLY: structural variant discovery by
integrated paired-end and split-read analysis. Bioinformatics (Oxford, England). 2012;28(18):i333-i9.

39. Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Kéllberg M, et al. Manta: rapid detection
of structural variants and indels for germline and cancer sequencing applications. Bioinformatics (Oxford,
England). 2016;32(8):1220-2.

40. Fan X, Abbott TE, Larson D, Chen K. BreakDancer: Identification of Genomic Structural Variation from
Paired-End Read Mapping. (1934-340X (Electronic)).

41. Lam HYK, Mu XJ, Stutz AM, Tanzer A, Cayting PD, Snyder M, et al. Nucleotide-resolution analysis of
structural variants using BreakSeq and a breakpoint library. Nature Biotechnology. 2010;28(1):47-55.

42. Jeffares DA-O, Jolly C, Hoti M, Speed DA-O, Shaw L, Rallis C, et al. Transient structural variations
have strong effects on quantitative traits and reproductive isolation in fission yeast. (2041-1723 (Electronic)).

24

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596

597

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Identification of genomic variants and altered immune phenotypes in cancer

43. Friedman J, Hastie T, Tibshirani R, Narasimhan B, Tay K, Simon N, et al. gimnet: Lasso and Elastic-
Net Regularized Generalized Linear Models. cran2023.

44, Wilson S. ParBayesianOptimization: Parallel Bayesian Optimization of Hyperparameters. 1.2.6 ed2022.
45, Hornung R. Ordinal Forests. Journal of Classification. 2020;37(1):4-17.

46. Kuhn M. Building Predictive Models in R Using the caret Package. Journal of Statistical Software.
2008;28(5):1 - 26.

47. Wickham H. ggplot2: Elegant Graphics for Data Analysis: Springer-Verlag New York; 2016. Available
from: https://ggplot2.tidyverse.org.

48. Kassambara A. ggpubr: 'ggplot2' Based Publication Ready Plots. 2023.

49, Smith H, Gnanadesikan R, Hughes JB. Multivariate Analysis of Variance (MANOVA). Biometrics.
1962;18(1):22-41.

50. Wilcoxon F. Individual comparisons by ranking methods. Biom. Bull., 1, 80—83. 1945.

51. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data
with DESeq2. Genome biology. 2014;15(12):550.

52. Law CW, Alhamdoosh MA-O, Su S, Dong X, Tian LA-O, Smyth GA-O, et al. RNA-seq analysis is easy
as 1-2-3 with limma, Glimma and edgeR. LID - ISCB Comm J-1408 [pii] LID - 10.12688/f1000research.9005.3
[doi]. (2046-1402 (Electronic)).

53. John Haman MA, Institute for Defense Analyses. ciTools: Confidence or Prediction Intervals, Quantiles,
and Probabilities for Statistical Models. 2020.

54. Hadley Wickham JH, Winston Chang, Jennifer Bryan, RStudio. devtools: Tools to Make Developing R
Packages Easier. 2.4.5 ed2022.

55. Winston Chang JC, JJ Allaire, Carson Sievert, Barret Schloerke, Yihui Xie, Jeff Allen, Jonathan
McPherson, Alan Dipert, Barbara Borges, Posit Software, PBC, jQuery Foundation, jQuery contributors, jQuery
Ul contributors, Mark Otto, Jacob Thornton, Bootstrap contributors, Twitter, Inc, Prem Nawaz Khan, Victor
Tsaran, Dennis Lembree, Srinivasu Chakravarthula, Cathy O'Connor, PayPal, Inc, Stefan Petre, Andrew
Rowls, Brian Reavis, Salmen Bejaoui, Denis Ineshin, Sami Samhuri, SpryMedia Limited, John Fraser, John
Gruber, lvan Sagalaev, R Core Team. shiny: Web Application Framework for R. 1.8.0 ed2023.

56. Rani J, Shah Ab Fau - Ramachandran S, Ramachandran S. pubmed.mineR: an R package with text-
mining algorithms to analyse PubMed abstracts. (0973-7138 (Electronic)).

57. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, 3rd, Zheng S, Butler A, et al. Integrated analysis of
multimodal single-cell data. Cell. 2021;184(13):3573-87.e29.

58. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, 3rd, et al. Comprehensive
Integration of Single-Cell Data. Cell. 2019;177(7):1888-902.e21.

59. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across
different conditions, technologies, and species. Nature Biotechnology. 2018;36(5):411-20.

60. Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene
expression data. Nature Biotechnology. 2015;33(5):495-502.

61. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast, sensitive and accurate
integration of single-cell data with Harmony. Nature Methods. 2019;16(12):1289-96.

62. Zappia L, Oshlack A. Clustering trees: a visualization for evaluating clusterings at multiple resolutions.
GigaScience. 2018;7(7):giy083.

63. lanevski A, Giri AK, Aittokallio T. Fully-automated and ultra-fast cell-type identification using specific
marker combinations from single-cell transcriptomic data. Nature Communications. 2022;13(1):1246.

25

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Supplemental Software File for RIGATonI

Raven Vella, Emily Hoskins, and Eric Samorodnitsky

Contents
Libraries 2

Part 1: Process simple nucleotide variations (SNVs), copy number variations (CNVs),

Structural Variants (SVs), and gene fusion outputs from TCGA 3
1.1: Download SNV, CNV, and fusion outputs from TCGA 3
1.2: Process SNV outputs into a list 4
1.3: Process fusion outputs into a list 5
1.4: Process CNV outputs intoa list o 9
1.5: Get parliament2 results for whole genome samples 10
1.6: Process SV outputs into a list e 14
Part 2: Batch Correction on TCGA expression files 16
Part 3: Build hot/cold detection algorithm 19
3.1: Preprocessing input data L 19
3.2 ElasticNet feature selection 21
3.3 OrdinalForest Machine learning L 23
3.4 XgBoost machine learningo L L 24
Part 4: Build RIGATONI package functions 27
4.1: Download STRING database connections 27
4.2: Create the regression models themselves oL 29
4.3: Predict the function of each mutant sample L Lo 30
4.4: Predict the immune phenotype of each sample 36
4.5: Evaluate mutants for userso 37
4.6. Run RIGATonI all together 37
Part 5: Performing RIGATonlI validations (Fig 2 and 3) 40
5.1: Validation of Immunity Module with IHC and Flow (Fig2) 40
5.2: Validation of Immunity Module with Saltz Et Al output (Fig2) 50
5.3: Validation of Function Module with OncoKB (Fig 3) 51

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Part 6: Analyze all of TCGA using RIGATONI 51
6.1: Create functions specific to the analysis of TCGA data 51
6.2: Run RIGATONTI for all genes e e 74

Part 7: Text mining (Fig 4) 75

Part 8: 149 deletion in renal cell carcinoma (Fig 4) 77
8.1 Preprocessing 7
8.2 Cell typing for normal and tumor groups 80
8.3 Copy number analysis L 82
8.4: Immune cell analysis e 85

Libraries

Load necessary libraries:

library(maftools)
library(vcfR)
library(foreach)
library (TCGAutils)
library(GenomicDataCommons)
library(glmnet)
library(ordinalForest)
library(xgboost)
library (ParBayesianOptimization)
library(data.table)
library(readr)
library(sva)

library (pROC)
library(caret)

library (DGEobj.utils)
library (MASS)
library(ordinalForest)
library(ciTools)
library(biomaRt)
library (DESeq2)
library (DGEobj.utils)
library (TCGAutils)
library (pubmed.mineR)
library(ggrepel)
library(scales)
library(ggplot2)
library (ggpubr)
library(Seurat)
library(harmony)
library(clustree)
library(dplyr)
library(openxlsx)
library (HGNChelper)

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

library(parallel)
library(copykat)

Part 1: Process simple nucleotide variations (SNVs), copy num-
ber variations (CNVs), Structural Variants (SVs), and gene fusion
outputs from TCGA

In order to run RIGATONI on an entire database, you need to have all the fusion, SNV, CNV, and SV
outputs from said database in list format. I used the outputs directly from TCGA for the SNV, CNV, and
Fusions callers. I processed the whole genome samples using parliament2 for SVs myself. Shown below are
the steps for collating and organizing the SNVs, CNVs, and fusions.

1.1: Download SNV, CNV, and fusion outputs from TCGA

First, I downloaded the SNV, CNV, and fusion outputs from TCGA. I created manifests using the GDC
database and downloaded the files as shown below.

read in manifest file and call <t mani
mani = read.table('<manifest name>', sep = "\t", header = T)

save the token as an enviromment wvariable in R
Sys.setenv(GDC_TOKEN = readLines('<token file name>'))

set cache and gdc_client software paths
options(gdc_client = "<client location>")
gdc_set_cache(directory = '<output location>')

download each item in the manifest, 4if you do mot have access to the item,
skip it and move on
fnames = lapply(mani$id, function(x)

tryCatch(
suppressMessages (

gdcdata(
X,
progress = FALSE,
access_method = "api",

use_cached = FALSE,
token = gdc_token()
),
error = function(e) {

message (paste0('No access to ', x))
return(NA)

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

}
)

1.2: Process SNV outputs into a list

read in list of genes for which we have expresssion data
genes = readLines('<TCGA-genes>')

go to directory where maf files are located
setwd("<maf location>")

list all directories there
dir = list.dirs()

filter out the directory "."
dir = dir[2:length(dir)]

1 <- foreach(x = dir) %do% {
enter each directory
setwd (paste0(x))

if (length(list.files(pattern = "*.maf.gz")) > 0) {
1f there 7s a maf file there, read 2t in. If not, skip it
g &=
tryCatch(

maftools: :read.maf (list.files(pattern = "*.maf.gz")),
error = function(e) {

return(NA)
}

return(y)

X
go back to the initial directory
setwd("<maf location>")

remove NA entries from the list

1

= 1[!(is.na(l))]

go to the directory where the list should be stored
setwd('<final location>')

save the initial list in case R crashes
(this is a large file, and functions on tt sometimes exceed available rTam)

saveRDS(1, 'MafsTogether.RDS')

stack all the tndividual files together into ome data frame

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

1 = do.call(rbind, 1)

split the dataframe based on the gene symbol of the alteration call
1 = split(l, 1$Hugo_Symbol)

remove entries for which we do mot have expression data
1 = 1l[names(1l) %in% genes]

#Save this final list
saveRDS(1, 'MafsTogether2.RDS')

1.3: Process fusion outputs into a list

#Go to directory where fusion files are located
setwd("<fusions location>")

list directories
dir = list.dirs()

remove directories which are "logs" of the downloads
dir = dir[!(grepl("logs", dir))]

remove the directory "."
dir = dir[2:length(dir)]

inittate empty vector '"mames"
names = c()

fus <- foreach(x = dir) %do% {
for each directopry, go to the fusion parent directory
setwd("<fusions location>")

enter the directory of interest
setwd (x)

if there are no fusion outputs (files ending in .tsv),
skip this directory
if (length(list.files(pattern = "*.tsv")) > 0) {

for (f in list.files(pattern = "*.tsv")) {
read the fusion output file and store it as a dataframe "y
y <- read.delim({f,
sep = "\t",
header = T,
check.names = FALSE)

n

If y has no rows (no fusion calls) skip <it.
if (nrow(y) > 0) {

if (colnames(y)[2] == 'gene2') {

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

if y ©s an ARRIBA output,
filter y to include only the columns listed
y = y[, c("#genel", "gene2", "breakpointl", "breakpoint2")]

} else {

if y ©s an STAR fusion output,
filter y to include only the columns listed
y = y[, c("LeftGene",
"RightGene",
"LeftBreakpoint",
"RightBreakpoint")]

remove """ characters from the geme names
y$LeftGene = gsub("\\"..x", "", y$LeftGene)
y$RightGene = gsub("\\"..*", "" y$RightGene)

rename the columns of y
colnames(y) = c("genel", "gene2", "breakpointl", "breakpoint2")

create new column called chrl made up of the chromosome

from breakpoint 1

y$chrl = unlist(lapply(y$breakpointl, function(x) {
return(strsplit(x, ":") [[111[11)

)

edit breakpoint 1 to only be location on the chromosome

y$breakpointl = unlist(lapply(y$breakpointl, function(x) {
return(as.numeric(strsplit(x, ":")[[1]1]1[2]))

)

create new column called chr2 made up of the chromosome

from breakpoint 2

y$chr2 = unlist(lapply(y$breakpoint2, function(x) {
return(strsplit(x, ":")[[1]1][1])

)

edit breakpoint 2 to only be location on the chromosome

y$breakpoint2 = unlist(lapply(y$breakpoint2, function(x) {
return(as.numeric(strsplit(x, ":")[[1]1]1[2]))

)

add sample id using file name
y$SampleID = f

convert file name to case ID
y$CaseID = UUIDtoUUID(filenameToBarcode(f)[1, 2],
to_type = 'case_id')[1, 2]

append filename to the names wector
names = c(names, f)

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

remove rows from y which contain genes for which we have
no expression data
out = unlist(lapply(l:nrow(y), function(r) {
if (ylr, 1] %in% genes && ylr, 2] %in’, genes) {
return(T)
} else {

return(F)

}
)

y = ylout,]

only return y tf the final dataframe has more than O rTows
if (nrow(y) > 0) {

return(y)
} else {
return(NA)

}
} else {
return(NA)
}
}
} else {

#return to the parent directory
setwd("<fusions location>")

set names of the fus list to the file names
names (fus) = names

remove skipped entries from the fus list
fus = fus[!(is.na(fus))]

return to the directory where the list should be stored
setwd('<final location>')

stack the fusion outputs together into a dataframe
fus = do.call(rbind, fus)

save the fusion dataframe in case of ram issues
saveRDS(fus, 'FusTogether.RDS')

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

double check that all genes have accompanying expression data
fus = fus([fus$genel ’inJ, genes,]
fus = fus[fus$gene2 %inj), genes,]

create a new column "Combo" that names each fusion using the two genes
fus$Combo = pastel(fus$genel, "-", fus$gene2)

create new list by splitting the fusion dataframe by fusion name
fus2 = split(fus, fus$Combo)

for (x in 1:length(fus2)) {
for each fustion, save the dataframe as new
new = fus2[[x]]

split new into subdataframe based on the case ID
new = split(new, new$CaseID)

for (y in 1:length(new)) {
for each case ID, save the dataframe as newnew
newnew = newl[[y]]

if (nrow(newnew) > 1) {
1f newnew has more than 1 row, this means there are multiple calls
for the same fusion create 2 matrices comparing each call's
first and second breakpoint
brl = as.data.frame(expand.grid(newnew$breakpointl, newnew$breakpointil))
br2 = as.data.frame(expand.grid(newnew$breakpoint2, newnew$breakpoint2))

create new columns with the difference of these breakpoints
bri$dif = abs(bri[, 1] - bril, 2])
br2$dif = abs(br2[, 1] - br2[, 2])

remove rows from each matrixz where the breakpoints are
at most 100 bp apart
brl = bril[bri$dif >= 100 ||
bri¢dif == 0,]
br2 = br2[br2$dif >= 100 ||
br2$dif == 0,]

take only the first column of each dataframe
bris = bri[, 1]
br2s = br2[, 1]

subset nmewenw to only contain these filtered breakpoints
newnew = newnew[newnew$breakpointl %inj brils &&
newnew$breakpoint2 %inJ, br2s,]

3

replace the previous version of newnew with the filtered version
new[[y]l] = newnew

3

stack the filtered wversions together to created filtered

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

dataframe for the fusion
new = do.call(rbind, new)

replace previous fusion dataframe with filtered version
fus2[[x]] = new

stack filtered fusions on top of each other to create new dataframe fus2
fus2 = do.call(rbind, fus2)

add the chromosome of each breakpoint back into the breakpoint columns
fus2$breakpointl = pasteO(fus2$chrl, ":", fus2$breakpointl)
fus2$breakpoint2 = pasteO(fus2$chr2, ":", fus2$breakpoint?2)

remove the now redundant breakpoint columns
fus2 = fus2[, c('genel’,

'gene2',

'breakpointl’',

'"breakpoint2',

'CaselD’',

"Combo')]

split by the fusion name
fus2 = split(fus2, fus2$Combo)

return to where you are storing the lists
setwd('<final location>')

save the new fusion list
saveRDS(fus2, 'FusTogether2.RDS')

1.4: Process CNV outputs into a list
go to where the copy number outputs are stored
setwd ('<copy number location>')

list files in this directory
1ls = list.files()

go through the list of files individually
1s1 = lapply(ls, function(x) {

read the file in and store it as dataframe cn
cn = read.delim(x, header = T, sep = '\t')

remove empty Tows
cn = cn[!(is.na(cn$copy_number)),]

create list of rows which have either CNV gain or loss
use = unlist(lapply(l:nrow(cn), function(r) {

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

if (cn$copy_number[r] < 2 ||
cn$copy_number [r] >= 6 &&
cn$gene_name[r] Yin’ genes) {
return(T)
} else {

return (F)

}
19D

subset the dataframe to only contain those rows identified above
cn = cnluse,]

include only columns listed
cn = cn[, c('gene_name', 'start', 'end', "copy_number")]

edit copy number column to contain the string "CNV"
cn$copy_number = pasteO("CNV: ", cn$copy_number)

add a case ID column using the file name
cn$CaseID = UUIDtoUUID(gsub("\\..*x", "" x))[1, 2]

return(cn)

b

stack the entries in the list on top of each other in dataframe lsl
1sl = do.call(rbind, 1s1)

split the new lsl datafream by gene_name
1s1 = split(lsl, 1s1$gene_name)

go to desired directory
setwd('<final location>')

store the resulting list
saveRDS(1ls, "CopyTogether2.RDS")

1.5: Get parliament2 results for whole genome samples

First you need to get the parliament2 image from dnanexus

singularity pull docker://dnanexus/parliament2

Next I wrote the following script to run parliament2 on all whole genome samples in parallel
#1/bin/sh

#SBATCH ——account=PAS0854
#SBATCH —-time=96:00:00

10

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

#SBATCH --ntasks=3

Help()

{

Display Help

echo "Run the SV calls on all TCGA bams"
echo

echo "Syntax: GridssAll.sh [-hl|olr|plulk]"
echo "options:"

echo "h Print help."

echo "o Output path"

echo 'r Reference Path"

echo '"p Paired bam file name"
echo "u Username"

echo "k Token path"

echo

}

while getopts "h:o:r:p:u:k:" option; do
case $option in

h) # display Help

Help

exit;;

u) #store the user name

user=$0PTARG

o) #store the output path

out=$0PTARG

r) #store reference path

ref=$0PTARG

p) #store bam UUID name

pair=$0PTARG

k) #store token path

token=$0PTARG

\?7) #invalid option

echo 'Error: Invalid input, please use -h for help'
exit;;

esac

done

go line by line through the bam list
while IFS= read line;
do
cond="squeue -u $user | wc -1°
check that we are mot going to exceed 1000 jobs
while [$cond -ge 990];
do
if we are, wait 30 min and check again
echo "Waiting: SV called";

11

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

sleep 10m;
cond="squeue -u $user | wc -17;
done;

sbatch runCallers.sh \
-t “echo $line” -r $ref -o $out -k $token;
done < $pair

To run this script, I would use the line of code below (replaceing with the appropriate file paths).

sbatch getSVresults.sh -u <osc_username> -o <output_path> -r <reference_path> \
-p <uuid_list> -t <token_path>

The runCallers.sh script is shown below.

#1/bin/sh

#SBATCH --account=PAS0854
#SBATCH —--time=12:00:00
#SBATCH --ntasks=5

Help()

{

Display Help

echo "Run the callers on a bam"

echo

echo "Syntax: runCallers.sh [-hlolr[tInl|s|k]"
echo "options:"

echo "h Print help."

echo "o Output path"

echo '"r Reference Path"

echo "t Tumor bam file name"
echo "s Somatic bam file name"
echo "k Token file name"

echo

¥

while getopts "h:o:r:t:m:s:k:" option; do
case $option in

h) # display Help

Help

exit;;

o) #store the output path
out=$0PTARG

r) #store reference path
ref=$0PTARG

t) #store paired bam file name
tumor=$0PTARG

k) #store token

token=$0PTARG

\7) #invalid option

12

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

echo 'Error: Invalid input, please use -h for help'
exit;;

esac

done

#navigate to the ouput location
cd $out

#create working directory for the tumor sample
mkdir $tumor.working/

#temporarily copy the reference files to the working directory
cp $ref.gz $tumor.working/$ref.gz
cp $ref.fai $tumor.working/$ref.fai

#enter the working directory
cd $tumor.working

#make a new directory for the output
mkdir output/

#store current directory in variable $dir
dir=$(pwd)

#store token in wariable $token
token=$ (<$token)

#download the tumor bam from GDC
curl -o ./$tumor.bam --header "X-Auth-Token: $token" \
'https://api.gdc.cancer.gov/data/ ' $tumor

#load samtools
module load samtools

#index the bam
samtools index ./$tumor.bam ./$tumor.bam.bai

#run parliament2 with manta, delly, breakdancer, and breakseq

singularity run --bind $dir:/home/dnanexus/in,$dir/output:parliament2_latest.sif \
--bam $tumor.bam \

--bai $tumor.bam.bai --fai $ref.fai -r $ref.gz \

--manta --delly_deletion --delly_insertion --delly_inversion \

--delly_duplication --breakdancer --breakseq --genotype

#move the output files to the initial out directory
mv ./output/$tumor.survivor_sorted.vcf $out/$tumor.survivor_sorted.vct

#go back to the out directory
cd $out

#remove the temporary files
rm -r $tumor.working/

13

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

1.6: Process SV outputs into a list
#go to the directory where the SV results are stored.
setwd('<structural variant location>')

#create a list of the .vcf files in this directory
lsv = list.files(pattern = "*.annotated")

1lsv <- foreach(i = 1sv) %do’% {
#for each vcf file, attempt to read it in, <f an error ts returned, skip it

a <-
tryCatch(
vcfR: :read.vcfR(i, verbose = FALSE),
error = function(e) {
return(NA)
}
)
return(a)
}

#set the names of the list to the names of the files
names(lsv) = list.files(pattern = "*.annotated")

#removed skipped wvalues
1sv = 1sv[!(is.na(lsv))]

newlsv <- foreach(i = 1:length(lsv)) %do% {
#for each entry in the list, store the name of the entry as nam

nam = names (1lsv) [i]

#next store the object as 1©
i = 1sv[[i]]

#turn 7 into a tidy
i = vcfR::vcfR2tidy (i)

#extract the data frame
i = i$fix

#remove entries that do not effect a gene
i = i[!(is.na(i$GENE)),]

#add a column with the name of the file
i$SampleID = nam

return(i)

14

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

#create list of objects in the list with no SV results
out = unlist(lapply(newlsv, function(x) {

if (nrow(x) == 0) {
return(F)

} else {
return(T)

}
1))

#remove the entries with no SV results
sv = newlsv[out]

#go to desired directory
setwd('<final location>')

#store this list in case of ram issues
saveRDS(sv, "SVTogether.RDS")

#create biomart object with ensembl names
mart <- useDataset("hsapiens_gene_ensembl", useMart("ensembl"))

#create empty list sv2
sv2 = list()

for (x in sv) {
#for each dataframe in sv, store it as a mew wartable dat
dat = x

#store the gene names in a vector called rid
rid = dat$GENE

#remove genes that are not listed as mRNA transcripts
rid = rid[grepl('NM', rid)]

#remove isoform information
rid = gsub("\\..*", "", rid)

#create new dataframe with entries in rid along with corresponding hgnc symbols names
refseq_mapping <-
biomaRt: : getBM(
attributes = c("refseq_mrna", "hgnc_symbol"),
filters = "refseq_mrna",
values = rid,
mart = mart
)
#create a new data frame from geme information in dat without tsoform infromation
rid2 = gsub("\\..*", "' dat$GENE)

15

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

#replace the entries in the new list with the hgnc symbols
for (i in 1:nrow(refseq_mapping)) {

rid2 = replace(rid2, which(rid2 == refseq_mappingli, 1]), refseq_mappingl[i, 2])
}

#replace ensemble symbols in dat with the hgnc symbols
dat$GENE = rid2

#remove genes for which we have no expression information
dat = dat[dat$GENE %in) genes,]

#fine case ID using the file name
caseID = UUIDtoUUID(gsub("\\..*", "" dat$SampleID[1]),
to_type = 'case_id')[1, 2]

#subset dat to only include columns listed
dat = dat[, c('POS', 'END', 'GENE', 'ALT')]

#add column with the case ID information
dat$CaseID = caselD

#append dat to the new list sv2
sv2[[length(sv2) + 1]] = dat

#stack dataframes in sv2 on top of eachother
sv2 = do.call(rbind, sv2)

#split the sv2 dataframe into a list by gene
sv2 = split(sv2, sv2$GENE)

#navigate to desired directory
setwd('<final location')

#save sv2
saveRDS (sv2, 'SVTogether2.RDS')

Part 2: Batch Correction on TCGA expression files

In order to analyze the RNA seq data all together from TCGA, batch correction was performed by institution.
First all RNA expression files must be downloaded. To do this, I went to GDC, created a manifest and
downloaded them as shown below.

#read in manifest file and call 2t mani
mani = read.table('<manifest name>', sep = "\t", header = T)

#save the token as an environment vartable in R
Sys.setenv(GDC_TOKEN = readLines('<token file name>'))

#set cache and gdc_client software paths
options(gdc_client = "<client location>")

16

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

gdc_set_cache(directory = '<output location>')

download each item in the manifest, if you do not
have access to the item, skip it and move on
fnames = lapply(mani$id, function(x)

tryCatch(

suppressMessages (

gdcdata(
X,
progress = FALSE,
access_method = "api"

use_cached = FALSE,
token = gdc_token()

D¢

error = function(e) {
message (paste0('No access to ', x))
return(NA)

}
))

Next, you need to unpack all the directories.

cd <path/to/directories>
find . -maxdepth 1 -exec mv {} .. \;
Next, I ran combat-seq from SVA as shown below.

#Go to the location of the RNA seq data
setwd("<location of gene expression files>")

#get list of the counts files
fl = list.files(pattern = '*star_gene_counts.tsv')

#read in each file
counts = lapply(fl, function(x) {

#read in the tsv file skipping the header line
test = as.data.frame(read_tsv(x, skip = c(1)))

#select only the gene mame and counts columns
test = test[, c(2, 4)]

#remove rows with NA entries

test = test[!(is.na(test$gene_name)),]
test = test[!(is.na(test$unstranded)),]

17

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

#make sure the counts column is numeric
test$unstranded = as.numeric(as.character(test$unstranded))

#aggregate reads together by gene mname
test = aggregate(test$unstranded, list(test$gene_name), sum)

#save the gene names
names = test$Group.1

#remove the first column of gene names
test = test[,-1]

#convert to a dataframe
test = as.data.frame(test)

#add rownames (gene mames) back to the file
rownames (test) = names

#return data frame
return(test)

)

#combine counts stide by side
counts = do.call(cbind, counts)

#get the barcodes from the file names
f1 = filenameToBarcode(£f1)
fl = fl$aliquots.submitter_id

#set the column mames to the barcodes
colnames(counts) = fl

setwd("<final location>")

#save the row names (gene names)
fConn = file('Gene_Names.txt')
writeLines (rownames (counts), fConn)
close(fConn)

#Create your batches
bat = unlist(lapply(fl, function(x) {

#the center is the 7th entry in the barcode
return(strsplit(x, "-")[[1]1]1[71)

M)

#run combat
adj_counts = ComBat_seq(counts, bat)

#save the results

setwd('<final location>')
lapply(1:ncol(adj_counts), function(x){

18

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

write.csv(
adj_counts[, x],
file = pasteO(colnames(adj_counts) [x], "_batch_corrected.csv"),
row.names = T)

b

Part 3: Build hot/cold detection algorithm

3.1: Preprocessing input data

First I combine the pathologist annotations and gather the paired RNA for each sample.

#read in the data

trul = readxl::read_xlsx('<path 1>', sheet = 1)
trul = as.data.frame(trul)
tru2 = readxl::read_xlsx('<path 2>', sheet = 1)

tru2 as.data.frame(tru2)
colnames(tru2) = colnames(trul)

#remove first three columns of notes
tru2 = tru2[-c(1:3),]

#remove question marks from pathologist annotations
tru2$” Lymphocyte Annot.~ = gsub("\\7", "", tru2$ Lymphocyte Annot.’)

#convert annotations to ordered wvalues
trul$ Lymphocyte Annot. = ifelse(trul$ Lymphocyte Annot. == 'hot',
2,
ifelse(trul$ Lymphocyte Annot.™ == 'cold',
0,
1))
tru2$ Lymphocyte Annot.~ = ifelse(tru2$ Lymphocyte Annot. == 'hot',
2,
ifelse(tru2$ Lymphocyte Annot.™ == 'cold',
0,
1))
#combine the two data tables
tru = as.data.frame(cbind(trul, tru2$ Lymphocyte Annot.))
colnames (tru) [ncol(tru)] = 'pathl’
colnames (tru) [ncol(tru) - 2] = 'path2’

#remove initial data
rm(trul)

rm(tru2)

#combine the pathologist annotations into one final column
tru$true = sum(tru$pathl, tru$pathl)

#read in RNA
rna = readRDS('<batch adjusted RNA counts>')

19

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

#Make sure the RNA columns match the annotation rows
rna = as.data.frame(rna)

rna = rnal, colnames(rna) %inJ, tru$ RNASeq SLID"]
rna = rnal, match(tru$ RNASeq SLID , colnames(rna))]

#create new column with final annotations using both pathologist rTeviews
tru$group = ifelse(tru$true == 0,
'low',
ifelse(tru$true == 4,
'high',
'medium'))

#save tru for future use
saveRDS(tru, '<true annotations>')

#create balanced list of samples to use for training (80) of high, medium, and low)
train = split(tru, as.character(tru$group))
train = lapply(train, function(x) {

ids sample(1:nrow(x), nrow(x) * .8)
return(x[ids,])

b

#record the training data list for future use
train = do.call(rbind, train)
saveRDS(train, 'training.ORIEN.RDS')

Prior to training the algorithm, some normalization steps are required.

First we filter the genes avatilable to include those in the wvalidation data sets.
Next we mormalize the data according to stize factors and convert to TPM.

These steps ensure the algorithm will work consistently across data sources

#load gene lengths
genelen = readRDS('<gene lengths>')

#filter to inlcude only genes present across different datasets
genes_TCGA = readLines("<Gene Names TCGA>")

genes_IHC = readRDS('<raw.data gastric_IHC.RDS>')

genes_IHC = genes_IHC$TPM

genes_IHC = rownames (genes_IHC)

genes = intersect(intersect(genelLen$Gene_Symbol, genes_TCGA), genes_IHC)

#filter RNA to only include genes in the IHC dataset, URIEN, and TCGA
rna = rnalrownames(rna) %inJ, genes,]

#create new dataframe with annotations from tru
coldata = as.character (tru$true)

coldata = as.data.frame(coldata)

colnames (coldata) c('condition')
coldata$condition = as.factor(coldata$condition)

#create count data frame with size mormalization

20

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

DESeqDataSetFromMatrix(countData = rna,
colData = coldata,
design = ~ condition)

t_rna <- estimateSizeFactors(t_rna)

t_rna = counts(t_rna, normalized = T)

t_rna

#make sure the gene lengths are in the same order as the rownames from t_rna

genelen = readRDS('/fs/ess/PAS0854/Raven/immune-genomics/ValidateRiga/GeneLengths.RDS"')
genelen = genelen[genelen$Gene_Symbol 7inj, rownames(t_rna),]

genelen = genelen[match(rownames(t_rna), geneLen$Gene_Symbol),]

#convert the normliazed RNA to counts
t_rna = convertCounts(as.matrix(t_rna), 'TPM', geneLen$Length)
t_rna = t(t_rna)

#save the RNA for future use
saveRDS(t_rna, 'RNA.Orien.Al1.RDS')

3.2 ElasticNet feature selection

Next we will select features for our machine learning algorithm using elastic net. This was done for all 3
types of annotations (pathologist 1, pathologist 2, and the combination.)

#create new wvariable z.vars using t_rna
X.vars = t_rna

the following is based on the tutorial found at "https://rpubs.com/jmkelly91/881590"
first we will tune the parameter alpha
models <- list()

for (i in 0:20) {
print alpha
name <- pasteO("alpha", i / 20)

create model for the given alpha value
models[[name]] <-
cv.glmnet (as.matrix(x.vars[train$ RNASeq SLID ,]),
train$true,
family = "poisson",
alpha = i / 20)

store the error in a results table for each alpha
results <- data.frame()

for (i in 0:20) {
print alpha
name <- pasteO("alpha", i / 20)

record the predicted values for each sample

test = cbind(
train$true,

21

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

predict(
models[[namel],
lambda = 'lambda.min',
newx = as.matrix(x.vars[train$ RNASeq SLID ', 1),
type = 'response'

)

test = as.data.frame(test)

colnames(test) = c('Actual', 'Predicted')
true = test$Actual

predicted = test$Predicted

#calculate the mean squared error for each sample
mse <- mean((true - predicted) ~ 2)

Store the results

temp <- data.frame(alpha = i / 20,
mse = mse,
name = name)

results <- rbind(results, temp)

}

plot(results$alpha, results$mse)

#choose model with lowest MSE
best_model = models[["alpha0"]]
best_alpha = 0.00

#record the lambda min for the model selected
best_lam <- best_model$lambda.min

#build the nmew model using the alpha and lambda values selected
lasso_best <-
glmnet (
as.matrix(x.vars[train$ RNASeq SLID™, 1),
train$true,
family = "poisson"
alpha = best_alpha,
lambda = best_lam

extract the features from from the best lasso model.
mat = coef(lasso_best)

mat = as.matrix(mat)

mat = mat[mat[, 1] != 0,]

mat = mat[-1]

mat = mat[order (-abs(mat))]

genes = names(mat[abs(mat) > .01])

#record the genes for future use
saveRDS(genes, 'genes.RDS')

22

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

3.3 OrdinalForest Machine learning

After all the genes are collected, we built two kinds of machine learning models for each annotation: Ordi-
nalForest and XgBoost. The process for OrdinalForest is shown below

#filter t_rna to only include genes from the elastic net output
t_rna = t_rnal, colnames(t_rna) %inJ), genes]

#create new variable xz.vars with t_rna
x.vars = as.data.frame(t_rna)

#add the tru annotation of interest to the data
x.vars$Status = tru$group_of_interest

#change the factor levels
x.vars$Status = factor(x.vars$Status,
levels = c('low', 'medium', 'high'))

#run orindal forest
m <-
ordfor(depvar = 'Status',
data = x.vars[train$ RNASeq SLID ,],
perffunction = "probability")

#save the model
saveRDS(m, 'model.RDS')

#create a list of testing samples exzcluding the training data
test = tru$ RNASeq SLID [! (tru$ RNASeq SLID %in% train$ RNASeq SLID)]

#filter z.vars to only include the testing data set
test = x.vars[test,]

#remove the status for ewvaluation with the new ordinal forest model
test = test[, colnames(test) != 'Status']

#predict the new values
pred = predict(m, newdata = test, type = 'class')

#combine the prediction with the true values for the testing data
final <-
cbind(as.character(pred$ypred),
tru[match(rownames(test), tru$ RNASeq SLID), 'group'l)
colnames(final) = c('Predicted', 'Actual')
final = as.data.frame(final)

#make sure the factor levels are in the destired order
final$Predicted = factor(final$Predicted,
levels = c('high', 'medium', 'low'))
final$Actual = factor(final$Actual,
levels = c('high', 'medium', 'low'))

#evaluate with a confusion matrixz from caret
confusionMatrix(final$Predicted, final$Actual)

23

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

3.4 XgBoost machine learning

Below is shown the process for machine learning with XgBoost. This is based on a tutorial found at
“https://www.r-bloggers.com /2022 /01 /using- bayesian-optimisation-to-tune-a-xgboost-model-in-r/”

#filter t_rna to only include genes from the elastic net output
t_rna = t_rnal, colnames(t_rna) %inJ), genes]

#create the training data as an xzgboost matriz
dtrain <- xgb.DMatrix(t_rna[train$ RNASeq SLID",],
label = train$group_of_interest)

build the objective function for the optimization
obj_func <-
function(eta,
max_depth,
min_child_weight,
subsample,
lambda,
alpha) {

#create a param list
param <- list(
Hyter parameters
eta = eta,
max_depth = max_depth,
min_child_weight = min_child_weight,
subsample = subsample,
lambda = lambda,
alpha = alpha,

booster = "gbtree",
objective = 'multi:softmax',
eval metric = "auc",
num_class = 3

)

run a cross wvalidated zgboost with the set parameters
xgbcv <- xgboost: :xgb.cv(

params = param,

data = dtrain,

nrounds = 500,

nfold = 5,

stratified = T,

early_stopping_rounds = 10,

verbose = 0,

maximize = TRUE

lst <- 1list(
First argument must be named as "Score”
Score = max(xgbcv$evaluation_log$test_auc_mean),

Get number of trees for the best performing model
nrounds = xgbcv$best_iteration

24

https://www.r-bloggers.com/2022/01/using-bayesian-optimisation-to-tune-a-xgboost-model-in-r/
https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

return(lst)

3

create boundaries for the parameters to optimize
bounds <- list(

eta = ¢(0.001, 0.4),

max_depth = c(2L, 20L),

min_child_weight = c(1, 50),

subsample = c(0.1, 1),

lambda = c(1, 10),

alpha = c(1, 10)

set.seed(1000)

#perform the optimization
bayes_out <-
bayesOpt (

FUN = obj_func,
bounds = bounds,
initPoints = length(bounds) + 2,
iters.n = 8,
iters.k = 4,
verbose 2

data.frame(getBestPars(bayes_out))
look at the best wvalues and reset the bounds to tune further

bounds <- list(
eta = c(0.1, 0.2),
max_depth = c(15L, 25L),
min_child_weight = c(1, 3),
subsample = c(0.5, 0.9),
lambda = c(5, 7),
alpha = c(1, 3)

bayes_out <-
bayes0Opt (

FUN = obj_func,

bounds = bounds,

initPoints = length(bounds) + 2,
iters.n = 8,

iters.k = 4,

verbose 2

#record the best parameters
pars = getBestPars(bayes_out)
opt_params <- append(

25

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

list(
booster = '"gbtree",
objective = "multi:softmax",
eval metric = "auc",
num_class = 3

)¢

pars

extract model

xgbcv <- xgb.cv(
params = opt_params,
data = dtrain,
nround = 500,

nfold = 5,
stratified = T,
prediction = TRUE,

early_stopping_rounds = 10,
maximize = T

Get optimal number of rounds
nrounds = xgbcv$best_iteration

Fit a xzgb model

mdl <- xgboost(
data = dtrain,
params = opt_params,
maximize = T,
early_stopping_rounds = 10,
nrounds = nrounds

#save the model for future use
saveRDS(mdl, 'model.RDS')

#create a list of testing samples using tru and train
test = tru$ RNASeq SLID [! (tru$ RNASeq SLID" %in% train$ RNASeq SLID)]

#filter xz.vars to only include the testing data set
test = x.vars[test,]

#remove the status for ewvaluation with the new ordinal forest model
test = test[, colnames(test) != 'Status']

#predict the new values
pred = predict(m, newdata = test, type = 'class')

#combine the prediction with the true values for the testing data
final <-
cbind(as.character(pred$ypred),
tru[match(rownames(test), tru$ RNASeq SLID), 'group'l)
colnames(final) = c('Predicted', 'Actual')

26

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

final = as.data.frame(final)

#make sure the factor levels are in the destired order
final$Predicted = factor(final$Predicted,
levels = c('high', 'medium', 'low'))
final$Actual = factor(final$Actual,
levels = c('high', 'medium', 'low'))

#evaluate with a confusion matrixz from caret
confusionMatrix(final$Predicted, final$Actual)

All 6 models were saved and ultimately model 6 was chosen because of its performance in the testing data.

Part 4: Build RIGATONI package functions

We have all the elements needed to put together the RIGATONTI r package. Now we must put them together
to build functions that will be useful to our users.

4.1: Download STRING database connections

First we download the string protein-protein interaction database (https://string-db.org/) and change the
gene names

#download the file 9606.protein.actions.v10.5.txt from STRING.
#load tt into R

stringdb <-
read.table('9606.protein.actions.v10.5.txt',
sep = '\t',
header = T)

#create new mart using the ensembl genes
mart <- useDataset("hsapiens_gene_ensembl", useMart("ensembl"))

#get the list of genes (not isoforms) from the stringdb dataframe
genes <- gsub(".*\\.", "", stringdb$item_id_a)

#get the list of hgnc symbols from this list of genes
G_list <-
getBM(
filters = "ensembl_peptide_id",
attributes = c("ensembl_peptide_id", "hgnc_symbol"),
values = genes,
mart = mart

#remove duplicated values
G_list <- G_list[!(duplicated(G_list$ensembl_peptide_id)),]

#remove isoform information from both gene columns of stringdb

stringdb$item_id_a <- gsub(".x\\.", "", stringdb$item_id_a)
stringdb$item_id_b <- gsub(".*\\.", "", stringdb$item_id_b)

27

https://string-db.org/
https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

#filter stringdb to only include interactions interesting to you

stringdb = stringdb[stringdb$mode %iny c('inhibition',
'activation',
'expression'),]

#replace the ensembl_peptide_td's with the hgnc symbols
for (x in 1:nrow(G_list)) {
ids = which(stringdb$item_id_a == G_list[x, 1])
stringdb$item_id_a = replace(stringdb$item_id_a, ids, G_list[x, 2])
ids = which(stringdb$item_id_b == G_list[x, 1])
stringdb$item_id_b = replace(stringdb$item_id_b, ids, G_list[x, 2])

#save the final table
write.table(stringdb, '9606.protein.actions.v10.5.txt"')

After this, we need a way to filter the STRING output for a particular gene.

makeGeneList <- function(gene, string = sdb) {

#sbd 1s the string database file
#gene is the name of the gene of interest
if (!(gene %in’ c(string$item_id_a, string$item_id_b)))
stop (
'Sadly, we do not have enough protein connections in STRING to analyze
you gene-of-interest using runRIGATONI. \nPlease build your own gene
list using prior knowledge or literature review.'

)

#filter sdb to only include rows which include the gene of interest
sdb_goi <- string[string$item_id_a == gene |
string$item_id_b == gene,]

#remove rows where the acting gene (item_id_a) is absent
sdb_goi = sdb_goil!(is.na(sdb_goi$item_id_a)),]

create the upstream database by searching for cases where the acting gene
is gene a, the gene being acted on is the gene of interest,
and the mode ©s expression.
upstream = sdb_goil[sdb_goi$item_id_b == gene &
sdb_goi$a_is_acting == 't' &
sdb_goi$mode == 'expression',]

#create one version of downstream where the geme of interest is acting
downstream_1 = sdb_goil[sdb_goi$item_id_a == gene &
sdb_goi$a_is_acting == 't',]

create another downstream where the gene of interest is mot necessarily acting,
but expression ts mot being effected
downstream_2 = sdb_goil[sdb_goi$item_id_b == gene &

sdb_goi$a_is_acting == 't' &

sdb_goi$mode != 'expression',]

28

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

#combine the two downstream gene lists
downstream = c(downstream_2$item_id_a, downstream_1$item_id_b)
downstream = downstream[downstream != '']

#extract the gene list from the upstream data
upstream = upstream$item_id_a
upstream = upstream[upstream != '']

#add both the upstream and downstream lists to a master list 1
1 = list(upstream, downstream)

#name both entries
names (1) = c('upstream', 'downstream')

#return the master list
return(l)

4.2: Create the regression models themselves

After this, we need to create the regression models for the gene of interest using the control data.

first use a parent function to get each regression from the
upstream and downstream gene lists
getRegression <- function(gene_list_ppi, gene, ControlRNA) {

#check that the length of the upstream gene list s greater than O
if (length(gene_list_ppifupstream) > 0) {

#if 1t 1s greater than 0, build the regresstion model for the upstream list
RegressionUpstream <-
buildRegression(ControlRNA, gene, gene_list_ppi$upstream)

} else {

#if not, call the regression model "skip"
RegressionUpstream = 'Skip'

#check that the length of the downstream gene list is greater than 0
if (length(gene_list_ppi$downstream) > 0) {
#if 1t 1s greater than 0, build the regression model for the downstream list

RegressionDownstream <-
buildRegression(ControlRNA, gene, gene_list_ppi$downstream)

} else {

#if not, call the regression model "skip"

29

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

RegressionDownstream = 'Skip'

#store each regression model in a master list
1 = list(RegressionUpstream, RegressionDownstream)

#name each model
names(l) = c('RegressionUpstream', 'RegressionDownstream')

#return the list
return(l)

#in this function, we build the regression models themselves
buildRegression <- function(ControlRNA, gene, gene_list) {

#create a vector of the counts of the gene of interest called cd
cd = t(ControlRNA[rownames(ControlRNA) == gene,])

#name the entries after the colnames of the control RNA
rownames (cd) = colnames(ControlRNA)

#turn the vector into a dataframe
cd = as.data.frame(cd)

#create the z.vars as a dataframe with genes as columns and sample names as Tows
#the genes in this dataframe should only be in the gene_list provided

x.vars = as.data.frame(t(ControlRNA[rownames(ControlRNA) %in), gene_list,]))

#combine the x.vars dataframe with the gene of interest counts
x.vars = cbind(x.vars, cd[, 1])

#rename the gene of interest column GOI
colnames(x.vars) [ncol(x.vars)] = 'GOI'

#replace any NA entries with O
x.vars[is.na(x.vars)] = 0

create the model using the GOI column as a response and all
other columns as predictors using a potsson distribution

model = stats::glm(GOI ~ ., data = x.vars, family = stats::poisson())

#return the model
return(model)

4.3: Predict the function of each mutant sample

After creating the models, we need to use the models to predict the functional status of each mutant sample

30

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

this function uses the regression models created previously (Regression)

and a RNA from the mutant samples (MasterRNA) to determine the the gene of
interest (gene) count is outside the 95/ prediction interval for

each regression model

mutantRegression <- function(Regression, MasterRNA, gene) {

if (Regression$RegressionUpstream != 'Skip') {
#generate the gene names in the upstream regression
names_up = names(Regression$RegressionUpstream$coefficients)

} else {

#if the upstream regression was skipped, make the names_up vector empty
names_up = c()

3

if (Regression$RegressionDownstream != 'Skip') {
#generate the gene names in the downstream regression
names_down = names(Regression$RegressionDownstream$coefficients)

} else {

#if the downstream regression was skipped, make the names_up vector empty
names_down = c()

#store the genes in upstream and downstream together in gene_list
gene_list <- c(names_up, names_down)
rownames (MasterRNA) = gsub("\\-", "\\.", rownames(MasterRNA))

#store the regressions respectively
upstream = Regression$RegressionUpstream
downstream = Regression$RegressionDownstream

#create a dataframe with the counts of the geme of interest (cd)
cd = t(MasterRNA[rownames(MasterRNA) == gene,])

#save the sample names as rownames of the GOI dataframe (cd)
rownames(cd) = colnames(MasterRNA)
cd = as.data.frame(cd)

#create the z.vars as a dataframe with genes as columns and sample names as Tows
#the genes in this dataframe should only be in the gene_list provided

x.vars = as.data.frame(t(MasterRNA[rownames(MasterRNA) 7inJ, gene_list,]))

#rename the gene of interest column GOI
x.vars$G0I = cd[, 1]

#create prediction intervals for each sample, for each regresstion model

#alpha = .1 means you are creating a 95 prediction interval
#nsims is the number of simulations of prediction to complete
if (upstream != 'Skip') {

31

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

fitted_up <-
suppressWarnings(ciTools: :add_pi(x.vars, upstream, alpha = 0.1, nsims = 20000))

} else {

#if no upstream model is present, skip it
fitted_up <- 'Skip'

}
if (downstream != 'Skip') {

fitted_down <-

suppressWarnings(ciTools: :add_pi(x.vars, downstream, alpha = 0.1, nsims = 20000))

} else {

#if no downstream model is present, skip <t

fitted_down <- 'Skip'
3

#put the fittered dataframes in to a list called 1
1 = list(fitted_up, fitted_down)

#for each dataframe in 1
1 = lapply(1l, function(f) {

if (£ !'= 'Skip') {
#as long as the entry of 1l %s not "skip"
#select only the columns listed below

f = f[, colnames(f) %in% c('GOI', 'LPB0.05', 'UPB0.95')]

#initialize a new vector called anno
anno = c()

for (x in 1l:nrow(f)) {
#for each sample
#i1f the true GOI count ts outside the 95) prediction interval mark it F
if (£$GOI[x] < f$LPBO.0O5[x] |
f$GOI[x] > f$UPB0.95[x]) {

c(anno, F)

anno
} else {

anno = c(anno, T)

#add a column to f called Annotation with the entries of anno

32

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

f$Annotation = anno
return(f)
} else {

#1f the model was empty, skip it
return('Skip')

}
b

#rename the entries of 1
names (1) = c('upstream', 'downstream')

#return 1
return(l)

#This function determines the function of each sample
getMutantFunction <- function(Regression, MasterRNA, gene) {

first the function using mutantRegression function (above) to
determine which samples are outside the 95) prediction interval
Mutant_Regression <-

suppressWarnings (mutantRegression(Regression, MasterRNA, gene))

#remove the entries of the list that we should "skip"
Mutant_Regression_1 = Mutant_Regression[Mutant_Regression != 'Skip']

if (length(Mutant_Regression_1) > 1) {
if both regression models are working, combine them into a
master data frame called Anno

Anno <- do.call(cbind, Mutant_Regression)
Anno = as.data.frame(Anno)

} else {

#if at one regression model ts skipped, rename the remaining model "Anno"
Anno = Mutant_Regression_1[[1]]

b

#initialize empty wvector fun

fun <- c()

if (Mutant_Regression$downstream != 'Skip') {

#if the downstream regression was able to be created continue below
for (x in 1:nrow(Anno)) {

#for each sample
#create new vector with the GOI counts

33

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

downstream.GOI = ifelse((T %in) grepl('downstream', colnames(Anno))),

Anno$downstream.GOI [x],
Anno$GOI [x])

#create new vector with lower prediction interval bound
downstream.LPB0.05 = ifelse((T %in) grepl('downstream', colnames(Anno))),

Anno$downstream.LPB0.05[x],
Anno$LPB0.05[x])

#create new vector with upper prediction interval bound
downstream.UPB0.95 = ifelse((T %in) grepl('downstream', colnames(Anno))),

Anno$downstream.UPB0.95([x],
Anno$UPBO.95[x])

if (downstream.GOI < downstream.LPB0.05) {

3
}

#if the true value is less than the lower bound, this s a LOF sample
fun = c(fun, 'LOF')

else if (downstream.GOI > downstream.UPB0.95) {

#if the true value is greater than the upper bound, this is a GOF sample
fun = c(fun, 'GOF')

else {
if the downstream predictions are within the boundaries,

keep checking with the upstream samples
fun = c(fun, 'keepchecking')

#remove the solved samples, call them solved
AnnoSolved <- Anno[which(fun != 'keepchecking'),]

#create new column with the function data
AnnoSolved$Function = fun[which(fun != 'keepchecking')]

#put the samples that need to be rechecked into their own dataframe

AnnoKeep <- Anno[which(fun == 'keepchecking'),]
} else {
#if there are no downstream values, annosovled should be empty
AnnoSolved = NULL
#annokeep should be the entirety of anno
AnnoKeep = Anno
b
if (Mutant_Regression$upstream != 'Skip') {

34

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

#if the upstream regression ts present
#inittalize the empty fun vector
fun = c(Q)

#as long as the downstream didn't solve everything
if (nrow(AnnoKeep > 0)) {

for (x in 1:nrow(AnnoKeep)) {

#for each sample

#create new vector with the GOI counts

upstream.GOI = ifelse((T %in), grepl('upstream', colnames(Anno))),
AnnoKeep$upstream.GOI[x],
AnnoKeep$GOI [x])

#create new vector with lower prediction interval bound

upstream.LPB0.05 = ifelse((T %in% grepl('upstream', colnames(Anno))),
AnnoKeep$upstream.LPB0.05[x],
AnnoKeep$LPBO.05[x])

#create new vector with upper prediction interval bound

upstream.UPB0.95 = ifelse((T %inJ, grepl('upstream', colnames(Anno))),
AnnoKeep$upstream.UPB0.95[x],
AnnoKeep$UPBO.95 [x])

if (upstream.GOI < upstream.LPB0.05) {

#If the true value ts less than lowerbound, this is a LOF sample
fun = c(fun, 'LOF')

} else if (upstream.GOI > upstream.UPB0.95) {

#if the true value ts greater than the upperbound, this is a GOF sample
fun = c(fun, 'GOF')

} else {

#if we cannot dectide, call it skipq
fun = c(fun, "Skipq")

3

X
}

#replace skipq with "unknown
fun[fun == 'Skipq'] = 'Unknown'

#create new column called Function with the wvector
AnnoKeep$Function = fun

}

if (!('Function' %inJ, colnames(AnnoKeep))) {

35

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

1f we had no upstream regression, initialize columnn Function with
all entries "unknoun"
AnnoKeep$Function = rep('Unknown', nrow(AnnoKeep))

#combine the solved and kept dataframes into Mutant_Function
Mutant_Function <- rbind(AnnoSolved, AnnoKeep)

#remove extraneous columns
Mutant_Function <-
as.data.frame(cbind (rownames (Mutant_Function), Mutant_ Function$Function))

#return mutant function
return(Mutant_Function)

4.4: Predict the immune phenotype of each sample

predict the immune phenotype using the genes selected by Elastic Net (lasso_best)
using the model created by Ordinal forect (m) and the RNA seq data of the

mutant samples (MasterRNA)

getImmuneProb <- function(MasterRNA, model = m) {

#filter MasterRNA so that the only genes are those that are in the model
MasterRNA = MasterRNA[rownames(MasterRNA) %in’ m$feature_names,]

#make sure the order of the genes match
MasterRNA = MasterRNA[match(m$feature_names, rownames(MasterRNA)),]

#make the prediction
pred <- predict(m, newdata = t(MasterRNA), type = 'class')

#Add sample names to the prediction
pred = cbind(colnames(MasterRNA), pred)

#create data frame
pred = as.data.frame(pred)

#add column names
colnames(pred) = c('Names', 'Prob')

#annotate with meaningful naems
pred$Prob = ifelse(pred$Prob == 0, 'Low', ifelse(pred$Prob == 2, 'High', 'Medium'))

#return data
return(pred)

36

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

4.5: Evaluate mutants for users

#evaluate the mutant samples provided by the user
evaluateMutants <- function(Function, ImmuneProb, ControlRNA) {

get the immune phenotypes of the control samples
con = suppressMessages(getImmuneProb(ControlRNA, model = m))

get the number of GOF and LOF mutant samples
nGOF = nrow(Function[Function[, 2] == 'GOF',])
nLOF = nrow(Function[Function[, 2] == 'LOF',])

get the number of High and Low mutant samples
nHigh = nrow(ImmuneProb[ImmuneProb[, 2] == 'High',])
nLow = nrow(ImmuneProb[ImmuneProb[, 2] == 'Low',])

Get the proportion of High and Low control samples
conPropH = nrow(con[con[, 2] == 'High']) / nrow(con)
conPropL. = nrow(con[con[, 2] == 'Low']) / nrow(con)

determine if there are more GOFs than 507
pf = prop.test(nGOF, sum(nGOF, nlLOF), .5)

record this result in an tntuitive way
Fun = ifelse(pf$p.value < .05, ifelse(nGOF > nLOF, 'GOF', 'LOF'), 'Unknown')

determine if there is higher proportion of high or low samples
in the mutant group than in controls

pih = prop.test(nHigh, nrow(out), conPropH, 'greater')

pil = prop.test(nLow, nrow(out), conPropL, 'greater')

record this result in an intuitive way
Imm = ifelse(pih$p.value < .05,
'High',
ifelse(pil$p.value < .05, 'Low', 'Unknown'))

record the p values
pi = ifelse(Imm == 'High',
pih$p.value,
ifelse(Imm == 'Low', pil$p.value, min(pil$p.value, pih$p.value)))

#store and return these values
out = list(Fun, pf, Imm, pi)

names (out) = c('Function', 'p.val.func', 'ImmunePhenotype', 'p.val.immune')
return(out)

4.6. Run RIGATonl all together

runRIGATONI <- function(gene,
ControlRNA,

37

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

MasterRNA,

model = m,

string = sdb,
genelist = NULL) {

catch any issues with the function prior

if (any(class(ControlRNA) != 'data.frame',

class(MasterRNA) != 'data.frame'))
stop('RNA files should be data.frame objects')

if (any(!(rownames(ControlRNA) == rownames(MasterRNA))))
stop('Gene names in ControlRNA are not the same as MasterRNA')

if (!(gene %in) rownames(ControlRNA)))
stop('Gene of interest TPM data is not included in RNA provided')

if (!(m$feature_names %in), rownames(MasterRNA)))
stop (
'The genes required for immune phenotype calculation are not
all present in the data provided. \nPlease check that all your gene names
are uppercase and the rownames of your RNA TPM data.'

)

message(pasteO('Starting gene: ', gene))
if (is.null(genelist) == T) {

if there is no gene list provided by the suer, make one
message('Making Initial Gene List')
gene_list_ppi = makeGenelList(gene, string = sdb)

filter the gene list to include only genes for which there is
transcript information in the control RNA

message('Filtering Gene List')

gene_list_ppi = lapply(gene_list_ppi, function(x) {

out = x[x %in% rownames(ControlRNA)]
return(out)
b
1f there are mno connections in string, tell the user
if (length(unlist(gene_list_ppi)) > 0)
stop(
'Sadly, we do not have enough protein connections in STRING to analyze

your gene-of-interest using runRIGATONI. \nPlease build your own gene
list using prior knowledge or literature review.'

)
} else {

if the user provided their own geme list, store it

38

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

gene_list_ppi = genelist
message('Filtering Gene List')

filter the gene list to include only genes for which there is
transcript information in the control RNA
gene_list_ppi = lapply(gene_list_ppi, function(x) {

out = x[x %in% rownames(ControlRNA)]

return(out)

)

if there is nothing left after filtering, tell the user to try
again with default settings
if (length(unlist(gene_list_ppi)) > 0)
stop(
'Your gene list is either empty or does not contain genes in your RNA
TPM data. \nPlease re-run RIGATONI with default settings and allow us
to make the genelList using STRING.'
)

b
butld control regression model
message('Building regression model')
Regression <-
suppressWarnings (getRegression(gene_list_ppi, gene, ControlRNA))

predict mutant function
message('Predicting mutant function')
Mutant_Function <-
suppressWarnings (getMutantFunction(Regression, MasterRNA, gene))

predict immune phenotypes

message('Predicting immune phenotype')

ImmuneProb <- suppressMessages(getImmuneProb(MasterRNA, model = m))
con = suppressMessages(getImmuneProb(MasterRNA, model = m))

put together final output for the user

message('Getting final output')

out = cbind(colnames(MasterRNA), Mutant_Function[, 2], ImmuneProb[, 2])
colnames(out) = c('SampleID', 'Function', 'ImmunePhenotype')

out = as.data.frame(out)

calculate the mutant function and phenotype
message('Calculating Alteration Function and Phenotype')
muts = evaluateMutants(Mutant_Function, ImmuneProb, ControlRNA)

inform the user of the results in an intuitive way
message (cat (

paste0(

'Function of Variant: ',
muts$Function,

39

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

n n

B p = 3
muts$p.val.func,
ll\nll ,

n

"Immune Phenotype of Variant: ",

muts$ImmunePhenotype,

n n

) P =)
muts$p.val.immune

))

#return results to the user
message('Done! ")
return(out)

Part 5: Performing RIGATonl validations (Fig 2 and 3)

5.1: Validation of Immunity Module with IHC and Flow (Fig 2)

All data shown here is from the paper “https://www.nature.com/articles/s41598-022-12610-w#Abs1” First
we downloaded the raw fastqs from dbGaP (the accession number is provided under “Data Availability” in
the paper). Next we ran Salmon to extract RNA TPM from the fastqgs; code shown below.

#!/bin/sh

#SBATCH --account=PAS0854
#SBATCH —-time=10:00:00
#SBATCH --nodes=1
#SBATCH —-ntasks=10

echo "<STARTING_PIPELINE>: $(date)" && \

mkdir -p Salmon && \
cd Salmon && \

Copy input files to $TMPDIR

O I &k \
echo -ne "$(date): Starting command 'cp Sample 1 Run'\n" && \

cp sample_x.fastq $TMPDIR && \

echo -ne "$(date): Ending command 'cp Sample 1 Run'\n" && \

ey o e e e e &k \

cd $TMPDIR && \
echo "Working on $(pwd) with input files:" && \
echo "$(1s)" && \

€ G I O I "ogk \
echo -ne "$(date): Starting command 'salmon quant salmon_index'\n" && \
Software/salmon/salmon-latest_linux_x86_64/bin/salmon quant \

-i Reference_Data/salmon_reference_data_20190517/salmon_index -1 A \

-1 sample_1.fastq \

40

https://www.nature.com/articles/s41598-022-12610-w#Abs1
https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

-2 sample_2.fastq -p 10 --validateMappings -o salmon_results && \
echo -ne "$(date): Ending command 'salmon quant salmon_index'\n" && \

O I i &k \
A T e e vk \
echo -ne "$(date): Starting command 'mv quant.sf .'\n" && \

mv salmon_results/quant.sf . && \

echo -ne "$(date): Ending command 'mv quant.sf .'\n" && \

AdnR Voo "o&k \

rm -rf salmon_results && \

BEND oo e e T e e T T P T T DTS "ogk \
echo -ne "$(date): Starting command 'bedtools intersect'\n" && \
Software/bedtools-2.17.0/bin/bedtools intersect \

-a Reference_Data/bedfiles/dna/exome_bedfiles/sorted_merged.bed \

-b Reference_Data/refFlat_hgl9.sorted.bed -wa -wb \

> targetbed_refflat_intx.bed && \

echo -ne "$(date): Ending command 'bedtools intersect'\n" && \

I O "ogk \

A T e e vk N\
echo -ne "$(date): Starting command 'python annotate_salmon.py'\n" && \
python annotate_salmon.py --in_file quant.sf \

--gtf Reference_Data/cuffcmp.combined.converted.gtf \

--bed_refflat_intx targetbed_refflat_intx.bed && \

echo -ne "$(date): Ending command 'python annotate_salmon.py'\n" && \
AENE oo e e e e T &k \

Once salmon has run, we use a python script (annotate_salmon.py) to transform RefSeq ID to gene names
shown below

nmnn

The purpose of this script is to get the geme names for the Salmon output,
since Salmon only provides RefSeq IDs. It will mark whether the gene is in
the BED file.

nmnn

import sys
import string
import os
import getopt
import argparse
import glob

e
Parse command line arguments
o o

class DefaultHelpParser (argparse.ArgumentParser) :
def error(self, message):
sys.stderr.write('ERROR: %s\n' 7, message)
self.print_help()
sys.exit(2)

41

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

parser = DefaultHelpParser(formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('--in_file', required = True, help = 'Input file that was '+\
'produced from Salmon.')
parser.add_argument ('--gtf', required = True, help
'nnotation. ')
parser.add_argument('--bed_refflat_intx', required = True, help = 'BEDTools '+\
'intersection of the target-BED with the refFlat BED.')
args = parser.parse_args(sys.argv[1:])

'GTF file for transcript a'+\

HAB AT TAARRT AR R AR AR ARG R AR AR AR
Function definitions
e

nmnn

The purpose of this function is to get a list of genes within the input BED
region using the intersection with the input BED and the refFlat BED.
nimnn
def get_in_target_genes(bed_refflat_intx):
bed_genes_set = set()

for line in open(bed_refflat_intx):
linel = line.strip().split('\t')
gene = linel[-1].split('_')[0]
bed_genes_set.add(gene)

return bed_genes_set

nmnn

The purpose of this function is to collect the RefSeq IDs and match them
to the geme name.
def get_refseq_ids(gtf):

refseq_dict = {}

for line in open(gtf):
linel = line.strip().split('\t')
annots = linel[8].split(';")

for entry in annots:
if entry == '': continue
entryl = entry.strip()

if entryl.startswith('gene_name'):
entry2 = entryl.split(' ')
gene_name = entry2[1].replace('"', '')
elif entryl.startswith('transcript_id'):
entry2 = entryl.split(' ')
transcript_id = entry2[1].replace('"', '')

refseq_dict[transcript_id] = gene_name

42

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

return refseq_dict

nmnn

The purpose of this function s to annotate the Salmon output file with gene
names.
nmnn
def annotate(in_file, refseq_dict, bed_genes_set):
fp = open("Salmon_final.txt", 'w')
header = ["Gene", "RefSeq ID", "TPM", "Gene In Target”]
fp.write(string. join(header, '\t') + '"\n')

all_values = []
for c,line in enumerate(open(in_file)):

if c==0: continue
linel = line.strip().split('\t")

tpm = float(linel[3])
tpm = float('%4.2f' 7 tpm)
refseq_id = linel[0]

try:
gene = refseq_dict[refseq_id]
except KeyError: continue

info = [gene, refseq_id, tpm, gene in bed_genes_set]
all_values.append(info)

all_values.sort(key=lambda x:x[2])
all_values.reverse()

for info in all _values:
infol = map(lambda x:str(x), info)
fp.write(string.join(infol, '\t') + '\n')

fp.close()

Main program

if __name__ == ' -

_ __main__
in_file = os.path.abspath(args.in_file)
gtf = os.path.abspath(args.gtf)

bed_refflat_intx = os.path.abspath(args.bed_refflat_intx)

bed_genes_set = get_in_target_genes(bed_refflat_intx)
refseq_dict = get_refseq_ids(gtf)
annotate(in_file, refseq_dict, bed_genes_set)

After downloading and performing salmon, I then combined and analyzed the ITHC, flow, and RNAseq results.

43

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Processed data was downlaoded from the supplemental data at this link https://static-content.springer.com/
esm/art%3A10.1038%2Fs41598-022-12610-w/MediaObjects/41598_2022_12610_MOESM2_ ESM.xlsx.

read in the data
gas = lapply(2:15, function(x) {
readxl::read_xlsx('gastric_IHC.xlsx', sheet = x)

1))

name each element of the list
names (gas) <- c(
'Patients characteristics (BKT cohort)',
'Transcriptome-based immune cell quantification',
'THC-based immune cell quantification',
'FCM-based immune cell quantification',
'The ratio of indicated cell densities at the Core
(CT)-to-invasive margin (IM) of the tumor',
'TIDE dysfunction and exclusion scores',
'The percentage of cytokineproducing cells',
'Individual patient’s Ki-67 related score measured by IHC',
'The number of damaged cells in 12 areas of 0.25 mm2',
'Individual patients data (TCGA cohort)',
'Comparison between Immunogram classification and transcriptome-based
TME classification',
'Gene sets used in this study',
'Correspondence between the subtypes of bulk RNA-seq immune cells
estimation and the values measured by IHC',
'Correspondence between the subtypes of bulk RNA-seq immune cells
estimation and the values measured by FCM'

save for future use
saveRDS(gas, 'gastric_IHC.RDS')

gather the processed TPM data

= list.dirs('<path to TPM data>')
= d[grepl('Salmon', d)]

d[d != '<scratch directory>']

Qo w
I

read in each file
= lapply(d, function(x) {

ot

tryCatch({
list the files in the folder
1 = list.files(x)

select only the final output

1 = 1[grepl('_final', 1)]

#read 1t in and summarize

t = read.table(pasteO(x, '/', 1[1]), header = T, sep = '\t')
t = aggregate(t[, 3], by = list(t[, 1]1), sum)

colnames(t) [2] = strsplit(l, '_')[[1]1][2]

#return

44

https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-022-12610-w/MediaObjects/41598_2022_12610_MOESM2_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-022-12610-w/MediaObjects/41598_2022_12610_MOESM2_ESM.xlsx
https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

return(t)
}, error = function(e) {

#if the file is unreadable return nothing
return(NA)
b
b

remove file which are not needed
t = t[1:57]

make a key of the gene names
key = t[[1]1]$Group.1

ensure each ftile has the same order of genes
t2 = lapply(l:length(t), function(x) {

#using the first file as a key
if (x == 1) {

just return the first one
return(t[[x]1])

} else {

match the genes to the first file
x = t[[x]]

nam = colnames(x) [2]

x = x[match(key, x$Group.1),]

x = as.data.frame(x[, 2])
colnames(x) = nam

return(x)
}
1)

combine together all the files
t2 = do.call(cbind, t2)

set the rownames to the gene names located in the first column
rownames (t2) = t2[, 1]

t2 = t2[,-1]

rna = t2

rm(t2)
rm(t)
rm(d)
rm(key)

there were many sample IDs in this data set which did not match across

groups. The next section %s primarily for organizing these sample IDs across
the different data tables avatilable

45

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

read in the sample IDs
ids = readLines('GastricRNA.txt')

keep only RNA which have accompanying IHC and flow
rna = rnal[, colnames(rna) %in} ids]

read in the run table
ids = read.table('SraRunTable.txt', sep = ',', header = T)

filter the run table to inclue only runs in the RNA
ids = ids[ids$Run %in), colnames(rna),]

match the run table order to the RNA order
ids = ids[match(colnames(rna), ids$Run),]

extract clinical data from the excel files
clin = gas$ Patients characteristics (BKT cohort)"

#remove rows with no study ID
clin = clin[!(is.na(clin$ Study ID)),]

get the new study IDs
studyID = readxl::read_xlsx('BKT_STAD.xlsx')

add in the study ID to the clinical data
clin$STAD = unlist(lapply(clin$ Study ID , function(x) {

id = which(studyID$ patient ID~ == x)

return(studyID$ file ID" [id])
1))

add in run information to the clinical data
clin$run = unlist(lapply(clin$STAD, function(x) {

id = which(gsub("\\..*", '', ids$Sample_Name) == x)

return(ids$Run[id])
i9))

make the RNA columns match the order of the clinical data
rna = rnal[, match(clin$run, colnames(rna))]

change the column names of the RNA to match the study ID
colnames(rna) = clin$ Study ID"

add the TPM to the gastric IHC object
gas$TPM = rna

save for future use
saveRDS(gas, 'gastric_IHC.RDS')

get the gastric data RIGATonI scores

46

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

riga = getImmuneProb(gas$TPM, m)
add that output to the clincal data
checking = !(is.na(gas$ Patients characteristics (BKT cohort) $ Study ID))
gas$ Patients characteristics (BKT cohort)”™ =
gas$ Patients characteristics (BKT cohort)” [checking,]
gas$ Patients characteristics (BKT cohort) $RIGATONI_score = riga$Prob

save for future use
saveRDS(gas, 'gastric_IHC.RDS')

extract the IHC information
ihc = gas$ IHC-based immune cell quantification”

extract the measure names
measure = colnames(ihc)

fixz the column names
colnames(ihc) = ihc[1,]
ihc = ihc[-1,]

make IHC a data frame
ihc = as.data.frame(t(ihc))

fixz the new column names
colnames(ihc) = ihc[1,]
ihc = ihc[-1,]

get measures of interest
measure = measure[2:length(measure)]

make sure measures are readable
measure = gsub("\\..*", "" measure)

add measures as a mew column
ihc$measure = measure

split IHC based on the measures
ihc = split(ihc, ihc$measure)

now we will make the data more readable
ihc = lapply(1:length(ihc), function(x) {

for each measure

record the measure

mes = names (ihc) [x]

make new data frame

x = ihc[[x]][,-ncol(ihc[[x]])]

nams = colnames(x)

transpose and convert to numeric

x = as.data.frame(t(x))

x = apply(x, 2, as.numeric)

x = as.data.frame(x)

colnames(x) = gsub("\\..*", "" colnames(x))

change the name of one column

47

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

if ('Nkp46' %in’ colnames(x)) {
id = which(colnames(x) == 'Nkp46')
colnames(x) [id] = 'NKp46'
}
rownames (x) = nams
add the rigatoni status
x$RIGATONI_status = gas$ Patients characteristics (BKT cohort) $RIGATONI_score
add the measure as a wvaratible
x$measure = mes
return(x)

b

extract counts
count = ihc[[2]]

melt the counts
countm = reshape::melt(count, id.vars = 'RIGATONI_status')

aggregate based on measure and RIGATonI status
countm = aggregate(value ~ variable + RIGATONI_status,
data = countm,
FUN = mean)

fixz order of wvalues
countm$RIGATONI_status = factor(countm$RIGATONI_status, levels = c('Low', 'High'))

Figure 2C
g = ggplot(countm, aes(x = RIGATONI_status, y = value, fill = variable)) +
geom_bar(stat = 'identity') +

scale_fill_manual(values = grDevices::colors() [grep('gr(ale)y',
grDevices: :colors(),
invert = T)] %>%
sample (10, replace = FALSE)) +
theme_classic()

saveRDS(g, '<figure 2¢c>')

remake the melted data

countm = reshape: :melt(count, id.vars = 'RIGATONI_status')
Figure 2D
cd8 = countm[countm$variable == 'CDS',]

cd8$RIGATONI_status = factor (cd8$RIGATONI_status, levels = c('Low', 'High'))

g = ggplot(cd8, aes(x = RIGATONI_status, y = value, fill
geom_boxplot() +
theme_classic() +
stat_compare_means (
label = 'p.signif',
label.x = 1.5,
size = 10,
label.y = 4e+05

RIGATONI_status)) +

48

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

saveRDS(g, '<figure 2d>')

Figure 2F
cd3 = countm[countm$variable == 'CD3',]

cd3$RIGATONI_status = factor (cd3$RIGATONI_status, levels = c('Low', 'High'))

g = ggplot(cd3, aes(x = RIGATONI_status, y = value, fill = RIGATONI_status)) +
geom_boxplot() +
theme_classic() +
stat_compare_means (
label = 'p.signif',
label.x = 1.5,
size = 10,
label.y = 4e+05

saveRDS(g, '<figure 2f>')

now we will do the flow data
extract the flow data
flow = gas$ FCM-based immune cell quantification”

fixz the colnames so they are not the first row
colnames (flow) = flowl[1,]
flow = flow([-1,]

add in the RIGATonI scores
f1ow$RIGATONI = gas$ Patients characteristics (BKT cohort) $RIGATONI_score

melt the data
flow = reshape2::melt(flow, id.vars = 'RIGATONI')

remove the study IDs from the variables
flow = flow[flow$variable != 'Study ID',]

transform the numbers from characters to numerics
flow$value = as.numeric(as.character(flow$value))

remove NA wvalues
flow = flow[! (is.na(flow$value)),]

fixz the factor levels
flow$SRIGATONI = factor(flow$RIGATONI, levels = c('Low', 'High'))

change the levels to be more readable
levels(flow$variable) = c(

'studyID',

'Lymphocytes',

'CD4+ T cells',

'CD8+ T cells',

49

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

'B Cells',
'NK Cells',
'"Monocytes\nMacrophages'

)

Figure 2E
test = flow[flow$variable == 'Lymphocytes',]

g = ggplot(test, aes(x = RIGATONI, y = value, fill = RIGATONI)) +
geom_boxplot() +
stat_compare_means(
label = 'p.signif',
size = 5,
label.x = 1.5,
method.args =
) +

theme_classic()

list(alternative = 'greater')

saveRDS (g, '<Figure 2E>')

5.2: Validation of Immunity Module with Saltz Et Al output (Fig 2)

All data shown here is from the paper “https://www.sciencedirect.com/science/article/pii/S2211124718304479?
via%3Dihub” First we downloaded the output from Saltz et al found at “https://ars.els-cdn.com/content/
image/1-82.0-S2211124718304479-mmc2.xlsx” Then the following code was run.

read in the saltz data containing TIL, case ID, and spatial categorization
sal = read.csv('saltzdata.csv')

convert the barcodes to UUIDs to match our master data
sal$caseIDs = barcodeToUUID(sal$ParticipantBarcode) [, 2]

load the list of cases and phenotypes
riga = readRDS('<TCGA all scores>')

make the order and cases match for both data tables
riga = rigal[riga$caseIDs %in), sal$caselDs,]

sal = sall[sal$caseIDs %in}, riga$caseIDs,]

riga = riga[match(sal$caseIDs, riga$caselDs),]

add the RIGATonI scores to the saltz output
sal$riga = riga$Prob

#Figure 2G
g = ggplot(sal, aes(x = riga, y = til_percentage, fill = riga)) +
geom_boxplot() +
stat_compare_means(
label = 'p.signif',

size = b,

label.x = 1.5,

method.args = list(alternative = 'greater'),
comparisons = list(c('Low', 'Medium'),

50

https://www.sciencedirect.com/science/article/pii/S2211124718304479?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2211124718304479?via%3Dihub
https://ars.els-cdn.com/content/image/1-s2.0-S2211124718304479-mmc2.xlsx
https://ars.els-cdn.com/content/image/1-s2.0-S2211124718304479-mmc2.xlsx
https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

c('Medium', 'High'),
c('Low', 'High'))
) +

theme_classic()

saveRDS(g, '<Figure 2G>')

Figure 2H
g = ggplot(sal, aes(x = riga, fill = Global_Pattern)) +
geom_bar (position = 'fill') +

scale_fill_manual(values = grDevices::colors() [grep('gr(ale)y’,
grDevices: :colors(),
invert = T)] %>%
sample(6, replace = FALSE)) +
theme_classic()

saveRDS(g, '<Figure 2H>')

5.3: Validation of Function Module with OncoKB (Fig 3)

First, the Function Module was run using the functions described in section 4 on OncoKB genes. Results
were manually annotated using the OncoKB database. The complete results can be found in Supplementary
table 3.

read in the genomic alteration annotations
onco = read.csv('SupplementaryTable3.csv')

remove any that are unknown to oncokb
onco = oncolonco$ OncoKB annotation™ != 'unk',]

#mark correct or tincorrect for each GA
onco$correct = ifelse(

onco$RIGATONI _annotation == 'GOF',
ifelse(onco$ OncoKB annotation™ == 'GOF', 'Correct', 'Incorrect'),
ifelse(onco$ OncoKB annotation™ == 'LOF', 'Correct', 'Incorrect')
)
Figure 3B
g = ggplot(onco, aes(x = “0OncoKB annotation™, fill = correct)) +
geom_bar(position = 'fill') +

theme_classic()

saveRDS(g, '<Figure 3B>')

Part 6: Analyze all of TCGA using RIGATONI

6.1: Create functions specific to the analysis of TCGA data

I created a series of functions to make analysis of TCGA data easier. They are shown below.

o1

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

In makeMaster, filterMaster, addPrimarySite, addSex, and getMaster,

we parse the lists created in Part 1 to create a Master data frame

Each row of the dataframe represents and individual alteration.

each row contains the name of the sample, the kind of alteration,

the name of the alteration, the location of the alteration and primary
site of the tumor.

makeMaster <- function(input_dir, gene) {

#go to the input_dir and collect the mutation files

setwd(input_dir)

1 = lapply(list.files(pattern = "Together2.RDS"), function(x)
readRDS (x))

names (1) = list.files(pattern = "Together2.RDS")

#put the results from your GOI into a list called alts
alts = list()

nams = c()

for (x in 1:length(1)) {

check to see if there are any alterations in that gene of the given type
if (T %inJ, grepl(gene, names(1[[x]]1))) {

1f there are, extract them
nam = names(1) [x]
id = which(grepl(gene, names(1[[x]])) == T)
if (nam == 'FusTogether2.RDS') {
fustions are special and have a different rule
create new data frame with the fusion results results

fusions = names(1[[x]]) [id]

split so the genes involved are listed separately
fusions = strsplit(fusions, "-")

id = lapply(fusions, function(x) {

find the fusions in the given gene
test = which(x == gene)

if (length(test) > 0) {
return that list
return(x)

} else {

1f there are none, return nothing
return(NA)

)

52

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

get final list of list indezes
id = id[!(is.na(id))]

concatenate together the IDs of interest
id = unlist(lapply(id, function(i)

paste0(i, collapse = "-")))
if (length(id) > 0) {

get all the lists together
alts = append(alts, 1[[x]][id])

record the names of the alteration
nams = c(nams, pasteO(rep(nam, length(id)), ".", 1:length(id)))

}
} else {

get the ID that ezactly matches the gene
id = which(names(1[[x]]) == gene)

if there is at least 1 ID
if (length(id) > 0) {

add the new element to the alts list
alts[[length(alts) + 1]1 = 1[[x]][[id]]

#record the mame
nams = c(nams, nam)

#name the elements of alts after their file names
names(alts) = nams

#record the caselIDs of each list in alts
CaseIDs = c()
for (x in alts) {
CaselDs = c(CaseIDs, x$CaselD)
}

#now collect the necesary fields from each dataframe in the list
#the fields are as follows

SV - c('POS', 'END', 'ALT')

CNV - c("copy_number", 'start', 'end')

SNV - c('Alt', 'Position')

Fusions - c('genel’, 'gene2', 'bril', 'br2')

SampleAlts = c()

Types = c()

53

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Places = c()
for (x in names(alts)) {

put together the names of the alterations according the rules described
for each alteration type
if (x == 'SVTogther2.RDS') {

place = pasteO(alts[[x]]$P0OS, "-", alts[x]$END)
alt = pasteO(alts[[x]]$ALT)
type = rep('SV', length(alt))

} else if (x == "CopyTogether2.RDS") {

place = pasteO(alts[[x]]$start, "-", alts[x]$end)
alt = pasteO(alts[[x]]$copy_number)
type = rep('CNV', length(alt))

} else if (x == "MafsTogether2.RDS") {

place = alts[[x]]$Position
alt = pasteO(alts[[x]]$Alt)
type = rep('SNV', length(alt))

} else {

place = pasteO(alts[[x]]$breakpointl, "-", alts[[x]]$breakpoint2)
alt = pasteO(alts[[x]]$genel, "-", alts[[x]]$gene2)
type = rep('FUS', length(alt))

}

record the new wvalues
SampleAlts = c(SampleAlts, alt)
Types = c(Types, type)

Places = c(Places, place)

#put all these into Master

Master = cbind(CaseIDs, Types, Places, SampleAlts)

Master = as.data.frame(Master)

colnames(Master) = c('CaselIDs', 'Class', 'Location', 'Alteration')
return(Master)

}

filterMaster <- function(Master, rma) {

#get the case IDs from your RNA list
rnaCaselIDs = rnal, 3]

#check to see that all entries in Master are in the list

out = c()
for (x in 1:nrow(Master)) {

54

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

if (Master$CaseIDs[x] %in% rnaCaselIDs) {
out = c(out, T)
} else {

out = c(out, F)

#Take out the entries that do mot have accompanying RNA
Master = Master[out,]
return(Master)

}
addPrimarySite <- function(Master) {

#record the caselIDs in Master
caseIDs = unique(Master$CaselDs)

#find the clinical data assoctated with those IDs
clin = readRDS('<case IDS and project list>')

clin = clin[clin$caseIDs %in% caseIDs,]

#Make a new column in Master with the case IDs
Master$Cancer = unlist(lapply(Master$CaseIDs, function(x) {

return(clin$project [which(clin$caseIDs == x)])
)
#remove heme cancers
out = c('TCGA-THYM', 'TCGA-DLBC', 'TCGA-LAML', 'TCGA-LCML')

Master = Master[! (Master$Cancer %in’ out),]

return(Master)

}
addSex <- function(Master) {

#record the caselIDs in Master
caselDs = unique(Master$CaseIDs)

#find the clinical data assoctated with those IDs
clin = readRDS('<TCGA case IDs and biological sex>')

clin = clin[clin$V1 %in% caselDs,]

#Make a mew column in Master with the case IDs
Master$Sex = unlist(lapply(Master$CaseIDs, function(x) {

return(clin$V2[which(clin$Vl == x)]1)

95

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

19D

Master$Sex[is.na(Master$Sex)] = 'Unknown'
return(Master)

}

getMaster <- function(input_dir, gene, rna) {
#create first Master dataframe
Master <- makeMaster(input_dir, gene)

#filter Master to contain only samples with RNA available
Master <- filterMaster(Master, rna)

#Add primary site information to master
Master <- addPrimarySite(Master)
Master <- addSex(Master)

for genes on the X and Y chromosome there are different rules for men v women
sex_genesY = readRDS('<genes on Y chromosome>')
sex_genesX = readRDS('<genes on X chromosome>"')

#annotate the copy number alterations
Master$Alteration = unlist(lapply(l:nrow(Master), function(r) {

record the sex and number of copies
sex = Master$Sex[r]
alt = Master$Alteration[r]
if (T %in% grepl('CNV', alt)) {
extract the copies
alt = gsub('CNV: ', "", alt)
alt = as.numeric(alt)

if (alt >= 6) {

1f there are more than 6 copies, its a gain
return('Gain')

} else if (alt < 2) {
if there are less than 2 copies, we have to check the chromosome status
if (sex == 'Unknown') {
if (gene %inJ c(sex_genesY, sex_genesX)) {
1f we don't know the sex, and the gene on on the x or y chromosome,
we cannot determine anything
return(NA)

} else {

if the gene is not on X or Y it doesn't matter if we know the sezx
of the patient

56

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

return('Loss')
}
} else {

if (sex == 'female') {
if (gene %inJ, sex_genesY) {

1f a woman has mo copies of a Y chromsome gene, that's not a GA
return(NA)

} else {
return('Loss"')
}
} else {
if (gene ’inJ sex_genesX) {
however if the patient is male, they need less than 1 copy of an
X chromosome gene
return(ifelse(alt < 1, 'Loss', NA))
} else {
return('Loss')
}
}
}
} else {

return(NA)

}
} else {

return(alt)

}
1))

#put together the data and return Master
Master = Master[!(is.na(Master$Alteration)),]

Master = Master[, colnames(Master) != 'Sex']
Master = Master[Master$Alteration !'= "",]
return(Master)

57

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

In getControlRNA, we determine a list of samples NOT present in Master and
then extract the batch corrected RNA seq files into a list of dataframes

divided by cancer type

each row of each dataframe ts a gene

each column of each dataframe is a sample

getControlRNA <- function(Master, rna, proj) {

extract WT sample IDs
fileIDs = rnal!(rnal, 3] %in’), Master$CaseIDs),]

filter the IDs for the given cancer type
fileIDs = rnal[rna$Cancer == proj,]

remove any duplicates
fileIDs = fileIDs[!(duplicated(fileIDs$caseIDs)),]

#get the file names
names = fileIDs$caselDs
fileIDs = pasteO(fileIDs$Names, '_batch_corrected.csv')

#create dataframe with those RNA files and add rTow/column mnames
ControlRNA = lapply(filelIDs, function(x)

fread(
paste0('/fs/ess/PAS0854/Active_projects/TCGA_BatchResult/', x),
select = 'x!'

)

)

ControlRNA = do.call(cbind, ControlRNA)

colnames (ControlRNA) = names

genes = readLines('/fs/ess/PAS0854/Active_projects/Gene_Names_TCGABatch.txt')
ControlRNA = cbind(genes, ControlRNA)

colnames (ControlRNA) [1] = 'gene_symbol'

ControlRNA = as.data.frame(ControlRNA)

rownames (ControlRNA) = ControlRNA[, 1]

ControlRNA = ControlRNA[, -1]

#return the data

return(ControlRNA)

In getMasterRNA, we determine a list of samples ARE present in Master and then
extract the batch corrected RNA seq files into a dataframe

each row of the dataframe is a gene

each column of the dataframe ts a sample

getMasterRNA <- function(Master, rna) {

#get rna case IDs that are available
fileIDs = rnalrnal, 3] %in’), Master$CaselDs,]

#get the file names
names = fileIDs$caseIDs

o8

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

fileIDs = pasteO(fileIDs$Names, '_batch_corrected.csv')

#read in all the rna files
MasterRNA = lapply(fileIDs, function(x)

fread(
paste0('/fs/ess/PAS0854/Active_projects/TCGA_BatchResult/', x),
select = 'x'

))

#put them together in a data frame

MasterRNA = do.call(cbind, MasterRNA)

colnames (MasterRNA) = names

genes = readLines('/fs/ess/PAS0854/Active_projects/Gene_Names_TCGABatch.txt')
MasterRNA = cbind(genes, MasterRNA)

colnames (MasterRNA) [1] = 'gene_symbol'

MasterRNA = as.data.frame(MasterRNA)

rownames (MasterRNA) = MasterRNA[, 1]

MasterRNA = MasterRNA[, -1]

#return data
return(MasterRNA)

In makeRNAright we mormalize the gene counts and convert the count dataframe
to TPM to keep consistent with the data format from our model building

makeRNAright <- function(rna) {

create a pseudo annotation dataframe to nmnormalize data
coldata = rep('mutant', ncol(rna))

coldata = as.data.frame(coldata)

colnames(coldata) = c('condition')

coldata$condition = as.factor(coldata$condition)

nmormalize counts

t_rna = DESeqDataSetFromMatrix(countData = rna,
colData = coldata,
design = ~ 1)

t_rna <- estimateSizeFactors(t_rna)

t_rna = counts(t_rna, normalized = T)

read in gene lengths
genelen = readRDS('<gene lengths>')

match the order of gene lengths to the order of the RNA
genelen = genelen[genelLen$Gene_Symbol %inj rownames(t_rna),]
t_rna = t_rnal[rownames(t_rna) %inJ, geneLen$Gene_Symbol,]
genelen = genelen[match(rownames(t_rna), genelLen$Gene_Symbol),]

convert rna to TPM
t_rna = convertCounts(as.matrix(t_rna), 'TPM', geneLen$Length)

t_rna = as.data.frame(t_rna)

#return the RNA

99

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

return(t_rna)

}

In addFunction and addImmuneProb, we add a column to Master which has the
function or immune phenotype respectively of the sample in which the
alteration is present.

addFunction <- function(Master, Mutant_Function) {

#Make sure cases match
Mutant_Function = Mutant_Function[Mutant_Function[, 1] %in), Master$CaselDs,]

#create new column function made of case IDs
Master$Function = Master$CaselDs

#use Mutant_Function as a key to replace case IDs with functions
for (i in 1:nrow(Mutant_Function)) {
Master$Function = replace(Master$Function,
which(Master$Function == Mutant_Function[i, 1]),
Mutant_Function[i, 2])
}

return(Master)

}
addImmuneProb <- function(Master, ImmuneProb) {

check the immuneProb you made matches
ImmuneProb = ImmuneProb[ImmuneProb$Names %in% Master$CaselDs,]

#create new column function made of case IDs
Master$Immune = Master$CaseIDs

#use ImmuneProb as a key to replace case IDs with functions
for (i in 1:nrow(ImmuneProb)) {

#replace each caselID with the tmmune phenotype
id = which(Master$Immune == ImmuneProb[i, 1])
Master$Immune[id] = ImmuneProbl[i, 2]

3

return(Master)

In check conditions we ensure the mutation is evaluable

In getAltImmuneTesting we test each mutant group's immune

phenotypes within the same cancer type

In getAltFunctionTesting we test each mutants group's functional

phenotypes overall

In getAltFunctionImmuneTesting we Tun the previous functions an tally the
results together inm a reasonable table

60

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

checkConditions <- function(splitedMaster) {
check that there are at least 5 instances of the alteration in the cancer type
check that all the function annoatations are not "unknown"
out = c(nrow(splitedMaster) >= 5,
T %in’, (splitedMaster$Function != 'Unknown'))
if (F %in% out) {
return(NA)
} else {

return(splitedMaster)

3
}

getAltImmuneTesting <- function(Master, props) {

split master based on alteration and cancer type
master.split <-
split(Master, pasteO(Master$Alteration, "_", Master$Cancer))

check that each combination ts evaluable
master.split <- lapply(master.split, checkConditions)

remove unevaluable alterations
master.split = master.split[!(is.na(master.split))]

if (length(master.split) == 0) {

if nothing is evaluavkle
resplit
master.split <-
split(Master, pasteO(Master$Alteration, "_ ", Master$Cancer))

alts = names(master.split)
nHots = c()

nColds = c()
totals = c()
sigsI = c()
im = c()

record number of each group (GOF, LOF, High, Low)
for (x in alts) {

tmp = master.split[[x]]

total = nrow(tmp)

nHot = nrow(tmp[tmp$Immune == 'High',])
nCold = nrow(tmp[tmp$Immune == 'Low',])
nHots = c(nHots, nHot)

nColds = c(nColds, nCold)

61

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

sigsI = c(sigsI, 1)
im = c¢(im, 'Unknown')
totals = c(totals, total)

}
} else {

if there is at least 1 ewvaluable alteration
alts = names(master.split)

nHots = c()
nColds = c()
totals = c()
sigsI = c(O
im = c()

go through each alteration that you can evaluate
for (x in alts) {

store data for manipulation
tmp = master.split[[x]]

record the total number of samples
total = nrow(tmp)

record the porportions of high and low sampes im the parent cancer type
props_can = props [props$Cancer == tmp$Cancer[1],]

prop_high = props_can([1l, 3] / props_can[1l, 2]

prop_low = props_can[l, 4] / props_can[l, 2]

#if any are 0 or 1, offset by .01 to allow for evaluation
prop_high = ifelse(prop_high == 0, .01, prop_high)
prop_low = ifelse(prop_low == 1, .99, prop_low)

record number of each group (High, Low)
nHot = nrow(tmp[tmp$Immune == 'High',])
nCold = nrow(tmp[tmp$Immune == 'Low',])

determine if the proportion of hot samples is greater than expected
z = prop.test(

nHot,

total,

p = prop_high,

alternative = '"greater",

correct = TRUE

if (z$p.value < .05) {
if 1t is greater than expected record the number of highs and lows
totals = c(totals, total)

nHots = c(nHots, nHot)
nColds = c(nColds, nCold)

62

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

}

}

3

available under aCC-BY 4.0 International license.

record the pvalue
sigsI = c(sigsI, z$p.value)

record "high" annoation
im = c(im, 'High')

else {

1f there is not more highs than expected, test lows
z = prop.test(

nCold,

total,

p = prop_low,

alternative = '"greater",

correct = TRUE

if (z$p.value < .05) {

1f there are more lows than expected record the number of highs and lows
totals = c(totals, total)

nHots = c(nHots, nHot)

nColds = c(nColds, nCold)

record the pvalue
sigsI = c(sigsI, z$p.value)

record "high" annoation
im = c(im, 'Low')

} else {

if there is no difference in lows either record everything
totals = c(totals, total)

nHots = c(nHots, nHot)

nColds = c(nColds, nCold)

sigsI = c(sigsI, z$p.value)

record the annotation unknown
im = c¢(im, 'Unknown')

3

collect all the annotations
alt <- cbind(alts, totals, nHots, nColds, sigsI, im)
colnames(alt) = c('Alt.ID',

'Total.Samples',
'nHighs',
'nLows',
'Immu.Sig',

' Tmmune ')

63

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

return them all in a dataframe
alt = as.data.frame(alt)

return(alt)

}
getAltFunctionTesting <- function(Master) {

split master based on alteration
master.split <- split(Master, Master$Alteration)

check that each combination ts evaluable
master.split <- lapply(master.split, checkConditions)
master.split = master.split[!(is.na(master.split))]

if (length(master.split) == 0) {

if nothing is evaluavkle

resplit

master.split <- split(Master, Master$Alteration)
alts = names(master.split)

nGOFs = c()
nlLOFs = c()
sigsF = c(Q)
fun = c()

for (x in alts) {

record number of each group (GOF, LOF, High, Low)
tmp = master.split[[x]]

nGOF = nrow(tmp [tmp$Function == 'GOF', 1)

nLOF = nrow(tmp [tmp$Function == 'LOF', 1)

nGOFs = c(nGOFs, nGOF)

nlL0OFs = c(nLOFs, nLOF)

sigsF = c(sigsF, 1)

fun = c(fun, 'Unknown')

}
} else {

if there is at least 1 ewvaluable alteration
alts = names(master.split)

nGOFs = c()
nlLOFs = c()
sigsF = c(Q)
fun = c(Q)

go through each alteration that you can evaluate
for (x in alts) {

record the number of GOFs and LOFs

tmp = master.split[[x]]
nGOF = nrow(tmp [tmp$Function == 'GOF', 1)

64

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

nLOF = nrow(tmp[tmp$Function == 'LOF', 1)

determine if there are more or less GUFs than expected by random chance
z = prop.test(

nGOF,

sum (nLOF, nGOF),

p = NULL,

alternative = "two.sided",

correct = TRUE

if (z$p.value < .05) {

1f there are an unexpected number of GUOFs
if (nGOF > nLOF) {

1f there are more GOFs than LOFs
record all the numbers

nGOFs = c(nGOFs, nGOF)

nL0OFs = c(nLOFs, nLOF)

sigsF = c(sigsF, z$p.value)

record the annotation GOF
fun = c(fun, 'GOF')

} else {

if there are more LOFs than GOFs
record all the numbers

nGOFs = c(nGOFs, nGOF)

nLOFs = c(nLOFs, nLOF)

sigsF = c(sigsF, z$p.value)

record the annotation LOF
fun = c(fun, 'LOF')

}
} else {

there are about as many GOFs we would expect
record all the numbers

nGOFs = c(nGOFs, nGOF)

nLOFs c(nLOFs, nLOF)

sigsF = c(sigsF, z$p.value)

record the annotation "unknown"
fun = c(fun, 'Unknown')

record all the wvalues together

65

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

}

available under aCC-BY 4.0 International license.

alt <- cbind(alts, nGOFs, nLOFs, sigsF, fun)
colnames(alt) = c('Alt.ID', 'nGOFs', 'nLOFs', 'Func.Sig', 'Function')

return the data together
alt = as.data.frame(alt)
return(alt)

getAltFunctionImmuneTesting <- function(Master, props) {

}

get the function results
alt.data.f = getAltFunctionTesting(Master)

get the immune results
alt.data.i = getAltImmuneTesting(Master, props)

colect all the function results for each alteartion in the immune results
out = lapply(gsub("_TCGA.*", "" alt.data.i$Alt.ID), function(x) {

id = which(alt.data.f$Alt.ID == x)
return(alt.data.f[id,])

b

combine all the results together
out = do.call(rbind, out)
alt.data = cbind(alt.data.i, out[,-1])

make the column names be a particular order
alt.data = alt.datal[, match(
c(
'Alt.ID',
'Total.Samples',
'nGOFs',
'nLOFs"',
'Func.Sig',
'Function',
'nHighs',
'nLows',
'Immu.Sig',
' Immune'
),
colnames(alt.data)

)]

return the resulting data frame
return(alt.data)

getAltFunctionImmuneFinal <- function(alt) {

some of the rows from the alt produced by getAltFunctionImmuneTesting
have unnecessary Tows

66

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

filter to only include the needed Tows
alt = data.frame(
Alt.ID = alt[1, 1],
Total.Samples = sum(as.numeric(alt[, 2])),
nGOFs = sum(as.numeric(alt[, 3])),
nLOFs = sum(as.numeric(alt[, 4])),
Func.Sig = mean(as.numeric(alt[, 5])),
Function = alt[1, 6],
nHighs = sum(as.numeric(alt[, 71)),
nLows = sum(as.numeric(alt[, 8])),
Immu.Sig = mean(as.numeric(alt[, 9])),
Immune = alt[1, 10],
Cancer = pasteO(alt[, 11], collapse = ", ")

return(alt)

}

#In filterResults we create the necesary dataframes for the graphs created in R shiny.

filterResults <-
function(Master,
MasterRNA,
ControlRNA,
Cancers = 'all',
Mutations = 'all') {

#record the caseIDs in ControlRNA
caseIDs = colnames(ControlRNA)

#find the clinical data associated with those IDs
clin = readRDS('<clinical data>')

filter clin to only cinlude the data in ControlRNA
clin = clin[clin$caseIDs %in% caselDs,]
clin = clin[match(colnames(ControlRNA), clin$caseIDs),]

store the cancer types in ControlCan
ControlCan = as.data.frame(cbind(colnames(ControlRNA), clin$project))
colnames (ControlCan) = c('CaselIDs', 'Cancers')

if (Cancers != 'all') {
1f the cancer parameter is changed, filter accordingly

Master = Master[Master$Cancer Jin) Cancers,]
MasterRNA = MasterRNA[, colnames(MasterRNA) ’%in) Master$CaseIDs]

ControlCan = ControlCan[ControlCan[, 2] %in% Cancers,]

ControlRNA = ControlRNA[, colnames(ControlRNA) %in) ControlCanl[, 1]]
}
if (Mutations != 'all') {

1f the Mutations parameter is changed, filter accordingly

67

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Master = Master[Master$Alteration %in’ Mutations,]
MasterRNA = MasterRNA[, colnames(MasterRNA) %in) Master$CaseIDs]

}
if (ncol(ControlRNA) < 500) {

combine the RNA for graphing
rna = cbind(ControlRNA, MasterRNA)

ensure there are no inadvertant duplicated Tows
Master[! (duplicated(Master$CaseIDs)), 1]
funs[match(colnames (MasterRNA), funs)]

funs

funs

make mutant data metadata for function
for (i in 1:nrow(Master)) {

funs = replace(funs, which(funs == Master[i, 1]), Master[i, 6])

imm = Master[!(duplicated(Master$CaseIDs)), 1]
imm[match(colnames (MasterRNA), imm)]

imm

make mutant data metadata for immune
for (i in 1:nrow(Master)) {

imm = replace(imm, which(imm == Master[i, 1]), Master[i, 7])

make timmune and function control RNA metadata for graphing
metadatal = c(rep('Control', ncol(ControlRNA)), funs)
metadata2 = c(rep('Control', ncol(ControlRNA)), imm)

} else {
if there are more than 500 samples in the control data, randomly
select 500 to preserve RAM on the web portal
rna = cbind(ControlRNA[, sample(l:ncol(ControlRNA), 500)], MasterRNA)
ensure there are no inadvertant duplicated rows
funs = Master[!(duplicated(Master$CaseIDs)), 1]

funs = funs[match(colnames(MasterRNA), funs)]

make mutant data metadata for function
for (i in l:nrow(Master)) {

funs = replace(funs, which(funs == Master[i, 1]), Master[i, 6])

imm = Master[!(duplicated(Master$CaseIDs)), 1]
imm = imm[match(colnames (MasterRNA), imm)]

68

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

make mutant data metadata for immune
for (i in l:nrow(Master)) {

imm = replace(imm, which(imm == Master[i, 1]), Master[i, 7])

make immune and function control RNA metadata for graphing
metadatal = c(rep('Control', ncol(ControlRNA)), funs)
metadata2 = c(rep('Control', ncol(ControlRNA)), imm)

}

#put together the meta data

metadata = cbind(metadatal, metadata2, colnames(rna))
metadata = as.data.frame(metadata)

colnames(metadata) = c('Function', 'Immune', 'IDs')

put together all the data for the final product
1 = list(rna, metadata, Master, ControlRNA, MasterRNA, ControlCan)
names(1l) = c('rna',

'metadata’,

'Master',

'ControlRNA',

'MasterRNA',

'ControlCan')

return(l)

in runRIGATONI we perform all the functions of RIGATONI and all
the parts of the TCGA analysis.

runRIGATONI <- function(gene, input_dir) {

read in all genes in the TCGA RNA
all_genes = readLines('<TCGA genes>')

if (gene %in’ all_genes) {

1f the geme you are trying to evaluate %s in the list
remove the list of genes

rm(all_genes)

message (pasteO('Starting gene: ', gene))
message('Setting up')

load the RNA master list and the string database data
sdb <- readRDS('<string data>')
rna <- readRDS('<rna available>')

#make the master dataframe

message ('Making master dataframe for mutant samples')
Master <- suppressWarnings(getMaster(input_dir, gene, rna))

69

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Master = Master[!(duplicated(Master$CaselDs)),]

get the control RNA
message ('Gathering wild-type control RNA')
ControlRNA <-
suppressMessages (lapply (unique (Master$Cancer), function(x) {
c = getControlRNA(Master, rna, x)
return(makeRNAright (c))
1)

names (ControlRNA) = unique(Master$Cancer)

#get the mutant RNA

message('Gathering mutant RNA')

MasterRNA <- suppressMessages(getMasterRNA(Master, rna))
MasterRNA = makeRNAright (MasterRNA)

rm(rna)

make gene list

message('Making Initial Gene List')
gene_list_ppi = makeGenelList(gene, sdb)
if (length(unlist(gene_list_ppi)) > 0) {

rm(sdb)

butld the regression model
message('Building regression model')

Regression <- lapply(ControlRNA, function(x) {

build each regression within each cancer type
suppressWarnings (getRegression(gene_list_ppi, gene, x))

b

names (Regression) <- names(ControlRNA)

predict mutant function
message('Predicting mutant function')
Mutant_Function <- lapply(unique(Master$Cancer), function(x) {

predict mutant function within each cancer type individually
create psuedo Master_1 for ewaluation

Master_1 = Master[Master$Cancer == x,]

create psuedo MasterRNA_1 for evaluation
MasterRNA_1 = MasterRNA[, colnames(MasterRNA) %in% Master_1$CaseIDs]

extract the control regression matching the cancer type
Regression_1 = Regression[[x]]

determine mutant function
out = tryCatch({

70

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

return(suppressWarnings (getMutantFunction(
Regression_1, MasterRNA_1, gene

)))
}, error = function(e) {

return(cbind (Master_1$CaseIDs, 'Unknown'))
b

return(out)

b

put together all the mutant functions
Mutant_Function = do.call(rbind, Mutant_Function)

add the mutant functions to master
Master <- addFunction(Master, Mutant_Function)

predict immune phenotype

message('Predicting immune phenotype')

ImmuneProb <- suppressMessages (getImmuneProb(MasterRNA, m))
Master <- suppressMessages(addImmuneProb(Master, ImmuneProb))

predict alteration level data
message('Predicting alteration function and immune phenotype')

get pre-recorded cancer type immune phenotype proportions
props = readRDS('/fs/ess/PAS0854/Raven/immune-genomics/TCGA_Proportions.RDS')

get the initial alt data frame
alt.data <-

suppressWarnings (getAltFunctionImmuneTesting(Master, props))
alt.data = as.data.frame(alt.data)

keep raw results in alt.data.keep for record keeping
alt.data.keep = alt.data
alt.data.keep$gene = gene

filter alt.data for interesting results
alt.data = alt.datal[alt.data$Function != 'Unknown',]
alt.data = alt.datal[alt.data$Immune != 'Unknown',]

if (nrow(alt.data) == 0) {

if alt.data is empty
just keep alt.data.keep
message (
pasteO(
gene,
' has no functional, immune-affecting alterations after filtering'

)

71

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

1 = list(alt.data.keep)
names(1l) = c('alt.data.keep')
return(l)

} else {

if alt.data is not empty
message('Getting final output')

filter Master so it just has the positive results
Master = Master[pasteO(Master$Alteration, "_", Master$Cancer) %inJ
alt.data$Alt.ID,]

add a cancer column

alt.data$Cancer = unlist(lapply(alt.data$Alt.ID, function(x) {
out = strsplit(x, "_")[[11]1[2]

)

fixz the alt.ID column to not contain cancer information now %in cancer column
alt.data$Alt.ID = unlist(lapply(alt.data$Alt.ID, function(x) {

out = strsplit(x, "_")[[1]1][1]
)

for each group of cancers which behaves the same, separate them into
sub-data frames
alt.data = split(
alt.data,
paste0(
alt.data$Alt.ID,

n n
B

alt.data$Function,

n n
-

alt.data$Immune

summarize each sub-dataframe
alt.data = lapply(alt.data, function(x)
return(getAltFunctionImmuneFinal(x)))

combine all summarized data
alt.data = do.call(rbind, alt.data)
rownames (alt.data) = NULL

filter MasterRNA to include only data from interesting results
MasterRNA = MasterRNA[, colnames(MasterRNA) %in, Master$CaseIDs]

remove cancer types with no interesting results from ControlRNA
ControlRNA = ControlRNA[names(ControlRNA) %inj Master$Cancer]

combine ControlRNA into one dataframe

72

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

ControlRNA = do.call(cbind, ControlRNA)
colnames (ControlRNA) = unlist(lapply(colnames(ControlRNA), function(x) {

remove cancer types from column names
x = strsplit(x, "\\.")[[1]][2]

return(x)
1))

create the final output
forGraphs <-
suppressMessages(filterResults(Master, MasterRNA, ControlRNA))

1 = list(
Master,
MasterRNA,
ControlRNA,
alt.data,
forGraphs[['rna'll,
forGraphs[['metadata'l],
forGraphs[['ControlCan']],
alt.data.keep

message('Done! ')

names (1) = c(
'Master',
'MasterRNA',
'ControlRNA',
'alt.data',
'rna’,
'metadata’,
'ControlCan',
'alt.data.keep'

return
return(l)
}
} else {
message (pasteO(gene, ': no mapped genes :('))
return(NA)
}
} else {
message (pasteO(gene, " Not in gene list"))
return(NA)
}
}

73

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

6.2: Run RIGATONI for all genes

In order to run RIGATONTI for all genes, I created a plain text file with a new gene to run on each line of
the file and two batch scripts to run each gene through my pipeline in parallel.

In the first batch script, I run each batch job individually and ensure I do not excede batch limits.
#!/bin/sh
#SBATCH --account=PAS0854

#SBATCH —--time=30:00:00
#SBATCH —--ntasks=5

input_dir='/fs/ess/PAS0854/Active_projects/TCGA_novel_icktps'
output_dir='/fs/scratch/PAS0854/vellal2/RIGATONI_Shiny'

while IFS= read line;

do
sbatch Evaluation.sh $line “echo $input_dir" “echo $output_dir"
cond="squeue -u vellal2 | grep 'Val' | wc -1°
while [$cond -gt 998 1;
do
echo "Waiting";
sleep 10m;
cond="squeue -u vellal2 | grep 'Val' | wc -17;
done

done < <TCGA gene names>

In the next batch script, I simply run the evaluation script in R described in detail in 5.1

#1/bin/sh

#SBATCH ——-account=PAS0854
#SBATCH —-time=30:00:00
#SBATCH --ntasks=10

module load R/4.1.0-gnu9.1

Rscript evaluationUsingGenes.R $1 $2 $3

The evaluationUsingGenes.R script simply loads each function described in 5.1, and the R package described
in 4 and then executes the following code:

read in the command line arguments
args = commandArgs(trailingOnly = T)
gene = as.character(args[1])

gene = gsub('[\r\n]', '', gene)
input_dir = as.character(args[2])
output_dir = as.character(args[3])

run RIGATONI
RIGA <- runRIGATONI(gene, input_dir)

check the RIGATONI ran all the way through
if (class(RIGA[[1]]) == 'data.frame') {

74

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

if (length(RIGA) == 1) {

if there is only 1 element, that means there were no important alterations
keep the record

write.csv(
RIGA$alt.data.keep,
paste0(
'/fs/ess/PAS0854/Raven/all.alt.data/"',
gene,
'.alt.data.csv'

} else if (length(RIGA) > 1) {
1f there are more than 1 elements, that means %t ran to completion
keep the record

write.csv(
RIGA$alt.data.keep,
paste0(
'/fs/ess/PAS0854/Raven/all.alt.data/"',
gene,
'.alt.data.csv'

remove the record
RIGA = RIGA[1:7]

#create directory for the results
dir.create(pasteO(output_dir, "/", gene))

go to the directory and save the object
setwd(pasteO(output_dir, "/", gene))
saveRDS(object = RIGA,

file = 'RIGA.rdata’,

compress = T)

Part 7: Text mining (Fig 4)

We extracted all the results from the Pan TCGA analysis and then performed text mining to understand
how our results compare to existing literature. First we ran the following in linux.

esearch -db pubmed -query "(((immunity) OR (immunology) OR (immune)) \

AND (cancer) NOT (Review[Publication Typel]) NOT (Preprint[Publication Typel)) \
AND (("2010/12/6" [Date - Publication] : "3000"[Date - Publication]))" |

efetch -format abstract >> abstracts.test.txt

Next we did the following in R

75

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

read in the abstracts file created before
abstracts <- readabs('abstracts.test.txt')

226093 total papers analyzed
annotate how many times each gene appears in the abstract object
genes = gene_atomization(abstracts)

convert to a data frame
genes = data.frame(genes)

save for future use
saveRDS(genes, 'PubMedGenes.RDS')

go to the location of all the recording keeping files stored in section 6
riga_visualize = list.files('/fs/ess/PAS0854/Raven/all.alt.data/"')

read each file
riga_visualize = lapply(riga_visualize, read.csv)

combine all the files together
riga_visualize = do.call(rbind, riga_visualize)

#filter for only interesting results

riga_visualize = riga_visualize[riga_visualize$Function != 'Unknown',]
riga_visualize = riga_visualize[riga_visualize$Immune != 'Unknown',]
filter the pubmed genes to include only genes in our output

genes = genes[genes$Gene_symbol %inj, riga_visualize$gene,]

riga_visualize$PubMedref = unlist(lapply(riga_visualize$gene, function(gene) {

for each gene
if (gene ’in) genes$Gene_symbol) {

id = which(genes$Gene_symbol == gene)

#record the number of times the gene appeared
return(genes$Freq[id])

} else {

4f 1t did not appear, record 0
return(0)

}
19

remove any duplicated wvalues
riga_visualize = riga_visualize[!(duplicated(riga_visualize$gene)),]

make sure the number of references %is numeric
riga_visualize$PubMedref = as.numeric(as.character(riga_visualize$PubMedref))

convert to logl0

76

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

riga_visualize$PubMedref = loglO(riga_visualize$PubMedref)

if the wvalue is non-finite after converting with logl0, convert to 0
riga_visualize$PubMedref[! (is.finite(riga_visualize$PubMedref))] = 0

Figure 44
pl = ggplot(riga_visualize, aes(x = PubMedref)) +
geom_histogram(
data = riga_visualize,
color = 'black',
£ill = 'gray',
binwidth = 1,
alpha = .5
) +
geom_text (
aes(label = ifelse(after_stat(count) > 0, after_stat(count))),
y = c(2880, 2200, 900, 150, 80),

stat = "bin",
binwidth = 1,
size = 5

) +

theme_classic() +
scale_x_continuous(
breaks = ¢(0, 1, 2, 3, 4),
labels = c("O", '1-10', '11-100', '101-1,000', '1,000-10,000'),
expand = c(.04, .04)
) +
scale_y_continuous(expand = expansion(mult = c(.01, .08))) +
xlab('PubMed References Connecting \nGOI to Cancer Immunity') +
ylab('Number of Genes (n=5746)') +
theme (text = element_text(size = 15),
axis.text.x = element_text(

angle = 45,

vjust = 1,

hjust = 1
))

saveRDS (pl, "<Figure 4A>")

Part 8: 14q deletion in renal cell carcinoma (Fig 4)

All data shown here is from the paper found at “https://aacrjournals.org/cancerres/article/83/5/700/
716683 /Integrative-Single- Cell- Analysis- Reveals” The bulk RN Aseq results for 14q deletions shown in figures
4B and 4C are extracted from the pan-TCGA analysis described in section 6. The single cell analysis is shown
here. All data was downloaded from “https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE207493”

8.1 Preprocessing

this function reads in all the data and performs quality control filtering
read_data <- function(RCC) {
#read the data in

7

https://aacrjournals.org/cancerres/article/83/5/700/716683/Integrative-Single-Cell-Analysis-Reveals
https://aacrjournals.org/cancerres/article/83/5/700/716683/Integrative-Single-Cell-Analysis-Reveals
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE207493
https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

out.data <- Readl0X(data.dir = pasteO("./", RCC))

#turn the file into a Seurat object
out <-
CreateSeuratObject(
counts = out.data,
project = "mRCC81",
min.cells = 8,
min.features = 200

record the percent of mitochondrial genes
out[["percent.mt"]] <- PercentageFeatureSet(out, pattern = ""MT-")

#record the lower bound of the feature count
low = median(out$nFeature RNA) - 5 * (sd(out$nFeature_RNA))

if (low < 0) {
if the calculated lower bound is below 0, set to 200
low = 200

}

calculate the upper bound of feature count
high = median(out$nFeature_RNA) + 5 * (sd(out$nFeature_RNA))

if (high > max(out$nFeature_RNA)) {
if the upper bound is higher than the mazx, set the maxz to the maz + 1
high = max(out$nFeature_RNA) + 1

X

calculate the upper bound of counts
high_c = median(out$nCount_RNA) + 5 * (sd(out$nCount_RNA))

if (high_c > max(out$nCount_RNA)) {
if the upper bound is higher than the maz, set the maxz to the maz + 1
high_c = max(out$nCount_RNA) + 1

b

remove cells outside the calculated bounds and
with percent.mt greater than or equal to 10
out <-
subset (out,
subset = nFeature RNA > low &
nFeature_RNA < high & percent.mt < 10 & nCount_RNA < high c)

#set the orig.ident to the sample mname
out$orig.ident = factor(rep(RCC, length(out$orig.ident)), levels = c(RCC))

#return the object
return(out)

78

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

list all the samples to study
1s = list.dirs()

put them into the correct format
1s = gsub('\\./', "", 1s)

get just the RCC samples
1s = 1s[grepl('RCC', 1s)]

read in all the data
mRcc = lapply(ls, read_data)

merge together all the experiments
mRcc = merge(x = mRcc[[1]], y = mRcc[2:length(mRcc)])
mRcc[["joined"]] <- JoinLayers(mRcc[["RNA"]])

check the quality control filtering
mRcc[["percent.mt"]] <- PercentageFeatureSet(mRcc, pattern = ""MT-")
V1lnPlot (

mRcc,

features = c("nFeature RNA", "nCount_RNA", "percent.mt"),

ncol = 3,

pt.size = 0

record the genes for the S and GZ2M phases of the cell cycle
s.genes <- cc.genes$s.genes
g2m.genes <- cc.genes$g2m.genes

this ts based on a tutortal from https://satijalab.org/seurat/articles/
cell_cycle_vignette
normalize and predict malignant cells

mRcc <- NormalizeData(mRcc, assay = 'joined')
mRcc <- FindVariableFeatures(mRcc, selection.method = "vst", nfeatures = 2000,
assay = 'joined')

mRcc <- CellCycleScoring(mRcc, s.features = s.genes,
g2m.features = g2m.genes,
set.ident = TRUE,

assay = 'joined')
mRcc <- ScaleData(mRcc, vars.to.regress = c("S.Score", "G2M.Score"),
assay = 'joined')

set the default assay to the joined data
DefaultAssay(mRcc) = 'joined'

run PCA
mRcc <-
RunPCA (
mRcc,
pc.genes = VaribaleFeatures(mRcc, assay = 'joined'),
npcs = 30,
verbose = FALSE

79

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

explore best dimensions for clustering with a heatmap
DimHeatmap (mRcc,

dims = 1:15,

cells = 500,

balanced = TRUE)

explore best dimensions for clustering with a elbow plot
ElbowPlot (mRcc)

8.2 Cell typing for normal and tumor groups

The following is based on tutorials from “https://hbctraining.github.io/scRNA-seq online/lessons/06a__
integration__harmony.html” and “https://github.com/IanevskiAleksandr/sc-type”

mRcc <- mRcc %>%
harmonize to remove batch effect
RunHarmony ("orig.ident", plot_convergence = TRUE)

find optimal clustering
resolution.range <- seq(from = 0, to = 1, by = 0.2)

use the dimensions selected from the elbow plot and heatmap in 8.1
mRcc <- mRcc %>%

run UMAP on the harmonized data
RunUMAP (reduction = "harmony", dims = 1:7) %>%

find the nearest neighbors for the UMAP object
FindNeighbors(reduction = "harmony", dims = 1:7) %>%

find the clusters of the UMAP object across the resolution range
FindClusters(resolution = resolution.range) %>’
identity()

display the clustree
clustree(mRcc, prefix = "joined_snn_res.")
choose an ideal clustering based on probabilities

Idents(mRcc) = mRcc$joined_snn_res.0.4

rm(g2m. genes)

rm(1ls)
rm(resolution.range)
rm(s.genes)

smRcc.markers <- FindAllMarkers(mRcc, only.pos = TRUE)

load gene set preparation function

source (
"https://raw.githubusercontent.com/IanevskiAleksandr/sc-type/master/R
/gene_sets_prepare.R"

)

80

https://hbctraining.github.io/scRNA-seq_online/lessons/06a_integration_harmony.html
https://hbctraining.github.io/scRNA-seq_online/lessons/06a_integration_harmony.html
https://github.com/IanevskiAleksandr/sc-type
https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

load cell type annotation function

source(
"https://raw.githubusercontent.com/IanevskiAleksandr/sc-type/master/R
/sctype_score_.R"

)

DB file

db_ <-
"https://raw.githubusercontent.com/IanevskiAleksandr/sc-type/master

/ScTypeDB_full.xlsx"

tissue <- "Kidney"

prepare gene sets
gs_list <- gene_sets_prepare(db_, tissue)

check Seurat object version (scRNA-seq matriz extracted differently in Seurat v4/v5)
seurat_package_v5 <-
isFALSE('counts' %in’% names(attributes(mRcc[["joined"]])))

extract scaled scRNA-seq matriz
scRNAsegData_scaled <-
if (seurat_package_vb) {
as.matrix(mRcc[["joined"]]$scale.data)
} else {
as.matrix(mRcc[["joined"]]@scale.data)

3

run ScType
es.max <-
sctype_score(
scRNAsegData = scRNAseqData_scaled,
scaled = TRUE,
gs = gs_list$gs_positive,
gs2 = gs_list$gs_negative

merge by cluster
cL_resutls <-
do.call("rbind", lapply(unique(mRcc@meta.data$joined_snn_res.0.4),
function(cl) {
es.max.cl = sort(rowSums(es.max[, rownames(mRcc@meta.datal

mRccOmeta.data$joined_snn_res.0.4 == cl,])
D,
decreasing = !0)

head(data.frame(
cluster = cl,
type = names(es.max.cl),
scores = es.max.cl,
ncells = sum(mRcc@meta.data$joined_snn_res.0.4 == cl)
Vg
10)
19D

81

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

collect the top cell type for each cluster
sctype_scores <-

cL_resutls 7>}, group_by(cluster) %>} top_n(n = 1, wt = scores)
sctype_scores = as.data.frame(sctype_scores)

there is one cluster that has a variety of scores close together,
one of these scores being cancer stem cells

based on the results, I believe these to be cancer stem cells and
I'm manually changing that annotation

sctype_scores[8,] = c(4, 'Cancer stem cells', 12590.768, 9015)

set low-confident (low ScType score) clusters to "unknown"

sctype_scores$type [as.numeric(as.character(sctype_scores$scores)) <
as.numeric(as.character(sctype_scores$ncells)) /
4] <- "Unknown"

add a new metadata slot which includes the sctype classification
mRccOmeta.data$sctype_classification = ""
for (j in unique(sctype_scores$cluster)) {

cl_type = sctype_scores[sctype_scores$cluster == j,]

mRcc@meta.data$sctype_classification[mRccOmeta.data$joined_snn_res.0.4 == j]
= as.character(cl_type$typel[1])

set the ident back to the sample level information
Idents(mRcc) = mRcc$orig.ident

8.3 Copy number analysis

test = lapply(unique(mRcc$orig.ident), function(x) {
print (x)

separate the sample you would like to work on
out = subset(mRcc, idents = x)

reset the Ident to the cell type
Idents(out) = out$sctype_classification

collect the mnormal cells
norm_names = names (out$sctype_classification[out$sctype_classification ==
'Hematopoietic cells'])

keep only the normal cells and tumor cells
out = subset(out, idents = c('Cancer stem cells', 'Hematopoietic cells'))

extract the RNA
out = out@assays$joined$counts
out = as.matrix(out)

82

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

keep the RNA and the mormal names

out = list(out, norm_names)

names (out) = c('matrix', 'normal names')
return(out)

b

save for future use
names (test) = unique(mRcc$orig.ident)
save(test, file = 'copyKatInput.rdata')

run copykat
copykat.output = mclapply(l:length(test), function(x) {

record the sample name
nam = names (test) [x]

use = test[[x]]

print (nam)

run copykat

out = c(
rawmat = use$matrix,
id.type = "S",
ngene.chr = 5,
win.size = 25,
KS.cut = 0.1,
sam.name = nam,
norm.cell.names = use$normal names,
distance = "euclidean",
output.seg = "FLASE",
plot.genes = "FALSE",
genome = "hg20",
n.cores = 2

return(out)

b

save for future use
save(copykat.output, file = 'copyKatOutput.rdata')

collect the copy number output
1ls = list.files(pattern = '*_copykat_CNA_raw_results_gene_by_cell.txt')

read each copy number result in
1ls = lapply(ls, function(x) {
read.table(x, header = T, row.names = NULL)
)
names (1s) = gsub('_.*"',

()
b

list.files(pattern = '*_copykat_CNA_raw_results_gene_by_cell.txt'))

combine all the results by chromosome

83

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

1ls = lapply(ls, function(x) {

aggregate together the output by chromosome

out = aggregate(x[, 8:ncol(x)], by = list(x$chromosome_name), mean)
rownames (out) = out[, 1]

out = out[,-1]

record the mean wvalues for each chromosome
out = apply(out, 1, mean)
return(out)

b

combine all the results together
1ls = do.call(cbind, 1s)

record values with chrl4 deletion
fourteen = 1s[14,] < 0

fourteen = as.factor(fourteen)
levels(fourteen) = c('Wildtype', 'Deleted')

record the original samples into a new metadata characteristic called fourteen
mRcc$fourteen = mRcc$orig.ident

record the names of the original samples
nams = unique(mRcc$fourteen)

make sure the order of fourteen matches the order of nams
fourteen = fourteen[match(nams, names(fourteen))]

make sure fourteen is a character not a factor
fourteen = as.character(fourteen)

write function to sub in deleted or wildtype for each sample
subin <- function(vector, list){

for each element in the list, replace the element of the vector which matches
the named element of the list with the element of the list
for (x in 1:length(list)){

vector [vector == names(list) [x]] = list[[x]]

3

return the wvector
return(vector)

store fourteen
mRcc$fourteen = subin(mRcc$fourteen, fourteen)

84

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

8.4: Immune cell analysis

extract the immune compartment from the mRCC object
imm = subset(mRcc,
sctype_classification %in) c('Unknown',
' Immune cells',
'Hematopoietic cells'))

get the new vartable features of the data
imm <- FindVariableFeatures(imm,

selection.method = "vst",
nfeatures = 2000,
assay = 'joined')
run PCA
imm <-
RunPCA (imm,
features = VariableFeatures(object = imm, assay = 'joined'))

make sure the default assay ts joined
DefaultAssay(imm) = 'joined'

make a heatmap to help decide on the clusters

DimHeatmap (imm,
dims = 1:15,
cells = 500,

balanced = TRUE)

make an elbow plot to help decide on number of clustering dimensions
ElbowPlot (imm)

set the resolution range
resolution.range <- seq(from = 0, to = 1, by = 0.2)

imm <- imm %>%

run UMAP using harmoney
RunUMAP (reduction = "harmony", dims = 1:6) %>%

find the nearest neighbors
FindNeighbors(reduction = "harmony", dims = 1:6) %>%

find the clusters across the resolution range
FindClusters(resolution = resolution.range) %>
identity ()

display clustree

clustree(imm, prefix = "joined_snn_res.")

choose an ideal clustering based on probabilities

Idents(imm) = imm$joined_snn_res.0.4

load gene set preparation function

85

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

source(
"https://raw.githubusercontent.com/IanevskiAleksandr/sc-type/master/R
/gene_sets_prepare.R"

)

load cell type annotation function

source(
"https://raw.githubusercontent.com/IanevskiAleksandr/sc-type/master/R
/sctype_score_.R"

)

DB file

db_ <-

"https://raw.githubusercontent.com/IanevskiAleksandr/sc-type/master
/ScTypeDB_full.xlsx"

tissue <- "Immune system"

prepare gene sets
gs_list <- gene_sets_prepare(db_, tissue)

check Seurat object verstion (scRNA-seq matriz extracted differently in Seurat v4/v5)
seurat_package_vb <-
isFALSE('counts' %in% names(attributes(imm[["joined"]])))

extract scaled scRNA-seq matriz
scRNAsegData_scaled <-
if (seurat_package_v5) {
as.matrix(imm[["joined"]]$scale.data)
} else {
as.matrix(imm[["joined"]]@scale.data)

}

run ScType
es.max <-
sctype_score(
scRNAsegData = scRNAseqData_scaled,
scaled = TRUE,
gs = gs_list$gs_positive,
gs2 = gs_list$gs_negative

merge by cluster
cL_resutls <-
do.call("rbind", lapply(unique(imm@meta.data$joined_snn_res.0.4),
function(cl) {
es.max.cl = sort(rowSums(es.max[, rownames(imm@meta.datal
imm@meta.data$joined_snn_res.0.4 ==cl,
1)1), decreasing = !0)
head(data.frame(
cluster = cl,
type = names(es.max.cl),
scores = es.max.cl,
ncells = sum(imm@meta.data$joined_snn_res.0.4 == cl)

86

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

),
10)
1D

collect the most likely cell type for each cluster
sctype_scores <-

cL_resutls %>/, group_by(cluster) %>/, top_n(n = 1, wt = scores)
sctype_scores = as.data.frame(sctype_scores)

set low-confident (low ScType score) clusters to "unknown"

sctype_scores$type [as.numeric(as.character(sctype_scores$scores)) <
as.numeric(as.character(sctype_scores$ncells)) /
4] <- "Unknown"

add a new metadata slot which includes the sctype classification
imm@meta.data$sctype_classification = ""
for (j in unique(sctype_scores$cluster)) {

cl_type = sctype_scores[sctype_scores$cluster == j,]

imm@meta.data$sctype_classification[imm@meta.data$joined_snn_res.0.4 == j] =
as.character(cl_type$type[1])

reset the Idents to match the new cell types
Idents(imm) = imm$sctype_classification

save for future reference
save(imm, file = './immRCC.rdata')

now find markers for each cell type between wildtype and deleted samples
markers = lapply(unique(imm$sctype_classification), function(x) {

extract the given cell type
out = subset(imm, sctype_classification == x)

set Idents to fourteen
Idents(out) = out$fourteen

find all markers with no filters
marks <- FindAllMarkers(
out,
only.pos = F,
return.thresh = 1,
logfc.threshold = 0
)
return(marks)

1))
extract only comparisons with at least one differentially expressed gene
names (markers) = unique(imm$sctype_classification)

markers = markers[unlist(lapply(markers, function(x) nrow(x) > 0))]

collect the genes of interset for graphing

87

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

genes_receptor = c('HAVCR2',
'"TIGIT',
'LAG3"',
'CTLA4',
'PDCD1"',
'VSIR',
'CD47"')

get the markers which correspond the genes of interest for T cells
t.cells = markers([c(2,3,5)]

extract only interesting genes
t.cells = lapply(t.cells, function(x) return(x[x$gene %in), genes_receptor,]))

combine the T cells together
t.cells = do.call(rbind, t.cells)

make the cell mames more readable
t.cells$cell = gsub("\\..*x", "" rownames(t.cells))

add a column called group
t.cells$group = 'T cells'

Figure 4E

tc = ggplot(t.cells, aes(
X = gene,
y = cell,

size = -log(p_val_adj, 10),
color = avg_log2FC

)) o+
geom_point () +
gghdx: :facet_grid2(~ cluster, scales = 'free', independent = 'x') +

theme_classic() +
theme (text = element_text(size = 15),
axis.text.x = element_text(

angle = 90,
vjust = 0.5,
hjust =1
)) o+
scale_colour_gradient2(
low = "blue",

mid = "gray",
high = "red",
midpoint = O,
space = "Lab",
na.value = "grey50",
guide = "colourbar",
aesthetics = "colour"
) +
xlab('') +
ylab('")

saveRDS (tc, '<figure 4e>')

88

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583103; this version posted June 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

extract the T cell compartment of the imm object
t.cell = subset(imm, sctype_classification == 'Naive CD8+ T cells')

set the Ident to fourteen
Idents(t.cell) = t.cell$fourteen

Figure 4D
gridExtra: :grid.arrange(
VlnPlot(t.cell, features = c('KLRG1'), pt.size = 0) +

stat_compare_means(label = 'p.signif', label.x = 1.5) +
scale_y_continuous(expand = c(0, .2)) +
theme (
legend.position = 'none',
axis.text.x = element_text(angle = 0, hjust = .5)
) +
xlab('') +

scale_fill_manual (values = c('black', 'purple')),
VinPlot(t.cell, features = c('IL7R'), pt.size = 0) +

stat_compare_means(label = 'p.signif', label.x = 1.5) +
scale_y_continuous(expand = c(0, .2)) +
theme (
legend.position = 'none',
axis.text.x = element_text(angle = 0, hjust = .5)
) +
xlab('') +

scale_fill_manual (values = c('black', 'purple')),
VinPlot(t.cell, features = c('IFNG'), pt.size = 0) +

stat_compare_means(label = 'p.signif', label.x = 1.5) +
scale_y_continuous(expand = c(0, .2)) +
theme (
legend.position = 'none',
axis.text.x = element_text(angle = 0, hjust = .5)
) +
xlab('"') +
scale_fill_manual(values = c('black', 'purple')),
nrow = 1

89

https://doi.org/10.1101/2024.03.02.583103
http://creativecommons.org/licenses/by/4.0/

