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The enzymatic degradation of polyethylene terephthalate (PET) is a promising method of
advanced plastic recycling. Traditional protein engineering methods often fall short in
exploring protein sequence space for optimal enzymes due to structural and rational
design limitations. Our study addresses this by using multiplexed ancestral sequence
reconstruction (MASR) to explore the evolutionary sequence space of PET-degrading
cutinases. With a dataset of 397 cutinase sequences, we created a diverse library of
ancestral sequences. Experimental characterization of 48 ancestral sequences revealed
a wide range of PETase activities, highlighting the value of mMASR in uncovering functional
variants when compared to traditional ASR. Our results showed that PETase activity in
cutinases evolved through diverse pathways involving distal mutations to the active site,
and is readily accessible within this family. Additionally, our analysis of the PETase fithess
landscape using one-hot encoding (OHE) and local ancestral sequence embedding
(LASE) highlighted the effectiveness of LASE in capturing sequence features relevant to
activity. This work emphasizes the utility of mMASR as a protein engineering tool for
identifying enhanced PET-degrading enzymes, and the advantages of the LASE
embedding scheme in mapping the PETase fitness landscape.
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Introduction

Over 350 million tonnes of plastic are produced annually, with the majority being derived from
petrochemicals’. However, the current global recycling rate of plastics is estimated to be less
than 10%, partially due to the technological constraints of mechanical (melt-extrusion)
recycling®. There is a pressing need to develop advanced and scalable recycling methods that
will enable the transition towards a circular plastic economy. In the last decade, enzymatic
depolymerization of plastics has emerged as one such advanced recycling method®. The
enzymatic degradation of polyethylene terephthalate (PET), a versatile thermoplastic
commonly found in food and beverage packaging, and polyester textiles has received

particular interest®.

PET-degrading enzymes that have been characterized to date, including those classified as
cutinases*™® (EC 3.1.1.74), lipases’ (EC 3.1.1.3), and carboxylesterases® (EC 3.1.1.1), belong
to the esterase subclass (EC 3.1) and are characterized by a catalytic triad (Ser-His-Asp)
typical of the a/B hydrolase fold superfamily. Cutinases have garnered significant interest due

to their ability to hydrolyse both aromatic and aliphatic polyesters®. Cutinases of bacterial®®'°,

fungal’, and metagenomic''~"?
The_Cut1 and Thc_Cut from Thermobifida cellulosilytica®, TfCut2 from Thermobifida fusca®,

HiC from Humicola insolens', FsC from Fusarium solani pisi'®, and LCC from leaf-branch

origins have been studied for their PETase activity, including

compost metagenome’®. However, extant cutinases are often unsuitable for direct use in
industrial processes, necessitating optimisation to improve properties such as catalytic

18,19

efficiency', stability under harsh conditions’'®, and to alleviate product inhibition®. For

example, active site optimisation through rational design®'®%'

and evolutionarily-guided
engineering® has yielded significant improvements in PET hydrolysis across various cutinase
backgrounds. While structure-guided protein engineering has been effective in improving the
efficiency of extant PETases, it has provided little insight on the mechanisms by which PETase

activity emerges or has been optimized by evolution.

Ancestral sequence reconstruction (ASR), which utilizes a phylogenetic tree and a statistical
model of evolution to infer the sequences of extinct, ancestral proteins, can provide critical
insights into molecular evolution and functional diversification within protein families??. ASR
has been useful in studying sequence-function relationships over protein families®?*; such
insight can shed light on the topologies of fitness landscapes that dictate the adaptive potential
of proteins®. For example, ASR can give insight into the ruggedness (i.e. complexity) of a

fitness landscape over large spans of evolutionarily accessible sequence space to reveal
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74  fitness peaks that are inaccessible through stepwise mutational approaches?. In addition to
75  this, ASRis also frequently used to engineer enzymes with enhanced industrial properties??25
76 2%, making it a valuable tool in both protein engineering and understanding the mechanisms of
77  molecular evolution.

78

79  More recently, protein representation learning has become a widely used method in protein
80 engineering and evolutionary inference®=°. Protein language models (PLM), which are deep
81 neural networks trained to predict the identities of masked residues in a corpus of protein

82  sequences® 32

, can map information sparse and high dimensional protein sequences to fixed-
83 length vector representations. These vector representations capture the evolutionary and
84  biophysical features of protein sequences in the representation model’s latent embedding

33—35, and

85 space®*. Indeed, PLMs have been used to learn the structure of fitness landscapes
86  can learn evolutionary features when trained with ancestrally reconstructed sequence data®.
87
88 Inthis study, we applied ASR to explore the evolutionarily accessible sequence space of PET-
89 degrading cutinases. Using a dataset of 397 extant cutinase sequences with significant
90 homology to known cutinases with PETase activity, we adopted a multiplexed ASR (mASR)
91  approach to generate a diverse library of ancestral cutinase sequences. Through experimental
92 characterization of 48 ancestral cutinases, we identified a broad range of PETase activities,
93 including between equivalent nodes on distinct yet statistically indifferent phylogenetic
94  topologies. Such findings highlight the importance of sampling diverse phylogenetic
95  backgrounds to uncover functional ancestral variants. Furthermore, our study analyzed the
96 topology of the PETase fitness landscape through two sequence embedding schemes: one-
97  hot encoding (OHE) and the more recently described local ancestral sequence embedding
98 (LASE)*. We found that LASE was more effective in capturing cutinase sequence features
99 pertinent to PETase activity, demonstrating a clear pattern of iterative improvement in PETase

100 functionality throughout the sequence exploration phases of our study. This comprehensive

101 approach not only highlights the utility of mASR in uncovering novel PETase variants but also

102 emphasizes the role of advanced embedding techniques in mapping PETase fitness

103 landscapes.

104

105

106

107

108
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109 Results

110

111 Multiplexed ASR yields functional PETases from diverse phylogenetic backgrounds.
112

113  We used ASR to explore the PETase functional sequence space of the cutinase family. To
114  maximize diversity in the local sequence space around known PETases, such as TfCut2 and
115  LCC, we employed the recently described multiplexed ASR (mASR)*®. In brief, mMASR samples
116  multiple statistically indifferent phylogenetic backgrounds from which to reconstruct ancestral
117  sequences from. This produces diverse libraries of ancestral proteins that span functional
118  sequence space over a distribution of realistic phylogenies. To achieve this, we performed 20
119  replicates of maximum likelihood (ML) phylogenetic inference and ASR on a single dataset of
120 397 extant cutinases with significant homology to Tfcut2 and LCC (E-value <= 1E-5).
121 Consistent with previous phylogenetic studies®’, PET hydrolytic cutinases were resolved as a
122 polyphyletic group of two monophyletic lineages: the Thermobifida sp. PETases, which include
123  Tfeut2, T. cellulosytica cutinase and T. alba esterase 1 and the LCC-like PETases that include
124  LCC and BhrPETase. This topology was resolved consistently over all 20 phylogenetic priors
125  used for mASR (Figure 1A). The placement of the PETase clades were supported by high
126  ultra-fast bootstrap approximations®® (>= 0.95) and the ancestral nodes separating these
127  groups were reconstructed in CodeML from the PAML®*® suite with relatively high mean
128  posterior probability (>0.9; based on ASR statistical benchmarking studies*). The resulting
129  ancestral sequence library comprised approximately 1600 unique sequences that

130 encompassed the evolutionarily accessible sequence space of the bacterial cutinase family.
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132 Figure 1. Ancestral sequence reconstruction and characterization of ancestral cutinases. (A) 20
133 replicates of phylogenetic reconstruction of the cutinase family with fixed extant node locations. All 20
134 presented topologies failed rejection by the AU-test and are equally valid representations of the
135  underlying sequence alignment. Extant tips of interest (Thermobifida cutinases, ESBBQ3, D4Q9N1,
136 E9LVH9 and metagenomic assembled cutinases A0A2H5ZR95, G9B757 (LCC)) are labeled).
137  Degradation of amorphous PET film by. (B) 20 extant and (C) 48 ancestral cutinases. The bulk soluble
138  products of PET hydrolysis (TPA, MHET, BHET) are measured by absorbance at 260 nm after 16 hours
139 incubation with the enzyme at 60 °C. Data are represented as the mean + SEM (n = 3). (D) Phylogenetic
140  tree 55, (E) 35 and (F) 10, with ancestors 35_442, 55 547 and 10_543 highlighted. Each ancestor
141 belongs to equivalent nodes from independent phylogenetic topologies, and are the most recent
142  common ancestor of LCC and TfCut2, extant cutinases with known PETase activity.

143
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144  We selected 48 ancestral nodes from 20 different trees with homology to the most recent
145 common ancestor of LCC and TfCut2 for experimental characterization and comparison to
146  extant cutinases. Specifically, these nodes were chosen from the recent ancestors of the LCC
147  and TfCut2 lineages (or the most recent common ancestor of both), with at least a single
148 sequence sampled from each of the 20 distinct phylogenetic trees. Each ancestral sequence
149  was selected as the maximum a posteriori (MAP) sequence that maximizes the posterior
150 probability over the full-length of the reconstructed protein. The variants were expressed,
151 purified and tested for PETase activity. The soluble expression level of each variant was
152  measured using the Bradford assay (Supplementary Figure 1). PETase activity against
153 amorphous PET film was measured by UV absorbance at 260 nm to detect the soluble
154  products of PET hydrolysis after the removal of undigested film, including terephthalic acid
155  (TPA), mono(2-hydroxyethyl) terephthalate (MHET), and bis(2-hydroxyethyl) terephthalate
156 (BHET) (Supplementary Figure 2). Among the extant cutinases, the highest PETase
157  activities were observed for LCC (A0 nm = 0.34 + 0.03), BhrPETase from bacterium HR29
158  (A2s0 Nm = 0.49 £ 0.01), and a previously engineered variant of LCC with the mutations
159  F243I/D238C/S283C/Y127G (LCC ICCG)® (Ao nm = 0.54 + 0.07), with other cutinases
160  showing lower activity (Figure 1B). Of the 48 ancestral variants, we observed PETase activity
161  for a number of ancestral cutinases from a diverse range of trees (Figure 1C). Several variants
162  (1.533, 35 442,55 547,70 439, 70_440, and 85_456) exhibited similar activity to the most
163  active extant cutinases, LCC and BhrPETase. From this group, we selected ancestors from
164  tree 35, node 442 (35_442; Ao nm = 0.37 + 0.06) and tree 55, node 547 (55_547; Ao nm =
165 0.59 £ 0.09), for further investigation. Notably, these two ancestors belonged to equivalent
166  positions from two independent phylogenetic trees (Figure 1D-F), representing the most
167  recent common ancestor of LCC and TfCut2, and sharing 98.5% sequence identity to one
168 another.

169

170  Within the dataset of 48 ancestral sequences, 12 represent the same phylogenetic node (the
171 most recent common ancestor of LCC and TfCut2) over 12 different phylogenetic
172  backgrounds. Of these, 9 exhibited PETase activity while 3 were inactive on PET.
173  Interestingly, the PETase ancestor 55_547 and the inactive ancestor 10_543 both represent
174  equivalent positions (the most recent common ancestor of TfCut2 and LCC) in their respective
175  phylogenetic backgrounds and differ by only 9/261 positions, yet 55 547 has activity against
176  PET and 10_543 does not. The functional differences between these sequences arise solely
177  from the topology of the phylogenetic tree used to reconstruct them and drastically alters how
178 the evolution of PETase activity could be inferred. For example, in the case of the 55 547
179  phylogeny, PETase activity appears to be a promiscuous ancestral trait that existed prior to

180 the discovery of extant PETases (such as LCC and Thermobifida cutinases), whereas the
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181 10_543 phylogeny supports the contradictory hypothesis that PETase activity emerged
182  independently in LCC-like and Thermobifida PETase lineages from an ancestor without
183  PETase activity. As both topologies failed rejection by the approximately unbiased (AU)*' test
184  and are statistically indifferent at representing the observed alignment data, it is not possible
185 to reject one of these hypotheses purely from a phylogenetic perspective. We also observe
186 no correlation between the mean posterior probability of an ancestor and its activity
187 (Supplementary Figure 5). This observation is somewhat counterintuitive, as the mean
188  posterior probability of a sequence, which is the statistical confidence in the identity of a
189  reconstructed ancestor, is often used to discriminate between poorly reconstructed sequences

190  (and hence likely to be less fit) and those that are likely to be functional and fit*°

. Together,
191  these results highlight the importance of sampling diverse phylogenetic backgrounds during
192  ASR when accessing the functional sequence space of a protein family as minor phylogenetic
193 incongruencies can translate into significant functional differences in (equivalent)
194  reconstructed ancestral sequences.

195

196  Structural characterization and analysis of ancestral cutinases.

197

198 A comparative structural and sequence analysis of inactive and active ancestors suggests
199 that PET hydrolysis appears to be a trait that is evolutionarily accessible from within the
200 cutinase background. Unlike the /. sakaiensis PETase, which emerged through conformational
201  optimization of the first- and second-shells via obvious selection within the active site*?™4,
202 PETase activity in the TfCut2 and LCC PETase lineages appears to emerge through non-
203 specific and likely neutral mutations that are often distal to the active site (Figure 2A-C).
204 Indeed, analysis of ancestral cutinase sequences reveals virtually no differences in the PET
205 binding sites between PETase active and inactive variants (Supplementary Figure 6).
206  Furthermore, mutations associated with a gain-of-function vary between the different
207 phylogenetic trees used to reconstruct the ancestral sequences. For example, ancestors
208 55 547 and 35 442 are each separated by 9 unique mutations from their closest relatives
209 without PETase activity (ancestors 10_543 with A15S, A36V, T49S, T92S, N109D, R114S,
210 N145R, 1180V, S226A and 75_539 with A36V, T49D, T92S, M105Q, R114S, S124N, R167T,
211 P199S, A226S, respectively). Of these loss of function mutations, 3 are shared between either
212 background, 5 are unique and one is a reversion (S226A for 55 547, A226S for 35 442).
213 Intuitively, a combination (with at least one) of these mutations are required to be fixed in
214  either respective cutinase background to impart PETase activity. Similarly, ancestor 10_543
215  is separated by 8 mutations from its closest relative with PETase activity (70_439 with E28Q,
216 S49D, S124N, R145N, V180I, P199S, S215T, A226S); of the 8 mutations associated with

217  gain-of-function in the background of 10 543, only 3 are specifically shared with gain-of-
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218 function mutations in 55 _547. Nearly all functionally consequential mutations across
219  backgrounds are distal to the active site and PET binding pocket. This suggests that (i) there
220 are numerous (and diverse) molecular mechanisms by which PETase activity can emerge
221  from an ancestral cutinase without PETase activity, (ii) these mechanisms are not obviously
222  associated with a restructuring of the enzyme active site and (iii) PETase activity is readily
223  evolutionarily accessible within the cutinase family, consistent with recent observations of

224  PETases that have emerged from cutinase backgrounds'"'?,

225
s
E10
g
<
05 ﬁ
0.0
A O
é’?h \éﬁ
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227 Figure 2. Structural characterization of 55_547 and 35_442. A) Positions of gain-of-function (GOF)
228 mutations in the inactive ancestor 10_543, and B) loss-of-function (LOF) mutations in the active
229  ancestors 55 547 and C) 35 442. GOF and LOF mutations are shown as teal and red spheres,
230  respectively. AlphaFold***® was used to generate models of each ancestor. Most GOF/LOF mutations
231  are distal from the catalytic site residues (blue), and the putative PET binding site highlighted by the
232  docked 2HE-(MHET)3 ligand (black). Structural analysis of the active site residues H210, S132 and
233 D178 in ancestors 10_543, 55 547, and 35_442 shows uniform alignment, indicating that PETase
234 activity does not arise from modifications within the active sites (SI. Figure 4). D) Domain-swapped
235  homodimer observed in the crystal structure of ancestor 55_547 with two C-terminal strands swapped
236  (PDB 8ETX). The N- and C- termini of each subunit are indicated. The dimer is coordinated by sodium
237  ions (represented as purple spheres) in the crystal lattice. E) Positions on the flexible C-terminus of
238  ancestor 55_547 targeted for disulfide engineering, as shown in the crystal structure (left; PDB 8ETX),
239  resulting in the disulfide mutant N206C/S253C, as generated by AlphaFold**“® (right). The predicted
240  formation of an additional B-strand at the C-terminus, constrained by the disulfide bond, is shown. F)
241 PETase activity of ancestor 55_547 and the disulfide mutant N206C/S253C. The bulk soluble products
242  of PET hydrolysis (TPA, MHET, BHET) are measured by absorbance at 260 nm after 16 hours
243  incubation with the enzyme at 60 °C. Data are represented as the mean £ SEM (n = 3).

244

245  We next determined the crystal structures of two active ancestors, 35_442 (PDB 8ETY) and
246 55 547 (PDB 8ETX), and identified an additional pathway to optimizing PETase activity
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247  beyond modification of the active site. Both ancestors crystallized in the C222 space group at
248  resolutions of 1.5 - 1.8 A (Supplementary Table 1). Structural analysis revealed the formation
249  of domain-swapped dimers (Figure 2D). The observation of domain swapping, likely induced
250 by the high protein concentration in the crystallization conditions, suggests an intrinsic
251 flexibility of the C-terminus, a characteristic commonly observed in proteins previously
252  characterized to form domain-swapped dimers*’. Given the flexible nature of the C-terminus,
253 it was hypothesized that introducing a disulfide bond to constrain this region into forming an
254  intramolecular B-sheet would enhance enzyme stability (Figure 2E). Furthermore, the chosen
255  site for the disulfide bond coincided with the predicted Ca®*/Mg?* binding site of the ancestors
256 based on homology to extant cutinases, a region previously targeted for disulfide bond
257  engineering in TfCut2 and LCC for improved thermostability and PETase activity®*4°. We
258 introduced the disulfide mutation N206C/S253C to ancestor 55 547 and experimental
259  characterization of the resulting mutant demonstrated an approximately 2-fold improvement
260 in whole-cell activity (A0 nm = 1.22 £ 0.22) (Figure 2F) and a 1.5-fold increase in soluble
261  expression levels compared to the 55 547 background determined by Bradford assay
262  (Supplementary Figure 5). In combination with our comparative analysis of the selected
263 inactive and active ancestors, the successful optimization of PETase activity via the
264  introduction of a disulfide bond distal to the active site illustrates that PETase activity within
265 the cutinase family can emerge and be enhanced through mechanisms that extend beyond
266 the structural reconfiguration of the active site. It is therefore likely that activity optimization is,
267  atleastin part, being driven by thermodynamic and kinetic stabilization.

268

269
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270  Alternate Reconstructions of Ancestral Cutinases 35_442 and 55_547.
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272 Figure 3. Alternate reconstructions and random recombinations of ancestral cutinases 35_442
273 and 55_547. Activity of alternate reconstructions of A) ancestor 55 547 and B) 35 442 against
274 amorphous PET film. The bulk soluble products of PET hydrolysis (TPA, MHET, BHET) are measured
275 by absorbance at 260 nm after 16 hours incubation with the enzyme at 60 °C. Data are represented as
276  the mean = SEM (n = 3). C) Posterior probability distributions for ancestors 55 547 and 35_442.

277

278

279 We next experimentally characterized all alternate sequences of ancestors 55 547 (40
280 mutants) and 35_442 (29 mutants) that individually sampled each mutation that had been
281  ambiguously reconstructed. Here, we define ambiguity as any site where at least two amino
282  acids are reconstructed with a posterior probability of >= 0.2. This provided a high resolution
283  mutagenic map of the local sequence space around either of the ancestral PETase variants.
284  Ambiguously reconstructed sites were spatially distributed over the protein and not localized
285 to any specific functional area (Supplementary Figure 7). Having already established that
286 the mean posterior probability of an ancestral sequence is a poor indicator of PETase activity
287 (Supplementary Figure 4B) and that relatively minor changes in the cutinase sequence can
288 drastically alter PETase activity, we hypothesized that the neighborhood of evolutionarily
289  possible (albeit less probable) sequences may contain mutations that benefit PETase activity.
290 This hypothesis was guided by recent ASR studies on the /. sakaiensis PETase branch of the
291  cutinase phylogeny where PETase activity appeared to emerge transiently within ancestral
292 lineages®. Experimental characterization revealed that all of the alternate reconstructions of
293 ancestors 55 547 and 35 442 demonstrated PETase activity that was comparable (or

294  reduced) to either respective ancestral background (Figure 3A-B).

10
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298  Figure 4. PETase activities of recombined alternate reconstructions. A) Structure of 35_442 and
299 55 547 aligned. Positions selected for recombination are highlighted as spheres. The docked pose of
300 2HE-(MHET)s is shown in a close-up of the binding and catalytic site, and residues that form the putative
301 PET binding site based on homology to LCC are shown. Residues comprising subsites -2 (green), -1
302 (blue) and +1 (brown) are highlighted. The catalytic residues Ser132-His210-Asp178 are also shown
303  (purple; red labels). B) Activity of recombined mutations from alternate reconstructions of 35_442 and
304 55 547 against amorphous PET film. The bulk soluble products of PET hydrolysis (TPA, MHET, BHET)
305  are measured by absorbance at 260 nm after 16 hours incubation with the enzyme at 60 °C. Data are
306 represented as the mean + SEM (n = 3) and grouped based on mutations recombined in the background
307  of 55_547 (left) and 35_442 (middle).

308

309 A subset of randomly sampled combinations of single mutations from the alternate
310  reconstructions were selected to explore potential epistatic interactions and their impact on
311  PETase activity. The 7 selected mutations, E14D, E28Q, A36V, S52A (in 55_547), F94L,
312  S196A, and H247S, were recombined in various combinations from 2 to 5 point mutations in
313  the background of 35 442 and 55_547. E28Q, A36V, S52A, S196A, and H247S are surface
314  mutations, distal from the catalytic and putative PET binding site (Figure 4A). In contrast,
315  F94L is positioned within the PET binding site, as deduced from docking of 2HE-(MHET )z into
316  both 35_442 and 55_547 (Figure 4A), as well as structural homology to previously predicted
317  PET binding sites in LCC. As single mutations, E14D, E28Q, A36V, F94L and H247S were
318  considered neutral based on PETase activity relative to the 35_442 background, while S52A
319 and S196A exhibited decreased activity relative to 55 547. In our experimental
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320 characterization, we identified 24 recombined variants with increased PETase activity relative
321  to their ancestral background (Figure 4B). Specifically, 10 recombined variants in the
322  background of 55 547 showed increased PETase activity, with the most active being
323 E14D/E28Q/A36V (Ao nm = 1.20 £ 0.26), E28Q/S196A (Ao nm = 1.08 + 0.05), and
324  E28Q/S52A/S196A (A0 nm = 1.03 £ 0.09). Similarly, 14 recombinations in the background
325 of 35_442 demonstrated increased activity, with the most active being E28Q/S196A (A2s0 nm
326 =1.42+0.29), E28Q/F94L (A2s0 nm =0.99 £ 0.17), and E14D/H247S (Azs0 nm = 0.77 + 0.08).
327 Interestingly, we identified 17 recombined variants that exhibited improved PETase activity
328 relative to LCC ICCG, the most active extant variant in the study, with 35_442 E28Q/S196A,
329 displaying ~2.5-fold higher activity.

330

331  The mutational analysis of the recombined variants highlighted E28Q as a key mutation,

332 present in 14 of the 17 variants that demonstrated enhanced activity compared to the
333  engineered LCC ICCG variant. This suggests a positive effect of E28Q on PETase activity;
334  however, this was only observed in the presence of other mutations from the recombinations.
335 The context dependence of E28Q is especially significant when considering the double
336  mutation E28Q/S196A, which was among the most active in both ancestral backgrounds.
337 When assessed independently in the 55 547 background, the E28Q mutation adversely
338  affected activity (A2so nm = 0.00 £ 0.00), and the S196A mutation similarly led to a reduction
339 in activity relative to the ancestor (A2s0 nm = 0.16 £ 0.02). However, the combination of these
340 mutations resulted in a significant increase in activity beyond the additive effects of the single
341  mutations (A0 Nm = 1.08 £ 0.05), indicative of positive epistatic interactions.

342

343 Ruggedness analysis reveals epistasis in recombined mutations.

344

345 We next analyzed the topology of the PETase fithess landscape over the 196 cutinase
346  sequences characterized in this study. This was done both to build a holistic overview of
347  PETase evolution and function in the cutinase family and to assess the effectiveness of this
348 approach in exploring new-to-nature fitness peaks across functional sequence space. To
349  achieve this, we embedded cutinase sequences as nodes in a network graph where edges
350 connect each node to its k nearest (Euclidean) neighbors. The scheme used to embed
351  sequences therefore dictates the topology of the network graph. When this is the one-hot
352  encoding (OHE), the Euclidean distance between nodes in the network graph is proportional
353  to the number of mutations between the sequences they represent. The OHE graph network
354  therefore captures PETase activity as a function of the mutations between sequences when
355 the signal over the graph is the measured PETase activity (Figure 5A).

356
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357  Encoding protein sequences as the hidden states of a PLM can capture comparatively richer
358 features than the OHE?***, albeit at the cost of interpretability over the network graph®.
359 Euclidean distances in the latent space of a representation model may share no interpretable
360 relationship with equivalent Euclidean distances in the OHE space, therefore confounding the
361 interpretation of PETase activity over the network graph to non-linear distances instead of
362  simple mutational distances.

363

364 We embedded all characterized cutinases in a OHE basis and visualized the resulting
365 landscape in 2 dimensions with t-distributed stochastic neighbor embedding (tSNE)
366  dimensionality reduction. In this space, ancestral and extant cutinases form homogenous,
367 random clusters (Figure 5A). The alternate reconstructions of ancestors 55_547 and 35 442
368 and their recombinations are grouped as closely connected clusters around their respective
369 ancestral backgrounds. Despite their comparable PETase activity, sequences in both
370 backgrounds are resolved as independent components that share few direct edge
371 connections, suggesting that the PETase fithess landscape is multi-modal (i.e. there are
372  multiple solution spaces to competent PETase activity) when considering only naive, residue-
373  wise OHE sequence embeddings.

374

375  We then reconstructed the PETase fitness landscape in a learned representation space. To
376  ensure that local features of the cutinase sequence space were captured by a PLM, we used
377  arecently described method of local ancestral sequence embedding (LASE)®. In brief, LASE
378 trains a small and family-specific deep learning model on ancestrally reconstructed sequence
379 datasets. The features learned by LASE capture the functional properties of proteins, such as
380 catalytic efficiency, in a non-linear space that is not interpretable with simple mutational
381  distances. Embedding in LASE can therefore reveal topological features of the fitness map
382  that are obfuscated in an OHE embedding.

383

384  Sequences in the LASE embedding space cluster according to their relative fitness and how
385  they were sampled (e.g. extant, ancestral, alternate or recombined; Figure 5B). For example,
386  all point mutations from alternate reconstructions and recombinations group together in a
387  single connected component in the LASE space, irrespective of the genetic background
388 (ancestors 55 547 or 35_442) they were introduced into. Moreso, ancestral and extant
389  sequences cluster into disconnected components, despite their often high degree of site-wise
390 sequence similarity. Indeed, the LASE representation space is highly structured relative to the
391 OHE space, where ancestral and extant sequences co-occur across distinct identity groups in

392  the network graph. This indicates that our sequence sampling strategy is highly structured and
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393 systematic over an evolutionarily informative representation space, while appearing
394  somewhat random in the OHE space.

395

396 Finally, we used a graph signal processing approach to quantify ruggedness in the cutinase
397  PET fitness landscape. We define ruggedness as the non-linearity between the fitness of a
398 sequence and its neighbors in the network graph. We use the Dirichlet energy of the graph,
399  which describes the non-linearity of a signal over a graph, to measure this***"°2, In order to
400 make the Dirichlet energy interpretable as a node-wise local quantity, we calculate it over each
401  subgraph in the network defined by an edge-length of exactly 1, thus reducing its interpretation
402 to the deviation from linearity a node demonstrates relative only to its immediate neighbors;
403 the fitness signal over the network graph changes as a linear function (i.e. is smooth) over
404 nodes of the graph that are characterized by low local DEs. The local Dirichlet energy is
405 therefore a descriptor of how confounded by epistasis a sequence is. This analysis revealed
406 that the fitness landscape is most rugged over the cutinase variants with the greatest PETase
407  activity. Indeed, the node with the single highest local Dirichlet energy is also the fitness peak
408 (ancestor 55_547 E28Q/S196A). Importantly, this was true for both OHE and LASE network
409 graphs (Figure 5C; Supplementary Figure 9), indicating that the combinatorial mutations
410 E28Q/S196A inthe 55 547 background would be unlikely to be introduced through a stepwise
411 mutagenesis approach due to the relatively low activity of each single mutation in isolation.
412  Together, these analyses demonstrate that mASR can effectively guide protein engineering
413 by discovering evolutionary features that are not immediately apparent, and can help navigate
414  rugged regions of sequence space to find fit enzyme variants that are not rationally obvious.
415
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Figure 5. Analysis and regression on PETase sequence space. PETase sequences were
represented in A) OHE- and B) LASE-forms and projected into a 2-dimensional space with
tSNE. Colour represents design stage and size represents activity (A2so nm (a.u.)). The OHE
and LASE sequence data was then used to train regression models. C) The local Dirichlet
energy for each variant was determined over subgraphs that include the variant’s immediate
neighbors as determined by kNN. Edges connect variants that were found to be neighbors
and color represents the local Dirichlet energy calculated.
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424  Discussion

425

426  In our investigation into the evolutionary sequence space of bacterial cutinases with PETase
427  activity, we employed multiplexed ASR* to enhance our exploration. This method allowed us
428  to reconstruct and analyze ancestral cutinases across 20 diverse phylogenetic topologies,
429 moving beyond the constraints of a single-tree perspective. Our experimental
430 characterizations of 20 extant and 48 ancestral cutinases unveiled a wide spectrum of
431  activities against amorphous PET film (A2so nm = 0.00 - 0.59). Of particular interest were two
432  ancestors, 35 442 (Axo nm = 0.37 + 0.06) and 55 547 (Ao nm = 0.59 £ 0.09), each
433  representing the most recent common ancestor of LCC'® and TfCut2® on independent trees
434  and exhibiting similar activity to the most active extant cutinases, LCC (A2s0 nm = Azgo NmM =
435 0.34 £ 0.03) and BhrPETase (A2s0 nm = 0.49 £ 0.01). Notably, the use of mMASR was crucial
436 in uncovering the variability of ancestrally reconstructed sequences, as it revealed that
437  equivalent nodes from independent phylogenetic topologies exhibited highly varied activity
438 despite all topologies being equally valid representations of the underlying sequence
439 alignment based on the AU-test. While some ancestors were inactive, others showed
440 significant PETase activity comparable to characterized extant PETases. These observations
441  highlight the utility of the mASR method in improving both the success and robustness of ASR
442  applications in protein engineering. By embracing a wider array of evolutionary scenarios,
443 mASR allowed for a more comprehensive and reliable identification of functional sequences
444  relative to a single-tree approach. Multiplexed ASR may therefore become an important
445  component of ASR- and evolutionary-guided enzyme design strategies in the future.

446

447  Our sequence and structural analysis of active and inactive ancestral cutinases provided
448 insights on the evolutionary emergence of PETase activity in the cutinase family. In particular,
449  our findings suggest that PETase activity in the TfCut2 and LCC PETase lineages has
450 emerged through neutral mutations that are distal to the active site, rather than specific
451 changes localized to the active site itself, as observed in the evolution of I. sakaiensis
452  PETase®. Our detailed examination of ancestors 35_442 and 55_547, along with their closest
453 inactive counterparts, highlighted unique gain-of-function mutations leading to PETase activity
454  from these distinct phylogenetic backgrounds. These findings imply the existence of multiple,
455  distinct evolutionary pathways for acquiring PETase functionality and indicate that PETase
456  activity is readily accessible within the cutinase family.

457

458  Our structural analysis also revealed the formation of domain-swapped dimers between

459 adjacent symmetry mates in the crystal structures of the ancestral variants 35 442 and
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460 55 547. While possibly an artifact of the crystallization conditions, this observation suggests
461 a certain degree of structural flexibility in the C-terminus of these ancestors even in solution.
462 Based on this observation, we introduced a disulfide bond in the C-terminus of ancestor
463 55 547 that coincided with the predicted Ca?*/Mg** binding site, a strategy homologous to
464  similar successful modifications in TfCut2 and LCC that were observed to improve stability
465  and activity®*®*°, Indeed, the introduction of the disulfide N206C/S253C resulted in a variant
466  of 55 547 with an approximately 2-fold improvement in whole-cell activity and 1.5-fold
467  improvement in soluble expression relative to the background ancestor.

468

469 We deepened our exploration of the evolutionary sequence space of the cutinase family by
470 addressing ambiguously reconstructed positions in the initial mMASR. Ambiguous positions
471  were identified based on a posterior probability threshold of = 0.2 for the second most probable
472  residue. Introducing these 69 alternate reconstructions as single mutations into 35_442 and
473  55_547, we observed that most mutations were either neutral or decreased PETase activity
474  relative to the ancestral background. However, when we recombined a random subset of the
475  alternate reconstructions, we observed several recombinations in the background of both
476 35 442 (E28Q/S196A) and 55 547 (E14D/E28Q/A36V) that displayed increased PETase
477  activity, not only relative to the initial ancestors, but also to an engineered variant of LCC with
478  enhanced activity, LCC'°C® 5. Notably, the most active recombinations exhibited activity
479 improvements that exceeded the additive effects predicted from their individual mutations,
480  highlighting positive epistatic interactions that contribute to their PETase activity.

481

482  To complement our experimental investigations, we modeled the sequence-fithess landscape
483  of all 196 cutinase sequences characterized in our study, employing a graph signal processing
484  approach that elucidates the complex topology of the PETase fitness landscape. This
485 methodology involved embedding cutinase sequences as nodes in a network graph, where
486 each node was connected to its k nearest (Euclidean) neighbors, thereby enabling a direct
487  comparison between two embedding schemes, OHE and LASE. While OHE provides a
488  straightforward mutational distance metric between sequences, it often oversimplifies the
489  nuanced relationship between sequence variation and function. In contrast, LASE, by training
490 afamily-specific deep learning model on our dataset of ancestrally reconstructed sequences,
491 captures the functional properties of proteins in an abstract manner, revealing non-linear
492  sequence-activity relationships that are obscured in OHE representations.

493

494  Using LASE to map the sequence-fitness landscape, we highlighted iterative improvements
495 in PETase activity throughout the different phases of our sequence exploration of the cutinase

496 family. This embedding not only facilitated a deeper understanding of the functional
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implications of sequence variation but also allowed us to identify clusters of sequences with
similar functional profiles, regardless of their evolutionary background. Moreover, our analysis
of the fithess landscape's ruggedness via LASE provided new insights into the role of epistasis
in PETase activity. The local Dirichlet energy calculations revealed that sequences with the
highest PETase activity were associated with the greatest ruggedness, suggesting that the
most functionally optimized variants emerge from complex interplays of multiple mutations
rather than from linear accumulations of beneficial single mutations. This observation
highlights the significance of epistatic interactions in driving the evolutionary innovation of
PETase activity, illustrating that successful enzyme variants often lie in regions of the fitness
landscape that are not readily accessed through single mutational steps, but can be accessed

using evolutionarily-guided approaches, such as mASR.
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510 Materials and Methods

511

512  Ancestral sequence reconstruction. 1000 sequences were collected from the NCBI non-
513 redundant (nr) database with blast using LCC (UniProt: G9BY57) as seed and an e-value
514  cutoff of 1e-5. Sequence redundancy was removed to 90% ID in CD-HIT®. Signal peptides
515 were deleted using SignalP4.0%. Alignment was performed using the GINSI protocol of
516  MAFFT®. 100 replicates of independent model parameterization and tree search (default
517  parameters) were performed using IQTREE2* on the NCI GADI supercomputer. The
518 sequence evolution model was parameterized using ModelFinder®’, as implemented in
519 IQTREE2. Branch supports were determined as the ultrafast bootstrap approximation3®
520 calculated to 1000 replicates, as implemented in IQRTREE2. The Approximately unbiased test*’
521 was conducted to 10000 replicates for all ML topologies. Empirical Bayesian ASR was
522  performed on 20 of the 100 trees that failed rejection by the AU test in CodeML*® using the
523 ML replacement matrix (LG)*® with rates modeled as a discrete gamma parameterized with 4
524  rate categories.

525

526  Small-scale protein expression and purification. Plasmids were transformed by heat shock
527  into chemically competent BL21(DE3) E. coli cells and plated onto Lysogeny broth (LB) agar
528  supplemented with 100 pg/mL kanamycin and incubated at 37 °C overnight. A single colony
529  was used to inoculate 1.5 mL autoinduction media supplemented with 100 ug/mL kanamycin
530 ina 2.2 mL 96-well deep well block and grown at 1050 rpm at 37 °C for 5 hours, followed by
531  room temperature (RT; 25 °C) for 16 hours.

532

533  Cells were harvested by centrifugation at 2000 x g for 15 minutes at RT and resuspended in
534  Lysis Buffer (1X BugBuster® Protein Extraction Reagent (Merck-Millipore), 20 mM Tris, 300
535 mM NacCl, 1 U/ml Turbonuclease (Sigma) pH 8). The cell suspension was left to incubate at
536  RT for 20 minutes with gentle shaking. The lysate was separated from the insoluble cell debris
537 by centrifugation at 2250 x g for 1 hour at RT.

538

539 The clarified lysate was then diluted with 100 pl of Equilibration Buffer (20 mM Tris, 300 mM
540 NaCl pH 8) and purified by nickel-charged IMAC using a 96-well HisPurTM Ni-NTA Spin Plate
541 (ThermoFisher Scientific) equilibrated in Equilibration Buffer, washing the sample three times
542  with 250 pl of Wash Buffer (20 mM Tris, 300 mM NaCl, 10 mM imidazole pH 8) and eluting
543  with 250 pl of Elution Buffer (20 mM Tris, 300 mM NaCl, 150 mM imidazole pH 8). All
544  centrifugation steps following addition of Wash or Elution Buffer were at 1000 x g for 1 minute
545 at RT. The eluate was stored at 4 °C. Bradford assay was used to quantify the soluble

546  expression levels post-purification (Supplementary Figure 1).
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547

548 UV absorbance assay for PET-degrading activity. For purified protein from 96-well
549  expression and purification, 15 ul of the eluate from the 96-well Ni-NTA purification and 285
550 ul of Reaction Buffer (50 mM Bicine pH 9) was added to a clear 96-well plate. For purified
551 protein from large-scale expression and purification, 300 ul of 100 nM enzyme in Reaction
552  Buffer was added to a clear 96-well plate. A single disk of amorphous PET (Goodfellow
553 ES301445) with 4 mm diameter and 0.25 mm thickness was added to each well. The plate
554  was incubated at 60 °C for 16 hours. Following incubation, 100 ul of the reaction solution was
555 transferred to a clear UV-transparent 96-well plate and the absorbance was measured
556  between 240 to 300 nm in 10 nm steps using the Epoch Microplate Spectrophotometer
557  (BioTek) (Supplementary Figure 2). For comparison of activity of all variants, the absorbance
558 at 260 nm was used. Assays were repeated in triplicate for each variant.

559

560 Assay data processing. To correct for possible systematic error between replicate data
561 points, the mean absorbance at 260 nm for each replicate was determined. Using the mean
562  absorbance, a scaling coefficient was assigned to the replicates with the lowest and highest
563 mean values such that the mean of the scaled absorbance values equaled the mean of the
564 replicate with the mid-range mean value. To ensure scaling improved consistency between
565 replicates, correlograms of the data before (Supplementary Figure 3) and after
566 (Supplementary Figure 4) scaling were produced to confirm the monotonic (rank) correlation
567  between replicates was preserved.

568

569 Cloning of TEV-PETase variants for crystallography studies. Primer pairs containing the
570 DNA sequence for the TEV cleavage site (5-GAAAACCTGTATTTTCAAAGC-3') were
571  constructed, specific to each PETase variant. PCR was performed using these primers and
572  PETase variant genes to create mutant fragments. These fragments were reassembled using
573  Gibson Assembly®® and checked through Sanger sequencing to ensure the TEV cleavage site
574  was correctly introduced.

575

576 Large scale protein expression and purification. The TEV-PETase ancestral variants
577 plasmids were transformed using electroporation into electrocompetent E. cloni® cells
578  (Lucigen) and plated onto LB agar supplemented with 100 ug/mL kanamycin. The plates were
579 incubated overnight at 37 °C. A single colony was inoculated into a 10 mL solution of LB media
580  with 100 pg/mL kanamycin and incubated overnight at 37 °C and 180 rotations per minute
581  (rpm). This liquid starter culture was then added to 1 L of autoinduction media® (6 g NazHPOs.,
582 3 g KH2PO4, 20 g tryptone, 5 g yeast extract, 5 g NaCl, 10 mL of 60% (v/v) glycerol, 5 mL of
583  10% (w/v) glucose, and 25 mL of 8% (w/v) lactose) with 100 ug/mL kanamycin and incubated
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584  for 24 hours at room temperature and 180 rpm. The cells were separated from the media by
585  centrifugation at 5000 x g for 15 minutes at 4 °C and resuspended in lysis buffer (400 mM
586 NaCl, 25 mM imidazole, 1 U/mL Turbonuclease (Sigma), and 50 mM Tris-HCI pH 8.0). The
587  resuspended cell solution was lysed using two rounds of sonication at 50% power and pulse
588 time for 5 minutes, with 5 minutes on ice between sonication steps. Next, the sample was
589 centrifuged at 32000 x g for 60 minutes at 4 °C, and the soluble cell solution was separated
590 from the insoluble cell material and filtered through a 0.45 um pore size filter. The filtered
591  soluble cell solution was passed through an equilibrated Nickel-charged IMAC using a 5 mL
592  HisTrap HP (GE Healthcare Life Sciences) in Lysis Buffer. The protein bound to the column
593  was eluted using elution buffer (400 mM NacCl, 500 mM imidazole, and 50 mM Tris-HCI pH
594  8.0). The protein sample was buffer exchanged to TEV reaction buffer (100 mM NacCl, 0.5 mM
595 EDTA, 1 mM DTT, 1% (v/v) glycerol, and 50 mM Tris-HCI pH 8.0) using a PD-10 desalting
596  column and diluted to 50 mL in this buffer. A 1 mL solution containing 1 mg/ml of purified TEV
597  protease was added and incubated at room temperature overnight. The cleaved sample was
598 passed through an equilibrated Nickel-charged IMAC using a 5 mL HisTrap HP (GE
599  Healthcare Life Sciences), and the flowthrough was collected. This flowthrough was
600 concentrated using the 3 kDa Amicon® ultra 15 mL centrifugal filters and filtered through a
601  0.22 um filter. Finally, the cleaved protein was purified to homogeneity using size-exclusion
602 chromatography, and the HiLoad 26/600 Superdex 200 column (GE Healthcare Life Sciences)
603  was equilibrated in size-exclusion buffer (150 mM NaCl, 25 mM HEPES pH 7.5).

604

605 Protein crystallisation and structure determination. Proteins were concentrated using the
606 3 kDa Amicon® ultra 15 mL centrifugal filters to 15-36 mg/ml and crystallized in 20% (w/v)
607 PEG 3350 alongside 0.2 M salt and BisTris buffer solution. Specifically, ancestor 55_547 in
608 0.2 M sodium/potassium tartrate, 0.1 M BisTris propane pH 7.5 and 20% (w/v) PEG 3350; and
609 ancestor 35 442 in 0.2 M sodium malonate, 0.1 M BisTris propane pH 6.5 and 20% (w/v) PEG
610 3350. The X-ray diffraction data were collected on the MX2 beamline at the Australian
611  Synchrotron®’. The data was processed using XDS®, and the phase problem was resolved
612  with molecular replacement using the PETase WT structure (PDB: 6EQE) as the search
613  model. The ligands and solvent molecules were removed and then used as the search model
614  part of Phaser (CCP4)%. The structure was refined using phenix.refine® through multiple
615 iterative steps, and rebuilt each time with Coot®®
616 35 442 were deposited in the protein data bank under the PDB ID of 8ETX and 8ETY,
617  respectively.

618

619 Protein sequence representations. To analyze PETase sequence space One-hot

. The structures of ancestors 55 547 and

620 embeddings (OHE) and Learned Ancestral Sequence Embeddings (LASE) were made. To
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621  produce OHE, aligned PETase sequences were converted into a (20 x 267) vectors where
622 gaps were represented as a zero vector of length 20. The LASE embedding model was
623 implemented as a Transformer in PyTorch 2.0.1 as previously described®, with three encoder
624  blocks with 2-headed multihead attention (64 dimensions) and a feed-forward fully-connected
625 layer (128 dimensions). The LASE embedding model was trained with a masking percent of
626  15%, over 100 epochs with a batch size of 32 using the Adam optimizer. Loss was determined
627  as the categorical cross entropy loss. Performance over training was assessed with perplexity
628 and categorical accuracy (Supplementary Figure 8).

629

630 Local Dirichlet energy calculations.

631  To estimate the local ruggedness of each PETase variant, the k-nearest neighbors of each
632 node were used to produce a KNN sub-graph for each variant with scikit-learn 1.2.1. The kNN
633  sub-graphs were made symmetric by defining an edge in either direction to be a single edge.
634  The dirichlet energy was calculated as previously described>*°®:

635

636 Am =1/NyTLy

637

638  Where, An is normalized dirichlet energy, N, the number of variants in the sub-graph, y, the
639  activity (absorbance) of each variant and L the graph Laplacian operator of the adjacency
640  matrix of each kNN sub-graph.
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