

1 **General Capillary Endothelial Cells Undergo Reprogramming into Arterial Endothelial**
2 **Cells in Pulmonary Hypertension through HIF-2 α /Notch4 Pathway**

3 Bin Liu^{1,2,3}, Dan Yi^{1,2,3}, Xiaomei Xia^{1,2}, Karina Ramirez^{1,2}, Hanqiu Zhao^{1,2}, Yanhong Cao^{1,2}, Ankit
4 Tripathi^{1,2}, Ryan Dong^{1,2}, Anton Gao^{1,2}, Hongxu Ding⁴, Shengfeng Qiu⁵, Vladimir V.
5 Kalinichenko^{6,7}, Michael B. Fallon², Zhiyu Dai^{1,2,3,8,9}

6 ¹Division of Pulmonary, Critical Care and Sleep, ²Department of Internal Medicine, College of
7 Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA

8 ³Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of
9 Arizona, Phoenix, Arizona, USA

10 ⁴Department of Pharmacy Practice & Science, College of Pharmacy, University of Arizona,
11 Tucson, Arizona, USA

12 ⁵Department of Basic Medical Science, College of Medicine-Phoenix, University of Arizona,
13 Phoenix, Arizona, USA

14 ⁶Division of Neonatology, Phoenix Children's Hospital, Phoenix, Arizona, USA

15 ⁷Phoenix Children's Health Research Institute, College of Medicine-Phoenix, University of
16 Arizona, Phoenix, Arizona, USA

17 ⁸BIO5 Institute, University of Arizona, Tucson, Arizona, USA

18 ⁹Sarver Heart Center, University of Arizona, Tucson, Arizona, USA

19

20 ***Correspondence to:** Zhiyu Dai, Ph.D. (zhiyudai@arizona.edu), Department of Internal
21 Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona. 475 N. 5th
22 Street, Phoenix, AZ 85004, USA. Phone: +1-(602) 827-2982.

23 **Running title: GCap to arterial endothelium transition in PH**

24

25 **Abstract**

26 Pulmonary arterial hypertension (PAH) is characterized by a progressive increase of pulmonary
27 vascular resistance and obliterative pulmonary vascular remodeling that result in right heart
28 hypertrophy, failure, and premature death. The underlying mechanisms of loss of distal capillary
29 endothelial cells (ECs) and obliterative vascular lesion formation remain unclear. Our recent
30 single-cell RNA sequencing, spatial transcriptomics analysis, RNASCOPE, and immunostaining
31 analysis showed that arterial ECs accumulation and loss of capillary ECs were evident in human
32 PAH patients and pulmonary hypertension (PH) rodents. Pseudotime trajectory analysis of the
33 single-cell RNA sequencing data suggest that lung capillary ECs transit to arterial ECs during
34 the development of PH. Our study also identified CXCL12 as the marker for arterial ECs in PH.
35 Capillary EC lineage tracing approach using capillary specific-Dre;Tdtomato reporter mice
36 demonstrated that capillary ECs gave rise to arterial ECs during PH development. Genetic
37 deletion of HIF-2a or pharmacological inhibition of Notch4 normalized the arterial programming
38 in PH. In conclusion, our study demonstrates that capillary endothelium transits to arterial
39 endothelium through the HIF-2a-Notch4 pathway during the development of PAH. Thus,
40 targeting arterial EC transition might be a novel approach for treating PAH patients.

41

42 Pulmonary arterial hypertension (PAH) is a devastating vascular disease with loss of distal
43 capillaries and accumulation of PA endothelial cells (PAECs). There is a paradoxical
44 observation that both loss of capillaries and accumulation of arterial ECs are evident in the
45 lungs of PAH patients. Recent studies employing single-cell RNA sequencing (scRNA-seq)
46 analysis demonstrated that lung ECs contain arterial, venous, general capillary (gCap) ECs
47 (*Gpihbp1*, *Plvap*), aerocytes or aCap (*Car4*, *Ednrb*)¹. gCap ECs function as stem/progenitor
48 cells in capillary homeostasis and repair¹. However, signaling pathways critical for PAEC
49 specification during PH development remain elusive.

50 We previously generated *Egln1*^{Tie2Cre} mice (CKO), a novel pulmonary hypertension (PH) mouse
51 model with progressive obliterative vascular remodeling and right heart failure². Recently, we
52 performed scRNA-seq analysis on lungs of *Egln1*^{ff} (WT) mice and CKO mice. Our scRNA-seq
53 data showed a decrease in both gCap and aCap EC proportions, but an increase in arterial EC
54 proportion in CKO mice, suggesting an enrichment of arterial ECs in PH (**Fig. A, B**). The arterial
55 ECs enriched in CKO mice express high levels of *Cxcl12*, *Sparc1*, *Hspg2* (**Fig. C**). To
56 determine the localization of the EC subpopulation alteration, we performed spatial
57 transcriptomics using the Visium Spatial Gene Expression platform. We then integrated the
58 scRNA-seq and Visium datasets using Seurat and found that in the WT lung, arterial ECs are
59 primarily found in proximal regions and gCap ECs are detected in distal microvascular regions.
60 In contrast, CKO lungs showed an increase in arterial ECs in the distal microvascular bed and a
61 decrease in gCap EC and aCap EC signatures (**Fig. D**). We then observed that CKO mice
62 exhibited increased numbers of *Cxcl12*⁺/CD31⁺ in the distal microvasculature compared to the
63 WT using immunostaining and RNASCOPE analysis (**Fig. E**). Via leveraging the publicly
64 available scRNA-seq dataset³, we found that idiopathic PAH (IPAH) patients ECs also exhibited
65 ~3 fold higher of arterial ECs (40.3%) compared to donor lungs (10.7%) (**Fig. F and G**). Further

66 comparison of human and mouse arterial EC markers showed that there were 61 common
67 genes, including *CXCL12*, *SOX17*, *DEPP1*, *EDN1*, *HEY1* etc.

68 Cxcl12 is absent in distal capillary ECs in the lung⁴. Our data demonstrated that Cxcl12 is one of
69 the top arterial EC markers in PH. Thus, we hypothesize that Cxcl12 could be a novel marker
70 for arterial ECs in the microvasculature during PH development. We then bred *Cxcl12*^{DsRed}
71 reporter mice into *Egln1*^{Cdh5CreERT2} mice (iCKO) to generate iCKO;*Cxcl12*^{DsRed/+} (iCKO^R) mice.
72 iCKO^R mice developed spontaneously PH after tamoxifen treatment (**Fig. H**). There is minimal
73 DsRed⁺ cells in the capillary regions of WT^R lungs. DsRed⁺ cells were dramatically increased in
74 the iCKO^R lungs and colocalized with gCap ECs marker *Gpihbp1* but not aCap marker *Ednrb*
75 (**Fig. I**). Leveraging the scRNA-seq dataset, our data showed that arterial ECs are likely derived
76 from gCap ECs supported by pseudotime analysis of the lung ECs using Monocle3 (**Fig. J**). The
77 gold-standard strategy to study cell lineage conversion *in vivo* uses genetic lineage tracing.
78 Previous and our scRNA-seq analysis showed that *Plvap* is a selective marker for gCap ECs⁵.
79 We then generated *Plvap*-DreER^{T2};CAG-RSR-Tdtomato (gCap^R) mice and challenged with
80 Sugen5416 (20mg/kg, weekly) and 10% O₂ hypoxia treatment for 3 weeks (SuHx) to induce PH
81 development. After tamoxifen treatment, *Plvap*⁺ ECs were successfully labeled with Tdtomato.
82 SuHx challenged gCap^R mice showed an increase in arterial ECs (Cxcl12⁺) and gCap-derived
83 arterial ECs (Cxcl12⁺/Tdtomato⁺) cells in the microvasculature (**Fig. K and L**), suggesting gCap
84 ECs give rise to arterial ECs during PH development.

85 Multiple molecules such as *Sox17* and Notch are involved in activation of arterial specification.
86 SCENIC analysis predicted that *Sox17* is one of the top candidates governing arterial EC
87 identity in PH (**Fig. M**). Pseudotime trajectory analysis also show that *Sox17* is highly expressed
88 in arterial ECs (**Fig. N**). Through analyzing scRNA-seq data from WT, CKO mice, and
89 *Egln1*^{Tie2Cre}/*Hif2a*^{Tie2Cre} (EH2) double knockout mice, we demonstrated that arterial and capillary
90 EC alterations were normalized (**Fig. O and P**) and *Sox17* expression was reduced in EH2

91 lungs (**Fig. Q**). SOX17 acts as the upstream regulator of Notch signaling, and is required for
92 acquisition and maintenance of arterial identity. Based on our scRNA-seq data, Notch4
93 activation (Nicd4 expression) is increased in CKO mice (**Fig. Q**). Genetic deletion of HIF-2 α
94 normalized Nicd4 expression, suggesting that Notch4 is the HIF-2 α /Sox17 downstream target
95 involved in the arterial reprogramming. We then found that neutralized Notch4 signaling
96 inhibited PH development by reducing RVSP and RV hypertrophy, arterial gene expression in
97 iCKO mice compared to IgG control (**Fig. R-T**).

98 Overall, we demonstrated an increase in arterial ECs in the distal PH lungs. Our results
99 uncovered a novel role of gCap to arterial ECs transition during the pathogenesis of PH
100 development via HIF-2 α /Notch4 signaling. Inhibition of Notch4 signaling is a promising avenue
101 to inhibit aberrant accumulation of arterial ECs and prevent pathological gCap-to-arterial
102 reprogramming in PH (**Fig. U**).

103

104

105

106

107

108

109

110

111

112

113

114

115 **Figure. General Capillary Endothelial Cells Undergo Reprogramming into Arterial**
116 **Endothelial Cells in Pulmonary Hypertension. A and B,** A representative UMAP plot showing
117 the abnormal EC subpopulations change with accumulation of arterial ECs (green) in both male
118 and female CKO mice at the age of 3 months. **C,** A representative heatmap showing the top
119 markers selectively enriched for each EC cluster, the data was generated by integrated data
120 from WT and CKO. **D,** Integration of scRNA-seq and Visium data reveals increased arterial ECs
121 and decreased gCap ECs in the distal capillary bed of CKO mice. The visualization shows the
122 predicted spatial distribution of arterial ECs and gCap ECs within the lungs. **E,** Increase of
123 arterial ECs in distal vascular bed in PH mice. RNASCOPE analysis showing increase of
124 Cxcl12⁺/CD31⁺ ECs in the distal capillary region of CKO mice. n=5 per group. **F and G,** A
125 representative UMAP plot showing the lung EC subpopulations change with accumulation of
126 arterial ECs in IPAH patients. **H,** *Egln1*^{Cdh5-CreERT2} (iCKO) mice develops spontaneous PH with
127 increase of RVSP and RV hypertrophy. n=3 (WT) or 8 (iCKO). **I,** Cxcl12-DsRed reporter studies
128 showed that Cxcl12 co-localizes with gCap ECs but not aCap ECs in PH mice. More than 3
129 mice were examined. **J,** Pseudotime trajectory analysis suggested that arterial ECs might be
130 derived from gCap ECs analyzed by Monocle3. **K,** Plvap-DreER^{T2} lineage-tracing study
131 demonstrated that gCap ECs give rise to Cxcl12⁺ arterial ECs in the distal microvascular bed
132 under PH condition. gCap^R mice were treated with tamoxifen to label gCap ECs with Tdtomato,
133 followed by SuHx treatment to induce PH development. Cxcl12 was labeled by RNASCOPE.
134 Arrows point to the Cxcl12⁺/Tdtomato⁺ cells, indicative of ArtECs. **L,** Quantification of arterial
135 ECs and gCap derived arterial ECs in PH. n=4 per group. **M,** Transcription factors prediction of
136 lung endothelial subpopulation via SCENIC. SOX17 is one of the top candidates governing
137 arterial EC gene signature. **N,** Pseudotime trajectory showing SOX17 expression across EC
138 subpopulations. Lighter color indicates higher gene expression. **O and P,** Sox17 and arterial
139 reprogramming is depended on HIF-2 α . A representative UMAP demonstrating HIF-2 α deletion
140 (EH2) blocks arterial reprogramming related genes in CKO mice by scRNA-seq analysis. **Q.**

141 Western blotting confirmed that Sox17 and Nicd4 expression was downregulated by HIF-2 α
142 deletion in CKO mice. **R**, Notch4 neutralized antibodies inhibited RVSP in iCKO mice. n=12
143 (Anti-IgG) or 13 (Anti-Notch4, 10mg/kg, intraperitoneal injection twice weekly for 2 weeks). **S**,
144 Notch4 neutralized antibodies inhibited RV hypertrophy in iCKO mice. **T**, Notch4 neutralized
145 antibodies reduced arterial gene expression. **U**, A diagram showing the hypothesis of this study.
146 Student t analysis. ** $p<0.01$. *** $p<0.001$, **** $p<0.0001$. Scale bar: 50 μ m.

147

148 **Source of Funding**

149 This work was supported in part by NIH grant R00HL138278, R01HL158596, R01HL62794,
150 R01HL169509, R01HL170096, AHA Career Development Award 20CDA35310084, The
151 Cardiovascular Research and Education Foundation, Arizona Biomedical Research Centre
152 funding (RFGA2022-01-06), and University of Arizona institution funding to Z.D.

153

154 **Acknowledgments**

155 All animal protocols were approved by the Institutional Animal Care and Use Committee of
156 University of Arizona. The authors thank the Pulmonary Hypertension Breakthrough Initiative
157 (PHBI) for providing the lung tissues. Funding for the PHBI is provided under an NHLBI R24
158 grant (R24HL123767). The data, analytical methods, and materials that support the findings of
159 this study will be available to other researchers from the corresponding authors on reasonable
160 request.

161

162 **Disclosures**

163 None.

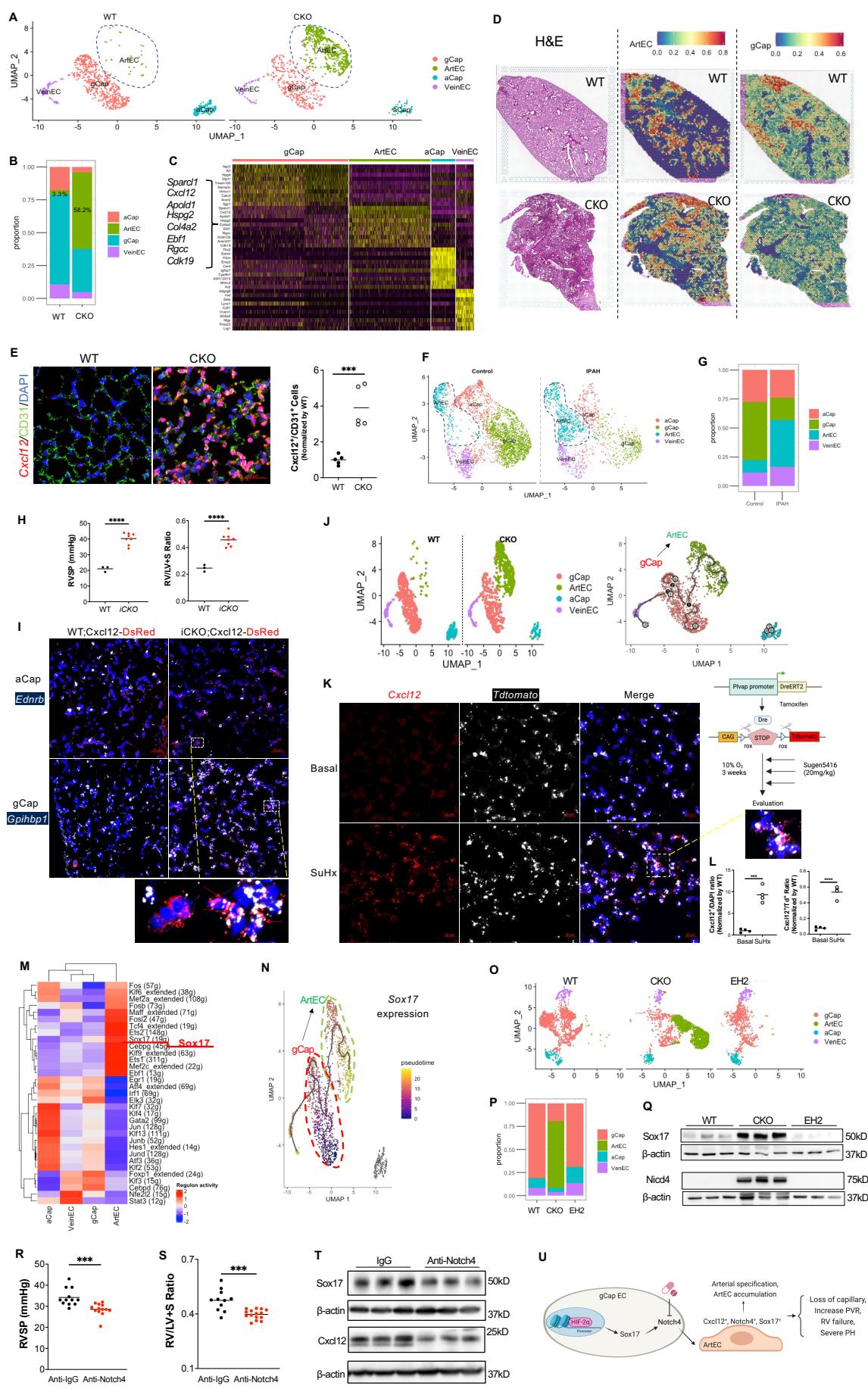
164

165

166 **Reference**

167 1. Gillich, A. *et al.* Capillary cell-type specialization in the alveolus. *Nature* **586**, 785–789
168 (2020).

169 2. Dai, Z., Li, M., Wharton, J., Zhu, M. M. & Zhao, Y. Y. Prolyl-4 Hydroxylase 2 (PHD2)
170 deficiency in endothelial cells and hematopoietic cells induces obliterative vascular
171 remodeling and severe pulmonary arterial hypertension in mice and humans through
172 hypoxia-inducible factor-2α. *Circulation* **133**, 2447–2458 (2016).


173 3. Saygin, D. *et al.* Transcriptional profiling of lung cell populations in idiopathic pulmonary
174 arterial hypertension. *Pulmonary Circulation* 204589402090878 (2020)
175 doi:10.1177/2045894020908782.

176 4. Chandrasekaran, P. *et al.* CXCL12 defines lung endothelial heterogeneity and promotes
177 distal vascular growth. *Development* (2022) doi:10.1242/dev.200909.

178 5. Zhang, Z. & Zhou, B. Generation of Plvap-CreER and Car4-CreER for genetic targeting of
179 distinct lung capillary populations. *Journal of Genetics and Genomics* **49**, 1093–1100
180 (2022).

181

182

