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Abstract17

Accurate phenotyping of cells in the tumor microenvironment is crucial for understanding18

cancer biology and developing effective therapies. However, current methods require precise19

cell segmentations and struggle to generalize across different imaging modalities, limiting their20

utility in digital pathology. Here, we show that Contrastive Learning Enabled Accurate Reg-21

istration of Immune and Tumor Cells (CLEAR-IT) overcomes these limitations, providing a22

robust and versatile tool for cell phenotyping. CLEAR-IT accurately phenotypes cells compa-23

rable to state-of-the-art methods, generalizes across multiplex imaging modalities, maintains24

high performance even with limited number of labels, and enables the extraction of prognostic25

markers. Additionally, CLEAR-IT can be combined with existing methods to boost their per-26

formance, whereas its lack of need for precise cell segmentations significantly reduces training27

efforts. This method enhances the robustness and efficiency of digital pathology workflows,28

making it a valuable tool for cancer research and diagnostics.29

Keywords: Contrastive Learning, Self-supervised Learning, Cell Phenotyping, Tumor30

Microenvironment, Multiplexed Imaging, Sparse Labeling31

Recent advances in multiplexed proteomics have underscored the critical role of tumor microen-32

vironment (TME) spatial composition in cancer prognosis and therapy development [1–4]. As33

manual characterization of increasing amounts of data becomes infeasible, machine learning34
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algorithms for TME characterization are being developed [5–8]. However, these approaches35

often require precise cell segmentation and extensive expert annotations, limiting their usabil-36

ity (Fig. 1a). Contrastive self-supervised learning can maintain high performance with fewer37

labels in image classification [9], and has been applied successfully to tissue segmentation and38

histopathological image classification [10], but not yet to multiplex images for the purpose of39

single-cell phenotyping.40

Contrastive Learning Enabled Accurate Registration of Immune and Tumor cells (CLEAR-41

IT) is a contrastive learning-based classifier designed to identify cell types in multiplexed tissue42

images using sparsely labeled data and only cell locations without the need for accurate seg-43

mentation (Fig. 1b,c). It utilizes the “Simple Framework for Contrastive Learning of Visual44

Representations” (SimCLR) algorithm for self-supervised learning [10]. For CLEAR-IT optimiza-45

tion, the following five steps are used; (i) image patches around cell centroids are made; (ii)46

an encoder is pre-trained on single-channel image patches extracted from multiplexed datasets47

without annotation; (iii) the encoder outputs are concatenated to obtain multi-channel repre-48

sentation; (iv) a single-layer perceptron (SLP) is trained with annotated cell phenotype data49

to obtain cell phenotype probabilities; (v) which is then compared with ground-truth annota-50

tions to quantify precision-recall area-under-the-curve (PR-AUC) to evaluate the performance51

(Methods, Fig. S1). Here, steps i–iii represent the CLEAR-IT approach, and PR-AUC quan-52

tification of CLEAR-IT-SLP allows direct evaluation of the CLEAR-IT performance on the task53

of cell phenotyping.54

To ensure high performance, CLEAR-IT was optimized through iterative adjustments to the55

pre-training loss function, augmentations, and training data, evaluating the cell phenotyping56

performance of CLEAR-IT-SLP (Fig. S1c), separately in two different triple negative breast57

cancer (TNBC) cohorts (Supplementary Information). These cohorts contained 1010 8-58

channel multiplex immunofluorescence images (TNBC1-MxIF8) [1] or 41 44-channel multiplexed59

ion beam imaging by time-of-flight images (TNBC2-MIBI44) [4], latter reduced to 8-channel60

images for direct comparison with TNBC1-MxIF8 (TNBC2-MIBI8). For ground truth, multi-61

label annotations with 6 different class labels generated with TME-Analyzer [11] (TME-A ML6)62

were used (Supplementary Information). For both datasets, final PR-AUC was > 0.8, with63

highest performance gain of >30% obtained via optimization of the loss function and aug-64

mentation optimizations resulting in an additional ∼15% gain, whereas increasing the training65

data size, also with data from other sources, did not result in additional performance gain66

(Fig. 1d, Fig. S2–Fig. S11). Evaluating the performances and cross-performances of different67

CLEAR-IT-SLPs, obtained across imaging and analysis platforms, demonstrated highest perfor-68

mance for “self-classifiers” (Fig. 1e, main diagonal), where training was performed on the same69

dataset as the testing. Here, also published multi-class annotations [1, 4] were used to gener-70

ate additional multi-label annotations (inForm ML6 for TNBC1-MxIF8 and DeepCell ML6 for71

TNBC2-MIBI8, Supplementary Information) to compare different analysis platforms. For72

the cross-performances, training on TNBC1-MxIF8 resulted in higher performance than training73

on TNBC2-MIBI8, and classifiers trained with TME ML6 annotations outperformed other anno-74

tations, resulting in the highest overall performance by TNBC1-MxIF8 + TME-A ML6, where75
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performance loss compared to “self-classifiers” was 0% to 5% (Fig. 1e, Fig. S12), demonstrating76

that CLEAR-IT generalizes well to different imaging and analysis platforms.77

Testing the resilience of our approach to label reduction in “self-classifiers” demonstrated high78

performance down to 10% of our training data, corresponding to 0.1% of all available data, with79

the exception of TNBC2-MIBI8 + DeepCell ML6 where performance dropped significantly below80

20% of training data (1% of available data, Fig. S13). Reduction of labels in the form of number81

of patients, which represents a more realistic scenario, showed that with 10% of available patients82

(TNBC1-MxIF8: 6 patients; TNBC2-MIBI8: 4 patients) less than 10% reduction in performance83

was achieved for all cases (Fig. S14). With high confidence true annotations corresponding84

to high intensity signals at the center of the image (Fig. E1, Fig. S15 and Fig. S16) and,85

despite large variations in the performance of CLEAR-IT-SLP when the SLP was trained with86

labels from one patient, high overall signal intensity distribution relating to high performance87

(Fig. E2, Table S1), we concluded that signal intensity was central to CLEAR-IT performance.88

We therefore developed a ranking scheme based on image signal intensity standard deviation89

(Fig. E3a, Methods), obtaining correlation between patient ranking and the CLEAR-IT-SLP90

performance, when the SLP was trained using data solely from one patient (Fig. E3b,c, r = 0.4991

for TNBC1-MxIF8 and r = 0.9 for TNBC2-MIBI8, p < 0.001 for both). Notably, the performance92

with the best ranking patient was 18.6% and 4.6% lower than a full training cohort, for TNBC1-93

MxIF8 and TNBC2-MIBI8, respectively (Fig. 1f, blue diamonds). Here, the best ranking patient94

in the TNBC1-MxIF8 dataset had 21 images, compared to 1 image in the TNBC2-MIBI8 dataset,95

and training the SLP in TNBC1-MxIF8 dataset with 21 highest ranking images, irrespective96

of patient of origin, resulted in a mere 10.1% reduction in performance over the training with97

761 images from 47 patients (Fig. 1f, red asterisk). This highlights the image selection for data98

annotation as a crucial step that can significantly boost performance. This, together with high99

performance obtained with reduced labeled data with CLEAR-IT, can significantly reduce the100

expert annotation needed with minimal performance loss.101

Having established high label efficiency through image ranking, we next investigated if102

clinically relevant parameters can be extracted in this scenario. Using labels generated by CLEAR-103

IT-SLP trained with minimal labels (TNBC1-MxIF8: Fig. 1f, left, red asterisk; TNBC2-MIBI8:104

Fig. 1f, right, 1 patient blue diamond) and our recently published methodology [11], we were105

able to obtain survival classifiers that split the cohorts into two differential overall survival groups106

(Fig. 2a,b, top). These classifiers were cross-validated (Fig. 2a,b, bottom), where classifier train-107

ing was blind to the information from the validation cohort. This demonstrated that CLEAR-IT,108

even at highly reduced label presence, can prognosticate TNBC patients. Furthermore, when109

investigating the parameters that are involved in survival classifiers, we observed that the param-110

eter ranking generated by CLEAR-IT-SLP were in good agreement with the published ranking111

[11] (Fig. 2c). This showed that CLEAR-IT is able to extract clinically relevant TME biology,112

with minimal user input.113

We next benchmarked our method with MAPS (Machine learning for Analysis of Proteomics114

in Spatial biology) [8], where for fair comparison instead of an SLP a 4-layer multi-layer per-115

ceptron was trained with CLEAR-IT encodings (CLEAR-IT-MLP4). We also made use of two116
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additional published datasets[12, 13], bringing the datasets tested to TNBC1-MxIF8 [6], TNBC2-117

MIBI44 [4], CRC-CODEX26 [12] and TONSIL-IMC41 [13]. Here, TONSIL-IMC41 differed from118

the other datasets, also in CLEAR-IT-MLP4 cross-performance (Fig. E4), as the tissue was non-119

cancerous and the pixel size was double (Supplementary Information). CLEAR-IT-MLP4 vs120

MAPS performance was dataset dependent: in TNBC1-MxIF8 comparable performance between121

two methods, in TNBC2-MIBI44 higher performance of CLEAR-IT-MLP4, in TONSIL-IMC41122

higher performance of MAPS and in CRC-CODEX26 variable performance between two methods,123

were observed (Fig. 2d-g). Importantly, combination of the two methods, i.e., supervised train-124

ing on the concatenation of CLEAR-IT encodings and cell expressions, consistently resulted in125

high performance across datasets. Together, these findings demonstrate CLEAR-IT, as a stand-126

alone platform, can be used to phenotype cells to obtain clinically relevant parameters and its127

combination with existing methods improves performance.128

In conclusion, CLEAR-IT for the first time demonstrates that contrastive learning-based129

encoders can be utilized for the task of cell classification in multiplex images with very sparse130

labels and cell locations, irrespective of imaging and analysis platforms. CLEAR-IT was based131

on a relatively simple architecture that enabled the exploration of the hyperparameter space to132

improve its performance, and cross-dataset performance demonstrating transferability across sim-133

ilar datasets. Despite this, it was able to extract clinically relevant information, its classification134

performance was comparable to the state-of-the-art and its combination with existing model pro-135

vided further performance gain. This additionally demonstrates that CLEAR-IT encoders extract136

information that expands beyond cell expressions. Further exploration of the CLEAR-IT training137

parameter hyperspace and deeper convolutional neural networks in its architecture, as well as fur-138

ther fine-tuning of the encoder during supervised training [10] would enhance performance at the139

cost of pre-training times. Irrespectively, CLEAR-IT encoders demonstrate high performance in140

multiplexed images analysis with highly sparse labels without segmentation masks, significantly141

reducing hands-on time, and can be incorporated into image analysis software QuPath [14], to142

obtain user-in-the-loop interface (Fig. E5), providing the field of digital pathology and cancer143

research with a robust algorithm.144

Figures145
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Fig. 1 CLEAR-IT pipeline and performance. a) Conventional training pipelines for cell phenotyping are
trained on cell expressions which require large amounts of segmentation ground truth. b) Use of feature encodings
generated by CLEAR-IT; convolutional neural network (CNN) encoder trained self-supervised without anno-
tations; reduces hands-on-time needed by increasing label efficiency and using only cell locations. c) Matched
performance is achieved between benchmark and CLEAR-IT. d) PR-AUC box-and-whisker plots showing CLEAR-
IT-SLP gain of performance for the TNBC1-MxIF8 and TNBC2-MIBI8 datasets through optimization of the
pre-training hyperparameters for the CLEAR-IT encoder. e) Heatmap showing the cross-dataset PR-AUC scores
of CLEAR-IT-SLP for TNBC1-MxIF8 and TNBC2-MIBI8 datasets. f) CLEAR-IT-SLP PR-AUC scores of super-
vised trained SLPs as a function of number of patients labels originated from for TNBC1-MxIF8 (left) and
TNBC2-MIBI8 (right) datasets; shaded gray regions: performance range of 10 random patients; blue diamonds:
patients with the highest ranking; red star: labels from 21 images with the highest ranking irrespective of patient
of origin.
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a b cTNBC1-MxIF8 Classi�er
(21 images)

TNBC2-MIBI8 Classi�er
(1 image)

TNBC1-MxIF8, Discovery

Fig. 2 CLEAR-IT clinical and benchmark testing. a,b) Kaplan-Meier curves for two-group-survivals of
patients in the TNBC1-MxIF8 and TNBC2-MIBI datasets based on a survival classifier built using CLEAR-IT-SLP
cell classification with minimal label with training performed on discovery cohort; a: TNBC1-MxIF8 discovery (top)
and TNBC2-MIBI8 validation (bottom) cohorts; b: TNBC2-MIBI8 discovery (top) and TNBC1-MxIF8 validation
(bottom) cohorts. c) Correlation of parameter ranking based on their prognostic values in TNBC1-MxIF8 (top)
and TNBC2-MIBI8 (bottom) datasets according to TME-Analyzer and CLEAR-IT analysis. d-g) Box-and-whisker
plots showing F1 scores of CLEAR-IT-MLP4, MAPS and their combinations trained with reduced amounts of
labeled data for the d) TNBC1-MxIF8, e) TNBC2-MIBI44, f) CRC-CODEX26, and g) TONSIL-IMC41 datasets
with 10 boot-strappings. p-values were obtained according to log-rank test (a, b), and Spearman correlation (c).
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Methods146

Data pre-processing147

Image intensity scaling148

We leave all images in the same format as they are published (either 8-bit or 16-bit integer).149

Before feeding images to a neural network, we divide them by a constant to scale the intensity150

range to [0, 1]: 255 for TNBC1-MxIF8, 265 for TNBC2-MIBI44 and TNBC2-MIBI8, and 65535151

for CRC-CODEX26 and TONSIL-IMC41.152

Train/test splits153

For every experiment, an identical split of data into a train and test set was used. For the154

considered datasets, the train/test splits are: TNBC1-MxIF8 47/15 patients (761/249 images),155

TNBC2-MIBI44 and TNBC2-MIBI8 30/11 patients (30/11 images), CRC-CODEX26 28/7156

patients (28/7 images), TONSIL-IMC41 5/2 patients (17/7 images). For the supervised training157

of classifiers, the train set was further split by 80/20 into a train and validation set. To ensure158

that classifiers are trained and tested on a comparable amount of data for the cross-testing of159

TNBC1-MxIF8 and TNBC2-MIBI8 (Fig. 1e), the train/test split was set to 30/11 patients160

for both datasets. Furthermore, for TNBC1-MxIF8, only 3 images per patient (captured at the161

tumor center) were included. This balanced the amount of training and testing data between the162

TNBC1-MxIF8 images (1340× 1008 pixels) and the TNBC2-MIBI8 images (2048× 2048 pixels)163

as much as possible to approximately 4 megapixels of image data per patient.164

CLEAR-IT training pipeline165

The CLEAR-IT training pipeline is summarized in Fig. S1. The inference pipeline (Fig. S1a)166

takes a multiplex image patch centered around a cell as input and outputs a vector containing167

probabilities of the cell belonging to the class labels considered. To achieve this, the multiplex168

image patch is first split into its individual channel components, which results in one grayscale169

single-channel image patch for each image channel. The grayscale image patches are then fed170

to the pre-trained encoder network (specifically, a ResNet encoder [15]) which outputs a feature171

vector. The individual channel feature vectors are concatenated and fed into a classification172

network, which predicts the cell’s class label.173

Unsupervised encoder pre-training174

Pre-training of the encoder network follows the SimCLR algorithm [9] and is summarized in175

Fig. S1b. The pre-training dataset consists of grayscale single-channel image patches centered176

around cells from individual color channels of the multiplex images. A minibatch is constructed by177

sampling a number of different image patches of random cell locations and random image channels.178

Every image patch in the minibatch is augmented in two random and distinct ways to create an179

augmented image pair, which are then encoded by a ResNet-18 [15] encoder. The encodings are180

non-linearly projected by the projection head, which is a multi-layer perceptron (MLP) with 3181

hidden layers. The loss function acts on the non-linear projections of the encodings to maximize182
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the similarity between the outputs originating from an augmented image pair (positive pair),183

while minimizing the similarity across projections from augmented images that are not from184

the same image pair (negative pairs). After pre-training, the MLP is removed, and the ResNet185

encoder can be used to provide feature embeddings as input for training downstream networks.186

The input size to the ResNet-18 encoder is 64× 64× 1 pixels (32× 32× 1 for the TONSIL-187

IMC41 dataset) and the output size is either 512 or 32, for a linear classifier or an MLP classifier,188

respectively, which is used to perform classification. The MLP projection head has an output189

layer of size 128 and 3 hidden layers, each of size 512 with batch normalization and ReLU190

(rectified linear unit) activations. Optimization is performed via the LARS (layer-wise adaptive191

rate scaling) [16] method with a learning rate of 0.3N/256 (N being the pre-training batch size),192

and the NT-Xent (normalized-temperature cross-entropy) loss function193

LNT−Xent = − 1

N

∑
i,j∈MB

log

(
exp (sim (zi, zj) /τ)∑2N

k=1 1[k ̸=i] exp (sim (zi, zk) /τ)

)

where i, j ∈ MB represents all augmented image pairs in the minibatch (i.e. positive pairs),194

zi is the non-linear feature projection of the ith image in the minibatch, sim (a, b) is the cosine195

similarity between vectors a and b,1[k ̸=i] is an indicator function that is equal to 1 iff k ̸= i and196

0 otherwise, and τ is the temperature parameter that is used to scale the relative importance of197

positive and negative pairs.198

During the optimization of pre-training augmentations, we apply combinations of augmenta-199

tions in the following order:200

1. Gaussian blur: Apply Gaussian blur with intensity x, where x determines the kernel size as201

2x+ 1 and the standard deviation randomly drawn from σ ∈ [0, x].202

2. Brightness/Contrast: Adjust brightness and/or contrast of the image by x, which deter-203

mines the intensity that is randomly drawn from β ∈ [−x, x].204

3. Translation: Move the center of the crop in a random radial direction. The translation205

distance is drawn from ρ ∈ [0, x].206

4. Zoom: Zoom in or out of the image. The zoom factor is randomly drawn from Z ∈207

[xzmin, xzmax] where x = 1 means that no zoom is applied.208

5. Rotation: Randomly apply rotation in multiples of 90◦.209

6. Flipping: Randomly apply horizontal and/or vertical flipping.210

The optimization of the hyperparameters is illustrated in Fig. S1d.211

Supervised classifier training212

The supervised classifier training is the second step in the training pipeline and is summarized in213

Fig. S1c. The pre-trained encoder is used as many times in parallel as there are color channels in214

the input image and the computed feature encodings are concatenated and input to a classification215

network. For every experiment, we keep the weights of the pre-trained ResNet encoder frozen216

and only train the classifier to make predictions based on the generated feature embeddings.217

In order to evaluate the quality of the features learned by the pre-trained encoder, we use a218

single-layer perceptron (SLP), in other words, a linear classifier, to make predictions about cell219
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classes. This is referred to as “linear evaluation” [9]. The linear classifier consists of a single layer220

with input size 512×C and output size K, where C is the number of color channels in the input221

image and K is the number of classes to predict. We train every linear classifier with a batch222

size of 64, a 30% dropout layer, using the Adam optimizer with both learning rate and weight223

decay of 10−4 and minimizing the binary cross-entropy loss. For every training run, we hold out224

a random 20% of the training set for validation, train for 50 epochs and choose the weights from225

the epoch where the classifier achieved the lowest loss on the validation set.226

Since the class distribution in the used datasets is highly imbalanced, we under sampled227

the majority classes to ensure balanced training sets (see Supplementary Information for an228

explanation of the algorithm).229

3-round encoder optimization230

The encoder hyperparameter search for optimizing downstream classification performance is per-231

formed in 3 separate rounds. Every change in hyperparameters results in a separate ResNet232

encoder-linear classifier pair being trained as described previously. The optimization goal is233

the maximization of the classifier’s performance, which we measure with the area under the234

precision-recall curve (PR-AUC) and report the mean of medians for PR-AUC of each class. See235

Supplementary Information for further details.236

Cross-testing experiments237

For the experiments that compare classifier performance across TNBC1-MxIF8 and TNBC2-238

MIBI8 and their two respective annotation sets, we use two encoders that are pre-trained on the239

same dataset that is used for the supervised test set, i.e. the encoders are pre-trained on TNBC1-240

MxIF8 dataset for the upper half of the table in Fig. 1e and on the TNBC2-MIBI8 dataset for241

the lower half of the table in Fig. 1e. For both encoders, the remaining hyperparameters are as242

follows: Pre-training batch size N = 256, loss function temperature τ = 0.05, minimum zoom243

factor xzmin = 2
3 , maximum zoom factor xzmax = 4

3 , and pre-training dataset size D = 819200244

image patches sampled from 31 patients from TNBC1-MxIF8 or TNBC2-MIBI8.245

Label-reduction by patient count246

For the experiments that investigate the effects of reducing the number of patients in the247

supervised training set, we use the same encoders as for the cross-testing experiments, again248

depending on the supervised test set. For both datasets, we begin by using the maximum249

amount of patient data available and reduce the patient counts, resulting in classifiers trained250

with data from P1 ∈ {47, 39, 30, 18, 12, 6, 3, 1} patients for the TNBC1-MxIF8 dataset and251

P2 ∈ {30, 25, 19, 12, 8, 4, 2, 1} patients for the TNBC2-MIBI8 dataset. For every case with a252

reduced number of patients, ten separate classifiers are trained on image data from different253

combinations of randomly and independently sampled patients.254
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Supervised classifier training on individual patient data255

For training the supervised classifiers on image data from individual patients, we use the same256

encoder pre-trained on the TNBC1-MxIF8 dataset (Fig. E2a) and TNBC2-MIBI8 dataset257

(Fig. E2b), respectively. Since, for some patients, there are none or only very few cells of a cer-258

tain phenotype, balancing the training sets based on the least frequent cells is infeasible. Instead,259

we set a fixed target count T = 500 cells per label for the amount that every class should be rep-260

resented in the training sets. If the available amount is less than T , all available cells are included261

in the training set.262

Patient image quality ranking for correlation analysis263

For determining the quality of images belonging to a patient, we employ the following algorithm:264

1. Calculate the standard deviations of pixels across all images belonging to an individual patient265

for the following channels:266

• CD3, CD8, CD20, CD56, CD68 channels: Standard deviation of top 0.1% brightest pixels.267

• Background channel: Standard deviation of all pixels.268

2. For each patient, assign an ordinal rank from 1 to N , where N is the number of patients,269

based on the following criteria:270

• CD3, CD8, CD20, CD56, CD68 channels: High rank for high standard deviation.271

• Background channel: High rank for low standard deviation.272

3. For each patient, sum the ranks assigned for each channel.273

4. Divide all rank sums by the highest obtained.274

The resulting rank scores range between 1/N for lowest image quality and 1 for highest image275

quality per patient.276

Relating CLEAR-IT output to clinical data277

The ranking of parameters and survival classifiers were obtained as described previously [11]. In278

brief, 50 center parameters per patient were used, namely: densities of immune cell populations279

in tumor and stroma compartments (n = 12); areas of these compartments (n = 2); and distance280

z-scores between phenotypes in whole tissue (n = 36), and were ranked with a reiterative nested281

Monte Carlo approach. Here, the patient dataset was randomly split into train and test sets and282

interim classifiers were constructed in the train set. First, the representative values of parameters283

for long and short survival were obtained through repeating the following steps 1,000 times:284

1. Random selection of 12 patients;285

2. Splitting these 12 patients for each of 50 parameter into 2 groups of 6 patients according to286

the median value of parameters;287

3. Testing statistical significance of survival differences between the 2 patient groups per288

parameter according to log-rank tests; and finally289
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4. Upon significance, recording the parameter mean values for the shorter and longer survival290

groups.291

After 1,000 repetitions, the means of statistically significant parameters were calculated for292

shorter and longer survival groups, and the parameters were ranked based on the degree of sep-293

aration (p-value) between the survival groups obtained in the train set. Second, the patients in294

the train set were split into two groups, based on most parameters for each patient being closer295

to the recorded means of shorter or longer survivors, where the lowest ranking parameter was296

reiteratively excluded until statistically significant performance was reached. Third, the surviv-297

ing interim classifier (i.e., the resulting set of parameters and their recorded means) was tested298

in the test set. In the case when statistical significance was also observed for the test set, then299

the set of parameters that defined the classifier were considered to have a first hit. These three300

steps were repeated 5,000 times and the parameters were ranked based on the total number of301

hits in the interim classifiers. Subsequently, the top 10 ranking parameters were used to obtain302

the final survival classifier using the steps 1-4 above on the whole discovery cohort, but with a303

repetition of 5,000 instead of 1,000, and then applied to the discovery cohort.304

CLEAR-IT feature benchmark against MAPS algorithm305

In order to benchmark the quality of feature encodings produced by a pre-trained CLEAR-IT306

encoder, we utilize the MAPS [8] architecture for classification. Briefly, MAPS consists of a MLP307

with 4 hidden layers that performs cell classification based on cell expressions and cell size,308

resulting in an input size of C+1, where C is the number of channels in the image, and an output309

size of K, where K is the number of class labels. In order to perform classification of CLEAR-IT310

features, we pre-train encoders to output feature vectors of size 32 and adapt the MAPS input311

size to be 32 × C. Lastly, we investigate performance of concatenating both inputs, resulting312

in an input size of C × 33 + 1. When training MAPS on cell expressions, we use the following313

training parameters: batch size 128, 25% dropout, Adam optimizer with learning rate of 10−4 and314

minimizing the binary cross-entropy loss. When training MAPS on CLEAR-IT features and their315

concatenation with cell expressions, we use the following training parameters: batch size 1024,316

25% dropout, Adam optimizer with learning rate of and minimizing the binary cross-entropy loss.317

Calculation of cell size and cell expressions318

In order to provide an input to the MAPS architecture, we calculate the cell sizes and cell319

expressions from the available images. Cell sizes are determined by counting the pixels belonging320

to a particular cell in the segmentation masks. Cell expressions per channel are calculated by321

summing the pixel intensities inside segmented regions per channel and dividing this by the cell322

size.323

Hardware and software implementation324

Code has been developed and tested on a machine with an Intel Core i9-10900X CPU, 128 GB325

RAM and an NVIDIA GeForce RTX 3090 GPU (24GB VRAM) within the PyTorch Release326
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24.07 Docker container provided by NVIDIA Optimized Frameworks. Image augmentations are327

implemented using Kornia [17].328

Training and inference times depend on the dataset. Encoder pre-training during the hyper-329

parameter optimizations took around 2 hours per network and supervised training of a linear330

classifier around 10 minutes. Excluding loading times, inference can be performed at a speed of331

about 4,500 cell image patches (of size 64× 64× 8 pixels) per second.332
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Data Availability.333

• TNBC1-MxIF8 dataset [1]:334

– Images and segmentation masks available upon reasonable request at https://doi.org/10.335

4121/126d8103-6de5-4493-a48e-5d529fef471e336

• TNBC2-MIBI44 dataset [4]:337

– Images and segmentation masks available to download at https://www.weizmann.ac.il/mcb/338

Keren/resources339

• CRC-CODEX26 dataset [12]340

– Images available to download at https://doi.org/10.7937/TCIA.2020.FQN0-0326341

– Segmentation masks provided by authors of [7]342

• TONSIL-IMC41 dataset [13]:343

– Images and segmentation masks available to download at https://www.ebi.ac.uk/biostudies/344

bioimages/studies/S-BSST1047345

All data tables, pre-trained encoder models, and supervised classifier models are available to346

download at https://doi.org/10.4121/ebc792ad-4767-4aef-b8ff-ae653e901e3f347

Code Availability. Code is under embargo until the peer-review process is finished and will348

be made available with the manuscript upon publication.349
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Extended Data Figures383

a

b

Highest con�dence Lowest con�dence

DAPI CK CD8CD3 CD20 CD56 CD68

Highest con�dence Lowest con�dence

dsDNA Pan-Keratin CD8CD3 CD20 CD56 CD68

Fig. E1 Examples of cell phenotype predictions made by CLEAR-IT. a) Predictions for the TNBC1-
MxIF8 dataset using the best classifier obtained (3rd column in Fig. 1d). b) Predictions for the TNBC2-MIBI8
dataset using the best classifier obtained (4th column in Fig. 1d). For every type of prediction and class label,
a random cell from the 100 most confident (left) and 100 least confident (right) predictions is shown. Percentage
values represent the mean confidence of the 100 most and least confident predictions, respectively. For better
visibility, brightness and contrast have been enhanced for the shown images. Scale bars: 10 µm.

15

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 21, 2024. ; https://doi.org/10.1101/2024.08.20.608738doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.20.608738
http://creativecommons.org/licenses/by-nc-nd/4.0/


P
a
ti

e
n
t 

ID
 (

n
o
rm

a
li
z
e
d
 i
m

a
g
e
 q

u
a
li
ty

 r
a
n
k
)

P
a
ti

e
n
t 

ID
 (

n
o
rm

a
li
z
e
d
 i
m

a
g
e
 q

u
a
li
ty

 r
a
n
k
)

DAPI CK CD8CD3 CD20 CD56 CD68

Patient ID: 33 Patient ID: 47

Patient ID: 32 Patient ID: 27

a b

c

Fig. E2 Performance of CLEAR-IT classifiers trained on data from single patients. a,b) Overall
performance of classifiers trained on data from one patient in the TNBC1-MxIF8 (a) and TNBC2-MIBI8 (b)
datasets. The area under the precision-recall-curve (PR-AUC) of the encoder/linear classifier combination, plotted
per cell label and for all cells per train/test set combination. The gray boxes represent the total classification
performance irrespective of class labels. The dashed black lines represent the mean of the median PR-AUC scores
per class, which are represented by the colored boxes. The y-axis specifies the patient ID and the normalized image
quality rank in parentheses. The boxes represent the interquartile range (25th to 75th percentiles) and the whiskers
extend to the 5th and 95th percentiles of the data, excluding outliers. c) Example tissue images from patients
with best (top row) and worst (bottom row) generalization performance in TNBC1-MxIF8 cohort, when only a
single patient data is used for classifier training. Numbers in bottom right corners indicate the mean of median
PR-AUC scores achieved when training classifiers on images of only that respective patient. Scale bar: 100 µm.
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TNBC1-MxIF8 + TME-A_ML6
Spearman correlation coe�.

r=0.49, p=0.0004

TNBC2-MIBI8 + TME-A_ML6
Spearman correlation coe�.

r=0.90, p=1.2e-11
b

a

c

Channel CD3 CD8 CD20 CD56 CD68 background

STD of top 
...% pixels
ranked

0.1%
descending

0.1%
descending

0.1%
descending

0.1%
descending

0.1%
descending

100%
ascending

Fig. E3 Correlation of classification performance with image quality ranking based on signal-to-
noise ratio (SNR). a) Channel ranking parameters used for image ranking based on the pixel intensity standard
deviation of highest pixel intensities. b) Scatter plot showing mean of median area under the precision-recall
curve (PR-AUC) scores against normalized image quality rank for the TNBC1-MxIF8 dataset and TME-A ML6
annotations. Each dot represents a classifier that is trained on images from only a single patient. The corresponding
normalized image quality rank is computed from images from that respective patient. c) Same as b but for the
TNBC2-MIBI8 dataset and TME-A ML6 annotations.
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TNBC1-MxIF8
(inForm_MC6)

TNBC2-MIBI44
(DeepCell_MC17)

CRC-CODEX26
(CellSighter_MC14)

TONSIL-IMC41
(OPTIMAL_MC21)

Dataset (annotations) for supervised classi�er training/testing

Fig. E4 Effect of different pre-trained encoders on classification performance across datasets. a)
For each of the four benchmark datasets (see Fig. 2d–g), an encoder is pre-trained (top). For the supervised
training using each dataset (i.e., images and annotations), a multi-layer perceptron (MLP) with 4 layers is trained
to classify the feature outputs of each of the four pre-trained encoders (bottom). This results in four classifiers per
dataset for a total of 16 classifiers. b) Box-and-whisker plots showing micro average F1-scores of MLP classifiers
as described in a. Each column represents one of the four benchmark datasets and the individual boxes represent
which encoder was used to compute the features for the supervised training of this dataset, i.e., which dataset the
encoder saw during pre-training. Every classifier was trained on the maximum amount of labeled data available
for the respective dataset. The boxes represent the interquartile range (25th to 75th percentiles) and the whiskers
extend to the 5th and 95th percentiles of the data, excluding outliers.
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Fig. E5 CLEAR-IT usage guideline. a) Flowchart showing the process from beginning with an unlabeled
dataset to obtaining a CLEAR-IT classifier (encoder + classifier pair) that can perform cell phenotyping. Users
can obtain a CLEAR-IT encoder either by pre-training it themselves (red box, b) or by downloading an already
pre-trained one. The classifier on top of the encoder can be trained in a human-in-the-loop process (blue box, c).
b) For the self-supervised pre-training, multiplex images are split into their individual channels and non-empty
grayscale patches are extracted. The patches serve as input to the SimCLR pipeline, which produces a pre-
trained encoder. c) For the human-in-the-loop training of the cell classifier, the unlabeled images are ranked by
quality. Annotation efforts are then focused on the highest quality images and iterated upon until the classification
performance is acceptable or the annotation budget has been reached. The human-in-the-loop classification is
facilitated by loading a pre-trained CLEAR-IT encoder into existing software, such as QuPath.
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Supplementary Information384

Datasets385

TNBC1-MxIF8 dataset386

The TNBC1-MxIF8 dataset [1] consists of 1010 multiplex immunofluorescence (MxIF) microscopy387

images of cancerous tissue from 62 triple-negative breast cancer (TNBC) patients. The images388

have a size of 1340× 1008 pixels with pixel size of 0.5 µm, and have 8 channels: “DAPI”, “CK”,389

“CD3”, “CD68”, “CD8”, “CD56”, “CD20”, “background”. Overall, the images include approx-390

imately 2.3 million cells whose coordinates and cell phenotypes are specified in two separate391

sets of annotations, one being multi-label and the other one being multi-class. The multi-label392

annotation set was obtained using TME-Analyzer [11] (referred to as “TME-A ML6 labels”) and393

contains the following 6 classes: “CK+”, “CD3+”, “CD8+”, “CD20+”, “CD56+”, “CD68+”.394

The multi-class annotation set was obtained by Hammerl et al. [1] using inForm (referred to as395

“inForm MC7 labels”) and contains the following 7 classes: “other”, “CK”, “CD3”, “CD3 CD8”,396

“CD20”, “CD56”, “CD68”. Furthermore, we converted inForm MC7 to the multi-label label set397

inForm ML6: Here, the “CD3 CD8” class in inForm MC7 was converted to both “CD3+” and398

“CD8+” being positive in the multi-label equivalent.399

TNBC2-MIBI44 dataset400

The TNBC2-MIBI44 dataset [4] consists of 41 multiplex ion-beam imaging by time-of-flight401

(MIBI-TOF) images of cancerous tissue from 41 triple-negative breast cancer (TNBC) patients.402

The images have a size of 2048 × 2048 pixels with pixel size of 0.4 µm and have 44 channels:403

“Au”, “Background”, “Beta catenin”, “Ca”, “CD11b”, “CD11c”, “CD138”, “CD16”, “CD20”,404

“CD209”, “CD3”, “CD31”, “CD4”, “CD45”, “CD45RO”, “CD56”, “CD63”, “CD68”, “CD8”,405

“dsDNA”, “EGFR”, “Fe”, “FoxP3”, “H3K27me3”, “H3K9ac”, “HLA-DR”, “HLA Class 1”,406

“IDO”, “Keratin17”, “Keratin6”, “Ki67”, “Lag3”, “MPO”, “Na”, “P”, “p53”, “Pan-Keratin”,407

“PD-L1”, “PD1”, “phospho-S6”, “Si”, “SMA”, “Ta”, “Vimentin”. The corresponding multi-408

class annotation set, obtained by Keren et al. [4] (referred to as “DeepCell MC17 labels”),409

consists of segmentation masks for approximately 221,000 cells and contains the following410

17 classes: “Unidentified”, “Tregs”, “CD4 T”, “CD8 T”, “CD3 T”, “NK”, “B”, “Neu-411

trophils”, “Macrophages”, “DC”, “DC/Mono”, “Mono/Neu”, “Other immune”, “Endothelial”,412

“Mesenchymal-like”, “Tumor”, “Keratin-positive tumor”.413

TNBC2-MIBI8 dataset414

To make the images from the TNBC2-MIBI44 dataset qualitatively similar to those from the415

TNBC1-MxIF8 dataset, 8 out of the original 44 image channels were extracted: “dsDNA”, “Pan-416

Keratin”, “CD3”, “CD68”, “CD8”, “CD56”, “CD20”, “background”. Using these reduced images,417

a multi-label annotation set was obtained using TME-Analyzer [11] (referred to as “TME-A ML6418

labels”), which contains the same 6 classes that were used for the TNBC1-MxIF8 dataset: “CK+”,419

“CD3+”, “CD8+”, “CD20+”, “CD56+”, “CD68+”.420
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To convert the DeepCell MC17 annotation set to the reduced images, the following label421

assignments were performed to obtain the DeepCell ML6 annotation set:422

• “CD3+”: “Tregs”, “CD4 T”, “CD3 T”, ”CD8 T”423

• “CD8+”: “CD8 T”424

• “CD56+”: “NK”425

• “CD20+”: “B”426

• “CD68+”: “Macrophages”427

• “CK+”: “Keratin-positive tumor”428

CRC-CODEX26 dataset429

The CRC-CODEX26 dataset [12] consists of 35 co-detection by indexing (CODEX) images of can-430

cerous tissue from 35 colorectal cancer (CRC) patients. The images have a size of 1920×1440 pixels431

with pixel size of 0.377 µm and have 26 channels: “CD11b”, “CD11c”, “CD15”, “CD163”, “CD20”,432

“CD3”, “CD31”, “CD34”, “CD38”, “CD4”, “CD45”, “CD56”, “CD57”, “CD68”, “CD8”, “Col-433

lagen”, “Cytokeratin”, “FOXP3”, “HLADR”, “MUC1”, “NAKATPASE”, “PDPN”, “SYP”,434

“VIM”, “SMA”, “CD45RA”. The corresponding multi-class annotation set, obtained by Amitay435

et al. [7] (referred to as “CellSighter MC14 labels”), consists of segmentation masks for 85,179 cells436

and contains the following 14 classes: “Bcell”, “CD3T”, “CD4T”, “CD8T”, “DC”, “Endothelial”,437

“Lymphatic”, “Macrophage”, “Neuron”, “Neutrophil”, “Plasma”, “Stroma”, “Treg”, “Tumor”.438

TONSIL-IMC41 dataset439

The TONSIL-IMC41 dataset consists of 24 imaging mass cytometry (IMC) images of human440

tonsil tissue from 7 individuals. The images have sizes ranging from 465 × 464 pixels441

to 686 × 617 pixels with pixel size of 1µm and have 41 channels: “Sars CoV2 Spike”,442

“CD45RO”, “CD45RA”, “CD68”, “CD8a”, “Ki67”, “Collagen1”, “CD138”, “CD163”, “IL1R”,443

“CD42b”, “MPO”, “SARSCov2 Capsid”, “B7 Complement”, “CD56”, “Podoplanin”, “CD69”,444

“EPCAM”, “CD206”, “CD79a”, “STING”, “TMPRSS2”, “AQP5”, “CD1c”, “IFITM3”,445

“ACE2”, “CD57”, “p16”, “IL6R”, “cCaspase3”, “CD61”, “CD3”, “ProSPC”, “CD31”, “C30-30”,446

“CD4”, “HLADR”, “CD169”, “193Ir”, “CD147”, “b2M”. The images, segmentation masks, and447

corresponding multi-class annotation set were obtained by Hunter et al. as part of OPTIMAL (an448

OPTimized Imaging Mass cytometry AnaLysis framework for benchmarking segmentation and449

data exploration) [13]. The multi-class label set (referred to as “OPTIMAL MC21 labels”) con-450

sists of segmentation masks for 109,535 cells and contains the following 21 classes: “Epithelium”,451

“Memory CD8 T cells”, “M2 Macrophages”, “B cells”, “Memory CD4 T cells”, “Epithelium452

(proliferating)”, “Folicular B cells (proliferating)”, “Mature Macrophages”, “Folicular T cells”,453

“Plasma cells”, “Endothelium”, “Unclassified”, “Effector CD4 T cells”, “Epithelium and Immune454

cells”, “Näıve CD8 T cells”, “anti-Inflammatory Macrophages”, “CD4 T cells”, “STING+ cells”,455

“Apoptotic cells”, “Germinal center Macrophages”, “Standard Macrophages”.456
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The design of the CLEAR-IT network architecture457

In the inference pipeline (Fig. S1a), a multichannel image would be processed as multichan-458

nel image patches centered around the given cell locations. These image patches are split into459

individual channels that are fed into a pre-trained encoder, generating feature representations.460

For the sake of speed, in our architecture we utilized a residual neural network with 18 layers461

(ResNet-18) as an encoder, which is considered a small network. These representations of indi-462

vidual channels are concatenated into a single vector, which is then mapped to the phenotypes as463

probabilities through another neural network. Here, utilization of a single layer perceptron (SLP)464

ensured high speed and that the performance evaluated corresponded to the performance of the465

pre-training of the encoder on the downstream classification task, rather than the performance466

of a sophisticated classifier, and is often referred to as “linear evaluation” [9].467

For pre-training of the ResNet-18, unsupervised contrastive learning is applied to the input468

images without annotations (Fig. 1b, Fig. S1b). Here, individual channels of multichannel469

image patches, for all multichannel images in the training set, are processed together as batches.470

Individual single-channel patches are augmented into image pairs by application of learnable471

non-linear transformations, encoded by ResNet, and projected to a feature representation by472

a non-linear multi-layer perceptron (MLP), as suggested by others [9]. This network is then473

trained to simultaneously maximize the similarity between the outputs of the single-channel474

image patch pair, and dissimilarity between outputs from a single-channel image patch and all475

other single-channel image patches that are not its pair. While this ResNet-18 network is smaller476

than others used for contrastive learning in literature [10, 18], it enabled the optimization of the477

hyperparameters with relatively low computational effort, and, together with the SLP, resulted478

in efficient inference with limited data.479

After the training, the weights of the ResNet are fixed, and the SLP is trained on a train set480

(Fig. S1c). Here, the same method as the inference (Fig. S1a) is followed, with gradient descent481

to minimize the dissimilarity between the predicted probability and the true label. Upon training482

of the SLP, the classifier is applied to test samples, and its performance is assessed. Here, the mean483

of the individual class PR-AUC medians is the metric used to assess the network performance484

for combined evaluation of the performance of six binary classifiers on an imbalanced dataset.485

PR-AUC was the preferred metric as, unlike precision, recall or F1 scores, it does not require486

decision thresholds to be implemented and is considered more informative than the receiver487

operated characteristics (ROC)-AUC when evaluating binary classifiers on imbalanced datasets488

[8]. Additionally, usage of the mean of the individual class PR-AUCmedians places equal emphasis489

on minority classes like CD56, instead of the overall PR-AUC median that favors majority classes490

like CK. This decision was made since distinct subpopulation of T cells and NK cells have been491

recently implicated in response to immunotherapy [19–21].492

Label conversion from multi-class to multi-label493

The multi-class labels can be represented with a one-hot encoding, which is a vector where all494

elements are 0 except for one element which is 1. The multi-label labels can be represented with495

a multi-hot encoding, which is a vector where multiple elements may be 1. To convert multi-class496
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annotation sets that explicitly define a non-positive class label (i.e. “other” for inForm MC7 and497

“Unidentified” for DeepCell MC17), the vector element corresponding to this class is omitted in498

the one-hot encoding. The resulting one-hot encoding can be directly interpreted as multi-hot499

encoding, where the previously explicitly defined non-positive class is now implicitly defined by500

all vector elements being 0.501

Undersampling algorithm for balanced multi-label training set502

In order to undersample the multi-label training sets, we employ the following algorithm:503

1. Class count analysis and ordering504

(a) Compute the frequency of each class label present in the dataset.505

(b) Order the classes based on their frequency from least to most frequent.506

2. Inclusion of the least frequent class507

(a) Start with the least frequent class and add every datapoint with that class label to the508

training set.509

(b) The total number of datapoints included this way sets the target count T .510

3. Inclusion of the more frequent classes511

(a) Iterate over the remaining classes from least to most frequent:512

(i) For each class, count the number of datapoints already included in the training set that513

contain the current class label. This count includes datapoints that might have been514

added due to their belonging to a less frequent class.515

(ii) Randomly sample additional datapoints from the dataset, specifically selecting data-516

points that contain the current class label but are not yet in the training set, until the517

total count equaling to the target count T is reached for this class.518

(iii) After this sampling, all datapoints from the dataset that contain the current class label,519

but were not selected in this step, are permanently removed from the pool of candidates520

for future sampling. This step ensures to prevent the repeated selection of the same521

datapoints for subsequent classes.522

4. Inclusion of non-positive class523

(a) After all positive classes have been processed, the remaining datapoints are those that do524

not have any positive class label assigned, e.g., “other” or “Unidentified” class.525

(b) From the remaining datapoints, randomly select T datapoints and add them to the training526

set.527

This algorithm ensures that every class label is represented at least T times in the training set.528

Details on 3-round encoder optimization529

During encoder optimizations, a separate PR-AUC score is computed for every class, which we530

report as the median obtained from applying the classifier on 10 folds of the test set. The highest531

mean value of those median PR-AUC scores across every class determines the best encoder whose532

hyperparameters are chosen to be used as default in the subsequent rounds. All pre-training is533

performed for 5 epochs on either the TNBC1 or TNBC2 dataset unless stated otherwise. All534
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supervised training is performed on either the TNBC1 or TNBC2 dataset with multi-label labels535

and training set balancing applied. The test set is left unaltered.536

Round 0: Base SimCLR537

As a baseline, we train an encoder with the following parameters: Pre-training batch sizeN = 256,538

loss function temperature τ = 1, pre-training dataset size D = 409600, random rotation and539

flipping augmentations. Unless stated otherwise, subsequent encoders always use the same dataset540

size as well as the rotation and flipping augmentation.541

Round 1: Pre-training loss function542

We train encoders with pre-training batch sizes N ∈ {32, 64, 128, 256, 512, 1024, 2048} and loss543

function temperatures τ ∈ {0.05, 0.1, 0.5, 1, 5, 10}.544

Round 2: Augmentations545

We train encoders with translation augmentations xtranslation ∈ {0, 5, 10, 15, 20, 25}, Gaus-546

sian blur augmentations xblur ∈ {0, 2, 4, 6, 8, 10}, zoom augmentations xzmin ∈ {1, 2
3 ,

1
2 ,

1
3 ,

1
4},547

xzmax ∈ {1, 4
3 , 2, 4} and brightness/contrast adjustment augmentations xbrightness, xcontrast ∈548

{0, 25, 50, 75, 100}%.549

Round 3: Pre-training dataset size and source550

We train encoders with pre-training dataset sizes D ∈ {409600, 819200, 2048000, 4096000} and551

furthermore train three encoders with dataset size D = 819200 and the pre-training dataset552

source being entirely TNBC1-MxIF8, entirely TNBC2-MIBI8 or an equal amount of data from553

TNBC1-MxIF8 and TNBC2-MIBI8.554

Results555

We first tested the TNBC1-MxIF8 dataset[1], consisting of 1010 8-channel triple-negative breast556

cancer (TNBC) tissue images imaged with the Vectra multiplexed imaging system and using557

TME-A ML6 6 different class multi-label annotations generated with our open-source TME-558

Analyzer software, which we previously validated against inForm and QuPath analysis [11]. In559

a stepwise fashion, we optimized the encoder network by altering the pre-training loss function,560

augmentations used, and the training time and sample size (Fig. S1d), while measuring the per-561

formance of a single-layer perceptron (SLP) classifier that uses the pre-trained encoder network’s562

output as input. The use of a simple classifier architecture, i.e., SLP, ensures that observed per-563

formance gains can be attributed to changes made to the encoder network [9]. Here we observed564

the biggest benefit from the optimization of the loss function (Fig. 1d), where a loss tempera-565

ture of τ = 0.05 and a pre-training batch size of 256 provided the highest performance (Fig. S2).566

We then tested different augmentations, where the value corresponds to the upper bound of a567

random variable used for the augmentation. Individually, the highest performance was observed568

for: zoom-in of 4/3× and zoom-out of 2/3×, Gaussian blur of 4 pixels, (Fig. S3); brightness and569

contrast adjustments of 0% and 75% (Fig. S4), respectively, where translation did not improve570
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the performance (Fig. S4). While the highest performance gain was observed with the zoom571

augmentation alone, its combination with other augmentations did not further improve perfor-572

mance (Fig. S5). The augmentation parameters for the subsequent rounds were therefore set as,573

in addition to flipping and rotation, zoom-in of 4/3× and zoom-out of 2/3× without any other574

additional augmentations. Having established the parameters for the pre-training network archi-575

tecture, we next tested the effect of the pre-training data on overall performance. Here, contrary576

to other contrastive learning tasks [9, 10], neither increasing the pre-training dataset size nor577

combining data from different sources improved the performance over pre-training performed on578

409,600 TNBC1-MxIF8 single-channel image patches (Fig. S6).579

We next tested our approach on the TNBC2-MIBI8 dataset [4], again using the TME-A ML6 6580

class multi-label annotations. The stepwise optimization (Fig. S1d) again resulted in the biggest581

benefit from the optimization of the loss function (Fig. 1d), with a loss temperature of τ = 0.05,582

but with a larger pre-training batch size of 1024 (Fig. S7), and marginal benefit from other583

rounds. For augmentations tested individually; the highest performance was observed for; zoom-584

in of 4/3× and zoom-out of 2/3×, a Gaussian blur of 0 pixels (Fig. S8), brightness and contrast585

adjustments of both 50% (Fig. S9), where translation again did not improve the performance586

(Fig. S9). When combined, the highest performance was achieved for zoom-in of 4/3×, zoom-out587

of 2/3×, brightness adjustment of 50%, and contrast adjustment of 50% (Fig. S10), including588

the flipping and rotation augmentations. Hence, the only difference from the parameters used for589

TNBC1-MxIF8 is a larger batch size (1024 vs. 256) and the inclusion of brightness and contrast590

adjustments. Testing the effect of the pre-training data on overall performance, resulted in a591

marginal performance increase with more pre-training data, where combining data from different592

sources again did not further improve the performance (Fig. S11).593

Classifier predictions and confidence594

The classifiers produce outputs using the sigmoid function, meaning that for each class, the595

output is a number between 0 and 1, which can be interpreted as the predicted probability of a596

cell belonging to that class. To obtain binary predictions, i.e., whether a prediction is positive597

or negative, a decision threshold is required. A prediction is considered positive if the sigmoid598

output exceeds this threshold, and negative otherwise. These thresholds are tuned on the held-out599

validation set during training to maximize the F1-score for each class.600

In Fig. E1 we present binary predictions for various classes, showing examples of true pos-601

itive, true negative, false positive, and false negative predictions with the highest and lowest602

confidence levels, respectively. To explain how we measure this confidence, we define the confi-603

dence calculation for the model’s binary predictions. Let y(c,pred) ∈ {0, 1} denote the predicted604

label for class c, where 1 represents a positive prediction and 0 a negative one. Let σc ∈ [0, 1] be605

the sigmoid output (predicted probability) for class c, and tc ∈ (0, 1) be the decision threshold606

for class c. The prediction confidence can then be computed as follows:607

Confidence =

σc−tc
1−tc

if y(c,pred) = 1

tc−σc

tc
if y(c,pred) = 0
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This confidence measure ranges from 0 (least confident) to 1 (most confident), providing an608

indication of how strongly the model’s prediction compares to the decision threshold, regardless609

of whether the model’s prediction is ultimately correct.610

Cross-testing of CLEAR-IT encoder across four datasets611

We tested the (cross-)performance of CLEAR-IT across different datasets. For this purpose, in612

addition to the two TNBC datasets (TNBC1-MxIF8 [1] and TNBC2-MIBI44 [4]), we also made613

use of the CRC-CODEX26 [12] and TONSIL-IMC41 [13] datasets, and tested the performance of614

fully supervised 4-layer multi-layer perceptron (MLP) classifiers using image encodings as inputs,615

where the encoders were pre-trained on the images from different datasets. Here, the best and616

worst overall performance was achieved for TNBC1-MxIF8 and TONSIL-IMC41 dataset classi-617

fications, respectively, independent of the pre-trained encoder (Fig. E4). The best performance618

per dataset was obtained with encoders pre-trained on the same dataset as the downstream clas-619

sifier, except the TNBC2-MIBI8 dataset. Best and worst generalizations were obtained for the620

CRC-CODEX26 pre-trained encoder and the TONSIL-IMC41 pre-trained encoder, respectively.621

Interestingly, encoders pre-trained on TNBC1-MxIF8, TNBC2-MIBI44, and CRC-CODEX26 all622

had similar performances across all datasets, together demonstrating that, while pre-training623

encoders on the same dataset as the downstream classifier generally improves performance, only624

slightly lower performance can still be achieved by encoders pre-trained on other similar datasets.625
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Supplementary Figures626

Fig. S1 CLEAR-IT architecture and training. a) CLEAR-IT can be used to perform classification of
individual cells in multiplex images. A patch centered around a cell of interest is split into its C individual image
channels (from I1 to IC), each of which is processed by the same pre-trained ResNet encoder. The computed feature
embeddings for each channel are concatenated and passed to a classifier, e.g. a single-layer perceptron (SLP),
which predicts the class labels for the input patch. b) The ResNet encoder is pre-trained following the SimCLR
algorithm. The inputs to the pre-training pipeline are grayscale patches which are sampled from random images,
channels, and locations. Each input patch is randomly augmented in two different ways, producing an augmented
image pair, which is passed to the ResNet encoder and subsequently a multi-layer perceptron (MLP). The pre-
training objective is to maximize similarity between feature projections (purple squares) originating from the same
image (green “Attract” arrows) and minimize similarity between feature projections that originate from a different
image (red “Repel” arrows). c) After pre-training, the MLP is discarded and the ResNet encoder can be used to
produce feature encodings for downstream tasks such as classification. By computing features for each channel of
a patch in parallel and concatenating the outputs, a supervised classifier can be trained to perform classification of
individual cells. d) The pre-training hyperparameters can be tuned to optimize the feature representations learned
by the encoder. Specifically, the loss function temperature controls how strongly the maximization of similarity
between feature projections is weighted, and application of image augmentations teach the encoder to become
invariant to certain aberrations such that the learned feature representations contain valuable information for the
intended downstream task. Increasing the size of the pre-training dataset and/or including data from different
sources can improve the quality of learned features.
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Fig. S2 Results for round 1 of the encoder optimization for TNBC1-MxIF8 to obtain optimal
temperature and batch size parameters. The area under the precision-recall-curve (PR-AUC) of the encoder/-
linear classifier combination, plotted per cell type and for all cells per encoder pre-training parameter. The gray
boxes represent the total classification performance irrespective of class labels. The dashed black lines represent
the mean of the median PR-AUC scores per class, which are represented by the colored boxes. The encoder is
pre-trained on 409,600 grayscale image patches from the TNBC1-MxIF8 dataset and the classifier is trained on
the TNBC1-MxIF8 dataset with TME-Analyzer labels. The boxes represent the interquartile range (25th to 75th

percentiles) and the whiskers extend to the 5th and 95th percentiles of the data, excluding outliers.
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Fig. S3 Results for round 2 (part 1 of 3) of the encoder optimization for TNBC1-MxIF8 to obtain
optimal zoom and Gaussian blur parameters. The area under the precision-recall-curve (PR-AUC) of the
encoder/linear classifier combination, plotted per cell type and for all cells per encoder pre-training parameter.
The gray boxes represent the total classification performance irrespective of class labels. The dashed black lines
represent the mean of the median PR-AUC scores per class, which are represented by the colored boxes. The
encoder is pre-trained on 409,600 grayscale image patches from the TNBC1-MxIF8 dataset and the classifier is
trained on the TNBC1-MxIF8 dataset with TME-Analyzer labels. The boxes represent the interquartile range
(25th to 75th percentiles) and the whiskers extend to the 5th and 95th percentiles of the data, excluding outliers.
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Fig. S4 Results for round 2 (part 2 of 3) of the encoder optimization for TNBC1-MxIF8 to obtain
optimal brightness/contrast and translation parameters. The area under the precision-recall-curve (PR-
AUC) of the encoder/linear classifier combination, plotted per cell type and for all cells per encoder pre-training
parameter. The gray boxes represent the total classification performance irrespective of class labels. The dashed
black lines represent the mean of the median PR-AUC scores per class, which are represented by the colored boxes.
The encoder is pre-trained on 409,600 grayscale image patches from the TNBC1-MxIF8 dataset and the classifier
is trained on the TNBC1-MxIF8 dataset with TME-Analyzer labels. The boxes represent the interquartile range
(25th to 75th percentiles) and the whiskers extend to the 5th and 95th percentiles of the data, excluding outliers.
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Fig. S5 Results for round 2 (part 3 of 3) of the encoder optimization for TNBC1-MxIF8 to obtain
optimal combined parameters. The area under the precision-recall-curve (PR-AUC) of the encoder/linear
classifier combination, plotted per cell type and for all cells per encoder pre-training parameter. The gray boxes
represent the total classification performance irrespective of class labels. The dashed black lines represent the mean
of the median PR-AUC scores per class, which are represented by the colored boxes. The encoder is pre-trained
on 409,600 grayscale image patches from the TNBC1-MxIF8 dataset and the classifier is trained on the TNBC1-
MxIF8 dataset with TME-Analyzer labels. The boxes represent the interquartile range (25th to 75th percentiles)
and the whiskers extend to the 5th and 95th percentiles of the data, excluding outliers.
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Fig. S6 Results for round 3 of the encoder optimization for TNBC1-MxIF8 to obtain optimal pre-
training data size and composition. The area under the precision-recall-curve (PR-AUC) of the encoder/linear
classifier combination, plotted per cell type and for all cells per encoder pre-training parameter. The gray boxes
represent the total classification performance irrespective of class labels. The dashed black lines represent the mean
of the median PR-AUC scores per class, which are represented by the colored boxes. The encoder is pre-trained
on grayscale image patches from the specified datasets and the classifier is trained on the TNBC1-MxIF8 dataset
with TME-Analyzer labels. The boxes represent the interquartile range (25th to 75th percentiles) and the whiskers
extend to the 5th and 95th percentiles of the data, excluding outliers.

Fig. S7 Results for round 1 of the encoder optimization for TNBC2-MIBI8 to obtain optimal
temperature and batch size parameters. The area under the precision-recall-curve (PR-AUC) of the encoder/-
linear classifier combination, plotted per cell type and for all cells per encoder pre-training parameter. The gray
boxes represent the total classification performance irrespective of class labels. The dashed black lines represent
the mean of the median PR-AUC scores per class, which are represented by the colored boxes. The encoder is
pre-trained on 409,600 grayscale image patches from the TNBC2-MIBI8 dataset and the classifier is trained on
the TNBC2-MIBI8 dataset with TME-Analyzer labels. The boxes represent the interquartile range (25th to 75th

percentiles) and the whiskers extend to the 5th and 95th percentiles of the data, excluding outliers.
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Fig. S8 Results for round 2 (part 1 of 3) of the encoder optimization for TNBC2-MIBI8 to obtain
optimal zoom and Gaussian blur parameters. The area under the precision-recall-curve (PR-AUC) of the
encoder/linear classifier combination, plotted per cell type and for all cells per encoder pre-training parameter.
The gray boxes represent the total classification performance irrespective of class labels. The dashed black lines
represent the mean of the median PR-AUC scores per class, which are represented by the colored boxes. The
encoder is pre-trained on 409,600 grayscale image patches from the TNBC2-MIBI8 dataset and the classifier is
trained on the TNBC2-MIBI8 dataset with TME-Analyzer labels. The boxes represent the interquartile range
(25th to 75th percentiles) and the whiskers extend to the 5th and 95th percentiles of the data, excluding outliers.
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Fig. S9 Results for round 2 (part 2 of 3) of the encoder optimization for TNBC2-MIBI8 to obtain
optimal brightness/contrast and translation parameters. The area under the precision-recall-curve (PR-
AUC) of the encoder/linear classifier combination, plotted per cell type and for all cells per encoder pre-training
parameter. The gray boxes represent the total classification performance irrespective of class labels. The dashed
black lines represent the mean of the median PR-AUC scores per class, which are represented by the colored boxes.
The encoder is pre-trained on 409,600 grayscale image patches from the TNBC2-MIBI8 dataset and the classifier
is trained on the TNBC2-MIBI8 dataset with TME-Analyzer labels. The boxes represent the interquartile range
(25th to 75th percentiles) and the whiskers extend to the 5th and 95th percentiles of the data, excluding outliers.
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Fig. S10 Results for round 2 (part 3 of 3) of the encoder optimization for TNBC2-MIBI8 to obtain
optimal combined parameters. The area under the precision-recall-curve (PR-AUC) of the encoder/linear
classifier combination, plotted per cell type and for all cells per encoder pre-training parameter. The gray boxes
represent the total classification performance irrespective of class labels. The dashed black lines represent the mean
of the median PR-AUC scores per class, which are represented by the colored boxes. The encoder is pre-trained
on 409,600 grayscale image patches from the TNBC2-MIBI8 dataset and the classifier is trained on the TNBC2-
MIBI8 dataset with TME-Analyzer labels. The boxes represent the interquartile range (25th to 75th percentiles)
and the whiskers extend to the 5th and 95th percentiles of the data, excluding outliers.
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Fig. S11 Results for round 3 of the encoder optimization for TNBC2-MIBI8 to obtain optimal pre-
training data size and composition. The area under the precision-recall-curve (PR-AUC) of the encoder/linear
classifier combination, plotted per cell type and for all cells per encoder pre-training parameter. The gray boxes
represent the total classification performance irrespective of class labels. The dashed black lines represent the mean
of the median PR-AUC scores per class, which are represented by the colored boxes. The encoder is pre-trained
on grayscale image patches from the specified datasets and the classifier is trained on the TNBC2-MIBI8 dataset
with TME-Analyzer labels. The boxes represent the interquartile range (25th to 75th percentiles) and the whiskers
extend to the 5th and 95th percentiles of the data, excluding outliers.

36

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 21, 2024. ; https://doi.org/10.1101/2024.08.20.608738doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.20.608738
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. S12 Results for cross-testing the classifiers for combinations of the two TNBC datasets. a,
b) Classifier performance on TNBC1-MxIF8-TME-A ML6, TNBC1-MxIF8-inForm ML6, TNBC2-MIBI8-TME-
A ML6, and TNBC2-MIBI8-DeepCell ML6 datasets-annotations using an encoder pre-trained on 409,600 grayscale
image patches from the TNBC1-MxIF8 (a) or TNBC2-MIBI8 (b) datasets. The area under the precision-recall-
curve (PR-AUC) of the encoder/linear classifier combination, plotted per cell type and for all cells per train/test
set combination. The gray boxes represent the total classification performance irrespective of class labels. The
dashed black lines represent the mean of the median PR-AUC scores per class, which are represented by the
colored boxes. The boxes represent the interquartile range (25th to 75th percentiles) and the whiskers extend to
the 5th and 95th percentiles of the data, excluding outliers.
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Fig. S13 Results for label-reduction based on cell counts (irrespective of patients). The area under the
precision-recall-curve (PR-AUC) of the encoder/linear classifier combination, plotted per cell label and for all cells
at different percentage of labeled data used for supervised learning. Encoders are pre-trained on the same datasets
as the linear classifiers. The gray boxes represent the total classification performance irrespective of class labels.
The dashed black lines represent the mean of the median PR-AUC scores per class, which are represented by the
colored boxes. Cell percentages are based on the maximum number of cells available in the training sets, denoted
by N in parentheses. The boxes represent the interquartile range (25th to 75th percentiles) and the whiskers extend
to the 5th and 95th percentiles of the data, excluding outliers.
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Number of pa�ents included in supervised training set
classi�er trained/tested on TNBC1-MxIF8 (TME-A_ML6)

Number of pa�ents included in supervised training set
classi�er trained/tested on TNBC1-MxIF8 (inForm_ML6)

Number of pa�ents included in supervised training set
classi�er trained/tested on TNBC2-MIBI8 (TME-A_ML6)

Number of pa�ents included in supervised training set
classi�er trained/tested on TNBC2-MIBI8 (DeepCell_ML6)

Fig. S14 Results for label-reduction based on number of patients. The area under the precision-recall-
curve (PR-AUC) of the encoder/linear classifier combination, plotted per cell label and for all cells at different
percentage of labeled data used for supervised learning. Encoders are pre-trained on the same datasets as the linear
classifiers. The gray boxes represent the total classification performance irrespective of class labels. The dashed
black lines represent the mean of the median PR-AUC scores per class, which are represented by the colored
boxes. Cell percentages are based on the maximum number of cells available in the training sets, denoted by N in
parentheses. The boxes represent the interquartile range (25th to 75th percentiles) and the whiskers extend to the
5th and 95th percentiles of the data, excluding outliers.
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Fig. S15 Example cell patch images of high/low confidence for TNBC1-MxIF8. Images per phenotype
with the most and least confident predictions per classification outcome for the TNBC1-MxIF8 dataset with TME-
Analyzer annotations. For each cell phenotype, a random sample of 10 cells drawn from the 100 most and least
confident predictions is shown. Note that for CD56 only four false negative (FN) predictions were recorded.
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Fig. S16 Example cell patch images of high/low confidence for TNBC2-MIBI8. Images per phenotype
for the most and least confident predictions per classification outcome for the TNBC2-MIBI8 dataset with TME-
Analyzer annotations. For each cell phenotype, a random sample of 10 cells drawn from the 100 most and least
confident predictions is shown. Note that for CD56, only seven false negative (FN) predictions were recorded.
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Supplementary Tables627
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Table S1 Overview of patient data in the TNBC1-MxIF8 training set. The rightmost column
specifies the mean of median (MoM) area under the precision-recall curve (PR-AUC) score obtained
when training a classifier on data from only that patient (see Fig. E5a). Note that cell counts are based
on the TME-Analyzer labels (TME-A ML6), which are multi-label, and the counts for individual class
labels therefore do not necessarily add to the total number of cells.

Patient Cells CK+ CD3+ CD8+ CD20+ CD56+ CD68+ other MoM
ID total cells (PR-AUC)

1 26573 11071 477 273 13 11 45 14917 0.578099
2 46799 7042 3943 10121 8391 230 0 22484 0.524986
3 52719 10158 5756 9250 4804 7 656 29347 0.681697
4 31429 10059 593 1423 1775 196 0 18016 0.611027
5 36354 10069 1998 566 4141 26 60 20822 0.680865
6 26039 10738 195 81 8 1 10 15163 0.488509
7 66747 17104 1154 11013 11147 226 431 31453 0.708225
8 13240 5527 67 197 185 1 7 7387 0.442039
9 36731 9456 1163 6958 3795 7 844 16955 0.692290

10 63923 16298 10857 11768 7640 276 1984 27337 0.561818
11 6622 1955 224 13 10 2 15 4458 0.480732
12 13151 3421 1704 1213 320 11 186 7392 0.635892
13 28922 10807 388 954 23 1 2132 15859 0.607508
14 68345 17718 9831 8804 3607 381 5390 31315 0.680441
15 39085 14913 1344 605 266 6 100 22683 0.706655
16 50236 13951 2024 1711 600 514 677 32653 0.689051
17 27753 13096 309 476 35 851 0 13874 0.465894
18 37193 9794 1793 3390 1183 0 266 22571 0.578672
19 43491 9923 8572 10003 7472 261 0 17894 0.440875
20 41584 17499 1384 454 648 39 1246 21273 0.738653
21 77416 13275 7324 5703 3543 8 211 50726 0.712518
22 22102 7236 13 48 1 3 0 14806 0.380769
23 23880 8919 746 1334 1013 1 123 12410 0.559929
24 32084 9812 779 295 2 4 86 21421 0.541982
25 32588 13928 285 953 352 19 117 17282 0.619145
26 30219 4865 5829 3150 1400 7 140 17757 0.600300
27 18896 10782 155 560 0 18 901 7163 0.134859
28 37521 12510 6490 3278 2769 62 643 16722 0.542952
29 26502 10233 148 405 186 10 0 15692 0.474364
30 25141 7608 1062 478 161 95 1230 15099 0.631772
31 25541 8940 682 1365 4488 98 266 12531 0.512999
32 30974 8868 2112 666 594 48 3 19753 0.428093
33 42357 12753 5003 3589 1486 571 519 22321 0.779756
34 42212 15058 1573 614 684 13 537 24584 0.695987
35 60662 16857 4306 10525 4214 83 3770 30054 0.605924
36 43426 19077 2333 1448 1028 30 350 20769 0.743523
37 38205 14675 127 1152 158 142 59 22162 0.693791
38 44118 13573 1411 2648 1053 27 1369 25557 0.721065
39 32059 8882 295 2753 1733 48 744 18658 0.616728
40 16995 5930 70 482 429 3 0 10172 0.457956
41 40337 12172 6325 9217 5313 249 4118 12655 0.546611
42 45027 9517 5620 7751 4224 44 751 22643 0.641491
43 57606 19299 4078 11089 2039 28 4943 26500 0.657826
44 39783 14768 1906 1554 458 23 888 21368 0.719910
45 11836 5152 215 102 4 8 36 6495 0.446772
46 23814 6170 846 5799 1002 1 1545 10471 0.583151
47 53859 19000 2527 1039 691 8 2740 29650 0.726122

Total 1732096 530458 116036 157270 95088 4698 40138 919274
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