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Abstract

Accurate phenotyping of cells in the tumor microenvironment is crucial for understanding
cancer biology and developing effective therapies. However, current methods require precise
cell segmentations and struggle to generalize across different imaging modalities, limiting their
utility in digital pathology. Here, we show that Contrastive Learning Enabled Accurate Reg-
istration of Immune and Tumor Cells (CLEAR-IT) overcomes these limitations, providing a
robust and versatile tool for cell phenotyping. CLEAR-IT accurately phenotypes cells compa-
rable to state-of-the-art methods, generalizes across multiplex imaging modalities, maintains
high performance even with limited number of labels, and enables the extraction of prognostic
markers. Additionally, CLEAR-IT can be combined with existing methods to boost their per-
formance, whereas its lack of need for precise cell segmentations significantly reduces training
efforts. This method enhances the robustness and efficiency of digital pathology workflows,
making it a valuable tool for cancer research and diagnostics.

Keywords: Contrastive Learning, Self-supervised Learning, Cell Phenotyping, Tumor
Microenvironment, Multiplexed Imaging, Sparse Labeling

Recent advances in multiplexed proteomics have underscored the critical role of tumor microen-
vironment (TME) spatial composition in cancer prognosis and therapy development [1-4]. As

manual characterization of increasing amounts of data becomes infeasible, machine learning
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35 algorithms for TME characterization are being developed [5-8]. However, these approaches
3 often require precise cell segmentation and extensive expert annotations, limiting their usabil-
37 ity (Fig. 1a). Contrastive self-supervised learning can maintain high performance with fewer
3 labels in image classification [9], and has been applied successfully to tissue segmentation and
39 histopathological image classification [10], but not yet to multiplex images for the purpose of

a0 single-cell phenotyping.

a Contrastive Learning Enabled Accurate Registration of Immune and Tumor cells (CLEAR-
P IT) is a contrastive learning-based classifier designed to identify cell types in multiplexed tissue
a3 images using sparsely labeled data and only cell locations without the need for accurate seg-
P mentation (Fig. 1b,c). It utilizes the “Simple Framework for Contrastive Learning of Visual
a5 Representations” (SimCLR) algorithm for self-supervised learning [10]. For CLEAR-IT optimiza-
46 tion, the following five steps are used; (i) image patches around cell centroids are made; (ii)
a an encoder is pre-trained on single-channel image patches extracted from multiplexed datasets
a8 without annotation; (iii) the encoder outputs are concatenated to obtain multi-channel repre-
49 sentation; (iv) a single-layer perceptron (SLP) is trained with annotated cell phenotype data
50 to obtain cell phenotype probabilities; (v) which is then compared with ground-truth annota-
51 tions to quantify precision-recall area-under-the-curve (PR-AUC) to evaluate the performance

5 (Methods, Fig. S1). Here, steps i-iii represent the CLEAR-IT approach, and PR-AUC quan-
53 tification of CLEAR-IT-SLP allows direct evaluation of the CLEAR-IT performance on the task
54 of cell phenotyping.

55 To ensure high performance, CLEAR-IT was optimized through iterative adjustments to the
56 pre-training loss function, augmentations, and training data, evaluating the cell phenotyping
57 performance of CLEAR-IT-SLP (Fig. Slc), separately in two different triple negative breast
58 cancer (TNBC) cohorts (Supplementary Information). These cohorts contained 1010 8-
50 channel multiplex immunofluorescence images (TNBC1-MxIF8) [1] or 41 44-channel multiplexed
60 ion beam imaging by time-of-flight images (TNBC2-MIBI44) [4], latter reduced to 8-channel
61 images for direct comparison with TNBC1-MxIF8 (TNBC2-MIBIS8). For ground truth, multi-
62 label annotations with 6 different class labels generated with TME-Analyzer [11] (TME-A_ML6)
63 were used (Supplementary Information). For both datasets, final PR-AUC was > 0.8, with

64 highest performance gain of >30% obtained via optimization of the loss function and aug-
65 mentation optimizations resulting in an additional ~15% gain, whereas increasing the training
66 data size, also with data from other sources, did not result in additional performance gain

o7 (Fig. 1d, Fig. S2-Fig. S11). Evaluating the performances and cross-performances of different
68 CLEAR-IT-SLPs, obtained across imaging and analysis platforms, demonstrated highest perfor-
60 mance for “self-classifiers” (Fig. le, main diagonal), where training was performed on the same
70 dataset as the testing. Here, also published multi-class annotations [1, 4] were used to gener-
7 ate additional multi-label annotations (inForm_ML6 for TNBC1-MxIF8 and DeepCell_ ML6 for
7 TNBC2-MIBI8, Supplementary Information) to compare different analysis platforms. For
73 the cross-performances, training on TNBC1-MxIF8 resulted in higher performance than training
7a on TNBC2-MIBIS8, and classifiers trained with TME_ML6 annotations outperformed other anno-
7 tations, resulting in the highest overall performance by TNBC1-MxIF8 4+ TME-A_ML6, where
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7 performance loss compared to “self-classifiers” was 0% to 5 % (Fig. le, Fig. S12), demonstrating
7 that CLEAR-IT generalizes well to different imaging and analysis platforms.

78 Testing the resilience of our approach to label reduction in “self-classifiers” demonstrated high
70 performance down to 10 % of our training data, corresponding to 0.1 % of all available data, with
80 the exception of TNBC2-MIBI8 + DeepCell ML6 where performance dropped significantly below
8 20 % of training data (1 % of available data, Fig. S13). Reduction of labels in the form of number

8 of patients, which represents a more realistic scenario, showed that with 10 % of available patients
8 (TNBC1-MxIF8: 6 patients; TNBC2-MIBIS8: 4 patients) less than 10 % reduction in performance
8 was achieved for all cases (Fig. S14). With high confidence true annotations corresponding

& to high intensity signals at the center of the image (Fig. E1, Fig. S15 and Fig. S16) and,
8 despite large variations in the performance of CLEAR-IT-SLP when the SLP was trained with
& labels from one patient, high overall signal intensity distribution relating to high performance
8 (Fig. E2, Table S1), we concluded that signal intensity was central to CLEAR-IT performance.

89 We therefore developed a ranking scheme based on image signal intensity standard deviation
% (Fig. E3a, Methods), obtaining correlation between patient ranking and the CLEAR-IT-SLP
o1 performance, when the SLP was trained using data solely from one patient (Fig. E3b,c, r = 0.49

o for TNBC1-MxIF8 and r = 0.9 for TNBC2-MIBIS, p < 0.001 for both). Notably, the performance
03 with the best ranking patient was 18.6 % and 4.6 % lower than a full training cohort, for TNBC1-
o MxIF8 and TNBC2-MIBIS, respectively (Fig. 1f, blue diamonds). Here, the best ranking patient
o in the TNBC1-MxIF8 dataset had 21 images, compared to 1 image in the TNBC2-MIBI8 dataset,
9% and training the SLP in TNBC1-MxIF8 dataset with 21 highest ranking images, irrespective
o7 of patient of origin, resulted in a mere 10.1 % reduction in performance over the training with
% 761 images from 47 patients (Fig. 1f, red asterisk). This highlights the image selection for data
9 annotation as a crucial step that can significantly boost performance. This, together with high

100 performance obtained with reduced labeled data with CLEAR-IT, can significantly reduce the

101 expert annotation needed with minimal performance loss.
102 Having established high label efficiency through image ranking, we next investigated if
103 clinically relevant parameters can be extracted in this scenario. Using labels generated by CLEAR-

104 IT-SLP trained with minimal labels (TNBC1-MxIF8: Fig. 1f, left, red asterisk; TNBC2-MIBIS:
105 Fig. 1f, right, 1 patient blue diamond) and our recently published methodology [11], we were

106 able to obtain survival classifiers that split the cohorts into two differential overall survival groups
107 (Fig. 2a,b, top). These classifiers were cross-validated (Fig. 2a,b, bottom), where classifier train-
108 ing was blind to the information from the validation cohort. This demonstrated that CLEAR-IT,
109 even at highly reduced label presence, can prognosticate TNBC patients. Furthermore, when
110 investigating the parameters that are involved in survival classifiers, we observed that the param-

1m eter ranking generated by CLEAR-IT-SLP were in good agreement with the published ranking
112 [11] (Fig. 2c¢). This showed that CLEAR-IT is able to extract clinically relevant TME biology,

113 with minimal user input.
114 We next benchmarked our method with MAPS (Machine learning for Analysis of Proteomics
115 in Spatial biology) [8], where for fair comparison instead of an SLP a 4-layer multi-layer per-

116 ceptron was trained with CLEAR-IT encodings (CLEAR-IT-MLP4). We also made use of two
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u7 additional published datasets[12, 13], bringing the datasets tested to TNBC1-MxIF8 [6], TNBC2-
118 MIBI44 [4], CRC-CODEX26 [12] and TONSIL-IMC41 [13]. Here, TONSIL-IMCA41 differed from
119 the other datasets, also in CLEAR-IT-MLP4 cross-performance (Fig. E4), as the tissue was non-
120 cancerous and the pixel size was double (Supplementary Information). CLEAR-IT-MLP4 vs
121 MAPS performance was dataset dependent: in TNBC1-MxIF8 comparable performance between
122 two methods, in TNBC2-MIBI44 higher performance of CLEAR-IT-MLP4, in TONSIL-IMC41
123 higher performance of MAPS and in CRC-CODEX26 variable performance between two methods,
124 were observed (Fig. 2d-g). Importantly, combination of the two methods, i.e., supervised train-
125 ing on the concatenation of CLEAR-IT encodings and cell expressions, consistently resulted in

126 high performance across datasets. Together, these findings demonstrate CLEAR-IT, as a stand-

127 alone platform, can be used to phenotype cells to obtain clinically relevant parameters and its
128 combination with existing methods improves performance.

129 In conclusion, CLEAR-IT for the first time demonstrates that contrastive learning-based
130 encoders can be utilized for the task of cell classification in multiplex images with very sparse
131 labels and cell locations, irrespective of imaging and analysis platforms. CLEAR-IT was based
132 on a relatively simple architecture that enabled the exploration of the hyperparameter space to
133 improve its performance, and cross-dataset performance demonstrating transferability across sim-
134 ilar datasets. Despite this, it was able to extract clinically relevant information, its classification
135 performance was comparable to the state-of-the-art and its combination with existing model pro-

136 vided further performance gain. This additionally demonstrates that CLEAR-IT encoders extract

137 information that expands beyond cell expressions. Further exploration of the CLEAR-IT training
138 parameter hyperspace and deeper convolutional neural networks in its architecture, as well as fur-
139 ther fine-tuning of the encoder during supervised training [10] would enhance performance at the
140 cost of pre-training times. Irrespectively, CLEAR-IT encoders demonstrate high performance in
101 multiplexed images analysis with highly sparse labels without segmentation masks, significantly
142 reducing hands-on time, and can be incorporated into image analysis software QuPath [14], to

143 obtain user-in-the-loop interface (Fig. E5), providing the field of digital pathology and cancer
144 research with a robust algorithm.
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Fig. 1 CLEAR-IT pipeline and performance. a) Conventional training pipelines for cell phenotyping are
trained on cell expressions which require large amounts of segmentation ground truth. b) Use of feature encodings
generated by CLEAR-IT; convolutional neural network (CNN) encoder trained self-supervised without anno-
tations; reduces hands-on-time needed by increasing label efficiency and using only cell locations. ¢) Matched
performance is achieved between benchmark and CLEAR-IT. d) PR-AUC box-and-whisker plots showing CLEAR-
IT-SLP gain of performance for the TNBC1-MxIF8 and TNBC2-MIBIS8 datasets through optimization of the
pre-training hyperparameters for the CLEAR-IT encoder. e) Heatmap showing the cross-dataset PR-AUC scores
of CLEAR-IT-SLP for TNBC1-MxIF8 and TNBC2-MIBIS8 datasets. f) CLEAR-IT-SLP PR-AUC scores of super-
vised trained SLPs as a function of number of patients labels originated from for TNBC1-MxIF8 (left) and
TNBC2-MIBIS8 (right) datasets; shaded gray regions: performance range of 10 random patients; blue diamonds:
patients with the highest ranking; red star: labels from 21 images with the highest ranking irrespective of patient
of origin.
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Fig. 2 CLEAR-IT clinical and benchmark testing. a,b) Kaplan-Meier curves for two-group-survivals of
patients in the TNBC1-MxIF8 and TNBC2-MIBI datasets based on a survival classifier built using CLEAR-IT-SLP
cell classification with minimal label with training performed on discovery cohort; a: TNBC1-MxIF8 discovery (top)
and TNBC2-MIBIS8 validation (bottom) cohorts; b: TNBC2-MIBIS8 discovery (top) and TNBC1-MxIF8 validation
(bottom) cohorts. ¢) Correlation of parameter ranking based on their prognostic values in TNBC1-MxIF8 (top)
and TNBC2-MIBIS8 (bottom) datasets according to TME-Analyzer and CLEAR-IT analysis. d-g) Box-and-whisker
plots showing F1 scores of CLEAR-IT-MLP4, MAPS and their combinations trained with reduced amounts of
labeled data for the d) TNBC1-MxIF8, ¢) TNBC2-MIBI44, f) CRC-CODEX26, and g) TONSIL-IMC41 datasets
with 10 boot-strappings. p-values were obtained according to log-rank test (a, b), and Spearman correlation (c).
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«w  Methods

17 Data pre-processing

148 Image intensity scaling
149 We leave all images in the same format as they are published (either 8-bit or 16-bit integer).
150 Before feeding images to a neural network, we divide them by a constant to scale the intensity

151 range to [0, 1]: 255 for TNBC1-MxIF8, 265 for TNBC2-MIBI44 and TNBC2-MIBIS8, and 65535
152 for CRC-CODEX26 and TONSIL-IMCA41.

153 Train/test splits

154 For every experiment, an identical split of data into a train and test set was used. For the
155 considered datasets, the train/test splits are: TNBC1-MxIF8 47/15 patients (761/249 images),
156 TNBC2-MIBI44 and TNBC2-MIBI8 30/11 patients (30/11 images), CRC-CODEX26 28/7
157 patients (28/7 images), TONSIL-IMC41 5/2 patients (17/7 images). For the supervised training
158 of classifiers, the train set was further split by 80/20 into a train and validation set. To ensure
150 that classifiers are trained and tested on a comparable amount of data for the cross-testing of
160 TNBC1-MxIF8 and TNBC2-MIBI8 (Fig. 1le), the train/test split was set to 30/11 patients
161 for both datasets. Furthermore, for TNBC1-MxIF8, only 3 images per patient (captured at the

162 tumor center) were included. This balanced the amount of training and testing data between the
163 TNBC1-MxIF8 images (1340 x 1008 pixels) and the TNBC2-MIBI8 images (2048 x 2048 pixels)
164 as much as possible to approximately 4 megapixels of image data per patient.

165 CLEAR-IT training pipeline

166 The CLEAR-IT training pipeline is summarized in Fig. S1. The inference pipeline (Fig. Sla)

167 takes a multiplex image patch centered around a cell as input and outputs a vector containing
168 probabilities of the cell belonging to the class labels considered. To achieve this, the multiplex
160 image patch is first split into its individual channel components, which results in one grayscale
170 single-channel image patch for each image channel. The grayscale image patches are then fed
el to the pre-trained encoder network (specifically, a ResNet encoder [15]) which outputs a feature
172 vector. The individual channel feature vectors are concatenated and fed into a classification
173 network, which predicts the cell’s class label.

174 Unsupervised encoder pre-training

175 Pre-training of the encoder network follows the SimCLR algorithm [9] and is summarized in
176 Fig. S1b. The pre-training dataset consists of grayscale single-channel image patches centered
177 around cells from individual color channels of the multiplex images. A minibatch is constructed by
178 sampling a number of different image patches of random cell locations and random image channels.
179 Every image patch in the minibatch is augmented in two random and distinct ways to create an
180 augmented image pair, which are then encoded by a ResNet-18 [15] encoder. The encodings are

181 non-linearly projected by the projection head, which is a multi-layer perceptron (MLP) with 3

182 hidden layers. The loss function acts on the non-linear projections of the encodings to maximize
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183 the similarity between the outputs originating from an augmented image pair (positive pair),
18 while minimizing the similarity across projections from augmented images that are not from
185 the same image pair (negative pairs). After pre-training, the MLP is removed, and the ResNet
186 encoder can be used to provide feature embeddings as input for training downstream networks.
187 The input size to the ResNet-18 encoder is 64 x 64 x 1 pixels (32 x 32 x 1 for the TONSIL-

188 IMC41 dataset) and the output size is either 512 or 32, for a linear classifier or an MLP classifier,
189 respectively, which is used to perform classification. The MLP projection head has an output
190 layer of size 128 and 3 hidden layers, each of size 512 with batch normalization and ReLU
101 (rectified linear unit) activations. Optimization is performed via the LARS (layer-wise adaptive
192 rate scaling) [16] method with a learning rate of 0.3N/256 (N being the pre-training batch size),

103 and the NT-Xent (normalized-temperature cross-entropy) loss function

S Loz exp (sim (24, 21,) /7)

[NT—Xent _ 1 Z log ( exp (sim (2, ;) /7) >
N

i,jEMB

104 where i,j € MB represents all augmented image pairs in the minibatch (i.e. positive pairs),
195 z; is the non-linear feature projection of the ith image in the minibatch, sim (a, b) is the cosine
196 similarity between vectors a and b,1(;, is an indicator function that is equal to 1 iff k # i and
197 0 otherwise, and 7 is the temperature parameter that is used to scale the relative importance of
108 positive and negative pairs.

199 During the optimization of pre-training augmentations, we apply combinations of augmenta-
200 tions in the following order:

201 1. Gaussian blur: Apply Gaussian blur with intensity z, where z determines the kernel size as
202 2z + 1 and the standard deviation randomly drawn from o € [0, z].

203 2. Brightness/Contrast: Adjust brightness and/or contrast of the image by x, which deter-

204 mines the intensity that is randomly drawn from § € [—z, z].

205 3. Translation: Move the center of the crop in a random radial direction. The translation
206 distance is drawn from p € [0, z].

207 4. Zoom: Zoom in or out of the image. The zoom factor is randomly drawn from Z €
208 [Zzmin, Tamax] Where = 1 means that no zoom is applied.

200 5. Rotation: Randomly apply rotation in multiples of 90°.
210 6. Flipping: Randomly apply horizontal and/or vertical flipping.

a1 The optimization of the hyperparameters is illustrated in Fig. S1d.

212 Supervised classifier training

213 The supervised classifier training is the second step in the training pipeline and is summarized in
214 Fig. S1c. The pre-trained encoder is used as many times in parallel as there are color channels in
215 the input image and the computed feature encodings are concatenated and input to a classification
216 network. For every experiment, we keep the weights of the pre-trained ResNet encoder frozen
217 and only train the classifier to make predictions based on the generated feature embeddings.

218 In order to evaluate the quality of the features learned by the pre-trained encoder, we use a
210 single-layer perceptron (SLP), in other words, a linear classifier, to make predictions about cell
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220 classes. This is referred to as “linear evaluation” [9]. The linear classifier consists of a single layer
21 with input size 512 x C and output size K, where C' is the number of color channels in the input
2 image and K is the number of classes to predict. We train every linear classifier with a batch

23 size of 64, a 30 % dropout layer, using the Adam optimizer with both learning rate and weight

224 decay of 10~* and minimizing the binary cross-entropy loss. For every training run, we hold out
25 a random 20 % of the training set for validation, train for 50 epochs and choose the weights from
26 the epoch where the classifier achieved the lowest loss on the validation set.

27 Since the class distribution in the used datasets is highly imbalanced, we under sampled
28 the majority classes to ensure balanced training sets (see Supplementary Information for an
29 explanation of the algorithm).

230 3-round encoder optimization

231 The encoder hyperparameter search for optimizing downstream classification performance is per-
23 formed in 3 separate rounds. Every change in hyperparameters results in a separate ResNet
233 encoder-linear classifier pair being trained as described previously. The optimization goal is
234 the maximization of the classifier’s performance, which we measure with the area under the

235 precision-recall curve (PR-AUC) and report the mean of medians for PR-AUC of each class. See

236 Supplementary Information for further details.

237 Cross-testing experiments

238 For the experiments that compare classifier performance across TNBC1-MxIF8 and TNBC2-

239 MIBIS and their two respective annotation sets, we use two encoders that are pre-trained on the
240 same dataset that is used for the supervised test set, i.e. the encoders are pre-trained on TNBC1-
201 MxIF8 dataset for the upper half of the table in Fig. 1e and on the TNBC2-MIBIS8 dataset for
22 the lower half of the table in Fig. 1e. For both encoders, the remaining hyperparameters are as
23 follows: Pre-training batch size N = 256, loss function temperature 7 = 0.05, minimum zoom
204 factor Tymin = %, maximum zoom factor T max = %, and pre-training dataset size D = 819200

25 image patches sampled from 31 patients from TNBC1-MxIF8 or TNBC2-MIBIS.

216 Label-reduction by patient count

207 For the experiments that investigate the effects of reducing the number of patients in the
28 supervised training set, we use the same encoders as for the cross-testing experiments, again
29 depending on the supervised test set. For both datasets, we begin by using the maximum
250 amount of patient data available and reduce the patient counts, resulting in classifiers trained

251 with data from P; € {47,39,30,18,12,6,3,1} patients for the TNBC1-MxIF8 dataset and
252 P, € {30,25,19,12,8,4,2,1} patients for the TNBC2-MIBI8 dataset. For every case with a
253 reduced number of patients, ten separate classifiers are trained on image data from different

254 combinations of randomly and independently sampled patients.
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255 Supervised classifier training on individual patient data

256 For training the supervised classifiers on image data from individual patients, we use the same
257 encoder pre-trained on the TNBC1-MxIF8 dataset (Fig. E2a) and TNBC2-MIBI8 dataset
258 (Fig. E2b), respectively. Since, for some patients, there are none or only very few cells of a cer-
250 tain phenotype, balancing the training sets based on the least frequent cells is infeasible. Instead,
260 we set a fixed target count 7" = 500 cells per label for the amount that every class should be rep-
261 resented in the training sets. If the available amount is less than T', all available cells are included
262 in the training set.

263 Patient image quality ranking for correlation analysis

264 For determining the quality of images belonging to a patient, we employ the following algorithm:
265 1. Calculate the standard deviations of pixels across all images belonging to an individual patient
266 for the following channels:

267 e CD3, CD8, CD20, CD56, CD68 channels: Standard deviation of top 0.1 % brightest pixels.
268 ® Background channel: Standard deviation of all pixels.

269 2. For each patient, assign an ordinal rank from 1 to N, where N is the number of patients,
270 based on the following criteria:

an e CD3, CD8, CD20, CD56, CD68 channels: High rank for high standard deviation.

m ® Background channel: High rank for low standard deviation.

273 3. For each patient, sum the ranks assigned for each channel.

274 4. Divide all rank sums by the highest obtained.

215 The resulting rank scores range between 1/N for lowest image quality and 1 for highest image

276 quality per patient.

o Relating CLEAR-IT output to clinical data

278 The ranking of parameters and survival classifiers were obtained as described previously [11]. In
279 brief, 50 center parameters per patient were used, namely: densities of immune cell populations
280 in tumor and stroma compartments (n = 12); areas of these compartments (n = 2); and distance
281 z-scores between phenotypes in whole tissue (n = 36), and were ranked with a reiterative nested
282 Monte Carlo approach. Here, the patient dataset was randomly split into train and test sets and
283 interim classifiers were constructed in the train set. First, the representative values of parameters
284 for long and short survival were obtained through repeating the following steps 1,000 times:

285 1. Random selection of 12 patients;

286 2. Splitting these 12 patients for each of 50 parameter into 2 groups of 6 patients according to

287 the median value of parameters;
288 3. Testing statistical significance of survival differences between the 2 patient groups per
289 parameter according to log-rank tests; and finally
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200 4. Upon significance, recording the parameter mean values for the shorter and longer survival
201 groups.

202 After 1,000 repetitions, the means of statistically significant parameters were calculated for
203 shorter and longer survival groups, and the parameters were ranked based on the degree of sep-
204 aration (p-value) between the survival groups obtained in the train set. Second, the patients in
205 the train set were split into two groups, based on most parameters for each patient being closer
206 to the recorded means of shorter or longer survivors, where the lowest ranking parameter was
297 reiteratively excluded until statistically significant performance was reached. Third, the surviv-
208 ing interim classifier (i.e., the resulting set of parameters and their recorded means) was tested
299 in the test set. In the case when statistical significance was also observed for the test set, then
300 the set of parameters that defined the classifier were considered to have a first hit. These three
301 steps were repeated 5,000 times and the parameters were ranked based on the total number of
302 hits in the interim classifiers. Subsequently, the top 10 ranking parameters were used to obtain
303 the final survival classifier using the steps 1-4 above on the whole discovery cohort, but with a

304 repetition of 5,000 instead of 1,000, and then applied to the discovery cohort.

305 CLEAR-IT feature benchmark against MAPS algorithm

306 In order to benchmark the quality of feature encodings produced by a pre-trained CLEAR-IT
307 encoder, we utilize the MAPS [8] architecture for classification. Briefly, MAPS consists of a MLP
308 with 4 hidden layers that performs cell classification based on cell expressions and cell size,
300 resulting in an input size of C'+1, where C' is the number of channels in the image, and an output

310 size of K, where K is the number of class labels. In order to perform classification of CLEAR-IT

31 features, we pre-train encoders to output feature vectors of size 32 and adapt the MAPS input
312 size to be 32 x C. Lastly, we investigate performance of concatenating both inputs, resulting
313 in an input size of C' x 33 4+ 1. When training MAPS on cell expressions, we use the following
314 training parameters: batch size 128, 25 % dropout, Adam optimizer with learning rate of 10~ and

315 minimizing the binary cross-entropy loss. When training MAPS on CLEAR-IT features and their
316 concatenation with cell expressions, we use the following training parameters: batch size 1024,

a7 25 % dropout, Adam optimizer with learning rate of and minimizing the binary cross-entropy loss.

318 Calculation of cell size and cell expressions

310 In order to provide an input to the MAPS architecture, we calculate the cell sizes and cell
32 expressions from the available images. Cell sizes are determined by counting the pixels belonging
21 to a particular cell in the segmentation masks. Cell expressions per channel are calculated by
3 summing the pixel intensities inside segmented regions per channel and dividing this by the cell
323 size.

24 Hardware and software implementation

5 Code has been developed and tested on a machine with an Intel Core i9-10900X CPU, 128 GB
326 RAM and an NVIDIA GeForce RTX 3090 GPU (24GB VRAM) within the PyTorch Release

11
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327 24.07 Docker container provided by NVIDIA Optimized Frameworks. Image augmentations are

328 implemented using Kornia [17].

320 Training and inference times depend on the dataset. Encoder pre-training during the hyper-
330 parameter optimizations took around 2 hours per network and supervised training of a linear
331 classifier around 10 minutes. Excluding loading times, inference can be performed at a speed of

332 about 4,500 cell image patches (of size 64 x 64 x 8 pixels) per second.
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333 Data Availability.
334 e TNBC1-MxIF8 dataset [1]:

335 — Images and segmentation masks available upon reasonable request at https://doi.org/10.
336 4121/126d8103-6de5-4493-a48e-5d529fef471e

TNBC2-MIBI44 dataset [4]:

337

338 — Images and segmentation masks available to download at https://www.weizmann.ac.il/mcb/

330 Keren/resources

340

CRC-CODEX26 dataset [12]

31 — Images available to download at https://doi.org/10.7937/TCIA.2020.FQNO0-0326

342 — Segmentation masks provided by authors of [7]

343 e TONSIL-IMC41 dataset [13]:

344 — Images and segmentation masks available to download at https://www.ebi.ac.uk/biostudies/
245 bioimages/studies/S-BSST1047

36 All data tables, pre-trained encoder models, and supervised classifier models are available to

247 download at https://doi.org/10.4121/ebc792ad-4767-4aef-b8{f-ae653e¢901e3f

8 Code Availability. Code is under embargo until the peer-review process is finished and will

349 be made available with the manuscript upon publication.
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Extended Data Figures
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Fig. E1 Examples of cell phenotype predictions made by CLEAR-IT. a) Predictions for the TNBC1-
MxIF8 dataset using the best classifier obtained (3'¥ column in Fig. 1d). b) Predictions for the TNBC2-MIBI8
dataset using the best classifier obtained (4*" column in Fig. 1d). For every type of prediction and class label,
a random cell from the 100 most confident (left) and 100 least confident (right) predictions is shown. Percentage
values represent the mean confidence of the 100 most and least confident predictions, respectively. For better
visibility, brightness and contrast have been enhanced for the shown images. Scale bars: 10 pm.
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Fig. E2 Performance of CLEAR-IT classifiers trained on data from single patients. a,b) Overall
performance of classifiers trained on data from one patient in the TNBC1-MxIF8 (a) and TNBC2-MIBI8 (b)
datasets. The area under the precision-recall-curve (PR-AUC) of the encoder/linear classifier combination, plotted
per cell label and for all cells per train/test set combination. The gray boxes represent the total classification
performance irrespective of class labels. The dashed black lines represent the mean of the median PR-AUC scores
per class, which are represented by the colored boxes. The y-axis specifies the patient ID and the normalized image
quality rank in parentheses. The boxes represent the interquartile range (25th to 75th percentiles) and the whiskers
extend to the 5" and 95" percentiles of the data, excluding outliers. c) Example tissue images from patients
with best (top row) and worst (bottom row) generalization performance in TNBC1-MxIF8 cohort, when only a
single patient data is used for classifier training. Numbers in bottom right corners indicate the mean of median
PR-AUC scores achieved when training classifiers on images of only that respective patient. Scale bar: 100 pm.
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Fig. E3 Correlation of classification performance with image quality ranking based on signal-to-
noise ratio (SNR). a) Channel ranking parameters used for image ranking based on the pixel intensity standard
deviation of highest pixel intensities. b) Scatter plot showing mean of median area under the precision-recall
curve (PR-AUC) scores against normalized image quality rank for the TNBC1-MxIF8 dataset and TME-A_ML6
annotations. Each dot represents a classifier that is trained on images from only a single patient. The corresponding
normalized image quality rank is computed from images from that respective patient. ¢) Same as b but for the
TNBC2-MIBIS8 dataset and TME-A_ML6 annotations.
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Fig. E4 Effect of different pre-trained encoders on classification performance across datasets. a)
For each of the four benchmark datasets (see Fig. 2d—g), an encoder is pre-trained (top). For the supervised
training using each dataset (i.e., images and annotations), a multi-layer perceptron (MLP) with 4 layers is trained
to classify the feature outputs of each of the four pre-trained encoders (bottom). This results in four classifiers per
dataset for a total of 16 classifiers. b) Box-and-whisker plots showing micro average F1-scores of MLP classifiers
as described in a. Each column represents one of the four benchmark datasets and the individual boxes represent
which encoder was used to compute the features for the supervised training of this dataset, i.e., which dataset the
encoder saw during pre-training. Every classifier was trained on the maximum amount of labeled data available
for the respective dataset. The boxes represent the interquartile range (25‘Ch to 75t percentiles) and the whiskers
extend to the 5** and 95" percentiles of the data, excluding outliers.
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Fig. E5 CLEAR-IT usage guideline. a) Flowchart showing the process from beginning with an unlabeled
dataset to obtaining a CLEAR-IT classifier (encoder + classifier pair) that can perform cell phenotyping. Users
can obtain a CLEAR-IT encoder either by pre-training it themselves (red box, b) or by downloading an already
pre-trained one. The classifier on top of the encoder can be trained in a human-in-the-loop process (blue box, c).
b) For the self-supervised pre-training, multiplex images are split into their individual channels and non-empty
grayscale patches are extracted. The patches serve as input to the SimCLR pipeline, which produces a pre-
trained encoder. ¢) For the human-in-the-loop training of the cell classifier, the unlabeled images are ranked by
quality. Annotation efforts are then focused on the highest quality images and iterated upon until the classification
performance is acceptable or the annotation budget has been reached. The human-in-the-loop classification is
facilitated by loading a pre-trained CLEAR-IT encoder into existing software, such as QuPath.
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= Supplementary Information

385 Datasets
386 TNBC1-MxIF8 dataset

387 The TNBC1-MxIF8 dataset [1] consists of 1010 multiplex immunofluorescence (MxIF) microscopy

388 images of cancerous tissue from 62 triple-negative breast cancer (TNBC) patients. The images
389 have a size of 1340 x 1008 pixels with pixel size of 0.5 pm, and have 8 channels: “DAPI”, “CK”,
300 “CD3”, “CD68”, “CD8”, “CD56”, “CD20”, “background”. Overall, the images include approx-
301 imately 2.3 million cells whose coordinates and cell phenotypes are specified in two separate
302 sets of annotations, one being multi-label and the other one being multi-class. The multi-label

393 annotation set was obtained using TME-Analyzer [11] (referred to as “TME-A_MLG labels”) and
304 contains the following 6 classes: “CK+”, “CD3+", “CD8+”, “CD20+”, “CD56+", “CD68+".
395 The multi-class annotation set was obtained by Hammerl et al. [1] using inForm (referred to as
306 “inForm_MC7 labels”) and contains the following 7 classes: “other”, “CK”, “CD3”, “CD3 CD8",
307 “CD20”, “CD56”, “CD68”. Furthermore, we converted inForm_MCT7 to the multi-label label set
308 inForm_MLG6: Here, the “CD3 CD8” class in inForm_MC7 was converted to both “CD3+” and
399 “CD8+"” being positive in the multi-label equivalent.

400 TNBC2-MIBI44 dataset

401 The TNBC2-MIBI44 dataset [4] consists of 41 multiplex ion-beam imaging by time-of-flight
402 (MIBI-TOF) images of cancerous tissue from 41 triple-negative breast cancer (TNBC) patients.
403 The images have a size of 2048 x 2048 pixels with pixel size of 0.4 um and have 44 channels:
404 “Au”, “Background”, “Beta catenin”, “Ca”, “CD11b”, “CD11c¢”, “CD138”, “CD16”, “CD20",
405 “CD209”, “CD3”, “CD31”, “CD4”, “CD45”, “CD45R0O”, “CD56”, “CD63”, “CD68”, “CD8”,
406 “dsDNA”, “EGFR”, “Fe”, “FoxP3”, “H3K27Tme3”, “H3K9ac”, “HLA-DR”, “HLA_Class_1",
a0 “IDO”, “Keratinl7”, “Keratin6”, “Ki67”, “Lag3”, “MPO”, “Na”, “P”, “p53”, “Pan-Keratin”,
408 “PD-L17, “PD1”, “phospho-S6”, “Si”, “SMA”, “Ta”, “Vimentin”. The corresponding multi-
409 class annotation set, obtained by Keren et al. [4] (referred to as “DeepCell. MC17 labels”),
410 consists of segmentation masks for approximately 221,000 cells and contains the following
an 17 classes: “Unidentified”, “Tregs”, “CD4 T”, “«CD8 T”, “CD3 T”, “NK”, “B”, “Neu-
a12 trophils”, “Macrophages”, “DC”, “DC/Mono”, “Mono/Neu”, “Other immune”, “Endothelial”,

a13 “Mesenchymal-like”, “Tumor”, “Keratin-positive tumor”.

a4 TNBC2-MIBIS8 dataset

a1s To make the images from the TNBC2-MIBI44 dataset qualitatively similar to those from the
a16 TNBC1-MxIF8 dataset, 8 out of the original 44 image channels were extracted: “dsDNA”, “Pan-
a7 Keratin”, “CD3”, “CD68”, “CDS&”, “CD56”, “CD20”, “background”. Using these reduced images,
a8 a multi-label annotation set was obtained using TME-Analyzer [11] (referred to as “TME-A_ML6
a19 labels”), which contains the same 6 classes that were used for the TNBC1-MxIF8 dataset: “CK+”,
420 “CD3+”, “CD8+", “CD20+”, “CD56+", “CD68+".
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a1 To convert the DeepCell MC17 annotation set to the reduced images, the following label
a2 assignments were performed to obtain the DeepCell ML6 annotation set:
423 e “CD3+": “Tregs”, “CD4 T”, “CD3 T”, ”CD8 T”

o o “CD8+": “CD8 T”

425 e “CD56+7: “NK”

226 ® “CD20+7: “B”

a7 e “CD68+”: “Macrophages”

28 e “CK+": “Keratin-positive tumor”

129 CRC-CODEX?26 dataset

430 The CRC-CODEX26 dataset [12] consists of 35 co-detection by indexing (CODEX) images of can-
a1 cerous tissue from 35 colorectal cancer (CRC) patients. The images have a size of 1920x 1440 pixels
232 with pixel size of 0.377 nm and have 26 channels: “CD11b”, “CD11¢”, “CD15”, “CD163”, “CD20”,
433 “CD3”, “CD31”, “CD34”, “CD38”, “CD4”, “CD45”, “CD56”, “CD57”, “CD68”, “CD8”, “Col-
434 lagen”, “Cytokeratin”, “FOXP3”, “HLADR”, “MUC1”, “NAKATPASE”, “PDPN”, “SYP”,
435 “VIM” | “SMA”, “CD45RA”. The corresponding multi-class annotation set, obtained by Amitay
436 et al. [7] (referred to as “CellSighter MC14 labels”), consists of segmentation masks for 85,179 cells
a37 and contains the following 14 classes: “Bceell”, “CD3T”, “CD4T”, “CD8T”, “DC”, “Endothelial”,

238 “Lymphatic”, “Macrophage”, “Neuron”, “Neutrophil”, “Plasma”, “Stroma”, “Treg”, “Tumor”.

239 TONSIL-IMC41 dataset

440 The TONSIL-IMC41 dataset consists of 24 imaging mass cytometry (IMC) images of human
aa1 tonsil tissue from 7 individuals. The images have sizes ranging from 465 x 464 pixels
a2 to 686 x 617 pixels with pixel size of 1pm and have 41 channels: “Sars_CoV2_Spike”,
a3 “CD45R0O”, “CD45RA”, “CD68”, “CD8a”, “Ki67”, “Collagenl”, “CD138”, “CD163”, “IL1R”,
asa “CD42b”, “MPO”, “SARSCov2_Capsid”, “B7_Complement”, “CD56”, “Podoplanin”, “CD69”,
a5 “EPCAM”, “CD206”, “CDT79a”, “STING”, “TMPRSS2”, “AQP5”, “CD1lc”, “IFITM3”,
aa6 “ACE2”, “CD577, “p16”, “IL6R”, “cCaspase3”, “CD61”, “CD3”, “ProSPC”, “CD31”, “C30-30",

aa7 “CDh4”, “HLADR”, “CD169”, “193Ix”, “CD147”, “b2M”. The images, segmentation masks, and
a8 corresponding multi-class annotation set were obtained by Hunter et al. as part of OPTIMAL (an
449 OPTimized Imaging Mass cytometry AnaLysis framework for benchmarking segmentation and
450 data exploration) [13]. The multi-class label set (referred to as “OPTIMAL_MC21 labels”) con-
a1 sists of segmentation masks for 109,535 cells and contains the following 21 classes: “Epithelium”,

a52 “Memory CD8 T cells”, “M2 Macrophages”, “B cells”, “Memory CD4 T cells”, “Epithelium

453 (proliferating)”, “Folicular B cells (proliferating)”, “Mature Macrophages”, “Folicular T cells”,

454 “Plasma cells”, “Endothelium”, “Unclassified”, “Effector CD4 T cells”, “Epithelium and Immune
as5 cells”, “Naive CD8 T cells”, “anti-Inflammatory Macrophages”, “CD4 T cells”, “STING+ cells”,
456 “Apoptotic cells”, “Germinal center Macrophages”, “Standard Macrophages”.
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w57 The design of the CLEAR-IT network architecture

458 In the inference pipeline (Fig. Sla), a multichannel image would be processed as multichan-
459 nel image patches centered around the given cell locations. These image patches are split into
460 individual channels that are fed into a pre-trained encoder, generating feature representations.
461 For the sake of speed, in our architecture we utilized a residual neural network with 18 layers
a62 (ResNet-18) as an encoder, which is considered a small network. These representations of indi-
463 vidual channels are concatenated into a single vector, which is then mapped to the phenotypes as
a64 probabilities through another neural network. Here, utilization of a single layer perceptron (SLP)
465 ensured high speed and that the performance evaluated corresponded to the performance of the
466 pre-training of the encoder on the downstream classification task, rather than the performance
467 of a sophisticated classifier, and is often referred to as “linear evaluation” [9].

468 For pre-training of the ResNet-18, unsupervised contrastive learning is applied to the input
469 images without annotations (Fig. 1b, Fig. S1b). Here, individual channels of multichannel
470 image patches, for all multichannel images in the training set, are processed together as batches.
an Individual single-channel patches are augmented into image pairs by application of learnable
an2 non-linear transformations, encoded by ResNet, and projected to a feature representation by
a73 a non-linear multi-layer perceptron (MLP), as suggested by others [9]. This network is then
a74 trained to simultaneously maximize the similarity between the outputs of the single-channel
a1 image patch pair, and dissimilarity between outputs from a single-channel image patch and all
476 other single-channel image patches that are not its pair. While this ResNet-18 network is smaller
ar? than others used for contrastive learning in literature [10, 18], it enabled the optimization of the
a78 hyperparameters with relatively low computational effort, and, together with the SLP, resulted
a79 in efficient inference with limited data.

480 After the training, the weights of the ResNet are fixed, and the SLP is trained on a train set
481 (Fig. Slc). Here, the same method as the inference (Fig. S1a) is followed, with gradient descent
a82 to minimize the dissimilarity between the predicted probability and the true label. Upon training
483 of the SLP, the classifier is applied to test samples, and its performance is assessed. Here, the mean
a8 of the individual class PR-AUC medians is the metric used to assess the network performance
ags for combined evaluation of the performance of six binary classifiers on an imbalanced dataset.
486 PR-AUC was the preferred metric as, unlike precision, recall or F1 scores, it does not require
ag7 decision thresholds to be implemented and is considered more informative than the receiver
488 operated characteristics (ROC)-AUC when evaluating binary classifiers on imbalanced datasets

489 [8]. Additionally, usage of the mean of the individual class PR-AUC medians places equal emphasis

490 on minority classes like CD56, instead of the overall PR-AUC median that favors majority classes
401 like CK. This decision was made since distinct subpopulation of T cells and NK cells have been
402 recently implicated in response to immunotherapy [19-21].

493 Label conversion from multi-class to multi-label

a0 The multi-class labels can be represented with a one-hot encoding, which is a vector where all
495 elements are 0 except for one element which is 1. The multi-label labels can be represented with
496 a multi-hot encoding, which is a vector where multiple elements may be 1. To convert multi-class
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a07 annotation sets that explicitly define a non-positive class label (i.e. “other” for inForm MC7 and
498 “Unidentified” for DeepCell MC17), the vector element corresponding to this class is omitted in
499 the one-hot encoding. The resulting one-hot encoding can be directly interpreted as multi-hot
500 encoding, where the previously explicitly defined non-positive class is now implicitly defined by
501 all vector elements being 0.

502 Undersampling algorithm for balanced multi-label training set

503 In order to undersample the multi-label training sets, we employ the following algorithm:

504 1. Class count analysis and ordering

505 (a) Compute the frequency of each class label present in the dataset.

506 (b) Order the classes based on their frequency from least to most frequent.

507 2. Inclusion of the least frequent class

508 (a) Start with the least frequent class and add every datapoint with that class label to the
509 training set.

510 (b) The total number of datapoints included this way sets the target count 7.

511 3. Inclusion of the more frequent classes

512 (a) Tterate over the remaining classes from least to most frequent:

513 (i) For each class, count the number of datapoints already included in the training set that
514 contain the current class label. This count includes datapoints that might have been
515 added due to their belonging to a less frequent class.

516 (ii) Randomly sample additional datapoints from the dataset, specifically selecting data-
517 points that contain the current class label but are not yet in the training set, until the
518 total count equaling to the target count T is reached for this class.

510 (iii) After this sampling, all datapoints from the dataset that contain the current class label,
520 but were not selected in this step, are permanently removed from the pool of candidates
521 for future sampling. This step ensures to prevent the repeated selection of the same
522 datapoints for subsequent classes.

523 4. Inclusion of non-positive class

524 (a) After all positive classes have been processed, the remaining datapoints are those that do
525 not have any positive class label assigned, e.g., “other” or “Unidentified” class.

526 (b) From the remaining datapoints, randomly select T' datapoints and add them to the training
527 set.

528 This algorithm ensures that every class label is represented at least 7' times in the training set.

520 Details on 3-round encoder optimization

530 During encoder optimizations, a separate PR-AUC score is computed for every class, which we
531 report as the median obtained from applying the classifier on 10 folds of the test set. The highest
532 mean value of those median PR-AUC scores across every class determines the best encoder whose
533 hyperparameters are chosen to be used as default in the subsequent rounds. All pre-training is
534 performed for 5 epochs on either the TNBC1 or TNBC2 dataset unless stated otherwise. All
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535 supervised training is performed on either the TNBC1 or TNBC2 dataset with multi-label labels
536 and training set balancing applied. The test set is left unaltered.

537 Round 0: Base SimCLR

538 As a baseline, we train an encoder with the following parameters: Pre-training batch size N = 256,
530 loss function temperature 7 = 1, pre-training dataset size D = 409600, random rotation and
540 flipping augmentations. Unless stated otherwise, subsequent encoders always use the same dataset
541 size as well as the rotation and flipping augmentation.

542 Round 1: Pre-training loss function

543 We train encoders with pre-training batch sizes N € {32,64, 128,256,512, 1024,2048} and loss
544 function temperatures 7 € {0.05,0.1,0.5, 1,5, 10}.

545 Round 2: Augmentations

546 We train encoders with translation augmentations Ziransiation € {0, 5,10,15,20,25}, Gaus-
547 sian blur augmentations xp,: € {0,2,4,6,8,10}, zoom augmentations ,min € {1, %, %, %, i},
548 Tymax € {1,%,2,4} and brightness/contrast adjustment augmentations Tirightnesss Tcontrast €

s {0,25,50,75,100}%.

550 Round 3: Pre-training dataset size and source

551 We train encoders with pre-training dataset sizes D € {409600, 819200, 2048000, 4096000} and
552 furthermore train three encoders with dataset size D = 819200 and the pre-training dataset
553 source being entirely TNBC1-MxIF8, entirely TNBC2-MIBIS8 or an equal amount of data from
554 TNBC1-MxIF8 and TNBC2-MIBIS.

555 Results

556 We first tested the TNBC1-MxIF8 dataset[1], consisting of 1010 8-channel triple-negative breast
557 cancer (TNBC) tissue images imaged with the Vectra multiplexed imaging system and using

558 TME-A_ML6 6 different class multi-label annotations generated with our open-source TME-

550 Analyzer software, which we previously validated against inForm and QuPath analysis [11]. In
560 a stepwise fashion, we optimized the encoder network by altering the pre-training loss function,
561 augmentations used, and the training time and sample size (Fig. S1d), while measuring the per-
562 formance of a single-layer perceptron (SLP) classifier that uses the pre-trained encoder network’s
563 output as input. The use of a simple classifier architecture, i.e., SLP, ensures that observed per-
564 formance gains can be attributed to changes made to the encoder network [9]. Here we observed
565 the biggest benefit from the optimization of the loss function (Fig. 1d), where a loss tempera-

566 ture of 7 = 0.05 and a pre-training batch size of 256 provided the highest performance (Fig. S2).
567 We then tested different augmentations, where the value corresponds to the upper bound of a
568 random variable used for the augmentation. Individually, the highest performance was observed
560 for: zoom-in of 4/3x and zoom-out of 2/3x, Gaussian blur of 4 pixels, (Fig. S3); brightness and

570 contrast adjustments of 0% and 75 % (Fig. S4), respectively, where translation did not improve
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571 the performance (Fig. S4). While the highest performance gain was observed with the zoom
572 augmentation alone, its combination with other augmentations did not further improve perfor-
573 mance (Fig. S5). The augmentation parameters for the subsequent rounds were therefore set as,
574 in addition to flipping and rotation, zoom-in of 4/3x and zoom-out of 2/3x without any other
575 additional augmentations. Having established the parameters for the pre-training network archi-
576 tecture, we next tested the effect of the pre-training data on overall performance. Here, contrary
577 to other contrastive learning tasks [9, 10], neither increasing the pre-training dataset size nor
578 combining data from different sources improved the performance over pre-training performed on
579 409,600 TNBC1-MxIF8 single-channel image patches (Fig. S6).

580 We next tested our approach on the TNBC2-MIBIS dataset [4], again using the TME-A_ML6 6
581 class multi-label annotations. The stepwise optimization (Fig. S1d) again resulted in the biggest
582 benefit from the optimization of the loss function (Fig. 1d), with a loss temperature of 7 = 0.05,

583 but with a larger pre-training batch size of 1024 (Fig. S7), and marginal benefit from other
584 rounds. For augmentations tested individually; the highest performance was observed for; zoom-
585 in of 4/3x and zoom-out of 2/3x, a Gaussian blur of 0 pixels (Fig. S8), brightness and contrast

586 adjustments of both 50 % (Fig. S9), where translation again did not improve the performance
587 (Fig. S9). When combined, the highest performance was achieved for zoom-in of 4/3x, zoom-out
588 of 2/3x, brightness adjustment of 50 %, and contrast adjustment of 50 % (Fig. S10), including
589 the flipping and rotation augmentations. Hence, the only difference from the parameters used for
590 TNBC1-MxIF8 is a larger batch size (1024 vs. 256) and the inclusion of brightness and contrast
501 adjustments. Testing the effect of the pre-training data on overall performance, resulted in a
502 marginal performance increase with more pre-training data, where combining data from different
503 sources again did not further improve the performance (Fig. S11).

504 Classifier predictions and confidence

505 The classifiers produce outputs using the sigmoid function, meaning that for each class, the
596 output is a number between 0 and 1, which can be interpreted as the predicted probability of a
507 cell belonging to that class. To obtain binary predictions, i.e., whether a prediction is positive
508 or negative, a decision threshold is required. A prediction is considered positive if the sigmoid
509 output exceeds this threshold, and negative otherwise. These thresholds are tuned on the held-out
600 validation set during training to maximize the F1l-score for each class.

601 In Fig. E1 we present binary predictions for various classes, showing examples of true pos-
602 itive, true negative, false positive, and false negative predictions with the highest and lowest
603 confidence levels, respectively. To explain how we measure this confidence, we define the confi-

604 dence calculation for the model’s binary predictions. Let y(c preq) € {0,1} denote the predicted
605 label for class ¢, where 1 represents a positive prediction and 0 a negative one. Let o, € [0, 1] be

606 the sigmoid output (predicted probability) for class ¢, and ¢. € (0,1) be the decision threshold

607 for class ¢. The prediction confidence can then be computed as follows:
oc—t¢ :
Ge—te if =1
Confidence = tl_t“ Y(e,pred)
c—0¢

o if Y(e,pred) = 0
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608 This confidence measure ranges from 0 (least confident) to 1 (most confident), providing an
609 indication of how strongly the model’s prediction compares to the decision threshold, regardless
610 of whether the model’s prediction is ultimately correct.

611 Cross-testing of CLEAR-IT encoder across four datasets

612 We tested the (cross-)performance of CLEAR-IT across different datasets. For this purpose, in
613 addition to the two TNBC datasets (TNBC1-MxIF8 [1] and TNBC2-MIBI44 [4]), we also made
o4 use of the CRC-CODEX26 [12] and TONSIL-IMC41 [13] datasets, and tested the performance of

615 fully supervised 4-layer multi-layer perceptron (MLP) classifiers using image encodings as inputs,
616 where the encoders were pre-trained on the images from different datasets. Here, the best and
617 worst overall performance was achieved for TNBC1-MxIF8 and TONSIL-IMC41 dataset classi-
618 fications, respectively, independent of the pre-trained encoder (Fig. E4). The best performance
619 per dataset was obtained with encoders pre-trained on the same dataset as the downstream clas-

620 sifier, except the TNBC2-MIBI8 dataset. Best and worst generalizations were obtained for the
621 CRC-CODEX26 pre-trained encoder and the TONSIL-IMC41 pre-trained encoder, respectively.
622 Interestingly, encoders pre-trained on TNBC1-MxIF8, TNBC2-MIBI44, and CRC-CODEX26 all

623 had similar performances across all datasets, together demonstrating that, while pre-training
624 encoders on the same dataset as the downstream classifier generally improves performance, only
625 slightly lower performance can still be achieved by encoders pre-trained on other similar datasets.
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Fig. S1 CLEAR-IT architecture and training. a) CLEAR-IT can be used to perform classification of
individual cells in multiplex images. A patch centered around a cell of interest is split into its C individual image
channels (from I to I), each of which is processed by the same pre-trained ResNet encoder. The computed feature
embeddings for each channel are concatenated and passed to a classifier, e.g. a single-layer perceptron (SLP),
which predicts the class labels for the input patch. b) The ResNet encoder is pre-trained following the SimCLR
algorithm. The inputs to the pre-training pipeline are grayscale patches which are sampled from random images,
channels, and locations. Each input patch is randomly augmented in two different ways, producing an augmented
image pair, which is passed to the ResNet encoder and subsequently a multi-layer perceptron (MLP). The pre-
training objective is to maximize similarity between feature projections (purple squares) originating from the same
image (green “Attract” arrows) and minimize similarity between feature projections that originate from a different
image (red “Repel” arrows). c) After pre-training, the MLP is discarded and the ResNet encoder can be used to
produce feature encodings for downstream tasks such as classification. By computing features for each channel of
a patch in parallel and concatenating the outputs, a supervised classifier can be trained to perform classification of
individual cells. d) The pre-training hyperparameters can be tuned to optimize the feature representations learned
by the encoder. Specifically, the loss function temperature controls how strongly the maximization of similarity
between feature projections is weighted, and application of image augmentations teach the encoder to become
invariant to certain aberrations such that the learned feature representations contain valuable information for the
intended downstream task. Increasing the size of the pre-training dataset and/or including data from different
sources can improve the quality of learned features.

<

27


https://doi.org/10.1101/2024.08.20.608738
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.20.608738; this version posted August 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

1.0 1.0
S I E i o I
0.8 ¢ - . —— - - 08 =——u %
— 55 = L T ol o L[ T 1
L . J: = = N J__ l
Q0.6 l " ! l Q0.6 B0 Sod- - S
p; 1 3 N - S
@ @ 1 = L
04 204 5 5
0.2 0.2
CK+ BEN CD3+ EEE CD8+ CD20+
CD56+ CD68+ total ——- mean(medians)
0 32 64 128 256 512 1024 2048 0 0.05 0.1 0.5 1.0 5.0 10.0
Temperature @ batch size B=256

Fig. S2 Results for round 1 of the encoder optimization for TNBC1-MxIF8 to obtain

Batch size @ temperature tau=0.05

optimal

temperature and batch size parameters. The area under the precision-recall-curve (PR~-AUC) of the encoder/-
linear classifier combination, plotted per cell type and for all cells per encoder pre-training parameter. The gray
boxes represent the total classification performance irrespective of class labels. The dashed black lines represent
the mean of the median PR-AUC scores per class, which are represented by the colored boxes. The encoder is
pre-trained on 409,600 grayscale image patches from the TNBC1-MxIF8 dataset and the classifier is trained on
the TNBC1-MxIF8 dataset with TME-Analyzer labels. The boxes represent the interquartile range (25" to 75t
percentiles) and the whiskers extend to the 5% and 95" percentiles of the data, excluding outliers.
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Fig. S3 Results for round 2 (part 1 of 3) of the encoder optimization for TNBC1-MxIF8 to obtain
optimal zoom and Gaussian blur parameters. The area under the precision-recall-curve (PR-AUC) of the
encoder/linear classifier combination, plotted per cell type and for all cells per encoder pre-training parameter.
The gray boxes represent the total classification performance irrespective of class labels. The dashed black lines
represent the mean of the median PR-AUC scores per class, which are represented by the colored boxes. The
encoder is pre-trained on 409,600 grayscale image patches from the TNBC1-MxIF8 dataset and the classifier is
trained on the TNBC1-MxIF8 dataset with TME-Analyzer labels. The boxes represent the interquartile range
(25th to 75th percentiles) and the whiskers extend to the 5th and 95" percentiles of the data, excluding outliers.
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Fig. S4 Results for round 2 (part 2 of 3) of the encoder optimization for TNBC1-MxIF8 to obtain
optimal brightness/contrast and translation parameters. The area under the precision-recall-curve (PR-
AUCQC) of the encoder/linear classifier combination, plotted per cell type and for all cells per encoder pre-training
parameter. The gray boxes represent the total classification performance irrespective of class labels. The dashed
black lines represent the mean of the median PR-AUC scores per class, which are represented by the colored boxes.
The encoder is pre-trained on 409,600 grayscale image patches from the TNBC1-MxIF8 dataset and the classifier
is trained on the TNBC1-MxIF8 dataset with TME-Analyzer labels. The boxes represent the interquartile range
(25" to 75 percentiles) and the whiskers extend to the 5t and 95" percentiles of the data, excluding outliers.
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Fig. S5 Results for round 2 (part 3 of 3) of the encoder optimization for TNBC1-MxIF8 to obtain
optimal combined parameters. The area under the precision-recall-curve (PR-AUC) of the encoder/linear
classifier combination, plotted per cell type and for all cells per encoder pre-training parameter. The gray boxes
represent the total classification performance irrespective of class labels. The dashed black lines represent the mean
of the median PR-AUC scores per class, which are represented by the colored boxes. The encoder is pre-trained
on 409,600 grayscale image patches from the TNBC1-MxIF8 dataset and the classifier is trained on the TNBC1-
MxIF8 dataset with TME-Analyzer labels. The boxes represent the interquartile range (25" to 75t percentiles)
and the whiskers extend to the 5*" and 95" percentiles of the data, excluding outliers.
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Fig. S6 Results for round 3 of the encoder optimization for TNBC1-MxIF8 to obtain optimal pre-
training data size and composition. The area under the precision-recall-curve (PR-AUC) of the encoder/linear
classifier combination, plotted per cell type and for all cells per encoder pre-training parameter. The gray boxes
represent the total classification performance irrespective of class labels. The dashed black lines represent the mean
of the median PR-AUC scores per class, which are represented by the colored boxes. The encoder is pre-trained
on grayscale image patches from the specified datasets and the classifier is trained on the TNBC1-MxIF8 dataset
with TME-Analyzer labels. The boxes represent the interquartile range (25th to 75th percentiles) and the whiskers
extend to the 5*" and 95" percentiles of the data, excluding outliers.
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Fig. S7 Results for round 1 of the encoder optimization for TNBC2-MIBI8 to obtain optimal
temperature and batch size parameters. The area under the precision-recall-curve (PR-AUC) of the encoder/-
linear classifier combination, plotted per cell type and for all cells per encoder pre-training parameter. The gray
boxes represent the total classification performance irrespective of class labels. The dashed black lines represent
the mean of the median PR-AUC scores per class, which are represented by the colored boxes. The encoder is
pre-trained on 409,600 grayscale image patches from the TNBC2-MIBI8 dataset and the classifier is trained on
the TNBC2-MIBIS8 dataset with TME-Analyzer labels. The boxes represent the interquartile range (25”’ to 75th
percentiles) and the whiskers extend to the 5t and 95t percentiles of the data, excluding outliers.
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Fig. S8 Results for round 2 (part 1 of 3) of the encoder optimization for TNBC2-MIBI8 to obtain
optimal zoom and Gaussian blur parameters. The area under the precision-recall-curve (PR-AUC) of the
encoder/linear classifier combination, plotted per cell type and for all cells per encoder pre-training parameter.
The gray boxes represent the total classification performance irrespective of class labels. The dashed black lines
represent the mean of the median PR-AUC scores per class, which are represented by the colored boxes. The
encoder is pre-trained on 409,600 grayscale image patches from the TNBC2-MIBI8 dataset and the classifier is
trained on the TNBC2-MIBI8 dataset with TME-Analyzer labels. The boxes represent the interquartile range
(25th to 75th percentiles) and the whiskers extend to the 5th and 95" percentiles of the data, excluding outliers.
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Fig. S9 Results for round 2 (part 2 of 3) of the encoder optimization for TNBC2-MIBIS8 to obtain
optimal brightness/contrast and translation parameters. The area under the precision-recall-curve (PR-
AUCQC) of the encoder/linear classifier combination, plotted per cell type and for all cells per encoder pre-training
parameter. The gray boxes represent the total classification performance irrespective of class labels. The dashed
black lines represent the mean of the median PR-AUC scores per class, which are represented by the colored boxes.
The encoder is pre-trained on 409,600 grayscale image patches from the TNBC2-MIBIS8 dataset and the classifier
is trained on the TNBC2-MIBI8 dataset with TME-Analyzer labels. The boxes represent the interquartile range
(25th to 75th percentiles) and the whiskers extend to the 5th and 95" percentiles of the data, excluding outliers.
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Fig. S10 Results for round 2 (part 3 of 3) of the encoder optimization for TNBC2-MIBIS8 to obtain
optimal combined parameters. The area under the precision-recall-curve (PR-AUC) of the encoder/linear
classifier combination, plotted per cell type and for all cells per encoder pre-training parameter. The gray boxes
represent the total classification performance irrespective of class labels. The dashed black lines represent the mean
of the median PR-AUC scores per class, which are represented by the colored boxes. The encoder is pre-trained
on 409,600 grayscale image patches from the TNBC2-MIBI8 dataset and the classifier is trained on the TNBC2-
MIBIS8 dataset with TME-Analyzer labels. The boxes represent the interquartile range (25" to 75" percentiles)
and the whiskers extend to the 5" and 95" percentiles of the data, excluding outliers.
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Fig. S11 Results for round 3 of the encoder optimization for TNBC2-MIBIS8 to obtain optimal pre-
training data size and composition. The area under the precision-recall-curve (PR-AUC) of the encoder/linear
classifier combination, plotted per cell type and for all cells per encoder pre-training parameter. The gray boxes
represent the total classification performance irrespective of class labels. The dashed black lines represent the mean
of the median PR-AUC scores per class, which are represented by the colored boxes. The encoder is pre-trained
on grayscale image patches from the specified datasets and the classifier is trained on the TNBC2-MIBI8 dataset
with TME-Analyzer labels. The boxes represent the interquartile range (25th to 75tk percentiles) and the whiskers
extend to the 5" and 95" percentiles of the data, excluding outliers.
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Fig. S12 Results for cross-testing the classifiers for combinations of the two TNBC datasets. a,
b) Classifier performance on TNBC1-MxIF8-TME-A_ML6, TNBC1-MxIF8-inForm_ML6, TNBC2-MIBI8-TME-
A_ML6, and TNBC2-MIBI8-DeepCell_ ML6 datasets-annotations using an encoder pre-trained on 409,600 grayscale
image patches from the TNBC1-MxIF8 (a) or TNBC2-MIBI8 (b) datasets. The area under the precision-recall-
curve (PR-AUC) of the encoder/linear classifier combination, plotted per cell type and for all cells per train/test
set combination. The gray boxes represent the total classification performance irrespective of class labels. The
dashed black lines represent the mean of the median PR-AUC scores per class, which are represented by the
colored boxes. The boxes represent the interquartile range (25 to 75" percentiles) and the whiskers extend to
the 5t and 95" percentiles of the data, excluding outliers.
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Fig. S13 Results for label-reduction based on cell counts (irrespective of patients). The area under the
precision-recall-curve (PR-AUC) of the encoder/linear classifier combination, plotted per cell label and for all cells
at different percentage of labeled data used for supervised learning. Encoders are pre-trained on the same datasets
as the linear classifiers. The gray boxes represent the total classification performance irrespective of class labels.
The dashed black lines represent the mean of the median PR-AUC scores per class, which are represented by the
colored boxes. Cell percentages are based on the maximum number of cells available in the training sets, denoted
by N in parentheses. The boxes represent the interquartile range (25" to 75t percentiles) and the whiskers extend
to the 5 and 95" percentiles of the data, excluding outliers.
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Fig. S14 Results for label-reduction based on number of patients. The area under the precision-recall-
curve (PR-AUC) of the encoder/linear classifier combination, plotted per cell label and for all cells at different
percentage of labeled data used for supervised learning. Encoders are pre-trained on the same datasets as the linear
classifiers. The gray boxes represent the total classification performance irrespective of class labels. The dashed
black lines represent the mean of the median PR-AUC scores per class, which are represented by the colored
boxes. Cell percentages are based on the maximum number of cells available in the training sets, denoted by N in
parentheses. The boxes represent the interquartile range (25”‘ to 75th percentiles) and the whiskers extend to the
50 and 95" percentiles of the data, excluding outliers.
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Fig. S15 Example cell patch images of high/low confidence for TNBC1-MxIF8. Images per phenotype
with the most and least confident predictions per classification outcome for the TNBC1-MxIF8 dataset with TME-
Analyzer annotations. For each cell phenotype, a random sample of 10 cells drawn from the 100 most and least
confident predictions is shown. Note that for CD56 only four false negative (FN) predictions were recorded.
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Fig. S16 Example cell patch images of high/low confidence for TNBC2-MIBIS8. Images per phenotype
for the most and least confident predictions per classification outcome for the TNBC2-MIBI8 dataset with TME-
Analyzer annotations. For each cell phenotype, a random sample of 10 cells drawn from the 100 most and least
confident predictions is shown. Note that for CD56, only seven false negative (FN) predictions were recorded.
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Table S1 Overview of patient data in the TNBC1-MxIF8 training set. The rightmost column
specifies the mean of median (MoM) area under the precision-recall curve (PR-AUC) score obtained
when training a classifier on data from only that patient (see Fig. E5a). Note that cell counts are based
on the TME-Analyzer labels (TME-A_ML6), which are multi-label, and the counts for individual class
labels therefore do not necessarily add to the total number of cells.

Patient Cells CK+ CD3+ CD8+ CD20+ CD56+ CD68+ other MoM
ID total cells (PR-AUCQC)
1 26573 11071 477 273 13 11 45 14917 0.578099
2 46799 7042 3943 10121 8391 230 0 22484 0.524986
3 52719 10158 5756 9250 4804 7 656 29347 0.681697
4 31429 10059 593 1423 1775 196 0 18016 0.611027
5 36354 10069 1998 566 4141 26 60 20822 0.680865
6 26039 10738 195 81 8 1 10 15163 0.488509
7 66747 17104 1154 11013 11147 226 431 31453 0.708225
8 13240 5527 67 197 185 1 7 7387 0.442039
9 36731 9456 1163 6958 3795 7 844 16955 0.692290
10 63923 16298 10857 11768 7640 276 1984 27337 0.561818
11 6622 1955 224 13 10 2 15 4458 0.480732
12 13151 3421 1704 1213 320 11 186 7392 0.635892
13 28922 10807 388 954 23 1 2132 15859 0.607508
14 68345 17718 9831 8804 3607 381 5390 31315 0.680441
15 39085 14913 1344 605 266 6 100 22683 0.706655
16 50236 13951 2024 1711 600 514 677 32653 0.689051
17 27753 13096 309 476 35 851 0 13874 0.465894
18 37193 9794 1793 3390 1183 0 266 22571 0.578672
19 43491 9923 8572 10003 7472 261 0 17894 0.440875
20 41584 17499 1384 454 648 39 1246 21273 0.738653
21 77416 13275 7324 5703 3543 8 211 50726 0.712518
22 22102 7236 13 48 1 3 0 14806 0.380769
23 23880 8919 746 1334 1013 1 123 12410 0.559929
24 32084 9812 779 295 2 4 86 21421 0.541982
25 32588 13928 285 953 352 19 117 17282 0.619145
26 30219 4865 5829 3150 1400 7 140 17757 0.600300
27 18896 10782 155 560 0 18 901 7163 0.134859
28 37521 12510 6490 3278 2769 62 643 16722 0.542952
29 26502 10233 148 405 186 10 0 15692 0.474364
30 25141 7608 1062 478 161 95 1230 15099 0.631772
31 25541 8940 682 1365 4488 98 266 12531 0.512999
32 30974 8868 2112 666 594 48 3 19753 0.428093
33 42357 12753 5003 3589 1486 571 519 22321 0.779756
34 42212 15058 1573 614 684 13 537 24584 0.695987
35 60662 16857 4306 10525 4214 83 3770 30054 0.605924
36 43426 19077 2333 1448 1028 30 350 20769 0.743523
37 38205 14675 127 1152 158 142 59 22162 0.693791
38 44118 13573 1411 2648 1053 27 1369 25557 0.721065
39 32059 8882 295 2753 1733 48 744 18658 0.616728
40 16995 5930 70 482 429 3 0 10172 0.457956
41 40337 12172 6325 9217 5313 249 4118 12655 0.546611
42 45027 9517 5620 7751 4224 44 751 22643 0.641491
43 57606 19299 4078 11089 2039 28 4943 26500 0.657826
44 39783 14768 1906 1554 458 23 888 21368 0.719910
45 11836 5152 215 102 4 8 36 6495 0.446772
46 23814 6170 846 5799 1002 1 1545 10471 0.583151
47 53859 19000 2527 1039 691 8 2740 29650 0.726122
Total 1732096 530458 116036 157270 95088 4698 40138 919274
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