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Abstract

Dementia is characterized by a decline in memory and thinking that is significant enough to
impair function in activities of daily living. Patients seen in dementia speciaty clinics are
highly heterogenous with a variety of different symptoms that progress at different rates.
Recent research has focused on finding data-driven subtypes for revealing new insights into
dementia's underlying heterogeneity, compared to analyzing the entire cohort as a single
homogeneous group. However, current studies on dementia subtyping have the following
limitations: (i) focusing on AD-related dementia only and not examining heterogeneity within
dementia as a whole, (ii) using only cross-sectional baseline visit information for clustering
and (iii) predominantly relying on expensive imaging biomarkers as features for clustering. In
this study, we seek to overcome such limitations, using a data-driven unsupervised clustering
algorithm named SillyPutty, in combination with hierarchical clustering on cognitive
assessment scores to estimate subtypes within a real-world clinical dementia cohort. We use a
longitudinal patient data set for our clustering analysis, instead of relying only on baseline
vigits, allowing us to explore the ongoing temporal relationship between subtypes and disease
progression over time. Results showed that subtypes with very mild or mild dementia were

more heterogenous in their cognitive profiles and risk of disease progression.
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1. Introduction

Dementia is characterized by a decline in memory and cognitive function, that is significant
enough to impair function in activities of daily living. It can be caused by reversible causes
such as medication-induced cognitive impairment, and irreversible conditions such as
progressive neurodegenerative conditions[1-3]. Alzheimer's Disease (AD) is the most
common cause of dementiain older adults, and other common causes include cerebrovascular
disease and disorders linked to Lewy bodies, tau tangles, or limbic-predominant age-related
TDP-43 encephalopathy (LATE)[4]. Notably, many patients have multiple conditions
contributing to their cognitive impairment (REF). Dementia patients exhibit diverse
symptoms and progress at varying rates, likely influenced by underlying brain pathologies,
baseline cognitive ability, genetic factors, medical conditions, and socia determinants of
health. Consequently, patients treated in dementia clinics manifest significant heterogeneity,
representing a spectrum of dementia subtypes[5-7]. A more thorough understanding of this
clinical heterogeneity could enhance dementia diagnosis and prognosis, facilitating tailored
care for patients and their families[8,9].

Many neurological diseases are characterized by neuropathological features. Previous
studies concerning the derivation of dementia types have frequently relied on suspected
neuropathological diagnoses based on clinical features rather than objective data-driven
methods.[10-14]. Recently, the widespread availability of Electronic Health Records (EHR)
data alongside evolving machine learning techniques has enabled data-driven approaches to
reveal new insights into dementia’s underlying heterogeneity[15]. For instance, clustering
algorithms can stratify dementia patients into subtypes based on key EHR features, enhancing
predictive ability compared to anayzing the entire cohort as a single homogeneous

group[16-18]. However, current research on dementia subtyping faces three main limitations.


https://doi.org/10.1101/2024.06.13.598874
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.13.598874; this version posted July 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

First, there is a significant focus on parsing heterogeneity within AD-related dementia
potentially neglecting important insights that could arise from examining heterogeneity
within all-cause dementia as a whole[19]. Second, conventional clustering methods used in
dementia research have analyzed cross-sectional single time-point data; however, given the
heterogeneity in disease progression, mapping longitudinal trajectories is an important focus
for dementia research[20-22]. Finally, existing research predominantly relies on imaging
biomarkers obtained through expensive procedures, such as magnetic resonance imaging
(MRI) and positron emission tomography (PET) scans. However, current research often
overlooks the potential of using non-imaging clinical data, such as routinely collected
electronic health records (EHR), as a valuable, cost-effective, and non-invasive solution for
addressing heterogeneity in dementia[15,23,24]. Addressing these gaps is essential for
effective clinical decision-making and precision diagnostics tailored to each subtype.

In response to the gaps in knowledge described above, our goal viathis project was to
analyze the heterogeneity of cognitive performance and disease progression within a real-
world clinical dementia cohort. Towards this end, we aimed to delineate subtypes using a
newly-devel oped unsupervised clustering technique called SillyPutty on cognitive assessment
scores of patients seen in a memory clinic (Fig 1). This new heuristic clustering approach
starts with a set of clustering assignments obtained from hierarchical clustering and
iteratively adjusts cluster assignments to maximize the average silhouette width[25]. A novel
aspect of our approach was the inclusion of all longitudinal patient visits for clustering
analysis, rather than solely relying on baseline visits, which alowed us to examine the
longitudinal relationship between subtypes and disease progression. Specifically, we aimed to
(i) examine how subtypes at similar stages of dementia differ in their cognitive characteristics

(ii) analyze patient transitions between different subtypes across multiple visits to examine
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the heterogeneity (variability) in progression rate amongst patients at different stages of

dementia (Fig 1).

Fig 1: Study workflow. Outpatient visits at the Memory Diagnostic Center with a Clinical
Dementia Rating recorded in the Washington University School of Medicine Electronic
Health Records were included. Feature selection was performed to identify the optimal set of
features for clustering. The SillyPutty algorithm [26] with hierarchical clustering was used to
identify clusters from longitudinal patient visits. ldentified clusters were analyzed for
variability (heterogeneity) in cognitive characteristics. Patient transitions between subtypes

across multiple visits were examined for variability in rate of disease progression.

2. Materialsand M ethods

2.1 Data sources and study participants
This retrospective study analyzed electronic health records (EHR) data extracted from the
Washington University in St. Louis Research Data Core (RDC), a repository of patient
clinical data sourced from BJC HealthCare and Washington University Physicians. Approval
for this study was obtained from the Washington University Institutional Review Board (IRB
# 201905161), which granted a waiver of HIPAA Authorization for the use of Protected
Health Information (PHI). The study cohort included all patients treated at the Memory
Diagnostic Center (MDC) at Washington University School of Medicine (WUSM) for
evaluation of memory and/or thinking concerns (Fig 1). The dataset, sourced from Allscripts
TouchWorks, included office visits with cognitive assessment measures recorded between
June 1, 2013, and May 31, 2018. This timeframe was chosen to mitigate potential data
harmoni zation challenges arising from an EHR system transition that commenced on June 1,
2018.

All patients treated at the WUSM MDC underwent a comprehensive history and

neurologic examination. A trained medical assistant administered the cognitive assessment
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battery to most patients. The cognitive battery was often not performed in patients with
moderate to severe dementia, who may not be able to complete the cognitive battery or who
are distressed by testing. Memory specialists utilize the Clinical Dementia Rating (CDR®)
scale to evaluate dementia severity, where scores ranged from O (normal cognition) to 3
(severe dementia). The CDR assess intra-individual changes in memory, thinking, and
function compared to previous abilities[27]. Notably, memory specialists used the results of
the cognitive assessment battery in the formulation of the CDR and documented them in the
patient’s EHR. All patient visits with a recorded CDR score were eligible for inclusion in our

study (Fig 1).

2.2 Feature selection and preprocessing

2.2.1 Feature selection for clustering

We performed a qualitative feature selection step to determine the optimal set of features for
clustering. We started with two sets of features as follows: (i) Cognitive assessment scores:
Boston Naming Test[28], Mini-Mental State Exam[29], Short Blessed[30], Word List
Memory Task[31], Verbal Fluency[32] and (ii) six components of the CDR score: Memory,
Orientation, Judgment and Problem Solving, Community Affairs, Home and Haobbies, and
Personal Care. For details regarding the range and interpretation of each of these tests, see
Supporing Information (S1 Table). The CDR components assess performance in six cognitive
and functional domains, providing critical insights into different aspects of a patient's
cognitive health respectively. The component scores include the values 0, 0.5, 1, 2 and 3 with
0 indicating normal cognition and 3 indicating severe impairment. Following pre-defined
scoring rules as listed in Morris et a., [27] the component scores can be aggregated to form
the CDR score. We refer to the aggregated CDR as the global CDR score throughout the

remainder of the manuscript, to avoid confusion with the CDR components. The t-distributed
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stochastic neighbour embedding (T-SNE) distribution for the 2 feature sets were analyzed to

determine the optimal set of features for clustering (Fig 1)[33].

2.2.2 Feature pre-processing

Feature pre-processing included clipping the outlier values to the 5th and 95th percentile
values and scaling between [0,1] using the Minmax Scalar package from sklearn (version
1.5.0)[34]. Since each of the selected features are ordinal variables and had a very low
missing rate of <5%, we imputed the missing values for each feature column using the

median value of that feature across all visits of all patients, following previous work [35]
(Fig 1).
2.3 Unsupervised clustering

2.3.1 SillyPutty algorithm

SillyPutty is a heuristic clustering method that optimizes cluster assignments using silhouette
widths. The silhouette width, which ranges from -1 to 1, is a metric that indicates the quality
of a data point's assignment to its cluster. A value close to 1 signifies strong clustering, with
distinct separation between clusters and high cohesion within each cluster. A value near 0
implies overlapping clusters, while a value close to -1 suggests the data point may be
misclassified.

The goa of SillyPutty is to maximize the average silhouette width by iteratively
refining cluster assignments. It begins with an initial set of clusters, which can be user-
defined, randomly chosen, or derived from other methods. In each iteration, the algorithm
calculates silhouette widths for the current clusters. It then identifies the data point with the
lowest silhouette width and reassigns it to the nearest cluster. This process continues until all
points have non-negative silhouette widths or until early termination conditions are met, such

as reaching the maximum number of iterations or detecting a repeated silhouette width vector
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within a user-specified number of iterations. The final output includes the refined clusters,

silhouette widths, and additional relevant information.

2.3.2 SillyPutty with hierarchical clustering

The standalone SillyPutty algorithm starts with purely random cluster assignments, repeating
the algorithm with different random starting points (Random SillyPutty). Since SillyPutty can
start with any cluster assignments, we initialized the cluster assignments with hierarchical
clustering before applying the SillyPutty algorithm (hierarchical SillyPutty). This choice is
motivated by results in the origina SillyPutty paper where hierarchical SillyPutty
outperformed other clustering methods such as Random SillyPutty, Partition Against

Medoids (PAM) and hierarchical clustering on multiple simulated datasets.

2.3.3 Clustering evaluation and baselines

The optimal number of clusters for the Hierarchical SillyPutty algorithm was determined by
the best mean silhouette width, for a range of clusters values (K) from K = 2 to 16.
Hierarchical SillyPutty was compared with aternative clustering techniques. (i) Random
SillyPutty (SillyPutty with random initial assignments), (ii) hierarchical clustering, and (iii)
Partition Against Medoids (PAM). For a fair comparison, the same number of clusters
selected for hierarchical SillyPutty was also used for the baseline methods. Further, all
clustering methods were qualitatively evaluated using the metrics used in the origind
SillyPutty paper, such as Mean Silhouette Widths (MSW)[26,36], T-SNE[33] and

multidimensional scaling (MDS)[37].

2.4 Clustering on longitudinal visits
In our study, clustering analyses were performed on all data that was available from a 6-year
period between 2013-2018. Note that our cohort included both patients with asingle visit and

patients with multiple visits during this period. For the clustering step, each visit was
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assumed independent without any temporality (linkage) between individual visits of the same
patient. The temporality information between individual visits was used subsequently for
analyzing the relationship between different clusters. This approach — including all visits for
clustering instead of using only the baseline visit of each patient was taken to enable further
longitudinal analysis and track the symptom progression rate of patients. For example, at any
given point in time, a patient exists in a single cluster (dementia subtype) but may transition
between different clusters over time (Fig 1). To gain an insight into which patients have a
higher probability of progression to more severe dementia, patient transitions between
different dementia subtypes were anayzed across multiple visits. Finally, the differences in

progression rate, both within and between global CDR categories were measured.

2.5 Softwar e packages and code availability
The SillyPutty algorithm was implemented using the R package published in the
Comprehensive R Archive Network (CRAN) https:.//cran.r-

proj ect.org/web/packages/SillyPutty/index.html. All other visualizations were performed

using the seaborn package and Python 3.7. The implementation code for this project will be

made available upon acceptance.

3. Reaults

3.1 Sample characteristics

Longitudinal data from 1,845 patients with 2,737 visits were eligible for inclusion, where
each visit recorded a global CDR score. While 953 patients recorded a single visit, the
remaining 892 patients had multiple visits (maximum number of visits = 5) with a visit
interval of (mean +/- STD) 8.8 +/- 3.6 months. The median age of the cohort at the baseline
visit of was 73 years with 57% of the patients being female. In terms of race and ethnicity,

77% patients were White and 9.8% patients were Black or African American. 88.5% patients
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were Non-Hispanic or Latino, while 5.1% were Hispanic or Latino (Table 1). The most
frequently occurring brain-related disorders in our cohort, identified based on ICD 10 codes
included memory loss (N = 987 patients, 54 %), Alzheimer's Disease (N = 1061 patients,
57.5%), Parkinsonism (N = 66 patients; 3.6%), Maor Depressive Disorder (N = 455 patients;
24.7%) and Obstructive Sleep Apnea (N = 366 patients; 19.8%) respectively (Table 1). The
full list of ICD-10 codes for each of the brain-related disorders listed in Table 1 can be found

in the Supporting Information (S2 Table).

Table 1: Cohort demographics based on the baseline visits of patients

Variable Total
Number of patients 1845
Age at first encounter, median (IQR), years 73 [64-81]
Sex, N (%)

- Femae 1038 (57%)
Race, N (%)

- White 1422 (77%)

- Black or African American 181 (9.8%)

- Asian 20 (1.2%)

- *Other 222 (12%)
Ethnicity, N (%)

- Non-Hispanic or Latino 1643 (88.5%)

- Hispanic or Latino 84 (5.1%)

- Unknown 118 (6.4%)
Brain-related disorders (n, %)

-Memory Loss 987 (54 %)

-Alzheimer Disease 1061 (57.5 %)

-Parkinsonism 66 (3.6 %)

-Major Depressive Disorder 455 (24.7%)

-Obstructive Sleep Apnea 366 (19.8%)
* Other includes Native Hawaiian or Other Pacific Islander, Other, Unknown, Declined, or
unreported.

3.2 Optimal set of featuresfor clustering

We aimed to qualitatively analyze the T-SNE distribution of the 2 feature sets (CDR

components and cognitive assessment scores; see Section 2.2.1) to decide which of them are
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the most optimal set of input features for clustering. Using the cognitive scores as features
creates a gradient from low to high global CDR but did not result in clusters (Fig 2A).
However, using the CDR components as features created clusters that were distinct without
any significant overlap across the CDR categories (Fig 2B). Analysing the degree of overlap
of points across the different global CDR categories, the six components of CDR were
selected as the optimal set of features for clustering. Another motivation behind selecting the
individual CDR component as features is the fact that for patients having the same global
CDR score, the individual components might be different from one another, allowing us a

more granular approach of studying the sub-phenotyping of patients.

Fig 2: Feature selection for clustering. 2D T-SNE representations of the data for each of the
2 feature categories: CDR components only as features (2A) and cognitive scores only as
features (2B). Each point in the scatter plot represents a visit with the colour indicating the
global CDR score. The x-axis and y-axis represent the 2 dimensions of the 2D T-SNE vector

for visualization purposes.

3.3 Clustering evaluation

3.3.1 Optimal number of clusters

Comparing the mean silhouette width (MSW) values of different number of clusters
(hierarchical SillyPutty), K = 4, 6, 10 and 15 were identified as potential candidates to be the
optimal number of clusters (Fig 3), because the MSW values for these K were higher
compared to the neighbouring K points. This observation is line with the T-SNE distribution
across different clusters for each of K = 4, 6, 10 and 15 (Supporting Information; S3 Fig) and
the T-SNE distribution across global CDR stages (Fig 2B). The visits in the earlier stages of
dementia (e.g. CDR = 0.5) can potentially form multiple clusters indicating a level of
heterogeneity in cognitive characteristics can be better captured for higher number of clusters

(K =10 and K = 15) compared to lower values (K = 4 and K = 6) (S3 Fig). The T-SNE plots

11


https://doi.org/10.1101/2024.06.13.598874
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.13.598874; this version posted July 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

for K=10 and K=15 were identical for early stages of dementia (global CDR = 0, 0.5) with
smaller subclusters for global CDR >= 1. In our subsequent analyses, we selected K = 10 as

the optimal number of clusters.

Fig 3. Selecting number of clusters for Hierarchical SllyPutty. Optimal number of
clusters were determined by comparing the best mean silhouette width (MSW), for number of
clusters (K) ranging from 2 to 16. K = 10 was selected as the optimal number of clusters for

our analyses (explanation provided in section 3.3.1).

3.3.2 Comparison with other clustering methods

Our method hierarchical SillyPutty was compared with the baseline clustering techniques
using well-validated clustering metrics reported in the original SillyPutty paper. SillyPutty
initialized with cluster assignments generated by hierarchical clustering showed higher mean
silhouette width (MSW = 0.35715) across clusters compared to SillyPutty initialized with
random cluster assignments (Random SillyPutty; MSW = 0.19989) and other state-of-the-art
clustering agorithms like PAM (MSW = 0.3391) and hierarchical clustering (MSW =
0.30936) (Fig 4). Random SillyPutty performed the worst with 9 out of 10 clusters having
negative silhouette widths indicating the possibility of misclassification of points to the
wrong cluster or overlap between the clusters. Using only hierarchical clustering
demonstrated negative silhouette widths in 7 out of 10 clusters. However, using the SillyPutty
algorithm in combination with hierarchical clustering (HSP) showed positive silhouette
widths for al the 10 clusters. The T-SNE and MDS plots for hierarchical SillyPutty showed
more distinct and well-separated clusters compared to Random SillyPutty, PAM and

hierarchical clustering (Fig 4).
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Fig 4: Comparison with baseline clustering techniques. Clustering statistics of different
clustering algorithms: hierarchical clustering, PAM, random SillyPutty and our method
hierarchical SillyPutty (from top to bottom). For each clustering method, the plots from left
to right represent mean silhouette width (MSW), T-SNE distribution and multidimensional
scaling (MDS) respectively. The clusters are arranged in ascending order (Ci- Cio) from left
to right.

3.4 Subtype demographics

For each subtype, we aimed to examine if all patient visits within a subtype were in the same
stages of dementia (unique globa CDR score). Subtypes (clusters) can either be
homogenous, having a unique global CDR (e.g. Cq, C,), or composite, including two different
globa CDR scores, (e.g. C7, Cs) (Fig 5). C, was a predominantly healthy cluster with patient
visits associated with no cognitive impairment. C, and Cy only consisted of visits with very
mild dementia, while C;, Cs Cg and Cg are mostly dominated by visits with mild dementia.
Patient visits at a more advanced stages of the disease were mostly concentrated in clusters
Ci0, C3 and C; respectively. More subtypes were associated with the mild dementia (CDR <=
1), namely C,, Cq, C4, Cy7, Cs, Cg compared to moderate to severe dementia (CDR > 1)
namely Cs, Cio, Cs, C1. Thisis in line with the T-SNE distributions in Fig 2B and eFig 2,
where data points with CDR = 0.5 and 1 are more scattered, potentially forming multiple

subtypes.

Fig 5. Global CDR composition of subtypes. Stacked bar plot showing the CDR
composition of each dementia subtypes ordered by increasing global CDR score (dementia
severity increases moving from left to right). The x-axis shows the 10 dementia subtypes, and
the y-axis represents the number of visits within each dementia subtypes. Some dementia
subtypes included a unique globa CDR (e.g. Co, C4), While other dementia subtypes
included two CDR scores (e.g. C;, Cs).
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Demographic characteristics of patients within each subtype are presented in Table 2. Patents
with no cognitive impairment (C,) were generally younger than the patientsin other subtypes
with mild to severe dementia. Patients across all 10 subtypes were mostly white and non-
Hispanic (Table 2). Subtypes with very mild or mild dementia (Cs, Co C7, Cs, Cg and Cs)
included a higher proportion of patients with memory issues, depression and sleep disorders
compared to the subtypes with moderate or severe dementia (Table 2). Dementia patients
diagnosed with AD were mostly assigned to the subtypes in the later stages of dementia (Cio,
Cs and C, ). For all the six cognitive assessment scores. Boston Naming Test, Mini-Mental
State Exam, Short Blessed, Word List Memory Task, Logical Memory and Verbal Fluency,
we observed a genera trend of increasing cognitive impairment from early (mild) to later
(moderate to severe) dementia stages, but not much variability across subtypes with same

global CDR score (e.g. Csand Cy) (Table 2).

Table 2: Cluster demographics based on baseline visits of each patient. Similar to Fig 5, the

clusters are arranged in the order of increasing dementia severity from left to right.

Variable C, Co Cy C, Cs Cs Cs Cuo Cs C,
Global CDR 0,05 0.5 0.5 051 051 1 1,2 1,2 2 2,3
Number of unique

patients 194 388 281 293 301 a7 51 73 158 59

Age, median (IQR) | 69(13) | 73(12) | 76 (11) | 76(13) | 75(12) | 77(11) | 77(15) | 77 (11) | 76 (12) | 72 (14)

0,
Se;‘er; :I)e 543% | 64.2% |526% |627% |484% |512% |49.8% |65% | 63.6% | 72.5%
Race, (%)
- White 90.6% | 91.2% |89.3% |89.4% |91.8% |833% |94% |837% |882% | 90.6%
- Black 8.5% 77% | 94% | 97% |85% |157% |6% 154% | 10.8% | 85%
- Asian 082% |12% |13% |09% |082% |093% |0% 0.85% | 0.82% | 0.98%

Ethnicity, (%)

92.2% 89.5% | 91.3% |886% | 931% |874% | 91% 87.5% | 91.4% | 91.6%

- Non-Hispanic
5.6% 6.7% 8.5% 7.2% 3.8% 8.7% 8.5% 8.6% 7.8% 8.9%

- Hispanic
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Brain-related

disorders, (%)

- Memgry Los§ 86.5% 642% |576% |523% |57.5% | 75% 58.8% | 38.2% | 29.7% | 31.5%
- AIzhg mer Disease | 6.4% 19.2% | 245% | 44.6% | 40% 25% 382% | 54.2% |67.2% |635%
- Parklnsqnlsm 0.46% 1.3% 136% | 1.2% 1.6% 0% 30.6% | 0.8% 2.1% 1.4%
- Depre$| on 3.2% 1.4% 081% | 0.62% | 1.25% | 0% 4.1% 0% 0% 0%

- Sleep disorders 3.4% 2.9% 1.9% 1.2% 0% 0% 1.1% 1% 1.4% 4.5%
Cognitive assessment

scores, median (IQR)

- Boston Naming

Test 15(1) 14 (2) 14 (4) 13(3) 13(4) (144 13(4) 11 (6) 10 (5) 10(3.5)
MMSE 28(15) | 25(14) | 22(14) | 22(13) | 19(13) | 20(13) | 18(12) | 15(11) | 16(14) | 15(9)
- Short BI | 24 6(9) 12(11) | 12(10) | 18(13) | 16(14) | 17(11) | 21(8) |21(16) | 20(8)
- Word List Memory 18(7) 13(5) 12 (6) 12 (4) 11() |12(5) |9(5.7) |10 107 |9

- Verbal Fluency 15(7) 12 (6) 11 (6) 11(5) | 9() 9(6) 8(6) 8(7) 9(7) 8(4)

3.5 Cognitive characteristics of identified subtypes

The association between the six CDR components and dementia subtypes alows for
interpretation the cognitive profiles of these subtypes (Fig 6). The significance of these
component scores lies in their ability to provide a detailed picture of the multifaceted nature
of cognitive decline in dementia. For al the six CDR components, there is a natural
progression of increasing cognitive impairment from early (mild) to later (moderate to
severe) dementia stages. In our analyses, we analyzed the inter-subtype variability to examine
if subtypes with the same CDR are heterogeneous in their CDR component scores (Fig 6).
Further we also defined the cognitive profile of each subtype based on the distribution of

each component score of patients within that subtype (Table 3).

Fig 6: Cognitive characteristics of subtypes. Violin plots showing how each of the how
each of the 6 components of CDR score vary across the 16 dementia subtypes. The x-axis
represents the individual dementia subtypes. The y-axis shows the six CDR component
scores varying from 0-3, with O indicating normal cognition and 3 indicating severe
impairment. Similar to Fig 5, the clusters are arranged in the order of increasing dementia
severity from left to right.
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Table 3: Cognitive profile summary (CDR components) of each subtype. Subtypes have
been grouped based on similarity in their cognitive characteristics. Similar to Fig 5, the

clusters are arranged in the order of increasing dementia severity from top to bottom.

Subtype | Global CDR Cognitive profile summary
C 0.05 Relatively healthy population. Minimal cognitive and functional
2 e impairment.
c 05 Mild to moderate memory loss, unimpaired functional capacity in
9 ' other cognitive and functional domains.
c 05 Mild to moderate memory loss. Slight disorientation, and slight
4 ' impairment in judgement, community, and home activities
G 05 1 Moderate impairment in al six domains. Patientsin C;were fully
C - capable of self-care activities.
5
Ce 1 M oderate memory and orientation problems. Severe impairment in
Co 12 judgement, community, and home activities.
Cuo 1,2
Severeimpairment in al 6 cognitive and functional domains with
Cs 2 maximum impairment level in C;. C;pshowed moderate difficulty
in personal care with need for caregiving support.
Ci 2,3

Subtype C; consisted of arelatively healthy population with minimal cognitive and functional
impairments (Table 3). Patients in both C,and Cg recorded the same global CDR score of 0.5
and exhibited ssimilar trends of mild to moderate memory loss and fully capable of self-care
(Fig 6). However, C, visits were associated with slight disorientation, and slight impairment
in judgement, community and home activities compared to patients in Co who were fully
functional and healthy in those domains (Table 3). Comparing the subtypes (C7, Cs, Cs and
Ce) with visits predominantly characterized by mild dementia (CDR = 1), we observed that
the four subtypes showed similar level of moderate memory loss and orientation problems.

However, patient visits in Cg and Cg showed more severe impairment in judgement &
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problem-solving ability, along with home and community activities compared to visits in C;
and Cs (Fig 6, Table 3). We observed considerable variability in self-care abilities between
C7, Cs, Cgand Cq respectively. While C; patients were fully capable of self-care, those in Cs,
Cs and Cg required assistance in daily personal activities. The subtypes (Cio, Cs, and C;) with
visits predominantly characterized by moderate to severe dementia (CDR >1) showed similar
extent of severe cognitive impairments in al the domains except personal care. While Cyo
patients only needed prompting for daily activities, patients in C3 and C; required significant
assistance in dressing, hygiene and keeping of personal effects.

Overdl, it can be concluded that subtypes at the early stages of dementia
demonstrated more heterogeneity in cognitive characteristics compared to the ones at the
later stages of the disease. The CDR components scores appear to be more sensitive to the

heterogeneity in the cognitive characteristics compared to other cognitive assessments.

3.6 Cluster transitions
Finally, we examined how patients transitioned between the different subtypes over time and
how these transitions were related to disease progression from CDR <= 0.5 to CDR =1 (Fig
7A) and from CDR = 1 to CDR >1 (Fig 7B). With clustering performed on all visits of all
patients in our cohort as opposed to only the baseline visit, we assumed that at any given
point in time, a patient exists in a single subtype but transitions to a different subtype in their
next visit. Out of 892 patients having multiple visits, 39% of them (n = 347) had subtype
trangitions corresponding to progression to more severe stages of dementia.

Our goal was to assess if subtypes at smilar stages of dementia have variability in the
risk of progression of advanced dementia stages. For example, patient visits in both Coand C,4
were characterized by very mild dementia (global CDR = 0.5), but patients in C4 had more
transitions to visits with mild dementia (global CDR = 1; Cs Cg and C;), indicating greater

chances of disease progression for C, visits (Fig 7A). On the contrary, majority of the
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transitions from Cy were either within the same subtype (self-transitions) or to subtype C, at
similar disease stages (CDR = 0.5). We also analyzed the median visit interval (time between
successive visits in months) corresponding to C, and Cg transitions to mild dementia (CDR =
1). We observed that the visit intervals were similar (p = 0.086) between C4 (median = 9.2
months) and Cy (median = 8.9 months). The above observations indicate the variability in the
risk of progression for patient visitsin 2 different subtypes at similar stages of dementia. The
variability in the transitions to advanced dementia stages between C, and Co can be further
linked to their heterogenous cognitive profiles, with C4 patients having higher impairment in
functional capacity compared to patientsin Co.

Analyzing the subtype transitions from mild dementia (global CDR = 1) to
moderate/severe dementia (global CDR > 1), we observed variability in the chances of
progression amongst subtypes with predominantly CDR = 1 visits (Cs, Cs, C7 and Cg). Cs
and C; have more transitions to subtypes (C,, Cz and Cy0) with moderate to severe dementia
(CDR > 1) compared to Cs and Cg (Fig 7B). The median visit intervals for Cs, C7, Cs and Cg
transitions from mild to moderate/severe dementia were 7.5, 7.8, 8.1 and 7.9 months
respectively. The number of pairwise transitions between all 10 subtypes are presented in the

Supporting Information ($4 Table).

Fig 7: Clusters transitions related to disease progression. Graph showing transitions
between subtypes which are related to global CDR progression from CDR <=0.5to CDR =1
(A) and CDR =1 to CDR > 1 (B). The nodes represent the subtypes, and the edge weights
represent the number of transitions from source to target. Transitions with edge weights >= 5
are shown with dotted arrows. Transitions between nodes of same color including self-

trangitions indicate transitions remaining in the same CDR stage.

4. Discussion
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In this study, we used the state-of-the-art unsupervised clustering method named SillyPutty,
in combination with hierarchical clustering to estimate subtypes within a real-world clinical
dementia cohort. We incorporated all longitudinal patient visits into our clustering analysis,
instead of relying only on baseline visits, allowing us to explore the ongoing relationship
between subtypes and disease progression over time. Our results demonstrated that subtypes
with very mild or mild dementia exhibited more variability in their cognitive characteristics
and risk of disease progression.

Neuroimaging biomarkers such as MRI and PET have been predominantly used for
estimating subtypes to assess heterogeneity in AD. Compared to MRI, which requires
speciaized equipment and facilities, cognitive assessment scores are more easily accessible
and can be conducted in various settings, such as clinics and homes, making them suitable for
large-scale screenings. The six component measures of CDR used in our analyses examined
different cognitive and functional domains providing critical insights into different aspects of
a patient's cognitive health due to dementia. These component measures are closely linked to
functional abilities and daily living skills, which are critical for evaluating the impact of
dementia on a patient's quality of life. Further, our results demonstrate that patients with the
same CDR can have different cognitive characteristics with respect to the different CDR
components. We believe that using the CDR component scores as clustering features is a
cost-effective promising approach to investigate cognitive heterogeneity in dementia, which
can be helpful effective clinical decision-making and precision diagnostics tailored to each
subtype.

Results showed that both subtypes C4 and Co were at early stages of dementia with
mild cognitive impairment (MCI; global CDR = 0.5), but had different cognitive profiles and
risk of progression. For example, higher number of transitions to advanced dementia stages

for C4 compared to Cy indicated that patients in C4 and Cg can be considered as progressive
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MCI and stable MCI respectively. Further, C, patients have more impairment in orientation,
judgement & problem solving, home & hobbies and community affairs compared to patients
in Co. These particular cognitive and functional domains might be useful features to
distinguish between patients with stable or progressive cognitive decline. Our results aso
indicated that subtypes with visits having mild dementia were more heterogenous in their
cognitive profiles compared to subtypes with visits having moderate to severe dementia.
Identifying and diagnosing individuals in the initial stages of their cognitive decline early can
enable timely intervention, which might slow the progression of the disease and improve the
quality of life.

In this study, the unsupervised clustering analysis was performed using all aggregated
visits of every patient, instead of using only their baseline visits. This design choice was
motivated by the following reasons. First, analyzing visit-level data enables the examination
of temporal patterns and transitions between dementia subtypes over time. This helps in
understanding how dementia progresses in different patients and how they may transition
between various stages and subtypes, providing insights into the disease's trgjectory that are
not possible with a baseline-only approach. Second, considering each visit as a separate data
point significantly increases the volume of data available for analysis. This is particularly
important when the patient cohort is small, as it enhances the statistical power and reliability
of the clustering results. Finally, dementia often progresses over many years, but our
electronic health record (EHR) data spans only six years (2012-2018). Comprehensive
longitudinal analysis is possible only if all visits for each patient are available. However, our
dataset included patients with different windows of their clinical care (e.g. some may have
been seen in 2006-2014, others from 2016-2022). With the availability of EHR data only

from 2012-2018, we chose to cluster at the visit level.
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Our study has some important limitations worth considering. First, our pipeline is
built on a single EHR dataset. As part of future work, we plan to test the generalizability of
our pipeline on additional datasets. Second, the sample size of our dataset is relatively small
which restricts our ability to perform rigorous statistical analyses on the variable rate of
progression of dementia subtypes. Applying this pipeline to a larger EHR dataset can allow
us to estimate probabilistic estimates of disease progression, backed by rigorous statistical
analysis. Finally, our analysis did not adopt a patient-centered perspective, focusing instead
on aggregate data rather than individual trajectories. This presents an opportunity for future
research to employ a different analytical approach, considering data from a more granular,

patient-centric viewpoint.

5. Conclusions

In our study, we applied a recently developed data-driven unsupervised clustering algorithm
named hierarchical SillyPutty on the CDR component scores and identified 10 subtypes
within a real-world clinical dementia cohort. Unlike previous approaches, we included all
longitudinal patient visits in our clustering analysis, which alowed us to investigate the
dynamic relationship between subtypes and disease progression over time. Our findings
indicated that subtypes with very mild or mild dementia exhibited greater heterogeneity in

cognitive profiles and varied risks of disease progression.
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S1 Table: Detailed infor mation about cognitive assessment scores and CDR components
(section 2.2.1).

S2 Table: 1CD 10 and I1CD 9 codes used to identify patients with the brain-related
disorderspresented in Table1 and Table 2.

S3 Fig: T-SNE distribution stratified by clusters. T-SNE distribution of the clustering
results for different values of K = 4, 6, 10 and 15 respectively. The colorbar represents the
different clusters. Each point in the scatter plot represents asingle visit. The x-axis and y-axis

represent the 2 dimensions of the 2D T-SNE vector for visualization purposes.

4 Table: Number of transitions between every pair of dementia subtype groups. The
subtype groups in the columns and rows represent source and target respectively. The last
column represents the total number of transitions from each source subtype. The diagonal
values (marked in bold red) represent the number of self-transitions or instances where
patients transition between the same subtype. Similar to Fig 5, the clusters are arranged in the

order of increasing dementia severity from left to right.
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