

1

2 High Frequency Terahertz Stimulation Alleviates Neuropathic Pain by Inhibiting the 3 Pyramidal Neuron Activity in the Anterior Cingulate Cortex of mice

4 Wenyu Peng^{1#}, Pan Wang^{2#}, Chaoyang Tan^{2#}, Han Zhao², Kun Chen², Huaxing Si², Yuchen Tian¹, Anxin Lou², Zhi
5 Zhu⁴, Yifang Yuan³, Kaijie Wu^{5,6*}, Chao Chang^{3,7*}, Yuanming Wu^{1*}, Tao Chen^{2*}

6

7 ¹Department of Biochemistry and Molecular Biology, School of Basic Medicine, The Fourth Military Medical
8 University, 710032 Xi'an, China.

9 ²Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military
10 Medical University, 710032 Xi'an, China.

11 ³Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, 100071
12 Beijing, China.

13 ⁴Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, College of
14 Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 200093
15 Shanghai, China.

16 ⁵Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, 230601 Hefei,
17 China

18 ⁶School of Electronic and Information Engineering, Anhui University, 230601 Hefei, China

19 ⁷School of Physics, Peking University, 100871 Beijing, China.

20 [#]Co-first authors, contribute equally to this work

21 *Corresponding authors: Tao Chen (chtkkl@fmmu.edu.cn), Yuanming Wu (wuym@fmmu.edu.cn), Chao Chang
22 (gwyzlzssb@pku.edu.cn), Kaijie Wu (23109@ahu.edu.cn)

23 Lead contact: Tao Chen (chtkkl@fmmu.edu.cn)

24

25 Abstract

26 Neuropathic pain (NP) is caused by a lesion or disease of the somatosensory system and is characterized by
27 abnormal hypersensitivity to stimuli and nociceptive responses to non-noxious stimuli, affecting approximately 7–
28 10% of the general population. However, current first-line drugs like non-steroidal anti-inflammatory agents and
29 opioids have limitations, including dose-limiting side effects, dependence, and tolerability issues. Therefore,
30 developing new interventions for the management of NP is urgent. In this study, we discovered that the
31 high-frequency terahertz stimulation (HFTS) at approximate 36 THz effectively alleviates NP symptoms in mice
32 with spared nerve injury. *In vivo* and *in vitro* results demonstrate that HFTS reduces the excitability of pyramidal
33 neurons in the anterior cingulate cortex through enhancing the voltage-gated K⁺ (Kv) conductance. Computational
34 simulation suggests that the frequency resonates with the carbonyl group in the filter region of Kv1.2 channels,
35 facilitating the translocation of potassium ions. This research presents a novel optical intervention strategy with
36 terahertz waves for the treatment of NP and holds promising application in other nervous system diseases.

37

38 Introduction

39 Neuropathic pain (NP) refers to a debilitating chronic pain condition, which is often a consequence of nerve injury
40 or of the diseases such as cancer, diabetes mellitus, infection, autoimmune disease, and trauma^{1,2}. The symptoms of
41 NP include spontaneous pain, hyperalgesia and mechanical allodynia. Unfortunately, NP is often resistant to
42 currently available drug treatments, including non-steroidal anti-inflammatory drugs and even opioids³. More
43 evidences reveal that NP is not merely a symptom of a disease but rather an expression of pathological operations
44 of the nervous system⁴. Therefore, developing new therapeutic technology aimed at these underlying mechanisms
45 for pain relief represents a considerable challenge.

46 Compared with the limitations of chemical-based drugs research, physics-based treatment offers a new
47 concept and opportunity for intervening in NP. Optogenetics, as an interdisciplinary approach, has demonstrated
48 therapeutic potential in NP. However, the limitations of viral vector delivery systems in humans are well-known⁵.
49 Recently, evidence has emerged suggesting that high frequency terahertz (THz) photons directly resonate with
50 molecules, thereby regulating corresponding biological functions. For instance, our previous study demonstrated
51 that a 34.88 THz wave resonates with A β protein, disrupting the process of fibril formation⁶. Li et al. discover that
52 the band of 42.55 THz resonates with the stretching mode of either the -COO- or the -C=O group significantly
53 enhancing the Ca²⁺ conductance⁷. Zhu et al. conclude that 48.2 THz photons greatly increase the permeability of
54 sodium channel by a factor of 33.6 through breaking the hydrated hydrogen bonding network between the
55 hydrosphere layer of the ions and the carboxylate groups⁸. Additionally, the frequency of 53.5 THz has been
56 reported to enhance the voltage-gated K⁺ currents, which modulate the startle response and associative learning^{9,10}.
57 These studies strongly prompt us the potential application of THz photons in the treatment of neuropathic pain by
58 targeting the ion channels¹¹.

59 The anterior cingulate cortex plays a crucial role in pain regulation^{12, 13}. Our previous research has
60 demonstrated that nociceptive information resulting from nerve injury is transmitted to the ACC¹⁴. This region
61 exhibits pre- and postsynaptic long-term plasticity (LTP), which contributes to chronic pain and associated negative
62 emotions^{15, 16}. Furthermore, descending projection pathways from the ACC enhance the neuronal activity of the
63 spinal dorsal horn (SDH) and regulate nociceptive sensory transmission¹⁷. Brain-imaging and MRI studies also
64 provide evidence of hyperexcitability in the ACC during both acute and chronic pain^{12, 18}. Specifically, the activity
65 of pyramidal cells in the ACC is directly correlated with the expression of chronic pain^{19, 20}. Optogenetic excitation
66 of ACC pyramidal cells induces pain, while their inhibition leads to analgesia²¹. Therefore, targeting the cortical
67 regions of the ACC and inhibiting the activity of ACC pyramidal neurons may hold promise as a strategy for
68 treating NP²²⁻²⁵.

69 Neuronal excitability is influenced by various types of voltage-gated ion channels and among them,
70 voltage-dependent potassium (Kv) channels, as one of the important physiological regulators of neuronal
71 membrane potentials, has been proposed as potential target candidates for pain therapy²⁶⁻²⁸. Zhao et al. have
72 reported that enhancing Kv currents in injured dorsal root ganglion (DRG) neurons alleviates neuropathic pain²⁹.
73 Additionally, Fan et al. have demonstrated that lumbar (L)₅ spinal nerve ligation (SNL) leads to a time-dependent
74 decrease in Kv1.2-positive neurons in the ipsilateral L₅ DRG. However, rescuing Kv1.2 expression in the injured
75 L₅ DRG attenuates the development and persistence of pain hypersensitivity³⁰. These findings highlight the
76 potential of targeting Kv channels as a therapeutic approach for managing pain.

77 In this study, we investigated the effects of high-frequency terahertz stimulation (HFTS) on the Kv model. By
78 analyzing the absorbance spectra of Kv channels, we observed a significant response to photons with a frequency
79 of approximately 36 THz. Subsequently, we conducted *in vivo* multi-channel recordings and *in vitro* patch
80 recordings to confirm the activation effect of HFTS on Kv channel conductance and its inhibition of neuronal
81 activity in the ACC pyramidal cells. Importantly, the application of HFTS resulted in a significant reduction in pain

82 behavior in mice with spared nerve injury (SNI). To understand the underlying mechanism, we performed
83 computational simulations that suggest HFTS modulate the resonance of the carbonyl group of Kv1.2, which is
84 crucial for the action potential waveform and frequency.

85 **Results**

86 **HFTS attenuates the generation of action potential through molecular dynamics simulation**

87 To identify a specific terahertz (THz) frequency capable of modulating a major subset of voltage-gated potassium
88 (Kv) channels, we developed an integrated model comprising both mouse Kv channels (Protein Data Bank [PDB]
89 ID: 3LUT) and Na⁺ channels (PDB ID: 3RVY) (Fig. 1a and Supplement Fig. S1). We conducted a comprehensive
90 analysis of the spectral absorption characteristics within the THz frequency range. Our results revealed a
91 pronounced absorption peak at approximately 36 THz for the potassium channel, which exhibited a considerable
92 broad band compared to the absence of a corresponding peak for the sodium channel (Fig. 1a). This indicates a
93 preferential and resonant absorption of photons at the ~36 THz frequency by the potassium channel. We then tested
94 the possible kinetic changes of Kv1.2, the typical and widely distributed Kv channel in the central nervous system
95³¹, following the absorption of these THz photons. Our findings indicated a significant kinetic change in the -C=O
96 groups of the channel filter structure, as evidenced by an expansion of its van der Waals radius by approximately
97 0.5 Å (Fig. 1b). Furthermore, during exposure to THz photons, the conductance of the potassium ion channel
98 exhibited an almost linear increase with the intensity of the THz field, while the conductance of sodium ions
99 remained largely unchanged (Fig. 1c). Interestingly, under terahertz photonic influence, the cortical neurons model
100 showed significantly decreased in discharge (Fig. 1d). We performed a detailed waveform analysis of the action
101 potentials, including parameters such as full width at half maximum (FWHM) and firing frequency (Fig. 1e). Our
102 observations revealed that the FWHM of action potentials in the THz-exposed group decreased to 95% of the
103 control group (Fig. 1f, red column), and the firing frequency experienced a reduction of approximately 70% after
104 THz photon stimulation (Fig. 1f, green column). These results collectively suggest that THz photons primarily
105 attenuate neuronal firing activity by increasing potassium ion conductance, thereby modulating neuronal
106 excitability.

107 **HFTS enhances voltage-gated K⁺ currents of pyramidal neurons in the ACC**

108 To investigate the impact of high-frequency terahertz stimulation (HFTS) on voltage-gated potassium/sodium
109 (Kv/Nav) channels, which play a crucial role in action potential generation and waveform, we conducted whole-cell
110 patch recording from layer-5 pyramidal neurons (PYR^{ACC}) in acute slices of anterior cingulate cortex (ACC) in
111 mice with spared nerve injury (SNI) (Fig. 2a). Initially, we examined the Nav current by applying a series of test
112 pulses (from -80 to -10 mV) with a command voltage ranging from -100 mV (50 ms) (Fig. 2b). Upon illumination
113 with ~36 THz photons (0.3 ± 0.05 mW), we observed that HFTS had no significant effect on the activation curve
114 slope, half-activation voltage, inactivation slope and half-inactivation voltage (Figs. 2c-e). These findings indicate
115 that HFTS does not affect Nav channel-mediated currents. Subsequently, we investigated the impact of HFTS on
116 Kv currents by applying a series of test pulses (100 ms) ranging from -70 to +100 mV with a command voltage of
117 -100 mV (20 ms) (Fig. 2f). Our results demonstrated that the application of HFTS induced a significant increase in
118 the amplitude of K⁺ currents and an increased slope of the current-voltage characteristic (I-V) curve (Figs. 2g-i)
119 (Table S1), without affecting the half-activation voltage (Fig. 2j). These experiments revealed the influence of
120 HFTS on Kv channel activity, leading to an acceleration of potassium ion flow and an increase in potassium
121 conductance in PYR^{ACC} neurons. Importantly, these experimental findings were consistent with the results obtained
122 from molecular dynamics analysis.

123 **HFTS reduces the spike frequency of pyramidal neurons in the ACC**

124 We proceeded to investigate the impact of the specific resonant frequency of THz photons on the excitability of

125 PYR^{ACC} neurons in SNI mice. Using whole-cell current-clamp recording, we compared the input-output curves of
126 evoked action potentials before and after HFTS. Our findings revealed a significant increase in the spike frequency
127 in SNI mice (Fig. 3a)³², which was effectively rescued by the application of HFTS (Fig. 3b), but not by 465 nm
128 blue light stimulation (BLS) (Figs. 3c) (Tables S2-4). To further analyze the properties of single action potentials,
129 we induced them by applying a depolarizing current pulse of an appropriate suprathreshold magnitude (Figs. 3d-i).
130 In SNI mice, we observed a decrease in the rheobase and an elevation in the resting membrane potential (RMP)
131 compared to those in sham mice. However, these alterations were reversed by the application of HFTS, while BLS
132 had no effects (Figs. 3e-f). Other parameters such as voltage threshold, amplitude, and half-width of the action
133 potentials were not different between SNI and sham mice. Given that the spike firing, rheobase and RMP are
134 closely related to low-threshold Kv channels^{26, 31, 33}, these results suggest that HFTS affects the activity of PYR^{ACC}
135 neurons through its specific impact on Kv channels.

136 **HFTS decreases the excitability of pyramidal neurons in the ACC *in vivo***

137 We then investigate the effect of HFTS on the activities of PYR^{ACC} in head-fixed awake SNI mice. One-week prior
138 to the illumination experiment, a 16-channel electrode was implanted into the ACC. We applied THz photon
139 stimulation for 15 minutes and compared the neuronal activities before and after HFTS (Fig. 4a). Our findings
140 revealed a significant decrease in the mean firing rate of ACC neurons after HFTS application in both the sham and
141 SNI groups (Figs. 4b and f). To further analyze the effect of HFTS on the PYR^{ACC}, we classified them along with
142 interneurons in the ACC (INT^{ACC}) based on their firing rate, trough-to-peak duration and half width (Fig. 4c), as
143 described in our previous study¹⁹. We assessed the internal-spiking interval (ISI) and waveform characteristics of
144 the isolated neurons in each channel to ensure that the pre- and post-HFTS units originated from the same neuron
145 (Fig. 4d). In the sham group, we observed that 63.4% of PYR^{ACC} neurons exhibited a decrease in firing rate, 10.8%
146 of PYR^{ACC} showed an increase, and 25.8% of PYR^{ACC} remained unchanged (93 well-isolated PYR^{ACC} neurons
147 were recognized out of 108 total recorded units). In the SNI group, we found that 61.8% of PYR^{ACC} neurons
148 exhibited decreased activity, 20.3% of PYR^{ACC} showed increased activity, and 17.9% of PYR^{ACC} remained
149 unchanged (123 well-isolated PYR neurons were recognized out of 130 total recorded units) (Fig. 4e). Consistently,
150 the increased mean firing rate of PYR^{ACC} neurons in SNI mice was significantly inhibited by the application of
151 HFTS (Fig. 4g). The activity of INT^{ACC} also tended to decrease after HFTS, especially in the SNI group (Figs. 4e
152 and h). In contrast, blue light stimulation (BLS) has no effect on the mean firing rate on the PYR^{ACC} and INT^{ACC} in
153 both sham and SNI mice (Supplement Fig. S2). These results indicate that HFTS reduces the spike firing of ACC
154 neurons, whereas BLS does not have the same effect.

155 **HFTS alleviates mechanical allodynia of SNI mice**

156 Finally, we tested whether application of HFTS into the ACC induced analgesic effects. The SNI surgery and optic
157 fiber implantation into the ACC were performed one week before pain behavioral tests, which included the
158 mechanical pain threshold test and Catwalk analysis (Fig. 5a). We compared the paw withdrawal mechanical
159 thresholds (PWMTs) before and after HFTS (0.3 ± 0.05 mW at the tip of the optic fiber) application and found that
160 SNI treatment decreased the PWMTs compared to the sham group. However, after the application of HFTS, the
161 PWMTs significantly increased, even surpassing those in the sham group, and this analgesic effect lasted for 60
162 minutes. In contrast, the PWMTs did not significantly change in the SNI group with the application of 465 nm blue
163 light (Fig. 5b).

164 Furthermore, we performed the Catwalk gait analysis (Figs. 5c-k), which provides exquisite and reliable
165 observations for evaluating the spontaneous pain behaviors³⁴. We focused on the print intensity and print area
166 related parameters of the left hind paw (ipsilateral side of the injured nerve). We found that SNI treatment
167 significantly altered the stand time, the stand index, the max contact area, the mean print area, the mean intensity

168 and the duty cycle (Figs. 5f-k). This suggests that the SNI mice tend to avoid standing and walking on their injured
169 hind paw due to pain hyper-sensitivity. The application of HFTS but not BLS rescued most of the above parameters,
170 indicating HFTS' strong analgesic effect.

171 Discussion

172 In the present study, we provide evidence that high frequency terahertz photons alleviate neuropathic pain in the
173 SNI mice by decreasing the excitability of pyramidal neurons in the ACC. The mechanism underlying this effect is
174 that HFTS increases voltage-gated potassium ion conductance through resonance with the carbonyl group in the
175 potassium channel filter region (Fig. 6). Unlike optogenetic technology, HFTS can directly regulate the
176 conformation of ion channel without delivering a transgene that encodes a light-response protein. It exhibits
177 frequency selectivity and dependence to channel structure. This research suggests that HFTS has potential to serve
178 as a novel optical technology for the treatment of NP pathology.

179 Neuropathic pain is closely associated with nociceptor excitability in the ACC^{12, 35-37}, with ion channels
180 playing a fundamental role in determining neuronal excitability, particularly in the hyperexcitability of pyramidal
181 neurons¹¹. Excitatory Nav channels, responsible for initiating and depolarizing the action potential, can be targeted
182 by inhibitors to effectively decrease or eliminate electrical excitability. These inhibitors are commonly used in
183 neurology as antiepileptic drugs. On the other hand, inhibitory Kv channels, responsible for repolarization,
184 contribute to the initiation of action potentials in diverse ways³³. Enhancing Kv conductivity could have a similar
185 effect to Nav channel blockers. For instance, retigabine, an activator for Kv7, has recently been approved as a
186 first-in-class antiepileptic drug^{38, 39}. Among the 12 subfamilies of Kv channels (Kv1-12), Kv1.2 is the most
187 prevalent in neuronal membranes⁴⁰ and has been reported to be significant associated with neuropathic pain^{30, 41, 42}.
188 Although the response frequency of Kv1.2 at ~53 THz¹⁰ or ~34 THz⁴³ and the corresponding modulation function
189 have been verified due to the broad absorption band, this study highlights the significant resonance of Kv1.2 filter
190 structure with photons at 36 THz. By optically stimulating ACC neurons with the frequency of ~36 THz, we
191 observed a significant reduction in the firing rate of pyramidal neurons' action potentials in SNI mice, accompanied
192 by a notable enhancement of K⁺ conductance. This confirms the effect of THz photons on Kv channels, including
193 Kv1.2. Moreover, the application of HFTS resulted in significant changes in the rheobase and RMP of pyramidal
194 cells. Although RMP is primarily stabilized by two-pore K⁺ channels and Kv7 background conductance³¹, it has
195 been reported that basal excitability is influenced by the opening of low-threshold Kv1.2 channels, which filter out
196 small depolarizations and thus control the number of triggered APs⁴⁰. However, we acknowledge the possibility
197 that THz photons affect other K channel functions, but further research is required to confirm this in the future.

198 During our research, we focus on studying of pyramidal neurons in the ACC⁴⁴. It has been reported that the
199 firing rate of glutamatergic pyramidal cells, rather than inhibitory interneurons, increases in the ACC after chronic
200 pain, suggesting an imbalance of excitatory/inhibitory (E/I) ratio^{19, 35}. In the local circuits of the ACC, inhibitory
201 neurons release GABA and inhibit the activities of pyramidal cells. Different studies by Kang et al.⁴⁵ and Joseph
202 Cichon et al.⁴⁶ have reported that specific activation of interneurons in the ACC or in the somatosensory cortex
203 reduces pyramidal neuron hyperactivity and alleviate mechanical allodynia. Thus, the application of THz may
204 induce complicated results through affecting the Kv channels distributed on both pyramidal cells and interneurons.
205 However, as shown in our *in vivo* recording data (Figs. 4G-H), although THz illumination slightly decreased the
206 activity of interneurons, which could potentially lead to an enhanced activity of local pyramidal cells, the direct and
207 significant decrease in pyramidal cell activity caused by the illumination would overcome this disinhibitory effect,
208 ultimately resulting in a net decrease in pyramidal cell activity. The behavioral analgesic effect caused by THz
209 illumination also confirmed this conclusion.

210 There are several limitations in this study that should be acknowledged. Firstly, we did not investigate the
211 thermal effect of HFTS on the Kv channel. Previous research has demonstrated the non-thermal, long-distance

212 stimulation of high-frequency terahertz stimulation on neuronal activity¹⁰. Nevertheless, the specific interaction
213 between ~36 THz and Kv channels in terms of thermal effects remains unexplored. Additionally, in this study, we
214 used blue light as a comparison, and found no significant changes in potassium current and the excitability of
215 pyramidal cells. This finding suggests the specificity of the terahertz frequency and supports the existence of
216 non-thermal effects. Another limitation of our research is the use of an optic fiber to deliver the HFTS into the ACC
217 region. This invasive approach may pose challenges for potential noninvasive applications. However, we believe
218 that with the advancement of terahertz enhancement techniques, such as the use of metasurfaces or nanomaterials^{47,}
219⁴⁸, high-frequency terahertz waves show promising potential for broad applications in regulating diverse brain
220 diseases, such as episodic ataxia^{38,49}, benign familial neonatal convulsions⁵⁰, Alzheimer's disease⁵¹, and others.

221

222 **Material and methods**

223 **Animals**

224 Male adult (8–10 weeks) C57BL/6 were used for all experiments. Mice were housed on a 12 h light–dark cycle
225 with food and water freely available. The living conditions were carefully controlled, with temperatures maintained
226 at 22–26°C and humidity at 40%. All animal procedures in the present experiments were in accordance with
227 protocols approved by the Animal Care Committee of the Fourth Military Medical University. All efforts were
228 made to minimize animal suffering and the number of animals used.

229 **Neuropathic Pain Model**

230 We used spared nerve injury (SNI) model to establish neuropathic pain. The detailed process has been described in
231 our previous study¹⁹. In brief, mice were generally anaesthetized by 2% isoflurane. Three terminal branches of the
232 left sciatic nerve were exposed by making a direct incision in the skin and a section of the biceps femoris muscle in
233 the left thigh. The tibial nerve and the common peroneal nerve were ligated using 6-0 silk sutures and then
234 sectioned distal to the ligation. After ligating and cutting the nerves, they were carefully put back into their original
235 positions, and the muscle and skin were sutured in two layers. For the sham mice, animals only received an
236 operation that exposed the branches of the left sciatic nerve but without any nerve injury. Following a week
237 accommodation period, pain behaviors were assessed using the *von Frey* filament test and CatWalk gait analysis to
238 confirm the successful establishment of the NP model.

239 **Molecular Dynamics Simulation**

240 The simulation was conducted to gain a deeper understanding of the interaction between terahertz photons and ion
241 channels. A composite model of mouse eukaryotic voltage-gated K⁺ channels (PDB ID: 3LUT) and eukaryotic Na⁺
242 channels (PDB ID: 3RVY) was built using the Charmm-GUI website. The model consisted of intact proteins,
243 phospholipid bilayers, and saline solution (with a concentration of 0.15 M). Kinetic calculations were performed
244 using GROMACS 5.1.2 software. The CHARMM 36 force field and periodic boundary conditions were applied to
245 the proteins. Electrostatic interactions were handled using the connected element algorithm Ewald. During the
246 simulation, the Rattle algorithm was used to constrain key lengths. The motion equation was solved using the
247 Velocity-Verlet algorithm with a time step of 2 fs. Initially, the simulation was carried out at a room temperature of
248 303.5 K to observe the ion transport process within the channels at the molecular level. Subsequently, conductivity
249 values (gNa, gK) for potassium and sodium ions and their corresponding absorption spectrum were calculated. To
250 investigate the effect of ion transport under the influence of terahertz radiation, time-varying electric fields of THz
251 radiation were added to the system. In the interaction of terahertz radiation with biological systems, electrical
252 components play a crucial role. The electric field was used to simulate terahertz radiation, and its formula is as
253 follows:

254
$$E(t) = A \cdot u \cdot \cos(\omega t + \phi)$$

255 Where A represents the terahertz radiation intensity, u and phi represent the polarization direction and phase of the
256 radiated photon, which set to (0, 0, 1) and 0, respectively. The terahertz radiation frequency v is related to the
257 angular frequency ω by the equation:

258
$$v = \omega / 2\pi$$

259 The cortical neuron Hodgkin-Huxley (H-H) model links the microscopic level of ion channels to the
260 macroscopic level of currents and action potentials. The model consists of two distinct components: a rapid inward
261 current carried by sodium ions and a slower activating outward current carried by potassium ions. These currents
262 result from independent permeability mechanisms for Na⁺ and K⁺, where the conductance changes over time and
263 membrane potential. Consequently, the model can replicate and explain a wide range of phenomena, including the
264 shape and propagation of action potentials, the sharp threshold, refractory period, anode-break excitation,

265 accommodation, and subthreshold oscillations. Minor adjustments in key conductance and stimulus current
266 parameters enable the model to describe various action potential phenomena⁵². The formula shows as follows:

$$\begin{aligned} C \frac{dv}{dt} &= G_{stim} - g_{Na}(THz)m^3h(v - v_{Na}) - g_K(THz)n(v - v_K) - g_Ln(v - v_L) \\ \frac{dy}{dt} &= \alpha_y(1 - y) - \beta_y y, \quad y = m, n \\ \frac{dh}{dt} &= \left(\frac{1}{1 + \exp((v + 60) / 6.2)} - h \right) (\alpha_h + \beta_h), \end{aligned}$$

267

268 Where v , m , h and n represent the membrane voltage, probability of opening or closing of potassium-sodium ion
269 channel. V_{Na} , V_K and V_L are the sodium ion reverse potential, potassium ion reverse potential and resting membrane
270 potential, respectively. g_{Na} , g_K are the maximum conductivity of sodium and potassium ion, respectively. C is
271 membrane capacitive reactance with 0.75 uF/cm^2 , the G_{stim} is the stimulation by an external current.

272 **High Frequency Terahertz and Blue Light Stimulation**

273 For high frequency of terahertz stimulation (HFTS), we used a quantum cascade laser with a center frequency of
274 $35.93 \pm 0.1 \text{ THz}$. The laser beam was coupled into a coupler, supported by the Innovation Laboratory of Terahertz
275 Biophysics. We then connected the coupler to a Polycrystalline fiber (PIR) infrared fiber (Art photonics) with a
276 core composition of AgCl/Br. This fiber has excellent transmittance in the range of $3\text{-}18 \mu\text{m}$, with a core refractive
277 index of 2.15 and an effective numerical aperture (NA) of 0.35 ± 0.05 . At the distal end of the fiber, we left
278 approximately 3-4 cm of bare fiber to allow for the insertion of a hollow tube with an inner diameter of $620 \mu\text{m}$.
279 This tube was pre-implanted into the ACC region of the SNI and sham group mice brain (53). The duration of
280 HFTS was 15 minutes, with a pulse width of $2 \mu\text{s}$, a repetition frequency of 10 kHz , and a duty cycle of 40%. The
281 average output power at the tip of the fiber, measured by a MIR detector (NOVA II-3A, Israel), was $0.3 \pm 0.05 \text{ mW}$.
282 For comparison purposes, we also used a blue laser to stimulate the same brain region for 15 minutes, with a
283 frequency of 1 Hz and an average output power of 10 mW .

284 ***In Vitro* Patch Clamp Recording**

285 The experimental procedures were based on our previous reports⁵⁴. Briefly, mice were anesthetized and then
286 decapitated to sacrifice. Brain slices ($300 \mu\text{m}$ thick) containing the ACC were cut on a vibrating microtome (Leica
287 VT 1200s, Heidelberger, Nussloch, Germany) at $0\text{--}4^\circ\text{C}$ in oxygenated (95% O_2 and 5% CO_2) artificial
288 cerebrospinal fluid (ACSF) consisting of (in mM) 124 NaCl , 25 NaHCO_3 , 2.5 KCl , 1 NaH_2PO_4 , 2 CaCl_2 , 1 MgSO_4
289 and 10 glucose. Slices were then transferred to a room temperature-submerged recovery chamber containing
290 oxygenated ACSF and incubated for at least one hour before patch clamp recording. The neurons were then
291 visualized under a microscope with infrared differential interference contrast or fluorescent optics video
292 microscopy (BX51W1, Olympus, Tokyo, Japan). The recording pipettes ($3\text{-}5 \text{ M}\Omega$) were filled with a solution
293 composed of (in mM) 124 K-gluconate, 5 NaCl , 1 MgCl_2 , 0.2 EGTA, 2 MgATP , 0.1 Na_3GTP , 10 HEPES and 10
294 phosphocreatine disodium (adjusted to pH 7.2 with KOH, 290 mOsmol). Biocytin (0.2%) were added into pipette
295 solution for verifying neurons and visualized through biocytin-avidin reaction. To examine the properties of
296 voltage-gated K^+ currents, tetrodotoxin (TTX, 1 μM) and CdCl_2 (100 μM) were added into the ACSF. For
297 recording of voltage-gated Na^+ current, 3 mM 4-AP and 0.1 mM CdCl_2 were added into the ACSF. Electrical
298 signals were filtered at 1 kHz by a Multiclamp 700B amplifier (Molecular Devices, USA), and digitized by an
299 Axon DigiData 1550A converter with a sampling frequency of 10 kHz . Data analyses were performed with the
300 Clampfit 10.02.

301 ***In Vivo* Multi-Channel Recording**

302 Before the SNI operation, we implanted an electrode into the right ACC as in our previous reports¹⁹, following
303 8

303 stereotaxic coordinates: 1.1 mm anterior to the bregma, 0.3 mm lateral to the midline and 1.8 mm vertical to the
304 skull surface. The electrodes were secured to the exposed skull using the dental adhesive resin cement Super-bond
305 C&B (Japan)⁵³. This electrode consisted of 16-channel wire electrodes and included a hollow tube. During the
306 optical stimulation, we employed multi-channel recording technology by Neurolego system (Nanjing Greathink
307 Medical Technology, Nanjing, China). Subsequently, single-unit spike sorting was performed using the
308 MClust-v4.4 toolbox in MATLAB software (MathWorks, USA). In the ACC region, the two main cell types are
309 pyramidal neurons and interneuron cells, which are gamma-aminobutyric acid (GABA) neurons. Pyramidal
310 neurons were primarily classified based on a trough-to-peak duration above 430 us, indicating long-duration action
311 potentials. Interneuron cells, on the other hand, were identified based on a duration time below 430 μ s⁵⁵.

312 **Behavioral Assays**

313 **Mechanical allodynia**

314 Briefly, the paw withdrawal mechanical threshold (PWMT) was evaluated by using von Frey filaments (Stoelting,
315 Kiel, WI, USA) as reported in our previous works⁵⁴. Mice were habituated to the testing environment for 3 days
316 before baseline testing and then placed under inverted plastic boxes (7 \times 7 \times 10 cm) on an elevated mesh floor and
317 allowed to habituate for 30 min before threshold testing. A logarithmic series of 8 calibrated Semmes-Weinstein
318 monofilaments (von Frey hairs; Stoelting, Kiel, WI, USA) (0.008, 0.02, 0.04, 0.16, 0.4, 0.6, 1, 1.4, and 2 g) with
319 various bending forces (0.078, 0.196, 0.392, 1.568, 3.92, 5.88, 9.8, 13.72, and 19.6 mN) was applied to the plantar
320 surface of the hind paw until the mice withdrew from the stimulus. Positive responses included licking, biting, and
321 sudden withdrawal of the hind paws. A von Frey filament was applied 5 times (3 seconds for each stimulus) to each
322 tested area. The minimum bending force of the von Frey filament able to evoke 3 occurrences of the paw
323 withdrawal reflex was considered the paw withdrawal threshold. All tests were performed in a blinded manner.

324 **CatWalk gait analysis**

325 Gait analysis was conducted using the CatWalk XT system (Noldus, the Netherlands) to measure pain-related
326 parameters. The experimental setup involved placing the mouse on a glass platform with open ends, allowing the
327 mouse to walk voluntarily. Simultaneously, a high-speed camera positioned underneath the platform captured
328 images of each step, which were then transmitted to the analysis software (version 10.6, CatWalk XT, Noldus) for
329 further processing. In this study, eight parameters were identified to assess dynamic behaviors relevant to
330 neuropathic pain: (1) Stand: this parameter represents the duration (in seconds) of a paw touching the glass plate; (2)
331 Stand index: it describes the speed at which the paw moves away from the glass plate; (3) Max contact area: it
332 describes the maximum contact area of the paw or leg with the glass plate; (4) Mean print area: it represents the
333 average area of the paw print during locomotion; (5) Mean intensity: this parameter denotes the average intensity
334 value of the running stage; (6) Duty cycle This parameter denotes the average intensity value of the running stage.

335 **Statistical Analysis**

336 GraphPad Prism 5 (Graph Pad Software, Inc.) was used for the statistical analyses and graphing. Statistical
337 significance was assessed by unpaired *t*-test, paired *t*-test, one-way and two-way ANOVA followed by *post hoc*
338 comparison. All data in the experiment are expressed in mean \pm S.E.M. Statistical significance was indicated as *,
339 $P < 0.05$, **, $P < 0.01$, ***, $P < 0.001$ and ****, $P < 0.0001$.

340

341 **Competing interests**

342 The authors declare there are no conflicts of interest/competing interests related to this work.

343 **Author contributions**

344 W.-Y.P., Data curation, Formal analysis, Investigation, Visualization, Writing-original draft, Writing-review and

345 editing, Funding acquisition; P.W., Data curation, Investigation, Methodology; C.-Y.T., Data curation, Investigation, Methodology, Writing-original draft; H.Z., Investigation, Methodology; K.C., Investigation; H.-X.S., Methodology; Y.-C.T., Methodology; A.-X.L., Methodology; Z.Z., Investigation, software; Y.-F.Y., Investigation; K.-J.W., Data curation, Investigation, Methodology, Writing-original draft; C.C., Conceptualization, Supervision; Y.-M.W., Supervision, Investigation, Methodology; T.C., Conceptualization, Supervision, Funding acquisition, Investigation, Visualization, Methodology, Writing-review and editing, Project administration, Funding acquisition.

351 **Acknowledgments**

352 We thank the support the teaching center of Air force medical university for the invaluable technical assistance and
353 J.-X.G. of our laboratory for the helpful comments on an earlier version of the manuscript and discussions. This
354 work was supported by grants from the National Natural Science Foundation of China (32192410, 32071000 to T.
355 C., 82271893 to Y.-M.W., 8230071226 to W.-Y.P., 82302090 to K.C.), National Science Fund for Distinguished
356 Young Scholars (12225511 to C.C.), National Science Fund of China Major Project (T2241002 to C.C.), Innovation
357 Laboratory of Terahertz Biophysics (23-163-00-GZ-001-001-02-04 to W.-Y.P.), The Key Research and
358 Development Plan of Shaanxi Province (S2024-YF-YBSF-0277 to W.-Y.P.)

359

360

361 **References**

- 362 1. R. Baron, G. Binder A Fau - Wasner, G. Wasner, Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. *Neurology* vol. 9(8), 807-19 (2010).
- 363 2. L. Shan, D. Selvarajah, Z. Wang, Editorial: Insights in neuropathic pain: 2022. *Frontiers in pain research (Lausanne, Switzerland)* 4, 1232025 (2023).
- 364 3. T. S. Jensen, N. B. Finnerup, Allodynia and hyperalgesia in neuropathic pain: clinical manifestations and mechanisms. *Lancet Neurol.* 13(9), 924-35 (2014).
- 365 4. M. Costigan, C. J. Scholz J Fau - Woolf, C. J. Woolf, Neuropathic pain: a maladaptive response of the nervous system to damage. *Annu. Rev. Neurosci.* 32, 1-32 (2009).
- 366 5. K. Liu, L. Wang, Optogenetics: Therapeutic spark in neuropathic pain. *Bosnian J. Basic Med. Sci.* 19(4), 321-327 (2019).
- 367 6. W. Peng *et al.*, High-frequency terahertz waves disrupt Alzheimer's β -amyloid fibril formation. *eLight* 3, 18 (2023).
- 368 7. Y. A.-O. Li, C. A.-O. Chang, Z. A.-O. Zhu, L. Sun, C. Fan, Terahertz Wave Enhances Permeability of the Voltage-Gated Calcium Channel. *J. Am. Chem. Soc.* 143 (11), 4311-4318 (2021).
- 369 8. Y. Zhao, L. Wang, Y. Li, Z. Zhu, Terahertz Waves Enhance the Permeability of Sodium Channels. *Symmetry* 15(2), 427 (2023).
- 370 9. J. Zhang *et al.*, Non-invasive, opsin-free mid-infrared modulation activates cortical neurons and accelerates associative learning. *Nat. Commun.* 12, 2730 (2021).
- 371 10. X. A.-O. Liu *et al.*, Nonthermal and reversible control of neuronal signaling and behavior by midinfrared stimulation. *Proc Natl Acad Sci U S A.* 118(10) (2021).
- 372 11. J. S. Trimmer, Ion channels and pain: important steps towards validating a new therapeutic target for neuropathic pain. *Exp. Neurol.* 254, 190-194 (2014).
- 373 12. T. V. Bliss, G. L. Collingridge, B. K. Kaang, M. Zhuo, Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain. *Nat Rev Neurosci.* 17(8), 485-496 (2016)

386 13. T. V. P. Bliss, G. L. Collingridge, B.-K. Kaang, M. Zhuo, Synaptic plasticity in the anterior cingulate cortex in
387 acute and chronic pain. *Nat. Rev. Neurosci.* **17**, 485-496 (2016).

388 14. M. A.-O. Tsuda, K. Koga, T. Chen, M. Zhuo, Neuronal and microglial mechanisms for neuropathic pain in the
389 spinal dorsal horn and anterior cingulate cortex. *Neurochem.* **141**(4), 486-498 (2017).

390 15. W. Chen T Fau - Wang *et al.*, Postsynaptic insertion of AMPA receptor onto cortical pyramidal neurons in the
391 anterior cingulate cortex after peripheral nerve injury. *Mol Brain.* **7**, 76 (2014).

392 16. K. Koga *et al.*, Coexistence of two forms of LTP in ACC provides a synaptic mechanism for the interactions
393 between anxiety and chronic pain. *Neuron.* **85**(2), 377-389 (2015).

394 17. T. Chen *et al.*, Top-down descending facilitation of spinal sensory excitatory transmission from the anterior
395 cingulate cortex. *Nat. Commun.* **9**(1), 1886 (2018).

396 18. S. R. A. Alles, P. A. Smith, Etiology and Pharmacology of Neuropathic Pain. *Pharmacol Rev.* **70**(2), 315-347
397 (2018)

398 19. D. Y. Zhu *et al.*, The increased in vivo firing of pyramidal cells but not interneurons in the anterior cingulate
399 cortex after neuropathic pain. *Mol Brain.* **15**(1), 12 (2022).

400 20. X.-Y. Li *et al.*, Alleviating Neuropathic Pain Hypersensitivity by Inhibiting PKM ζ in the Anterior Cingulate
401 Cortex. *Science* **330**, 1400-1404 (2010).

402 21. S. J. Kang *et al.*, Bidirectional modulation of hyperalgesia via the specific control of excitatory and inhibitory
403 neuronal activity in the ACC. *Mol Brain.* **8**, 81 (2015).

404 22. P. N. Fuchs, Y. B. Peng, J. A. Boyette-Davis, M. L. Uhelski, The anterior cingulate cortex and pain processing.
405 *Front Integr Neurosci.* **8**, 35 (2014).

406 23. K. Lançon, C. Qu, E. Navratilova, F. Porreca, P. Séguéla, Decreased dopaminergic inhibition of pyramidal
407 neurons in anterior cingulate cortex maintains chronic neuropathic pain. *Cell Rep.* **37**(9), 109933 (2021).

408 24. S. W. Um, M. J. Kim, J. W. Leem, S. J. Bai, B. H. Lee, Pain-Relieving Effects of mTOR Inhibitor in the
409 Anterior Cingulate Cortex of Neuropathic Rats. *Mol. Neurobiol.* **56**, 2482-2494 (2019).

410 25. W. Tan *et al.*, Alleviating neuropathic pain mechanical allodynia by increasing Cdh1 in the anterior cingulate
411 cortex. *Mol Pain.* **11**, 56 (2015).

412 26. M. Takeda *et al.*, Potassium channels as a potential therapeutic target for trigeminal neuropathic and
413 inflammatory pain. *Mol Pain.* **7**, 5 (2011).

414 27. X. Du, N. Gamper, Potassium channels in peripheral pain pathways: expression, function and therapeutic
415 potential. *Curr. Neuropharmacol.* **11**(6), 621-40 (2013).

416 28. A. Sakai *et al.*, MicroRNA cluster miR-17-92 regulates multiple functionally related voltage-gated potassium
417 channels in chronic neuropathic pain. *Nat. Commun.* **8**, 16079 (2017).

418 29. J.-Y. Zhao *et al.*, DNA methyltransferase DNMT3a contributes to neuropathic pain by repressing Kcna2 in
419 primary afferent neurons. *Nat. Commun.* **8**, 14712 (2017).

420 30. L. Fan *et al.*, Impaired neuropathic pain and preserved acute pain in rats overexpressing voltage-gated potassium
421 channel subunit Kv1.2 in primary afferent neurons. *Mol. Pain.* **10**, 8 (2014).

422 31. C. Tsantoulas, S. B. McMahon, Opening paths to novel analgesics: the role of potassium channels in chronic
423 pain. *Trends Neurosci.* **37**(3), 146-158 (2014).

424 32. X. Y. Cao *et al.*, Characterization of intrinsic properties of cingulate pyramidal neurons in adult mice after nerve
425 injury. *Mol. Pain.* **5**, 73 (2009).

426 33. C. González *et al.*, K(+) channels: function-structural overview. *Compr Physiol.* **2**(3), 2087-2149 (2012).

427 34. K. L. Zhang *et al.*, Targeted up-regulation of Drp1 in dorsal horn attenuates neuropathic pain hypersensitivity by
428 increasing mitochondrial fission. *Redox Biol.* **49**, 102216 (2022).

429 35. R. Zhao *et al.*, Neuropathic Pain Causes Pyramidal Neuronal Hyperactivity in the Anterior Cingulate Cortex.

430 *Front. Cell. Neurosci.* 12 (2018).

431 36. Z. Chen, X. Shen, L. Huang, H. Wu, M. Zhang, Membrane potential synchrony of neurons in anterior cingulate cortex plays a pivotal role in generation of neuropathic pain. *Sci. Rep.* **8**, 1691 (2018).

432 37. H. Xu *et al.*, Presynaptic and postsynaptic amplifications of neuropathic pain in the anterior cingulate cortex. *J Neurosci.* **28**(29), 7445-7453 (2008).

433 38. K. Gao, Z. Lin, S. Wen, Y. Jiang, Potassium channels and epilepsy. *Acta Neurol Scand.* **146**(6), 699-707 (2022).

434 39. S. Maljevic, H. Lerche, Potassium channels: a review of broadening therapeutic possibilities for neurological diseases. *J Neurol.* **260**(9), 2201-2211 (2013).

435 40. A. Al-Sabi, Seshu K. Kaza, J. O. Dolly, J. Wang, Pharmacological characteristics of Kv1.1- and Kv1.2-containing channels are influenced by the stoichiometry and positioning of their α subunits. *Biochem. J.* **454**, 101-108 (2013).

436 41. Y. Liang *et al.*, Transcription factor EBF1 mitigates neuropathic pain by rescuing Kv1.2 expression in primary sensory neurons. *Transl Res.* **263**, 15-27 (2024).

437 42. J. Zhang *et al.*, Epigenetic restoration of voltage-gated potassium channel Kv1.2 alleviates nerve injury-induced neuropathic pain. *J. Neurochem.* **156**, 367-378 (2021).

438 43. T. A.-O. Xiao *et al.*, Sensory input-dependent gain modulation of the optokinetic nystagmus by mid-infrared stimulation in pigeons. *Elife.* **12**:e78729 (2023).

439 44. X. Xiao, Y.-Q. Zhang, A new perspective on the anterior cingulate cortex and affective pain. *Neurosci. Biobehav. Rev.* **90**, 200-211 (2018).

440 45. S. J. Kang *et al.*, Bidirectional modulation of hyperalgesia via the specific control of excitatory and inhibitory neuronal activity in the ACC. *Mol. Brain* **vol. 8**, 1-81. 2 (2015).

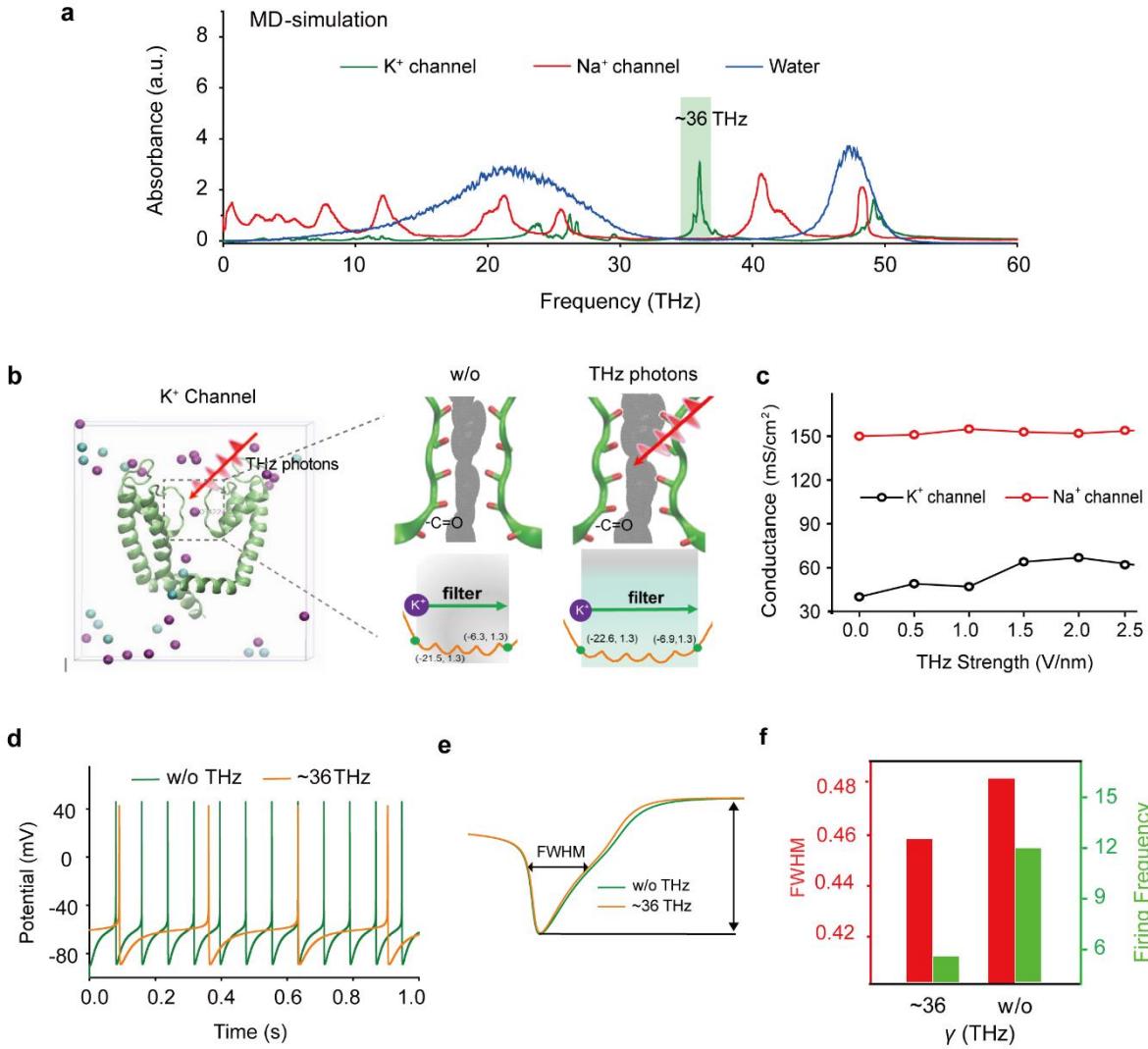
441 46. J. Cichon, T. J. J. Blanck, W.-B. Gan, G. Yang, Activation of cortical somatostatin interneurons prevents the development of neuropathic pain. *Nat. Neurosci.* **20**, 1122-1132 (2017).

442 47. R. Zhou, W. Wang C Fau - Xu, L. Xu W Fau - Xie, L. Xie, Biological applications of terahertz technology based on nanomaterials and nanostructures. *Nanoscale*, **11**, 3445-3457 (2019).

443 48. Q. Wang, Y. Chen, J. Mao, F. Yang, N. A.-O. Wang, Metasurface-Assisted Terahertz Sensing. *Sensors* **23**(13), 5902 (2023).

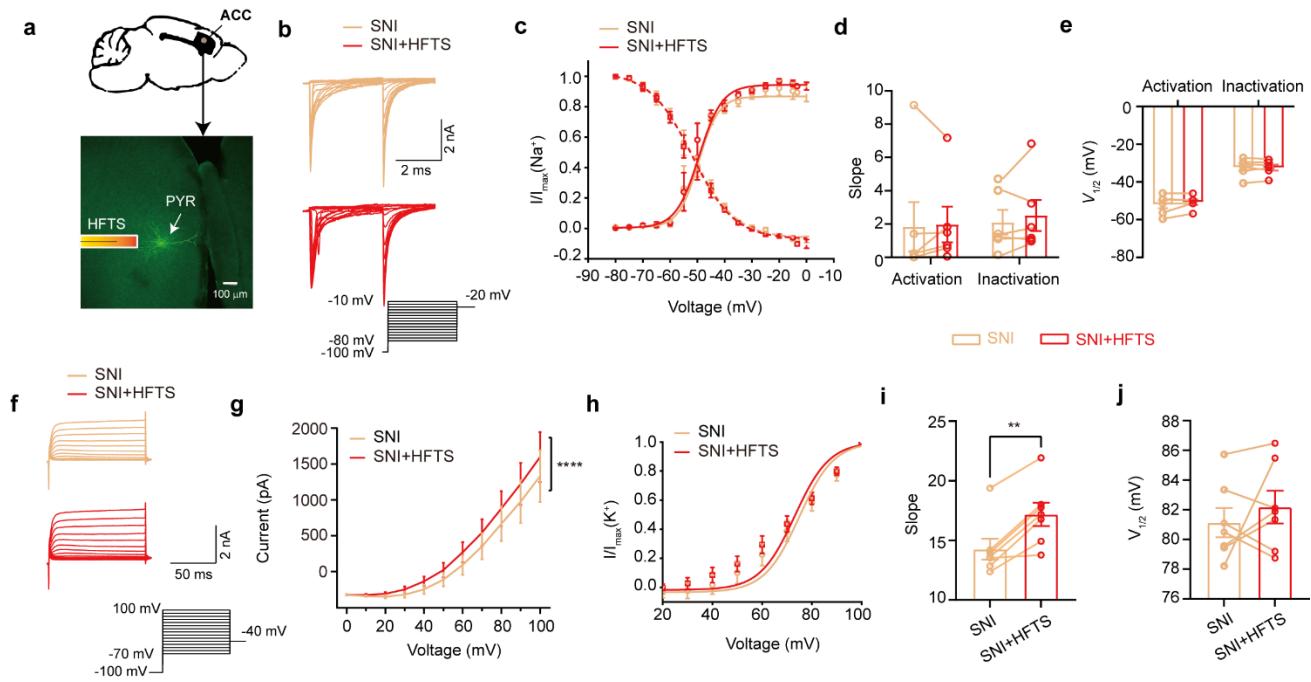
444 49. B. A. Cole, S. J. Clapcote, S. P. Muench, J. D. Lippiat, Targeting K(Na)1.1 channels in KCNT1-associated epilepsy. *Pharmacol Sci.* **42**(8), 700-713 (2021).

445 50. T. J. Jentsch, Neuronal KCNQ potassium channels: physiology and role in disease. *Nat Rev Neurosci* **1**, 21-30 (2000).

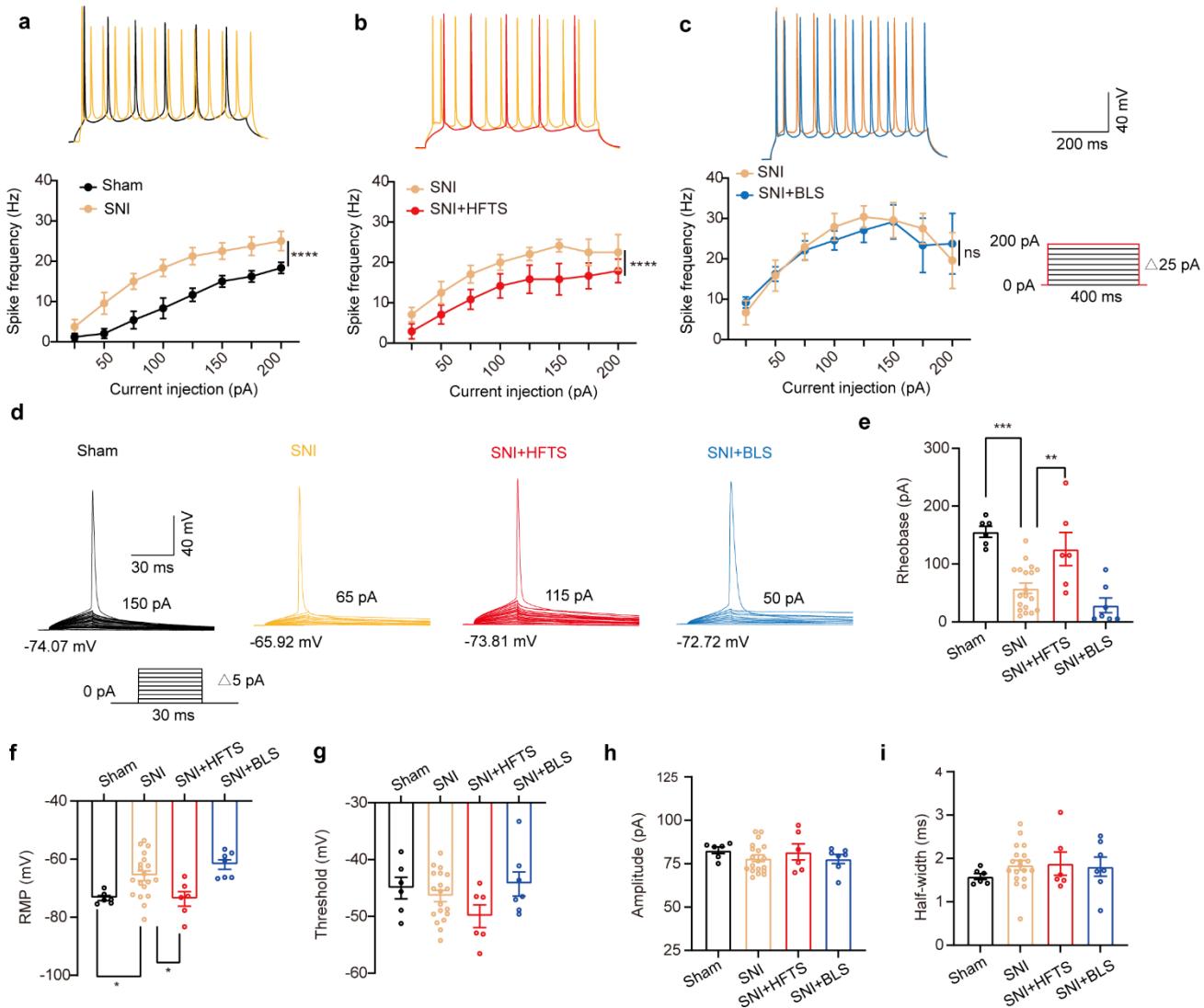

446 51. J. L. Taylor *et al.*, Functionally linked potassium channel activity in cerebral endothelial and smooth muscle cells is compromised in Alzheimer's disease. *Proc Natl Acad Sci U S A.* **119**(26), e2204581119 (2022).

447 52. M. Häusser, The Hodgkin-Huxley theory of the action potential. *Nature Neuroscience* **3**, 1165 (2000/11/01, 2000).

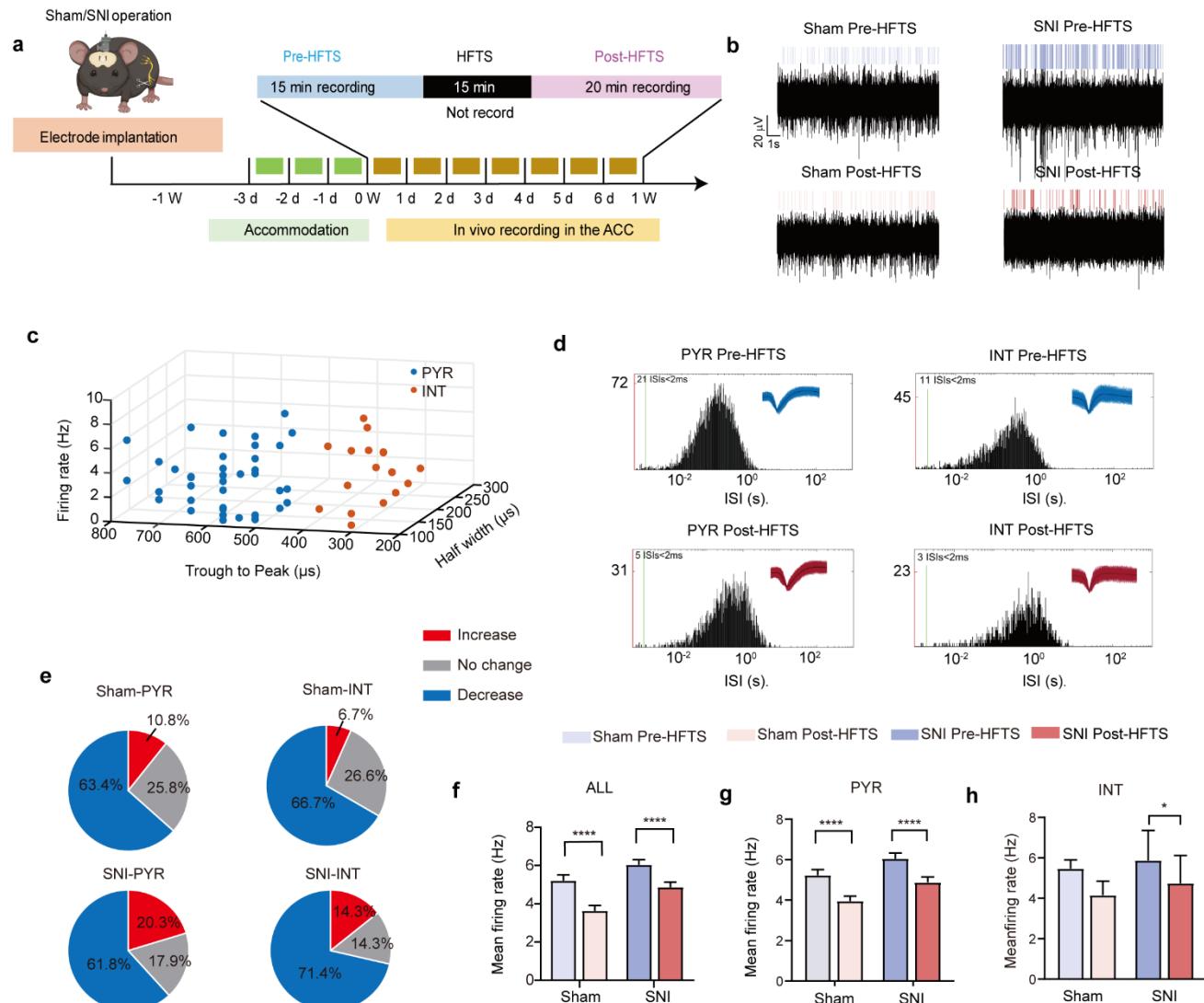
448 53. Z. V. Guo *et al.*, Procedures for behavioral experiments in head-fixed mice. *PLoS One* **9**(6), e101397 (2014).


449 54. M. M. Zhang *et al.*, Glutamatergic synapses from the insular cortex to the basolateral amygdala encode observational pain. *Neuron*, **110**(12), 1993-2008.e6 (2022).

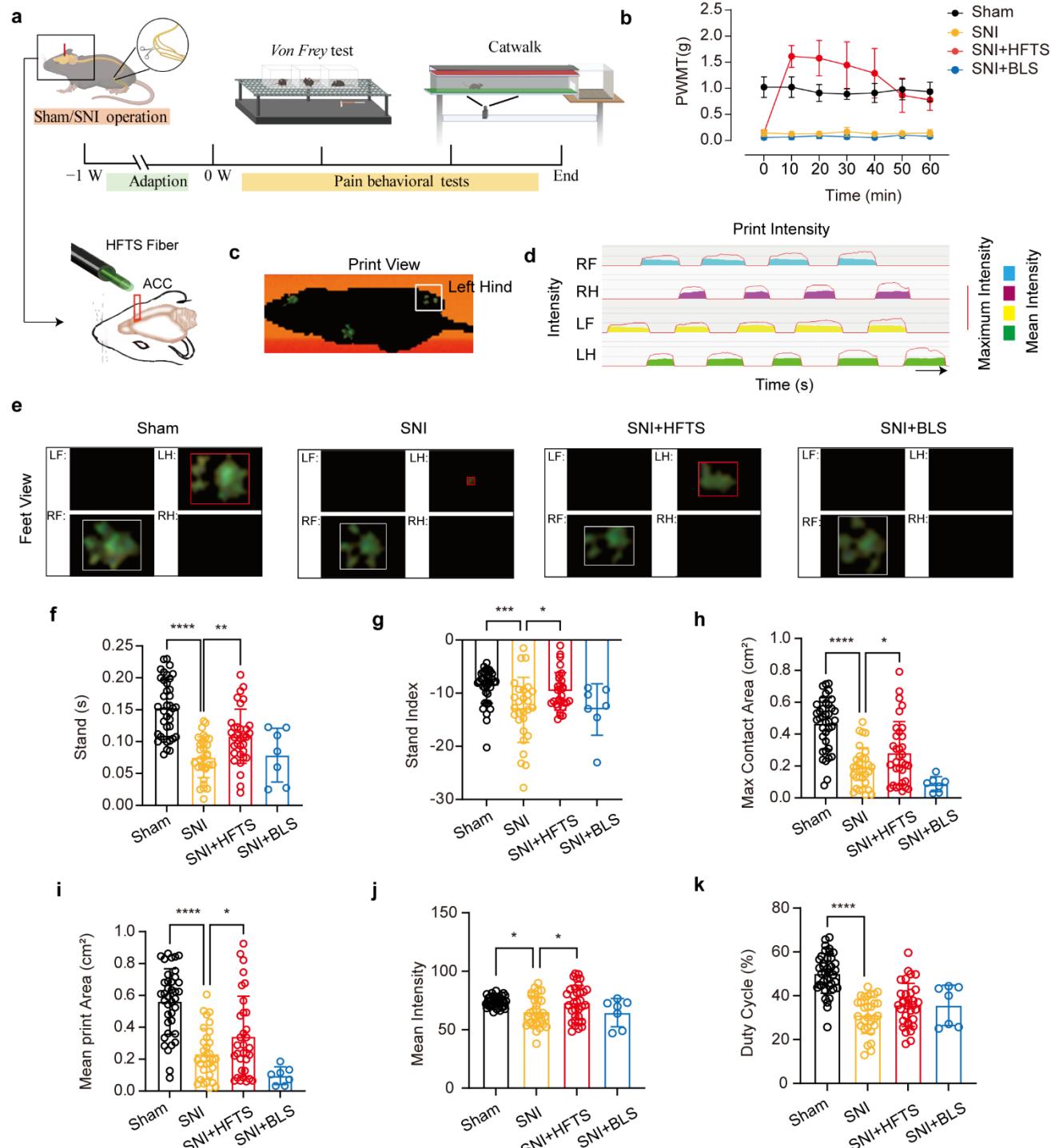
450 55. A. V. Apkarian, R.-D. Bushnell Mc Fau - Treede, J.-K. Treede Rd Fau - Zubieta, J. K. Zubieta, Human brain mechanisms of pain perception and regulation in health and disease. *Eur J Pain.* **9**(4), 463-484 (2005).


472

473 Fig. 1 Specific frequency THz photons resonate K_v channel and decrease the AP firing rate in cortical neurons
 474 through molecular dynamics simulation. (a) Absorbance spectra of voltage-gated potassium/sodium ion channels
 475 and the bulk water. (b) The dynamic attributes of the Kv1.2 filter structure in pre- and post-exposure to HFTS.
 476 Purple balls represent the K^+ , blue balls represent the Cl^- . (c) The alterations in potassium/sodium ion conductance
 477 consequent to the influence of HFTS. (d) Changes of the firing rate of APs of cortical neuron models before and
 478 after HFTS. (e) The FWHM of an AP pre- and post HFTS. (f) Changes in FWHM and firing frequency with or
 479 without HFTS. HFTS, high frequency terahertz stimulation. AP, action potential. FWHM, Full Width of Half
 480 Maximum.


481

482 Fig. 2 HFTS enhances Kv currents of pyramidal neurons in SNI mouse *in vitro*. (a) Anatomical location of ACC
 483 region in mice and a recorded PYR neuron (biocytin-labeled, green). (b) Representative Nav currents without
 484 (orange) or with HFTS (red) under the given step voltage protocol. (c) The application of HFTS does not change
 485 the activation and inactivation curves of Nav currents. (d-e) The corresponding slopes of the activation and
 486 inactivation curves (d) and the comparison of the half-activation and inactivation voltages (e). (f) Representative
 487 Kv currents evoked by a series of step voltages (inset) without (orange) or with HFTS (red). (g) I-V plots
 488 constructed from the values of traces shown in (f) display a stronger K^+ current with HFTS. (SNI vs. SNI + HFTS:
 489 $F_{(1, 66)} = 67.97, P < 0.0001, n_{SNI} = 7, n_{SNI+HFTS} = 7$; Two-way ANOVA followed by *post hoc* comparison using the
 490 Šídák's multiple comparisons test (Supplement Table 1). (h) The application of HFTS does not change the
 491 activation curves of the Kv currents. (i-j) The corresponding slopes of the activation curves (i) and the
 492 half-activation voltages (j). SNI vs. SNI + HFTS: $t = 5.872, P = 0.0011, n = 7$, unpaired *t*-test. **, $P < 0.01$, ****, P
 493 < 0.0001.


494

495 Fig. 3 HFTS reduces the APs firing rate of pyramidal neurons in SNI mice *in vitro*. (a-c) Representative traces
496 (upper panels) and line-charts (lower panels) showing the changes of evoked spikes of pyramidal neurons in
497 different groups Sham *vs.* SNI: $F_{(1, 40)} = 124.2$, $P < 0.001$, $n_{\text{Sham}} = 6$, $n_{\text{SNI}} = 6$; SNI *vs.* SNI + HFTS: $F_{(1, 40)} = 23.13$,
498 $P < 0.0001$, $n_{\text{SNI}} = 6$, $n_{\text{SNI+HFTS}} = 6$; SNI *vs.* SNI + BLS: $F_{(1, 40)} = 0.1401$, $P = 0.7101$, $n_{\text{SNI}} = 6$, $n_{\text{SNI+BLS}} = 6$.
499 Two-way ANOVA followed by *post hoc* comparison using the Šídák's multiple comparisons test (Supplement
500 Table 2-4). (d) Superimposed traces showing the single AP evoked by threshold current stimulation in different
501 groups. (e) Histograms showing the statistical comparison of rheobase in each group. (Sham *vs.* SNI: $P < 0.001$,
502 $n_{\text{Sham}} = 6$, $n_{\text{SNI}} = 19$; SNI *vs.* SNI + HFTS: $P < 0.01$, $n_{\text{SNI}} = 19$, $n_{\text{SNI+HFTS}} = 6$, one-way ANOVA followed by *post*
503 *hoc* comparison using the Tukey's multiple comparisons test). (f) The RMP in each group (Sham *vs.* SNI: $q = 4.5$,
504 $P < 0.05$, $n_{\text{Sham}} = 6$, $n_{\text{SNI}} = 19$; SNI *vs.* SNI + HFTS: $P < 0.05$, $n_{\text{SNI}} = 19$, $n_{\text{SNI+HFTS}} = 6$, one-way ANOVA followed
505 by *post hoc* comparison using the Tukey's multiple comparisons test). (g-i) HFTS has no significant effect on the
506 threshold, amplitude and half-width of APs in pyramidal neurons. *, $P < 0.05$, **, $P < 0.01$, ***, $P < 0.001$, ****,
507 $P < 0.0001$. BLS, blue light stimulation.

508

509 Fig. 4 HFTS decreases the mean firing rate of pyramidal neurons in the ACC in both sham and SNI awake mice. (a) 510 Schematic showing the timeline and the stimulating pattern of HFTS on an awake mouse, as well as the single-unit 511 recording of the ACC using an *in vivo* multi-channel recording technique. (b) Example recording signals of ACC 512 neurons before and after HFTS application in sham and SNI groups, respectively. (c) ACC neurons are classified as 513 pyramidal (PYR) and interneurons (INT) using *k*-means cluster-separation algorithm based on their 514 electrophysiological properties. (d) Histograms of the inter-spike intervals (ISI) from the spikes of a PYR and an 515 INT in pre- and post-HFTS recording period. Insets at the top right corner show the waveforms of the detected 516 single unit. (e) Pie charts summarize the changes in firing rate of PYR and INT in sham and SNI groups. Pre vs. 517 post HFTS, Wilcoxon rank-sum test. (f) The mean firing rate of all recorded neurons in sham and SNI groups 518 before and after HFTS. Sham ($P < 0.0001$, $n = 73$, paired *t*-test), SNI ($P < 0.0001$, $n = 130$, paired *t*-test). (g) The 519 mean firing rate of PYR neurons in sham and SNI groups before and after HFTS. Sham group ($P < 0.0001$, $n = 93$, 520 paired *t*-test), SNI group ($P < 0.0001$, $n = 123$, paired *t*-test). (h) The mean firing rate of INT neurons in sham and 521 SNI groups before and after HFTS. Sham group ($P = 0.065$, $n = 15$, paired *t*-test), SNI group ($P = 0.0115$, $n = 7$, 522 paired *t*-test). *, $P < 0.05$, ****, $P < 0.0001$.

523

524

525

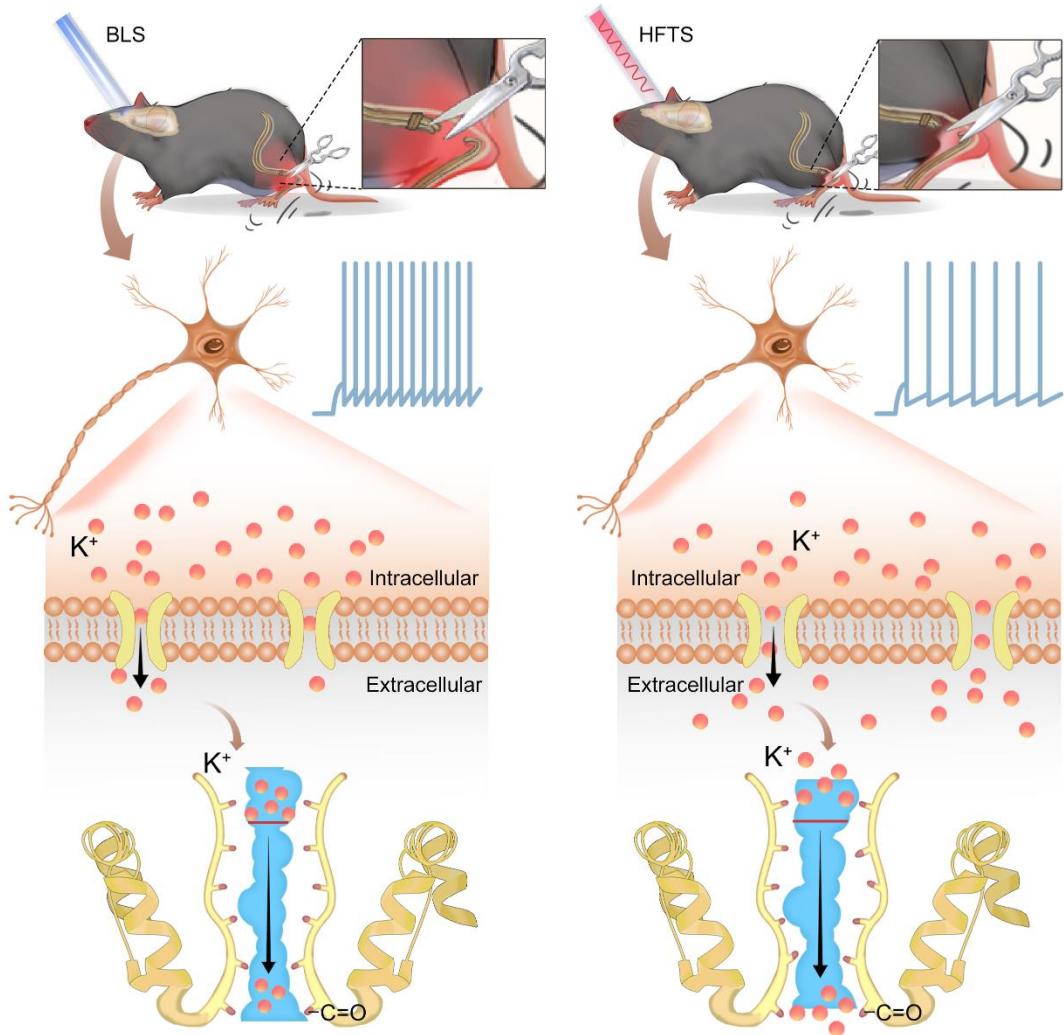
526

527

528

529

530


531

532

533

Fig. 5 HFTS alleviates neuropathic pain of SNI mice through pain behavior tests. (a) Schematic of the establishment of NP model, the application of HFTS in ACC region and the following behavior tests including Von Frey test and Catwalk analysis. (b) HFTS increases the paw withdrawal mechanical thresholds (PWMTs) compared to the SNI model ($F_{(18, 140)} = 12.65$, $P < 0.0001$. Sham vs. SNI: $P < 0.0001$; SNI vs. SNI + HFTS: $P < 0.0001$; $n = 6$ in each group. Two-way ANOVA repeated measures followed by *post hoc* comparison using the Šídák's multiple comparisons test). (c-d) The print view of a mouse (c) and the step sequence of a sham mouse who passing through the glass pane (d). The red line represents the maximum intensity of each foot, the color box represents the mean intensity of the corresponding print during walking. (e) The feet view of the left front (LF), left hind (LH), right front (RF) and right hind (RH) in the groups of sham, SNI, SNI + HFTS and SNI + BLS, respectively. (f) HFTS

533 increases the LH stand time of SNI mice (sham *vs.* SNI: $P < 0.0001$; SNI *vs.* SNI + HFTS: $P < 0.01$). (g) HFTS
534 increases the LH stand index of SNI mice (sham *vs.* SNI: $P < 0.001$; SNI *vs.* SNI + HFTS: $P < 0.05$). (h) HFTS
535 increases the LH max contact area of SNI mice (sham *vs.* SNI: $P < 0.0001$; SNI *vs.* SNI + HFTS: $P < 0.05$). (i)
536 HFTS increases the LH mean print area of SNI mice (sham *vs.* SNI: $P < 0.0001$; SNI *vs.* SNI + HFTS: $P < 0.05$;
537 SNI *vs.* SNI + BLS: $P < 0.05$). (j) HFTS increases the LH mean intensity of SNI mice (sham *vs.* SNI: $P < 0.05$; SNI
538 *vs.* SNI + HFTS: $P < 0.05$). (k) HFTS have no significant for the pain behavior parameter of the duty cycle. *, $P <$
539 0.05 , **, $P < 0.01$, ***, $P < 0.001$, ****, $P < 0.0001$. One-way ANOVA (f-k) followed by *post hoc* comparison
540 using the Tukey's multiple comparisons test. $n_{\text{Sham}} = 38$, $n_{\text{SNI}} = 35$, $n_{\text{SNI+HFTS}} = 34$, $n_{\text{SNI+BLS}} = 9$.
541

542

543 Fig. 6 Schematic diagram shows the mechanism of HFTS in alleviating neuropathic pain. Left panel shows the
544 group with BLS and the right panel shows the group with HFTS.

545