

Navigated range expansion promotes migratory culling

Yi Zhang¹, Qingjuan Hu¹, Yingtong Su¹, Pan Chu^{1,2}, Ting Wei¹, Xuefei Li^{1,2}, Chenli Liu^{1,2}, Xiongfeng Fu^{1,2*}

¹Key Laboratory for Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

²University of Chinese Academy of Sciences, Beijing 100049, China

*Corresponding author. Email: xiongfei.fu@siat.ac.cn

Author Contributions: **Yi Zhang:** Data curation; investigation; methodology; writing-original draft; writing-review and editing. **Qingjuan Hu:** Data curation; investigation. **Yingtong Su:** Data curation; investigation; writing-original draft. **Pan Chu:** Data curation. **Ting Wei:** Methodology; writing-review and editing. **Xuefei Li:** Writing-review and editing. **Chenli Liu:** Methodology; writing-review and editing. **Xiongfei Fu:** Conceptualization; supervision; methodology; writing-original draft; project administration; writing-review and editing.

Competing Interest Statement: The authors declare no conflict of interest.

Keywords: Range expansion; Pattern formation; Synthetic biology; Migratory culling.

20 **Abstract**

21 Motile organisms can expand into new territories and increase their fitness, while nonmotile
22 viruses usually depend on host migration to spread across long distances. In general, faster host
23 motility facilitates virus transmission. However, recent ecological studies have also shown that
24 animal host migration can reduce viral prevalence by removing infected individuals from the
25 migratory group. Here, we use a bacteria-bacteriophage co-propagation system to investigate
26 how host motility affects viral spread during range expansion. We find that phage spread during
27 chemotaxis-driven navigated range expansion decreases as bacterial migration speed increases.
28 Theoretical and experimental analyses show that the navigated migration leads to a spatial
29 sorting of infected and uninfected hosts in the co-propagating front of bacteria-bacteriophage,
30 with implications for the number of cells left behind. The preferential loss of infected cells in the
31 co-propagating front inhibits viral spread. Further increase in host migration speed leads to a
32 phase transition that eliminates the phage completely. These results illustrate that navigated
33 range expansion of the host can promote the migratory culling of infectious diseases in the
34 migration group.

35 **Significance Statement**

36 Host migration is commonly believed to accelerate the spread of infectious diseases. However,
37 recent ecological studies suggest that migration may impede this spread. In our study, we
38 developed a synthetic host-virus co-propagation model to explore the impact of host range
39 expansion on the interplay between host mobility and virus spatial distribution. Our experimental
40 and theoretical analysis revealed the spatial sorting of uninfected and infected hosts in the
41 navigated propagating front leads to faster back diffusion of infected hosts. This self-organized
42 structure allowed the migrating host population to eradicate the infectious disease, independent
43 of intricate host-virus dynamics.

44
45
46 **Main Text**
47
48 **Introduction**
49

50 Range expansion is a process by which living species invade new territories and gain benefits
51 such as survival(1–3), reproduction(4, 5), and resources(6, 7). Classic theory predicts that motile
52 populations expand in space and time by growing and moving(8–10). Recent studies have shown
53 that many organisms can use self-generated cues, known as navigated range expansion, to
54 increase the expansion rate toward long-term settlement(11–14). However, nonmotile species,
55 have to use other strategies to expand their territories, such as viruses, which depend on the
56 infected hosts to spread across long distances(15–17). It is commonly assumed that host motility
57 enhances virus transmission and viral range expansion(18–21). However, recent ecological
58 studies have also reported that animal host migrations can reduce viral prevalence(22–25). This
59 can occur when animals escape from infected regions ('migratory escape')(26, 27) or when
60 infected animals are removed from migrating populations ('migratory culling')(22, 28). One of the
61 prominent examples is that the seasonal migration of butterfly monarchs reduces the risk of
62 infection of parasites(22, 29). These conflicting findings from epidemiological case studies
63 suggest that the effects of host spatial expansion on viral prevalence depend on the specific
64 conditions of the system, which require a close and quantitative examination. However, studying
65 infectious disease dynamics and their mechanisms in field studies is difficult due to the limitations
66 of observatory technology and the complexity of the natural system. Therefore, we developed a
67 co-propagation system with motile bacteria, *Escherichia coli* (*E.coli*), and its chronic
68 bacteriophage M13 which does not kill infected bacteria cells when producing progeny phage
69 after infection(30), to investigate how host range expansion affects the relationship between host
70 motility and viral spatial prevalence.

71

72

73 Results

74

75 Phage spread during the bacterial range expansion

76 We adopted a swimming assay of motile bacteria by inoculating a small droplet of cells at the
77 center of a semi-solid agar plate (green dot in Fig. 1A, 2 μ L containing about 10^6 cells). The
78 motile bacterial population grew and expanded radially. Ahead of the expanding bacterial
79 population, we plated a small volume of nonlethal phage M13 (light pink dot in Fig. 1A, containing
80 about 5×10^6 phage particles). When the bacteria encountered the phage zone, they became
81 infected and temporarily reduced their growth (Fig. S1), resulting in a visible low-density region of
82 the infected zone compared to the uninfected zones (Materials and Methods, Fig. S2). To better
83 identify the infected region, we integrated a red fluorescent gene Ruby into the M13 phage
84 genome (M13-Ruby, Fig. S3A). The infection of M13 phage introduced the fluorescent gene into
85 the bacterial cells, which expressed the red fluorescent protein. Therefore, the infected region can
86 be detected by the fluorescent signal measurement, which coincides with the visible low-density
87 region (Fig. 1B, Fig. S3B). Time-lapsed fluorescent images further showed the dynamics of the
88 fan-shape infected zone, where the boundary between the infected and uninfected zones was
89 rapidly fixed once it emerged (Supplementary Movies 1&2).

90

91 To understand the dynamics of bacteria-phage co-propagation, we extended a growth-expansion
92 model that incorporates bacterial chemotaxis and M13 phage infection kinetics (Fig. 2A and SI
93 Text). The model simulation provided a comprehensive picture about the formation dynamics of
94 the fan-shape infected zone (Fig. S4). The infected cells produced new phages that would further
95 infect more uninfected cells along the front of the migrating population at the same propagating
96 speed as the host front migration speed. At the same time, the phages infected other neighboring
97 bacteria, causing the lateral expansion of the infected region with a lateral expanding speed. The
98 bi-directional propagation results in a fan-shaped infection region (the light pink region in Fig. 1A).
99 The fan-shaped angle θ defines how fast the viral spread during the co-propagation with host
100 bacteria migration, and was named the angle of phage spread. Assuming the phage infection
101 area is approximately a sector, the angle of phage spread θ is derived as the lateral expansion
102 speed divided by the migration speed (Fig. 1A).

103

104 The dependence of viral spread on the host migration speed during co-propagation

105 We then examined experimentally how the angle of phage spread θ depended on the host
106 bacterial motility by varying the agar concentrations. At high agar concentrations, the probability
107 of bacterial cells being trapped by the agar gel matrix increased, thereby reducing bacterial
108 motility(31, 32). For the chemotactic bacterial population, which enhances their group migration
109 by following their self-generated chemoattractant gradient (known as navigated range
110 expansion(11)), the speed of range expansion decreased as the agar concentration
111 increased(33). Interestingly, even though host bacterial motility was limited, the fan-shaped
112 infected zone increased at a fixed distance from the initial infection site (Fig. 1b). We quantified
113 the angle of phage spread θ and found it showed a negative dependence on co-propagation
114 migration speed (Fig. 1c). However, when using a chemotaxis deficient strain (Ft-
115 MG Δ cheRcheB), which performs unguided range expansion following the Fisher-Kolmogorov
116 dynamics, in this case, the negative relation did not hold anymore (Fig. S6C-E), demonstrating
117 that faster host motility enhanced viral spread. These results suggested a counterintuitive trend:
118 during host navigated range expansion, an increase in host group migration speed would limit
119 phage spread.

120

121 By varying the host diffusive motility, our model can successfully recapture the negative relation
122 between co-propagation migration speed and viral spread (Fig. S7A). The simulation results
123 indicated that while both co-propagation migration speed and lateral expansion speed increased

124 with the host diffusion coefficient, the co-propagation migration speed with host chemotaxis
125 increased at a much faster rate (Fig. S7BC).

126
127 In contrast, when considering the model without host bacterial chemotaxis (unguided range
128 expansion, SI text), lateral expansion increased more rapidly as a function of bacteria diffusion
129 coefficient (Fig. S5), resulting in a positive dependence of viral spread on the host motility (black
130 line in Fig. S6D). We also confirmed that this relationship was not influenced by the geometric
131 effect of radial expansion under the plane wave expansion (Fig. S8). Therefore, our modeling
132 study predicted that, in the presence of host chemotaxis, increased host motility limits viral
133 spread.

134
135 The model predicted that the co-propagation group migration speed also depended on the host
136 chemotactic coefficient, which measures how responsive bacterial cells are to the environmental
137 chemoattractant gradient(34). We found that the co-propagating migration speed of the host and
138 phage increased linearly with the host chemotactic coefficient, while the lateral expansion speed
139 stayed approximately constant (Fig. S9B, C). As a result, the angle of phage spread θ , as well as
140 the size of the phage-infected zone, decreased significantly when the host chemotactic migration
141 speed increased (Fig. 2B, C, Fig. S9A).

142
143 We further tested the model prediction by measuring the angle of phage spread θ with a
144 chemotactic coefficient titratable strain (ZF1). Specifically, we deleted the native regulation of a
145 chemoreceptor gene *tar* in the bacterial genome, and introduced a titratable control of *tar*
146 expression by a small molecule inducer, anhydrotetracycline (aTc) (Materials and Methods, Fig.
147 3A). The *tar* variant strain affected the receptor gain of the cells in response to aspartate(35), but
148 not the tumble bias and growth rate(36). The tumble bias defines the average time a cell spends
149 on the tumbling motion, which further determines the effective diffusion coefficient of bacteria.
150 Therefore, by titrating different inducer aTc concentrations, we could manipulate the bacterial
151 chemotactic migration speed (Fig. 3B, Fig. S10A), but not the effective diffusion coefficient of
152 bacteria(36). Under different host migration speeds, we measured the angle of phage spread θ
153 and found it decreased as the migration speed increased (Fig. 3B, Fig. S10B&10C). The
154 experimental results confirmed our model prediction that virus spread is hindered by the host
155 chemotactic migration.

156
157 **The migratory culling of phages during co-propagation**
158 Another important prediction of our model is that co-propagation of host bacteria and phage is not
159 always sustained during the host navigated range expansion. As we decreased the phage
160 production rate in the model, it resulted in a slower lateral expansion of the infected zone, limiting
161 the angle of phage spread θ and the viral spread. At very low phage production rate, the angle of
162 phage spread θ became small. If we further increased the group migration speed, the size of the
163 infected zone shrank until a sudden drop to almost zero, where infection only occurred near the
164 initial spot of phage (Fig. S11). This indicated that the co-propagation of host bacteria and phage
165 could not be maintained and the infected cells as well as the phages were culled from the
166 propagating front. In other words, the system underwent a phase transition from co-propagation
167 to migratory culling (Fig. 2B&2C).

168
169 To experimentally test the phase transition of migratory culling, we engineered both the M13
170 phage and its bacterial host to enable the titration of the phage production rate after infection.
171 Specifically, we first deleted the *gIII* gene from the M13 phage genome and replaced by a T7 *map*
172 gene (M13SP)(37, 38). The native GIII protein is essential for the M13 phage into a host bacteria,
173 and deletion of GIII protein prevents full escape from the infected host(38). In other words, the
174 variant phage M13SP cannot be produced by wild-type infected cells, as it lacks *gIII* gene(39, 40).
175 We then incorporated the *gIII* gene into bacterial host cells under a T7 promoter (strain FTT7,
176 Materials and Methods). When the M13SP infects the engineered host FTT7, the bacteria cells
177 express the T7 RNAP whose gene is brought by the phage, which then activates the expression

178 of GIII protein and restores the complete production of M13SP phage. Therefore, the variant
179 phage M13SP infects the engineered strain FTT7 and generates a fan-shaped infection zone
180 during the co-propagation range expansion, and the dependence of the angle of phage spread θ
181 on the host migration speed is similar to the wild-type system (Fig. 3B and Fig. 4B).
182

183 An important advantage of this engineered phage-bacteria system is that we can generate a
184 series of engineered strains with T7 promoter variants that have different T7 RNAP binding
185 affinities. Here, we used a library of T7 promoter variants that we had previously characterized in
186 our study(38)(Table S2, Fig. S12). The weak T7 RNAP binding affinity, e.g. FTG8 strain, reduces
187 the GIII protein expression(41), resulting in a smaller fan-shaped zone (Fig. 4B). Increasing the
188 host migration speed further would lead to a much smaller fan-shaped infected zone. However,
189 for variant strains such as FTF10 and FTD8, whose promoter expression activity is much smaller
190 than that of wild type T7 promoter, the fan-shaped infected zone only exists at the slow host
191 migration speed. When the host migration speed becomes large, the infected zone is confined to
192 a small spot (Fig. 4B). Away from the initial drop of phage, we verified that no infected bacteria or
193 phage particles were carried, suggesting they were culled from the front propagation. We then
194 systematically measured the angle of phage spread θ for a series of variant strains at different
195 host migration speeds (Fig. 4C&D). The phase transition from co-propagation to migratory culling
196 is clearly observed at low promoter expression activity and fast host migration speed (Fig. 4D),
197 demonstrating the occurrence of migratory culling.
198

199 **The spatial sorting mechanism of migratory culling**

200 To better understand the underlying mechanism of migratory culling, we examined the simulated
201 dynamics of the co-propagation front. During navigated range expansion, the leading front of the
202 host population exhibited a propagating bulge, resulting from the balance between local cell
203 growth and back diffusion (leakage of cells out of the bulge due to random movement)(3, 11).
204 Due to phage infection, along the middle radial axis (the black dashed line in Fig. 4e), the
205 propagating front of the host population rapidly became infected once it crossed the initial phage
206 spot, with the phage profile generally following that of the infected cells (Fig. S13). However,
207 simulation results showed the coexistence of uninfected and infected cells near the edge of the
208 infected zone (along the blue arrow in Fig. 4E, Fig. S14). These cells, traveling along with
209 phages, formed a co-propagation front (Fig. 4E, Fig. S14). Within this co-propagation front, the
210 profile of infected cells was determined by three major factors: continuous conversion from
211 uninfected cells due to phage infection, self-reproduction, and reduction flux caused by back
212 diffusion. As the immotile phage always lagged behind the motile host, infection was most active
213 behind the front of the uninfected cells. This resulted in a spatial sorting structure where the
214 uninfected cells were located at the leading edge of the leading propagation front, while infected
215 cells were at the rear (Fig. 4E, Fig. S14).
216

217 To validate this prediction of spatial sorting, we experimentally measured the profiles of
218 uninfected and infected cells. We labeled the host cells with a red fluorescent gene *rfp* (ZF1-RFP)
219 and integrated a *gfp* gene into the phage genome (M13-GFP). This allowed us to quantify the
220 total cell density profile of the co-propagating front using red fluorescent signals (Fig. 4F, black
221 curve, see Materials and Methods). Phage infection introduced the *gfp* gene into infected cells,
222 enabling us to quantify the infected profile (the sum of infected and recovered cells) via green
223 fluorescent signals (Fig. 4F, orange curve). The difference between these two provided the profile
224 for uninfected (susceptible) cells (Fig. 4F, green curve). The experimental results clearly showed
225 the spatial difference between uninfected and infected cells at the propagating front near the
226 edge, which is consistent with the model prediction.
227

228 Consequently, the spatial sorting structure of the two subpopulations in the leading propagation
229 front indicated that the back diffusion of the infected cells was larger than that of the uninfected
230 cells. Without the conversion from uninfected cells by phage infection, the infected cells could not
231 keep up with the uninfected migration front. In the presence of moderate phage infection (e.g. low

232 phage production by infected cells), the increase in migration speed leads to stronger total back
233 diffusion(11, 13), but the major increment came from the increase in the back diffusion of infected
234 cells. Increasing the migration speed further or reducing the phage infection would make the back
235 diffusion larger than the sum of the self-growth of infected cells and conversion rate from
236 uninfected cells, causing the infected cells to be culled from the migration front. This resulted in a
237 transition from co-propagation to migratory culling of infected bacterial host and phage.
238

239 Discussion

240 The understanding of the interplay of host migration and viral spread has been developed with
241 the advent of global change and advances in genetics, but direct experimental tools are still
242 lacking (13, 22, 27). Here, we developed a synthetic host-viral copropagating system to
243 investigate how host motility affected viral spread during the host's navigated range expansion.
244 We found a counterintuitive phenomenon that faster host chemotaxis-driven range expansion
245 inhibited viral range expansion and resulted in a phase transition from co-propagation to
246 migratory culling of phage.
247

248 Although migratory culling has been increasingly recognized in natural migratory animals and its
249 role in regulating viral transmission dynamics, there is still a lack of agreement on how often and
250 how much it may occur(21, 42). It is thought to depend on the extent to which infection affects the
251 host's physiological and behavioral traits(43). Our finding revealed that the spatial sorting of
252 uninfected and infected hosts in the navigated propagation front resulted in a faster back diffusion
253 of infected hosts, enabling their elimination. Even without the temporary growth reduction during
254 infection, this mechanism still facilitated the migratory culling (Fig. S15). This quantitative
255 understanding does not require complex infection-induced changes to host migrations, which has
256 potential implications for controlling the spread of infectious diseases by altering the host motility
257 or the virus production rate.
258

259 Range expansion can significantly alter evolutionary dynamics through multiple factors, e.g.
260 genetic drift(44, 45), selection pressures(46, 47), founder effects(48, 49), and cooperation
261 collapse(50, 51). Long-term co-propagation of host and virus can lead to co-evolution, impacting
262 the genetic diversity and adaptation of both host and virus populations(15, 16). In addition, our
263 previous study utilized the bacteria-phage co-propagating system to develop a spatial phage-
264 assisted continuous evolution system, which revealed the evolutionary process during co-
265 propagation was accelerated compared to a fixed niche(38). Therefore, the inhibition of viral
266 spread by host migration discovered in this study would further help to improve the directed
267 evolution method and provide new insights into host-viral co-evolution dynamics.
268

269

270

271 Materials and Methods

272

273

Media and growth conditions

274 The Luria-Bertani (LB) medium contained 10 g tryptone, 5 g yeast extract, and 5 g NaCl per liter.
275 The defective rich defined medium (D-RDM) used in this study was based on the Neidhardt's lab
276 recipe(52) and modified: 1× MOPS mixture, 0.25× ACGU, 1× defective amino acid mixture (a
277 mixture of 17 amino acid excluding asparagine, aspartic acid and serine, named as 1×AA), 1.32
278 mM K₂HPO₄, 100 μM aspartic acid(K salt, 0 μM only for the host unguided range expansion
279 experiment) and 0.4% (w/v) glucose. Mops salts and ACGU were prepared to be 10× MOPS and
280 10× ACGU stocks solution. The defective amino acid mixture 1×AA was prepared to be 5×AA
281 stocks solution (in 1 L): 356.4 mg alanine, 5478.2 mg arginine (HCL), 87.8 mg cysteine (HCL),
282 611.5 mg glutamic acid (K salt), 438.6 mg glutamine, 300.3 mg glycine, 209.6 mg histidine (HCL
283 H₂O), 262.4 mg isoleucine, 524.8 mg leucine, 365.4 mg lysine, 149.2 mg methionine, 330.4 mg
284 phenylalanine, 230.2 mg proline, 238.2 mg threonine, 102.1 mg tryptophane, 181.2 mg tyrosine,
285 351.6 mg valine. All the medium in this study was buffered to pH 7.0 with 0.1 M HEPES (pH 7.0).

286 To prepare semi-solid plates, the bacto-agar (BD,214010) was added to the growth medium, and
287 the agar concentration varied from 0.2% to 0.4% (w/v). If required, inducer aTc was also added to
288 the medium and its concentration varied from 0 to 20 ng/mL. Then, 10 mL of the above medium
289 supplemented was poured into a 90-mm Petri dish and allowed to harden at room temperature for
290 60 min in a light-proof box. In addition, the medium was supplemented with chloramphenicol (25
291 μ g/mL), spectinomycin (50 μ g/mL), tetracycline (10 μ g/mL), kanamycin (10 μ g/mL) and ampicillin
292 (20 μ g/mL). All experiments were executed at 37°C unless otherwise specified.
293 The culture condition of Fig. 1 and Fig. S8 (FM15 with different agar concentrations): D-RMD
294 medium + 100 μ M aspartate + 0.2%~0.4% agar concentration + 10 μ g/mL tetracycline;
295 The culture condition of Fig. S6 (Ft-MG Δ cheRcheB with different agar concentrations): D-RMD
296 medium + 0.2%~0.4% agar concentration + 10 μ g/mL tetracycline;
297 The culture condition of Fig. 3 and Fig. S10 (ZF1 with different aTc concentrations): D-RMD
298 medium + 100 μ M aspartate + 0 ~ 20 ng/mL aTc + 0.2% agar concentration + 10 μ g/mL
299 kanamycin + 20 μ g/mL ampicillin;
300 The culture condition of Fig. 4B,C,D, and Fig. S20 (Strains of the FT series, the chemotactic
301 titratable strain ZF1 coupling T7 RNAP activity with the expression of *gIII*: FTT7, FTA1, FTD5,
302 FTD8, FTD9, FTF10, FTG8): D-RMD medium + 100 μ M aspartate + 0 ~ 20 ng/mL aTc + 0.25%
303 agar concentration+ 10 μ g/mL kanamycin + 50 μ g/mL spectinomycin;
304 The culture condition of Fig. 4E (ZF1-RFP): D-RMD medium + 200 μ M aspartate + 20 ng/mL aTc
305 + 0.25% agar concentration + 10 μ g/mL kanamycin;
306

307 **Strains and phages construction**

308 The strains and plasmids used in this study are listed in Supplementary Table S1. The *E.coli* CLM
309 strain was provided by Dr Liu(3) and all other strains in this study, except *E. coli* K12 strain
310 ER2738, were derived from it. The strain FM15 was a conjugation of the *E. coli* CLM and the *E.*
311 *coli* K12 ER2738 (NEB, F plasmid with tetracycline-resistant provider) and was provided by Dr
312 Liu(38). Based on the understanding of the molecular mechanism about chemotactic signal
313 transduction of *E.coli*, we constructed a chemotaxis deficient *E.coli* strain Ft-MG Δ cheRcheB by
314 the following steps: (i) we constructed a chemotaxis deficient *E.coli* MG Δ cheRcheB by knocking
315 the chemotactic gene *cheR* and *cheB* of *E.coli* CLM; (ii) we transferred the psim5 plasmid with
316 chloramphenicol gene into the strain MG Δ cheRcheB and obtained the strain MG Δ cheRcheB-
317 psim5 (cultured in 30°C); (iii) we conjugated the recipient strain MG Δ cheRcheB-psim5 with the
318 donor strain FM15 (F plasmid provider) and got a strain Ft-MG Δ cheRcheB-psim5; (iv) we
319 removed the psim5 plasmid by culturing in 37°C and obtained the strain Ft-MG Δ cheRcheB. The
320 tar-titratable strain MGT was constructed as follows: (i) the strain CLM(Δ tar) was obtained by
321 knocking the chemotactic receptor protein Tar gene of the strain CLM. (ii) the bla:P_{tet}-tetR-tar
322 feedback loop was amplified and inserted into the strain CLM(Δ tar) chromosomal attB site
323 utilizing λ Red homologous recombination, then we obtained the strain MGT. The strain FkP was
324 constructed by replacing the tetA-PtetA/tetR-tetR cassette of F plasmid in the strain Er2738 with
325 the kanamycin-resistance gene. The tar-titratable strain ZF1 was a conjugation of the strain MGT
326 and the strain Fkp (F plasmid with Kan resistant provider). The strain FTT7 was constructed by
327 electroporating the plasmid AP-T7 (T7 RNAP-dependent accessory plasmid contain M13 phage
328 gene *gIII* with a wild type T7 promoter, gift from Dr Chenli Liu(38)) into the strain ZF1, and the
329 similar strain FTA1/FTD5/FTD8/FTD9/FTF10/FTG8 was constructed by electroporating the
330 plasmid AP-A1/ AP-D5/ AP-D8/ AP-D9/ AP-F10/ AP-G8 (The variants of plasmid AP-T7 with T7
331 promoter variants, and the details of the promoter sequence are shown in Appendix Table S1,
332 gifts from Dr Liu(38)) into the strain ZF1. To better capture the location difference of the infected
333 and uninfected cells in the co-propagating front, we constructed the strain ZF1-RFP, in which a
334 red fluorescence plasmid RFP with chloramphenicol gene was inserted into the strain ZF1.

335 The phage M13 used in this study was a gift from Dr Liu(38) and others were its variants. To
336 better characterize the infectious state of the bacteria, the coding sequence of green/red
337 fluorescence protein gene was inserted into the genome of M13 and the strain was designated as
338 M13-GFP, M13-RFP and M13-Ruby. The phage M13SP was also provided by Dr Liu(38), in
339 which gene *gIII* of the M13 genome was deleted and replaced by a T7 RNP with a downstream
340 yellow fluorescence protein gene. All phages were verified by sequencing.
341

342 **Conjugation of F plasmid**

343 The conjugation of F plasmid is based on the Barrick laboratory's recipe(53), and the detailed
344 protocol is as follow: (i) grow overnight cultures of donor and recipient strains in the presence of
345 diaminopimelic acid (DAP, 0.3 mM) and appropriate antibiotic. (ii) gently spin down 1 mL culture
346 (~6000 rpm for 3 minutes) and wash donor and recipient cells in PBS, then repeat and resuspend
347 in 500 μ L PBS. (iii) measure cell density and combine 1:1 ratio of donor and recipient cells in
348 micro centrifuge tube (100 μ L:100 μ L). (iv) plate 200 μ L of mixture onto non-selective LB medium
349 plate containing DAP, and then incubate conjugation plate overnight. (v) scrape up the
350 conjugation mixture into a micro centrifuge tube with 1 mL PBS, vortex and gently spin down and
351 repeat, then resuspend conjugation mixture in 1 mL of PBS and plate 100 μ L of this mixture and
352 100 μ L of a 10-fold dilution onto selective plates. (vi) pick single colonies and culture in selective
353 media and confirm the strain via PCR amplification of the target strains.
354

355 **Growth curve measurement**

356 The growth curves of uninfected and infected bacteria were measured in a 250-mLflask with 50
357 mL corresponding growth medium at 37°C, 150 rpm. The general procedure was as follows. First,
358 the isolated bacteria from -80°C stock was streaked onto the agar plate with LB medium and
359 cultured at 37°C overnight. Second, 3-5 single colonies were picked and inoculated into 14 mL
360 round-bottom test tubes containing 2 mL LB medium and cultured overnight in a shaker (220 rpm,
361 Shanghai Zhichu Instrument) as the seed-culture procedure. Third, the overnight seed-cultures
362 were diluted into 2 mL D-RDM medium by a ratio of 1:100 and grown to log-phase the next
363 morning; when the diluted cultures reached OD₆₀₀ 0.2~0.3, the diluting step was repeated. Fourth,
364 5 mL cultures (OD₆₀₀ around 0.2~0.3) were added into a 250-mL flask with 45 mL prewarmed D-
365 RDM medium and were cultured in a water-bath shaker (150 rpm, Shanghai Zhichu Instrument).
366 When the diluted cultures reached an OD₆₀₀ of 0.2, 2 mL bacteria culture was added to 48 mL
367 prewarmed D-RDM medium with or without phage. The medium was then incubated and
368 measured. The samples were taken every 10 min for measurement of OD₆₀₀ by using
369 spectrophotometer reader until bacterial cells entered the stationary phase. For phage growth
370 assay, one-milliliter samples were extracted at the same time points and filtered through a 0.22
371 μ m pore size PES syringe filter to remove bacterium. Aliquots for the time series were then stored
372 at -20°C until tittering. The growth curve was illustrated in Fig. S1.
373

374 **Phage propagation and tittering**

375 The strain FM15 was served as host bacteria for propagating and tittering M13 phage. Cells used
376 for phage propagation were cultured in 20 mL LB medium until they reached OD₆₀₀= 0.3~0.4 and
377 then infected with 10⁹ pfu of phage. The bacteria-phage mixture was incubated overnight at 37°C.
378 Cell debris was removed by centrifugation at 5000 rpm for 10 min and filtration. The fresh
379 supernatant containing the revived phage was collected and stored at -20°C for up to several
380 months. To determine the phage titer, we employed the double agar overlay plaque assay as
381 described in previous work(54). The bottom agar for plates and soft agar for overlayers were LB
382 broth containing 1.5% and 0.4% Bacto agar, respectively. Serial ten-fold dilutions of the phage
383 stock and the underlay agar plates were prepared in advance. We transferred 10 μ L of the
384 selected dilution of phages to a tube of 3 mL warm overlay medium, immediately added 100 μ L
385 culture of the host bacterium (OD₆₀₀ around 0.3~0.4), mixed and poured the contents over the
386 surface of a dried and labeled underlay plate. The overlays were allowed to harden for 30 min
387 and then incubated at 37°C overnight. The following day, we counted plaques on plates with 30~

388 300 plaques and defeminated the titer of the original phage stock by using the following
389 calculation: Number of plaques×100×reciprocal of counted dilution = pfu/mL.

390

391 **Expansion experiment procedures**

392 First, the isolated bacteria from -80°C stock was streaked onto the agar plate with LB medium
393 and cultured at 37°C overnight. 3-5 single colonies were picked and inoculated into 14 mL round-
394 bottom test tubes containing 2 mL LB medium and cultured overnight in a shaker (220 rpm.,
395 Shanghai Zhichu Instrument) as the seed-culture procedure. Second, the overnight seed-cultures
396 were diluted into 2 mL D-RDM medium by a ratio of 1:100 and grown to log-phase the next
397 morning, and then were further diluted in the same way when the diluted cultures reached OD₆₀₀
398 0.2~0.3. In the experiment of measuring the host's range expansion speed, bacteria were then
399 cultured to the mid-log phase (OD₆₀₀ was around 0.2~0.3), which was inoculated at the line 2 cm
400 away from the center of a semi-solid agar plate using a 75-mm glass slide for the plane-wave
401 range expansion. Alternatively, 2 μ L of the strain was inoculated at the center of a semi-solid agar
402 plate for the normal range expansion. In the virus infection experiment procedures, 2 μ L M13
403 phages with different concentrations were inoculated 1 cm away from the bacteria position, and
404 then incubated at 37°C for several hours until the bacteria occupied the whole plate. For the
405 experiment of measuring bacteria expansion speed, only the bacteria strain was inoculated and
406 incubated at 37°C.

407

408 **Bacteria expansion speed measurement**

409 The semi-solid agar plate was illuminated from below by a circular white LED array with a lightbox
410 as described previously(55) and imaged at 1 h or 2 h intervals using a Canon EOS 600D digital
411 camera. Images were analyzed using ImageJ. For the normal range expansion, a circle was fitted
412 to the intensity maximum in each image and the area (A) of the fitted circle was determined. The
413 radius (r) of the colony was calculated as $r = \sqrt{A/\pi}$. The maximum expansion speed was
414 calculated using a linear fit over a sliding window of at least five time points, with the requirement
415 that the fit has an R² greater than 0.99. For the plane-wave range expansion, an image analysis
416 script using MATLAB was written to find the front peak position of the images at different times
417 and then we got the mean migration speed by a linear fitting.

418

419 **Calculation of the angle of phage spread θ**

420 When the semi-solid agar plate was occupied by bacteria, brightfield images of the plates were
421 captured by the image device in the above Methods and fluorescence images were captured
422 using the UVP CHEMSTUDIO™ TOUCH 815 IMAGERS (Analytik Jena, US). Virus spread
423 intensity can be represented by the angle θ of the fan-shaped pattern and can be determined as
424 follows. Using ImageJ analysis to fluorescence images, the phage infection area (Ar) of the fixed
425 region (L centimeter away from the initial phage inoculation position) was calculated, and the
426 angle of phage spread θ was $\theta = \frac{2Ar}{L^2}$. The angle of phage spread θ was still calculated using this
427 formula even when the sides of expansion zones are curved.

428

429 **Fluorescence intensity assay**

430 To investigate the location difference of the infected and uninfected cells in the propagating front
431 (Fig. 4E), the plates were scanned by Nikon Ti-E microscopy equipped with a 10x phase contrast
432 objective (Nikon CFI Plan Fluor DL4X F, N.A. 0.13, W.D. 16.4 mm, PHL), the green and red
433 fluorescence was taken with a 2-ms and 500-ms exposure time, respectively. The details were as
434 follows: firstly, as the above-mentioned method, the semi-solid D-RDM medium plate with 0.25%
435 agar and 20 ng/mL aTc was prepared, and the strain ZF1-RFP was cultured; Second, the strain
436 ZF1-RFP was inoculated at the line 2 cm away from the center of the plate and 2 μ L 10⁹ pfu/mL
437 M13-GFP phage was inoculated 1 cm away from the bacteria position, and the plate was
438 incubated at 37°C for 10 hours; Third, the Fluorescence intensity of the whole propagating front
439 in the plate was scanned by the Nikon Ti-E microscopy and the data was exported by the NIS-
440 Elements AR software (ver. 4.50.00). The red fluorescence intensity represents the host cell ZF1-

441 RFP including the uninfected and infective cells (infected cells + recovered cells), and the green
442 fluorescence intensity represent the infective cells which express the green fluorescence gene of
443 M13-GFP because of the phage infection. In the back of the infected zone, both fluorescent
444 signals could be normalized by assuming the majority of the cells had been infected (38). Hence,
445 the uninfected cell can be represented by the red fluorescence intensity minus the green
446 fluorescence intensity. This was processed using a custom-written MATLAB code.
447
448

449 **Acknowledgments**

450

451 The authors thank C. Liu for sharing *E. coli* strain, Y. Bai, S. Huang for discussions, comments,
452 and technical support. This work is partially supported by the National Key Research and
453 Development Program of China (2021YFA0911100), Strategic Priority Research Program of the
454 Chinese Academy of Sciences (XDB0480000), the National Natural Science Foundation of China
455 (32301223,32071417, 32025022).

456

457 **Data availability**

458

459 Major experimental data supporting the findings of this study are available within the main text
460 and Supplementary Information. Modeling and analysis code have been submitted to GitHub with
461 a link <https://github.com/YiZhangsia/Host-Phage-Expansion>.

462

463 **References**

- 464 1. H. Xu, J. Dauparas, D. Das, E. Lauga, Y. Wu, Self-organization of swimmers drives long-range
465 fluid transport in bacterial colonies. *Nat Commun* **10**, 1792 (2019).
- 466 2. H. H. Mattingly, T. Emonet, Collective behavior and nongenetic inheritance allow bacterial
467 populations to adapt to changing environments. *Proc. Natl. Acad. Sci. U.S.A.* **119**,
468 e2117377119 (2022).
- 469 3. W. Liu, J. Cremer, D. Li, T. Hwa, C. Liu, An evolutionarily stable strategy to colonize spatially
470 extended habitats. *Nature* **575**, 664–668 (2019).
- 471 4. Y. Cao, J. Neu, A. E. Blanchard, T. Lu, L. You, Repulsive expansion dynamics in colony growth
472 and gene expression. *PLoS Comput Biol* **17**, e1008168 (2021).
- 473 5. O. Hallatschek, D. R. Nelson, Life at the front of an expanding population. *Evolution* **64**, 193–
474 206 (2010).
- 475 6. J. Liu, *et al.*, Coupling between distant biofilms and emergence of nutrient time-sharing.
476 *Science* **356**, 638–642 (2017).
- 477 7. W. Liu, T. A. Tokuyasu, X. Fu, C. Liu, The spatial organization of microbial communities
478 during range expansion. *Current Opinion in Microbiology* **63**, 109–116 (2021).
- 479 8. J. G. Skellam, Random dispersal in theoretical populations. *Biometrika* **38**, 196 (1951).
- 480 9. R. A. Fisher, The wave of advance of advantageous genes. *Annals of Eugenics* **7**, 355–369
481 (1937).

482 10. D. A. Andow, P. M. Kareiva, S. A. Levin, A. Okubo, Spread of invading organisms. *Landscape*
483 *Ecol* **4**, 177–188 (1990).

484 11. J. Cremer, *et al.*, Chemotaxis as a navigation strategy to boost range expansion. *Nature* **575**,
485 658–663 (2019).

486 12. N. W. Frankel, *et al.*, Adaptability of non-genetic diversity in bacterial chemotaxis. *eLife* **3**,
487 e03526 (2014).

488 13. A. V. Narla, J. Cremer, T. Hwa, A traveling-wave solution for bacterial chemotaxis with
489 growth. *Proc. Natl. Acad. Sci. U.S.A.* **118**, e2105138118 (2021).

490 14. S. Bi, *et al.*, Discovery of novel chemoeffectors and rational design of *Escherichia coli*
491 chemoreceptor specificity. *Proc. Natl. Acad. Sci. U.S.A.* **110**, 16814–16819 (2013).

492 15. D. Ping, *et al.*, Hitchhiking, collapse, and contingency in phage infections of migrating
493 bacterial populations. *The ISME Journal* **14**, 2007–2018 (2020).

494 16. S. Heilmann, K. Sneppen, S. Krishna, Coexistence of phage and bacteria on the boundary of
495 self-organized refuges. *Proc. Natl. Acad. Sci. U.S.A.* **109**, 12828–12833 (2012).

496 17. X. Li, F. Gonzalez, N. Esteves, B. E. Scharf, J. Chen, Formation of phage lysis patterns and
497 implications on co-propagation of phages and motile host bacteria. *PLoS Comput Biol* **16**,
498 e1007236 (2020).

499 18. C. Viboud, *et al.*, Synchrony, Waves, and Spatial Hierarchies in the Spread of Influenza.
500 *Science* **312**, 447–451 (2006).

501 19. S. Krauss, *et al.*, Coincident ruddy turnstone migration and horseshoe crab spawning creates
502 an ecological ‘hot spot’ for influenza viruses. *Proc. R. Soc. B.* **277**, 3373–3379 (2010).

503 20. J. Waldenström, S. Bensch, S. Kiboi, D. Hasselquist, U. Ottosson, Cross-species infection of
504 blood parasites between resident and migratory songbirds in Africa. *Molecular Ecology* **11**,
505 1545–1554 (2002).

506 21. A. Fritzsche McKay, B. J. Hoyal, Are Migratory Animals Superspreaders of Infection?: An
507 Introduction to the Symposium. *Integr. Comp. Biol.* **56**, 260–267 (2016).

508 22. S. Altizer, R. Bartel, B. A. Han, Animal Migration and Infectious Disease Risk. *Science* **331**,
509 296–302 (2011).

510 23. M. Krkošek, *et al.*, Effects of host migration, diversity and aquaculture on sea lice threats to
511 Pacific salmon populations. *Proc. R. Soc. B.* **274**, 3141–3149 (2007).

512 24. A. K. Shaw, S. A. Binning, Migratory Recovery from Infection as a Selective Pressure for the
513 Evolution of Migration. *The American Naturalist* **187**, 491–501 (2016).

514 25. D. A. Satterfield, J. C. Maerz, S. Altizer, Loss of migratory behaviour increases infection risk
515 for a butterfly host. *Proc. R. Soc. B.* **282**, 20141734 (2015).

516 26. R. J. Hall, S. Altizer, R. A. Bartel, Greater migratory propensity in hosts lowers pathogen
517 transmission and impacts. *Journal of Animal Ecology* **83**, 1068–1077 (2014).

518 27. R. A. Bartel, K. S. Oberhauser, J. C. De Roode, S. M. Altizer, Monarch butterfly migration and
519 parasite transmission in eastern North America. *Ecology* **92**, 342–351 (2011).

520 28. A. Mysterud, L. Qviller, E. L. Meisingset, H. Viljugrein, Parasite load and seasonal migration
521 in red deer. *Oecologia* **180**, 401–407 (2016).

522 29. S. Altizer, K. A. Hobson, A. K. Davis, J. C. De Roode, L. I. Wassenaar, Do Healthy Monarchs
523 Migrate Farther? Tracking Natal Origins of Parasitized vs. Uninfected Monarch Butterflies
524 Overwintering in Mexico. *PLoS ONE* **10**, e0141371 (2015).

525 30. Z. Hobbs, S. T. Abedon, Diversity of phage infection types and associated terminology: the
526 problem with “Lytic or lysogenic.” *FEMS Microbiol Lett* **363**, fnw047 (2016).

527 31. N. A. Licata, B. Mohari, C. Fuqua, S. Setayeshgar, Diffusion of Bacterial Cells in Porous
528 Media. *Biophysical Journal* **110**, 247–257 (2016).

529 32. T. Bhattacharjee, S. S. Datta, Bacterial hopping and trapping in porous media. *Nat Commun*
530 **10**, 2075 (2019).

531 33. O. A. Croze, G. P. Ferguson, M. E. Cates, W. C. K. Poon, Migration of Chemotactic Bacteria in
532 Soft Agar: Role of Gel Concentration. *Biophysical Journal* **101**, 525–534 (2011).

533 34. X. Fu, *et al.*, Spatial self-organization resolves conflicts between individuality and collective
534 migration. *Nat Commun* **9**, 2177 (2018).

535 35. D. Yu, X. Ma, Y. Tu, L. Lai, Both piston-like and rotational motions are present in bacterial
536 chemoreceptor signaling. *Sci Rep* **5**, 8640 (2015).

537 36. Y. Bai, *et al.*, Spatial modulation of individual behaviors enables an ordered structure of
538 diverse phenotypes during bacterial group migration. *eLife* **10**, e67316 (2021).

539 37. K. M. Esvelt, J. C. Carlson, D. R. Liu, A system for the continuous directed evolution of
540 biomolecules. *Nature* **472**, 499–503 (2011).

541 38. T. Wei, *et al.*, Exploiting spatial dimensions to enable parallelized continuous directed
542 evolution. *Molecular Systems Biology* **18**, e10934 (2022).

543 39. M. Ploss, A. Kuhn, Kinetics of filamentous phage assembly. *Phys. Biol.* (2010).

544 40. S. W. Smeal, M. A. Schmitt, R. R. Pereira, A. Prasad, J. D. Fisk, Simulation of the M13 life
545 cycle I: Assembly of a genetically-structured deterministic chemical kinetic simulation.
546 *Virology* **500**, 259–274 (2017).

547 41. B. W. Thuronyi, *et al.*, Continuous evolution of base editors with expanded target
548 compatibility and improved activity. *Nat Biotechnol* **37**, 1070–1079 (2019).

549 42. A. Risely, M. Klaassen, B. J. Hoye, Migratory animals feel the cost of getting sick: A
550 meta-analysis across species. *Journal of Animal Ecology* **87**, 301–314 (2018).

551 43. C. A. Bradley, S. Altizer, Parasites hinder monarch butterfly flight: implications for disease
552 spread in migratory hosts. *Ecology Letters* **8**, 290–300 (2005).

553 44. B. T. Weinstein, M. O. Lavrentovich, W. Möbius, A. W. Murray, D. R. Nelson, Genetic drift
554 and selection in many-allele range expansions. *PLOS Computational Biology* **13**, e1005866
555 (2017).

556 45. L. Bosshard, S. Peischl, M. Ackermann, L. Excoffier, Dissection of the mutation accumulation
557 process during bacterial range expansions. *BMC Genomics* **21**, 253 (2020).

558 46. T. Wein, T. Dagan, The Effect of Population Bottleneck Size and Selective Regime on Genetic
559 Diversity and Evolvability in Bacteria. *Genome Biology and Evolution* **11**, 3283–3290 (2019).

560 47. J. M. Horowitz, M. Kardar, Bacterial range expansions on a growing front: Roughness,
561 fixation, and directed percolation. *Phys. Rev. E* **99**, 042134 (2019).

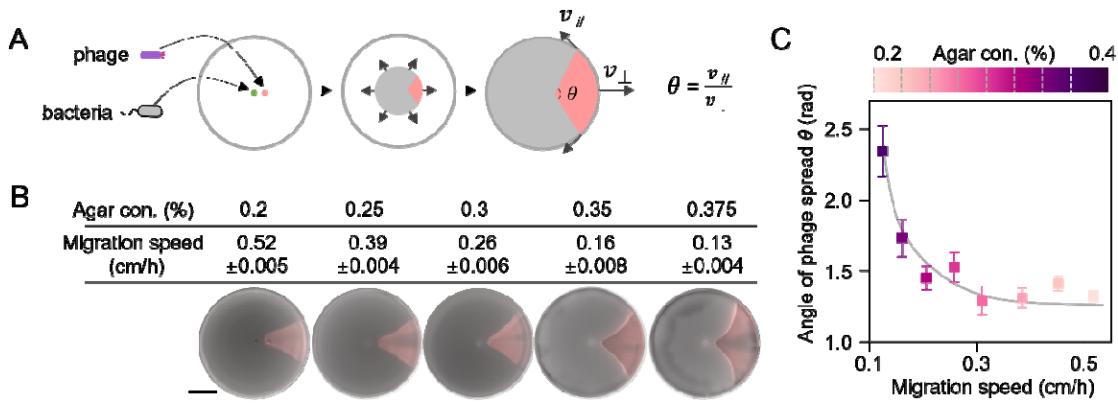
562 48. B. M. Peter, M. Slatkin, The effective founder effect in a spatially expanding population.
563 *Evolution* **69**, 721–734 (2015).

564 49. P. Chu, J. Zhu, Z. Ma, X. Fu, Colony pattern development of a synthetic bistable switch.
565 (2024). <https://doi.org/10.1101/2024.06.17.599191>.

566 50. N. Luo, *et al.*, The collapse of cooperation during range expansion of *Pseudomonas*
567 *aeruginosa*. *Nat Microbiol* **9**, 1220–1230 (2024).

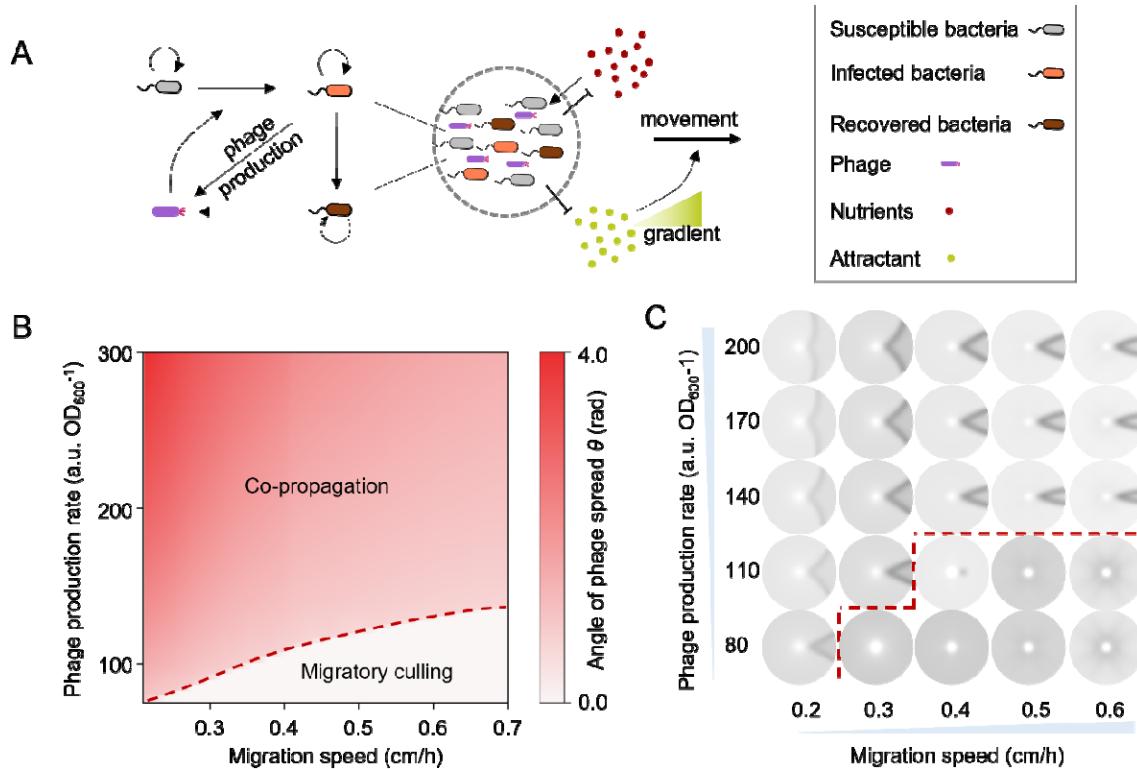
568 51. K. S. Korolev, The Fate of Cooperation during Range Expansions. *PLoS Comput Biol* **9**,
569 e1002994 (2013).

570 52. F. C. Neidhardt, P. L. Bloch, D. F. Smith, Culture Medium for Enterobacteria. *J Bacteriol* **119**,
571 736–747 (1974).


572 53. S. P. Leonard, *et al.*, Genetic Engineering of Bee Gut Microbiome Bacteria with a Toolkit for
573 Modular Assembly of Broad-Host-Range Plasmids. *ACS Synth. Biol.* **7**, 1279–1290 (2018).

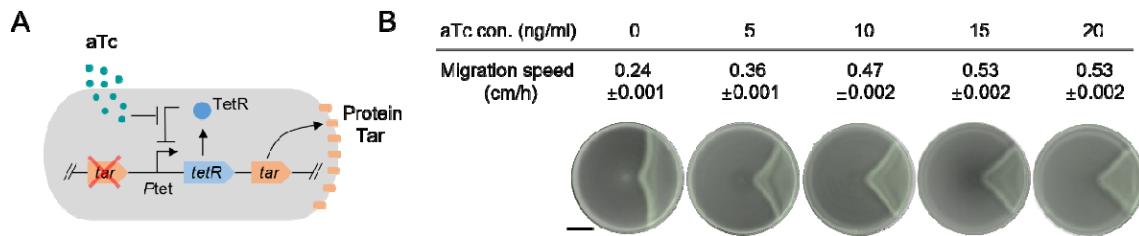
574 54. A. Baer, K. Kehn-Hall, Viral Concentration Determination Through Plaque Assays: Using
575 Traditional and Novel Overlay Systems. *JoVE* 52065 (2014). <https://doi.org/10.3791/52065>.

576 55. C. Liu, *et al.*, Sequential Establishment of Stripe Patterns in an Expanding Cell Population.
577 *Science* **334**, 238–241 (2011).


578 56. A. Roy, S. Mitra, Increased Fragility of *Escherichia coli* After Infection with Bacteriophage
579 M13. *J Virol* **6**, 333–339 (1970).

580
581

582
 583 **Fig.1.** Phage spread during the bacterial navigated range expansion. (A) The co-propagation of
 584 bacteria and phage leads to a fan-shaped infected zone. (B) Typical migration speeds and fan-
 585 shaped infected zone (light pink) under different agar concentrations. *E.coli* FM15 was inoculated
 586 at the center of a semisolid agar plate (Materials and Methods) with varying agar concentrations,
 587 and the reporter phage M13-Ruby was inoculated 1 cm away from the center. Infected cells
 588 expressed red fluorescent protein Ruby, introduced by phage during infection. The merged
 589 pseudo-color image combines brightfield and fluorescence images. (C) Dependence of the angle
 590 of phage spread θ on bacterial migration speeds by varying agar concentrations. Strain details
 591 are given in Supplementary Table 1. Data were taken 96 hours after inoculation. Scale bar, 2 cm.
 592 Experiments in (B) were repeated independently three times. For (C), data are mean ± s.d. for
 593 n=5 biological replicates.
 594


595
596

597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620

Fig. 2. Kinetic model of the interaction between bacteria and phage. (A) Schematic illustration of population's navigated range expansion. The M13 phage is chronic. During the interaction between bacteria and phage, the infected host cells are not killed; instead, progeny phages are produced and extruded through the cell membrane as infected cells continue to grow at a slower rate (38, 39, 56). This continues until the cells recover. Once recovered, the cells grow as fast as the susceptible ones and produce progeny phages at a much lower level as compared to freshly infected cells(38). In addition, recovered host cells cannot be re-infected by free phage particles (38). In the schematic illustration of the population's navigated range expansion: bacterial populations navigate forward into unoccupied territories depending on the chemoattractant gradients; Bacterial populations are classified into three categories: susceptible, infected, and recovered bacteria. Infected bacteria are converted from susceptible bacteria by phage infection, and eventually become recovered bacteria. These three bacterial populations all proliferate by consuming the nutrients. Motile bacteria expand their range into unoccupied territories by diffusion and chemotaxis. Meanwhile, nonmotile phages are transmitted by their host bacteria, and their titer depends on the level of infectious progeny phage production rate by infected and recovered bacteria (Supplementary text). (B) Simulated phase diagram of bacterial-viral co-propagation. The model predicted that the angle of phage spread θ was negatively correlated with the bacteria migration speed by varying the chemotactic coefficient and positively correlated with the phage production rate. The system experienced a phase transition from co-propagation to migratory culling as further increasing migration speed at low phage production rates (red dashed line). (C) The typical fan-shaped patterns under the different migration speeds and phage production rates.

621

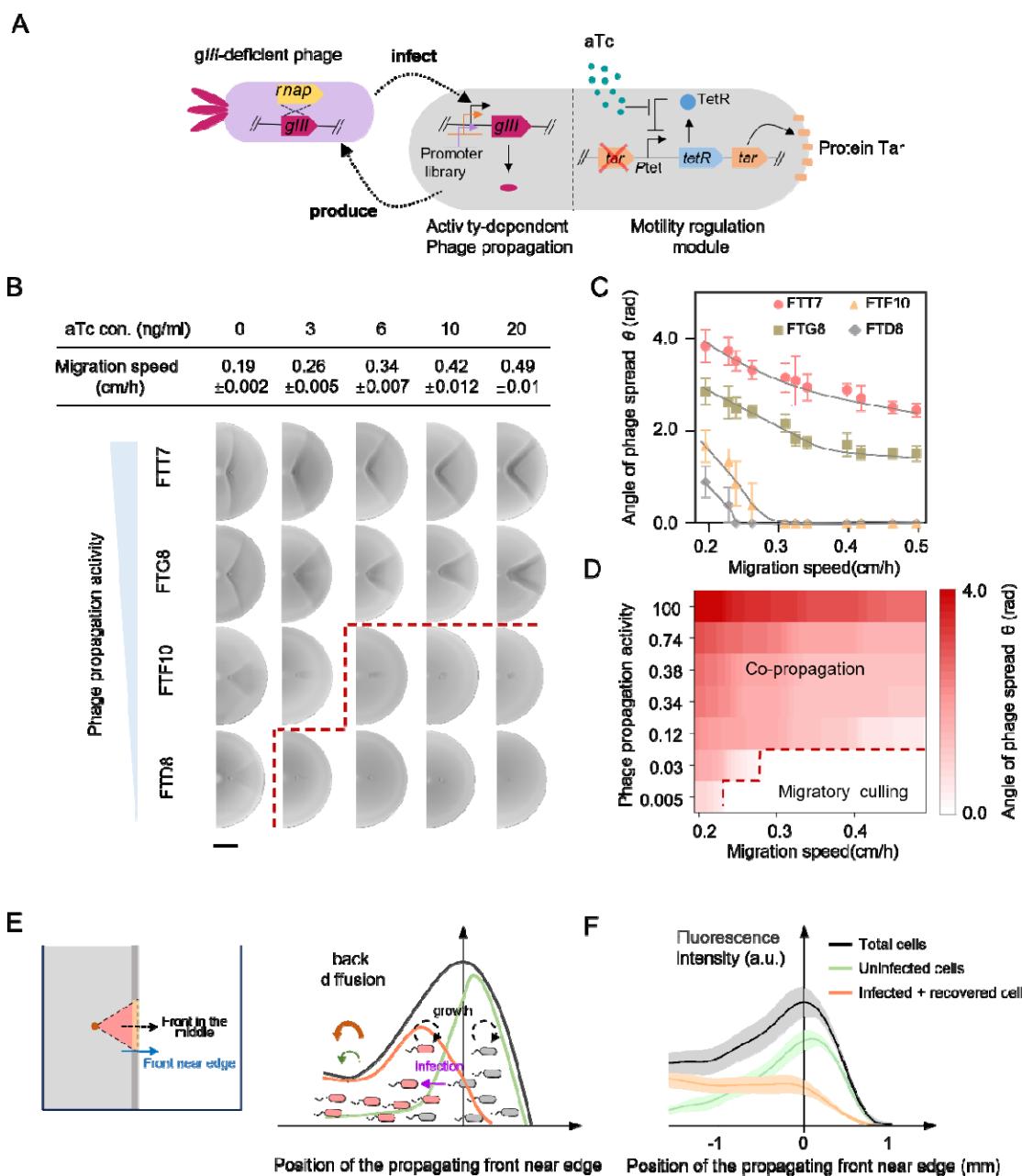
622

Fig. 3. Phage spread under different co-propagating migration speeds by titration of host bacteria chemotactic abilities. (A) Design of the chemotactic ability titratable strain ZF1 by inducible expression of chemotactic receptor protein Tar (Materials and Methods). (B) Typical migration speeds and fan-shaped patterns under different aTc concentrations (Materials and Methods). Data were taken 30 h after inoculation. Scale bar, 2 cm. Data are presented as mean ± s.d. for n=3 biological replicates.

623

624

625


626

627

628

629

630

631

Fig. 4. The phase transition and the spatial sorting mechanism of migratory culling. (A) Schematic design of the chemotactic titratable strain ZF1 coupling T7 RNAP activity with the expression of *g_{III}*. The host bacteria carry a motility regulation module and an activity-dependent phage propagation module, which are harbored by chromosome and the accessory plasmid, respectively (Materials and Methods). (B) The typical migration speeds and fan-shaped patterns for the typical strains (FTT7, FTG8, FTF10, and FTD8) under different aTc concentrations. (C) Detailed relationship between the angle of phage spread θ and the migration speed in (B). (D) Phase transition of migratory culling by seven strains with different phage propagation activities (The detailed sequences of T7 promoter variants are shown in Supplementary Table S2) under different aTc concentrations (Materials and Methods). The angle of phage spread θ was

642 negatively correlated with the bacteria migration speed and positively correlated with the phage
643 production rate. Migratory culling occurred at higher migration speeds and lower phage
644 production rates. (E) Illustration of the spatial sorting mechanism for migratory culling. Along the
645 leading propagating front near the edge between the infected and uninfected zone (as indicated
646 by the blue arrow in the left panel), the simulated density profiles (Fig. S14) showed a spatial
647 sorting structure of the infective cells (infected + recovered bacteria, orange line) and the
648 susceptible cells (green line), leading to smaller back diffusion for the susceptible cell (green
649 arrow) compared to infective cells (orange arrow). (F) Co-propagation profiles (right panel) of
650 ZF1-RFP (a plasmid carrying red fluorescent gene *rfp* was inserted into the strain ZF1, Materials
651 and Method) and phage M13-GFP (a *gfp* gene was integrated into phage genome, Materials and
652 Methods) demonstrated the spatial sorting structure experimentally. The profiles of total (black)
653 and infective bacteria (infected + recovered bacteria, green) were directly quantified the red and
654 green fluorescent signals respectively, while the profile of susceptible bacteria (orange) was
655 calculated by the other two profiles. The shaded areas represent the error bar. Data are
656 presented as mean \pm s.d. for n=4 biological replicates.