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Abstract 
 
Dementia is characterized by a decline in memory and thinking that is significant enough to 

impair function in activities of daily living. Patients seen in dementia specialty clinics are 

highly heterogenous with a variety of different symptoms that progress at different rates. 

Recent research has focused on finding data-driven subtypes for revealing new insights into 

dementia's underlying heterogeneity, compared to analyzing the entire cohort as a single 

homogeneous group. However, current studies on dementia subtyping have the following 

limitations: (i) focusing on AD-related dementia only and not examining heterogeneity within 

dementia as a whole, (ii) using only cross-sectional baseline visit information for clustering 

and (iii) predominantly relying on expensive imaging biomarkers as features for clustering. In 

this study, we seek to overcome such limitations, using a data-driven unsupervised clustering 

algorithm named SillyPutty, in combination with hierarchical clustering on cognitive 

assessment scores to estimate subtypes within a real-world clinical dementia cohort. We use a 

longitudinal patient data set for our clustering analysis, instead of relying only on baseline 

visits, allowing us to explore the ongoing temporal relationship between subtypes and disease 

progression over time. Results showed that subtypes with very mild or mild dementia were 

more heterogenous in their cognitive profiles and risk of disease progression.  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2024. ; https://doi.org/10.1101/2024.06.13.598874doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.13.598874
http://creativecommons.org/licenses/by-nc/4.0/


 3 

 

1. Introduction 
 
Dementia is characterized by a decline in memory and cognitive function, that is significant 

enough to impair function in activities of daily living. It can be caused by reversible causes 

such as medication-induced cognitive impairment, and irreversible conditions such as 

progressive neurodegenerative conditions[1–3]. Alzheimer's Disease (AD) is the most 

common cause of dementia in older adults, and other common causes include cerebrovascular 

disease and disorders linked to Lewy bodies, tau tangles, or limbic-predominant age-related 

TDP-43 encephalopathy (LATE)[4]. Notably, many patients have multiple conditions 

contributing to their cognitive impairment (REF). Dementia patients exhibit diverse 

symptoms and progress at varying rates, likely influenced by underlying brain pathologies, 

baseline cognitive ability, genetic factors, medical conditions, and social determinants of 

health. Consequently, patients treated in dementia clinics manifest significant heterogeneity, 

representing a spectrum of dementia subtypes[5–7]. A more thorough understanding of this 

clinical heterogeneity could enhance dementia diagnosis and prognosis, facilitating tailored 

care for patients and their families[8,9].  

Many neurological diseases are characterized by neuropathological features. Previous 

studies concerning the derivation of dementia types have frequently relied on suspected 

neuropathological diagnoses based on clinical features rather than objective data-driven 

methods.[10–14]. Recently, the widespread availability of Electronic Health Records (EHR) 

data alongside evolving machine learning techniques has enabled data-driven approaches to 

reveal new insights into dementia's underlying heterogeneity[15]. For instance, clustering 

algorithms can stratify dementia patients into subtypes based on key EHR features, enhancing 

predictive ability compared to analyzing the entire cohort as a single homogeneous 

group[16–18]. However, current research on dementia subtyping faces three main limitations. 
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First, there is a significant focus on parsing heterogeneity within AD-related dementia 

potentially neglecting important insights that could arise from examining heterogeneity 

within all-cause dementia as a whole[19]. Second, conventional clustering methods used in 

dementia research have analyzed cross-sectional single time-point data; however, given the 

heterogeneity in disease progression, mapping longitudinal trajectories is an important focus 

for dementia research[20–22]. Finally, existing research predominantly relies on imaging 

biomarkers obtained through expensive procedures, such as magnetic resonance imaging 

(MRI) and positron emission tomography (PET) scans. However, current research often 

overlooks the potential of using non-imaging clinical data, such as routinely collected 

electronic health records (EHR), as a valuable, cost-effective, and non-invasive solution for 

addressing heterogeneity in dementia[15,23,24]. Addressing these gaps is essential for 

effective clinical decision-making and precision diagnostics tailored to each subtype.  

In response to the gaps in knowledge described above, our goal via this project was to 

analyze the heterogeneity of cognitive performance and disease progression within a real-

world clinical dementia cohort. Towards this end, we aimed to delineate subtypes using a 

newly-developed unsupervised clustering technique called SillyPutty on cognitive assessment 

scores of patients seen in a memory clinic (Fig 1). This new heuristic clustering approach 

starts with a set of clustering assignments obtained from hierarchical clustering and 

iteratively adjusts cluster assignments to maximize the average silhouette width[25]. A novel 

aspect of our approach was the inclusion of all longitudinal patient visits for clustering 

analysis, rather than solely relying on baseline visits, which allowed us to examine the 

longitudinal relationship between subtypes and disease progression. Specifically, we aimed to 

(i) examine how subtypes at similar stages of dementia differ in their cognitive characteristics 

(ii) analyze patient transitions between different subtypes across multiple visits to examine 
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the heterogeneity (variability) in progression rate amongst patients at different stages of 

dementia (Fig 1). 

 
Fig 1: Study workflow. Outpatient visits at the Memory Diagnostic Center with a Clinical 

Dementia Rating recorded in the Washington University School of Medicine Electronic 

Health Records were included. Feature selection was performed to identify the optimal set of 

features for clustering. The SillyPutty algorithm [26] with hierarchical clustering was used to 

identify clusters from longitudinal patient visits. Identified clusters were analyzed for 

variability (heterogeneity) in cognitive characteristics. Patient transitions between subtypes 

across multiple visits were examined for variability in rate of disease progression.  

 

2. Materials and Methods 
 

2.1 Data sources and study participants 
 
This retrospective study analyzed electronic health records (EHR) data extracted from the 

Washington University in St. Louis Research Data Core (RDC), a repository of patient 

clinical data sourced from BJC HealthCare and Washington University Physicians. Approval 

for this study was obtained from the Washington University Institutional Review Board (IRB 

# 201905161), which granted a waiver of HIPAA Authorization for the use of Protected 

Health Information (PHI). The study cohort included all patients treated at the Memory 

Diagnostic Center (MDC) at Washington University School of Medicine (WUSM) for 

evaluation of memory and/or thinking concerns (Fig 1). The dataset, sourced from Allscripts 

TouchWorks, included office visits with cognitive assessment measures recorded between 

June 1, 2013, and May 31, 2018. This timeframe was chosen to mitigate potential data 

harmonization challenges arising from an EHR system transition that commenced on June 1, 

2018. 

All patients treated at the WUSM MDC underwent a comprehensive history and 

neurologic examination. A trained medical assistant administered the cognitive assessment 
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battery to most patients. The cognitive battery was often not performed in patients with 

moderate to severe dementia, who may not be able to complete the cognitive battery or who 

are distressed by testing. Memory specialists utilize the Clinical Dementia Rating (CDR®) 

scale to evaluate dementia severity, where scores ranged from 0 (normal cognition) to 3 

(severe dementia). The CDR assess intra-individual changes in memory, thinking, and 

function compared to previous abilities[27]. Notably, memory specialists used the results of 

the cognitive assessment battery in the formulation of the CDR and documented them in the 

patient’s EHR. All patient visits with a recorded CDR score were eligible for inclusion in our 

study (Fig 1).  

 

2.2 Feature selection and preprocessing 
 
2.2.1 Feature selection for clustering 

We performed a qualitative feature selection step to determine the optimal set of features for 

clustering. We started with two sets of features as follows: (i) Cognitive assessment scores: 

Boston Naming Test[28], Mini-Mental State Exam[29], Short Blessed[30], Word List 

Memory Task[31], Verbal Fluency[32] and (ii) six components of the CDR score: Memory, 

Orientation, Judgment and Problem Solving, Community Affairs, Home and Hobbies, and 

Personal Care. For details regarding the range and interpretation of each of these tests, see 

Supporing Information (S1 Table). The CDR components assess performance in six cognitive 

and functional domains, providing critical insights into different aspects of a patient's 

cognitive health respectively. The component scores include the values 0, 0.5, 1, 2 and 3 with 

0 indicating normal cognition and 3 indicating severe impairment. Following pre-defined 

scoring rules as listed in Morris et al., [27] the component scores can be aggregated to form 

the CDR score. We refer to the aggregated CDR as the global CDR score throughout the 

remainder of the manuscript, to avoid confusion with the CDR components. The t-distributed 
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stochastic neighbour embedding (T-SNE) distribution for the 2 feature sets were analyzed to 

determine the optimal set of features for clustering (Fig 1)[33].  

 
2.2.2 Feature pre-processing 
 
Feature pre-processing included clipping the outlier values to the 5th and 95th percentile 

values and scaling between [0,1] using the Minmax Scalar package from sklearn (version 

1.5.0)[34]. Since each of the selected features are ordinal variables and had a very low 

missing rate of <5%,  we imputed the missing values for each feature column using the 

median value of that feature across all visits of all patients, following previous work [35]  

(Fig 1).  

2.3 Unsupervised clustering  
 
2.3.1 SillyPutty algorithm 
 
SillyPutty is a heuristic clustering method that optimizes cluster assignments using silhouette 

widths. The silhouette width, which ranges from -1 to 1, is a metric that indicates the quality 

of a data point's assignment to its cluster. A value close to 1 signifies strong clustering, with 

distinct separation between clusters and high cohesion within each cluster. A value near 0 

implies overlapping clusters, while a value close to -1 suggests the data point may be 

misclassified.  

The goal of SillyPutty is to maximize the average silhouette width by iteratively 

refining cluster assignments. It begins with an initial set of clusters, which can be user-

defined, randomly chosen, or derived from other methods. In each iteration, the algorithm 

calculates silhouette widths for the current clusters. It then identifies the data point with the 

lowest silhouette width and reassigns it to the nearest cluster. This process continues until all 

points have non-negative silhouette widths or until early termination conditions are met, such 

as reaching the maximum number of iterations or detecting a repeated silhouette width vector 
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within a user-specified number of iterations. The final output includes the refined clusters, 

silhouette widths, and additional relevant information.  

2.3.2 SillyPutty with hierarchical clustering 
 
The standalone SillyPutty algorithm starts with purely random cluster assignments, repeating 

the algorithm with different random starting points (Random SillyPutty). Since SillyPutty can 

start with any cluster assignments, we initialized the cluster assignments with hierarchical 

clustering before applying the SillyPutty algorithm (hierarchical SillyPutty). This choice is 

motivated by results in the original SillyPutty paper where hierarchical SillyPutty 

outperformed other clustering methods such as Random SillyPutty, Partition Against 

Medoids (PAM) and hierarchical clustering on multiple simulated datasets.  

2.3.3 Clustering evaluation and baselines 
 
The optimal number of clusters for the Hierarchical SillyPutty algorithm was determined by 

the best mean silhouette width, for a range of clusters values (K) from K = 2 to 16. 

Hierarchical SillyPutty was compared with alternative clustering techniques: (i) Random 

SillyPutty (SillyPutty with random initial assignments), (ii) hierarchical clustering, and (iii) 

Partition Against Medoids (PAM). For a fair comparison, the same number of clusters 

selected for hierarchical SillyPutty was also used for the baseline methods. Further, all 

clustering methods were qualitatively evaluated using the metrics used in the original 

SillyPutty paper, such as Mean Silhouette Widths (MSW)[26,36], T-SNE[33] and 

multidimensional scaling (MDS)[37].  

 

2.4 Clustering on longitudinal visits 
 
In our study, clustering analyses were performed on all data that was available from a 6-year 

period between 2013-2018. Note that our cohort included both patients with a single visit and 

patients with multiple visits during this period. For the clustering step, each visit was 
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assumed independent without any temporality (linkage) between individual visits of the same 

patient. The temporality information between individual visits was used subsequently for 

analyzing the relationship between different clusters. This approach – including all visits for 

clustering instead of using only the baseline visit of each patient was taken to enable further 

longitudinal analysis and track the symptom progression rate of patients. For example, at any 

given point in time, a patient exists in a single cluster (dementia subtype) but may transition 

between different clusters over time (Fig 1). To gain an insight into which patients have a 

higher probability of progression to more severe dementia, patient transitions between 

different dementia subtypes were analyzed across multiple visits. Finally, the differences in 

progression rate, both within and between global CDR categories were measured. 

2.5 Software packages and code availability 
 
The SillyPutty algorithm was implemented using the R package published in the 

Comprehensive R Archive Network (CRAN) https://cran.r-

project.org/web/packages/SillyPutty/index.html. All other visualizations were performed 

using the seaborn package and Python 3.7. The implementation code for this project will be 

made available upon acceptance. 

3. Results 
 

3.1 Sample characteristics 
 
Longitudinal data from 1,845 patients with 2,737 visits were eligible for inclusion, where 

each visit recorded a global CDR score. While 953 patients recorded a single visit, the 

remaining 892 patients had multiple visits (maximum number of visits = 5) with a visit 

interval of (mean +/- STD) 8.8 +/- 3.6 months. The median age of the cohort at the baseline 

visit of was 73 years with 57% of the patients being female. In terms of race and ethnicity, 

77% patients were White and 9.8% patients were Black or African American. 88.5% patients 
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were Non-Hispanic or Latino, while 5.1% were Hispanic or Latino (Table 1). The most 

frequently occurring brain-related disorders in our cohort, identified based on ICD 10 codes 

included memory loss (N = 987 patients; 54 %), Alzheimer’s Disease (N = 1061 patients; 

57.5%), Parkinsonism (N = 66 patients; 3.6%), Major Depressive Disorder (N = 455 patients; 

24.7%) and Obstructive Sleep Apnea (N =  366 patients; 19.8%) respectively (Table 1). The 

full list of ICD-10 codes for each of the brain-related disorders listed in Table 1 can be found 

in the Supporting Information (S2 Table). 

Table 1: Cohort demographics based on the baseline visits of patients 
Variable Total 
Number of patients 1845 
Age at first encounter, median (IQR), years 73 [64-81] 
Sex, N (%) 

- Female 
 

1038 (57%) 

Race, N (%) 
- White  
- Black or African American 
- Asian 
- *Other 

 
1422 (77%) 
181 (9.8%) 
20 (1.2%) 

                     222 (12%) 

Ethnicity, N (%) 
- Non-Hispanic or Latino 
- Hispanic or Latino 
- Unknown 

 
1643 (88.5%) 

84 (5.1%) 
118 (6.4%) 

Brain-related disorders (n, %) 
 
     -Memory Loss 
     -Alzheimer Disease 
     -Parkinsonism 
     -Major Depressive Disorder 
     -Obstructive Sleep Apnea 

 
 

987 (54 %) 
1061 (57.5 %) 

66 (3.6 %) 
455 (24.7%) 
366 (19.8%) 

* Other includes Native Hawaiian or Other Pacific Islander, Other, Unknown, Declined, or 
unreported. 
 
 

3.2 Optimal set of features for clustering 
 
We aimed to qualitatively analyze the T-SNE distribution of the 2 feature sets (CDR 

components and cognitive assessment scores; see Section 2.2.1) to decide which of them are 
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the most optimal set of input features for clustering. Using the cognitive scores as features 

creates a gradient from low to high global CDR but did not result in clusters (Fig 2A). 

However, using the CDR components as features created clusters that were distinct without 

any significant overlap across the CDR categories (Fig 2B). Analysing the degree of overlap 

of points across the different global CDR categories, the six components of CDR were 

selected as the optimal set of features for clustering. Another motivation behind selecting the 

individual CDR component as features is the fact that for patients having the same global 

CDR score, the individual components might be different from one another, allowing us a 

more granular approach of studying the sub-phenotyping of patients.  

 
Fig 2: Feature selection for clustering. 2D T-SNE representations of the data for each of the 

2 feature categories: CDR components only as features (2A) and cognitive scores only as 

features (2B). Each point in the scatter plot represents a visit with the colour indicating the  

global CDR score. The x-axis and y-axis represent the 2 dimensions of the 2D T-SNE vector 

for visualization purposes. 

 
 

3.3 Clustering evaluation 
 
3.3.1 Optimal number of clusters 
 
Comparing the mean silhouette width (MSW) values of different number of clusters 

(hierarchical SillyPutty), K = 4, 6, 10 and 15 were identified as potential candidates to be the 

optimal number of clusters (Fig 3), because the MSW values for these K were higher 

compared to the neighbouring K points. This observation is line with the T-SNE distribution 

across different clusters for each of K = 4, 6, 10 and 15 (Supporting Information; S3 Fig) and 

the T-SNE distribution across global CDR stages (Fig 2B). The visits in the earlier stages of 

dementia (e.g. CDR = 0.5) can potentially form multiple clusters indicating a level of 

heterogeneity in cognitive characteristics can be better captured for higher number of clusters 

(K = 10 and K = 15) compared to lower values (K = 4 and K = 6) (S3 Fig). The T-SNE plots 
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for K=10 and K=15 were identical for early stages of dementia (global CDR = 0, 0.5) with 

smaller subclusters for global CDR >= 1. In our subsequent analyses, we selected K = 10 as 

the optimal number of clusters.  

 
Fig 3: Selecting number of clusters for Hierarchical SillyPutty. Optimal number of 

clusters were determined by comparing the best mean silhouette width (MSW), for number of 

clusters (K) ranging from 2 to 16. K = 10 was selected as the optimal number of clusters for 

our analyses (explanation provided in section 3.3.1). 

 
 
3.3.2 Comparison with other clustering methods 
 
Our method hierarchical SillyPutty was compared with the baseline clustering techniques 

using well-validated clustering metrics reported in the original SillyPutty paper. SillyPutty 

initialized with cluster assignments generated by hierarchical clustering showed higher mean 

silhouette width (MSW = 0.35715) across clusters compared to SillyPutty initialized with 

random cluster assignments (Random SillyPutty; MSW = 0.19989) and other state-of-the-art 

clustering algorithms like PAM (MSW = 0.3391) and hierarchical clustering (MSW = 

0.30936) (Fig 4). Random SillyPutty performed the worst with 9 out of 10 clusters having 

negative silhouette widths indicating the possibility of misclassification of points to the 

wrong cluster or overlap between the clusters. Using only hierarchical clustering 

demonstrated negative silhouette widths in 7 out of 10 clusters. However, using the SillyPutty 

algorithm in combination with hierarchical clustering (HSP) showed positive silhouette 

widths for all the 10 clusters. The T-SNE and MDS plots for hierarchical SillyPutty showed 

more distinct and well-separated clusters compared to Random SillyPutty, PAM and 

hierarchical clustering (Fig 4).  
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Fig 4: Comparison with baseline clustering techniques. Clustering statistics of different 

clustering algorithms: hierarchical clustering, PAM, random SillyPutty and our method 

hierarchical SillyPutty (from top to bottom). For each clustering method, the plots from left 

to right represent mean silhouette width (MSW), T-SNE distribution and multidimensional 

scaling (MDS) respectively. The clusters are arranged in ascending order (C1- C10) from left 

to right.  

 
 

3.4 Subtype demographics  
 
For each subtype, we aimed to examine if all patient visits within a subtype were in the same 

stages of dementia (unique global CDR score). Subtypes (clusters) can either be 

homogenous, having a unique global CDR (e.g. C9, C4), or composite, including two different 

global CDR scores, (e.g. C7, C5) (Fig 5). C2 was a predominantly healthy cluster with patient 

visits associated with no cognitive impairment. C4 and C9 only consisted of visits with very 

mild dementia, while C7, C5, C8 and C6 are mostly dominated by visits with mild dementia. 

Patient visits at a more advanced stages of the disease were mostly concentrated in clusters 

C10, C3, and C1 respectively. More subtypes were associated with the mild dementia (CDR <= 

1), namely C2, C9, C4, C7, C5, C8  compared to moderate to severe dementia (CDR > 1) 

namely C6, C10, C3, C1. This is in line with the T-SNE distributions in Fig 2B and eFig 2, 

where data points with CDR = 0.5 and 1 are more scattered, potentially forming multiple 

subtypes. 

 
Fig 5: Global CDR composition of subtypes. Stacked bar plot showing the CDR 

composition of each dementia subtypes ordered by increasing global CDR score (dementia 

severity increases moving from left to right). The x-axis shows the 10 dementia subtypes, and 

the y-axis represents the number of visits within each dementia subtypes. Some dementia 

subtypes included a unique  global CDR (e.g. C9, C4), while other dementia subtypes 

included two  CDR scores (e.g. C7, C5). 
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Demographic characteristics of patients within each subtype are presented in Table 2. Patents 

with no cognitive impairment (C2)  were generally younger than the patients in other subtypes 

with mild to severe dementia. Patients across all 10 subtypes were mostly white and non-

Hispanic (Table 2). Subtypes with very mild or mild dementia (C4, C9, C7, C5, C8 and C6) 

included a higher proportion of patients with memory issues, depression and sleep disorders 

compared to the subtypes with moderate or severe dementia (Table 2). Dementia patients 

diagnosed with AD were mostly assigned to the subtypes in the later stages of dementia (C10, 

C3, and C1 ). For all the six cognitive assessment scores: Boston Naming Test, Mini-Mental 

State Exam, Short Blessed, Word List Memory Task, Logical Memory and Verbal Fluency, 

we observed a general trend of increasing cognitive impairment from early (mild) to later 

(moderate to severe) dementia stages, but not much variability across subtypes with same 

global CDR score (e.g. C4 and C9 ) (Table 2). 

 
Table 2: Cluster demographics based on baseline visits of each patient. Similar to Fig 5, the 

clusters are arranged in the order of increasing dementia severity from left to right.  

Variable C2 C9 C4 C7 C5 C8 C6 C10 C3 C1 

Global CDR 0, 0.5 0.5 0.5 0.5, 1 0.5, 1 1 1, 2 1, 2 2 2, 3 

Number of unique 
patients 194 388 281 293 301 47 51 73 158 59 

Age, median (IQR) 69 (13) 73 (12) 76 (11) 76 (13) 75(12) 77 (11) 77 (15) 77 (11) 76 (12) 72 (14) 

Sex, (%) 
-  Female 

54.3% 64.2% 52.6% 62.7% 48.4% 51.2% 49.8% 65% 63.6% 72.5% 

Race, (%) 
 

-  White  
-  Black 
-  Asian 
 

 
90.6% 
8.5% 
0.82% 

 
91.2% 
7.7% 
1.2% 

 
89.3% 
9.4% 
1.3% 

 
89.4% 
9.7% 
0.9% 

 
91.8% 
8.5% 
0.82% 

 
83.3% 
15.7% 
0.93% 

 
94% 
6% 
0% 

 
83.7% 
15.4% 
0.85% 

 
88.2% 
10.8% 
0.82% 

 
90.6% 
8.5% 
0.98% 

Ethnicity, (%) 
 

-  Non-Hispanic 
-  Hispanic 

 
92.2% 
5.6% 

 
89.5% 
6.7% 

 
91.3% 
8.5% 

 
88.6% 
7.2% 

 
93.1% 
3.8% 

 
87.4% 
8.7% 

 
91% 
8.5% 

 
87.5% 
8.6% 

 
91.4% 
7.8% 

 
91.6% 
8.9% 
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Brain-related 
disorders, ( %) 
 

- Memory Loss 
- Alzheimer Disease 
- Parkinsonism 
- Depression 
- Sleep disorders 
 

 
 
86.5% 
6.4% 
0.46% 
3.2% 
3.4% 

 
 
64.2% 
19.2% 
1.3% 
1.4% 
2.9% 

 
 
57.6% 
24.5% 
1.36% 
0.81% 
1.9% 

 
 
52.3% 
44.6% 
1.2% 
0.62% 
1.2% 

 
 
57.5% 
40% 
1.6% 
1.25% 
0% 

 
 
75% 
25% 
0% 
0% 
0% 

 
 
58.8% 
38.2% 
30.6% 
4.1% 
1.1% 

 
 
38.2% 
54.2% 
0.8% 
0% 
1% 

 
 
29.7% 
67.2% 
2.1% 
0% 
1.4% 

 
 
31.5% 
63.5% 
1.4% 
0% 
4.5% 

Cognitive assessment 
scores, median (IQR) 
 

- Boston Naming 
Test 
- MMSE 
- Short Blessed 
- Word List Memory 
- Verbal Fluency 
 

 
 
15 (1) 
28 (15) 
2 (4) 
18 (7) 
15 (7) 

 
 
14 (2) 
25 (14) 
6 (9) 
13 (5) 
12 (6) 

 
 
14 (4) 
22 (14) 
12 (11) 
12 (6) 
11 (6) 

 
 
13 (3) 
22 (13) 
12 (10) 
12 (4) 
11 (5) 

 
 
13 (4) 
19 (13) 
18 (13) 
11 (6) 
9 (6) 

 
 
14 (4) 
20 (13) 
16 (14) 
12 (5) 
9 (6) 

 
 
13 (4) 
18 (12) 
17 (11) 
9 (5.7) 
8 (6) 

 
 
11 (6) 
15 (11) 
21 (8) 
10 (7) 
8 (7) 

 
 
10 (5) 
16 (14) 
21 (16) 
10 (7) 
9 (7) 

 
 
10 (3.5) 
15 (9) 
20 (8) 
9 (5) 
8 (4) 

 

3.5 Cognitive characteristics of identified subtypes  
 
The association between the six CDR components and dementia subtypes allows for 

interpretation the cognitive profiles of these subtypes (Fig 6). The significance of these 

component scores lies in their ability to provide a detailed picture of the multifaceted nature 

of cognitive decline in dementia. For all the six CDR components, there is a natural 

progression of increasing cognitive impairment from early (mild) to later (moderate to 

severe) dementia stages. In our analyses, we analyzed the inter-subtype variability to examine 

if subtypes with the same CDR are heterogeneous in their CDR component scores (Fig 6). 

Further we also defined the cognitive profile of each subtype based on the distribution of 

each component score of patients within that subtype (Table 3). 

 
Fig 6: Cognitive characteristics of subtypes. Violin plots showing how each of the how 

each of the 6 components of CDR score vary across the 16 dementia subtypes. The x-axis 

represents the individual dementia subtypes. The y-axis shows the six CDR component 

scores varying from 0-3, with 0 indicating normal cognition and 3 indicating severe 

impairment. Similar to Fig 5, the clusters are arranged in the order of increasing dementia 

severity from left to right. 
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Table 3: Cognitive profile summary (CDR components) of each subtype. Subtypes have 

been grouped based on similarity in their cognitive characteristics. Similar to Fig 5, the 

clusters are arranged in the order of increasing dementia severity from top to bottom. 

 

Subtype Global CDR Cognitive profile summary 

C2 0, 0.5 

 

Relatively healthy population. Minimal cognitive and functional 
impairment. 
 

C9 0.5 

 

Mild to moderate memory loss, unimpaired functional capacity in 
other cognitive and functional domains. 
 

C4 0.5 

 

Mild to moderate memory loss. Slight disorientation, and slight 
impairment in judgement, community, and home activities 
 

C7 

 
C5 

 
0.5, 1 

 

Moderate impairment in all six domains. Patients in C7 were fully 
capable of self-care activities. 

C8 

 
C6 

1 
 

1, 2 

Moderate memory and orientation problems. Severe impairment in 
judgement, community, and home activities. 

C10 

 
C3 

 
C1 

1, 2 
 
2 
 

2, 3 

Severe impairment in all 6 cognitive and functional domains with 
maximum impairment level in C1. C10 showed moderate difficulty 
in personal care with need for caregiving support. 

 

 
Subtype C2 consisted of a relatively healthy population with minimal cognitive and functional 

impairments (Table 3). Patients in both C4 and C9 recorded the same global CDR score of 0.5 

and exhibited similar trends of mild to moderate memory loss and fully capable of self-care 

(Fig 6). However, C4 visits were associated with slight disorientation, and slight impairment 

in judgement, community and home activities compared to patients in C9 who were fully 

functional and healthy in those domains (Table 3). Comparing the subtypes (C7, C5, C8 and 

C6) with visits predominantly characterized by mild dementia (CDR = 1), we observed that 

the four subtypes showed similar level of moderate memory loss and orientation problems. 

However, patient visits in C8 and C6 showed more severe impairment in judgement & 
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problem-solving ability, along with home and community activities compared to visits in C7 

and C5 (Fig 6, Table 3). We observed considerable variability in self-care abilities between 

C7, C5, C8 and C6 respectively. While C7 patients were fully capable of self-care, those in C5, 

C8 and C6 required assistance in daily personal activities. The subtypes (C10, C3, and C1) with 

visits predominantly characterized by moderate to severe dementia (CDR >1) showed similar 

extent of severe cognitive impairments in all the domains except personal care. While C10 

patients only needed prompting for daily activities, patients in C3, and C1 required significant 

assistance in dressing, hygiene and keeping of personal effects.  

Overall, it can be concluded that subtypes at the early stages of dementia 

demonstrated more heterogeneity in cognitive characteristics compared to the ones at the 

later stages of the disease. The CDR components scores appear to be more sensitive to the 

heterogeneity in the cognitive characteristics compared to other cognitive assessments.  

 

3.6 Cluster transitions 
 
Finally, we examined how patients transitioned between the different subtypes over time and 

how these transitions were related to disease progression from CDR <= 0.5 to CDR = 1 (Fig 

7A) and from CDR = 1 to CDR >1 (Fig 7B). With clustering performed on all visits of all 

patients in our cohort as opposed to only the baseline visit, we assumed that at any given 

point in time, a patient exists in a single subtype but transitions to a different subtype in their 

next visit. Out of 892 patients having multiple visits, 39% of them (n = 347) had subtype 

transitions corresponding to progression to more severe stages of dementia.  

Our goal was to assess if subtypes at similar stages of dementia have variability in the 

risk of progression of advanced dementia stages. For example, patient visits in both C9 and C4 

were characterized by very mild dementia (global CDR = 0.5), but patients in C4 had more 

transitions to visits with mild dementia (global CDR = 1; C5 C6 and C7), indicating greater 

chances of disease progression for  C4 visits (Fig 7A). On the contrary, majority of the 
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transitions from C9 were either within the same subtype (self-transitions) or to subtype C4 at 

similar disease stages (CDR = 0.5). We also analyzed the median visit interval (time between 

successive visits in months) corresponding to C4 and C9 transitions to mild dementia (CDR = 

1). We observed that the visit intervals were similar (p = 0.086) between C4 (median = 9.2 

months) and C9 (median = 8.9 months). The above observations indicate the variability in the 

risk of progression for patient visits in 2 different subtypes at similar stages of dementia. The 

variability in the transitions to advanced dementia stages between C4 and C9 can be further 

linked to their heterogenous cognitive profiles, with C4 patients having higher impairment in 

functional capacity compared to patients in C9.  

Analyzing the subtype transitions from mild dementia (global CDR = 1) to 

moderate/severe dementia (global CDR > 1), we observed variability in the chances of 

progression amongst subtypes with predominantly CDR = 1 visits (C5, C6, C7 and C8 ). C5 

and C7 have more transitions to subtypes (C1, C3 and C10) with moderate to severe dementia 

(CDR > 1) compared to C6 and C8 (Fig 7B). The median visit intervals for C5, C7, C6 and C8  

transitions from mild to moderate/severe dementia were 7.5, 7.8, 8.1 and 7.9 months 

respectively. The number of pairwise transitions between all 10 subtypes are presented in the 

Supporting Information (S4 Table). 

 
Fig 7: Clusters transitions related to disease progression. Graph showing transitions 

between subtypes which are related to global CDR progression from CDR <= 0.5 to CDR = 1 

(A) and CDR = 1 to CDR > 1 (B). The nodes represent the subtypes, and the edge weights 

represent the number of transitions from source to target. Transitions with edge weights >= 5 

are shown with dotted arrows. Transitions between nodes of same color including self-

transitions indicate transitions remaining in the same CDR stage.  

 

4. Discussion 
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In this study, we used the state-of-the-art unsupervised clustering method named SillyPutty, 

in combination with hierarchical clustering to estimate subtypes within a real-world clinical 

dementia cohort. We incorporated all longitudinal patient visits into our clustering analysis, 

instead of relying only on baseline visits, allowing us to explore the ongoing relationship 

between subtypes and disease progression over time. Our results demonstrated that subtypes 

with very mild or mild dementia exhibited more variability in their cognitive characteristics 

and risk of disease progression. 

Neuroimaging biomarkers such as MRI and PET have been predominantly used for 

estimating subtypes to assess heterogeneity in AD. Compared to MRI, which requires 

specialized equipment and facilities, cognitive assessment scores are more easily accessible 

and can be conducted in various settings, such as clinics and homes, making them suitable for 

large-scale screenings. The six component measures of CDR used in our analyses examined 

different cognitive and functional domains providing critical insights into different aspects of 

a patient's cognitive health due to dementia. These component measures are closely linked to 

functional abilities and daily living skills, which are critical for evaluating the impact of 

dementia on a patient's quality of life. Further, our results demonstrate that patients with the 

same CDR can have different cognitive characteristics with respect to the different CDR 

components. We believe that using the CDR component scores as clustering features is a 

cost-effective promising approach to investigate cognitive heterogeneity in dementia, which 

can be helpful effective clinical decision-making and precision diagnostics tailored to each 

subtype. 

Results showed that both subtypes C4 and C9 were at early stages of dementia with 

mild cognitive impairment (MCI; global CDR = 0.5), but had different cognitive profiles and 

risk of progression. For example, higher number of transitions to advanced dementia stages 

for C4 compared to C9 indicated that patients in C4 and C9 can be considered as progressive 
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MCI and stable MCI respectively. Further, C4 patients have more impairment in orientation, 

judgement & problem solving, home & hobbies and community affairs compared to patients 

in C9. These particular cognitive and functional domains might be useful features to 

distinguish between patients with stable or progressive cognitive decline. Our results also 

indicated that subtypes with visits having mild dementia were more heterogenous in their 

cognitive profiles compared to subtypes with visits having moderate to severe dementia. 

Identifying and diagnosing individuals in the initial stages of their cognitive decline early can 

enable timely intervention, which might slow the progression of the disease and improve the 

quality of life.   

In this study, the unsupervised clustering analysis was performed using all aggregated 

visits of every patient, instead of using only their baseline visits. This design choice was 

motivated by the following reasons. First, analyzing visit-level data enables the examination 

of temporal patterns and transitions between dementia subtypes over time. This helps in 

understanding how dementia progresses in different patients and how they may transition 

between various stages and subtypes, providing insights into the disease's trajectory that are 

not possible with a baseline-only approach. Second, considering each visit as a separate data 

point significantly increases the volume of data available for analysis. This is particularly 

important when the patient cohort is small, as it enhances the statistical power and reliability 

of the clustering results. Finally, dementia often progresses over many years, but our 

electronic health record (EHR) data spans only six years (2012-2018). Comprehensive 

longitudinal analysis is possible only if all visits for each patient are available. However, our 

dataset included patients with different windows of their clinical care (e.g. some may have 

been seen in 2006-2014, others from 2016-2022). With the availability of EHR data only 

from 2012-2018, we chose to cluster at the visit level. 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2024. ; https://doi.org/10.1101/2024.06.13.598874doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.13.598874
http://creativecommons.org/licenses/by-nc/4.0/


 21

Our study has some important limitations worth considering. First, our pipeline is 

built on a single EHR dataset. As part of future work, we plan to test the generalizability of 

our pipeline on additional datasets. Second, the sample size of our dataset is relatively small 

which restricts our ability to perform rigorous statistical analyses on the variable rate of 

progression of dementia subtypes. Applying this pipeline to a larger EHR dataset can allow 

us to estimate probabilistic estimates of disease progression, backed by rigorous statistical 

analysis. Finally, our analysis did not adopt a patient-centered perspective, focusing instead 

on aggregate data rather than individual trajectories. This presents an opportunity for future 

research to employ a different analytical approach, considering data from a more granular, 

patient-centric viewpoint. 

 

5. Conclusions 
 
In our study, we applied a recently developed data-driven unsupervised clustering algorithm 

named hierarchical SillyPutty on the CDR component scores and identified 10 subtypes 

within a real-world clinical dementia cohort. Unlike previous approaches, we included all 

longitudinal patient visits in our clustering analysis, which allowed us to investigate the 

dynamic relationship between subtypes and disease progression over time. Our findings 

indicated that subtypes with very mild or mild dementia exhibited greater heterogeneity in 

cognitive profiles and varied risks of disease progression. 
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(section 2.2.1).  

 
S2 Table: ICD 10 and ICD 9 codes used to identify patients with the brain-related 

disorders presented in Table 1 and Table 2.  

 
S3 Fig: T-SNE distribution stratified by clusters. T-SNE distribution of the clustering 

results for different values of K = 4, 6, 10 and 15 respectively. The colorbar represents the 

different clusters. Each point in the scatter plot represents a single visit. The x-axis and y-axis 

represent the 2 dimensions of the 2D T-SNE vector for visualization purposes.  

 
S4 Table: Number of transitions between every pair of dementia subtype groups. The 

subtype groups in the columns and rows represent source and target respectively. The last 

column represents the total number of transitions from each source subtype. The diagonal 

values (marked in bold red) represent the number of self-transitions or instances where 

patients transition between the same subtype. Similar to Fig 5, the clusters are arranged in the 

order of increasing dementia severity from left to right. 
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ResultsMethodsData Sources

Study participants

• WUSM EHR
• Memory clinic (MDC)
• Eligibility criteria : CDR 

Feature Selection
• Cognitive assessment scores
• CDR components

Hierarchical SillyPutty
• Optimize silhouette widths 
• Initialize SillyPutty with 

hierarchical clustering
• Clustering methods evaluated using 

MSW, T-SNE and MDS

Interpreting subtypes
• Cognitive profile of each subtype
• Heterogeneity in cognitive profile.

Subtype transitions 
• Patient transitions between 

subtypes across multiple visits.
• Cluster transitions related to 

disease progression

Longitudinal clustering
• All visits of every patient included.
• Longitudinal relationship between 

subtypes and disease progression. 

WUSM : Washington University School of Medicine
EHR : Electronic Health Records
MDC : Memory Diagnostic Center
CDR : Clinical Dementia Rating

MSW : Mean Silhouette Widths 
T-SNE : t-distributed stochastic neighbor embedding 
MDS : multidimensional scaling 
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Hierarchical 
clustering 

MSW = 0.30936

T-SNE MDSMean silhouette width (MSW)

MSW = 0.3391

Partition Against 
Medoids (PAM)

MSW = 0.35715

Hierarchical clustering 
+ SillyPutty (HSP)

Random SillyPutty

MSW = 0.19989
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Memory Orientation

Personal Care

Judgement & Problem solving Community Affairs

Home & Hobbies

C1C3C10C6C8C5C7C4C9C2Subtypes

2, 321, 21, 210.5, 10.5, 10.50.50, 0.5Global 
CDR
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