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Abstract

Avian influenza virus (AlV) currently causes a panzootic with extensive mortality in
wild birds, poultry, and wild mammals, thus posing a major threat to global health and
underscoring the need for efficient monitoring of its distribution and evolution. Here,
we utilized a well-defined AlV strain to systematically investigate AIV characterization
through rapid, portable nanopore sequencing by (i) benchmarking the performance of
fully portable RNA extraction and viral detection; (ii) comparing the latest DNA and
RNA nanopore sequencing approaches for in-depth AlV profiling; and (iii) evaluating
the performance of various computational pipelines for viral consensus sequence
creation and phylogenetic analysis. Our results show that the latest RNA-specific
nanopores can accurately genomically profile AlV from native RNA while additionally
detecting RNA epigenetic modifications. We further identified an optimal laboratory
and bioinformatic pipeline for reconstructing viral consensus genomes from nanopore
sequencing data at various rarefaction thresholds, which we validated by application

to real-world environmental samples for AlV monitoring in livestock.

Author Summary

We tested portable, rapid, and easy-to-use technology to obtain more information
about the potentially zoonotic RNA virus avian influenza virus, or AlV. AlV has spread
globally via the migratory paths of wild birds, and endangers domestic birds,
mammals, and human populations given past evidence of infections of different animal
species. We here used novel genomic technology that is based on nanopores to
explore the genomes of the virus; we established optimized ways of creating the viral
genome by comparing different laboratory and computational approaches and the

performance of nanopores that either sequence the viral RNA directly or the converted
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DNA. We then applied the optimized protocol to dust samples which were collected
from a duck farm in France during an AlV outbreak. We showed that we were able to
use the resulting data to reconstruct the relationship between the virus responsible for
the outbreak and previously detected AlV. Altogether, we showed how novel easy-to-
use genomic technology can support the surveillance of potentially zoonotic
pathogens by accurately recreating the viral genomes to better understand evolution

and transmission of these pathogens.

Introduction

Avian influenza virus (AlV) currently causes the largest and deadliest panzootic on the
European and American continents [1]; it is known to have spilled over from wild bird
populations to poultry and humans, posing a risk for causing a future pandemic [2].
Wild birds are the main reservoir of low-pathogenicity AlV (LPAIV), in particular the
Anseriformes and Charadriiformes orders [3]. These birds are asymptomatic to LPAIV
and can spread the virus to poultry around the globe [4]. Once in gallinaceous species,
LPAIV can evolve into high pathogenicity AIV (HPAIV), resulting in animal welfare,
financial and social issues due to high poultry mortality, economic loss, and food
insecurity [1]. LPAIV and HPAIV further have the potential to adapt and spread to
mammalian species. Since the emergence of HSN1 HPAIV in a domestic goose in
Guangdong China in 1996 (“Gs/GD lineage”), it has become clear that HPAIV can also
be transmitted back to and subsequently maintained in wild bird populations [5]. As
many Anseriformes and Charadriiformes populations perform long-distance

migrations, they can rapidly spread AlV variants across countries and continents [6].
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AlV is a segmented, negative-strand RNA virus from the Orthomyxoviridae family. Its
error-prone polymerase, and therefore high mutation rate, as well as its segmented
genome in combination with mixed infections allow this virus to be in continuous
evolution due to antigenic drift and antigenic shift [4]. One such example is the frequent
mutation of LPAIV into HPAIV after recurrent replication in poultry, which provides the
perfect environment for the virus to mutate due to the high density of susceptible,
genetically similar hosts [7]. This evolutionary plasticity of AIV means that the
application of fast genomic technologies to determine their nucleotide composition can
help to quickly characterize AIV genomic variation including low-frequency variants,
predict virulence, reconstruct transmission dynamics, and determine an outbreak’s

origin [8].

The application of in situ real-time nanopore sequencing technology by Oxford
Nanopore Technologies provides a currently unique genomics-based approach to
characterize AlV in a fast, straightforward, and cost-efficient manner all around the
world [9], which makes viral surveillance accessible in low- and middle-income
countries as well as in remote field setting for wild bird monitoring. This technology
has been established for AIV profiling through sequencing of complementary DNA
(cDNA) after retro-transcription (RT) and multi-segment PCR amplification (M-
RTPCR) [8,10,11]. While ligation-based and transposase-based rapid sequencing
library preparations (“DNA-nanopore” chemistry R9) have been applied to nanopore-
sequence cDNA from AlV [12], a variety of computational pipelines have subsequently
been used for data analysis and consensus sequence generation, which have
however not yet been systematically assessed and compared [8,10,13—-17]. Keller et

al. [14] have further applied direct RNA nanopore sequencing to the viral RNA (VRNA)
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99  of AlV, which could circumvent biases introduced through cDNA synthesis [18]. This
100  protocol is faster due to the omission of M-RTPCR, and further allows for the detection
101  of RNA modifications [19]. Direct RNA sequencing through nanopore technology
102  (DNA-nanopore chemistry R9) has, however, suffered from high sequencing error
103 rates as well from high RNA input requirements and from a lack of multiplexing options
104  for efficient sample processing [14,20].

105

106  Here, we used a well-defined viral culture to conduct a systematic study for AIV
107  characterization through nanopore sequencing by (i) comparing cDNA and vRNA
108  sequencing of AlV in terms of sequencing data throughput, data quality and consensus
109  sequence accuracy, and by (ii) systematically assessing the performance of different
110  computational analysis pipelines. Besides the current gold standard nanopores for
111 DNA (DNA-nanopore chemistry R10) and RNA (DNA-nanopore chemistry R9)
112 sequencing, we have for the first time applied RNA-specific nanopores (“RNA-
113 nanopore” chemistry) for RNA virus profiling; this chemistry is based on completely
114  new nanopores that have been optimized for direct RNA sequencing — in contrast to
115  the previous DNA-nanopore chemistry R9 which relies on nanopores optimized for
116  DNA sequencing and therefore suffers from a high sequencing error rate of >10% [14].
117  We further included several protocols to compare portable approaches for in situ
118 applications with standard laboratory-based approaches. Finally, in order to test the
119  application of nanopore sequencing to samples with lower AlIV loads such as
120  environmental samples, we optimized our approaches through data rarefaction
121  simulations, and finally used our results to characterize AIV from non-invasively

122 collected dust samples.

123


https://doi.org/10.1101/2024.02.28.582540
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.28.582540; this version posted March 24, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

124 Results
125

126 Similar performance of laboratory-based and portable RNA
127  extraction and quantification protocols

128  Using LPAIV H1N1 viral cultures, we found that the NucleoSpin RNA Virus kit was
129  the most efficient RNA extraction approach, yielding the lowest Ct (cycle threshold)
130  values. While we therefore continued our analyses with this kit, the portable Biomeme
131 M1 Sample Prep Cartridge Kit, which allows for RNA extraction in just 5 minutes,
132 vyielded only slightly higher Ct values (S1). The standard RT-PCR and portable Mic
133  gPCR systems further showed comparable performance (S1); we therefore continued
134 our analyses with the Mic gPCR machine.

135

136  Nanopore sequencing genome coverage and rarefaction analysis
137  While the sequencing read length distributions were largely consistent across the

138 cDNA, RNAO002, and RNAQOO4 nanopore sequencing approaches (Methods), the
139 RNAOO2 dataset comprised a lower number of sequencing reads (Fig 1A). The
140 alignment of the reads to the AIV reference segments further showed an uneven
141  coverage distribution across the genome, with all sequencing approaches leading to
142 similar coverage of the polymerase segments; every sequencing approach further led

143  toincreased coverage at the ends of each segment (Fig 1B).

144
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149

150

151 Fig 1. Nanopore sequencing results of an AlV viral culture using DNA-nanopores (“cDNA” sequencing
152 through R10 chemistry; direct RNA sequencing through “RNA002” R9 chemistry) and RNA-nanopores
153 (direct RNA sequencing through “RNA004” RNA chemistry). A. Sequencing read length distribution
154 across the cDNA, RNA002, and RNA00O4 datasets. B. Reference genome coverage of the three
155 sequencing datasets across all AlV segments (PB1: Polymerase basic 1, PB2: Polymerase basic 2,
156 PA: Polymerase acidic, HA: Hemagglutinin, NP: Nucleoprotein, NA: Neuraminidase, M: Matrix, NS:

157  Nonstructural). The horizontal line indicates a coverage of 50x.

158

159  Given the uneven throughput and coverage across the three sequencing datasets, we
160  performed rarefaction for all downstream analyses and re-assessed the AlV genome
161 coverage (Methods; Table 1; S2).

162

163 Table 1. Mean AlV reference genome coverage and (in brackets) total number of reads across each

164  sequencing dataset (rows: cDNA, RNA002, RNA004) and respective rarefaction (columns: raw for total

165  dataset; max for same mean coverage; med for 10% of the max data; min for 1% of the max data).
Rarefaction

Mean coverage
(total reads)

Dataset raw max med min
5281 530 53 8

cDNA (326956)  (32660) (3249) (378)
537 57 6

RNAD02 NA (33255)  (3344) (382)
NAGOA 2809 535 52 7

(269621)  (51135)  (5140) (511)

166

167 AlIV consensus sequence creation
168  We first used the BIT score to evaluate the quality of the viral consensus sequence

169  created by different computational pipelines in comparison to the known AlV reference

170  (Methods). Even at maximum coverage (max rarefaction), only the reference-based

7
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171  approaches BCFtools or iVar, and the iterative reference-based assembly tool IRMA
172 were able to create the full consensus sequence of all eight viral segments (Fig 2A).
173  Reference-based EPI2ZME did not assemble the NS and HA segments. The hybrid
174  approach CZID as well as the de novo assembler metaFlye only assembled the largest
175 segments PA, PB1, and PB2, and did not create consensus sequences of the
176 unassembled reads mapping to the other segments. Flye (without the metagenomics
177  configuration) only assembled the PA and PB2 segments.

178

179  For our rarefied datasets (med and min), we found further performance differences
180 between BCFtools, iVar, and IRMA (Fig 2A). For all three sequencing approaches
181 (cDNA, RNA002, RNA004), BCFtools performed best across all viral segments, with
182  IRMA being unable to create certain segments at all at min rarefaction, namely PB1
183  for cDNA, and HA and NS for RNAOO2. Across the sequencing approaches, we only
184  found differences at min rarefaction where RNA004 outperformed RNA0O2, and cDNA
185  surpassed both RNA-based methods with the exception of the polymerase segments.
186

187  We next calculated the evolutionary distance between the whole-genome consensus
188  sequences and the known AlV reference (Methods). We found that BCFtools again
189  performed best in that it achieved the smallest evolutionary distance from the true
190 reference across all nanopore sequencing approaches and rarefaction thresholds (Fig
191  2B). The good performance of BCFtools was especially pronounced at min rarefaction,
192  where it clearly outperformed the other consensus sequence creation tools. Across
193  the nanopore sequencing approaches, the RNA-nanopore-based RNA00O4 and cDNA-

194  based approaches worked equally and were quite robust to the viral coverage; the
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195 worse performance of the DNA-nanopore-based RNAO002 approach was most

196  noticeable for the minimum-coverage data (min rarefaction) (Fig 2B).
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199 Fig 2. Evaluation of viral consensus sequence creation from nanopore sequencing datasets (CDNA,
200 RNAO002, RNA004) across all data rarefactions (min, med, max). The performance of the computational
201  tools BCFtools, iVar, and IRMA, which were the best-performing approaches for the max datasets, is
202  visualized. A. Consensus sequence evaluation across the eight viral AlV segments through normalized
203 BIT scores calculated based on the known AlV reference. B. Consensus sequence evaluation through

204  whole-genome evolutionary distance comparisons with the known AlV reference.

205

206 Nanopore sequencing-based AlV profiling in environmental
207 samples

208 Given the good performance of cDNA and RNOO4 for viral consensus sequence
209 creation also from smaller genomic datasets (min rarefaction), we next simulated
210  sequencing data from environmental samples by rarefaction to 0.01% (env_max) and
211 0,001% (env_min). We focused this analysis on HA as the viral segment that is
212 normally used for AlV lineage identification via phylogenetic analysis, and which plays
213  an important role in host cell penetration. We found that the cDNA sequencing

214  approach was very robust to extremely low viral coverage, yielding lower evolutionary
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215 distances of the HA segment to its known reference. Specifically, with env_max at a
216 distance of 0.0000025 and a mean coverage of 76, and env_min at a distance of
217  0.00000025 and a mean coverage of 10, these outcomes were significantly better than
218 those achieved through direct RNA sequencing using RNAO0O4. For RNAOQO4,
219  env_max resulted in a distance of 0.0012 with a mean coverage of 24, and env_min
220  resulted in a distance of 0.0058 with a mean coverage of 5.

221

222 Given the good performance of AIV cDNA sequencing and BCFtools analysis for
223 simulated environmental samples, we finally used this approach to process real
224 environmental samples, namely four dust samples from a turkey farm in France. The
225 samples ranged from Ct values of 24 to 26, and all resulted in similar read length
226  distributions and coverage distributions across viral segments (S3). BCFtools was able
227  to create consensus sequences of all eight viral segments, and an evolutionary based
228 on known AlV strains from the NCBI influenza database (Methods) elucidated the
229  phylogenetic relationship between the farm’s viral strain and known AlVs (Fig 3).

230

231

232

233
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235 Fig 3. Phylogenetic tree of AlIV consensus HA segments from four environmental samples (dust
236 samples from turkey farm in France) and known European AIV strains. AIV of the environmental
237 samples was assessed by cDNA nanopore sequencing, and consensus sequence was created through

238 BCFtools.

239  RNA modification profiling
240  Finally, we identified m6A modifications in the raw RNAOO4 nanopore data as the best-

241  performing direct RNA sequencing approach in our study. In total, we identified 2145
242  modifications, with the distribution of total modifications and modifications per base
243  across segments as follows: HA (311 modifications, 0.179 modifications per base), M
244 (227 modifications, 0.230 modifications per base), NA (307 modifications, 0.216
245  modifications per base), NP (253 modifications, 0.165 modifications per base), NS
246 (185 modifications, 0.208 modifications per base), PA (237 modifications, 0.108

247  modifications per base), PB1 (282 modifications, 0.122 modifications per base), and

11
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248 PB2 (343 modifications, 0.149 modifications per base). The M segment exhibited the
249  highest modification density, while the PA segment displayed the lowest.

250

251 Discussion

252  Here, we present an optimized nanopore sequencing pipeline suitable for rapid field
253  studies from non-invasively collected environmental samples. Our protocols aim to
254  identify AIV strains as well as their evolution processes and potential transmission
255  patterns. The implementation of such strategy for AIV monitoring — including in remote
256  areas along long-distance migration routes of potential avian hosts — is very promising
257  for rapidly and appropriately informing control measures as part of a "One Health"
258  strategy.

259

260  Our study shows that direct viral RNA as well as cDNA nanopore sequencing provide
261  robust genomic approaches to rapidly create viral consensus sequences in situ, to
262  assess the virus’ evolutionary trajectory. While previous studies have explored the
263  application of nanopore sequencing to AlV, they have often been limited to one or a
264  few processing pipelines [8,10,13-17]. Here we identify the optimal computational
265 analysis pipeline for robust analysis of viral data across a range of simulated viral
266  loads.

267

268  While direct RNA sequencing has previously been applied to AlV analysis [14], the
269  high sequencing error rate of these protocols, that are based on standard DNA-
270  nanopores, impeded meaningful analyses of the data. Here we find that the latest
271  direct RNA nanopore sequencing technology (which is based on a unique RNA-

272 nanopore specifically designed for transcriptomic rather than genomic research),

12
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273  provides similar results to cDNA sequencing using Oxford Nanopore Technologies’
274  established high-accuracy DNA-nanopores (R10 chemistry). Our study is therefore, to
275  the best of our knowledge, the first to show that viral genomes can be profiled with
276  high accuracy directly from their RNA without any cDNA reverse-transcription which is
277  laborious, time-consuming and might introduce biases. We also show that direct RNA
278  sequencing simultaneously allows for RNA modification calling [19]. To the best of our
279  knowledge, this study marks the first in-stance of identifying m6A modifications in AlV
280  using direct RNA nanopore sequencing technology. Such modifications play a critical
281 role in viral RNA viruses, allowing them to mimic host RNA and thereby evade the
282  host's immune system, which underscores the significance of direct RNA sequencing
283  for epidemiology and immunology [21,22].

284

285  We compared the performance of several reference-based, de novo assembly, and
286  hybrid computational approaches to reconstruct the viral consensus sequence from
287 nanopore data at various rarefaction thresholds. While web-based tools such as
288 EPI2ME and CZID are more user-friendly than the remaining tools which rely on the
289 usage of the command line, they did not perform well in creating the consensus
290 sequence of all AIV segments —even in the datasets with a high genome-wide
291 coverage of >500x. In the case of the reference-based EPI2ME tool, the poor
292  performance could be due to the analysis’ restriction to US AlV references. In the case
293  of the hybrid-assembler CZID, only assemblies from the longer viral segments could
294  be obtained while many un-assembled reads aligned to the reference sequences of
295  the smaller segments. We faced the same problem when using the de novo assembly
296 command line tool Flye, which can be explained by Flye’'s incompatibility with reads

297  shorther than 1 kb, which exceeds the entire length of some viral segments. We found

13


https://doi.org/10.1101/2024.02.28.582540
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.28.582540; this version posted March 24, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

298 that the Flye version for metagenome assembly (using the —meta flag) worked better
299 for reference reconstruction; this might be related to the fact that metaFlye does not
300 assume even coverage across the genome, which is a suitable configuration for highly
301 diverse RNA viruses where amplification or targeting biases might result in uneven
302 coverage across segments [23—-25].

303

304 The reference-based command line tools BCFtools and iVar as well as IRMA, which
305 relies on iterative refinement, were able to create high-quality viral consensus
306 sequences for all nanopore data if available at high-coverage. Although we could have
307 evaluated other reference-based tools, we chose to utilize the most commonly
308 employed ones for generating consensus sequences from AlV in this study. While
309 some of these computational pipelines have previously been applied to AlV nanopore
310 sequencing data, they have not yet been compared to each other, especially in
311  application to different nanopore sequencing modalities [13,14,16,17]. Rarefaction of
312 this high-coverage viral data identified BCFtools as the best tool in generating
313 consensus sequences across viral segments similar to the known reference
314 (measured by high BIT scores and small evolutionary distances). The good
315 performance of BCFtools throughout our analyses might be due to its — in comparison
316 to iVar and IRMA — relatively strong reliance on reference data [26,27] and our
317 incorporation of a comprehensive reference database. This means that the
318  performance of BCFtools might worsen in the case of highly divergent and previously
319  unseen RNA viruses.

320

321  Given the good performance of BCFtools in combination with cDNA and RNA00O4

322 nanopore sequencing data, we further simulated AlV sequencing from environmental
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323 samples. We show that cDNA sequencing leads to relatively higher BIT scores and
324  smaller evolutionary distances than RNA0OO4 sequencing for such low-concentration
325 samples, which might be due to the still relatively decreased sequencing accuracy of
326  direct RNA sequencing in comparison to direct DNA sequencing (96% for RNA004
327  using the RNA chemistry, vs. 99% for cDNA using the R10 chemistry; ). When testing
328  our AlV profiling pipeline on real environmental samples, namely dust samples from
329 duck farms, we therefore employed the combination of cDNA sequencing and
330 BCFtools-based analysis. We were able to reconstruct complete viral consensus
331 sequences from this data, which we leveraged to reconstruct a phylogenetic tree and
332 to show evolutionary similarity between our AlV strains and contemporary H5 AlV
333 strains. These HS5 strains are responsible for the ongoing severe HPAIV panzootic [1],
334 and one of the most closely related strains has actually been responsible for a H5
335  HPAIV outbreak in another french farm.

336

337  An additional challenge for the analysis of low-concentration viral samples can be the
338 uneven segment coverage that we observed across and within viral segments. Our
339 cDNA data showed decreased coverage of the polymerase segments, while the
340 RNAOO2 data showed decreased coverage of the respective other segments. We
341 hypothesize that these coverage disparities stem from biases introduced through the
342 use of universal primers for cONA amplification and through the oligo-nucleotide
343 adapters targeting AlIV for direct RNA sequencing, respectively. The newest direct
344  RNA sequencing protocol RNA0O4, on the other hand, relies on an alternative ligase
345 enzyme, which might explain its more even coverage across segments. Within
346 segments, all nanopore sequencing approaches result in uneven coverage. This

347 especially applies to the direct RNA sequencing approaches, where the systematic
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348 decrease in coverage towards the end of the segment might be explained by
349 sequencing adapters targeting the segments’ conserved 3’-end and by rapid RNA
350 fragmentation [14].

351

352 Our study additionally showcases the field applicability of our nanopore sequencing
353  protocols by benchmarking fully portable equipment. While we found that standard
354  column-based viral RNA extraction outperformed more portable alternatives, the
355 Biomeme M1 Sample Prep Cartridge approach only led to slightly increased Ct values,
356  suggesting its potential for future field studies. We further show that the MIC gPCR [8],
357  MinlON MK1c nanopore sequencing device, and rapid library preparation protocols
358 provide a fully portable framework to conduct AlV profiling at the point of interest all

359 around the world, even without internet access.

360

361 Methods

362 RNA extraction and quantification
363 HIN1 LPAIV was isolated from a duck sample in 2006 (strain

364  A/duck/ltaly/281904/2006) and isolated in specific pathogen-free (SPF) eggs as
365 previously described [30]. The high-quality reference genome was obtained from
366  Sanger sequencing data ([31], GenBank accession number: FJ432771). We extracted
367 RNA from egg allantoic fluids using Macherey-Nagel's NucleoSpin RNA Virus
368  extraction kit, and quantified the extracted RNA using the Qubit RNA BR assay. We
369 additionally used Biomeme’'s M1 Sample Prep Cartridge Kit For RNA 2.0 [8] and
370  Lucigen’s Quick Extract DNA Extraction Solution kit to assess the performances of

371 faster and portable RNA extraction approaches. For Quick Extract, we followed the
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372  manufacturer's instructions and, additionally, an alternative method adapted for
373  SARS-CoV-2 RNA extraction [32]. We then compared the performance of the different
374  kits in terms of detection and quantification rates using standard RT-PCR (Applied
375 Biosystems 7500 Fast Instrument, Thermo Fisher) and portable RT-PCR (Magnetic
376  Induction Cycler quantitative PCR (Mic gPCR), Bio Molecular Systems). We targeted
377  ahighly conserved region of 99 bases of the AIV MP gene using previously established
378 approaches to detect and quantify AlV using RT-PCR [33,34].

379

380 Nanopore sequencing
381  We then performed nanopore sequencing of the NucleoSpin RNA extracts. First, we

382 performed direct VRNA sequencing using the DNA-nanopore (R9 chemistry;
383  “RNAO002” kit) and the RNA-nanopore chemistry (RNA chemistry; “RNA004” kit). We
384  specifically targeted AIV RNA following the protocol described by Keller et al. [14].
385  Briefly, direct RNA nanopore sequencing requires a reverse transcriptase adapter
386 (RTA) which usually captures poly(A) tails of the messenger RNA (mRNA); a
387 sequencing adapter then ligates to the RTA and directs the mRNA to the nanopore.
388 To target AIV RNA, we used a modified RTA, i.e. a custom oligo-nucleotide that is
389 complementary to the 3’-region that is conserved across all AIV segments. As these
390 conserved regions differ slightly across segments, we used two custom oligo-
391 nucleotides, RTA-U12 and RTA-U12.4, which were mixed at a molar ratio of 2:3 to a
392  total concentration of 1.4uM [14]. We subsequently used the portable MinlON Mk1c
393  device for nanopore sequencing; for the R9 chemistry sequencing, we used a FLO-
394  MIN106 R9.4.1 flow cell, and for the RNA chemistry, we used a FLO-MINOO4RA flow
395 cell

396

17


https://doi.org/10.1101/2024.02.28.582540
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.28.582540; this version posted March 24, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

397 Second, we performed cDNA sequencing using the latest DNA-nanopore chemistry
398  (R10 chemistry) and rapid barcoding library preparation (SQK-RBK114.24) after cDNA
399  conversion of the extracted RNA and multi-segment amplification through M-RTPCR.
400 M-RTPCR was performed as described previously, targeting the conserved regions
401 across all AlV segments [35,36]. Briefly, the extracted RNA was mixed with
402  Superscript Il One-Step PCR reaction buffer and the previously defined primers, the
403 PCR reactions were run on a portable Mic gPCR device. For sequencing, we used
404  three barcodes with the same sample to increase the total quantity of cDNA added to
405  the final sequencing library. We subsequently used the portable MinlON Mk1c device
406 and a FLO-MIN114 R10.4.1 flow cell for nanopore sequencing.

407

408 Data processing
409  We obtained raw nanopore sequencing data in fast5 format for the DNA-nanopore,

410 and in pod5 format for the RNA-nanopore sequencing runs. For the DNA-nanopore
411  runs, we used the Guppy (v6.4.8+31becc9) high-accuracy basecalling model (HAC;
412 rna_r9.4.1 _70bps_hac model for vRNA, dna r10.4.1_e8.2 400bps_hac model for
413  cDNA); for the RNA-nanopore run, we used the Dorado (v0.4.3+656766b) HAC model
414  for RNA (rna004_130bps_hac). After removing short reads (<50 bases) using SeqgKit
415  (v2.4.0) [37], we used Minimap2 (v2.26) [38] with the -ax map-ont configuration for
416  cDNA and the -ax splice -uf -k7 configuration for vVRNA reads to align the resulting
417 fastq files to our ground-truth reference genome (GenBank accession number:
418  FJ43277). We converted the resulting sam files to bam files, indexed, and sorted them
419  using SAMtools (v1.17) [39] to obtain the genome coverage distribution.

420
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421 Data rarefaction
422  To compare all nanopore sequencing results, we rarefied the three genomic datasets

423 (cDNA, vRNA by DNA-nanopore: RNA00O2, vVRNA by RNA-nanopore: RNA004) from
424  the “raw’ data to the same mean coverage (“max” data). After rarefying the cDNA fastq
425  file to 10% and the RNAQ0O4 fastq file to 20% of its original number of reads, a similar
426 mean coverage to the RNAQO2 fastq file was achieved (mean genome coverage of
427  537). We further rarefied this max data to simulate results from samples with lower
428  viral load, namely to 10% of the max data (“med’) and to 1% of the max data (“min”).
429  Finally, to simulate real environmental samples with potentially extremely low viral
430 loads, we additionally rarefied the raw cDNA and RNA004 data to 0.01% (“env_max”)
431 and 0.001% (“env_min”) for follow-up analyses.

432

433 Consensus sequence construction
434  For reference-based consensus sequence creation, we mapped each dataset to a

435 reference database generated for each segment from the NCBI Influenza Virus
436 Database, which contains all AIV nucleotide sequences from Europe (as of
437  04/03/2023). We excluded the true reference sequence of our H1N1 virus from all
438  segment-specific reference databases in order to simulate a realistic situation where
439  the true genomic sequence of our AlV strain would not yet be known. We indexed the
440 reference databases and mapped our sequencing reads against the databases using
441  Minimap2. We then indexed and sorted the sam files and converted them to bam files
442  using samtools. Using samtools idxstats, we selected the reference to which most
443  reads mapped across segments. All our reads were then mapped to the full best

444  reference genome using Minimap2. We then tested two standard reference-based
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445  computational pipelines to create the consensus sequence from this alignment,
446  BCFtools (v1.17) [26] and iVar (v1.4.2) [27].

447  We additionally used the Iterative Refinement Meta-Assembler (IRMA; v1.0.3) [40] that
448  iteratively refines the reference used in the analysis to increase the accuracy of the
449  consensus sequence obtained. Using this pipeline, the consensus of each segment
450 can be obtained directly from the fastq file without intermediate steps required by the
451  user. We used the “FLU-minion” configuration for nanopore sequencing data, which
452  drops the median read Q-score filter from 30 to 0O, raises the minimum read length
453  from 125 to 150, raises the frequency threshold for insertion and deletion refinement
454 from 0.25 to 0.75 and 0.6 to 0.75, respectively, and lowers the Smith-Waterman
455  mismatch penalty from 5 to 3 as well as the gap open penalty from 10 to 6.

456  We further applied Oxford Nanopore Technologies’ EPI2ME (v.5.1.9.) workflow for
457  influenza viruses (“wf-flu”) to our data, which is also based on a reference-based
458  consensus sequence creation approach, but which uses a specific influenza reference
459 database which only focuses on the FIuUA and FluB segments
460  (https://labs.EPI2ME.io/influenza-workflow/).

461

462  For de novo consensus sequence creation, we used Flye (v2.9.2) with and without —
463 meta flag [41] followed by assembly polishing using racon (v1.4.3) [42]. We
464  additionally applied the Chan Zuckerberg ID (CZID) [43,44] pipeline to our data, which
465  performs a combination of de novo and reference-based approaches: It uses metaFlye
466 to assemble the data and generate contigs, followed by Minimap2-alignments of the
467  still unassembled reads against the NCBI database [45].

468
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469  To evaluate the consensus sequence creation pipelines, we first used blastn (v2.15)
470  [46] to align every consensus segment to our known reference and we normalized the
471 resulting BIT score by segment size to facilitate comparisons across different
472 segments. Then, we assembled the whole-genome consensus sequences by
473  concatenating the segment-specific consensuses derived from each of the rarefied
474  datasets. We next performed a phylogenetic analysis of all reconstructed AlV whole-
475  genome consensus sequences together with the known reference using a maximum
476 likelihood approach as implemented in IQ-TREE (Jukes-Cantor nucleotide substitution
477  model) (v2.0.6) [47] to obtain pairwise likelihood distances between our consensus
478  sequences and the reference.

479

480 Environmental samples
481  We finally obtained real environmental samples (surface dust collected with dry wipes

482  on building’s walls and feeders) from 4 HPAIV H5N1 Gs/GD lineage outbreaks in 2022
483 and 2023 in duck farms in South-west and West regions of France [48]. The
484  environmental samples were processed and analyzed as described above for the
485  LPAIV H1N1 viral cultures. For the phylogenetic tree reconstruction, we incorporated
486  all recent AlV strains from Europe (from January 15t 2020 until May 15t 2023) from the
487  NCBI Influenza Virus Database; visualization was done using IROKI [49]. Due to the
488  relevance of the HA segment for host cell penetration and phylogenetic analysis, we
489  exclusively focused this analysis on this segment.

490

491 Detection of RNA modifications
492  We additionally searched for N®-methyladenosine (m6A) RNA modifications in the

493 RNA-nanopore data wusing the respective Dorado basecalling model
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494  (rna004_130bps_sup v3.0.1_m6A_DRACH@v1). Subsequent analysis was
495  performed using Modkit (v0.2.4.)(https://github.com/nanoporetech/modkit).

496

497 Data access
498  Original fastq files from all the sequencing runs are available on the European

499  Nucleotide Archive (ENA) under the accession number PRJEB72673.
500 All our computational scripts are available via the GitHub repository real-

501 time_surveillance of avian-influenza:  https://github.com/Albertperlas/Latest-RNA-

502 and-DNA-nanopores-allow-for-rapid-avian-influenza-profiling
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686 S1 Figure. Comparison of Ct values from different RNA extraction kits and quantification methods. The Ct values
687  were determined using the NucleoSpin RNA Virus extraction kit (NS), the Biomeme M1 Sample Prep Cartridge
688 Kit for RNA 2.0 with the manufacturer's protocol (BMO) and a modified protocol by de Vries et al. (2022) (BMA),
689 and the Quick Extract DNA Extraction Solution with the manufacturer's protocol (QE95) and an alternative
690 method for SARS-CoV-2 RNA extraction by Ladha et al. (2020) (QE65). Quantification was performed using
691 standard real-time PCR (red columns) and a portable real-time PCR (Mic qPCR, blue columns) targeting the M

692  segment of the virus.
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695 S2 Figure. Coverage of the different datasets after rarefaction. A. Maximum coverage with similar mean coverage
696 of all datasets (cDNA-max, vRNA004-max, and vRNA00O2-max). B. Coverage from cDNA datasets after rarefaction
697 (cDNA-max, cDNA-med, and cDNA-min). C. Coverage from vRNAO002 dataset (VRNA0O2-max) after rarefaction

698  (VRNA002-med, and vRNAOO2-min). D. Coverage from VRNAOO4 dataset after rarefaction (VRNAOO4-max,

699  VRNA004-med, and vVRNAOO4-min).
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703 S3 Figure. A. Read length distribution plots of the environmental samples. B. Coverage of each nucleotide
704 position in each segment from cDNA sequencing of our environmental samples.
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