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 19 

The enzymatic degradation of polyethylene terephthalate (PET) is a promising method of 20 
advanced plastic recycling. Traditional protein engineering methods often fall short in 21 
exploring protein sequence space for optimal enzymes due to structural and rational 22 
design limitations. Our study addresses this by using multiplexed ancestral sequence 23 
reconstruction (mASR) to explore the evolutionary sequence space of PET-degrading 24 
cutinases. With a dataset of 397 cutinase sequences, we created a diverse library of 25 
ancestral sequences. Experimental characterization of 48 ancestral sequences revealed 26 
a wide range of PETase activities, highlighting the value of mASR in uncovering functional 27 
variants when compared to traditional ASR. Our results showed that PETase activity in 28 
cutinases evolved through diverse pathways involving distal mutations to the active site, 29 
and is readily accessible within this family. Additionally, our analysis of the PETase fitness 30 
landscape using one-hot encoding (OHE) and local ancestral sequence embedding 31 
(LASE) highlighted the effectiveness of LASE in capturing sequence features relevant to 32 
activity. This work emphasizes the utility of mASR as a protein engineering tool for 33 
identifying enhanced PET-degrading enzymes, and the advantages of the LASE 34 
embedding scheme in mapping the PETase fitness landscape. 35 

 36 

  37 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 27, 2024. ; https://doi.org/10.1101/2024.04.25.591214doi: bioRxiv preprint 

mailto:colin.jackson@anu.edu.au
https://doi.org/10.1101/2024.04.25.591214
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 2 

Introduction 38 

 39 

Over 350 million tonnes of plastic are produced annually, with the majority being derived from 40 

petrochemicals1. However, the current global recycling rate of plastics is estimated to be less 41 

than 10%, partially due to the technological constraints of mechanical (melt-extrusion) 42 

recycling2. There is a pressing need to develop advanced and scalable recycling methods that 43 

will enable the transition towards a circular plastic economy. In the last decade, enzymatic 44 

depolymerization of plastics has emerged as one such advanced recycling method3. The 45 

enzymatic degradation of polyethylene terephthalate (PET), a versatile thermoplastic 46 

commonly found in food and beverage packaging, and polyester textiles has received 47 

particular interest3. 48 

 49 

PET-degrading enzymes that have been characterized to date, including those classified as 50 

cutinases4–6 (EC 3.1.1.74),  lipases7 (EC 3.1.1.3), and carboxylesterases8 (EC 3.1.1.1), belong 51 

to the esterase subclass (EC 3.1) and are characterized by a catalytic triad (Ser-His-Asp) 52 

typical of the α/β hydrolase fold superfamily. Cutinases have garnered significant interest due 53 

to their ability to hydrolyse both aromatic and aliphatic polyesters9. Cutinases of bacterial5,9,10, 54 

fungal7, and metagenomic11–13 origins have been studied for their PETase activity, including 55 

Thc_Cut1 and Thc_Cut from Thermobifida cellulosilytica5, TfCut2 from Thermobifida fusca5, 56 

HiC from Humicola insolens14, FsC from Fusarium solani pisi15, and LCC from leaf-branch 57 

compost metagenome16. However, extant cutinases are often unsuitable for direct use in 58 

industrial processes, necessitating optimisation to improve properties such as catalytic 59 

efficiency17, stability under harsh conditions18,19, and to alleviate product inhibition20. For 60 

example, active site optimisation through rational design6,10,21 and evolutionarily-guided 61 

engineering20 has yielded significant improvements in PET hydrolysis across various cutinase 62 

backgrounds. While structure-guided protein engineering has been effective in improving the 63 

efficiency of extant PETases, it has provided little insight on the mechanisms by which PETase 64 

activity emerges or has been optimized by evolution. 65 

 66 

Ancestral sequence reconstruction (ASR), which utilizes a phylogenetic tree and a statistical 67 

model of evolution to infer the sequences of extinct, ancestral proteins, can provide critical 68 

insights into molecular evolution and functional diversification within protein families22. ASR 69 

has been useful in studying sequence-function relationships over protein families23,24; such 70 

insight can shed light on the topologies of fitness landscapes that dictate the adaptive potential 71 

of proteins25. For example, ASR can give insight into the ruggedness (i.e. complexity) of a 72 

fitness landscape over large spans of evolutionarily accessible sequence space to reveal 73 
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fitness peaks that are inaccessible through stepwise mutational approaches24. In addition to 74 

this, ASR is also frequently used to engineer enzymes with enhanced industrial properties22,26–75 
28, making it a valuable tool in both protein engineering and understanding the mechanisms of 76 

molecular evolution. 77 

 78 

More recently, protein representation learning has become a widely used method in protein 79 

engineering and evolutionary inference29,30. Protein language models (PLM), which are deep 80 

neural networks trained to predict the identities of masked residues in a corpus of protein 81 

sequences29–32, can map information sparse and high dimensional protein sequences to fixed-82 

length vector representations. These vector representations capture the evolutionary and 83 

biophysical features of protein sequences in the representation model’s latent embedding 84 

space29,30. Indeed, PLMs have been used to learn the structure of fitness landscapes33–35, and 85 

can learn evolutionary features when trained with ancestrally reconstructed sequence data36.  86 

 87 

In this study, we applied ASR to explore the evolutionarily accessible sequence space of PET-88 

degrading cutinases. Using a dataset of 397 extant cutinase sequences with significant 89 

homology to known cutinases with PETase activity, we adopted a multiplexed ASR (mASR) 90 

approach to generate a diverse library of ancestral cutinase sequences. Through experimental 91 

characterization of 48 ancestral cutinases, we identified a broad range of PETase activities, 92 

including between equivalent nodes on distinct yet statistically indifferent phylogenetic 93 

topologies. Such findings highlight the importance of sampling diverse phylogenetic 94 

backgrounds to uncover functional ancestral variants. Furthermore, our study analyzed the 95 

topology of the PETase fitness landscape through two sequence embedding schemes: one-96 

hot encoding (OHE) and the more recently described local ancestral sequence embedding 97 

(LASE)36. We found that LASE was more effective in capturing cutinase sequence features 98 

pertinent to PETase activity, demonstrating a clear pattern of iterative improvement in PETase 99 

functionality throughout the sequence exploration phases of our study. This comprehensive 100 

approach not only highlights the utility of mASR in uncovering novel PETase variants but also 101 

emphasizes the role of advanced embedding techniques in mapping PETase fitness 102 

landscapes. 103 

 104 

 105 

 106 

 107 

 108 
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 4 

Results 109 

 110 

Multiplexed ASR yields functional PETases from diverse phylogenetic backgrounds. 111 

 112 

We used ASR to explore the PETase functional sequence space of the cutinase family. To 113 

maximize diversity in the local sequence space around known PETases, such as TfCut2 and 114 

LCC, we employed the recently described multiplexed ASR (mASR)36. In brief, mASR samples 115 

multiple statistically indifferent phylogenetic backgrounds from which to reconstruct ancestral 116 

sequences from. This produces diverse libraries of ancestral proteins that span functional 117 

sequence space over a distribution of realistic phylogenies. To achieve this, we performed 20 118 

replicates of maximum likelihood (ML) phylogenetic inference and ASR on a single dataset of 119 

397 extant cutinases with significant homology to Tfcut2 and LCC (E-value <= 1E-5). 120 

Consistent with previous phylogenetic studies37, PET hydrolytic cutinases were resolved as a 121 

polyphyletic group of two monophyletic lineages: the Thermobifida sp. PETases, which include 122 

Tfcut2, T. cellulosytica cutinase and T. alba esterase 1 and the LCC-like PETases that include 123 

LCC and BhrPETase. This topology was resolved consistently over all 20 phylogenetic priors 124 

used for mASR (Figure 1A). The placement of the PETase clades were supported by high 125 

ultra-fast bootstrap approximations38 (>= 0.95) and the ancestral nodes separating these 126 

groups were reconstructed in CodeML from the PAML39 suite with relatively high mean 127 

posterior probability (>0.9; based on ASR statistical benchmarking studies40). The resulting 128 

ancestral sequence library comprised approximately 1600 unique sequences that 129 

encompassed the evolutionarily accessible sequence space of the bacterial cutinase family.  130 
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 131 
Figure 1. Ancestral sequence reconstruction and characterization of ancestral cutinases. (A) 20 132 
replicates of phylogenetic reconstruction of the cutinase family with fixed extant node locations. All 20 133 
presented topologies failed rejection by the AU-test and are equally valid representations of the 134 
underlying sequence alignment. Extant tips of interest (Thermobifida cutinases, E5BBQ3, D4Q9N1, 135 
E9LVH9 and metagenomic assembled cutinases A0A2H5ZR95, G9B757 (LCC)) are labeled). 136 
Degradation of amorphous PET film by. (B) 20 extant and (C) 48 ancestral cutinases. The bulk soluble 137 
products of PET hydrolysis (TPA, MHET, BHET) are measured by absorbance at 260 nm after 16 hours 138 
incubation with the enzyme at 60 °C. Data are represented as the mean ± SEM (n = 3). (D) Phylogenetic 139 
tree 55, (E) 35 and (F) 10, with ancestors 35_442, 55_547 and 10_543 highlighted. Each ancestor 140 
belongs to equivalent nodes from independent phylogenetic topologies, and are the most recent 141 
common ancestor of LCC and TfCut2, extant cutinases with known PETase activity.  142 
 143 
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We selected 48 ancestral nodes from 20 different trees with homology to the most recent 144 

common ancestor of LCC and TfCut2 for experimental characterization and comparison to 145 

extant cutinases. Specifically, these nodes were chosen from the recent ancestors of the LCC 146 

and TfCut2 lineages (or the most recent common ancestor of both), with at least a single 147 

sequence sampled from each of the 20 distinct phylogenetic trees. Each ancestral sequence 148 

was selected as the maximum a posteriori (MAP) sequence that maximizes the posterior 149 

probability over the full-length of the reconstructed protein. The variants were expressed, 150 

purified and tested for PETase activity. The soluble expression level of each variant was 151 

measured using the Bradford assay (Supplementary Figure 1). PETase activity against 152 

amorphous PET film was measured by UV absorbance at 260 nm to detect the soluble 153 

products of PET hydrolysis after the removal of undigested film, including terephthalic acid 154 

(TPA), mono(2-hydroxyethyl) terephthalate (MHET), and bis(2-hydroxyethyl) terephthalate 155 

(BHET) (Supplementary Figure 2). Among the extant cutinases, the highest PETase 156 

activities were observed for LCC (A260 nm = 0.34 ± 0.03), BhrPETase from bacterium HR29 157 

(A260 nm = 0.49 ± 0.01), and a previously engineered variant of LCC with the mutations 158 

F243I/D238C/S283C/Y127G (LCC ICCG)6 (A260 nm = 0.54 ± 0.07), with other cutinases 159 

showing lower activity (Figure 1B). Of the 48 ancestral variants, we observed PETase activity 160 

for a number of ancestral cutinases from a diverse range of trees (Figure 1C). Several variants 161 

(1_533, 35_442, 55_547, 70_439, 70_440, and 85_456) exhibited similar activity to the most 162 

active extant cutinases, LCC and BhrPETase. From this group, we selected ancestors from 163 

tree 35, node 442 (35_442; A260 nm = 0.37 ± 0.06) and tree 55, node 547 (55_547; A260 nm = 164 

0.59 ± 0.09), for further investigation. Notably, these two ancestors belonged to equivalent 165 

positions from two independent phylogenetic trees (Figure 1D-F), representing the most 166 

recent common ancestor of LCC and TfCut2, and sharing 98.5% sequence identity to one 167 

another.  168 

 169 

Within the dataset of 48 ancestral sequences, 12 represent the same phylogenetic node (the 170 

most recent common ancestor of LCC and TfCut2) over 12 different phylogenetic 171 

backgrounds. Of these, 9 exhibited PETase activity while 3 were inactive on PET. 172 

Interestingly, the PETase ancestor 55_547 and the inactive ancestor 10_543 both represent 173 

equivalent positions (the most recent common ancestor of TfCut2 and LCC) in their respective 174 

phylogenetic backgrounds and differ by only 9/261 positions, yet 55_547 has activity against 175 

PET and 10_543 does not. The functional differences between these sequences arise solely 176 

from the topology of the phylogenetic tree used to reconstruct them and drastically alters how 177 

the evolution of PETase activity could be inferred. For example, in the case of the 55_547 178 

phylogeny, PETase activity appears to be a promiscuous ancestral trait that existed prior to 179 

the discovery of extant PETases (such as LCC and Thermobifida cutinases), whereas the 180 
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10_543 phylogeny supports the contradictory hypothesis that PETase activity emerged 181 

independently in LCC-like and Thermobifida PETase lineages from an ancestor without 182 

PETase activity. As both topologies failed rejection by the approximately unbiased (AU)41 test 183 

and are statistically indifferent at representing the observed alignment data, it is not possible 184 

to reject one of these hypotheses purely from a phylogenetic perspective. We also observe 185 

no correlation between the mean posterior probability of an ancestor and its activity 186 

(Supplementary Figure 5). This observation is somewhat counterintuitive, as the mean 187 

posterior probability of a sequence, which is the statistical confidence in the identity of a 188 

reconstructed ancestor, is often used to discriminate between poorly reconstructed sequences 189 

(and hence likely to be less fit) and those that are likely to be functional and fit40. Together, 190 

these results highlight the importance of sampling diverse phylogenetic backgrounds during 191 

ASR when accessing the functional sequence space of a protein family as minor phylogenetic 192 

incongruencies can translate into significant functional differences in (equivalent) 193 

reconstructed ancestral sequences. 194 

 195 

Structural characterization and analysis of ancestral cutinases. 196 
 197 
A comparative structural and sequence analysis of inactive and active ancestors suggests 198 

that PET hydrolysis appears to be a trait that is evolutionarily accessible from within the 199 

cutinase background. Unlike the I. sakaiensis PETase, which emerged through conformational 200 

optimization of the first- and second-shells via obvious selection within the active site42–44, 201 

PETase activity in the TfCut2 and LCC PETase lineages appears to emerge through non-202 

specific and likely neutral mutations that are often distal to the active site (Figure 2A-C). 203 

Indeed, analysis of ancestral cutinase sequences reveals virtually no differences in the PET 204 

binding sites between PETase active and inactive variants (Supplementary Figure 6). 205 

Furthermore, mutations associated with a gain-of-function vary between the different 206 

phylogenetic trees used to reconstruct the ancestral sequences. For example, ancestors 207 

55_547 and 35_442 are each separated by 9 unique mutations from their closest relatives 208 

without PETase activity (ancestors 10_543  with A15S, A36V, T49S, T92S, N109D, R114S, 209 

N145R, I180V, S226A and 75_539 with A36V, T49D, T92S, M105Q, R114S, S124N, R167T, 210 

P199S, A226S, respectively). Of these loss of function mutations, 3 are shared between either 211 

background, 5 are unique and one is a reversion (S226A for 55_547, A226S for 35_442).   212 

Intuitively, a combination (with at least one) of these mutations are required to be fixed in 213 

either respective cutinase background to impart PETase activity. Similarly, ancestor 10_543 214 

is separated by 8 mutations from its closest  relative with PETase activity (70_439 with E28Q, 215 

S49D, S124N, R145N, V180I, P199S, S215T, A226S); of the 8 mutations associated with 216 

gain-of-function in the background of 10_543, only 3 are specifically shared with gain-of-217 
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function mutations in 55_547. Nearly all functionally consequential mutations across 218 

backgrounds are distal to the active site and PET binding pocket. This suggests that (i) there 219 

are numerous (and diverse) molecular mechanisms by which PETase activity can emerge 220 

from an ancestral cutinase without PETase activity, (ii) these mechanisms are not obviously 221 

associated with a restructuring of the enzyme active site and (iii) PETase activity is readily 222 

evolutionarily accessible within the cutinase family, consistent with recent observations of 223 

PETases that have emerged from cutinase backgrounds11,12.  224 

 225 

 226 
Figure 2. Structural characterization of 55_547 and 35_442. A) Positions of gain-of-function (GOF) 227 
mutations in the inactive ancestor 10_543, and B) loss-of-function (LOF) mutations in the active 228 
ancestors 55_547 and C) 35_442. GOF and LOF mutations are shown as teal and red spheres, 229 
respectively. AlphaFold45,46 was used to generate models of each ancestor. Most GOF/LOF mutations 230 
are distal from the catalytic site residues (blue), and the putative PET binding site highlighted by the 231 
docked 2HE-(MHET)3 ligand (black). Structural analysis of the active site residues H210, S132 and 232 
D178 in ancestors 10_543, 55_547, and 35_442 shows uniform alignment, indicating that PETase 233 
activity does not arise from modifications within the active sites (SI.  Figure 4). D) Domain-swapped 234 
homodimer observed in the crystal structure of ancestor 55_547 with two C-terminal strands swapped 235 
(PDB 8ETX). The N- and C- termini of each subunit are indicated. The dimer is coordinated by sodium 236 
ions (represented as purple spheres) in the crystal lattice. E) Positions on the flexible C-terminus of 237 
ancestor 55_547 targeted for disulfide engineering, as shown in the crystal structure (left; PDB 8ETX), 238 
resulting in the disulfide mutant N206C/S253C, as generated by AlphaFold45,46 (right). The predicted 239 
formation of an additional β-strand at the C-terminus, constrained by the disulfide bond, is shown. F) 240 
PETase activity of ancestor 55_547 and the disulfide mutant N206C/S253C. The bulk soluble products 241 
of PET hydrolysis (TPA, MHET, BHET) are measured by absorbance at 260 nm after 16 hours 242 
incubation with the enzyme at 60 °C. Data are represented as the mean ± SEM (n = 3). 243 
 244 

We next determined the crystal structures of two active ancestors, 35_442 (PDB 8ETY) and 245 

55_547 (PDB 8ETX), and identified an additional pathway to optimizing PETase activity 246 
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beyond modification of the active site. Both ancestors crystallized in the C222 space group at 247 

resolutions of 1.5 - 1.8 Å (Supplementary Table 1). Structural analysis revealed the formation 248 

of domain-swapped dimers (Figure 2D). The observation of domain swapping, likely induced 249 

by the high protein concentration in the crystallization conditions, suggests an intrinsic 250 

flexibility of the C-terminus, a characteristic commonly observed in proteins previously 251 

characterized to form domain-swapped dimers47. Given the flexible nature of the C-terminus, 252 

it was hypothesized that introducing a disulfide bond to constrain this region into forming an 253 

intramolecular β-sheet would enhance enzyme stability (Figure 2E). Furthermore, the chosen 254 

site for the disulfide bond coincided with the predicted Ca2+/Mg2+ binding site of the ancestors 255 

based on homology to extant cutinases, a region previously targeted for disulfide bond 256 

engineering in TfCut2 and LCC for improved thermostability and PETase activity6,48,49. We 257 

introduced the disulfide mutation N206C/S253C to ancestor 55_547 and experimental 258 

characterization of the resulting mutant demonstrated an approximately 2-fold improvement 259 

in whole-cell activity (A260 nm = 1.22 ± 0.22) (Figure 2F) and a 1.5-fold increase in soluble 260 

expression levels compared to the 55_547 background determined by Bradford assay 261 

(Supplementary Figure 5). In combination with our comparative analysis of the selected 262 

inactive and active ancestors, the successful optimization of PETase activity via the 263 

introduction of a disulfide bond distal to the active site illustrates that PETase activity within 264 

the cutinase family can emerge and be enhanced through mechanisms that extend beyond 265 

the structural reconfiguration of the active site. It is therefore likely that activity optimization is, 266 

at least in part, being driven by thermodynamic and kinetic stabilization. 267 

 268 

  269 
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Alternate Reconstructions of Ancestral Cutinases 35_442 and 55_547. 270 

 271 
Figure 3. Alternate reconstructions and random recombinations of ancestral cutinases 35_442 272 
and 55_547. Activity of alternate reconstructions of A) ancestor 55_547 and B) 35_442 against 273 
amorphous PET film. The bulk soluble products of PET hydrolysis (TPA, MHET, BHET) are measured 274 
by absorbance at 260 nm after 16 hours incubation with the enzyme at 60 °C. Data are represented as 275 
the mean ± SEM (n = 3). C) Posterior probability distributions for ancestors 55_547 and 35_442.  276 
 277 

 278 

We next experimentally characterized all alternate sequences of ancestors 55_547 (40 279 

mutants) and 35_442 (29 mutants) that individually sampled each mutation that had been 280 

ambiguously reconstructed. Here, we define ambiguity as any site where at least two amino 281 

acids are reconstructed with a posterior probability of >= 0.2. This provided a high resolution 282 

mutagenic map of the local sequence space around either of the ancestral PETase variants. 283 

Ambiguously reconstructed sites were spatially distributed over the protein and not localized 284 

to any specific functional area (Supplementary Figure 7). Having already established that 285 

the mean posterior probability of an ancestral sequence is a poor indicator of PETase activity 286 

(Supplementary Figure 4B) and that relatively minor changes in the cutinase sequence can 287 

drastically alter PETase activity, we hypothesized that the neighborhood of evolutionarily 288 

possible (albeit less probable) sequences may contain mutations that benefit PETase activity. 289 

This hypothesis was guided by recent ASR studies on the I. sakaiensis PETase branch of the 290 

cutinase phylogeny where PETase activity appeared to emerge transiently within ancestral 291 

lineages50. Experimental characterization revealed that all of the alternate reconstructions of 292 

ancestors 55_547 and 35_442 demonstrated PETase activity that was comparable (or 293 

reduced) to either respective ancestral background (Figure 3A-B).  294 
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 295 

 296 

 297 
Figure 4. PETase activities of recombined alternate reconstructions. A) Structure of 35_442 and 298 
55_547 aligned. Positions selected for recombination are highlighted as spheres. The docked pose of 299 
2HE-(MHET)3 is shown in a close-up of the binding and catalytic site, and residues that form the putative 300 
PET binding site based on homology to LCC are shown. Residues comprising subsites -2 (green), -1 301 
(blue) and +1 (brown) are highlighted. The catalytic residues Ser132-His210-Asp178 are also shown 302 
(purple; red labels). B) Activity of recombined mutations from alternate reconstructions of 35_442 and 303 
55_547 against amorphous PET film. The bulk soluble products of PET hydrolysis (TPA, MHET, BHET) 304 
are measured by absorbance at 260 nm after 16 hours incubation with the enzyme at 60 °C. Data are 305 
represented as the mean ± SEM (n = 3) and grouped based on mutations recombined in the background 306 
of 55_547 (left) and 35_442 (middle). 307 
 308 

A subset of randomly sampled combinations of single mutations from the alternate 309 

reconstructions were selected to explore potential epistatic interactions and their impact on 310 

PETase activity. The 7 selected mutations, E14D, E28Q, A36V, S52A (in 55_547), F94L, 311 

S196A, and H247S, were recombined in various combinations from 2 to 5 point mutations in 312 

the background of 35_442 and 55_547. E28Q, A36V, S52A, S196A, and H247S are surface 313 

mutations, distal from the catalytic and putative PET binding site (Figure 4A). In contrast, 314 

F94L is positioned within the PET binding site, as deduced from docking of 2HE-(MHET)3 into 315 

both 35_442 and 55_547 (Figure 4A), as well as structural homology to previously predicted 316 

PET binding sites in LCC. As single mutations, E14D, E28Q, A36V, F94L and H247S were 317 

considered neutral based on PETase activity relative to the 35_442 background, while S52A 318 

and S196A exhibited decreased activity relative to 55_547. In our experimental 319 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 27, 2024. ; https://doi.org/10.1101/2024.04.25.591214doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.25.591214
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 12 

characterization, we identified 24 recombined variants with increased PETase activity relative 320 

to their ancestral background (Figure 4B). Specifically, 10 recombined variants in the 321 

background of 55_547 showed increased PETase activity, with the most active being 322 

E14D/E28Q/A36V (A260 nm = 1.20 ± 0.26), E28Q/S196A (A260 nm = 1.08 ± 0.05), and 323 

E28Q/S52A/S196A (A260 nm = 1.03 ± 0.09). Similarly, 14 recombinations in the background 324 

of 35_442 demonstrated increased activity, with the most active being E28Q/S196A (A260 nm 325 

= 1.42 ± 0.29), E28Q/F94L (A260 nm = 0.99 ± 0.17), and E14D/H247S (A260 nm = 0.77 ± 0.08). 326 

Interestingly, we identified 17 recombined variants that exhibited improved PETase activity 327 

relative to LCC ICCG, the most active extant variant in the study, with 35_442 E28Q/S196A, 328 

displaying ~2.5-fold higher activity. 329 

 330 

The mutational analysis of the recombined variants highlighted E28Q as a key mutation, 331 

present in 14 of the 17 variants that demonstrated enhanced activity compared to the 332 

engineered LCC ICCG variant. This suggests a positive effect of E28Q on PETase activity; 333 

however, this was only observed in the presence of other mutations from the recombinations. 334 

The context dependence of E28Q is especially significant when considering the double 335 

mutation E28Q/S196A, which was among the most active in both ancestral backgrounds. 336 

When assessed independently in the 55_547 background, the E28Q mutation adversely 337 

affected activity (A260 nm = 0.00 ± 0.00), and the S196A mutation similarly led to a reduction 338 

in activity relative to the ancestor (A260 nm = 0.16 ± 0.02). However, the combination of these 339 

mutations resulted in a significant increase in activity beyond the additive effects of the single 340 

mutations (A260 nm = 1.08 ± 0.05), indicative of positive epistatic interactions. 341 

 342 

Ruggedness analysis reveals epistasis in recombined mutations. 343 

 344 

We next analyzed the topology of the PETase fitness landscape over the 196 cutinase 345 

sequences characterized in this study. This was done both to build a holistic overview of 346 

PETase evolution and function in the cutinase family and to assess the effectiveness of this 347 

approach in exploring new-to-nature fitness peaks across functional sequence space. To 348 

achieve this, we embedded cutinase sequences as nodes in a network graph where edges 349 

connect each node to its k nearest (Euclidean) neighbors. The scheme used to embed 350 

sequences therefore dictates the topology of the network graph. When this is the one-hot 351 

encoding (OHE), the Euclidean distance between nodes in the network graph is proportional 352 

to the number of mutations between the sequences they represent. The OHE graph network 353 

therefore captures PETase activity as a function of the mutations between sequences when 354 

the signal over the graph is the measured PETase activity (Figure 5A).  355 

 356 
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Encoding protein sequences as the hidden states of a PLM can capture comparatively richer 357 

features than the OHE29,30, albeit at the cost of interpretability over the network graph36. 358 

Euclidean distances in the latent space of a representation model may share no interpretable 359 

relationship with equivalent Euclidean distances in the OHE space, therefore confounding the 360 

interpretation of PETase activity over the network graph to non-linear distances instead of 361 

simple mutational distances.  362 

 363 

We embedded all characterized cutinases in a OHE basis and visualized the resulting 364 

landscape in 2 dimensions with t-distributed stochastic neighbor embedding (tSNE) 365 

dimensionality reduction. In this space, ancestral and extant cutinases form homogenous, 366 

random clusters (Figure 5A). The alternate reconstructions of ancestors 55_547 and 35_442 367 

and their recombinations are grouped as closely connected clusters around their respective 368 

ancestral backgrounds. Despite their comparable PETase activity, sequences in both 369 

backgrounds are resolved as independent components that share few direct edge 370 

connections, suggesting that the PETase fitness landscape is multi-modal (i.e. there are 371 

multiple solution spaces to competent PETase activity) when considering only naive, residue-372 

wise OHE sequence embeddings.  373 

 374 

We then reconstructed the PETase fitness landscape in a learned representation space. To 375 

ensure that local features of the cutinase sequence space were captured by a PLM, we used 376 

a recently described method of local ancestral sequence embedding (LASE)36. In brief, LASE 377 

trains a small and family-specific deep learning model on ancestrally reconstructed sequence 378 

datasets. The features learned by LASE capture the functional properties of proteins, such as 379 

catalytic efficiency, in a non-linear space that is not interpretable with simple mutational 380 

distances. Embedding in LASE can therefore reveal topological features of the fitness map 381 

that are obfuscated in an OHE embedding.  382 

 383 

Sequences in the LASE embedding space cluster according to their relative fitness and how 384 

they were sampled (e.g. extant, ancestral, alternate or recombined; Figure 5B). For example, 385 

all point mutations from alternate reconstructions and recombinations group together in a 386 

single connected component in the LASE space, irrespective of the genetic background 387 

(ancestors 55_547 or 35_442) they were introduced into. Moreso, ancestral and extant 388 

sequences cluster into disconnected components, despite their often high degree of site-wise 389 

sequence similarity. Indeed, the LASE representation space is highly structured relative to the 390 

OHE space, where ancestral and extant sequences co-occur across distinct identity groups in 391 

the network graph. This indicates that our sequence sampling strategy is highly structured and 392 
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systematic over an evolutionarily informative representation space, while appearing 393 

somewhat random in the OHE space. 394 

 395 

Finally, we used a graph signal processing approach to quantify ruggedness in the cutinase 396 

PET fitness landscape. We define ruggedness as the non-linearity between the fitness of a 397 

sequence and its neighbors in the network graph. We use the Dirichlet energy of the graph, 398 

which describes the non-linearity of a signal over a graph, to measure this36,51,52. In order to 399 

make the Dirichlet energy interpretable as a node-wise local quantity, we calculate it over each 400 

subgraph in the network defined by an edge-length of exactly 1, thus reducing its interpretation 401 

to the deviation from linearity a node demonstrates relative only to its immediate neighbors; 402 

the fitness signal over the network graph changes as a linear function (i.e. is smooth) over 403 

nodes of the graph that are characterized by low local DEs. The local Dirichlet energy is 404 

therefore a descriptor of how confounded by epistasis a sequence is. This analysis revealed 405 

that the fitness landscape is most rugged over the cutinase variants with the greatest PETase 406 

activity. Indeed, the node with the single highest local Dirichlet energy is also the fitness peak 407 

(ancestor 55_547_E28Q/S196A). Importantly, this was true for both OHE and LASE network 408 

graphs (Figure 5C; Supplementary Figure 9), indicating that the combinatorial mutations 409 

E28Q/S196A in the 55_547 background would be unlikely to be introduced through a stepwise 410 

mutagenesis approach due to the relatively low activity of each single mutation in isolation. 411 

Together, these analyses demonstrate that mASR can effectively guide protein engineering 412 

by discovering evolutionary features that are not immediately apparent, and can help navigate 413 

rugged regions of sequence space to find fit enzyme variants that are not rationally obvious. 414 

 415 
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 416 
Figure 5. Analysis and regression on PETase sequence space. PETase sequences were 417 
represented in A) OHE- and B) LASE-forms and projected into a 2-dimensional space with 418 
tSNE. Colour represents design stage and size represents activity (A260 nm (a.u.)). The OHE 419 
and LASE sequence data was then used to train regression models. C) The local Dirichlet 420 
energy for each variant was determined over subgraphs that include the variant’s immediate 421 
neighbors as determined by kNN. Edges connect variants that were found to be neighbors 422 
and color represents the local Dirichlet energy calculated.  423 
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Discussion 424 

 425 

In our investigation into the evolutionary sequence space of bacterial cutinases with PETase 426 

activity, we employed multiplexed ASR36 to enhance our exploration. This method allowed us 427 

to reconstruct and analyze ancestral cutinases across 20 diverse phylogenetic topologies, 428 

moving beyond the constraints of a single-tree perspective. Our experimental 429 

characterizations of 20 extant and 48 ancestral cutinases unveiled a wide spectrum of 430 

activities against amorphous PET film (A260 nm = 0.00 - 0.59). Of particular interest were two 431 

ancestors, 35_442 (A260 nm = 0.37 ± 0.06) and 55_547 (A260 nm = 0.59 ± 0.09), each 432 

representing the most recent common ancestor of LCC13 and TfCut25 on independent trees 433 

and exhibiting similar activity to the most active extant cutinases, LCC (A260 nm = A260 nm = 434 

0.34 ± 0.03) and BhrPETase (A260 nm = 0.49 ± 0.01). Notably, the use of mASR was crucial 435 

in uncovering the variability of ancestrally reconstructed sequences, as it revealed that 436 

equivalent nodes from independent phylogenetic topologies exhibited highly varied activity 437 

despite all topologies being equally valid representations of the underlying sequence 438 

alignment based on the AU-test. While some ancestors were inactive, others showed 439 

significant PETase activity comparable to characterized extant PETases. These observations 440 

highlight the utility of the mASR method in improving both the success and robustness of ASR 441 

applications in protein engineering. By embracing a wider array of evolutionary scenarios, 442 

mASR allowed for a more comprehensive and reliable identification of functional sequences 443 

relative to a single-tree approach. Multiplexed ASR may therefore become an important 444 

component of ASR- and evolutionary-guided enzyme design strategies in the future.  445 

  446 

Our sequence and structural analysis of active and inactive ancestral cutinases provided 447 

insights on the evolutionary emergence of PETase activity in the cutinase family. In particular, 448 

our findings suggest that PETase activity in the TfCut2 and LCC PETase lineages has 449 

emerged through neutral mutations that are distal to the active site, rather than specific 450 

changes localized to the active site itself, as observed in the evolution of I. sakaiensis 451 

PETase37. Our detailed examination of ancestors 35_442 and 55_547, along with their closest 452 

inactive counterparts, highlighted unique gain-of-function mutations leading to PETase activity 453 

from these distinct phylogenetic backgrounds. These findings imply the existence of multiple, 454 

distinct evolutionary pathways for acquiring PETase functionality and indicate that PETase 455 

activity is readily accessible within the cutinase family.  456 

 457 

Our structural analysis also revealed the formation of domain-swapped dimers between 458 

adjacent symmetry mates in the crystal structures of the ancestral variants 35_442 and 459 
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55_547. While possibly an artifact of the crystallization conditions, this observation suggests 460 

a certain degree of structural flexibility in the C-terminus of these ancestors even in solution. 461 

Based on this observation, we introduced a disulfide bond in the C-terminus of ancestor 462 

55_547 that coincided with the predicted Ca2+/Mg2+ binding site, a strategy homologous to 463 

similar successful modifications in TfCut2 and LCC that were observed to improve stability 464 

and activity6,48,49. Indeed, the introduction of the disulfide N206C/S253C resulted in a variant 465 

of 55_547 with an approximately 2-fold improvement in whole-cell activity and 1.5-fold 466 

improvement in soluble expression relative to the background ancestor. 467 

 468 

We deepened our exploration of the evolutionary sequence space of the cutinase family by 469 

addressing ambiguously reconstructed positions in the initial mASR. Ambiguous positions 470 

were identified based on a posterior probability threshold of ≥ 0.2 for the second most probable 471 

residue. Introducing these 69 alternate reconstructions as single mutations into 35_442 and 472 

55_547, we observed that most mutations were either neutral or decreased PETase activity 473 

relative to the ancestral background. However, when we recombined a random subset of the 474 

alternate reconstructions, we observed several recombinations in the background of both 475 

35_442 (E28Q/S196A) and 55_547 (E14D/E28Q/A36V) that displayed increased PETase 476 

activity, not only relative to the initial ancestors, but also to an engineered variant of LCC with 477 

enhanced activity, LCCICCG 6. Notably, the most active recombinations exhibited activity 478 

improvements that exceeded the additive effects predicted from their individual mutations, 479 

highlighting positive epistatic interactions that contribute to their PETase activity. 480 

 481 

To complement our experimental investigations, we modeled the sequence-fitness landscape 482 

of all 196 cutinase sequences characterized in our study, employing a graph signal processing 483 

approach that elucidates the complex topology of the PETase fitness landscape. This 484 

methodology involved embedding cutinase sequences as nodes in a network graph, where 485 

each node was connected to its k nearest (Euclidean) neighbors, thereby enabling a direct 486 

comparison between two embedding schemes, OHE and LASE. While OHE provides a 487 

straightforward mutational distance metric between sequences, it often oversimplifies the 488 

nuanced relationship between sequence variation and function. In contrast, LASE, by training 489 

a family-specific deep learning model on our dataset of ancestrally reconstructed sequences, 490 

captures the functional properties of proteins in an abstract manner, revealing non-linear 491 

sequence-activity relationships that are obscured in OHE representations. 492 

 493 

Using LASE to map the sequence-fitness landscape, we highlighted iterative improvements 494 

in PETase activity throughout the different phases of our sequence exploration of the cutinase 495 

family. This embedding not only facilitated a deeper understanding of the functional 496 
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implications of sequence variation but also allowed us to identify clusters of sequences with 497 

similar functional profiles, regardless of their evolutionary background. Moreover, our analysis 498 

of the fitness landscape's ruggedness via LASE provided new insights into the role of epistasis 499 

in PETase activity. The local Dirichlet energy calculations revealed that sequences with the 500 

highest PETase activity were associated with the greatest ruggedness, suggesting that the 501 

most functionally optimized variants emerge from complex interplays of multiple mutations 502 

rather than from linear accumulations of beneficial single mutations. This observation 503 

highlights the significance of epistatic interactions in driving the evolutionary innovation of 504 

PETase activity, illustrating that successful enzyme variants often lie in regions of the fitness 505 

landscape that are not readily accessed through single mutational steps, but can be accessed 506 

using evolutionarily-guided approaches, such as mASR. 507 

 508 

  509 
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Materials and Methods 510 

 511 

Ancestral sequence reconstruction. 1000 sequences were collected from the NCBI non-512 

redundant (nr) database with blast using LCC (UniProt: G9BY57) as seed and an e-value 513 

cutoff of 1e-5. Sequence redundancy was removed to 90% ID in CD-HIT53. Signal peptides 514 

were deleted using SignalP4.054. Alignment was performed using the GINSI protocol of 515 

MAFFT55. 100 replicates of independent model parameterization and tree search (default 516 

parameters) were performed using IQTREE256 on the NCI GADI supercomputer. The 517 

sequence evolution model was parameterized using ModelFinder57, as implemented in 518 

IQTREE2. Branch supports were determined as the ultrafast bootstrap approximation38 519 

calculated to 1000 replicates, as implemented in IQTREE2. The Approximately unbiased test41 520 

was conducted to 10000 replicates for all ML topologies. Empirical Bayesian ASR was 521 

performed on 20 of the 100 trees that failed rejection by the AU test in CodeML39 using the 522 

ML replacement matrix (LG)58 with rates modeled as a discrete gamma parameterized with 4 523 

rate categories.  524 

 525 

Small-scale protein expression and purification. Plasmids were transformed by heat shock 526 

into chemically competent BL21(DE3) E. coli cells and plated onto Lysogeny broth (LB) agar 527 

supplemented with 100 µg/mL kanamycin and incubated at 37 °C overnight. A single colony 528 

was used to inoculate 1.5 mL autoinduction media supplemented with 100 µg/mL kanamycin 529 

in a 2.2 mL 96-well deep well block and grown at 1050 rpm at 37 °C for 5 hours, followed by 530 

room temperature (RT; 25 °C) for 16 hours. 531 

 532 

Cells were harvested by centrifugation at 2000 x g for 15 minutes at RT and resuspended in 533 

Lysis Buffer (1X BugBuster® Protein Extraction Reagent (Merck-Millipore), 20 mM Tris, 300 534 

mM NaCl, 1 U/ml Turbonuclease (Sigma) pH 8). The cell suspension was left to incubate at 535 

RT for 20 minutes with gentle shaking. The lysate was separated from the insoluble cell debris 536 

by centrifugation at 2250 x g for 1 hour at RT. 537 

 538 

The clarified lysate was then diluted with 100 µl of Equilibration Buffer (20 mM Tris, 300 mM 539 

NaCl pH 8) and purified by nickel-charged IMAC using a 96-well HisPurTM Ni-NTA Spin Plate 540 

(ThermoFisher Scientific) equilibrated in Equilibration Buffer, washing the sample three times 541 

with 250 µl of Wash Buffer (20 mM Tris, 300 mM NaCl, 10 mM imidazole pH 8) and eluting 542 

with 250 µl of Elution Buffer (20 mM Tris, 300 mM NaCl, 150 mM imidazole pH 8). All 543 

centrifugation steps following addition of Wash or Elution Buffer were at 1000 x g for 1 minute 544 

at RT. The eluate was stored at 4 °C. Bradford assay was used to quantify the soluble 545 

expression levels post-purification (Supplementary Figure 1). 546 
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 547 

UV absorbance assay for PET-degrading activity. For purified protein from 96-well 548 

expression and purification, 15 µl of the eluate from the 96-well Ni-NTA purification and 285 549 

µl of Reaction Buffer (50 mM Bicine pH 9) was added to a clear 96-well plate. For purified 550 

protein from large-scale expression and purification, 300 µl of 100 nM enzyme in Reaction 551 

Buffer was added to a clear 96-well plate. A single disk of amorphous PET (Goodfellow 552 

ES301445) with 4 mm diameter and 0.25 mm thickness was added to each well. The plate 553 

was incubated at 60 °C for 16 hours. Following incubation, 100 µl of the reaction solution was 554 

transferred to a clear UV-transparent 96-well plate and the absorbance was measured 555 

between 240 to 300 nm in 10 nm steps using the Epoch Microplate Spectrophotometer 556 

(BioTek) (Supplementary Figure 2). For comparison of activity of all variants, the absorbance 557 

at 260 nm was used. Assays were repeated in triplicate for each variant.  558 

 559 

Assay data processing. To correct for possible systematic error between replicate data 560 

points, the mean absorbance at 260 nm for each replicate was determined. Using the mean 561 

absorbance, a scaling coefficient was assigned to the replicates with the lowest and highest 562 

mean values such that the mean of the scaled absorbance values equaled the mean of the 563 

replicate with the mid-range mean value. To ensure scaling improved consistency between 564 

replicates, correlograms of the data before (Supplementary Figure 3) and after 565 

(Supplementary Figure 4) scaling were produced to confirm the monotonic (rank) correlation 566 

between replicates was preserved. 567 

 568 

Cloning of TEV-PETase variants for crystallography studies. Primer pairs containing the 569 

DNA sequence for the TEV cleavage site (5'-GAAAACCTGTATTTTCAAAGC-3') were 570 

constructed, specific to each PETase variant. PCR was performed using these primers and 571 

PETase variant genes to create mutant fragments. These fragments were reassembled using 572 

Gibson Assembly59 and checked through Sanger sequencing to ensure the TEV cleavage site 573 

was correctly introduced. 574 

 575 

Large scale protein expression and purification. The TEV-PETase ancestral variants 576 

plasmids were transformed using electroporation into electrocompetent E. cloni® cells 577 

(Lucigen) and plated onto LB agar supplemented with 100 µg/mL kanamycin. The plates were 578 

incubated overnight at 37 °C. A single colony was inoculated into a 10 mL solution of LB media 579 

with 100 µg/mL kanamycin and incubated overnight at 37 °C and 180 rotations per minute 580 

(rpm). This liquid starter culture was then added to 1 L of autoinduction media60 (6 g Na2HPO4, 581 

3 g KH2PO4, 20 g tryptone, 5 g yeast extract, 5 g NaCl, 10 mL of 60% (v/v) glycerol, 5 mL of 582 

10% (w/v) glucose, and 25 mL of 8% (w/v) lactose) with 100 µg/mL kanamycin and incubated 583 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 27, 2024. ; https://doi.org/10.1101/2024.04.25.591214doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.25.591214
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 21 

for 24 hours at room temperature and 180 rpm. The cells were separated from the media by 584 

centrifugation at 5000 × g for 15 minutes at 4 °C and resuspended in lysis buffer (400 mM 585 

NaCl, 25 mM imidazole, 1 U/mL Turbonuclease (Sigma), and 50 mM Tris-HCl pH 8.0). The 586 

resuspended cell solution was lysed using two rounds of sonication at 50% power and pulse 587 

time for 5 minutes, with 5 minutes on ice between sonication steps. Next, the sample was 588 

centrifuged at 32000 × g for 60 minutes at 4 °C, and the soluble cell solution was separated 589 

from the insoluble cell material and filtered through a 0.45 μm pore size filter. The filtered 590 

soluble cell solution was passed through an equilibrated Nickel-charged IMAC using a 5 mL 591 

HisTrap HP (GE Healthcare Life Sciences) in Lysis Buffer. The protein bound to the column 592 

was eluted using elution buffer (400 mM NaCl, 500 mM imidazole, and 50 mM Tris-HCl pH 593 

8.0). The protein sample was buffer exchanged to TEV reaction buffer (100 mM NaCl, 0.5 mM 594 

EDTA, 1 mM DTT, 1% (v/v) glycerol, and 50 mM Tris-HCl pH 8.0) using a PD-10 desalting 595 

column and diluted to 50 mL in this buffer. A 1 mL solution containing 1 mg/ml of purified TEV 596 

protease was added and incubated at room temperature overnight. The cleaved sample was 597 

passed through an equilibrated Nickel-charged IMAC using a 5 mL HisTrap HP (GE 598 

Healthcare Life Sciences), and the flowthrough was collected. This flowthrough was 599 

concentrated using the 3 kDa Amicon® ultra 15 mL centrifugal filters and filtered through a 600 

0.22 μm filter. Finally, the cleaved protein was purified to homogeneity using size-exclusion 601 

chromatography, and the HiLoad 26/600 Superdex 200 column (GE Healthcare Life Sciences) 602 

was equilibrated in size-exclusion buffer (150 mM NaCl, 25 mM HEPES pH 7.5). 603 

 604 

Protein crystallisation and structure determination. Proteins were concentrated using the 605 

3 kDa Amicon® ultra 15 mL centrifugal filters to 15-36 mg/ml and crystallized in 20% (w/v) 606 

PEG 3350 alongside 0.2 M salt and BisTris buffer solution. Specifically, ancestor 55_547 in 607 

0.2 M sodium/potassium tartrate, 0.1 M BisTris propane pH 7.5 and 20% (w/v) PEG 3350; and 608 

ancestor 35_442 in 0.2 M sodium malonate, 0.1 M BisTris propane pH 6.5 and 20% (w/v) PEG 609 

3350. The X-ray diffraction data were collected on the MX2 beamline at the Australian 610 

Synchrotron61. The data was processed using XDS62, and the phase problem was resolved 611 

with molecular replacement using the PETase WT structure (PDB: 6EQE) as the search 612 

model. The ligands and solvent molecules were removed and then used as the search model 613 

part of Phaser (CCP4)63. The structure was refined using phenix.refine64 through multiple 614 

iterative steps, and rebuilt each time with Coot65. The structures of ancestors 55_547 and 615 

35_442 were deposited in the protein data bank under the PDB ID of 8ETX and 8ETY, 616 

respectively. 617 

 618 

Protein sequence representations. To analyze PETase sequence space One-hot 619 

embeddings (OHE) and Learned Ancestral Sequence Embeddings (LASE) were made. To 620 
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produce OHE, aligned PETase sequences were converted into a (20	 × 	267) vectors where 621 

gaps were represented as a zero vector of length 20. The LASE embedding model was 622 

implemented as a Transformer in PyTorch 2.0.1 as previously described36, with three encoder 623 

blocks with 2-headed multihead attention (64 dimensions) and a feed-forward fully-connected 624 

layer (128 dimensions). The LASE embedding model was trained with a masking percent of 625 

15%, over 100 epochs with a batch size of 32 using the Adam optimizer. Loss was determined 626 

as the categorical cross entropy loss. Performance over training was assessed with perplexity 627 

and categorical accuracy (Supplementary Figure 8).  628 

 629 

Local Dirichlet energy calculations. 630 

To estimate the local ruggedness of each PETase variant, the k-nearest neighbors of each 631 

node were used to produce a KNN sub-graph for each variant with scikit-learn 1.2.1. The kNN 632 

sub-graphs were made symmetric by defining an edge in either direction to be a single edge. 633 

The dirichlet energy was calculated as previously described52,66:  634 

 635 

𝜆! = 1/𝑁	𝑦"𝐿𝑦 636 

 637 

Where, λm is normalized dirichlet energy, N, the number of variants in the sub-graph, y, the 638 

activity (absorbance) of each variant and L the graph Laplacian operator of the adjacency 639 

matrix of each kNN sub-graph. 640 
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