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Representation learning in neural networks may be implemented with supervised or unsupervised
algorithms, distinguished by the availability of feedback. In sensory cortex, perceptual learning drives neural
plasticity, but it is not known if this is due to supervised or unsupervised learning. Here we recorded
populations of up to 90,000 neurons simultaneously from the primary visual cortex (V1) and higher visual
areas (HVA), while mice learned multiple tasks as well as during unrewarded exposure to the same stimuli.
Similar to previous studies, we found that neural changes in task mice were correlated with their behavioral
learning. However, the neural changes were mostly replicated in mice with unrewarded exposure, suggesting
that the changes were in fact due to unsupervised learning. The neural plasticity was concentrated in the
medial HVAs and obeyed visual, rather than spatial, learning rules. In task mice only, we found a ramping
reward prediction signal in anterior HVAs, potentially involved in supervised learning. Our neural results
predict that unsupervised learning may accelerate subsequent task learning, a prediction which we validated
with behavioral experiments.

Many neurons in sensory cortical areas change
their responses during learning and become more
selective to task stimuli [1–13]. This has been
interpreted as a possible basis for perceptual learning.
A less common interpretation for neural plasticity is
unsupervised learning, which has been proposed in
multiple theoretical frameworks to describe how the
brain learns from sensory experience, without the need
for task labels or task feedback [14–19]. However,
experimental evidence for such theories is limited to
a few indirect observations. In primates, changes
of neural tuning were observed in the inferotemporal
cortex after repeated exposure to temporally-linked
stimuli, even in the absence of rewards [20, 21]. In
the mouse visual cortex, anticipatory responses to
learned stimulus sequences have been interpreted as
evidence for predictive coding, which is a form of
unsupervised learning [22, 23]. Neural plasticity in
the hippocampus has sometimes been interpreted as
sensory compression [24, 25], which is also a type
of unsupervised learning, though it has typically been
linked to spatial rather than sensory representations
[26, 27]. It is thus still not known how widely
unsupervised learning may affect sensory neural
representations.

Here we find that most of the neural plasticity in
the visual cortex after task learning was replicated in
mice with unsupervised exposure to the same visual
stimuli. We found the only exception in anterior visual

areas which encoded unique task signals potentially
used for supervised learning. Below we describe
a sequence of experiments designed to probe the
roles of supervised and unsupervised learning across
multiple visual computations, before and after learning.

Both supervised and unsupervised training drive
neural plasticity
Similar to previous work [10], we designed a visual
discrimination task in head-fixed mice running through
linear virtual reality corridors (Figure 1a). Mice
had to discriminate between visual texture patterns
in two corridors; these corridors were repeated in
pseudo-random order. The visual patterns in each
corridor were obtained as ”frozen” crops from large
photographs of naturalistic textures. For simplicity, we
denote the stimuli as ”leaf” and ”circle”, even though
other visual stimuli were also used in some mice. The
visual stimuli were spatial frequency matched between
categories to encourage the use of higher-order visual
features in discrimination. A sound cue was presented
at a random position inside each corridor and was
followed by the availability of water in rewarded trials
only (Figure 1a). After approximately two weeks
of training (Figure 1b), mice demonstrated selective
licking in the rewarded corridor in anticipation of reward
delivery (Figure 1c,d, error bars on all figures represent
s.e.m.). After learning, we introduced unrewarded test
stimuli ”leaf2” and ”circle2”, which were different frozen
crops of the same photographs. We then continued
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Figure 1: Plasticity in visual cortex after supervised and unsupervised training. a, Illustration of the virtual reality task with a sound cue
at a random position in each corridor. Water is available after the sound cue in the rewarded corridor. b, Task training timeline in supervised
mice. Mice in the unsupervised cohort experienced the same stimuli without water rewards. c, Lick distribution in an example mouse after task
learning. Trials were sorted according to the sound cue position. d, Performance quantification of anticipatory licks before water is delivered
(error bars on all figures represent s.e.m.; n=5 mice). e, Example field of view of the mesoscope and zoom in to illustrate cellular resolution.
f, Selectivity index d′ of neural responses inside the two corridors. g, Single-trial responses of a single circle1-selective neuron as well as
the entire population from an example mouse. h, Same as g but for leaf1-selective neurons. i, 2D histogram of selective neuron distributions
across the field of view, aligned to a map of visual areas. Top and bottom rows are supervised and unsupervised mice respectively. Left and
right columns are before and after learning. j, Percentage of neurons with high-selectivity in each of four visual regions defined in the inset
(n=4 supervised mice, n=9 unsupervised mice).

training with unrewarded ”leaf2” until the mice stopped
licking to this stimulus, at which point we introduced
another test stimulus (”leaf3”) as well as spatially-
shuffled versions of leaf1 (Figure 1b).

Mice in the unsupervised cohort also ran through the
same corridors for similar periods of time, but did not
receive water rewards and were not water-restricted.

Before and after learning, we recorded from
large neural populations across many visual areas
simultaneously using a two-photon mesoscope [28]
(Figure 1e). We ran Suite2p on this data to obtain
the activity traces from 20,547-89,577 neurons in
each recording [29]. For each neuron, we computed
a selectivity index d-prime (d′) using the response
distributions across trials of each corridor, pooled
across positions and for timepoints when the mice
were running (Figure 1f). Neurons with relatively

high d-prime (d′ ≥0.3 or d′ ≤-0.3) responded strongly
at some positions inside the leaf1 or cicle1 corridor
(Figure 1g,h). To see where these selective neurons
were located, we generated 2D histograms of their
position in tissue after aligning each session to a pre-
calculated atlas of visual cortical areas (Figure 1i,
Figure S1a,b, see also [30]). We found that, after
learning, many selective neurons emerged in medial
visual areas, encompassing regions PM, AM, and
MMA, as well as the lateral part of the restrosplenial
cortex [30] (Figure 1j). This region, which we will
refer to as the ”medial” visual region, showed similar
changes in neural selectivity for both the supervised
and unsupervised cohorts. These changes were also
observed separately for neurons tuned to the leaf1 and
circle1 stimuli respectively (Figure S1c). The lateral
visual areas showed relatively little modulation by
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Figure 2: Comparing visual and spatial coding on test stimuli. a, Stimuli in the test1 session (see timeline in Figure 1b). b, Lick rasters
for an example mouse (blue dots represent reward delivery). c, Anticipatory licking behavior in test1 (n=5 mice). d, (top) Example neural
responses from the medial region in a mouse from the supervised cohort, sorted by preferred position in the leaf1 corridor on held out trials.
(bottom) Scatter plots of preferred positions in the leaf1 corridor versus all other corridors. e, Correlation from d (bottom) for each mouse in
the supervised cohort (n=5 mice). f, Same as e but only for the leaf2 and leaf1 corridors, shown across regions and for naive (n=5 mice, 6
sessions), supervised (n=5 mice) and unsupervised (n=7 mice). g,h, Example leaf1- and circle1- selective neurons respectively, shown as
a population average over trials, i, Projections onto the coding direction, defined as the difference between the leaf1- and circle1- selective
populations in gh; (left) timecourse, (right) average over trial and (inset) definition of similarity index for circle2. j, Similarity index for new stimuli.

learning, and the anterior regions were only modulated
in the supervised condition (see figure Figure 5 for
more on this). We also observed some plasticity
in V1, where the medial part showed a small but
significant decrease in selectivity in the unsupervised
cohort (Figure S1d), as well as some minor changes
of selectivity when separated by stimulus (Figure S1c).
However, the overall fraction of selective V1 neurons
did not change much.

Thus, the distribution of neural plasticity across
visual regions did not depend on task feedback or
supervision.

Visual, rather than spatial, representations after
learning

It is possible that the neural plasticity we observed was
due to spatial learning and navigation signals, which
have been found to modulate firing rates even in the
visual cortex [31]. Alternatively, the neural plasticity

might be due to adaptation to the visual statistics of
the natural images we presented [14]. To distinguish
between a spatial and a visual plasticity hypothesis, we
next introduced two unrewarded test stimuli, leaf2 and
circle2, which contained similar visual features to leaf1
and circle1 respectively, but were arranged in different
spatial configurations (Figure 2a). We found that mice
only licked to leaf2 and not circle2, likely due to their
visual similarities with the trained stimuli (Figure 2b,c).

The spatial plasticity hypothesis suggests that
neurons would fire in a similar sequence to learned
and new exemplars of the same category. We
tested this directly by sorting neurons according to
their sequence of firing in the leaf1 corridor. This
sorting did not induce similar sequences for the leaf2
corridor in the medial regions (Figure 2d). The
neural sequences in leaf1 and leaf2 were in fact
uncorrelated in all regions, suggesting a non-spatial
coding scheme (Figure 2e,f). Furthermore, the
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Figure 3: Responses to novel and adapted stimuli and neural orthogonalization. a, Distribution of neurons with high d′ between the
leaf2 and circle1 corridors in supervised and unsupervised mice, either when new or after learning, as well as in fully naive mice. b, Summary
of distribution changes in c across regions (n=5 supervised, n=6 unsupervised mice). c, Licking behavior to leaf2 when new and after learning
(n=5 mice). d, Distribution of neurons with high d′ between leaf1 and leaf2 in supervised and unsupervised mice after training with leaf2, as
well as in fully naive mice. e, Summary of d across regions (n=5 naive mice (6 sessions), n=5 supervised mice, n=6 unsupervised mice). f,g,
Example projections on the coding direction between leaf1 and circle1 in V1 (f) and the medial region (g). h, Similarity index (from Figure 2i)
for neural responses to leaf2 in supervised (n=5) and unsupervised (n=6) mice after training with leaf2, as well as in fully naive mice (n=5 mice,
6 sessions). Bottom inset shows schematic of orthogonalization effect observed. Neural vectors are referenced with respect to the center of
the leaf1-circle1 axis.

sequence correlations did not match the behavioral
strategy of the mice (Figure 2c,e). Similar results were
found when analyzing the sequences of the circle1-
selective neurons (Figure S2a,b).

The visual plasticity hypothesis suggests that the
statistics of visual features (i.e. ”leafiness”) are learned
regardless of where the features occur in the corridor.
To test this, we designed an analysis which uses the
top selective neurons of each familiar corridor to create
a coding direction axis [32] (Figure 2g,h). Projections
of neural data on the coding direction were well-
separated on test trials of the familiar stimuli, and also
on trials of the new leaf2 and circle2 stimuli (Figure 2i,
Figure S2c-e). To quantify this separation, we defined
a similarity index (SI) computed from the projections
on the coding axis. The similarity index clearly
distinguished between corridors of different visual
categories, in all visual regions, in both supervised
and unsupervised mice as well as in naive mice
(Figure 2j). Thus, the coding direction readout of

neural activity matched the behavioral strategy of the
mice (Figure 2c,i), suggesting that the brain areas we
consider use visual rather than spatial coding.

Novelty responses and neural orthogonalization

While the neurons selective to familiar stimuli also
responded to the new stimuli, they were by far not
the most responsive neurons to the new stimuli.
Selecting neurons by d-prime between leaf2 and
circle1, we found a large population of leaf2-selective
neurons in V1 and the lateral visual areas (Figure 3a,
see also Figure S3a for circle2-selective neurons).
The responses of leaf2-selective neurons adapted
substantially after an additional week of training with
the leaf2 stimulus (Figure 3a,b). In contrast, leaf1-
selective neurons showed little or no change after this
additional learning phase (Figure S3b). Thus, V1 and
lateral HVAs appear to be responding to the stimulus
novelty, as reported in some previous studies [33],
and the responses were similar in the supervised and
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Figure 4: Visual recognition memory becomes exemplar-specific after extended training. a, Stimuli in the test2 session (see timeline
in Figure 1b). b, Anticipatory licking behavior in test2 (n=5 mice). c, Example projections of neural data onto the coding direction of leaf1
vs leaf2. d, Similarity index (from Figure 2i) of leaf3 and circle1 stimuli for the leaf1 vs leaf2 coding direction (n=3 naive mice, 5 sessions;
supervised n=5 mice; unsupervised n=6 mice). e, Schematic of observed ”de-orthogonalization” effect, where an initially symmetric projection
of leaf3 becomes asymmetric and more similar to the leaf2 neural vector. Neural vectors are referenced with respect to the center of the
leaf1-leaf2 axis. f, Stimuli in the test3 session (see timeline in Figure 1b). g, Anticipatory licking behavior in test3 (n=3 mice, 5 sessions). h,
Example leaf1-selective neurons (medial region) during leaf1 and swap trials, sorted by responses in the leaf1 corridor for naive, supervised
and unsupervised mice. Also shown (right) are the responses on swap trials after reversing the swap manually (”unswapping”). i, Average
correlation in position preference between leaf1 and the swap as well as the swap (unswapped) responses, shown for all three groups of mice
across regions (n=3 naive mice, 10 sessions; n=3 supervised mice, 5 sessions; n=4 unsupervised mice, 8 sessions).

unsupervised cohorts.

The task mice eventually stopped licking to leaf2
(Figure 3c), thus indicating strong discrimination
between leaf1 (rewarded) and leaf2 (unrewarded). We
hypothesized that this behavior may be accompanied
by changes in neural discrimination, similar to the
changes after mice learned the distinction between
leaf1 and circle1 (Figure 1j). To test this, we selected
neurons based on their d′ between leaf1 and leaf2,
and compared the fraction of tuned neurons across
areas in naive mice as well as in the supervised
and unsupervised cohorts. Again we observed a
substantial increase in selectivity in the medial HVAs,
in both the supervised and the unsupervised cohorts
(Figure 3d,e).

Because leaf1 and leaf2 neural representations were
similar in naive mice (Figure 2j), we hypothesized that
the fine behavioral discrimination between leaf1 and
leaf2 stimuli requires orthogonalization of their neural
representations [27, 34]. We tested this by comparing

the projections of leaf2 onto the leaf1-circle1 coding
direction (Figure 3f,g). Compared to naive mice,
this projection was reduced after both supervised and
unsupervised training, across all visual regions but
most strongly in the medial HVAs (Figure 3h). Thus,
the responses to leaf2 became orthogonal to the leaf1-
circle1 axis, even in the unsupervised mice in which
leaf1 and leaf2 had the same valence. Altogether
these observations describe the complex dynamics
of the representation of a new stimulus (leaf2) as it
becomes familiar, in both supervised and unsupervised
conditions.

Visual recognition memory

By this stage in the training, mice had been exposed to
the leaf1 stimulus for ∼ 4 weeks, and the supervised
cohort had learned to distinguish it from leaf2. We
hypothesized that a more detailed representation
of leaf1 emerged to support the visual recognition
memory of this stimulus. To test this, we first
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introduced a new exemplar of the leaf category (”leaf3”,
Figure 4a). Mice withheld licking to this stimulus,
similar to their behavior on the unrewarded, trained
leaf2 stimulus (Figure 4b). This behavioral choice
mirrored a change in neural tuning properties: the
neural projections of leaf3 trials onto the coding axis
of leaf1-leaf2 were strongly biased towards the leaf2
direction (Figure 4c). This asymmetry was present
in both the supervised and unsupervised cohorts,
and it was not present in naive mice (Figure 4d,e).
All visual regions behaved in this manner, except
the anterior region where the coding asymmetry
was more pronounced for supervised compared to
unsupervised training, and the representation of the
”control” stimulus (circle1) was also biased towards the
leaf2 axis. As we will see in the next section, this may
be due to the reward valence coding in anterior HVAs.

To further test the visual recognition memory for
the leaf1 corridor, we introduced two new corridors
with spatially-swapped portions of leaf1 (Figure 4f and
Figure S4a). We reasoned that these new corridors
should disrupt the mice if they had memorized only
the beginning of the corridor, or if they had used a
purely spatial-based memorization strategy. We found
no such disruption, with the mice licking in the swapped
corridors at levels comparable to the leaf1 corridor
(Figure 4g). Thus, the swapped corridors were still
recognized as visually similar to the rewarded leaf1
corridor, as opposed to being recognized as a different
exemplar of the leaf category (like leaf2 or leaf3). This
behavior was supported by a neural coding strategy
that tied neural response vectors to their respective
visual stimulus locations (Figure 4h, Figure S4b-d).
This visual encoding was present in all areas in both
the supervised and unsupervised training conditions,
and it was also present before training in V1, as
expected for a purely visual representation (Figure 4i).
The medial region did not appear to strongly encode a
sequence before learning (Figure 4h,i), but this result
may have been due to lower SNR from an overall
weaker stimulus tuning before learning (Figure 1j).

Thus, for both the leaf3 and leaf1-swap stimuli,
behavioral responses were linked to the patterns
of neural responses during supervised training, but
these patterns were mostly present after unsupervised
training as well.

A reward prediction signal in anterior HVAs

Having found multiple similarities between the
supervised and unsupervised conditions, we next
asked whether a more targeted analysis could reveal
differences. Since we did not know in advance what to
look for, we used Rastermap, a visualization method
for large-scale neural responses [35]. Rastermap

reorders neurons across the y-axis of a raster plot,
so that nearby neurons have similar activity patterns.
Inspected in relation to task events, Rastermap can
reveal single-trial sequences of neural activity tied
to corridor progression, as well as other signals that
may be related to task events like rewards and sound
cues (Figure 5a). One of the signals we found with
Rastermap corresponded to a neuronal cluster that
turned on specifically in the leaf1 corridor but not in the
circle1 corridor, and was turned off by the delivery of
reward (Figure 5a,b). These neurons were distributed
in the anterior HVAs (Figure 5c), and their activity
was strongly suppressed by the delivery of reward
(Figure 5d), similar to a reward prediction signal
[36, 37].

Having found a putative task-related population with
Rastermap, we next quantified the task modulation
at the single neuron level across mice. For this, we
developed an index d′

late vs early which compares neural
activity on trials where the reward is delivered early to
trials where it is delivered late (Figure 5e). Selective
neurons (d′

late vs early ≥ 0.3) were distributed primarily
in anterior areas in supervised mice after training
(Figure 5f,g, Figure S5a). We did not observe a similar
population when selecting neurons based on circle1
trials with a similar process (Figure S5b,c). Some
single neurons in the anterior area with high d′

late vs early
encoded the reward prediction signal robustly at the
single trial level, and their response generalized to the
new exemplar leaf2 of the rewarded visual category,
similar to the population average of selective neurons
(Figure 5h).

One possibility is that the reward prediction signal
directly reflects licking behavior, because it was
present only in the supervised cohort. We do not
think this was the case, because 1) the reward
prediction signal was strongly suppressed after the
cue, whereas licking increased dramatically (Figure 5i
and Figure S5d-f); 2) the reward prediction signal
started ramping up several seconds before the first lick
(Figure 5j). These dynamics are indicative of a reward
expectation, especially because the neural prediction
signal was higher on leaf2 (unrewarded) trials where
the mouse licked compared to trials where it did not
(Figure 5k). This distinction was only found in anterior
HVAs, and not for example in the medial population we
described above (Figure 5l).

The reward prediction signal continued to follow the
dynamics of the behavior itself over the course of
training. After training with leaf2, the reward prediction
signal was suppressed during the leaf2 corridor, and
was also absent in the new leaf3 corridor (Figure 5m).
Finally, the reward prediction signal was present in the
swapped leaf1 corridor, again indicating that this signal
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Figure 5: A reward prediction signal in supervised training only. a, Raster plot of >50,000 simultaneously-recorded neurons, over a
period of approximately 2.5 minutes, with behavioral annotations. Rastermap was used to sort neurons across the y-axis. b, Zoom-in of a
vertical segment in Rastermap corresponding to a group of neurons active in the leaf1 corridor. c, Spatial distribution of selected neurons. d,
Population average response for the neurons selected in b across trials of circle1 and leaf1, sorted by sound cue position. e, A discrimination
index (d′

late vs early) was constructed to compare trial-averaged neuron responses between trials with early vs late rewards. f, Distribution
of reward prediction neurons (d′

late vs early ≥ 0.3) in supervised and unsupervised mice, before and after learning. g, Proportion of reward
prediction neurons in the anterior region. h, Responses of a single selective neuron (top) or the entire population (bottom) across trials in the
test1 session. i, Reward prediction neuron activity and lick rates in the leaf1 corridor, aligned to the sound cue in the test1 session, averaged
across mice (n=5). j, Same as i but aligned to the first lick in the corridor, for trials where the first lick was after 0.5m (n=4 mice). k, Average
activity of reward prediction neurons inside leaf2 corridor on trials with or without licks in the test1 session, pooled across all mice (n=5). l,
Same as k but for the leaf1-selective neurons in the medial regions (defined like in Figure 1h). m-n, Same as h (bottom) for the test2 and test3
sessions.

correlates with the expectation of reward (Figure 5n).

Unsupervised pretraining improves perceptual
learning in mice

Next we tested the potential function of the neural
plasticity after unsupervised training. We hypothesized
that this plasticity might allow animals to learn a
subsequent task faster, similar to how unsupervised
pretraining helps artificial neural networks to learn
supervised tasks faster, and similar to previous maze
learning experiments [38]. We thus ran a behavioral
study in which one cohort of mice (”no pretraining”) was
trained similarly to the task mice above, while a second
cohort (”unsupervised pretraining”) first underwent

10 days of VR running without rewards (Figure 6a,
Figure S6a). Compared to our original task, we
simplified reward learning by restricting reward delivery
to the second half of the reward corridor (the ”reward
zone”) and removing the sound cue (Figure 6b).

Mice with unsupervised pretraining generally
learned the task much faster. For example, one
mouse started the first day of task training by licking
indiscriminately in both corridors, but stopped licking
in the non-reward corridor after ∼ 50 trials of each
corridor (Figure 6c). By the fifth day of training, this
mouse was selectively licking only at the beginning
of the reward zone (Figure 6d). In contrast, mice
without pretraining did not learn to distinguish the two
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Figure 6: Unsupervised pretraining accelerates subsequent task learning. a, We trained two new cohorts of mice with or without a
pretraining step of running through the VR without rewards for 10 days. Both cohorts were trained in the task for five days. b, Task structure
(sound cue was removed and rewards were delivered deterministically in the second half of the reward corridor). Mice had to lick to obtain
reward, except on the first day when rewards were delivered passively at the end of the corridor. Each mouse was trained on a separate
combination of wall textures from among four stimuli (Figure S6a). c, Licking of example mice from each cohort on the first day of training. d,
Same as c for the last day of training. e, Average lick responses across days for both cohorts of mice (n=7 cohort1 mice, n=5 cohort2 mice). f,
Performance summary (difference in lick responses) across days for both cohorts. g, Numbers of trials per day for both cohorts. h, Distribution
of first licks across days for both cohorts. i, Schematic of putative visual streams for different learning algorithms and visual computations.

corridors on the first day of training (Figure 6c,d). After
five days, both cohorts reached a high discrimination
performance, but the unsupervised pretrained cohort
learned faster (Figure 6e,f). Further, most of the
learning improvements happened within session
(Figure S6b). The improved discrimination ability of
the pretrained mice was not due to differences in
behavior during task learning: both cohorts ran similar
numbers of trials, and licked at similar positions in the
two corridors (Figure 6g,h).

Discussion

Here we showed that unsupervised learning has a
substantial effect on neural representations in cortical
visual areas, and helps mice learn a supervised task
faster. The main region for unsupervised learning
may be the medial HVAs, as these areas contained
emergent representations that strongly discriminated
the learned stimuli and emerged with or without
task training (Figure 6i). However, the medial
population did not represent trial-to-trial variability

in mouse decision-making, while anterior HVAs did
(Figure 5k,l). The reward prediction signal in anterior
HVAs may be required for supervised or reinforcement
learning. Finally, stimulus novelty was represented
in the responses of neurons in V1 and lateral HVAs
(Figure 6i).

Our results can be related to other reports of
neural plasticity in sensory cortices. In the visual
cortex, learning can result in more neurons that
discriminate the learned stimuli [1, 10, 13], neurons
that discriminate the stimuli better [2, 9, 12], or neurons
that respond more to the learned stimuli [3, 6, 8];
learning can also add a context-dependence to the
visual tuning of neurons [31], and it can orthogonalize
stimulus representations in V1 [34]. Such changes
have typically been interpreted as consequences of
task learning because they correlate well with task
performance. However, our results suggest that these
changes would have happened even without task
training.

Our results can also be compared to those in the
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hippocampus. While we have shown that the cortical
representations are visual, rather than spatial in nature,
it is possible that hippocampal representations also
inherit some visual properties from their inputs [39–
41]. Further distinguishing between spatial and visual
learning in the same circuits could be a promising
direction of future research. Another promising
direction could be to relate the unsupervised plasticity
we observed here to the many classical theories and
models of unsupervised learning [14–18] as well as
to modern approaches like self-supervised learning
[19, 42–45].
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Methods
All experimental procedures were conducted according
to IACUC, and received ethical approval from the
IACUC board at HHMI Janelia Research Campus.

Experimental methods

Animals
We performed 79 recordings in 15 mice bred
to express GCaMP6s in excitatory neurons:

TetO-GCaMP6s x Emx1-IRES-Cre mice
(available as RRID:IMSR JAX:024742 and
RRID:IMSR JAX:005628) [46]. These mice were
male and female, and ranged from 2 to 11 months
of age. Mice were housed in reverse light cycle, and
were pair-housed with their siblings before and after
surgery. The mice had a running wheel in their cage,
as well as corncob bedding with Nestlets. During
training and imaging periods, we replaced the running
wheel with a tube, to potentially motivate the mice to
run longer while headfixed. Due to the stability of the
cranial window surgery, we often use the same mice
for multiple experiments in the lab: two of the mice
were used in reference [47].

We also used 12 C57 mice for behavior-only
experiments. These mice were only implanted with a
headbar, not a cranial window.

Surgical procedures

Surgeries were performed in adult mice (P35–P333)
following procedures outlined in reference [48].
In brief, mice were anesthetized with Isoflurane
while a craniotomy was performed. Marcaine (no
more than 8 mg/kg) was injected subcutaneously
beneath the incision area, and warmed fluids + 5%
dextrose and Buprenorphine 0.1 mg/kg (systemic
analgesic) were administered subcutaneously along
with Dexamethasone 2 mg/kg via intramuscular
route. For mice with cranial windows, measurements
were taken to determine bregma-lambda distance
and location of a 4 mm circular window over V1
Cortex, as far lateral and caudal as possible without
compromising the stability of the implant. A 4+5
mm double window was placed into the craniotomy
so that the 4mm window replaced the previously
removed bone piece and the 5mm window lay over the
edge of the bone. After surgery, Ketoprofen 5mg/kg
was administered subcutaneously and the mice were
allowed to recover on heat. The mice were monitored
for pain or distress, and Ketoprofen 5mg/kg was
administered for 2 days following surgery.

Imaging acquisition

We used a custom-built 2-photon mesoscope [28] to
record neural activity, and ScanImage [49] for data
acquisition. We used a custom online Z-correction
module (now in ScanImage), to correct for Z and XY
drift online during the recording. As described in
reference [48], we used an upgrade of the mesoscope
that allowed us to approximately double the number of
recorded neurons using temporal multiplexing [50].

The mice were free to run on an air-floating ball.
Mice were acclimatized to running on the ball for
several sessions before training and imaging.
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Visual stimuli
We showed virtual reality corridors to the mice on three
perpendicular LED tablet screens which surrounded
each mouse (covering 270 degrees of their visual field
of view). To present the stimuli, we used PsychToolbox-
3 in MATLAB [51]. The virtual reality corridors were
each 4 meters long, with 2 meters of gray space
between corridors. The corridors were shown in a
random order. The mouse moved forward in the virtual
reality corridors by running. Running was detected
using an optical tracking sensor placed close to the
ball.

The virtual reality corridors were created by
concatenating 4 random crops from one of four large
texture images: circle, leaf, rock, and brick.

Water restriction procedure
Water restriction procedures were conducted
according to IACUC. During the VR + reward training,
animals received an average of 1 mL water per day
(range 0.8-1.2 mL depending on health status and
behavioral performance). Before reaching 1 mL water
per day after the initiation of the restriction procedure,
we gradually reduced the water amount from 2 mL
per day, to 1.5 mL per day until finally to 1 mL per
day. The behavior-only mice were water restricted for
5 days right before the VR + reward training. Once
the animals finished the VR + reward training session,
the remaining water (0.8-1.2 mL minus the amount
received during experiment) was provided 0.5 hr
after the training. During the whole water restriction
period, the body weight, appearance, and behaviors
were monitored using a standard quantitative health
assessment system [52].

Water reward delivery and lick detection
A capacitance detector was connected with the metal
lick port to detect licking. Mice received a drop of
water (2.5 uL) if they correctly licked inside the reward
corridor. In day 1 of VR + reward training, we always
delivered the water passively (passive-mode) so that
the mice could get used to acquiring reward when
stimuli were present. For all the behavior-only mice
(Figure 6) and some of the imaging mice (Figures 1-
5), we switched to active-reward mode after day 1 so
that the mice had to lick within the reward zone in order
to trigger the water delivery. For some of the imaging
mice (Figures 1-5), we kept using the passive-mode
but added a delay (1s or 1.5s) between the sound cue
and reward delivery. Given that mice started licking
as soon as they entered the corridor and until they
received the water, adding a delay vs. active-reward
mode did not change how the mice behaved (Figures
1-5).

Behavioral training
All animals were handled via refined handling
techniques for at least 3 days prior to being acclimated
to head-fixation on the ball. Animals were acclimated
gradually (0.5 to 1 hr per day) on the ball over at least
3 days until they could be head-fixed without exhibiting
any signs of distress. Then, animals began a running
training regiment (1 hr per day) which lasted for at
least 5 days to ensure they could run smoothly and
continuously on the ball before being exposed to the
closed-loop virtual linear corridor. For water restricted
mice, we trained them for two days to get used to
acquiring water from the spout when no stimulus was
presented, before the VR + reward training. For the
unsupervised pretraining group of mice (Figure 6),
learning to get reward from the spout was carried
out on the last two days of unsupervised pretraining,
after the VR session to avoid the associative learning
between stimuli and rewards. For the group without
pretraining (Figure 6), learning to get reward from the
spout was similarly carried out after the running training
session on the last two days of running training.

For the behavior-only experiment, all animals started
training in VR + reward training on a Monday and
continued training for exactly 5 days. This ensured a
consistent training schedule during the critical learning
period.

For imaging mice, we consider a lick response if the
mouse licks at least once inside the corridor but before
the reward delivery. For the behavior-only mice (Figure
6) we consider a lick response if the mouse licks inside
the reward zone (second half of the corridor) at least
once.

Data analysis
For analysis we used Python 3 [53], primarily based on
numpy and scikit-learn [54, 55], as well as rastermap
[35]. The figures were made using matplotlib and
jupyter-notebook [56, 57].

Processing of calcium imaging data
Calcium imaging data was processed using Suite2p
[29], available at www.github.com/MouseLand/
suite2p. Suite2p performs motion correction, ROI
detection, cell classification, neuropil correction, and
spike deconvolution as described elsewhere [58]. For
non-negative deconvolution, we used a timescale of
decay of 0.75 seconds [59].

Neural selectivity (d-prime)
To compute the selectivity index d-prime (d′), illustrated
in Figure 1f, we only selected data points inside
the 0-4m region of the corridors where the textures
were shown. We excluded the data points in which
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the animal was not running, so that all data points
included for calculating the selectivity index come
from similar engagement/arousal levels of the mice.
We first calculated the means (µ1, µ2) and standard
deviations (σ1, σ2) of activities for any two corridors,
then computed the d’. The criteria for selective neurons
was |d′| ≥ 0.3:

d′ =
µ1 −µ2
σ1
2 + σ2

2

To make the density plots across the cortex (e.g.
Figure 1i), we computed 2D histograms for each
session based on the selective neurons in that session.
We then applied a 2D Gaussian filter to this matrix and
divided by the number of total recorded neurons in that
session to get a density map for each mouse. Before
averaging the density maps across mice, we assigned
NaN to areas where no neurons were recorded. This
ensured no underestimation on the density within
areas where not all mice have neurons recorded.

For sequence similarity analyses (Figure 2, Figure 4,
Figure S2, Figure S4), we used half of leaf1 and circle1
trials (train trials) to compute the selectivity index d′

and we selected neurons based on the criteria|d′| ≥
0.3 . We then split the other half of leaf1 and
circle1 trials (test trials) into odd vs. even trials to
compute spatial tuning curves for odd and even trials
separately for each selective neuron. From these
spatial tuning curves, we used the position with the
maximal response as the preferred position for each
neuron. To compute tuning curves for other stimuli
such as leaf2, circle2 and swap (which were not used
to find selective neurons), we split all trials into odd
and even trials. The preferred positions of the same
neurons in different corridors or in odd vs. even trials
were used to compute a correlation coefficient (r ).

Coding direction and similarity index
To compute the coding direction (Figure 2, Figure 3,
Figure 4, Figure S2, Figure S4), for example in leaf1
vs circle1, we first chose leaf1- and circle1-selective
neurons based on their d′ from the train trials (using the
top 5% selective neurons each to leaf1- and circle1-,
same as the sequence similarity analysis). Then we
normalized the neural activity r for each neuron by
subtracting the baseline response in the gray portion
of the corridor µgray , and dividing by the average
standard deviation of the neuron’s responses in each
corridor:

rnorm =
r−µgray

σlea f 1
2 + σcircle1

2

We then computed the mean normalized activity
µµµlea f 1 of leaf1-selective neurons and the mean
normalized activity µµµcircle1 of circle1-selective neurons

at each position in each corridor. The coding direction
vpro j

t on a given trial t was defined as the difference

vpro j
t = µµµlea f 1 −µµµcircle1

Note this is equivalent to assigning weights of
1

Ntrialslea f 1
, −1

Ntrialscircle1
and 0 respectively for positively-

selective, negatively-selective and non-selective
neurons, and using those weights as a projection
vector for the neural data. We investigated the coding
direction always on test trials not used for selecting
neurons, either from held-out trials of leaf1 and circle1,
or for trials with other stimuli. We averaged the

responses across each trial type: vpro j
lea f 1 =

Nlea f 1

∑
t∈lea f 1

vpro j
t

(e.g. Figure 2i, left).
Average projections for each trial type were

computed by averaging these projections within the
texture area (0-4m) (e.g. Figure 2i, right), denoted as
apro j

lea f 1, apro j
lea f 2, apro j

circle1 and apro j
circle2. We then defined the

similarity index SI on a per-stimulus basis, for example
for leaf2, as:

dy = apro j
lea f 1 −apro j

lea f 2

dx = apro j
lea f 2 −apro j

circle1

SIlea f 2 =
dx−dy
dx+dy

(−1 ≤ SI ≤ 1)

which is quantified in Figure 2j. We also computed the
coding direction for different sets of selective neurons,
e.g. leaf1 vs leaf2, and then computed the similarity
indices for leaf3 and circle1 (Figure 4c,d).

Reward-prediction neurons
Reward-prediction neurons were either selected using
the clustering algorithm Rastermap (Figure 5a-d) or
using a d′ criterion (Figure 5e-n). Using Rastermap,
we selected the reward-prediction neurons based on
their special firing patterns of only responding inside
the rewarded corridor and specifically before reward
delivery. Using d′, we first interpolated the the neural
activity of single neurons based on their position
inside the corridor and constructed a matrix (trials
by positions). Only the leaf1 trials (rewarded for
supervised mouse cohort, and unrewarded for the
unsupervised cohort) were chosen and divided into
early-cue trials vs. late-cue trials based on the sound
cue position inside the corridor. We used cue position
instead of reward position because the sound cues
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were played in each corridor at a random position,
with or without reward, and these sound cue positions
were highly correlated with reward positions in the
rewarded corridor (Figure 1c). We then calculated the
d′

late vs. early as:

d′
late vs. early =

µlate −µearly
σlate

2 +
σearly

2

and selected the reward-prediction neurons with
d′

late vs. early ≥ 0.3. The activity of the reward-prediction
neural population in Figure 5 (except Figure 5d)
was acquired following k -fold cross-validation. We
randomly split all trials into 10 folds. we used 9 folds
as training trials to compute d′

late vs. early. Trial-by-
trial activity for the remaining 1 fold (test trials) was
computed by averaging across the reward-prediction
neurons that met the selection criteria. We repeated
this 10 times until average population activity for every
fold (and thus every trial) was acquired.

To obtain reward-prediction activity aligned to the
first lick (Figure 5j), only rewarded trials (leaf1) with
a first lick happening after 0.5 m from corridor entry
were included to enable us to investigate the reward
prediction signal before licking starts. Due to this
criteria, one mouse was excluded because there were
no trials with a first lick later than 0.5 m.

Statistical tests
We performed paired t-tests in Figure panels 1j, 2fj,
3bc, 4di, 5g, S1cd, S3b, S4d, and S5ac; and performed
independent t-tests in Figure panels 3eh, 5kl, and 6f.
* denotes p < 0.05, ** denotes p < 0.01, and ***
denotes p < 0.001. Error bars on all figures represent
s.e.m. The exact p-values are below for each figure.
Where 4 values are reported, these are for V1, medial,
lateral and anterior regions.

• 1j. supervised: 0.940 / 0.00726 / 0.0341 / 0.0261;
unsupervised: 0.212 / 3.21×10−4 / 0.245 / 0.0202

• 2f. supervised: 3.94×10−6 / 1.72×10−4 /
1.16×10−5/ 1.33×10−4; unsupervised: 1.79×10−8

/ 4.42×10−5 / 2.22×10−5 / 2.72×10−5; naive:
2.83×10−7 / 6.21×10−4 / 3.38×10−6 / 2.19×10−5

• 2j. supervised: 0.002 / 2.84×10−4 / 0.00205/
0.00272; unsupervised: 1.45×10−4 / 5.22×10−5

/ 1.74×10−4 / 0.00484; naive: 7.76×10−4 /
1.40×10−4 / 2.24×10−5 / 6.17×10−4

• 3b. supervised: 0.00375 / 0.0922 / 0.00262 / 0.0136;
unsupervised: 2.34×10−5 / 0.00809 / 2.96×10−4 /
0.0146

• 3c. 0.0136

• 3e. Psup. vs naive: 0.712/ 7.53×10−4 / 0.221/ 0.0421;
Punsup. vs naive: 0.875 / 1.98×10−4 / 0.191 / 0.427;
Psup. vs unsup.: 0.861 / 0.236 / 0.924 / 0.0838

• 3h. Psup. vs naive: 0.189 / 0.00573 / 0.0174/
2.29×10−4; Punsup. vs naive: 8.60×10−4 / 4.52×10−5

/ 6.04×10−3 / 0.0183×10−2; Psup. vs unsup.: 0.147 /
0.259 / 0.593 / 0.00343

• 4d. supervised: 0.00218 / 6.02×10−4 / 0.00580/
0.149; unsupervised: 0.0150 / 0.0106 / 0.00417 /
0.110; naive: 0.518 /0.450 / 0.266 / 0.386

• 4i. supervised:0.00240 / 0.00180 / 0.00346/ 0.202;
unsupervised: 5.62×10−6 / 1.29×10−4 / 9.64×10−6

/ 0.00437; naive: 7.48×10−6 / 0.624 / 0.00169 /
0.00619

• 5g. supervised: 0.00690; unsupervised: 0.708

• 5k. 3.41×10−14

• 5l. 0.995

• 6f. by day: 0.00699 / 0.00447 / 0.0406 / 0.302 /
0.268.

• S1c. (left). supervised: 0.206 / 0.00497 / 0.0297/
0.0114; unsupervised: 0.0389 / 1.15×10−4 /0.982 /
0.249

• S1c. (right). supervised: 0.562 / 0.0219 / 0.104/
0.134; unsupervised: 0.017 / 0.00130 / 0.0129 /
0.00977

• S1d. (left). supervised: 0.419; unsupervised 0.0466

• S1d. (right). supervised: 0.574; unsupervised 0.126

• S3b. supervised: 0.772 / 0.799 / 0.474/ 0.978;
unsupervised: 0.957 / 0.476 / 0.904 / 0.691

• S4d. supervised: 2.06×10−6 / 5.47×10−4 /
2.31×10−4/ 1.41×10−4; unsupervised: 4.75×10−9

/ 3.30×10−5 / 1.25×10−7 / 2.62×10−5; naive:
4.71×10−10 / 0.881 / 3.94×10−6/ 3.33×10−7

• S5a. supervised: 0.496 / 0.151 / 0.0905 / 0.00690;
unsupervised: 0.441 / 0.632 / 0.882 / 0.708

• S5c. supervised: 0.277 / 0.700 / 0.548/ 0.0210;
unsupervised: 0.183 / 0.276 / 0.235 / 0.0546
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Retinotopy

Retinotopic maps for each imaging mouse were
computed based on receptive field estimation using
neural responses to natural images (at least 500
natural images repeated 3 times each). This
proceeded in several steps:

1. Obtaining a well-fit convolutional encoding model of
neural responses with an optimized set of 200 spatial
kernels, using a reference mouse (Figure S1a).

2. Fitting all neurons from our imaging mice to these
kernels to identify the preferred kernel and the
preferred spatial position (Figure S1b).

3. Aligning spatial position maps to a single map from
the reference mouse.

4. Outlining brain regions in the reference mouse
using spatial maps and approximately following the
retinotopic maps from [30].

Compared to previous approaches, ours takes
advantage of single neuron responses rather than
averaging over entire local populations, and by using
natural images we can better drive neurons and obtain
their specific receptive field models. The mapping
procedure was sufficiently efficient that it could be
performed in a new mouse with responses to only 500
test images each repeated 3 times. Below we describe
each step in detail:

Step 1. Using the reference mouse, we used the
following to model the response of neuron n to image
img:

Fn(img) = an · (K ◦ img)(kn,xn,yn)

where an is a positive scalar amplitude, ◦ represents
the convolution operation, xn,yn represent the position
in the convolution map for neuron n and kn represents
the index of the convolutional map, and finally K is
a matrix of size 200 by 13 by 13 containing the
convolutional filters. This model was fit to neural
responses to a natural image dataset of approximately
5,000 images shown at a resolution of 120 x 480,
which were downsampled to 30 x 120 for fitting. The
kernels K were initialized with random gaussian noise.
An iterative EM-like algorithm was used to optimize
the kernels, which alternated between: 1) finding the
best position (xn,yn) for each neuron n as well as the
best kernel kn and the best amplitude an; 2) optimizing
K given a fixed assignment of (xn,yn,kn,an) for each
neuron n. The first part of the iteration was done in a
brute force manner: responses of each kernel at each

location for each image were obtained and correlated
with the responses of each neuron. The highest
correlated match for each neuron was then found and
its corresponding (xn,yn,kn,an) were used to fit K.
The best estimate for kernels K was approximately
equivalent to averaging the linear receptive field all
cells n assigned to a kernel kn after alignment to their
individual spatial centers xn,yn. After each iteration,
the kernels were translated so their centers of mass
would be centered in the 13x13 pixel frame. The center
of mass was obtained after taking the absolute value
of the kernel coefficients. After less than 10 iterations,
the kernels converged to a set of well-defined filters
(Figure S1a).

Step 2. After the kernels K were estimated once,
for a single reference recording, we used them for all
recordings by repeating the first step of the iterative
algorithm in step 1 with a slight modification. Instead
of assigning each neuron (xn,yn,kn,an) independently,
we averaged the 2D, maximum correlation maps of
the nearest 50 neurons to each neuron, and then
took their maximum. This essentially smoothed the
spatial correlations to ensure robust estimation even
for neurons with relatively little signal (Figure S1b).

Step 3. To align spatial maps to the reference
mouse, we used kriging interpolation to find a tissue-
to-retinotopy transformation f . Intuitively, we want to
model the data from the alignment mouse as a smooth
function f from a two-dimensional space of (z, t)
positions in tissue to another two-dimensional space
of retinotopic preferences (x,y). For a new mouse with
tissue positions (z′, t ′) and retinotopic positions (x′,y′),
we can then optimize an affine transform A composed
of a 2x2 matrix A1 and 1x2 bias term A2 such that

(z′a, t
′
a) = A1 · (z′, t ′)+A2

so that

Cost = ∥ f (z′a, t
′
a)− (x′,y′)∥2

is minimized. To fit the smooth function f , we use
kriging interpolation, so that f is the kriging transform

f (z′a, t
′
a) = F((z′a, t

′
a),(z, t)) ·F((z, t),(z, t))·

·Cov((z, t),(x,y)),

where F is a squared exponential kernel F(a,b) =
exp(−∥a−b∥2/σ2) with a spatial constant σ of
200µm and Cov is the covariance between inputs and
outputs. Note we can precompute the second part
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of f since it does not depend on (z′a, t
′
a). We then

optimize the affine transform A. A is initialized based
on a grid search over possible translation values within
±500µm. After the grid search, we use gradient
descent on the values of A, allowing for translation
and rotation, but with a regularization term on A1 to
keep the matrix close to the identity. Finally, for some
sessions the optimization did not converge, in which
case we restricted the matrix A1 to a fixed determinant,
thus preventing a scaling transform.

Step 4. The final step was to delineate area borders
on the reference mouse, which were then transformed
to all mice as described in step 3. Similar to [30] we
computed the sign map and parcellated it into regions
where the sign did not change. Ambiguities in the sign
map were resolved by approximately matching areas to
the data from [30]. Note that the exact outlines of the
areas in some cases had different shapes from those
in [30]. This is to be expected from two sources: 1)
the maps in [30] are computed from widefield imaging
data, which effectively blurs over large portions of
cortex thus obscuring some boundaries and regions; 2)
our specific cranial windows are in a different position
from [30]. Nonetheless, we do not think the small
mismatch in area shapes would have a large impact on
our conclusions, given that we combine multiple areas
into large regions.
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S1: Retinotopy and neural changes after learning for different populations. a, Convolutional filter bank used for mapping retinotopy. b,
Retinotopic maps for an example mouse after alignment to a reference atlas. c, Same as Figure 1j split into leaf1- selective (left) and circle1-
selective neurons (right). d, Similar to Figure 1j for V1 neurons split into a medial and a lateral part.
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S2: Sequences in circle1-preferring neurons and average projections on the coding direction. a, Same as Figure 2d for circle1-
selective neurons sorted by the circle1 trials. b, Same as Figure 2e for circle1-selective neurons. c-e Same as Figure 2i for all brain regions
and all mouse cohorts: c, naive (n=5 mice, 6 sessions), d, unsupervised (n=7 mice), e, supervised (n=5 mice).
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a bDistribution of circle2-selective neurons (circle2 vs  leaf1, d ′ 0.3) Changes of leaf1-selective neurons (leaf1 vs  circle1) 

500 m

naive

M L

A

P

supervised
when new

unsupervised
when new

density
5 × 10 80

V1 medial lateral anterior

when

leaf2 new after

learning leaf2
0

10

%
 le

af
1 -

se
le

ct
iv

e 
ne

ur
on

s 
(d

′
0.

3)
 

S3: Representations of familiar versus novel stimuli. a, Same as Figure 3a for circle2-selective neurons. b, Same as Figure 3b for
leaf1-selective neurons.
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S4: Coding direction projections and similarity indices during test3. a, A second swap type used in the test3 session. b, Example coding
direction of leaf1 vs circle1 in the test3 session in V1. c, Same as b in the medial region. d, Similarity index along the leaf1-circle1 coding
direction in the test3 session.
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aligned to  sound cue 

Distribution of non-reward prediction neurons (circle1, d ′late vs. early  0.3) Summary of changes on reward prediction neurons (leaf1) 
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S5: Reward and non-reward prediction neurons across areas. a, Percentage of reward-selective neurons before and after learning across
all regions. b, Distribution of non-reward prediction neurons, defined as neurons with a d′

late vs early ≥ 0.3 computed from the circle1 corridor
trials, which are non-rewarding. c, Summary of changes from before to after learning for the non-reward prediction neurons. d, Reward
prediction neuron average response aligned to the sound cue for all four corridors in the test1 session. e,f, Running speed and licking rate
respectively, aligned to sound cue.
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S6: Stimuli for unsupervised pretraining and within-day learning. a, Example stimulus crops used for unsupervised pretraining
experiments. All pairs of textures were used with the rewarding texture varying from mouse to mouse. b, Behavioral performance over
days, split into the first and second halves of the session.
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