

1 **Neuropeptide Bursicon and its receptor mediated the transition from**
2 **summer-form to winter-form of *Cacopsylla chinensis***

3 Zhixian Zhang¹, Jianying Li¹, Yilin Wang¹, Zhen Li¹, Xiaoxia Liu¹, Songdou
4 Zhang^{1,2,*}

5 ¹Department of Entomology and MOA Key Lab of Pest Monitoring and Green
6 Management, College of Plant Protection, China Agricultural University, 100193
7 Beijing, China

8 ²Sanya Institute of China Agricultural University, 572025 Sanya City, Hainan
9 Province, China

10

11 ***Corresponding author:** Songdou Zhang.

12 **Email:** zhangsongdou1128@126.com

13

14 **Abstract**

15 Seasonal polyphenism enables organisms to adapt to environmental challenges by
16 increasing phenotypic diversity. *Cacopsylla chinensis* exhibits remarkable seasonal
17 polyphenism, specifically in the form of summer-form and winter-form, which have
18 distinct morphological phenotypes. Previous research has shown that low temperature
19 and the temperature receptor *CcTRPM* regulate the transition from summer-form to
20 winter-form in *C. chinensis* by impacting cuticle content and thickness. However, the
21 underling neuroendocrine regulatory mechanism remains largely unknown. Bursicon,
22 also known as the tanning hormone, is responsible for the hardening and darkening of
23 the insect cuticle. In this study, we report for the first time on the novel function of
24 Bursicon and its receptor in the transition from summer-form to winter-form in *C.*
25 *chinensis*. Firstly, we identified *CcBurs- α* and *CcBurs- β* as two typical subunits of
26 Bursicon in *C. chinensis*, which were regulated by low temperature (10°C) and
27 *CcTRPM*. Subsequently, *CcBurs- α* and *CcBurs- β* formed a heterodimer that mediated
28 the transition from summer-form to winter-form by influencing the cuticle chitin
29 contents and cuticle thickness. Furthermore, we demonstrated that *CcBurs-R* acts as
30 the Bursicon receptor and plays a critical role in the up-stream signaling of the chitin
31 biosyntheis pathway, regulating the transition from summer-form to winter-form.
32 Finally, we discovered that miR-6012 directly targets *CcBurs-R*, contributing to the
33 regulation of Bursicon signaling in the seasonal polyphenism of *C. chinensis*. In
34 summary, these findings reveal the novel function of neuroendocrine regulatory
35 mechanism underlying seasonal polyphenism and provide critical insights into insect
36 Bursicon and its receptor.

37 **Keywords:** *Cacopsylla chinensis*; seasonal polyphenism; Neuropeptide; Bursicon,
38 *CcBurs-R*; miR-6012

39

40 **Introduction**

41 Polyploidy is a transformation phenomenon of phenotypic plasticity, where a
42 single genome produces multiple distinct phenotypes in response to environmental
43 cues (Simpson and Sword, 2011). In recent years, polyploidy has garnered
44 increasing attention and has become a focal point of research, such as ecology,
45 evolutionary biology, epigenetics, and entomology. Nature presents us with numerous
46 remarkable examples of polyploidy. For instance, we observe seasonal polyploidy
47 in psylla (Butt and Stuart, 1986) and butterflies (Emily et al., 2014; Baudach and
48 Vilcinskas, 2021), sexual and wing polyploidy in aphids and planthoppers (Xu et al.,
49 2015; Shang et al., 2020), caste polyploidy in ants and honeybees (Kucharski et al.,
50 2008; Bonasio et al., 2012), sex determination in reptiles and fish regulated by
51 temperature and social factors (Janzen and Phillips, 2006; Liu et al., 2017), and
52 environmentally induced polyploidy in plants (Gratani, 2014). Undoubtedly,
53 polyploidy plays a major contributor to the population dynamics of insects
54 worldwide (Noor et al., 2008). Numerous studies have reported that insect
55 polyploidy is influenced by a range of external environment factors, such as
56 temperature, population density, photoperiod, and dietary nutrition (Simpson and
57 Sword, 2011; Ma et al., 2011; An et al., 2012; Zhang et al., 2019). Additionally,
58 internal neuro-hormones, including insulin, dopamine, and ecdysone, have been found
59 to play crucial roles in insect polyploidy (Ma et al., 2011; Uehara et al., 2011; Xu et
60 al., 2015; Vellichirammal et al., 2017). However, the specific molecular mechanism
61 underlying temperature-dependent polyploidy still require further clarification.

62 *Cacopsylla chinensis* (Yang & Li) is a pear psylla belonging to Hemiptera order,
63 which causes severe damage to trees and fruits in the major pear production areas
64 across East Asian countries, including China and Japan (Hildebrand et al., 2010; Wei
65 et al., 2020). This phloem-sucking psylla inflicts harm on young shoots and leaves in
66 both adult and nymph stages, leading to stunted and withered pear trees (Ge et al.,
67 2019). Furthermore, *C. chinensis* secretes a substantial amount of honeydew and acts
68 as a vector for plant pathogenic microorganisms, such as the phytoplasma of pear

69 decline disease and *Erwinia amovora* (Hildebrand et al., 2010). Importantly, this pest
70 demonstrates strong adaptability to its environment and exhibits seasonal
71 polyphenism, manifesting as summer-form (SF) and winter-form (WF), which display
72 significant differences in morphological characteristics throughout the seasons (Ge et
73 al., 2019; Zhang et al., 2023). The summer-form has a lighter body color and causes
74 more severe damage, while the winter-form, in contrast, has a brown to dark brown
75 body color, a larger body size, and stronger resistance to weather condition (Ge et al.,
76 2019; Tougeron et al., 2021). In a previous study, Zhang et al. demonstrated that a low
77 temperature of 10°C and the temperature receptor *CcTRPM* regulate the transition
78 from summer-form to winter-form in *C. chinensis* by affecting cuticle thickness and
79 chitin content (Zhang et al., 2023). Up to now, no insect hormones or neuropeptides
80 underling this seasonal polyphenism in *C. chinensis* have been identified.

81 Bursicon, also known as the tanning hormone, was initially discovered in the
82 1960s through neck-ligated assays. It serves a highly conserved function in insects by
83 inducing the clerotization and melanization of the new cuticle in larvae and
84 facilitating wing expansion in adults (Dewey et al., 2004). Bursicon is a heterodimer
85 neuropeptide composed of two subunits, Bursicon- α and Bursicon- β , which exert their
86 effects through the leucine-rich repeats-containing G- protein-coupled receptor, also
87 known as the Bursicon receptor (Luo et al., 2005). In *Drosophila*, flies with mutated
88 Bursicon receptor, such as the *rk* gene, or deficient in one of Bursicon subunits,
89 exhibit improper tanning and altered body shape (Luan et al., 2006). Similarly, in the
90 model insect *Tribolium castaneum*, RNA interference experiments have demonstrated
91 that the Bursicon receptor (*Tcrk*) is not only required for cuticle tanning, but also
92 crucial for the development and expansion of integumentary structures (Bai and Palli,
93 2010). Interestingly, it has been reported that Bursicon homodimers can activate the
94 NF- κ B transcription factor *Relish*, leading to the induction of innate immune and
95 stress genes during molting (An et al., 2012). Consequently, insects exposed to cold
96 conditions exhibit larger body size and darker cuticular melanization than those reared
97 in warmer environments (Shearer et al., 2016). Given this background, Bursicon and
98 its receptor are expected to play a significant role in the seasonal polyphenism of *C.*

99 *chinensis*.

100 MicroRNAs (miRNAs), which are approximately 23 nucleotides in length and
101 belong to a class of small noncoding RNAs, play a crucial role in the regulation of
102 posttranscriptional gene expression (Lucas and Raikhel, 2013). Increasing studies
103 have shown that miRNAs are important in insect polyphenism, such as miR-31,
104 miR-9, and miR-252, as well as hormone signaling, for examples, miR-133 in
105 dopamine synthesis (Yang et al., 2014; Zhang et al., 2020; Shang et al., 2020; Zhang
106 et al., 2023). However, there have been no reports on miRNAs targeting Bursicon and
107 its receptor. Therefore, studying the molecular mechanism of miRNA regulation of
108 the Bursicon receptor at the post-transcriptional level would be highly innovation. In
109 this study, we conducted bioinformatics analysis, qRT-PCR, and Western blot to
110 identify two Bursicon subunits (*CcBurs- α* and *CcBurs- β*) and their association with
111 low temperature of 10°C. We then employed RNAi, cuticle staining, and transmission
112 electron microscopy to study the effects of *CcBurs- α* and *CcBurs- β* on cuticle content,
113 cuticle thickness, and the transition percent from summer-form to winter-form in *C.*
114 *chinensis*. Furthermore, we identified *CcBurs-R* as the Bursicon receptor and
115 investigated its role in the transition from summer-form to winter-form. Finally,
116 through *in vivo* and *in vitro* assays, we discovered that miR-6012 targets *CcBurs-R*
117 and is involved in the seasonal polyphenism. These efforts not only shed light on the
118 novel function of Bursicon and its receptor in mediating the transition from
119 summer-form to winter-form in *C. chinensis*, but also enhance our understanding of
120 the neuroendocrine basis of insect seasonal polyphenism.

121 **Results**

122 **Investigation of the relationship between nymph phenotype, cuticle pigment
123 absorbance, and cuticle thickness during the transition from summer-form to
124 winter-form in *C. chinensis***

125 In *C. chinensis*, exposure to a low temperature of 10°C triggers the activation of the
126 temperature receptor *CcTRPM*, leading to the transition from summer-form to
127 winter-form by influencing cuticle tanning and cuticle thickness (Zhang et al., 2023).

128 To elucidate the association between these parameters and the cuticle tanning
129 threshold, we investigated nymph phenotypes, cuticle pigment absorbance levels, and
130 cuticle thickness in *C. chinensis* over varying time intervals (3, 6, 9, 12, 15 days)
131 under either 10°C or 25°C temperature conditions. Nymphs exhibited a light yellow
132 and transparent hue at 3, 6, and 9 days, while those at 12 and 15 days displayed
133 shades of yellow-green or blue-yellow under 25°C conditions. Conversely, under
134 10°C conditions, nymphs darkened at the abdomen's end at 3, 6, and 9 days,
135 developed numerous light black stripes on their chest and abdomen at 12 days, and
136 presented an overall black-brown appearance with dark brown stripes on the left and
137 right sides of each chest and abdominal section at 15 days (Figure S1A). Notably, the
138 abdomen and back exhibited a pronounced black-brown coloration at 10°C. The UV
139 absorbance of the total pigment extraction at a wavelength of 300 nm significantly
140 increased following 10°C exposure for 3, 6, 9, 12, and 15 days compared to the 25°C
141 treatment group (Figure S1B). Moreover, cuticle thicknesses exhibited an increase
142 following 10°C exposure for 3, 6, 9, 12, and 15 days compared to the 25°C treatment
143 group (Figure S1C).

144 **Molecular identification of *CcBurs-α* and *CcBurs-β* in *C. chinensis***

145 Sequence analysis showed that the open reading frame (ORF) of *CcBurs-α*
146 (GenBank: OR488624) was 480 bp long, encoding a predicted polypeptide of 159
147 amino acids. The polypeptide had a molecular weight of 17.45 kDa and a theoretical
148 isoelectric point (*pI*) of 6.13. The complete ORF of *CcBurs-β* (GenBank: OR488625)
149 was 405 bp, encoding a polypeptide of 134 amino acids residues. The predicated
150 molecular weight of *CcBurs-β* was 15.21 kDa and a theoretical *pI* of 5.24. Amino acid
151 sequence alignment analysis revealed that *CcBurs-α* and *CcBurs-β* shared high amino
152 acid identity with homologs from other selected insect species (Figure 1A and 1B).
153 Both subunits contained eleven conserved cysteine residues, marked with red stars.
154 Phylogenetic analysis (Figure S2A and S2B) indicated that *CcBurs-α* was most
155 closely related to the *DcBurs-α* homologue (*Diaphorina citri*, XP_008468249.2),
156 while *CcBurs-β* was most closely related to *DcBurs-β* (*D. citri*, AWT50591.1) among

157 the selected species. The potential tertiary protein structure and molecular docking of
158 *CcBurs-α* and *CcBurs-β* were constructed using the Phyre² server and PyMOL-v1.3r1
159 software (Figure 1C). To investigate the identities of homodimer and heterodimer of
160 *CcBurs-α* and *CcBurs-β*, SDS-PAGE with reduced and non-reduced gels was used.
161 When expressed as individual subunits, they formed $\alpha+\alpha$ and $\beta+\beta$ homodimers, as the
162 molecular size of α or β doubled in the non-reduced gel compared to the reduced gel
163 (Figure 1D). When co-expressed, most α and β subunits formed the *CcBurs-α+β*
164 heterodimer (Figure 1D).

165 The temporal expression profile revealed that both *CcBurs-α* and *CcBurs-β* were
166 ubiquitous in all developmental stages, with lower expression in eggs and nymphs and
167 higher expression in adults of both summer-form and winter-form (Figure S3A and
168 S3D). Increased gene expression levels may potentially contribute to the transition
169 from summer-form to winter-form in *C. chinensis*. Spatially, *CcBurs-α* and *CcBurs-β*
170 were detected in all investigated nymph tissues and were expressed most prominently
171 in the head (Figure S3E and S3F). In addition to the midgut, both *CcBurs-α* and
172 *CcBurs-β* showed higher expression in other selected tissues of the winter-form
173 compared to the summer-form, especially in the head and cuticle. Results from
174 temperature treatment exhibited that the mRNA expression of *CcBurs-α* and *CcBurs-β*
175 significantly increased after 10°C treatment for 3, 6, and 10 days compared to 25°C
176 treatment (Figure 1E and 1F). Meanwhile, qRT-PCR results indicated that the
177 transcription levels of both *CcBurs-α* and *CcBurs-β* were noticeably down-regulated
178 after successful knockdown of the temperature receptor *CcTRPM* by RNAi at 3, 6,
179 and 10 days (Figure 1G-1H, S4). These data suggest that *CcBurs-α* and *CcBurs-β* are
180 regulated by a low temperature of 10°C and *CcTRPM*, and may serve as down-stream
181 signals involved in the seasonal polyphenism of *C. chinensis*.

182 ***CcBurs-α* and *CcBurs-β* were essential for the transition from summer-form to
183 winter-form**

184 To investigate the role of *CcBurs-α* and *CcBurs-β* in the transition from
185 summer-form to winter-form of *C. chinensis*, newly hatched 1st instar nymphs of

186 summer-form were fed with dsCcBurs- α , dsCcBurs- β , or dsEGFP. qRT-PCR results
187 exhibited that feeding dsCcBurs- α or dsCcBurs- β extremely reduced the expression of
188 the target gene under 10°C condition. The RNAi efficiencies of *CcBurs- α* and
189 *CcBurs- β* were approximately 66-78% and 69-79% at 3, 6, and 10 days compared to
190 dsEGFP feeding (Figure 2A and 2B).

191 After successful knockdown of *CcBurs- α* , *CcBurs- β* , or both, the UV absorbance
192 of total pigment extraction at a wavelength of 300 nm in dsCcBurs- α -treated (0.18),
193 dsCcBurs- β -treated (0.19), and dsCcBurs- α + β -treated (0.07) nymphs was
194 dramatically lower than that in dsEGFP-treated nymphs (0.85) under 10°C condition
195 (Figure 2C). This finding indicates that *CcBurs- α* and *CcBurs- β* play a prominent role
196 in cuticle pigment formation in the winter-form in *C. chinensis*. Moreover, both the
197 results of cuticle chitin content determination and cuticle ultrastructure observation
198 indicated that knockdown of *CcBurs- α* , *CcBurs- β* , or both markedly reduced the
199 cuticle chitin content (about 0.33, 0.32, 0.14) and cuticle thicknesses (about 1.44, 1.53,
200 0.73 μ m) compared with dsEGFP-treated nymphs (1.00, 3.39 μ m) under 10°C
201 condition, respectively (Figure 2D-2G). Interestingly, the results of pigmentation
202 absorbance and cuticle thickness after *CcBurs- α* or *CcBurs- β* knockdown were
203 similar to those after *CcTRPM* knockdown (Table S2). Additionally, dsCcBurs- α
204 feeding (25.48%), dsCcBurs- β feeding (26.03%), or both feeding (11.84%) obviously
205 decreased the transition percent from summer-form to winter-form compared to
206 dsEGFP feeding (84.02%) (Figure 2H-2I). Together, these data suggest that the two
207 subunits of Bursicon, *CcBurs- α* and *CcBurs- β* , are essential for the transition from
208 summer-form to winter-form of *C. chinensis* by affecting cuticle contents and
209 thickness.

210 ***CcBurs-R* was identified as the Bursicon receptor in *C. chinensis***

211 To study the role of neuropeptide Bursicon in seasonal polyphenism, we
212 identified a leucine-rich repeat-containing G protein-coupled receptor and named it as
213 Bursicon receptor *CcBurs-R* (GenBank: OR488626). The open reading frame of
214 *CcBurs-R* is 3498 bp long and encodes a 1165-amino acid protein with a predicted

215 molecular weight of 118.61 kDa, a theoretical *pI* of 8.64, and seven predicted
216 transmembrane domains. Multiple alignment analysis showed a high degree of
217 conservation in the transmembrane domains of *CcBurs-R* with *Burs-R* sequences from
218 other four selected insect species (Figure 3A). Phylogenetic tree analysis indicated
219 that *CcBurs-R* is most closely related to the *DcBurs-R* homologue (*D. citri*,
220 KAI5703609.1) in evolutionary relationship, and both are important Hemiptera pest
221 of fruit trees (Figure 3B). The potential tertiary protein structure of *CcBurs-R* and its
222 molecular docking with *CcBurs-α* and *CcBurs-β* were constructed using the online
223 server Phyre2 and modified with PyMOL-v1.3r1 software (Figure 3C).

224 Development expression pattern indicated that *CcBurs-R* had relatively lower
225 levels of expression in eggs and nymphs, but extremely higher levels in adult stages
226 (Figure S5A-B). The mRNA level of *CcBurs-R* was higher in each developmental
227 stage of winter-form than summer-form, suggesting its important role in the transition
228 from summer-form to winter-form. In terms of tissue-specific expression, *CcBurs-R*
229 was found to be present in all determined tissues, with relatively higher expression in
230 five tissues (head, cuticle, midgut, wings, and foot) of winter-form than summer-form
231 (Figure S5C). To confirm that *CcBurs-R* is the Bursicon receptor of *C. chinensis*, we
232 employed a fluorescence-based assay to quantify calcium ion concentrations and
233 investigate the binding affinities of bursicon heterodimers and homodimers to the
234 bursicon receptor across varying concentrations. Our findings suggest that activation
235 of the receptor by the burs α - β heterodimer leads to significant alterations in
236 intracellular calcium ion levels, whereas stimulation with burs α - α and burs β - β
237 homodimers, in conjunction with Adipokinetic hormone (AKH), maintains consistent
238 intracellular calcium ion levels. Consequently, this research definitively identifies
239 *CcBurs-R* as the bursicon receptor (Figure S6). In addition, we determined the effect
240 of *CcBurs-α* or *CcBurs-β* knockdown on its mRNA expression. qRT-PCR results
241 showed that RNAi-mediated knockdown of *CcBurs-α* or *CcBurs-β* significantly
242 decreased *CcBurs-R* expression after dsRNA feeding at 3, 6, and 10 days compared to
243 the dsEGFP group under 10°C condition (Figure 3D-3E). Moreover, the heterodimer
244 protein of *CcBurs-α+β* fully rescued the effect of RNAi-mediated knockdown on

245 *CcBurs-R* expression, while $\alpha+\alpha$ or $\beta+\beta$ homodimers did not (Figure 3F). Additional
246 results demonstrated that 10°C treatment markedly increased *CcBurs-R* expression
247 compared to 25°C treatment, and *CcTRPM* knockdown obviously decreased the
248 mRNA level of *CcBurs-R* compared to the dsEGFP treatment (Figure 3G-3H).
249 Therefore, these findings indicate that *CcBurs-R* is the Bursicon receptor of *C.*
250 *chinensis* and is regulated by a low temperature of 10°C and *CcTRPM*.

251 ***CcBurs-R* regulated the transition from summer-form to winter-form**

252 The function of *CcBurs-R* in seasonal polyphenism was further investigated using
253 RNAi technology. qRT-PCR results revealed that RNAi efficiency was 66-82% after
254 dsCcBurs-R feeding for 3, 6, and 10 days compared to the dsEGFP treatments (Figure
255 4A). As shown in Figure 4B-4F, the total pigment extraction at a wavelength of 300
256 nm (0.14 VS 0.85), cuticle chitin content (0.31 VS 1.00), and cuticle thicknesses (1.34
257 μm VS 3.39 μm) were all significantly decreased in dsCcBurs-R-treated nymphs
258 compared to the dsEGFP control. Expectedly, the results of pigmentation absorbance
259 and cuticle thickness after *CcBurs-R* knockdown were similar to those of *CcTRPM*,
260 *CcBurs- α* , or *CcBurs- β* knockdown (Table S2). In addition, RNAi-mediated
261 down-regulation of *CcBurs-R* expression markedly affected the transition percent
262 from summer-form to winter-form compared to dsEGFP feeding (26.70% VS 83.79%),
263 while feeding the heterodimer protein of *CcBurs- $\alpha+\beta$* (200 ng/ μL) could fully rescue
264 the effect of *CcBurs-R* knockdown on the transition percent (Figure 4G-4H).
265 Therefore, our results suggest that *CcBurs-R* mediates the transition from
266 summer-form to winter-form by directly affecting cuticle contents and thickness.

267 Since *CcTre1* and *CcCHS1*, two rate-limiting enzyme genes in the chitin
268 biosynthesis pathway, have been demonstrated to be involved down-stream in this
269 transition of *C. chinensis*, we next investigated the relationship between Bursicon
270 signal and these two genes. The results showed that the mRNA levels of *CcTre1* and
271 *CcCHS1* were obviously decreased in dsCcBurs- α , dsCcBurs- β , or dsCcBurs-R
272 feeding nymphs on the 6th day compared to the control (Figure 4I-4J). This data
273 indicates that *CcBurs-R* functions up-stream of the chitin biosynthesis pathway and is

274 involved in the transition from summer-form to winter-form in *C. chinensis*.

275 **miR-6012 directly targeted *CcBurs-R* by inhibiting its expression**

276 To determine if miRNAs are involved in the regulation of Bursicon hormone in
277 the seasonal polyphenism of *C. chinensis*, we amplified the 3'UTR of *CcBurs-R* and
278 predicted relevant miRNAs. Four miRNAs, including miR-6012, miR-375, miR-2796,
279 and miR-1175, were predicted to have binding sites in the 3'UTR of *CcBurs-R* by two
280 software programs, miRanda and Targetsca (Figure 5A). To confirm the target
281 relationship, *in vitro* dual-luciferase reporter assays were performed. After introducing
282 the 3'UTR full sequence of *CcBurs-R* into the pmirGLO vector, the relative luciferase
283 activity was significantly reduced compare to the negative control in the present of
284 agomir-6012, while there was no change with the other three miRNAs (Figure 5B).
285 Next, *in vivo* RNA immunoprecipitation results showed that the expression levels of
286 *CcBurs-R* and miR-6012 increased approximately 15-fold and 23 fold, respectively, in
287 the Ago-1 antibody-mediated RNA complex of agomir-6012 fed nymphs compared to
288 the IgG control (Figure 5C and S7A-B). FISH results indicated that *CcBurs-R* and
289 miR-6012 had opposite expression trends during the developmental stages and were
290 co-expressed in the 3rd instar nymphs (Figure 5D). Co-localization implies direct
291 interaction between miR-6012 and *CcBurs-R*, while the opposite expression pattern
292 suggests that miRNAs have inhibitory effects on target genes. qRT-PCR results also
293 revealed that low temperature prompted the expression of *CcBurs-R*, while miR-6012
294 had an inhibitory effect (Figure 5E-5F). These data suggest that miR-6012 directly
295 targets *CcBurs-R* by inhibiting its expression.

296 **miR-6012 mediated the seasonal polyphenism of *C. chinensis* by targeting**
297 ***CcBurs-R***

298 To decipher the function of miR-6012 in regulating seasonal polyphenism, we
299 increased its abundance by feeding agomir-6012 to the 1st instar nymphs. qRT-PCR
300 results indicated that the expression levels of miR-6012 were markedly higher at 3, 6,
301 and 10 days after agomir-6012 feeding compared to the agomir-NC control (Figure

302 **6A**). Furthermore, the results showed that agomir-6012 treatments significantly
303 affected pigmentation absorbance, cuticle chitin content, cuticle thicknesses, the
304 transition percent from summer-form to winter-form, and morphological phenotype
305 compared to the negative control of agomir-NC feeding (Figure 6B-6H). Additionally,
306 agomir-6012 feeding also inhibited the mRNA expression of *CcTre1* and *CcCHS1*
307 (Figure 6I). Together, these results display that miR-6012 plays an important role in
308 the transition from summer-form to winter-form in *C. chinensis*.

309 **Discussion**

310 Polyphenism is a conserved adaptive mechanism in species ranging from insects
311 to mammalian, and evidence is mounting that it also extends to many nematode and
312 fish species (Stockton et al., 2018; Yang and Pospisilik, 2019). Seasonal polyphenism
313 can provide overwintering species with better adaptability to extreme climates
314 through beneficial shifts in morphology, physiology, or behavior (Simpson and Sword,
315 2011). Physiological studies have shown that the neuroendocrine hormone system
316 communicates environmental signals to facilitate downstream morphology and
317 physiology transformation (Zera and Denno, 1997; Overgaard and MacMillan, 2017).
318 Having a good model is extremely important for answering specific scientific
319 questions (Bhardwaj et al., 2020). In *C. chinensis*, cuticle pigment absorbance and
320 cuticle thickness, both have an increasing trend over time under 10°C condition,
321 showed very high correlation with nymphs phenotype of cuticle tanning during the
322 transition from summer-form to winter-form (Zhang et al., 2023; Figure S1). To
323 clarify the role of neuropeptide Bursicon in the seasonal polyphenism of *C. chinensis*,
324 we identified two Bursicon subunits, *CcBurs-α* and *CcBurs-β*, in this study. The
325 SDS-PAGE results of non-reduced and reduced gels showed that *CcBurs-α* and
326 *CcBurs-β* can form both homodimers ($\alpha+\alpha$ or $\beta+\beta$) and a heterodimer ($\alpha+\beta$) (Figure
327 1D). During the transition of the *C. chinensis* between two forms, this study focused
328 on the overall phenotypic changes. Therefore, for qPCR experiments, whole *C.*
329 *chinensis* samples were selected for analysis. Temporal expression patterns showed
330 that *CcBurs-α* and *CcBurs-β* have very similar gradually increasing expression trends

331 and higher expression in winter-form than summer-form (Figure S3C and 3D),
332 indicating that Bursicon may play a significant role in winter-form. This result is
333 consistent with the report on gypsy moths, where transcript levels of *Ldbursicon* in
334 adult stages were higher than in larvae (Zhang et al., 2022a). The transcript levels of
335 both subunits were higher in the head and cuticle of winter-form compare to
336 summer-form, implying a potential role of Bursicon in seasonal polyphenism of *C.*
337 *chinensis* (Figure S3E and 3F) (Luan et al., 2006).

338 As the transition of *C. chinensis* from summer-form to winter-form is regulated
339 by a low temperature of 10°C and *CcTRPM*, we next determined the effect of 10°C
340 treatment and *CcTRPM* RNAi on the expression of *CcBurs-α* and *CcBurs-β*. As
341 expected, 10°C treatment significantly increased the expression of *CcBurs-α* and
342 *CcBurs-β*, while *CcTRPM* RNAi markedly decreased their mRNA levels (Figure
343 1E-1H). This is the first report on the relationship between the neuropeptide Bursicon
344 and low temperature. Further results from RNAi-mediated knockdown of *CcBurs-α*,
345 *CcBurs-β*, or both showed that Bursicon prominently regulates the transition from
346 summer-form to winter-form in *C. chinensis* by affecting cuticle pigment content,
347 cuticle chitin content, and cuticle thickness (Figure 2C-2I). Moreover, the presence of
348 both thin and thick chitin layers observed in the dsEGFP treatment of Figure 2D could
349 potentially be ascribed to the chitin content in the insect midgut or fat body as
350 previously discussed (Zhu et al., 2016). It is notable that during the process of cuticle
351 staining, the chitin located in the midgut and fat body of *C. chinensis* may exhibit
352 green fluorescence, leading to the appearance of a thin chitin layer. In many insects,
353 such as *Drosophila* and *T. castaneum*, Bursicon is believed to be the main hormone
354 responsible for cuticle tanning (Luo et al., 2005; Bai et al., 2010). However,
355 knockdown of Bursicon subunits did not cause visible defects in cuticle sclerotisation
356 or pigmentation of *Bombyx mori* and *Lymantria dispar* adults (Huang et al., 2007;
357 Zhang et al., 2022a). The insect cuticle typically comprises three distinct layers
358 (endocuticle, exocuticle, and epicuticle), with the thickness of each layer varying
359 among different insect species. Cuticle differentiation is closely linked to the molting
360 cycle of insects (Mrak et al., 2017). In our study, nymphal cuticles exhibited normal

361 differentiation patterns, characterized by a thin epicuticle and comparable widths of
362 the endocuticle and exocuticle following dsEGFP treatment, as illustrated in Figure
363 2F and 4F. Conversely, nymphs treated with dsCcBurs- α , dsCcBurs- β , and
364 dsCcBurs-R displayed impaired development, manifesting only the exocuticle without
365 a discernible endocuticle layer. These findings suggest that bursicon genes and their
366 receptor play a pivotal role in regulating insect cuticle development (Costa et al.,
367 2016). These researches indicate that Bursicon may not be necessary for cuticle
368 tanning in all insects. Although the reactions involved in cuticle tanning are
369 well-known, further studies are needed to understand how Bursicon mediates the
370 seasonal polyphenism of *C. chinensis*.

371 To further elucidate the role of the Bursicon signal in seasonal polyphenism, we
372 identified the Bursicon receptor of *CcBurs-R* in *C. chinensis*. Temporal and spatial
373 expression patterns of *CcBurs-R* were very similar to those of *CcBurs- α* and *CcBurs- β* ,
374 and it also had higher expression in winter-form than summer-form (Figure S5). By
375 comparing its expression profiles with those in other insects, we can conclude that the
376 spatio-temporal expression of Bursicon receptor is related to the specificity of insect
377 species. The activation of *CcBurs-R* by the burs α - β heterodimer exhibited a robust
378 dose-dependent pattern. Conversely, no activation was observed when *CcBurs-R* was
379 transfected with an empty vector or exposed to burs α - α and burs β - β homodimers or
380 AKH (Figure S6). In *D. melanogaster*, Bursicon comprises two cystine knot
381 polypeptides, pburs and burs, which are known to stimulate a G protein-coupled
382 receptor, *DLGR2* (Luo et al., 2005). Through a radioligand receptor assay, specific
383 and high-affinity interactions between *C. chinensis* burs α - β heterodimer and
384 *CcBurs-R* were successfully confirmed. A recent study indicated that silencing of
385 *Burs- α* , *Burs- β* , or its receptor significantly affected the reproduction of *T. castaneum*
386 (Bai et al., 2010). Knockdown of *CcBurs- α* , *CcBurs- β* , or both obviously decreased
387 the expression of *CcBurs-R*, while feeding the heterodimer protein of α - β fully
388 rescued *CcBurs-R* expression after knockdown of *CcBurs- α* and *CcBurs- β* together,
389 which further confirmed the relationship between subunits and the receptor (Figure
390 3D-3F). 10°C treatment clearly improved the expression of *CcBurs-R*, but *CcTRPM*

391 RNAi sharply reduced its mRNA level (Figure 3G-3H). Notably, elimination of
392 *CcBurs-R* in *C. chinensis* obviously affected cuticle pigment content, cuticle chitin
393 content, and cuticle thickness, leading to the failure of the transition from
394 summer-form to winter-form (Figure 4B-4H). Feeding the $\alpha+\beta$ heterodimer protein
395 fully rescued the defect in the transition percent and morphological phenotype after
396 *CcBurs-R* knockdown (Figure 4G-4H). Following the administration of dsCcBur-R to
397 *C. chinensis*, the expression of *CcBurs-R* exhibited a reduction of approximately
398 66-82% as depicted in Figure 4A, rather than complete suppression. Activation of
399 endogenous *CcBurs-R* through feeding of the $\alpha+\beta$ heterodimer protein results in an
400 increase in *CcBurs-R* expression, with the effectiveness of the rescue effect contingent
401 upon the dosage of the $\alpha+\beta$ heterodimer protein. Consequently, the capacity of the
402 $\alpha+\beta$ heterodimer protein to effectively mitigate the impacts of *CcBurs-R* knockdown
403 on the conversion rate is clearly demonstrated. Therefore, these findings strongly
404 support our hypothesis that Bursicon and its receptor are essential for the transition
405 from summer-form to winter-form in *C. chinensis*. Actually, seasonal polyphenism is
406 a complex process that may be regulated by multiple cascade reaction. Further studies
407 are needed to clarify the regulatory mechanism of Bursicon and its receptor in
408 mediating the seasonal polyphenism of *C. chinensis*.

409 In animals, miRNAs are essential for tissue development and behavioral
410 evolution (Lucas and Raikhel, 2013). Previous studies have reported that many
411 miRNAs function upstream of the neurohormone signaling pathway in insect
412 polyphenism (Suderman et al., 2006). For example, miR-133 controls behavioral
413 aggregation by targeting the dopamine synthesis gene in Locusts (Yang et al., 2014),
414 and miR-9b targets insulin receptor to mediate dimorphism and wing development in
415 aphids (Shang et al., 2020). In this study, we identified miR-6012 as a regulator of
416 *CcBurs-R* in the Bursicon hormone signaling pathway for the first time. We found that
417 miR-6012 was inhibited by a low temperature of 10 °C and targeted *CcBurs-R* by
418 binding to its 3'UTR. When nymphs were treated with agomir-6012, they exhibited
419 lower cuticle pigment content, reduced cuticle chitin content, and thinner cuticle
420 thickness compared to the agomir-NC control under 10 °C condition. In addition,

421 agomir-6012 treatment markedly decreased the transition percent from summer-form
422 to winter-form and affected the morphological phenotype compared to the control.
423 The significantly decreased in *CcTre1* and *CcCHS1* expression after agomir-6012
424 treatment suggested that miR-6012 also functions as the up-stream regulator of chitin
425 biosynthesis signaling.

426 In conclusion, our study uncovered a novel role of Bursicon and its receptor in
427 regulating the seasonal polyphenism of *C. chinensis*, in addition to their known
428 functions in cuticle-hardening of nymphs and wing expansion of adults. In [Figure 7](#),
429 we proposed a molecular working model to describe this novel mechanism. Under
430 10 °C condition, Bursicon signaling pathway is first activated in the head of *C.*
431 *chinensis* by low temperature and *CcTRPM*. Then, *CcBurs-α* and *CcBurs-β* form a
432 heterodimeric neuropeptide that acts on its receptor *CcBurs-R* to mediate the
433 transition from summer-form to winter-form by affecting cuticle pigment content,
434 cuticle chitin content, and cuticle thickness. Moreover, miR-6012 targets *CcBurs-R* to
435 modulate the function of Bursicon signaling pathway in this seasonal polyphenism. As
436 a result, the 1st instar nymphs of summer-form develop into 3rd instar nymphs of
437 winter-form to better adapt to low-temperature adversity. Future research will focus
438 on: (1) studying the combined effect of Bursicon with other neuro-hormones on the
439 seasonal polyphenism of *C. chinensis*, (2) identifying the down-stream signaling of
440 Bursicon in mediating this phenomenon through multi-omics and RNAi approaches.

441 **Materials and Methods**

442 **Insect rearing**

443 *C. chinensis* populations of summer-form and winter-form were collected in June
444 and December 2018, respectively, from pear orchards in Daxing, Beijing, China. The
445 nymphs and adults of summer-form were reared on host plants in a greenhouse under
446 condition of $25 \pm 1^\circ\text{C}$, a photoperiod of 12L:12D, and a relative humidity of $65 \pm 5\%$
447 ([Zhang et al., 2023](#)). Meanwhile, the nymphs and adults of winter-form were reared at
448 $10 \pm 1^\circ\text{C}$ with a photoperiod of 12L:12D and a relative humidity of $25 \pm 5\%$ in an
449 artificial incubator. Unless otherwise specified, the photoperiod of all subsequent

450 treatments was 12L: 12D. Korla fragrant pear seedlings, 2-3 years old with a height of
451 50-80 cm, were used as host plants and received conventional water and fertilizer
452 management.

453 **Gene identification and sequence analysis**

454 From the transcriptome database of *C. chinensis*, we obtained the predicted
455 sequences of Bursicon subunits and its receptor. After sequencing validation, we
456 named them *CcBurs- α* (GenBank accession number: OR488624), *CcBurs- β*
457 (GenBank accession number: OR488625), and *CcBurs-R* (GenBank accession
458 number: OR488626). The physicochemical properties of *CcBurs- α* , *CcBurs- β* , and
459 *CcBurs-R* were analyzed using the online bioinformatics ProtParam tool ([http://
460 web.expasy.org/protparam/](http://web.expasy.org/protparam/)). The putative transmembrane domains of *CcBurs-R* were
461 identified using the online software SMART (Simple Modular Architecture Research
462 Tool). The tertiary protein structures of *CcBurs- α* , *CcBurs- β* , and *CcBurs-R* were
463 predicted using the online server Phyre²
464 (<http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index>) and modified with
465 PyMOL-v1.3r1 software. Homologous protein sequences from different insect species
466 were searched using BLASTP in the NCBI database. Multiple alignments of the
467 amino acid sequences for *CcBurs- α* , *CcBurs- β* , and *CcBurs-R* with other homologs
468 were performed using DNAMan software. Phylogenetic analysis was carried out
469 based on the neighbor-joining (NJ) method in MEGA10.1.8 software.

470 **Bursicon protein expression and determination**

471 To express the Bursicon proteins in HEK293T cells, we first inserted the ORF
472 sequences of *CcBurs- α* or *CcBurs- β* into the modified vector
473 pcDNA3.1-his-P2A-mCherry to construct the recombinant vectors of
474 pcDNA3.1-*CcBurs- α* -his-P2A-mCherry and pcDNA3.1-*CcBurs- β* -his-P2A-mCherry
475 using the *pEASY*-Basic Seamless Cloning and Assembly Kit (Cat# CU201, TransGen,
476 Beijing, China) (Table S1). After confirming the sequences through sequencing and
477 obtaining endotoxin-free plasmids, the recombinant vectors of *CcBurs- α* or *CcBurs- β*

478 were transfected into HEK293T cells either individually or simultaneously following
479 the protocol of *TransIntro*® EI Transfection Reagent (Cat# FT201, TransGen, Beijing,
480 China). Control cells were transfected with the blank vector
481 pcDNA3.1-his-P2A-mCherry (without *CcBurs-α* or *CcBurs-β* cDNA insert). After
482 6-10 h of transfection, the serum-free DMEM cell culture medium was replaced with
483 fresh medium supplemented with 10% fetal bovine serum. After another 24 h of
484 incubation, the medium was replaced again with serum-free DMEM. The medium
485 was collected and centrifuged at 1000 × g for 10 min to remove cell debris after 48 h
486 (An et al., 2012). The expressed Bursicon proteins were purified using Ni-NTA
487 His-bind® resin (Cat# 70666, Merck, Germany). Then, western blotting was
488 conducted to separate and identify these proteins using 15% SDS-PAGE (for reduced
489 gel) and 12% SDS-PAGE (for non-reduced gel) with *ProteinFind*® Anti-His Mouse
490 Monoclonal Antibody (Cat# HT501, TransGen, Beijing, China). Lastly, the protein
491 bands were imaged using enhanced chemiluminescence with the Azure C600
492 multifunctional molecular imaging system (USA).

493 **Heterologous expression and calcium mobilization assay**

494 To construct the recombinant expression vector, the open reading frame sequence
495 of *Ccburs-R* was integrated into a pcDNA3.1(+)mCherry vector using the Vazyme
496 ClonExpress II One Step Cloning Kit (Cat#C112, China) (homologous arm primers
497 listed in Table S1). The recombinant vector was prepared with the EndoFree Mid
498 Plasmid Kit (catalog no. DP108, Tiangen, Beijing, China) and transfected into
499 cultured cells in 96-well black plates or confocal dishes. The transiently transfected
500 cells were cultured for 1-2 days in a 37 °C incubator, then stained with the Beyotime
501 green fluorescent probe Fluo-4 AM (Cat# S1061, China) for approximately 30
502 minutes. Subsequently, Ca²⁺ imaging and calcium concentration were assessed using
503 Leica SP8 confocal microscopy (Wetzlar, Germany) and MD i3x microplate reader
504 (San Jose, USA) following treatment with various dilutions of Bursicon protein.

505 **qRT-PCR for mRNA and miRNA**

506 Samples for the temporal expression profile were collected at different
507 developmental stages of summer-form and winter-form, including egg; nymphs of the
508 1st, 2nd, 3rd, 4th, and 5th instar; and adults of the 1st, 3rd, and 7th day. For the tissue
509 expression pattern, six types of tissue (head, cuticle, midgut, fat body, wings, and foot)
510 were dissected from both summer-form and winter-form of 5th instar nymphs. To
511 examine the effect of different temperatures treatments on the expression of mRNAs
512 and miRNAs, the newly hatched 1st instar nymphs of summer-form were treated at
513 25°C and 10°C, respectively. Whole *C. chinensis* samples were collected at 3, 6, 9, 12,
514 and 15 days after different temperatures treatments. For the effect of *CcTRPM*
515 knockdown on the transcription level of *CcBurs- α* , *CcBurs- β* , and *CcBurs-R* under
516 10°C conditions, the newly hatched 1st instar nymphs of summer-form were fed with
517 *CcTRPM* dsRNA, and the whole *C. chinensis* samples were collected on the 3rd, 6th,
518 and 10th day after dsRNA feeding. Each sample was performed in three replications,
519 with approximately 100 individuals for each replication of egg samples and at least 50
520 insects were included for each nymph or adult sample. All samples were immediately
521 stored at -80°C for total RNA extraction.

522 Total RNAs were isolated from the above *C. chinensis* samples using TRNzol
523 Universal (Cat# DP424, TIANGEN, Beijing, China) and miRcute miRNA isolation
524 kit (Cat# DP501, TIANGEN, Beijing, China) for mRNA and miRNA, respectively,
525 based on the manufacturer' protocol. The first-strand cDNA of mRNA or mature
526 miRNA was synthesized from 500 ng or 1 μ g of total RNAs using PrimeScriptTM RT
527 reagent kit with gDNA Eraser (Cat# RR047A, Takara, Kyoto, Japan) or miRcute Plus
528 miRNA First-Strand cDNA Synthesis Kit (Cat# KR211, TIANGEN, Beijing, China)
529 according to the instruction manual. The relative gene expression was quantified
530 using TB Green[®] Premix Ex Taq[™] II (Tli RNaseH Plus) (Cat# RR820A, Takara,
531 Kyoto, Japan) or miRcute Plus miRNA qPCR Detection Kit (Cat# FP411, TIANGEN,
532 Beijing, China) in a total 20 μ L reaction mixture on a CFX96 ConnectTM Real-Time
533 PCR System (Bio-Rad, Hercules, CA, USA). The conditions were as follows:
534 denaturation for 3 min at 95°C, followed by 40 cycles at 95°C for 10s, and then 60°C
535 for 30s. *Cc β -actin* (GenBank accession number: OQ658571) or U6 snRNA was used

536 as the internal reference gene for qRT-PCR in *C. chinensis* (Liu et al., 2020; Zhang et
537 al., 2023). To check for specificity, melting curves were analyzed for each data point
538 (Figure S3-S5, S7). The $2^{-\Delta\Delta CT}$ method (CT means the cycle threshold) was used to
539 quantify gene expression of qRT-PCR data, where $\Delta\Delta CT$ is equal to $\Delta CT_{\text{treated sample}}$
540 $- \Delta CT_{\text{control}}$ (Livak and Schmittgen, 2001).

541 **dsRNA synthesis and RNAi experiments**

542 The synthesis of double-stranded RNA (dsRNA) and the stem-leaf device for
543 dsRNA feeding were conducted as previously described (Zhang et al., 2023). Briefly,
544 MEGAscript™ RNAi kit (AM1626, Ambion, California, USA) was used to
545 synthesize dsRNA in vitro using primers ligated with T7 RNA polymerase promoter
546 sequences at both ends (Table S1). The dsRNAs were further purified with the
547 phenol/chloroform method, air dried, dissolved in diethyl pyrocarbonate
548 (DEPC)-treated nuclease-free water, and stored at -80°C for later used. The purity and
549 concentration of dsRNA were measured using ultraviolet spectrophotometry and gel
550 electrophoresis.

551 For RNAi experiments, newly hatched 1st instar nymphs of summer-form were
552 fed with dsRNAs (500 ng/μL) targeting different genes and then divided into three
553 groups. (1) Whole *C. chinensis* samples were collected at 3, 6, and 10 d after dsRNAs
554 feeding under 10°C condition for the RNAi efficiency analysis and gene expression
555 analysis by qRT-PCR. (2) Whole *C. chinensis* nymph samples were collected at 12-15
556 d after dsRNA feeding for total cuticle pigment analysis, comparison of cuticle
557 ultrastructure, cuticle chitin staining with WGA-FITC, and determination of cuticle
558 chitin content under 10°C condition using the following methods. (3) Morphological
559 characteristics were observed every two days, and the number of summer-form and
560 winter-form individuals was counted until the 3rd instar under 10°C condition,
561 following the previous description (Zhang et al., 2023). For the rescue experiments,
562 the dsRNA of *CcBurs-R* and proteins of burs α-α, burs β-β homodimers, or burs α-β
563 heterodimer (200 ng/μL) were fed together.

564 **miRNA prediction and target validation with *CcBurs-R***

565 To study the post-translation function of *CcBurs-R*, the 3'UTR sequence of
566 *CcBurs-R* was amplified using the specific primers (Table S1) and the 3'-Full RACE
567 Core Set with PrimeScript RTase kit (Cat# 6106, Takara, Kyoto, Japan). Two software
568 programs, miRanda and Targetsca, were employed to predict miRNAs targeting
569 *CcBurs-R*, following previously described methods ([Zhang et al., 2023](#)). The
570 following methods were used to validate the target relationship between miRNAs and
571 *CcBurs-R*.

572 *In vitro* luciferase reporter gene assays: The full sequence of the 3'UTR or 3'UTR
573 sequence with binding sites removed from *CcBurs-R* was amplified and inserted
574 downstream of the luciferase gene in the pmirGLO vector (Promega, Wisconsin, USA)
575 to construct recombinant plasmids. Agomir-6012 and antagonmir-6012, chemically
576 synthesized and modified RNA oligos with the same sequence or anti-sense
577 oligonucleotides of miR-6012, were obtained from GenePharma (Shanghai, China).
578 Agomir-NC and antagonmir-NC, provided by the manufacture, were used as negative
579 controls. Approximate 500 ng of the recombinant plasmid and 275 nM of agomir were
580 co-transfected into HEK293T cells using the Calcium Phosphate Cell Transfection Kit
581 (Cat# C0508, Beyotime, Nanjing, China). After 24 h of co-transfection, the activity of
582 the luciferase enzymes was determined following the protocol of Dual-Luciferase
583 Reporter Assay System (Cat# E1910, Promega, Wisconsin, USA).

584 *In vivo* RNA-binding protein immunoprecipitation assay (RIP): The RIP assay
585 was performed using the Magna RIP Kit (Cat# 17–704, Merck, Millipore, Germany)
586 ([Zhang et al., 2023](#)). Fifty nymphs were collected after feeding with agomir-6012 or
587 agomir-NC for 24 h, and crushed with an auto homogenizer in ice-cold RIP lysis
588 buffer. Magnetic beads were incubated with 5 µg of Ago-1 antibody (Merck,
589 Millipore, Germany) or IgG antibody (Merck, Millipore, Germany) to form a
590 magnetic bead-antibody complex. The target mRNAs were pulled down by the
591 magnetic bead-antibody complex from the supernatants in the RIP lysates. The
592 immunoprecipitated RNAs were released by digestion with protease K and
593 quantification of *CcBurs-R* and miR-6012. Each experiment had six replicates.

594 Fluorescence in situ hybridization (FISH): The antisense nucleic acid probes for

595 *CcBurs-R* (5'-GCGCUUGUGCUGCUUCUGCU-3') were labeled with FAM, and
596 miR-6012 (5'-UGACCGACUAGAGUAGCGGCUU-3') was labeled with FITC
597 (GenePharma, Shanghai, China). In short, nymph samples at different stages were
598 immersed in Carnoy's fixative for 24-48 h at room temperature. After washing and
599 decolorization, the samples were pre-hybridized three times using the hybridization
600 buffer without the probes keep in dark. For co-localization, two fluorescent probes (1
601 μ M) were combined to hybridize the samples for about 12 h in the dark. DAPI (1
602 μ g/mL) was used to stain cell nuclei. The signals were observed and the images were
603 recorded using a Leica SP8 confocal microscopy (Wetzlar, Germany). To exclude
604 false positive, RNAi-treated samples or no-probe samples were used as negative
605 controls.

606 **Treatments of agomir-6012 and antagonir-6012**

607 To study temperature-dependent response threshold of miR-6012, the expression
608 profiles of miR-6012 at various time points (3, 6, 9, 12, 15 days) subsequent to
609 exposing *C. chinensis* to temperatures of 10°C and 25°C were measured. To examine
610 the affect of miR-6012 on the mRNA expression of *CcBurs-R*, *CcTre1*, and *CcCHS1*,
611 summer-form 1st instar nymphs were fed with agomir-6012 (1 μ M) or
612 antagonir-6012 (1 μ M). Whole *C. chinensis* samples were first collected at 3, 6, and
613 10 d after feeding for agomir efficiency determination. Then, samples were collected
614 at 6 days after treatment for total RNA extraction and qRT-PCR analysis. Agomir-NC
615 and antagonir-NC were fed as negative control.

616 To explore the function of miR-6012 in seasonal polyphenism, summer-form 1st
617 instar nymphs were fed with agomir-6012 (1 μ M) or agomir-NC (1 μ M).
618 Subsequently, cuticle ultrastructure comparison, cuticle chitin staining with
619 WGA-FITC, determination of cuticle chitin content, and observation of
620 morphological characteristics were performed as described in the following methods.

621 **Analysis of total cuticle pigment and cuticle chitin contents**

622 To compare the difference in cuticle contents between summer-form and

623 winter-form nymphs, the total cuticle pigment and cuticle chitin contents were
624 determined. For the measurement of total cuticle pigment, the cuticle of
625 dsRNA-treated nymphs were dissected and treated with acidified methanol (with 1%
626 concentrated hydrochloric acid). The cuticle tissues were then pestled and placed in a
627 thermostatic oscillator at 200 rpm for 24 h under 25°C condition. The total pigment
628 extraction was obtained after filtering and centrifuging the supernatants through a
629 0.45 µm filter membrane. Pigments were not modified during extraction and the UV
630 absorbance of the total pigment extraction at different wavelengths was determined
631 using a NanoDrop 2000 (Thermo Fisher Scientific, USA) as previously described
632 ([Futahashi et al., 2012](#); [Osanai-Futahashi et al., 2012](#)).

633 For the analysis of cuticle chitin content, WGA-FITC staining was conducted as
634 previously described ([Xie et al., 2022](#); [Zhang et al., 2023](#)). Briefly, nymph samples
635 were fixed with 4% paraformaldehyde and subjected to a gradient concentration
636 dehydration with sucrose solution (10%, 20%, 30%). The dehydrated samples were
637 then embedded in Tissue-Tek O.C.T. compound (Cat# 4583, SAKURA, Ningbo,
638 China) after the pre-embedding stages at -25°C. Ultra-thin sections (approximately 70
639 nm thickness) of the embedded material were cut using a Leica freezing ultra-cut
640 microtome (CM1850, Leica, Weztlar, Germany). The sections were stained with
641 WGA-FITC (50 µg/mL) and DAPI (10 µg/mL) for 15 min, followed by rinsing three
642 times with sterile PBS buffer. Fluorescence images were acquired using a Leica SP8
643 confocal microscopy (Weztlar, Germany). To further quantify the cuticle chitin
644 content, a chitin Elisa kit (Cat# YS80663B, Yaji Biotechnology, Shanghai, China) was
645 used according to the previously described method ([Zhang et al., 2023](#)).

646 In order to determine the cuticle tanning threshold in *C. chinensis*, we examined
647 the nymph phenotypes, cuticle pigment absorbance, and cuticle thickness levels in
648 multiple time points (3, 6, 9, 12, 15 days) under two distinct temperatures of 10°C and
649 25°C. Each experimental condition encompassed nine independent biological
650 replicates, with a minimum of 30 whole nymphs analyzed in each replicate for
651 comprehensive assessment.

652 **Transmission electron microscopy assay**

653 The TEM assay was performed as previously described (Ge et al., 2019; Zhang et
654 al., 2022b; Zhang et al., 2023). In short, nymph samples without heads were fixed in
655 4% polyformaldehyde (PFA) for 48 h, followed by post-fixation in 1% osmium
656 tetroxide for 1.5 h. The samples were then dehydrated in a standard ethanol/acetone
657 series, infiltrated, and embedded in spurr medium. Subsequently, superthin sections
658 (-70 nm) of the thorax were cut and stained with 5% uranyl acetate followed by
659 Reynolds' lead citrate solution. The same dorsal region of the thorax was specifically
660 chosen for subsequent fluorescence imaging or transmission electron microscopy
661 assessments aimed at quantifying cuticle thickness. Lastly, the sections were observed,
662 photographed and measured using a HT7800 transmission electron microscope
663 (Hitachi, Tokyo, Japan) operated at 120 kv. Regarding the measurement of cuticle
664 thickness, use the built-in measuring ruler on the software to select the top and bottom
665 of the same horizontal line on the cuticle. Measure the cuticle of each nymph at two
666 close locations. Six nymphs were used for each sample. Randomly select 9 values and
667 plot them.

668 **Statistical analysis**

669 Figures preparation and statistical analysis were performed with GraphPad Prism
670 8.0 software and IBM SPSS Statistics 26.0, respectively. All data were shown as
671 means \pm SE (Standard Error of Mean) with different independent biological
672 replications. Student's *t*-test was performed for pairwise comparisons to determine
673 statistically significant differences between treatments and controls (**P* < 0.05, ***P* <
674 0.01, and ****P* < 0.001). One-way ANOVA followed by Tukey's HSD multiple
675 comparison test was used for multiple comparisons in SPSS Statistics 26.0 (different
676 letters denoted by *P* < 0.05).

677

678 **Acknowledgements**

679 Thanks for the insect rearing by graduated students of Dongyue Zhang and Shili

680 Meng from China Agricultural University. We appreciated transmission electron
681 microscopy sample preparation from the microscopy laboratories of China
682 Agricultural University.

683 **Author contributions statement**

684 Songdou Zhang designed research; Songdou Zhang and Zhixian Zhang
685 performed research; Jianying Li and Yilin Wang contributed new analytic tools;
686 Songdou Zhang, Zhixian Zhang, Jianying Li, Yilin Wang, Zhen Li, and Xiaoxia Liu
687 analyzed data; Songdou Zhang and Zhixian Zhang wrote the paper; Songdou Zhang
688 and Xiaoxia Liu provided the fund.

689 **Funding**

690 This work was funded by the National Natural Science Foundation of China
691 (32202291) and China Agriculture Research System (CARS-28).

692 **Conflict of interest statement**

693 The authors declare that no competing financial interests.

694 **Data availability statement**

695 The published article includes all data generated or analyzed during this study.
696 The full sequences of *CcBurs- α* , *CcBurs- β* , and *CcBurs-R* were submitted to GenBank
697 database of NCBI (Accession number: OR488624, OR488625, and OR488626).

698

699 **References**

700 An, C., Fei, X., Chen, W., & Zhao, Z. (2012). The integrative effects of population
701 density, photoperiod, temperature, and host plant on the induction of alate
702 aphids in *Schizaphis graminum*. *Archives of Insect Biochemistry and*
703 *Physiology*, 79(4–5), 198–206. <https://doi.org/10.1002/arch.21005>

704 An, S., Dong, S., Wang, Q., Li, S., Gilbert, L. I., Stanley, D., & Song, Q. (2012).
705 Insect neuropeptide bursicon homodimers induce innate immune and stress
706 genes during molting by activating the NF-κB transcription factor Relish. *PLoS*
707 *One*, 7(3), e34510. <https://doi.org/10.1371/journal.pone.0034510>

708 Bai, H., & Palli, S.R. (2010). Functional characterization of bursicon receptor and
709 genome-wide analysis for identification of genes affected by bursicon receptor
710 RNAi. *Developmental Biology*, 344(1), 248–258.
711 <https://doi.org/10.1016/j.ydbio.2010.05.003>

712 Baudach, A., & Vilcinskas, A. (2021). The European map butterfly *Araschnia levana*
713 as a model to study the molecular basis and evolutionary ecology of seasonal
714 polyphenism. *Insects*, 12(4), Article 4.
715 <https://doi.org/10.3390/insects12040325>

716 Bhardwaj, S., Jolander, L.S.H., Wenk, M.R., Oliver, J.C., Nijhout, H.F., & Monteiro,
717 A. (2020). Origin of the mechanism of phenotypic plasticity in satyrid
718 butterfly eyespots. *eLife*, 9, e49544. <https://doi.org/10.7554/eLife.49544>

719 Bonasio, R., Li, Q., Lian, J., Mutti, N. S., Jin, L., Zhao, H., Zhang, P., Wen, P., Xiang,
720 H., Ding, Y., Jin, Z., Shen, S. S., Wang, Z., Wang, W., Wang, J., Berger, S. L.,
721 Liebig, J., Zhang, G., & Reinberg, D. (2012). Genome-wide and caste-specific
722 DNA methylomes of the ants *Camponotus floridanus* and *Harpegnathos*
723 *saltator*. *Current Biology: CB*, 22(19), 1755–1764.
724 <https://doi.org/10.1016/j.cub.2012.07.042>

725 Butt, B.A., & Stuart, C. (1986). Oviposition by summer and winter forms of pear
726 psylla (Homoptera: Psyllidae) on dormant pear budwood. *Environmental*
727 *Entomology*, 5, 1109–1110. <https://doi.org/10.1093/ee/15.5.1109>

728 Costa, C. P., Elias-Neto, M., Falcon, T., Dallacqua, R. P., Martins, J. R., & Bitondi, M.
729 M. (2016). RNAi-Mediated Functional Analysis of *Bursicon* Genes Related to
730 Adult Cuticle Formation and Tanning in the Honeybee, *Apis mellifera*. *PLoS*
731 *one*, 11(12), e0167421. <https://doi.org/10.1371/journal.pone.0167421>

732 Daniels, E.V., Murad, R., Mortazavi, A., & Reed, R.D. (2014). Extensive
733 transcriptional response associated with seasonal plasticity of butterfly wing
734 patterns. *Molecular Ecology*, 23(24), 6123–6134.
735 <https://doi.org/10.1111/mec.12988>

736 Dewey, E.M., McNabb, S.L., Ewer, J., Kuo, G.R., Takanishi, C.L., Truman, J.W., &
737 Honegger, H.W. (2004). Identification of the gene encoding Bursicon, an
738 insect neuropeptide responsible for cuticle sclerotization and wing spreading.
739 *Current Biology*, 14(13), 1208–1213.
740 <https://doi.org/10.1016/j.cub.2004.06.051>

741 Futahashi, R., Kurita, R., Mano, H., & Fukatsu, T. (2012). Redox alters yellow
742 dragonflies into red. *Proceedings of the National Academy of Sciences of the*
743 *United States of America*, 109(31), 12626–12631.
744 <https://doi.org/10.1073/pnas.1207114109>

745 Ge, Y., Zhang, L., Qin, Z., Wang, Y., Liu, P., Tan, S., Fu, Z., Smith, O.M., & Shi, W.
746 (2019). Different predation capacities and mechanisms of *Harmonia axyridis*
747 (Coleoptera: Coccinellidae) on two morphotypes of pear psylla *Cacopsylla*
748 *chinensis* (Hemiptera: Psyllidae). *PLoS ONE*, 14(4), e0215834.
749 <https://doi.org/10.1371/journal.pone.0215834>

750 Hildebrand, M., Dickler, E., & Geider, K. (2010). Occurrence of *Erwinia amylovora*
751 on insects in a fire blight orchard. *Journal of Phytopathology*, 148(4), 251–256.
752 <https://doi.org/10.1046/j.1439-0434.2000.00504.x>

753 Huang, J., Zhang, Y., Li, M., Wang, S., Liu, W., Couble, P., Zhao, G., & Huang, Y.
754 (2007). RNA interference-mediated silencing of the bursicon gene induces
755 defects in wing expansion of silkworm. *FEBS Letters*, 581(4), 697–701.
756 <https://doi.org/10.1016/j.febslet.2007.01.034>

757 Janzen, F.J., & Phillips, P.C. (2006). Exploring the evolution of environmental sex

758 determination, especially in reptiles. *Journal of Evolutionary Biology*, 19(6),
759 1775–1784. <https://doi.org/10.1111/j.1420-9101.2006.01138.x>

760 Kucharski, R., Maleszka, J., Foret, S., & Maleszka, R. (2008). Nutritional control of
761 reproductive status in honeybees via DNA methylation. *Science (New York,*
762 *N.Y.*), 319(5871), 1827–1830. <https://doi.org/10.1126/science.1153069>

763 Liu, H., Todd, E.V., Lokman, P.M., Lamm, M.S., Godwin, J.R., & Gemmell, N.J.
764 (2017). Sexual plasticity: A fishy tale. *Molecular Reproduction and*
765 *Development*, 84(2), 171–194. <https://doi.org/10.1002/mrd.22691>

766 Liu, X.Y., Zou, Z.W., Zhang, C., Liu, X., Wang, J., Xin, T.R., & Xia, B. (2020).
767 Knockdown of the trehalose-6-phosphate synthase gene using RNA interference
768 inhibits synthesis of trehalose and increases lethality rate in Asian citrus psyllid,
769 *Diaphorina citri* (Hemiptera: Psyllidae). *Insects*, 11(9), 605;
770 <https://doi.org/10.3390/insects11090605>

771 Livak, K.J., & Schmittgen, T.D. (2001). Analysis of relative gene expression data
772 using real-time quantitative PCR and the $2^{-\Delta\Delta CT}$ method. *Methods*, 25(4),
773 402–408. <https://doi.org/10.1006/meth.2001.1262>

774 Loretta, G. (2014). Plant phenotypic plasticity in response to environmental factors.
775 *Advances in Botany*, 2014, 1–17. <https://doi.org/10.1155/2014/208747>

776 Luan, H., Lemon, W.C., Peabody, N.C., Pohl, J.B., Zelensky, P.K., Wang, D.,
777 Nitabach, M.N., Holmes, T.C., & White, B.H. (2006). Functional dissection of
778 a neuronal network required for cuticle tanning and wing expansion in
779 *Drosophila*. *The Journal of Neuroscience: The Official Journal of the Society*
780 *for Neuroscience*, 26(2), 573–584.
781 <https://doi.org/10.1523/JNEUROSCI.3916-05.2006>

782 Lucas, K., & Raikhel, A.S. (2013). Insect microRNAs: biogenesis, expression
783 profiling and biological functions. *Insect Biochemistry and Molecular Biology*,
784 43, 24–38. <https://doi.org/10.1016/j.ibmb.2012.10.009>

785 Luo, C.W., Dewey, E.M., Sudo, S., Ewer, J., Hsu, S.Y., Honegger, H.W., & Hsueh,
786 A.J.W. (2005). Bursicon, the insect cuticle-hardening hormone, is a
787 heterodimeric cystine knot protein that activates G protein-coupled receptor

788 LGR2. *Proceedings of the National Academy of Sciences of the United States*
789 *of America*, 102(8), 2820–2825. <https://doi.org/10.1073/pnas.0409916102>

790 Ma, Z., Guo, W., Guo, X., Wang, X., & Kang, L. (2011). Modulation of behavioral
791 phase changes of the migratory locust by the catecholamine metabolic
792 pathway. *Proceedings of the National Academy of Sciences of the United*
793 *States of America*, 108(10), 3882–3887.
794 <https://doi.org/10.1073/pnas.1015098108>

795 Mrak, P., Bogataj, U., Štrus, J., & Žnidaršič, N. (2017). Cuticle morphogenesis in
796 crustacean embryonic and postembryonic stages. *Arthropod structure &*
797 *development*, 46(1), 77–95. <https://doi.org/10.1016/j.asd.2016.11.001>

798 Noor, M.A.F., Parnell, R.S., & Grant, B.S. (2008). A reversible color polyphenism in
799 American peppered moth (*Biston betularia cognataria*) Caterpillars. *PLoS*
800 *ONE*, 3(9), e3142. <https://doi.org/10.1371/journal.pone.0003142>

801 Overgaard, J., & MacMillan, H.A. (2017). The integrative physiology of insect chill
802 tolerance. *Annual Review of Physiology*, 79, 187–208.
803 <https://doi.org/10.1146/annurev-physiol-022516-034142>

804 Osanai-Futahashi, M., Tatematsu, K. I., Yamamoto, K., Narukawa, J., Uchino, K.,
805 Kayukawa, T., Shinoda, T., Banno, Y., Tamura, T., & Sezutsu, H. (2012).
806 Identification of the *Bombyx* red egg gene reveals involvement of a novel
807 transporter family gene in late steps of the insect ommochrome biosynthesis
808 pathway. *The Journal of biological chemistry*, 287(21), 17706–17714.
809 <https://doi.org/10.1074/jbc.M111.321331>

810 Shang, F., Niu, J., Ding, B.Y., Zhang, W., Wei, D.D., Wei, D., Jiang, H.B., & Wang,
811 J.J. (2020). The miR-9b microRNA mediates dimorphism and development of
812 wing in aphids. *Proceedings of the National Academy of Sciences*, 117(15),
813 8404–8409. <https://doi.org/10.1073/pnas.1919204117>

814 Shearer, P.W., West, J.D., Walton, V.M., Brown, P.H., Svetec, N., & Chiu, J.C. (2016).
815 Seasonal cues induce phenotypic plasticity of *Drosophila suzukii* to enhance
816 winter survival. *BMC Ecology*, 16, 11.
817 <https://doi.org/10.1186/s12898-016-0070-3>

818 Simpson, S.J., Sword, G.A., & Lo, N. (2011). Polyphenism in insects. *Current*
819 *Biology*, 21(18), R738–R749. <https://doi.org/10.1016/j.cub.2011.06.006>

820 Stockton, D.G., Wallingford, A.K., & Loeb, G.M. (2018). Phenotypic plasticity
821 promotes overwintering survival in a globally invasive crop pest, *Drosophila*
822 *suzukii*. *Insects*, 9(3), 105. <https://doi.org/10.3390/insects9030105>

823 Suderman, R.J., Dittmer, N.T., Kanost, M.R., & Kramer, K.J. (2006). Model reactions
824 for insect cuticle sclerotization: cross-linking of recombinant cuticular proteins
825 upon their laccase-catalyzed oxidative conjugation with catechols. *Insect*
826 *Biochemistry and Molecular Biology*, 36(4), 353–365.
827 <https://doi.org/10.1016/j.ibmb.2006.01.012>

828 Tougeron, K., Iltis, C., Renoz, F., Albittar, L., Hance, T., Demeter, S., & Le Goff, G. J.
829 (2021). Ecology and biology of the parasitoid *Trechnites insidiosus* and its
830 potential for biological control of pear psyllids. *Pest Management Science*,
831 77(11), 4836–4847. <https://doi.org/10.1002/ps.6517>

832 Uehara, H., Senoh, Y., Yoneda, K., Kato, Y., & Shiomi, K. (2011). An FXPRLamide
833 neuropeptide induces seasonal reproductive polyphenism underlying a
834 life-history tradeoff in the tussock moth. *PLoS ONE*, 6(8), e24213.
835 <https://doi.org/10.1371/journal.pone.0024213>

836 Vellichirammal, N.N., Gupta, P., Hall, T.A., & Brisson, J.A. (2017). Ecdysone
837 signaling underlies the pea aphid transgenerational wing polyphenism.
838 *Proceedings of the National Academy of Sciences of the United States of*
839 *America*, 114(6), 1419–1423. <https://doi.org/10.1073/pnas.1617640114>

840 Wei, M., Chi, H., Guo, Y., Li, X., Zhao, L., & Ma, R. (2020). Demography of
841 *Cacopsylla chinensis* (Hemiptera: Psyllidae) reared on four cultivars of *Pyrus*
842 *bretschneideri* (Rosales: Rosaceae) and *P. communis* pears with estimations of
843 confidence intervals of specific life table statistics. *Journal of Economic*
844 *Entomology*, 113(5), 2343–2353. <https://doi.org/10.1093/jee/toaa149>

845 Xie, J., Peng, G., Wang, M., Zhong, Q., Song, X., Bi, J., Tang, J., Feng, F., Gao, H., &
846 Li, B. (2022). RR-1 cuticular protein *TcCPR69* is required for growth and
847 metamorphosis in *Tribolium castaneum*. *Insect Science*, 29(6), 1612–1628.

848 https://doi.org/10.1111/1744-7917.13038

849 Xu, H.J., Xue, J., Lu, B., Zhang, X.C., Zhuo, J.C., He, S.F., Ma, X.F., Jiang, Y.Q., Fan,
850 H.W., Xu, J.Y., Ye, Y.X., Pan, P.L., Li, Q., Bao, Y.Y., Nijhout, H. F., & Zhang,
851 C.X. (2015). Two insulin receptors determine alternative wing morphs in
852 planthoppers. *Nature*, 519(7544), 464–467.
853 https://doi.org/10.1038/nature14286

854 Yang, C.H., & Andrew Pospisilik, J. (2019). Polyphenism – a window into
855 gene-environment interactions and phenotypic plasticity. *Frontiers in Genetics*,
856 10. <https://www.frontiersin.org/articles/10.3389/fgene.2019.00132>

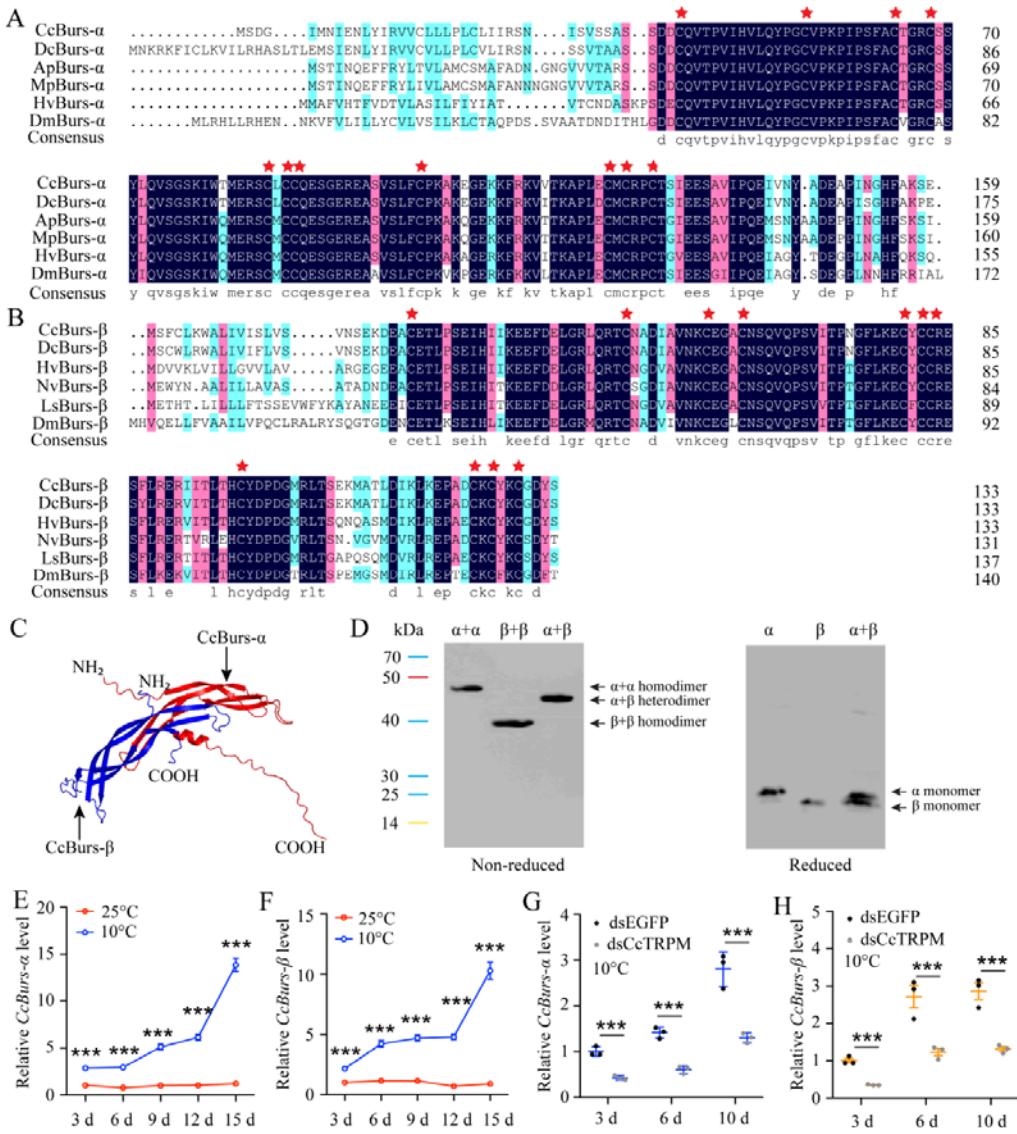
857 Yang, M., Wei, Y., Jiang, F., Wang, Y., Guo, X., He, J., & Kang L. (2014).
858 MicroRNA-133 inhibits behavioral aggregation by controlling dopamine
859 synthesis in Locusts. *PLoS Genetics*, 10, e1004206.
860 https://doi.org/10.1371/journal.pgen.1004206

861 Zera, A.J., & Denno, R.F. (1997). Physiology and ecology of dispersal polymorphism
862 in insects. *Annual Review of Entomology*, 42(1), 207–230.
863 https://doi.org/10.1146/annurev.ento.42.1.207

864 Zhang, B., Zhao, L., Ning, J., Wickham, J.D., Tian, H., Zhang, X., Yang, M., Wang,
865 X., & Sun, J. (2020). miR-31-5p regulates cold acclimation of the
866 wood-boring beetle *Monochamus alternatus* via ascaroside signaling. *BMC
867 Biology*, 18, 184. <https://doi.org/10.1186/s12915-020-00926-w>

868 Zhang, C.S., Sun, L.L., Xie, J.M., & Cao, C.W. (2022a). RNAi-based functional
869 analysis of bursicon genes related to wing expansion in gypsy moths. *Journal
870 of Insect Physiology*, 139, 104398.
871 https://doi.org/10.1016/j.jinsphys.2022.104398

872 Zhang, C. X., Brisson, J. A., & Xu, H. J. (2019). Molecular Mechanisms of Wing
873 Polymorphism in Insects. *Annual review of entomology*, 64, 297–314.
874 https://doi.org/10.1146/annurev-ento-011118-112448

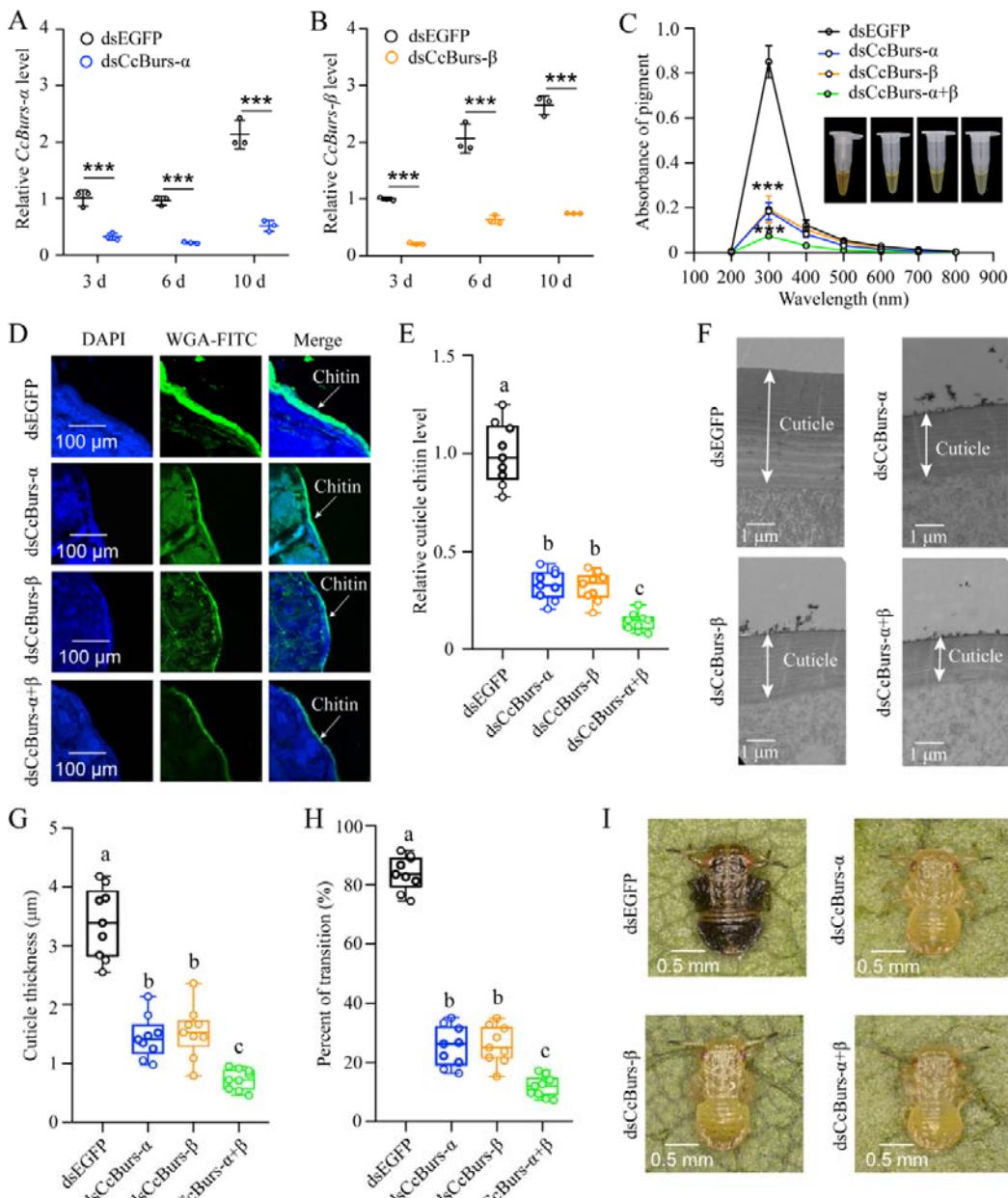

875 Zhang, J.L., Chen, S.J., Liu, X.Y., Moczek, A. P., & Xu, H.J. (2022b). The
876 transcription factor Zfh1 acts as a wing-morph switch in planthoppers. *Nature
877 Communications*, 13(1), 5670. <https://doi.org/10.1038/s41467-022-33422-6>

878 Zhang, S.D., Li, J.Y., Zhang, D.Y., Zhang, Z.X., Meng, S.L., Li, Z., & Liu, X.X.
879 (2023). MiR-252 targeting temperature receptor *CcTRPM* to mediate the
880 transition from summer-form to winter-form of *Cacopsylla chinensis*. *eLife*, 12.
881 <https://doi.org/10.7554/eLife.88744>

882 Zhu, K. Y., Merzendorfer, H., Zhang, W., Zhang, J., & Muthukrishnan, S. (2016).
883 Biosynthesis, turnover, and functions of chitin in insects. *Annual review of*
884 *entomology*, 61, 177–196.
885 <https://doi.org/10.1146/annurev-ento-010715-023933>

886

887 **Figure legends**

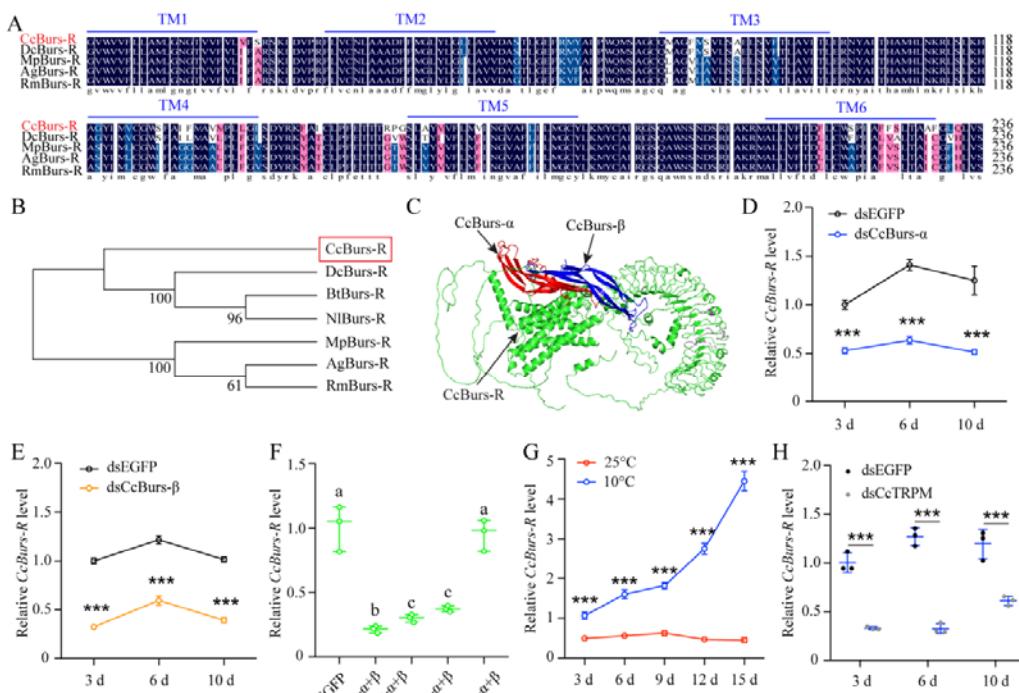

888

889 **Figure 1. Molecular characteristic of *CcBurs- α* and *CcBurs- β* in *C. chinensis*.**

890 **A: Multiple alignments of the amino acid sequences of *CcBurs- α* with homologs**
891 **from five other insect species.** Black represents 100% identity, red represents 75%
892 identity, and blue represents <75% identity. *CcBurs- α* (*C. chinensis*, OR488624),
893 *DcBurs- α* (*Diaphorina citri*, XP_008468249.2), *ApBurs- α* (*Acyrthosiphon pisum*,
894 XP_001946341.1), *MpBurs- α* (*Myzus persicae*, XP_022171710.1), *HvBurs- α*
895 (*Homalodisca vitripennis*, XP_046670477.1), *DmBurs- α* (*Drosophila melanogaster*,
896 CAH74223.1). The corresponding GenBank accession numbers are as follows. **B:**
897 **Multiple alignments of the amino acid sequences of *CcBurs- β* with homologs**

898 **from five other insect species.** Black represents 100% identity, red represents 75%
899 identity, and blue represents <75% identity. *CcBurs-β* (*C. chinensis*, OR488625),
900 *DcBurs-β* (*D. citri*, AWT50591.1), *HvBurs-β* (*H. vitripennis*, XP_046671521.1),
901 *NvBurs-β* (*Nezara viridula*, AZC86173.1), *LsBurs-β* (*Laodelphax striatellus*,
902 AXF48186.1), *DmBurs-β* (*D. melanogaster*, CAH74224.1). The corresponding
903 GenBank accession numbers are as follows. **C: Predicted protein tertiary**
904 **structures of *CcBurs-α* and *CcBurs-β*.** **D: Western blot analysis of Bursicon**
905 **proteins using anti-His-Tag antibody with non-reduced and reduced SDS-PAGE.**
906 The left numbers indicate the positions of pre-stained protein markers. Lanes of α , β ,
907 and $\alpha+\beta$ represent separate expression of *CcBurs-α*, *CcBurs-β*, or co-expressed of $\alpha+\beta$.
908 Monomers were not present under non-reduced conditions. **E-F: Relative mRNA**
909 **expression of *CcBurs-α* and *CcBurs-β* after 25 °C or 10 °C treatments at 3, 6, 9,**
910 **12, and 15 d (n=3).** **G-H: Effect of temperature receptor *CcTRPM* knockdown on**
911 **the mRNA expression of *CcBurs-α* and *CcBurs-β* at 3, 6, and 10 d under 10°C**
912 **condition (n=3).** Data in 1E-1H are shown as the mean \pm SE with three independent
913 biological replications, with at least 50 nymphs for each biological replication.
914 Statistically significant differences were determined using pair-wise Student's *t*-test in
915 SPSS 26.0 software, and significance levels were denoted by *** ($p < 0.001$).

916


917

918 **Figure 2. Neuropeptide Bursicon was essential for the transition from**
 919 **summer-form to winter-form in *C. chinensis*.**

920 **A-B: RNAi efficiency of *CcBurs-α* and *CcBurs-β* after dsRNA treatment at 3, 6,**
 921 **and 10 d by qRT-PCR under 10 °C condition (n=3). C-I: Effect of**
 922 **RNAi-mediated knockdown of *CcBurs-α* and *CcBurs-β* on the absorbance of**
 923 **total cuticle pigment, relative cuticle chitin content, cuticle thickness of the**
 924 **thorax, transition percent, and phenotype changes of 1st instar nymphs**
 925 **compared to dsEGFP treatments (n=9). Data in 2A and 2B are shown as the mean \pm**

926 SE with three independent biological replications, with at least 50 nymphs for each
927 replication. Data in 2C, 2E, and 2G are presented as mean \pm SE with three biological
928 replications, with three technical replications for each biological replication. Data in
929 2H are presented as mean \pm SE with nine biological replications. Statistically
930 significant differences were determined using pair-wise Student's *t*-test, and
931 significance levels were denoted by *** ($p < 0.001$). Different letters above the bars
932 indicate statistically significant differences ($p < 0.05$), as determined by ANOVA
933 followed by a Turkey's HSD multiple comparison test in SPSS 26.0 software.

934

935

936 **Figure 3. *CcBurs-R* was identified as the Bursicon receptor in *C. chinensis*.**

937 **A: Multiple alignments of the amino acid sequences of *CcBurs-R* transmembrane**
938 **domain with homologs from four other insect species.** The transmembrane domain
939 from TM1 to TM6 is indicated by blue horizontal lines. *CcBurs-R* (*C. chinensis*,
940 OR488626), *DcBurs-R* (*D. citri*, KAI5703609.1), *MpBurs-R* (*M. persicae*,
941 XP_022172830.1), *AgBurs-R* (*Aphis gossypii*, XP_027844917.2), *RmBurs-R*
942 (*Rhopalosiphum maidis*, XP_026817427.1). The corresponding GenBank accession

943 number as follows. **B: Phylogenetic tree analysis of *CcBurs-R* with its homologs in**

944 **six other insect species.** *BtBurs-R* (*Bemisia tabaci*, XP_018898471.1), *NlBurs-R* (*N.*

945 *lugens*, XP_022198758.2). **C: Predicted protein tertiary structure of *CcBurs-R***

946 **and its binding with *CcBurs-α* and *CcBurs-β*.** **D-E: Effect of *CcBurs-α* and**

947 *CcBurs-β* knockdown on the mRNA expression of *CcBurs-R* at 3, 6, and 10 d,

948 respectively (n=3). F: *CcBurs-α+β* heterodimer protein could rescue the

949 *CcBurs-R* expression after knockdown of *CcBurs-α* and *CcBurs-β* together. G:

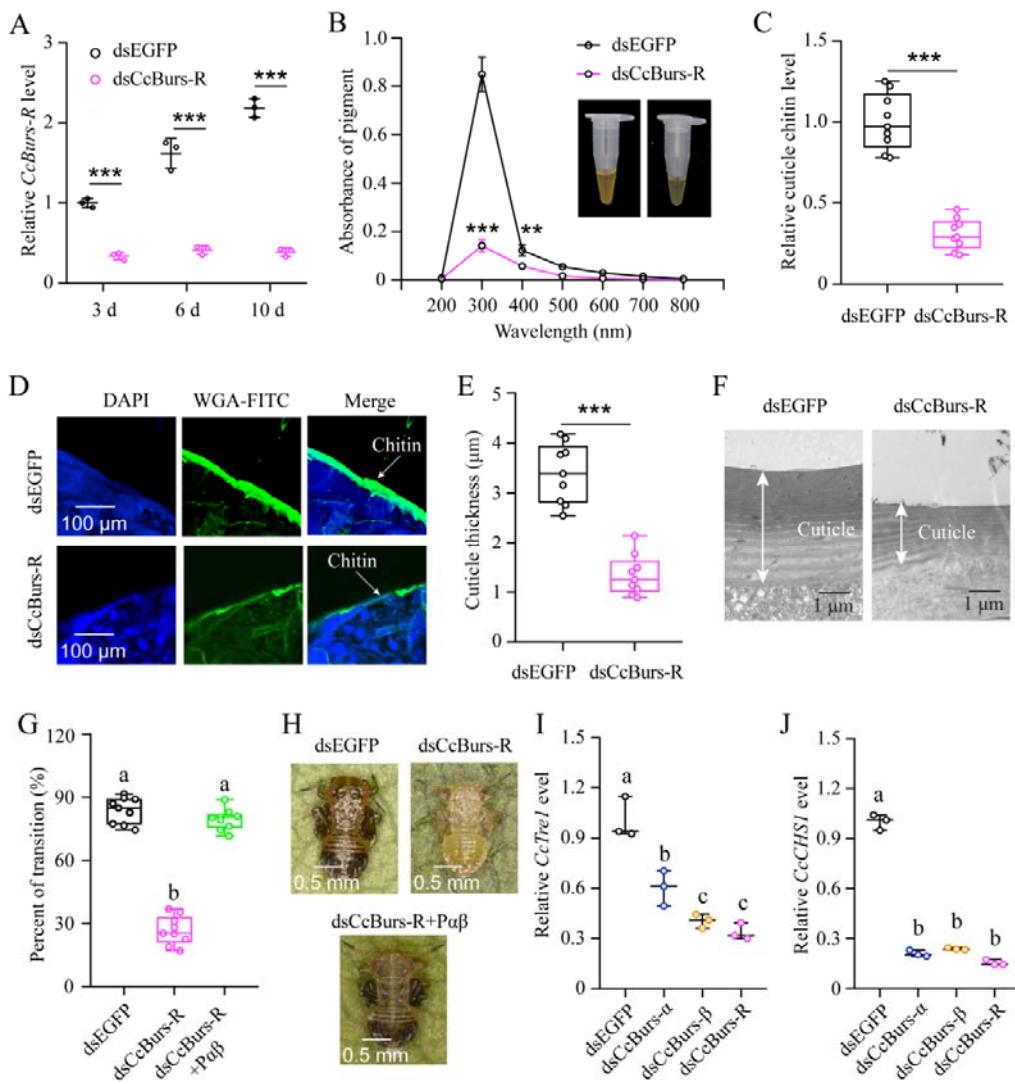
950 **Relative mRNA expression of *CcBurs-R* after 25°C or 10°C treatments at 3, 6, 9,**

951 **12, and 15 d (n=3).** **H: Effect of temperature receptor *CcTRPM* knockdown on**

952 **the mRNA expression of *CcBurs-R* at 3, 6, and 10 d (n=3).** Data in 3D-3H are

953 shown as the mean \pm SE with three independent biological replications, with at least

954 50 nymphs for each replication. Statistically significant differences were determined

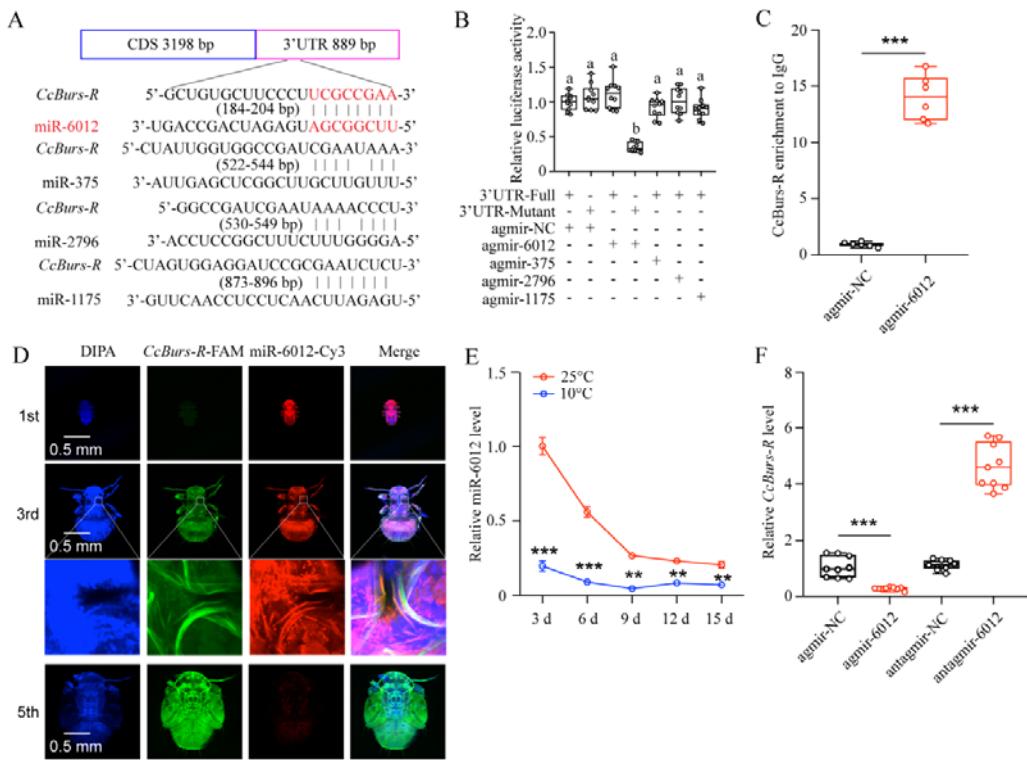

955 using pair-wise Student's *t*-test in SPSS 26.0 software, and significance levels were

956 denoted by *** ($p < 0.001$). Different letters above the bars indicated statistically

957 significant differences ($p < 0.05$), as determined by ANOVA followed by a Turkey's

958 HSD multiple comparison test in SPSS 26.0 software.

959


960
961 **Figure 4. *CcBurs-R* directly mediated the transition from summer-form to**
962 **winter-form in *C. chinensis*.**

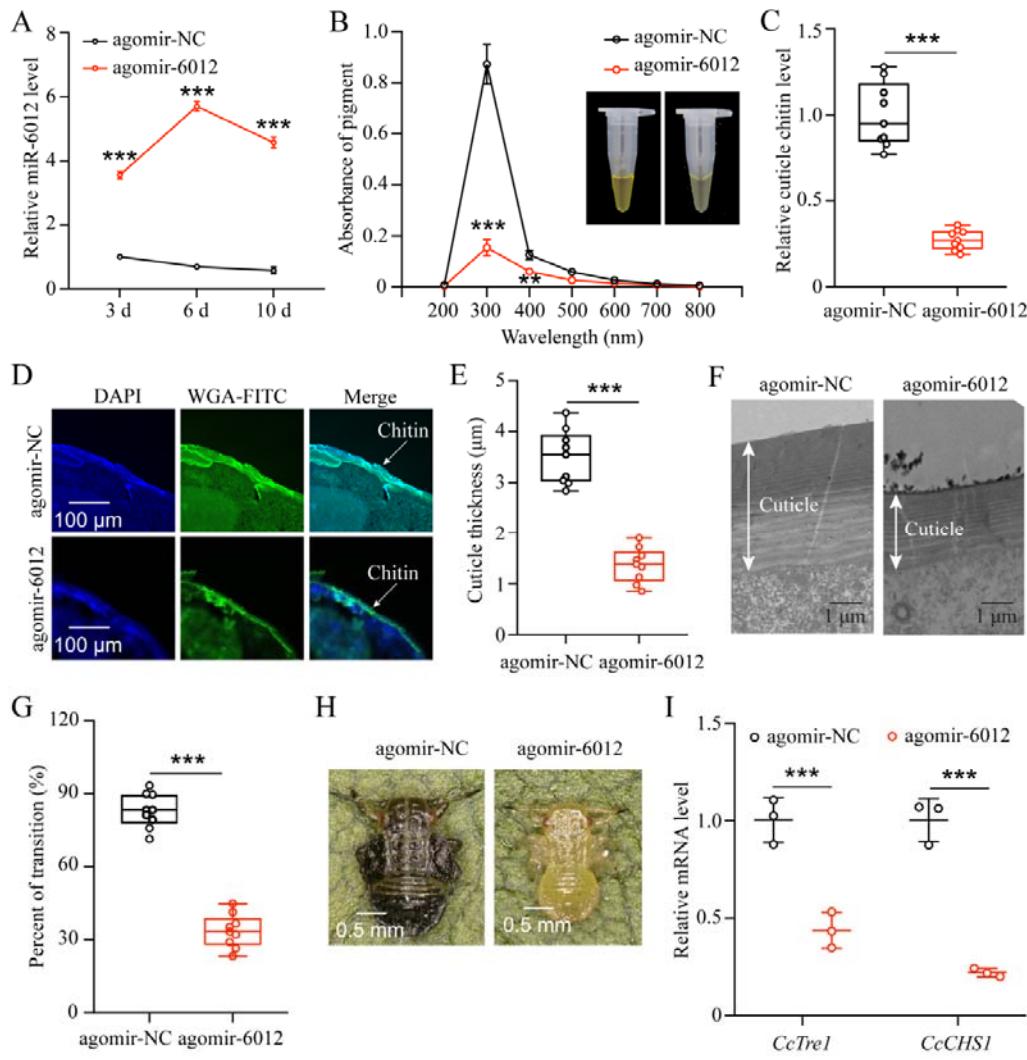
963 **A: RNAi efficiency of *CcBurs-R* after dsRNA treatment at 3, 6, and 10 d by**
964 **qRT-PCR under 10 °C condition (n=3). B-H: Effect of RNAi-mediated**
965 **knockdown of *CcBurs-R* on the absorbance of total cuticle pigment, relative**
966 **cuticle chitin content, cuticle thickness of the thorax, transition percent, and**
967 **phenotype changes of 1st instar nymphs compared to dsEGFP treatments under**
968 **10 °C condition (n=9). I-J: Relative mRNA expression of *CcTre1* and *CcCHS1***
969 **after knockdown of *CcBurs-α*, *CcBurs-β*, and *CcBurs-R* at 10 d, separately (n=3).**

970 Data in 4A, 4I, and 4J are shown as the mean ± SE with three independent biological
971 replications, with at least 50 nymphs for each replication. Data in 4B, 4C, and 4E are

972 presented as mean \pm SE with three biological replications, with three technical
973 replications for each biological replication. Data in 4G are presented as mean \pm SE
974 with nine biological replications. Statistically significant differences were determined
975 using pair-wise Student's *t*-test, and significance levels were denoted by ** ($p < 0.01$)
976 and *** ($p < 0.001$). Different letters above the bars indicate statistically significant
977 differences ($p < 0.05$), as determined by ANOVA followed by a Turkey's HSD
978 multiple comparison test in SPSS 26.0 software.

979

980

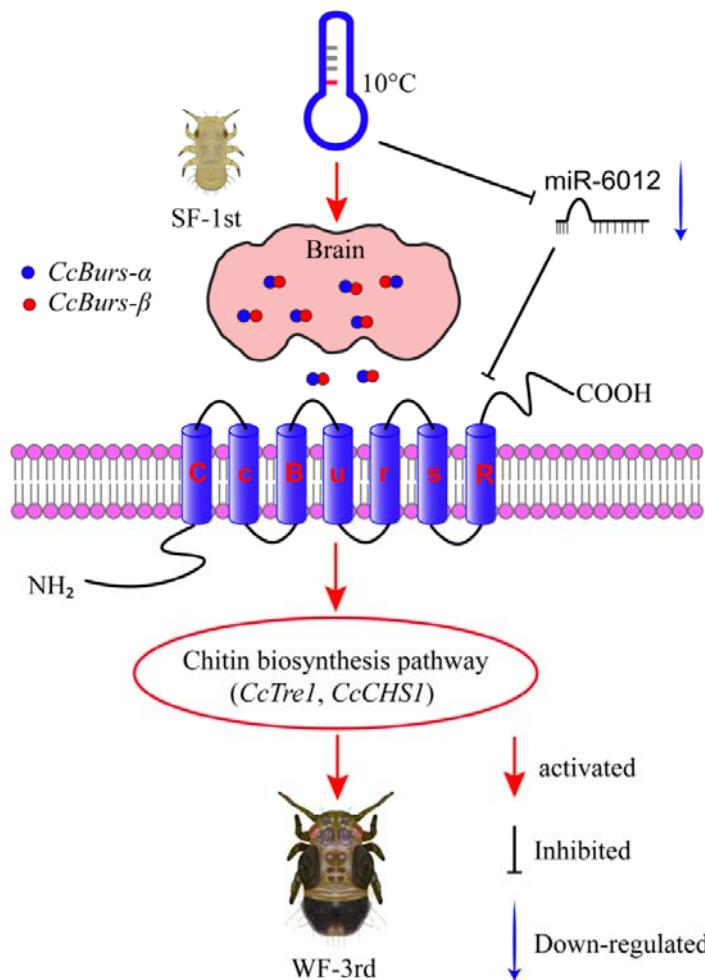

981 **Figure 5. miR-6012 directly targeted *CcBurs-R* to inhibit its expression.**

982 **A: Predicted binding sites of four miRNAs in the 3'UTR of *CcBurs-R*. B: *In vitro***
983 **confirmation of the target relationship between miR-6012 and *CcBurs-R* using**
984 **dual luciferase reporter assays. C: *In vivo* validation of miR-6012 directly**
985 **targeting *CcBurs-R* using RNA-binding protein immunoprecipitation (RIP) assay.**

986 **D: Co-localization of miR-6012 and *CcBurs-R* in different development stages of**
987 ***C. chinensis* using FISH. E: Effect of different temperature treatments on the**
988 **expression of miR-6012 by qRT-PCR. F: Effect of miR-6012 agomir and**

989 **antagomir treatments on the mRNA level of *CcBurs-R* at 6 d under 10 °C**
990 **conditions.** Data in 5B and 5F are presented as the mean \pm SE with nine biological
991 replicates. Results of 5C and 5E are indicated as the mean \pm SE with six or three
992 biological replicates. Statistically significant differences were determined using
993 pair-wise Student's *t*-test, and significance levels were denoted by *** ($p < 0.001$).
994 Different letters above the bars represent statistically significant differences ($p < 0.05$),
995 as determined by ANOVA followed by a Turkey's HSD multiple comparison test in
996 SPSS 26.0 software.

997



998

999 **Figure 6. miR-6012 targeted *CcBurs-R* to mediate the seasonal polyphenism in *C.***
1000 ***chinensis.***

1001 **A: Expression of miR-6012 after agomir-6012 treatment at 3, 6, and 10 d by**
1002 **qRT-PCR under 10 °C condition (n=3). B-H: Effect of agomir-6012 treatment on**
1003 **the absorbance of total cuticle pigment, relative cuticle chitin content, cuticle**
1004 **thickness of the thorax, transition percent, and phenotype changes of 1st instar**
1005 **nymphs compared to agomir-NC treatments under 10 °C condition (n=9). I:**
1006 **Relative mRNA expression of *CcTre1* and *CcCHS1* after agomir-6012 treatment**
1007 **at 6 d, separately (n=3).** Data in 6A and 6I are shown as the mean \pm SE with three
1008 independent biological replications, with at least 50 nymphs for each replication. Data
1009 in 6C and 6E are presented as mean \pm SE with three biological replications of three
1010 technical replications for each biological replication. Data in 6B and 6G are presented
1011 as mean \pm SE with nine biological replications. Statistically significant differences
1012 were determined using pair-wise Student's *t*-test, and significance levels were denoted
1013 by ** ($p < 0.01$) and *** ($p < 0.001$).

1014

1015

1016 **Figure 7. Schematic model of the novel functions of Bursicon signaling in the**
1017 **seasonal polyphenism of *C. chinensis* in response to low temperature.**

1018 Under 10°C condition, low temperature significantly upregulated the expression of
1019 Bursicon signaling pathway. *CcBurs-α* and *CcBurs-β* then formed a heterodimeric
1020 neuropeptide to activate their receptor *CcBurs-R*, which mediated the transition from
1021 summer-form to winter-form in *C. chinensis* by acting on the chitin biosynthesis
1022 pathway. Furthermore, low temperature inhibited the expression of *miR-6012*,
1023 relieving its inhibitory effects on *CcBurs-R*. *miR-6012* directly targeted *CcBurs-R*,
1024 contributing to the novel function of Bursicon signaling in seasonal polyphenism.
1025 Finally, the 1st instar nymphs of summer-form developed into 3rd instar nymphs of
1026 winter-form in *C. chinensis*.

1027