

1 **Cleaning the Dead: Optimized decontamination enhances palaeoproteomic
2 analyses of Pleistocene skeletal material**

3

4 Zandra Fagernäs¹, Viridiana Villa Islas¹, Gaudry Troché¹, Jan-Pieter Buylaert², Tura Khujageldiev³,
5 Redzhep Kurbanov³, Jesper V. Olsen⁴, Mikkel Winther Pedersen¹, Frido Welker^{1*}

6

7 **AFFILIATIONS**

8 1. Globe Institute, University of Copenhagen, Copenhagen, Denmark 1353
9 2. Department of Physics, Technical University of Denmark, Roskilde, Denmark 4000
10 3. Institute of History, Archaeology and Ethnography, National Academy of Sciences of Tajikistan,
11 Dushanbe, Tajikistan 734025
12 4. Novo Nordisk Foundation Center for Protein Research, University of Copenhagen,
13 Copenhagen, Denmark 2200

14

15 Corresponding Author:

16

17 Frido Welker
18 Øster Farimagsgade 5
19 Building 7, 1st floor
20 1353, Copenhagen
21 Denmark
22 +45 35 32 64 22
23 frido.welker@sund.ku.dk

24 *Abstract*

25

26 The study of ancient proteins preserved in a range of archaeological, cultural heritage, and
27 palaeontological materials is increasingly contributing to our understanding of human evolution and
28 archaeological research questions. Many of the specimens studied have been excavated and stored
29 for a significant duration prior to their proteomic analysis. Human handling and storage environments
30 therefore provide ample opportunities for protein contamination onto and into specimens of interest to
31 palaeoproteomic studies. As such, modern protein contamination limits access to endogenous
32 proteomes. Here, we compare five approaches of bone protein decontamination applied to a
33 Pleistocene *Equus* sp. bone fragment contaminated with a modern dog salivary proteome. We find that
34 all tested methods reduce the protein contamination, but with different efficiencies. We find that a brief
35 bleach wash is the most effective approach in removing modern protein contamination, and that no
36 additional damage is caused to the endogenous proteome by this treatment. Next, we apply this
37 approach to a hominin tooth found at Khudji, a Late Pleistocene archaeological site in Tajikistan. We
38 demonstrate that a brief bleach wash removes almost all human skin protein contamination while
39 retaining the endogenous hominin dentine proteome. Subsequent phylogenetic analysis of the Khudji
40 dentine proteome allowed determination that the specimen is likely not a Denisovan, but still leaves
41 ambiguity between an assignment to either modern humans or Neanderthals.

42

43 *Keywords*

44

45 Palaeoproteomics, Decontamination, Pleistocene, Human Evolution, Middle Palaeolithic

46 1. *Introduction*

47

48 Palaeoproteomics is a fast-growing field within the archaeological sciences, heritage studies, and
49 palaeoanthropology, with applications such as phylogenetic studies of extinct taxa (Cappellini et al.,
50 2019; Welker et al., 2019), human evolution (Chen et al., 2019; Welker et al., 2020), human subsistence
51 behavior (Le Meillour et al., 2020; Sinet-Mathiot et al., 2019), and health and disease (Fotakis et al.,
52 2020; Warinner et al., 2014), among others. As proteins have been found to preserve in a diverse range
53 of archaeological substrates, and can preserve for millions of years (Demarchi et al., 2022; Madupe et
54 al., 2023), new areas of archaeological studies continue to be opened up as new data types are
55 generated. However, the study of ancient proteins is not straightforward, as the proteome is significantly
56 altered through time. Over time proteins are fragmented into increasingly shorter peptides, resulting in
57 some proteins being completely lost (Welker, 2018). Simultaneously, the fragmented but surviving
58 protein sequences contain amino acids with increasing levels of damage, in different forms (Hendy,
59 Welker, et al., 2018; Warinner et al., 2022). Additionally, contaminating proteins are added to the ancient
60 proteome, deriving from sources such as the burial environment, excavation, storage and subsequent
61 handling in curatorial facilities, and potentially in laboratory and mass spectrometry environments as
62 well (Hendy, Welker, et al., 2018). If not removed or identified, these contaminating proteins risk
63 negatively impacting downstream analyses by i) masking endogenous proteins due to their abundance
64 and more intact state, and ii) facilitating the unwanted incorporation of modern protein sequence
65 variation into reconstructed ancient protein sequences.

66 Significant efforts have been dedicated to the introduction of extraction and injection blanks
67 during palaeoproteomic laboratory workflows. Extraction blanks within the laboratory environment serve
68 to control for the introduction of any protein residues during the extraction process, while injection blanks
69 on protein mass spectrometry equipment are meant to control for the introduction or carryover of
70 peptides within the mass spectrometer (Demarchi et al., 2022; Hendy, Welker, et al., 2018). Although
71 these are necessary, neither of these controls can, however, provide assessment of the endogenous
72 or contaminant origin of proteins and peptides deposited onto a palaeoproteomics study object prior to
73 protein extraction.

74 Additional research on the separation of contaminants and endogenous peptides and proteins
75 has focused on the bioinformatic analysis of diagenetic modifications at the amino acid or peptide level,
76 under the assumption that some of these will show different quantitative or qualitative properties
77 between peptides originating from contaminating proteins compared to endogenous ones. Examples of
78 these include the quantification of the extent of asparagine (N) and glutamine (Q) deamidation,
79 quantification of the extent of various oxidative amino acid modifications, the calculation of peptide
80 length distributions, and analysis of peptide terminus states (Cappellini et al., 2019; Chen et al., 2019;
81 Mackie et al., 2018; Orlando et al., 2013; Ramsøe et al., 2020). Often, metrics derived from these
82 measurements are averaged across the full proteomes identified, while in some cases sufficient
83 amounts of data is available to perform these assessments per protein group (Chen et al., 2019;
84 Ramsøe et al., 2021; Welker et al., 2020). These bioinformatics approaches are useful and necessary
85 when studying ancient skeletal proteomes, but are not without problems. They generally require a
86 sufficiently large number of PSMs per protein group, which may not be available for most protein groups.
87 They rely on some quantifying metric, which at times might be difficult to establish confidently.
88 Furthermore, extraction methods themselves might introduce modifications to the extracted
89 contaminating proteins, mimicking the effect of diagenesis. Finally, none of these approaches resolve
90 the effect of abundant modern proteins masking the identification of degraded and low-abundance
91 proteins from ancient skeletal specimens.

92 In parallel to the development of bioinformatics approaches to characterise the diagenetic
93 modification of proteins in palaeoproteomics contexts, a number of studies therefore mention
94 approaches to decontaminate an archaeological sample prior to protein extraction. Such claimed
95 methods include mechanical surface removal (Kontopoulos et al., 2020; Sawafuji et al., 2017; Wasinger
96 et al., 2019), washing with bleach (sodium hypochlorite) (Froment et al., 2020; Sakalauskaite et al.,
97 2020; Trolle Jensen et al., 2020), washing with ethylenediaminetetraacetic acid (EDTA) (Fagernäs et

98 al., 2020; Hendy, Colonese, et al., 2018; Sawafuji et al., 2017), washing with hydrochloric acid (HCl)
99 (Gasparini et al., 2022; Palmer et al., 2021; Wasinger et al., 2019), washing with water (Gasparini et
100 al., 2022; Spengler et al., 2022), and UV irradiation (Fagernäs et al., 2020; Froment et al., 2020).
101 Although a wide range of published protocols therefore include some kind of decontamination step,
102 there is no consensus on which decontamination method should be used. In fact, there are no
103 comparisons of the efficiency of the above-mentioned approaches in removing protein contamination,
104 nor has their impact on the endogenous proteome been studied.

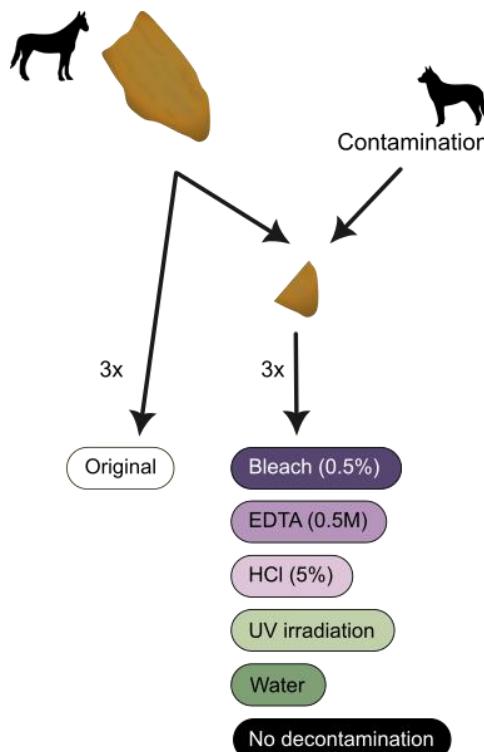
105 Here, we compare five decontamination methods for the palaeoproteomic analysis of an
106 artificially contaminated Pleistocene *Equus* sp. bone specimen; washing with bleach, HCl, EDTA or
107 water, and UV irradiation. These methods were chosen based on their frequent application in
108 palaeoproteomic studies, regardless of proven or theoretical efficiency. After determining that a mild
109 bleach treatment is, of the compared approaches, the most suited for removing modern protein
110 contamination, we then apply this approach to dentine from a Pleistocene hominin tooth from Khudji,
111 Tajikistan, which was found to be heavily contaminated with proteins deriving from human skin. Bleach
112 treatment removed nearly all contaminating proteins, without damaging the endogenous hominin
113 proteins present.

114
115 2. *Material and methods*

116
117 2.1. *Samples*

118 A Pleistocene faunal bone fragment from the Dutch North Sea shore was used to compare different
119 decontamination methods. Previous palaeoproteomic analysis had shown that this fragment stems from
120 an *Equus* sp. A sample was removed from the bone specimen by drilling after manual contamination
121 by contact with saliva and skin of a dog (Figure S1). Specifically, saliva was manually transferred from
122 the dog's mouth using a nitrile glove, and smeared over the bone, whereafter the bone was rubbed on
123 the dog's back. The contamination was not performed in a clean laboratory environment but instead in
124 an office environment, potentially introducing both human and dog proteins. This is not unlike
125 experimental data that suggests the consistent recovery of skin, hair, and salivary proteins from
126 archaeological skeletal specimens, and which are generally regarded as representing modern protein
127 contamination. The dog had not eaten recently prior to the contamination and had no known oral
128 disease.

129 The most promising decontamination method was applied to a hominin tooth from the
130 archaeological site of Khudji, Tajikistan (Figure 6A; Supplementary Information A), which showed a
131 large amount of human skin contamination during initial analyses. This is a deciduous incisor, excavated
132 in 1997, from a layer radiocarbon dated to approximately 40,000 years before present. The specimen
133 has an unknown taxonomic identity within the genus *Homo* based on morphological analyses (Trinkaus
134 et al., 2000).


135
136 2.2. *Laboratory methods*

137 All laboratory work was conducted in dedicated facilities for the processing of ancient biomolecules at
138 the Globe Institute, University of Copenhagen, Denmark. Extraction blanks were carried alongside
139 samples to monitor laboratory contamination.

140
141
142 ***Equus* sp. sample:** The part of the contaminated bone piece with highest visible amount of
143 contamination (Figure S1) was powdered to a homogenous powder using a mortar and pestle, and
144 divided among the different decontamination approaches (Figure 1A). Additionally, a sample was taken
145 from the original uncontaminated bone fragment, and powdered with a mortar and pestle
146 (Supplementary Data 1).

147 Five different decontamination methods were tested: Washing with bleach (sodium
148 hypochlorite), HCl (hydrochloric acid), EDTA (ethylenediaminetetraacetic acid), molecular grade water,

150 and UV irradiation (Figure 1; Table 1). These methods were selected as they are commonly used for
151 decontamination in palaeoproteomics literature. They do not represent a complete list of all possible
152 decontamination methods, nor were they selected for their likely effectiveness. Mechanical surface
153 removal, although commonly utilized, was not included as it requires destruction of a higher amount of
154 sample, which is not desirable for archaeological materials. For all the methods including washes, 1 ml
155 of the reagent was added to the sample, vortexed for 5 s, and centrifuged for 1 min at 13 krpm,
156 whereafter the reagent was removed. After the washes with bleach and HCl, the bone pellet was
157 washed twice with 0.5 ml molecular grade water, in order to avoid the reagents interfering with
158 downstream analyses. UV irradiation was conducted in a crosslinker (UVP Crosslinker, Analytik Jena)
159 with the bone powder in an open 2 ml Eppendorf tube. After 30 s of irradiation, the tube was shaken,
160 and the irradiation continued for an additional 30 s. Additionally, a contaminated sample was included
161 with no decontamination performed, as well as a non-contaminated (“original”) sample. All methods
162 outlined above were conducted in triplicate, in order to account for between-extract variation. Proteins
163 were extracted from the bone powder using a standard palaeoproteomic protocol (Lanigan et al., 2020)
164 and peptides were cleaned on in-house made StageTips (Supplementary Information A).
165

166
167 Figure 1. Schematic of the laboratory workflow.
168

169 Table 1. Decontamination methods included in the current study. Details shown include the
170 concentration of the used reagent (when applicable), the duration of decontamination, and whether a
171 wash with molecular grade water was conducted afterwards or not.

Method	Concentration	Duration	Wash
Bleach (sodium hypochlorite)	0.5% (active chlorine)	Vortex 5 s, removal	Yes
Hydrochloric acid (HCl)	5%	Vortex 5 s, removal	Yes
Ethylenediaminetetraacetic acid (EDTA)	0.5 M	Vortex 5 s, removal	No
Water	–	Vortex 5 s, removal	No
UV irradiation	–	2x30 s	No

172

173 **Homo sp. sample:** A small fragment was removed from the root of the Khudji hominin incisor through
174 drilling, and subsampled for different extractions (Supplementary Information A). Proteins were
175 extracted using a protocol adapted for highly degraded samples (Jensen et al., 2023). For the second
176 subsample, a bleach decontamination step was added prior to demineralization as described above.

177

178 2.3. Mass spectrometry

179

180 For all samples, LC-MS/MS was conducted at the Centre for Protein Research (University of
181 Copenhagen) (see details in Supplementary Information A). An EASYnLC 1200 system was utilised for
182 liquid chromatography (Thermo Fisher Scientific, Waltham, MA, USA) and mass spectrometric analysis
183 was conducted using an Exploris 480 (Thermo Fisher Scientific, Waltham, MA, USA).

184

185 2.4. Data analysis

186

187 The *Equus* sp. raw data was analyzed using MaxQuant v.2.1.3.0 (Cox & Mann, 2008) with the dog
188 (*Canis lupus familiaris*) and horse (*Equus caballus*) reference proteomes, as well as the internal
189 MaxQuant contaminant database (see details in Supplementary Information A). A semi-specific search
190 was conducted, with Oxidation (M), Deamidation (NQ), Gln/Glu->pyro-Glu, Carbamidomethylation and
191 Hydroxyproline as variable modifications, and adding Oxidation (WH) and Dioxidation (WH) when
192 investigating UV-damage. The *Homo* sp. data was analyzed using the human reference proteome with
193 a semi-specific search and Oxidation (M), Deamidation (NQ), Gln/Glu->pyro-Glu and Hydroxyproline
194 as variable modifications.

195 The *Homo* sp. proteome was reconstructed for proteins with more than 5 peptides based on a
196 PEAKS v.7.0 (Zhang et al., 2012) search against a database of the modern human proteome with added
197 archaic variation (see details in Supplementary Information A). A majority consensus was called for
198 each amino acid position, and any identified SAPs were manually verified. Thereafter, a consensus was
199 created from the two reconstructions, leading to three reconstructed proteomes in total: “Original”,
200 “Bleach”, and “Consensus” (Table S1). Phylogenetic analysis was conducted using both a maximum
201 likelihood method through RAxML (Stamatakis, 2006) and a Bayesian approach using MrBayes
202 (Ronquist et al., 2012)

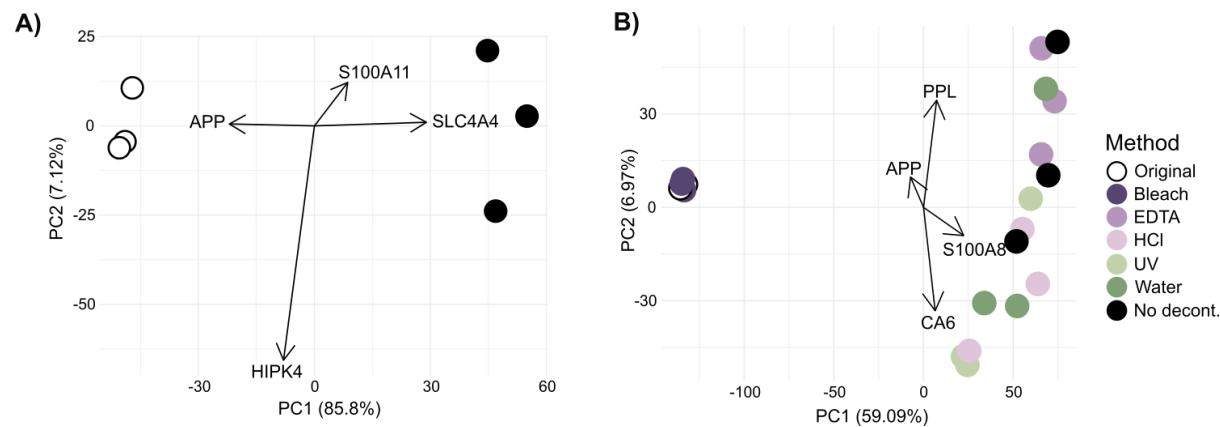
203

204 3. Results

205

206 3.1. Decontamination method comparison

207

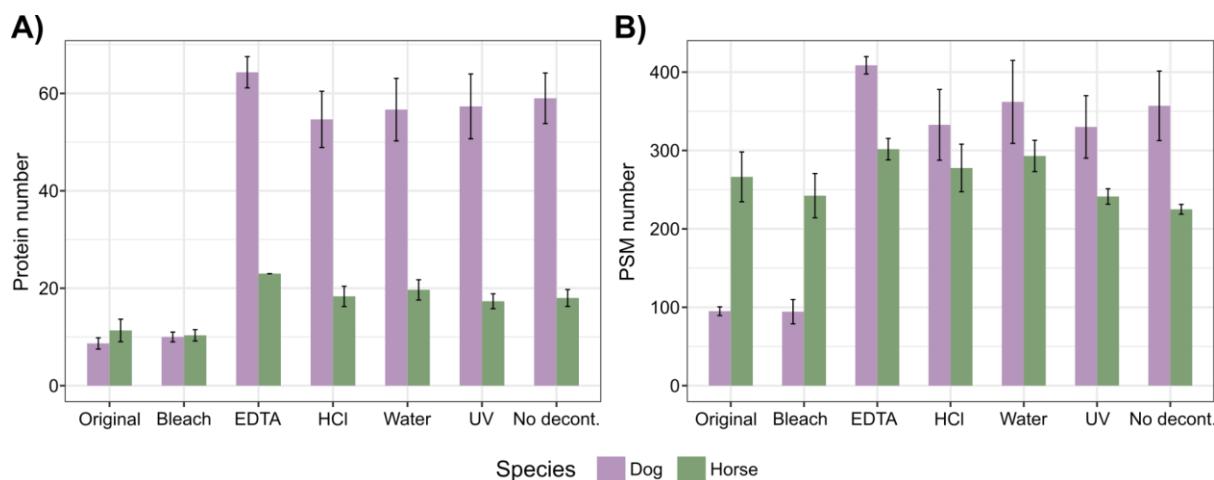

208 Although previous palaeoproteomic studies have mentioned that modern protein contamination is
209 occurring and is being identified, there is no evidence of the impact contamination has on an
210 endogenous skeletal proteome. We therefore analyzed a Pleistocene *Equus* sp. bone that had been
211 contaminated by modern dog saliva and skin (Figure 1). This combination was chosen to have protein
212 contamination that is easily recognizable both taxonomically and in terms of proteome composition.
213 Additionally, the salivary proteome is a complex and comparatively large proteome (Torres et al., 2018)
214 that absorbs into the bone specimen, thereby mimicking a realistic contamination scenario. Human
215 proteins might also be present due to prior handling of the specimen in curatorial contexts, as well as
216 having been added during the dog protein contamination event.

217 We first analyzed the extracted proteomes from the contaminated, non-decontaminated
218 samples (n=3) together with the original, uncontaminated samples (n=3) against the *Equus caballus*
219 (horse) proteome (including the MaxQuant contaminant database). Our results show that the horse
220 proteome identified is different when comparing these two conditions, with the conditions clearly
221 separated in PCA space (Figure 2A). The original samples have 25.0 ± 3.0 (mean \pm standard deviation)
222 *Equus* proteins and $1,439.3 \pm 97.8$ PSMs identified, whereas the contaminated samples have 64.0 ± 5.3
223 proteins and $1,019.3 \pm 74.7$ PSMs. The contaminated proteome that is reconstructed thereby has a

224 larger number of proteins, but with fewer PSMs, and includes salivary proteins that are assigned as
225 horse since a dog database is not included.

226 The number of acquired MS2 spectra is $25,931 \pm 148$ for the original samples and $23,756 \pm 203$
227 for the contaminated samples, with significant differences between the sample groups (ANOVA,
228 $F=225.3$, $p < 0.001$). Additionally, the percentage of identified MS2 spectra differs significantly between
229 the original and contaminated samples (ANOVA, $F=9.24$, $p=0.038$), with a higher percentage of MS2
230 spectra being identified in the original samples ($5.10 \pm 0.46\%$) than the contaminated samples
231 ($4.13 \pm 0.31\%$). Together, this indicates that the presence of contaminants is significantly reducing the
232 amount of endogenous spectra that can be acquired and identified. We therefore conclude that protein
233 contamination has a relevant impact on the composition of reconstructed endogenous skeletal
234 proteomes, even when the protein contamination is not considered or identified.

235


236

237 Figure 2. Contaminating and decontaminating a Pleistocene bone proteome. A) A PCA based on protein
238 quantification shows separation of contaminated and non-contaminated (original) skeletal proteomes.
239 Both conditions were searched together against a horse protein database, without entries for dog
240 proteins present, and without subsequent filtering of identified proteins. B) A PCA of protein intensities
241 based on a database search using both dog and horse proteomes as reference. In both PCAs, gene
242 names of proteins contributing most to the variation along each axis are shown; S100A11=protein
243 S100A11, APP=amyloid-beta precursor protein, SLC4A4=anion exchange protein,
244 HIPK4=homeodomain-interacting protein kinase 4, PPL=periplakin, S100A8=protein S100A8,
245 CA6=carbonic anhydrase 6.

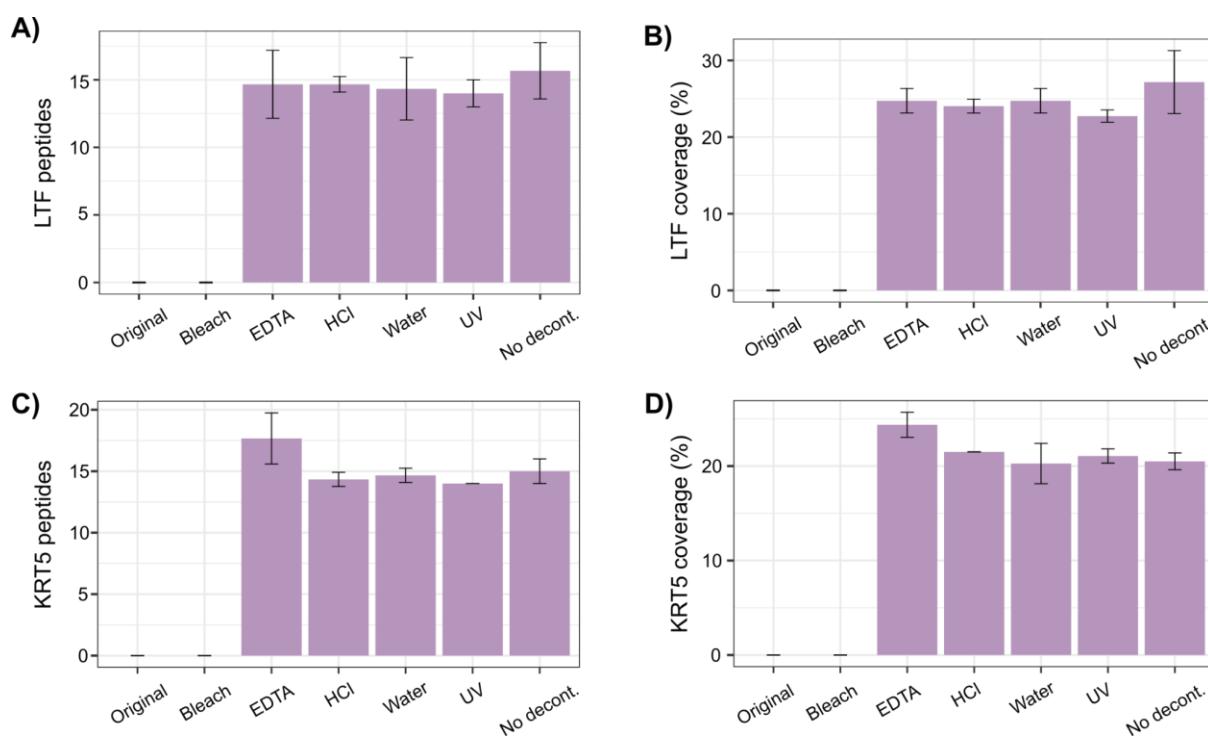
246

247 Next, we searched all extracts from the five decontamination methods, the non-decontaminated
248 condition and the original samples against a database containing the complete dog and horse
249 proteomes (including the MaxQuant contaminant database). For the non-decontaminated samples,
250 154.0 ± 9.7 proteins and $1,481 \pm 104.9$ PSMs were identified, whereas for the original sample, 43.0 ± 3.5
251 proteins and $1,364 \pm 135.7$ PSMs were identified. A PCA shows that the original and non-
252 decontaminated extracts are clearly separated along PC1 (Figure 2B), and that the decontamination
253 method significantly affects proteome composition (PERMANOVA, $R^2=0.72$, $p=0.001$). PC1,
254 accounting for 59.09% of variation in the dataset, separates bleached and original proteomes from the
255 uncleaned extracts, with all other decontamination approaches placed close to the latter. The extracts
256 resulting from UV irradiation, HCl wash, EDTA wash and molecular grade water wash fall on a cline
257 together with the uncleaned extracts, with separation between decontamination approaches along PC2,
258 accounting for 6.97% of variation in the dataset. The proteins driving separation of the original and
259 bleached samples from all other conditions along PC1 are expressed in saliva (CA6; carbonic
260 anhydrase 6), skin (PPL; periplakin), and are involved in inflammatory processes (S100A8).

261

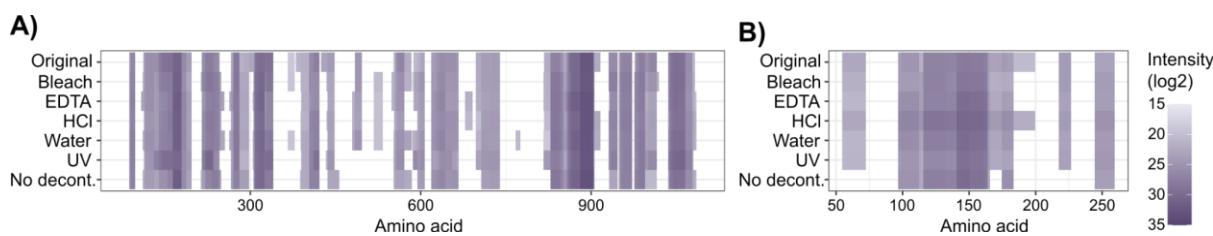
262
263

264 Figure 3. Species-specific protein recovery, in terms of A) Number of protein groups and B) Number of
265 peptide spectral matches (PSMs). Bars show the mean of the three replicates ± 1 SD.


266

267 After excluding taxonomically unspecific identifications, we observe that the dog proteome size,
268 i.e. the number of dog proteins identified, is larger than the horse proteome size in our contaminated
269 but uncleared extracts (the ratio of dog:horse proteins being 3.29 ± 0.30 ; Figure 3A), further
270 demonstrating the successful contamination of the horse bone proteome with dog proteins. The ratio of
271 dog:horse proteins is significantly dependent on the decontamination method (ANOVA, $F=31.2$,
272 $p<0.001$), with bleaching and original samples having a significantly lower ratio of dog:horse proteins
273 than every other condition (Tukey's HSD, $p<0.001$ in each case), but not significantly differing from each
274 other. The other decontamination approaches have variable impacts on the removal of protein
275 contamination. These findings are mirrored when looking at the number of peptide-spectrum-matches
276 (PSMs), where we observe that the decontamination methods also significantly affect the ratio of
277 dog:horse PSMs (ANOVA, $F=29.51$, $p<0.001$; Figure 3B), with bleach (0.39 ± 0.02) being similar to the
278 original samples (0.36 ± 0.03), and both of them significantly lower than all other methods (Tukey's HSD,
279 $p<0.001$ in each case). In the uncontaminated extracts, a small number of proteins are identified as
280 stemming from a dog. These proteins are mainly represented by 1-2 peptides each; the ones with a
281 higher abundance are bone proteins, and thereby likely horse proteins misidentified as stemming from
282 a dog. The increased number of horse proteins identified in all conditions except for bleach do not
283 represent bone proteins; the number of bone-derived proteins stay constant across all conditions. There
284 is no significant difference in the total intensity of horse-derived proteins (normalized by weight of input
285 material) between the decontamination methods (ANOVA, $F=1.57$, $p=0.23$).

286 As an example of the effectiveness of the decontamination treatments, we examined the protein
287 lactotransferrin (LTF, also known as lactoferrin or LF) closer. LTF is a common component of secretory
288 fluids including saliva, and is one of most abundant dog contaminants in our dataset, but absent from
289 the original samples. The different decontamination treatments have varying impacts on LTF
290 abundance in terms of peptide counts or the sequence coverage obtained (Figure 4A-B). While an HCl
291 wash has very little impact on LTF abundance, bleaching completely removes all LTF peptides from our
292 identified dataset.


293 Since human contamination of the *Equus* bone is also possible, e.g. during excavation or
294 handling of the specimen as well as during the dog protein contamination event, we investigated the
295 presence of human proteins identified through the contaminant database included in the MaxQuant
296 search. All identified human proteins are keratins. The largest number of human protein groups and
297 peptides were identified in the EDTA-treated extracts (10.0 ± 0.00 proteins, 37.7 ± 1.15 peptides). None
298 were identified in the original sample or after bleach-decontamination. The most common human
299 protein, keratin type II cytoskeletal 5 (KRT5), is present at a maximum of 17.6 ± 2.08 peptides and a
300 sequence coverage of $24.4 \pm 1.33\%$ in the EDTA treated extracts, whereas is is absent in the original
301 and bleached extracts (Figure 4C-D). As no keratins are identified in the original samples, the human

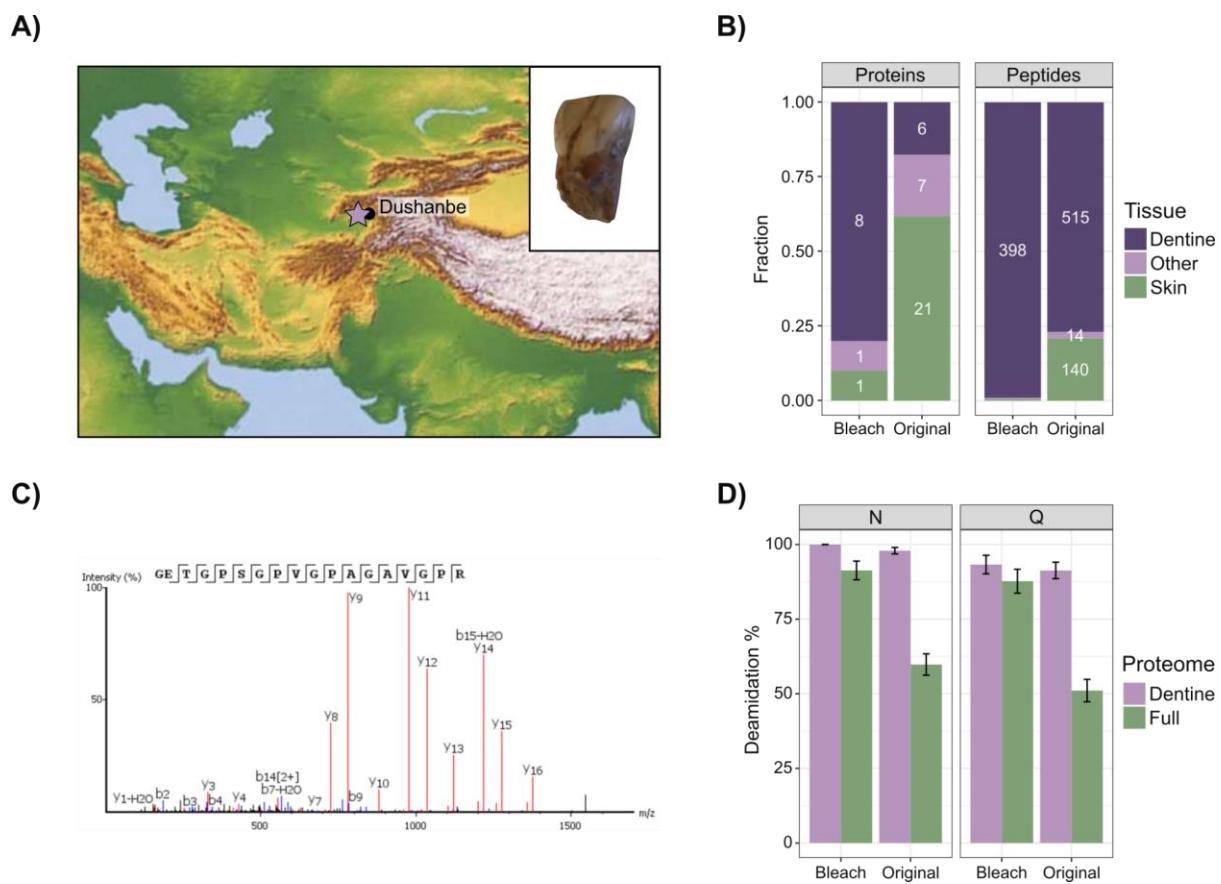
302 contamination likely occurred during the dog contamination, as it did not take place in a clean laboratory
303 environment.
304

305
306 Figure 4. Abundance of contaminants through different decontamination methods. A) Number of dog
307 lactotransferrin (LTF) peptides, B) Sequence coverage percentage of dog LTF, C) Number of human
308 keratin type II cytoskeletal 5 (KRT5) peptides, and D) Sequence coverage percentage of human KRT5.
309 Bars show a mean of the triplicate extractions, and error bars show ± 1 SD.
310

311 In addition to the removal of contaminating proteins, it is equally important to know if and how
312 the decontamination methods affect endogenous proteins and peptides, to ensure that the ancient
313 proteins are not damaged further. We find that coverage across a highly abundant protein (collagen
314 alpha-2(I) chain; COL1A2) and a common non-collagenous protein (chondroadherin; CHAD) are not
315 systematically affected by any decontamination approach (Figure 5A-B), indicating that the
316 decontamination methods do not hinder the recovery of endogenous proteins. Some regions of COL1A2
317 are, however, only accessible through decontamination. The number of recovered amino acid positions
318 of COL1A2 is affected by decontamination method (ANOVA, $F=7.40$, $p=0.001$), with significant
319 differences detected between UV and bleach, EDTA, HCl, water and no decontamination, as well as
320 between no decontamination and water (Tukey's HSD, $p<0.05$ in each case). Overall, UV treatment
321 leads to the lowest number of recovered amino acid positions (526 ± 2.89) and a water wash to the
322 highest (611 ± 9.85). Furthermore, when comparing the non-decontaminated extracts for CHAD with the
323 different decontamination methods, it is apparent that decontamination increases the recovery of this
324 low-abundance protein. The highest number of recovered amino acid positions of CHAD is from the
325 original samples (128 ± 8.02) and the lowest through the non-decontaminated samples (92.0 ± 1.73). The
326 number of recovered amino acid positions depends on the method (ANOVA, $F=3.47$, $p=0.026$) with
327 significant differences between no decontamination and the original as well as HCl-treated samples
328 (Tukey's HSD, $p=0.039$ in both cases). Lower-abundance proteins or protein regions may therefore only
329 be accessible after decontamination.
330

331
332 Figure 5. Coverage of horse bone proteins after the different decontamination methods. Coverage is
333 shown as log2 of the summed LFQ intensity per amino acid position, averaged across the triplicate
334 extracts, for A) COL1A2 (collagen alpha-2(I) chain) and B) CHAD (chondroadherin).

335
336 Endogenous peptide length is significantly affected by the decontamination methods (ANOVA,
337 $F=3.08$, $p=0.039$; Figure S2A), however, the only significant difference between treatments is between
338 UV irradiation and no decontamination (Tukey's HSD, $p=0.022$), while none of the decontamination
339 methods show significant differences in comparison to the original sample. The post-translational
340 modifications (PTMs) that were explored, including hydroxyproline, deamidation and UV-specific
341 modifications, are not affected by the decontamination methods tested either (ANOVA, $p>0.05$ for all;
342 Figure S2B-E). It can therefore be concluded that even the most efficient decontamination methods do
343 not damage the ancient endogenous proteome by any of the metrics examined here.


344 From this we conclude that all decontamination approaches tested have some positive impact
345 on the removal of contaminating proteins, but to various extents and with bleach being the only
346 approach that results in the recovery of a skeletal proteome highly similar to the endogenous,
347 uncontaminated proteome of the original bone specimen.

348
349 3.2. Application of the most promising method to a contaminated hominin proteome

350
351 Artificial contamination of a bone fragment was used to determine the most efficient decontamination
352 method; however, this is only an approximation of actual contamination of an archaeological object over
353 time. During initial analysis of the dentine proteome of a Pleistocene hominin tooth from Khudji,
354 Tajikistan (Figure 6A), we noted that the proteome was heavily contaminated with proteins originating
355 from human skin. Bone and dentine are quite similar in terms of composition, both consisting mainly of
356 the biomineral hydroxyapatite and having similar ratios of organic to inorganic material, although dentine
357 has lower porosity than bone (Kendall et al., 2018). The same decontamination protocol should thus be
358 applicable to dentine. The bleach decontamination protocol was therefore applied to a second dentine
359 fragment from the tooth. Of the 34 protein groups recovered from the initial dentine proteome analysis,
360 we classified six of these as endogenous dentine proteins based on the PhyloBone database
361 (Fontcuberta-Rigo et al., 2023) (Figure 6B). Of the remaining protein groups, 21 derived from skin, and
362 seven from other tissues (including proteins that are present in several tissues). In contrast, after bleach
363 treatment, eight protein groups originating from dentine were recovered, and only one each from skin
364 and other tissues. A smaller total number of peptides were recovered after bleach treatment, but the
365 vast majority of them originate from dentine proteins. Although there is a difference in peptide numbers
366 identified, it should be noted that the bleached and untreated extracts derive from different dental
367 fragments, different sample weights, and have different numbers of acquired MS2 spectra. As a result,
368 we cannot directly compare the extracts based on absolute numbers, but only describe their proteomic
369 composition in relative terms. The pattern is, however, the same as observed for the controlled
370 contamination-decontamination experiment outlined above, where bleach treatment significantly
371 lowered the ratio of contaminant:endogenous proteins. In the untreated Khudji extract, the ratio of
372 contaminant to endogenous (skin:dentine) proteins is 3.50, while in the bleached extract it is 0.13. The
373 same pattern is present on the peptide level, with a ratio of 0.27 for the untreated extract, and 0.01 for
374 the bleached extract. Decontamination by bleaching thereby significantly lowers the proportion of the
375 reconstructed proteome that stems from contamination, and allows for reconstruction of an authentic
376 ancient dentine proteome.

377 Similar to the decontamination experiment, we quantified the extent of various protein
378 alterations to document whether bleach treatment has a negative impact on the endogenous proteome
379 of the Khudji dentine sample. The peptide length distribution is similar between the full bleached and
380 unbleached proteomes (linear model, weighted by intensity; $F=0.03$, $p=0.86$; Figure S3A), but the
381 dentine-fraction of the bleached proteome has a higher weighted mean peptide length compared to the
382 unbleached dentine proteome (linear model, weighted by intensity; $F=22.91$, $p<0.001$). The peptides in
383 the unbleached sample have higher hydrophobicity than in the bleached sample (linear model, weighted
384 by intensity; $F=14.07$, $p<0.001$; Figure S3B), but hydrophobicity of the peptides does not differ between
385 the dentine-derived protein fractions of the two treatments (linear model, weighted by intensity; $F=0.72$,
386 $p=0.39$). Deamidation of both N and Q is higher in the bleached extract for the full proteome, indicating
387 a higher proportion of ancient, endogenous peptides (Figure 6D). Together, this shows that also when
388 applied to a Pleistocene human proteome, the bleach decontamination protocol is highly efficient at
389 removing modern contaminants, without damaging the endogenous human proteome.

390 The Khudji tooth was previously morphologically identified as stemming from either a modern
391 human or a Neanderthal (Trinkaus et al., 2000). The taxonomic identity of the Khudji specimen has
392 been subject of discussion since then, with the subsequent discovery of Denisovans adding a third
393 possibility. In order to achieve a molecular taxonomic identification, protein sequences were
394 reconstructed from both the bleached and untreated extracts of the Khudji hominin tooth, for all proteins
395 with more than five peptides (SI Table 1; Supplementary Data 2). For the untreated extract, this led to
396 nine proteins being reconstructed, with a coverage of 2.2-66.5%, whereas for the bleached extract, six
397 proteins with a coverage of 2.5-53.3% were reconstructed. For phylogenetic analysis, the two
398 reconstructions were combined, to form a consensus protein sequence reconstruction for the Khudji
399 individual with the maximal amount of information included. This led to the phylogenetic analysis being
400 based on 12 proteins, with a total coverage of 3,041 identified amino acid positions. The Khudji
401 individual does not have coverage of any Neanderthal-specific single amino acid polymorphisms
402 (SAPs), but lacks a Denisovan-derived SAP at COL1A2 R996K (Chen et al., 2019) (the position is R
403 in modern humans and Neanderthals, and K in Denisovans). For this position, the Khudji individual
404 retained the ancestral R (Figure 6C). We therefore determine that, among the reference protein
405 sequences currently available, and within the constraints of the protein sequence coverage obtained,
406 the Khudji tooth is likely not a Denisovan, but further taxonomic determination is not possible at present.
407

408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436

Figure 6. The Khudji hominin dentine proteome. A) Location of Khudji (indicated by star) and photo of the specimen. B) Proteome composition, with the fraction of proteins and peptides originating from dentine, skin, or other tissues. Numbers show counts of proteins and peptides, respectively. C) Representative MS2 spectrum covering the COL1A2 R996K position for the Khudji hominin. D) Deamidation of N and Q, with error bars showing ± 1 standard deviation. Here, 0% indicates no deamidation while 100% indicates complete deamidation of the respective amino acid.

4. Discussion

Previous palaeoproteomic studies have either assumed that decontamination is not necessary, or they have applied a decontamination method without estimating its efficiency at removing contaminating proteins, nor assessing its impact on endogenous proteins. We show here that protein contamination can significantly impact downstream palaeoproteomic analyses, even when the contaminating proteins stem from a different tissue and a different species. The reconstructed horse skeletal proteome, which was contaminated with dog saliva and skin, has a different composition to the original skeletal proteome, even when the potential of dog proteins being present in the dataset is not considered (Figure 2A). Further, we show that endogenous, low-abundance proteins and protein regions may not be detected in contaminated samples, likely due to the higher abundance of contaminant proteins. As the impact of protein contamination is clear even between distantly related taxa, it is increasingly important to consider the impact that human contamination may have on analysis of archaeological hominin samples.

We evaluate a range of commonly used decontamination methods, both in terms of contaminant removal and their impact on the endogenous proteome. These methods were selected based on being commonly used in the palaeoproteomics field, without taking into account their theoretical efficiency in protein contaminant removal. Many of the methods do remove protein contamination to some degree, especially when focusing on protein abundance, rather than presence/absence of contaminant proteins. However, only a single one of the tested methods seemingly returns the proteome to its original state - washing with a 0.5% solution of bleach (sodium

437 hypochlorite). Bleach is commonly used as a disinfectant, due to its ability to disrupt cells and degrade
438 biomolecules (Ersoy et al., 2019; Fukuzaki, 2006). A brief wash with HCl or EDTA will, on the other
439 hand, demineralize the surface layer of the bone, thereby releasing exogenous proteins bound to the
440 mineral surface. The UV irradiation method commonly used in published palaeoproteomics literature
441 may have been inefficient due to the short duration of the irradiation, combined with the fact that the
442 saliva had dried and absorbed to the bone (Moore et al., 2011; Sagripanti & Lytle, 2011). Finally, the
443 water wash likely only removes particles that are not bound to the mineral surface.

444 Subsequent to bleach treatment, the reconstructed proteomes closely resemble those of
445 uncontaminated samples. However, it is also important to investigate the damage caused by
446 decontamination protocols. A harsh decontamination method may remove all contaminating proteins,
447 but could also damage the already fragmented and modified ancient proteins. Of the methods tested
448 and preservation parameters considered here, none cause significant damage to the endogenous
449 proteins. This indicates that even though a bleach wash removes surface contamination, it is not able
450 to access the endogenous proteins in the bone.

451 Although the artificial contamination method chosen for this study - modern dog saliva and skin
452 - is unconventional, it appears to have been successful. Given that the contamination is not removed
453 by a water wash, it has absorbed well enough to the bone to mimic long-term contamination from
454 handling. A large number of dog proteins are identified, with the most common ones being typical for
455 saliva or keratins. Given that the protein extraction protocol employed in this study is adapted to
456 archaeological materials, and thereby does not contain steps such as cell lysis to release proteins, the
457 abundance of recovered dog-derived proteins may be reduced compared to what was introduced to the
458 bone during contamination. However, as this situation mimics actual contamination and processing of
459 an archaeological bone, through e.g. contact with human skin followed by extraction of ancient proteins,
460 the results approximate authentic contamination and decontamination scenarios in palaeoproteomic
461 studies.

462 Application of the most promising decontamination method, a brief bleach wash, to a
463 Pleistocene hominin tooth showed that bleach treatment is also successful in a non-artificial
464 contamination context. The extracted proteome initially consisted of a large amount of skin-derived
465 proteins, likely stemming from handling since excavation of the specimen in 1997 (Trinkaus et al., 2000).
466 After bleach treatment, a proteome consisting almost solely of dentine-derived proteins was
467 reconstructed. Further, the endogenous ancient hominin proteome appeared to not have been
468 damaged by the bleach treatment. Analysis of the reconstructed protein sequences from both extracts
469 from this tooth showed that it likely does not stem from a Denisovan, but further taxonomic resolution
470 cannot be obtained from the data currently available. In the geographic region around Khudji,
471 Neanderthal fossils have been conclusively identified at Teshik-Tash (Krause et al., 2007) and Obi-
472 Rakhmat (Bailey et al., 2008), with further possible Neanderthal fossils recovered from Sel'Ungur and
473 Anghilak (M. Glantz et al., 2008; Krivoshapkin et al., 2020). In addition, the Mousterian lithic technology
474 recovered from Khudji is represented at other archaeological sites in the region (M. M. Glantz, 2011;
475 Khujageldiev & Kunitake, 2023; Krivoshapkin et al., 2020; Ranov & Amosova, 1984; Ranov &
476 Khujageldiev, 2014). Given the complex occupational histories recovered from the southern Altai,
477 further east, where across the Late Pleistocene the presence of Neanderthals, Denisovans, and modern
478 humans is attested (Kuzmin et al., 2022; Skov et al., 2022; Zavala et al., 2021), a similarly complex
479 scenario might exist for Central Asia.

480 Given the impact of protein contamination on downstream palaeoproteomic analysis of
481 archaeological tissues, and the success of bleach decontamination identified in the present study, we
482 recommend that researchers studying ancient proteins in other types of archaeological tissues conduct
483 similar tests. As different archaeological tissues, such as enamel, dental calculus, or ceramic food
484 crusts, have different compositions of both organic and inorganic components, they may require other
485 types of decontamination approaches for optimal results. Finally, by applying this approach to a
486 Pleistocene hominin tooth containing abundant human skin protein contaminants, we demonstrate that
487 brief bleaching opens up the analysis of Pleistocene hominin specimens otherwise inaccessible to
488 palaeoproteomic analysis.

489

490 5. Conclusions

491

492 The existence of modern protein contamination is a recognised issue in the field of palaeoproteomics,
493 but to-date no comparative studies have explored the consequence of this modern protein
494 contamination, nor tested the efficiency of published decontamination procedures in both removing
495 protein contamination and retaining endogenous proteomic information. Firstly, we demonstrate that
496 the presence of protein contamination has an impact on the identification of endogenous peptides.
497 Secondly, we provide evidence that a brief bleach wash removes protein contamination without further
498 damaging the endogenous peptides in a controlled experimental setting. Subsequently, we
499 demonstrate that this approach can also be applied to a Pleistocene hominin tooth. Since protein
500 contamination is a recurring but understudied aspect in palaeoproteomic studies, we believe that our
501 approach paves the way for the study of archaeological specimens that are heavily contaminated with
502 modern (human) proteins, for example through long-term and extensive handling in curatorial facilities.
503

504

505 Data availability

506

507 Proteomic data has been deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol
508 et al., 2022) partner repository with the dataset identifier PXD050393 (*Equus* sp.), and PXD050370 and
509 10.6019/PXD050370 (*Homo* sp.). R code used for analysis can be found at
https://github.com/ZandraFagernas/bone_decontamination.

510

511 Acknowledgements

512

513 This research has been made possible through funding from the European Research Council (ERC)
514 under the European Union's Horizon 2020 research and innovation programme, grant agreement no.
515 948365 (PROSPER, awarded to F.W.), the European Union's Horizon Europe research and innovation
516 programme under the Marie Skłodowska-Curie grant agreement no. 101106627 (PROMISE, awarded
517 to Z.F.), and through generous funding from the Leakey Foundation (awarded to Z.F.). Views and
518 opinions expressed are those of the author(s) only and do not necessarily reflect those of the European
519 Union or the European Research Council Executive Agency. Work at the Novo Nordisk Foundation
520 Center for Protein Research is funded in part by a donation from the Novo Nordisk Foundation (grant
521 number NNF14CC0001). The Khudji tooth was found during excavations in 1997, funded by the US
522 National Geographic Society (grant 5915-97). The analysis of archaeological material from the Khudji
523 site was carried out with the help of grant 0121TJ1212 «History of the Tajik people». This work was
524 partly supported by NordForsk through the funding to 'The timing and ecology of the human occupation
525 of Central Asia', project number 105204. We also thank Pontus Skoglund and Oded Rimon for valuable
526 feedback on the first version of this manuscript. Finally, we thank the Contaminator, Tjorven (Tastaway's
527 Herrmann), for his contribution to the research.

528

529 Author contributions

530

531 Z.F. and F.W. designed research; Z.F. and G.T. performed research; J.V.O. contributed new
532 reagents/analytic tools; J.P.B, T.K., R.K. and M.W.P. provided material; Z.F. and V.V.I. analyzed data;
533 Z.F. and F.W. wrote the paper with input from the other co-authors.

534

535 Competing interests

536

537 The authors declare no competing interest.

538

539 References

540

541 Bailey, S., Glantz, M., Weaver, T. D., & Viola, B. (2008). The affinity of the dental remains from Obi-
542 Rakhmat Grotto, Uzbekistan. *Journal of Human Evolution*, 55(2), 238–248.

543 Cappellini, E., Welker, F., Pandolfi, L., Ramos-Madrigal, J., Samodova, D., Rüther, P. L., Fotakis, A.
544 K., Lyon, D., Moreno-Mayar, J. V., Bukhsianidze, M., Rakownikow Jersie-Christensen, R.,
545 Mackie, M., Ginolhac, A., Ferring, R., Tappen, M., Palkopoulou, E., Dickinson, M. R., Stafford, T.
546 W., Jr, Chan, Y. L., ... Willerslev, E. (2019). Early Pleistocene enamel proteome from Dmanisi
547 resolves Stephanorhinus phylogeny. *Nature*, 574(7776), 103–107.

548 Chen, F., Welker, F., Shen, C.-C., Bailey, S. E., Bergmann, I., Davis, S., Xia, H., Wang, H., Fischer,
549 R., Freidline, S. E., Yu, T.-L., Skinner, M. M., Stelzer, S., Dong, G., Fu, Q., Dong, G., Wang, J.,
550 Zhang, D., & Hublin, J.-J. (2019). A late Middle Pleistocene Denisovan mandible from the Tibetan
551 Plateau. *Nature*, 569(7756), 409–412.

552 Cox, J., & Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-
553 range mass accuracies and proteome-wide protein quantification. *Nature Biotechnology*, 26(12),
554 1367–1372.

555 Demarchi, B., Mackie, M., Li, Z., Deng, T., Collins, M. J., & Clarke, J. (2022). Survival of mineral-
556 bound peptides into the Miocene. *eLife*, 11. <https://doi.org/10.7554/eLife.82849>

557 Ersoy, Z. G., Dinc, O., Cinar, B., Gedik, S. T., & Dimoglo, A. (2019). Comparative evaluation of
558 disinfection mechanism of sodium hypochlorite, chlorine dioxide and electroactivated water on
559 *Enterococcus faecalis*. *LWT*, 102, 205–213.

560 Fagernäs, Z., García-Collado, M. I., Hendy, J., Hofman, C. A., Speller, C., Velsko, I., & Warinner, C.
561 (2020). A unified protocol for simultaneous extraction of DNA and proteins from archaeological
562 dental calculus. *Journal of Archaeological Science*, 118, 105135.

563 Fontcuberta-Rigo, M., Nakamura, M., & Puigbò, P. (2023). Phylobone: a comprehensive database of
564 bone extracellular matrix proteins in human and model organisms. *Bone Research*, 11(1), 44.

565 Fotakis, A. K., Denham, S. D., Mackie, M., Orbegozo, M. I., Mylopotamitaki, D., Gopalakrishnan, S.,
566 Sicheritz-Pontén, T., Olsen, J. V., Cappellini, E., Zhang, G., Christphersen, A., Gilbert, M. T. P.,
567 & Vågene, Å. J. (2020). Multi-omic detection of *Mycobacterium leprae* in archaeological human
568 dental calculus. *Philosophical Transactions of the Royal Society of London. Series B, Biological
569 Sciences*, 375(1812), 20190584.

570 Froment, C., Hourset, M., Sáenz-Oyhéréguy, N., Mouton-Barbosa, E., Willmann, C., Zanolli, C.,
571 Esclassan, R., Donat, R., Thèves, C., Burlet-Schiltz, O., & Mollereau, C. (2020). Analysis of 5000
572 year-old human teeth using optimized large-scale and targeted proteomics approaches for
573 detection of sex-specific peptides. *Journal of Proteomics*, 211, 103548.

574 Fukuzaki, S. (2006). Mechanisms of actions of sodium hypochlorite in cleaning and disinfection
575 processes. *Biocontrol Science*, 11(4), 147–157.

576 Gasparini, A., Lugli, F., Silvestrini, S., Pietrobelli, A., Marchetta, I., Benazzi, S., & Belcastro, M. G.
577 (2022). Biological sex VS. Archaeological Gender: Enamel peptide analysis of the horsemen of
578 the Early Middle age necropolises of Campochiaro (Molise, Italy). *Journal of Archaeological
579 Science: Reports*, 41, 103337.

580 Glantz, M. M. (2011). The History of Hominin Occupation of Central Asia in Review. In C. J. Norton &
581 D. R. Braun (Eds.), *Asian Paleoanthropology: From Africa to China and Beyond* (pp. 101–112).
582 Springer Netherlands.

583 Glantz, M., Viola, B., Wrinn, P., Chikisheva, T., Derevianko, A., Krivoshapkin, A., Islamov, U.,
584 Suleimanov, R., & Ritzman, T. (2008). New hominin remains from Uzbekistan. *Journal of Human
585 Evolution*, 55(2), 223–237.

586 Hendy, J., Colonese, A. C., Franz, I., Fernandes, R., Fischer, R., Orton, D., Lucquin, A., Spindler, L.,
587 Anvari, J., Stroud, E., Biehl, P. F., Speller, C., Boivin, N., Mackie, M., Jersie-Christensen, R. R.,
588 Olsen, J. V., Collins, M. J., Craig, O. E., & Rosenstock, E. (2018). Ancient proteins from ceramic
589 vessels at Çatalhöyük West reveal the hidden cuisine of early farmers. *Nature Communications*,
590 9(1), 4064.

591 Hendy, J., Welker, F., Demarchi, B., Speller, C., Warinner, C., & Collins, M. J. (2018). A guide to
592 ancient protein studies. *Nature Ecology & Evolution*, 2(5), 791–799.

593 Jensen, T. Z. T., Yeomans, L., Le Meillour, L., Wistoft Nielsen, P., Ramsøe, M., Mackie, M.,
594 Bangsgaard, P., Kinzel, M., Thuesen, I., Collins, M. J., & Taurozzi, A. J. (2023). Tryps-IN: A
595 streamlined palaeoproteomics workflow enables ZooMS analysis of 10,000-year-old petrous
596 bones from Jordan rift-valley. *Journal of Archaeological Science: Reports*, 52, 104238.

597 Kendall, C., Eriksen, A. M. H., Kontopoulos, I., Collins, M. J., & Turner-Walker, G. (2018). Diagenesis
598 of archaeological bone and tooth. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 491, 21–
599 37.

600 Khujageldiev, T. U., & Kunitake, S. (2023). The excavation of Mousterian site Khudji in 2019 (in

601 Russian). *Archaeological Work in Tajikistan*, 43, 13–40.

602 Kontopoulos, I., Penkman, K., Mullin, V. E., Winkelbach, L., Unterländer, M., Scheu, A., Kreutzer, S.,
603 Hansen, H. B., Margaryan, A., Teasdale, M. D., Gehlen, B., Street, M., Lynnerup, N., Liritzis, I.,
604 Sampson, A., Papageorgopoulou, C., Allentoft, M. E., Burger, J., Bradley, D. G., & Collins, M. J.
605 (2020). Screening archaeological bone for palaeogenetic and palaeoproteomic studies. *PLoS
606 One*, 15(6), e0235146.

607 Krause, J., Orlando, L., Serre, D., Viola, B., Prüfer, K., Richards, M. P., Hublin, J.-J., Hänni, C.,
608 Derevianko, A. P., & Pääbo, S. (2007). Neanderthals in central Asia and Siberia. *Nature*,
609 449(7164), 902–904.

610 Krivoshapkin, A., Viola, B., Charginov, T., Krajcarz, M. T., Krajcarz, M., Fedorowicz, S., Shnaider, S.,
611 & Kolobova, K. (2020). Middle Paleolithic variability in Central Asia: Lithic assemblage of
612 Sel'Ungur cave. *Quaternary International: The Journal of the International Union for Quaternary
613 Research*, 535, 88–103.

614 Kuzmin, Y. V., Slavinsky, V. S., Tsybankov, A. A., & Keates, S. G. (2022). Denisovans, Neanderthals,
615 and Early Modern Humans: A Review of the Pleistocene Hominin Fossils from the Altai
616 Mountains (Southern Siberia). *Journal of Archaeological Research*, 30(3), 321–369.

617 Lanigan, L. T., Mackie, M., Feine, S., Hublin, J.-J., Schmitz, R. W., Wilcke, A., Collins, M. J.,
618 Cappellini, E., Olsen, J. V., Taurozzi, A. J., & Welker, F. (2020). Multi-protease analysis of
619 Pleistocene bone proteomes. *Journal of Proteomics*, 228, 103889.

620 Le Meillour, L., Zirah, S., Zazzo, A., Cersoy, S., Détroit, F., Imalwa, E., Lebon, M., Nankela, A.,
621 Tombret, O., Pleurdeau, D., & Lesur, J. (2020). Palaeoproteomics gives new insight into early
622 southern African pastoralism. *Scientific Reports*, 10(1), 14427.

623 Mackie, M., Rüther, P., Samodova, D., Di Gianvincenzo, F., Granzotto, C., Lyon, D., Peggie, D. A.,
624 Howard, H., Harrison, L., Jensen, L. J., Olsen, J. V., & Cappellini, E. (2018). Palaeoproteomic
625 Profiling of Conservation Layers on a 14th Century Italian Wall Painting. *Angewandte Chemie*,
626 57(25), 7369–7374.

627 Madupe, P. P., Koenig, C., Patramanis, I., Rüther, P. L., Hlazo, N., Mackie, M., Tawane, M., Krueger,
628 J., Taurozzi, A. J., Troché, G., Kibii, J., Pickering, R., Dickinson, M., Sahle, Y., Kgatleng, D.,
629 Musiba, C., Manthi, F., Bell, L., DuPlessis, M., ... Cappellini, E. (2023). Enamel proteins reveal
630 biological sex and genetic variability within southern African *Paranthropus*. In *bioRxiv* (p.
631 2023.07.03.547326). <https://doi.org/10.1101/2023.07.03.547326>

632 Moore, H. M., Bai, B., Boisvert, F.-M., Latonen, L., Rantanen, V., Simpson, J. C., Pepperkok, R.,
633 Lamond, A. I., & Laiho, M. (2011). Quantitative proteomics and dynamic imaging of the nucleolus
634 reveal distinct responses to UV and ionizing radiation. *Molecular & Cellular Proteomics: MCP*,
635 10(10), M111.009241.

636 Orlando, L., Ginolhac, A., Zhang, G., Froese, D., Albrechtsen, A., Stiller, M., Schubert, M., Cappellini,
637 E., Petersen, B., Moltke, I., Johnson, P. L. F., Fumagalli, M., Vilstrup, J. T., Raghavan, M.,
638 Korneliussen, T., Malaspina, A.-S., Vogt, J., Szklarczyk, D., Kelstrup, C. D., ... Willerslev, E.
639 (2013). Recalibrating *Equus* evolution using the genome sequence of an early Middle Pleistocene
640 horse. *Nature*, 499(7456), 74–78.

641 Palmer, K. S., Makarewicz, C. A., Tishkin, A. A., Tur, S. S., Chunag, A., Diimajav, E., Jamsranjav, B.,
642 & Buckley, M. (2021). Comparing the Use of Magnetic Beads with Ultrafiltration for Ancient
643 Dental Calculus Proteomics. *Journal of Proteome Research*, 20(3), 1689–1704.

644 Perez-Riverol, Y., Bai, J., Bandla, C., García-Seisdedos, D., Hewapathirana, S., Kamatchinathan, S.,
645 Kundu, D. J., Prakash, A., Frericks-Zipper, A., Eisenacher, M., Walzer, M., Wang, S., Brazma, A.,
646 & Vizcaíno, J. A. (2022). The PRIDE database resources in 2022: a hub for mass spectrometry-
647 based proteomics evidences. *Nucleic Acids Research*, 50(D1), D543–D552.

648 Ramsøe, A., Crispin, M., Mackie, M., McGrath, K., Fischer, R., Demarchi, B., Collins, M. J., Hendy, J.,
649 & Speller, C. (2021). Assessing the degradation of ancient milk proteins through site-specific
650 deamidation patterns. *Scientific Reports*, 11(1), 7795.

651 Ramsøe, A., van Heekeren, V., Ponce, P., Fischer, R., Barnes, I., Speller, C., & Collins, M. J. (2020).
652 DeamiDATE 1.0: Site-specific deamidation as a tool to assess authenticity of members of ancient
653 proteomes. *Journal of Archaeological Science*, 115, 105080.

654 Ranov, V. A., & Amosova, A. G. (1984). The excavation of Mousterian site Khudji in 1978 (in
655 Russian). *Archaeological Work in Tajikistan*, 18, 11–58.

656 Ranov, V. A., & Khujageldiev, T. U. (2014). The excavation of Middle Paleolithic site Khudji in 1997 (in
657 Russian). *Archaeological Work in Tajikistan*, 37, 273–334.

658 Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L.,
659 Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian Phylogenetic
660 Inference and Model Choice Across a Large Model Space. *Systematic Biology*, 61(3), 539–542.

661 Sagripanti, J.-L., & Lytle, C. D. (2011). Sensitivity to ultraviolet radiation of Lassa, vaccinia, and Ebola
662 viruses dried on surfaces. *Archives of Virology*, 156(3), 489–494.

663 Sakalauskaitė, J., Marin, F., Pergolizzi, B., & Demarchi, B. (2020). Shell palaeoproteomics: First
664 application of peptide mass fingerprinting for the rapid identification of mollusc shells in
665 archaeology. *Journal of Proteomics*, 227, 103920.

666 Sawafuji, R., Cappellini, E., Nagaoka, T., Fotakis, A. K., Jersie-Christensen, R. R., Olsen, J. V.,
667 Hirata, K., & Ueda, S. (2017). Proteomic profiling of archaeological human bone. *Royal Society
668 Open Science*, 4(6), 161004.

669 Sinet-Mathiot, V., Smith, G. M., Romandini, M., Wilcke, A., Peresani, M., Hublin, J.-J., & Welker, F.
670 (2019). Combining ZooMS and zooarchaeology to study Late Pleistocene hominin behaviour at
671 Fumane (Italy). *Scientific Reports*, 9(1), 12350.

672 Skov, L., Peyrégne, S., Popli, D., Iasi, L. N. M., Devièse, T., Slon, V., Zavala, E. I., Hajdinjak, M.,
673 Sümer, A. P., Grote, S., Bossoms Mesa, A., López Herráez, D., Nickel, B., Nagel, S., Richter, J.,
674 Essel, E., Gansauge, M., Schmidt, A., Korlević, P., ... Peter, B. M. (2022). Genetic insights into
675 the social organization of Neanderthals. *Nature*, 610(7932), 519–525.

676 Spengler, R., Peters, C., Richter, K., Mir-Makhamad, B., Stark, S., Fernandes, R., Maksudov, F.,
677 Sirojedin, M., Husniddin, R., Wilkin, S., Schirmer, S., Ashastina, K., Begmatov, A., Frachetti, M.,
678 Hermes, T., Kidd, F., Omelchenko, A., Huber, B., Boivin, N., ... Martello, R. D. (2022). When Did
679 the Chicken Cross the Road: Archaeological and molecular evidence for ancient chickens in
680 Central Asia. In *Research Square*. <https://doi.org/10.21203/rs.3.rs-1340382/v1>

681 Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with
682 thousands of taxa and mixed models. *Bioinformatics*, 22(21), 2688–2690.

683 Torres, S. M. F., Furrow, E., Souza, C. P., Granick, J. L., de Jong, E. P., Griffin, T. J., & Wang, X.
684 (2018). Salivary proteomics of healthy dogs: An in depth catalog. *PloS One*, 13(1), e0191307.

685 Trinkaus, E., Ranov, V. A., & Lauklin, S. (2000). Middle Paleolithic human deciduous incisor from
686 Khudji, Tajikistan. *Journal of Human Evolution*, 38(4), 575–583.

687 Trolle Jensen, T. Z., Mackie, M., Taurozzi, A. J., Lanigan, L. T., Gundelach, C., Olsen, J., Sørensen,
688 S. A., Collins, M. J., Sørensen, M., & Schroeder, H. (2020). The biomolecular characterization of
689 a finger ring contextually dated to the emergence of the Early Neolithic from Syltholm, Denmark.
690 *Royal Society Open Science*, 7(1), 191172.

691 Warinner, C., Korzow Richter, K., & Collins, M. J. (2022). Paleoproteomics. *Chemical Reviews*,
692 122(16), 13401–13446.

693 Warinner, C., Rodrigues, J. F. M., Vyas, R., Trachsel, C., Shved, N., Grossmann, J., Radini, A.,
694 Hancock, Y., Tito, R. Y., Fiddymont, S., Speller, C., Hendy, J., Charlton, S., Luder, H. U.,
695 Salazar-García, D. C., Eppler, E., Seiler, R., Hansen, L. H., Castruita, J. A. S., ... Cappellini, E.
696 (2014). Pathogens and host immunity in the ancient human oral cavity. *Nature Genetics*, 46(4),
697 336–344.

698 Wasinger, V. C., Curnoe, D., Bustamante, S., Mendoza, R., Shoocongdej, R., Adler, L., Baker, A.,
699 Chintakanon, K., Boel, C., & Tacon, P. S. C. (2019). Analysis of the Preserved Amino Acid Bias
700 in Peptide Profiles of Iron Age Teeth from a Tropical Environment Enable Sexing of Individuals
701 Using Amelogenin MRM. *Proteomics*, 19(5), e1800341.

702 Welker, F. (2018). Palaeoproteomics for human evolution studies. *Quaternary Science Reviews*, 190,
703 137–147.

704 Welker, F., Ramos-Madrigal, J., Gutenbrunner, P., Mackie, M., Tiwary, S., Rakownikow Jersie-
705 Christensen, R., Chiva, C., Dickinson, M. R., Kuhlwilm, M., de Manuel, M., Gelabert, P.,
706 Martinón-Torres, M., Margvelashvili, A., Arsuaga, J. L., Carbonell, E., Marques-Bonet, T.,
707 Penkman, K., Sabidó, E., Cox, J., ... Cappellini, E. (2020). The dental proteome of Homo
708 antecessor. *Nature*, 580(7802), 235–238.

709 Welker, F., Ramos-Madrigal, J., Kuhlwilm, M., Liao, W., Gutenbrunner, P., de Manuel, M., Samodova,
710 D., Mackie, M., Allentoft, M. E., Bacon, A.-M., Collins, M. J., Cox, J., Lalueza-Fox, C., Olsen, J.
711 V., Demeter, F., Wang, W., Marques-Bonet, T., & Cappellini, E. (2019). Enamel proteome shows
712 that Gigantopithecus was an early diverging pongine. *Nature*, 576(7786), 262–265.

713 Zavala, E. I., Jacobs, Z., Vernot, B., Shunkov, M. V., Kozlikin, M. B., Derevianko, A. P., Essel, E., de
714 Fillipo, C., Nagel, S., Richter, J., Romagné, F., Schmidt, A., Li, B., O'Gorman, K., Slon, V., Kelso,
715 J., Pääbo, S., Roberts, R. G., & Meyer, M. (2021). Pleistocene sediment DNA reveals hominin
716 and faunal turnovers at Denisova Cave. *Nature*, 595(7867), 399–403.

717 Zhang, J., Xin, L., Shan, B., Chen, W., Xie, M., Yuen, D., Zhang, W., Zhang, Z., Lajoie, G. A., & Ma,
718 B. (2012). PEAKS DB: de novo sequencing assisted database search for sensitive and accurate
719 peptide identification. *Molecular & Cellular Proteomics: MCP*, 11(4), M111.010587.