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Abstract 

Lattice light-sheet microscopy (LLSM) provides a crucial observation window into intra- and 

inter-cellular physiology of living specimens with high speed and low phototoxicity, however, at 

the diffraction-limited resolution or anisotropic super-resolution with structured illumination. 

Here we present the meta-learning-empowered reflective lattice light-sheet virtual structured 

illumination microscopy (Meta-rLLS-VSIM), which instantly upgrades LLSM to a near-isotropic 

super resolution of ∼120-nm laterally and ~160-nm axially, more than twofold improvement in 

each dimension, without any modification of the optical system or sacrifice of other imaging 

metrics. Moreover, to alleviate the tremendous demands on training data and time necessitated 

by existing deep-learning (DL) methods, we devised an adaptive online training approach by 

synergizing the front-end imaging system and back-end meta-learning framework, which 

reduced the total time for data acquisition and model training down to tens of seconds. With this 

method, a new model can be well-trained with tenfold less data and three orders of magnitude 

less time than current standard supervised learning. We demonstrate the versatile functionalities 

of Meta-rLLS-VSIM by imaging a variety of bioprocesses with ultrahigh spatiotemporal 

resolution for long duration of hundreds of multi-color volumes, characterizing the dynamic 

regulation of contractile ring filaments during mitosis and the growth of pollen tubes, and 

delineating the nanoscale distributions, dispersion, and interaction pattern of multiple organelles 

in embryos and eukaryotic cells. 
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Introduction 

Elaborate bioprocesses occur in the three-dimensional (3D) space of living organisms in a 

complicated but organized way. Among all volumetric fluorescence imaging techniques, light-

sheet microscopy (LSM) or called selective plane illumination microscopy (SPIM) stands out 

owing to its high spatiotemporal resolution and gentle 3D imaging capacity1,2. By using a second 

illumination objective placed perpendicular to the detection path, LSM confines the excitation 

within a micron-level thickness, which results in inherent optical sectioning and minimal out-of-

focus excitation, massively reducing sample bleaching and phototoxicity compared to 

conventional epi-fluorescence imaging techniques, such as wide-field (WF) or confocal 

microscopy3,4. To extend the spatial resolution beyond the diffraction limit, several super-

resolution (SR) techniques have been incorporated into LSM5-8, among which the lattice light-

sheet structured illumination microscopy (LLS-SIM) achieves the optimal tradeoff between 

resolution and other equally important metrics for live cell imaging. Nonetheless, conventional 

LLS-SIM only permits a single orientation of structured illumination, so it suffers from 

anisotropic resolution and likely produces distortions along the orientations without resolution 

enhancement8,9. Therefore, current LSM is short of the full capability to accurately measure 3D 

subcellular morphology, biomolecular localization and signaling activity. 

To overcome this issue, one recent study utilized oblique illumination coupled with a 

mechanical image rotation, which allows for three-orientation structured illumination (SI) and 

achieves laterally isotropic SR imaging10. The other latest work separated plane selection and SI 

pattern excitation by introducing reversibly photo-switchable fluorescent proteins, enabling 

higher excitation numerical aperture (NA) and spatial resolution than the oblique plane 

configuration11. Nevertheless, both solutions rely on repetitive excitation and acquisitions, i.e., 

thousands of raw images per volume, to reconstruct the final SR results, limiting the four-

dimensional (4D) live imaging duration to no more than 50 timepoints10. Moreover, these 

methods only focus on addressing the anisotropy of lateral resolution, leaving the poor axial 

resolution as an outstanding problem.  

In addition to advances in microscope hardware, computational approaches, especially deep 

learning-based methods, have brought a transformative impact on fluorescence microscopy. By 

learning the statistical inverse function of image transformation processes, deep neural networks 

(DNNs) have been applied to enhance both lateral12-14 and axial resolution15-20 of optical images. 
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For instance, given the high-quality ground truth (GT) SR-SIM images as the training targets, 

DNNs are able to generate SR images directly from their diffraction-limited counterparts13,14. 

However, when applied to LLSM, such methods are subject to three major challenges: First, the 

isotropic GT-SIM data is unobtainable by conventional LLS-SIM, thus hindering from directly 

training an end-to-end network as previous works did; Second, improving the axial resolution 

from the diffraction limit (~400 nm) to the lateral resolution of LLS-SIM (~150 nm) simply by 

data-driven self-learning12,17-20 suffers from severe ill-posedness, leading to a significant risk of 

phantasmal generation13,21; Third, most DNN-based methods need to train a specific model for 

each biological specimen with a large amount of high-quality training data, consuming plenty of 

time spanning from several hours to a few days22. Consequently, these limitations in both optics 

and algorithms substantially impede a complete understanding of various animate bioprocesses, 

which requires high-resolution imaging across all four dimensions of space and time 

simultaneously. 

In this study, we present the meta-learning-empowered reflective lattice light-sheet virtual 

structured illumination microscopy (Meta-rLLS-VSIM) as well as an assortative dual-stage near-

isotropic SR reconstruction framework. We demonstrate the proposed method can extend the 

single-dimensional (1D) SR capability of LLS-SIM to all three dimensions, resulting in a near-

isotropic super resolution of 120-nm in lateral and 160-nm in axial, without any modifications of 

the optical system or sacrifice of other imaging metrics compared to LLSM. In practical 

implementation, a DNN model for 1D SR inference is first trained using data acquired with the 

SI mode of the LLS-SIM system. Distinct from existing standard supervised learning, we devise 

a training scheme based on meta-learning23, which learns a comprehensive initial weight for fast 

adaptation to the scenarios of new biospecimens or signal-to-noise ratios (SNRs) by means of 

minimal training data. By synergizing the automatic data acquisition workflow and back-end 

meta-learning algorithms, we show that a new DNN model can be well-trained within tens of 

seconds, three orders of magnitude faster than standard training procedure. Next, we exploit the 

structural similarity and orientational randomness of biological specimens within the lateral 

space to infer anisotropic SR intermediates in multiple orientations (dubbed as virtual structured 

illumination), which are then combined using a generalized Wiener filter approach to obtain 

laterally isotropic SR volumes. Finally, instead of violently improving axial resolution by self-

learning and isotropic prediction17,20,24, we adopt a physically rationalized strategy of reflective 
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imaging25 that helps us create an additional virtual view of the sample complementary to the real 

one in sheet-scanning. Different from previous Bayesian-based joint deconvolution methods25,26, 

we design a self-supervised Richardson-Lucy dual-cycle fusion network (RL-DFN) to fully 

exploit the complementary resolution information from both views and recover the final near-

isotropic SR data volume. As such, we only need one-way sheet-scan acquisition of raw data to 

reconstruct near-isotropic SR volumes, which thus fulfills an unmet need for rapid, long-term, 

near-isotropic SR volumetric observation of subcellular dynamics with high fidelity and 

quantifiability. We demonstrate the versatile usability of Meta-LLS-VSIM on a large variety of 

specimens, including the botanic pollen tubes, thick mouse embryos, developmental C. elegans 

embryos, and other eukaryotes during mitosis or interkinesis. 

Results 

Laterally isotropic SR reconstruction by virtual structured illumination 

The homebuilt LLSM/LLS-SIM system was developed from the original design8, which operates 

at two modes in our experiments by assigning different phase patterns on the spatial light 

modulator: the structured illumination (SI) mode for training data acquisition, and the sheet-scan 

mode for fast light-sheet imaging (Fig. 1a and Methods). We noted that the biological specimens 

always arranged or grew in random orientation, so the training dataset of paired LLSM and LLS-

SIM images as a whole contains complete SR information about the specimens, even each of 

which just carries SR information of a single dimension. Accordingly, the trained DNN model 

actually carries complete feature maps of producing anisotropic SR intermediates for any given 

single dimension. Therefore, anisotropic 1D SR images along any orientation can be produced 

by simply rotating the input image relative to the original input data, and then reapplying the 

trained DNN on the rotated images27,28. Similar to the reconstruction in standard SIM, multiple 

1D SR stacks along equally spaced orientation angles were combined using a generalized Wiener 

filter approach to obtain laterally isotropic SR volumes. Therefore, we named this method as 

virtual structured illumination super-resolution (VSI-SR). Briefly, the VSI-SR scheme was 

implemented by three steps: (i) Acquire the training dataset using SI mode of the system and 

train a VSI-SR model (Fig. 1b); (ii) Apply the well-trained model onto the raw data that is 

rotated to three orientations equally spaced by 60°, hence generating three anisotropic SR 

components; and (iii) Combine the different components through joint deconvolution in the 
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Fourier space (Fig. 1c). Of note, compared to the previous implementation28, the VSI-SR scheme 

possesses three advantages: First, we employed coherent structured illumination rather than 

incoherent photo-reassignment to obtain the GT-SIM training data, offering higher resolution 

improvement and acquisition efficiency (Methods); Second, we elaborately designed a multi-

input/output generative adversarial network (GAN) architecture with a Fourier space-regularized 

loss function  (Supplementary Note 1), yielding an optimal output with regard to both resolution 

enhancement and high fidelity of SR information (Extended Data Figs. 1-3 and Supplementary 

Fig. 1); Third, instead of calculating the max intensity projections (MIP) in frequency space28, 

we incorporated the prior knowledge of the deterministic optical transfer function (OTF) of each 

component into a generalized Wiener filter to combine the SR components at different 

orientations, resulting in higher contrast and fewer artifacts (Extended Data Fig. 4). 
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Fig. 1 | Laterally isotropic SR reconstruction by virtual structured illumination. a, Illustration of the LLS-SIM 

system (upper panel) and its two imaging modes: structured illumination mode (bottom left corner) and sheet-scan 

mode (bottom right corner), with sketches of the back pupil plane and illumination in x-z and x-y views shown for 

each mode. b, Schematic of the training processes of the 2D VSI-SR network. We trained the VSI-SR model with 

the diffraction-limited LLSM images as input and LLS-SIM images as targets to learn the mapping of resolution 

improvement along the illumination orientation. c, Schematic of the 2D isotropic reconstruction process with the 

trained VSR-SR model. d-g, Representative maximum intensity projections (MIPs) of F-actin image stacks obtained 

by LLSM (d) and processed by RL deconvolution (e), conventional LLS-SIM (f), and VSI-SR (g). h-k, Logarithmic 

power spectrum coverages (PSCs) of the MIP images shown in d-g. l, Comparison of the intensity profile plots of 

LLSM (blue), deconvolved LLSM (yellow), Conv. LLS-SIM (green), and VSI-SR (red) along the short lines 

labelled in d-g. Scale bar, 5 μm (d), 2 μm (zoom-in regions of d). 

To characterize the performance of the VSI-SR method, we examined it on two different 

SIM systems, LLS-SIM (Fig. 1d-l and Supplementary Fig. 2) and total internal reflective 

fluorescence (TIRF) SIM (Supplementary Fig. 3), with a wide variety of subcellular structures 

including clathrin-coated pits (CCPs), microtubules (MTs), endoplasmic reticulum (ER), and F-

actin filaments. We noted that although the OTF support could be extended along lateral x-axis 

by conventional LLS-SIM with respect to the original or deconvolved LLSM images, the 

diffraction-limited resolution along y-axis caused a bottleneck to clearly resolve the fine 

structures of threadlike F-actin, punctate CCPs, tubular MTs, and reticulated ER in close 

proximity (Fig. 1f and Supplementary Fig. 2). In contrast, VSI-SR reconstructions successfully 

circumvented this problem by replenishing the high-frequency information in all lateral 

dimensions (Fig. 1h-k), which permitted resolving the dense actin filaments crisscrossing each 

other (Fig. 1l). This high-fidelity resolution improvement by VSI-SR was further validated with 

TIRF-SIM system and cross-modality testing, where the isotropic TIRF-SIM images could serve 

as the GT references (Supplementary Figs. 3, 4, and Supplementary Note 2). These results 

illustrate the effectiveness and robustness of the proposed VSI-SR strategy for reconstructing 

laterally isotropic SR images from diffraction-limited lattice light-sheet raw images. 

Meta-learning-based fast model adaptation for diverse biological specimens 

Due to the extreme diversity of subcellular biological structures and limited representation 

ability of DNNs, current deep learning-based SR methods usually need to train a dedicated 

model for each specific biological structure in order to ensure optimal inference performance. 

However, the training process for each model often necessitates a large amount of high-quality 

data acquired from more than 30 distinct regions of interest (ROIs), and takes very long time of 
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several hours to a few days13,14,28, which considerably impedes the applicability and efficiency of 

using such methods in daily experiments. On the other hand, we noticed that meta-learning (or 

called learning-to-learn) has been attracting growing attention of computer vison community in 

recent years29. Instead of just learning task-specific knowledge, meta-learning aims to capture the 

commonality of different tasks and find a sensitive and transferable point in the parameter space 

where the trained meta-model can quickly adapt to a new task with a small number of gradient 

updates and minimal data. Inspired by the model-agnostic meta-learning (MAML) algorithm23, 

we devised a meta-learning framework for the VSI-SR model (Meta-VSI-SR), and equipped our 

LLSM system with the meta-learning-empowered fast adaptation capability (Meta-LLS-VSIM) 

by streamlining automatic data acquisition, pre-processing, and meta-finetuning procedures (Fig. 

2a-d and Supplementary Note 3). Specifically, a meta-model (or meta-learner) was first trained 

with a large pre-acquired dataset of 10 distinct biological structures at two excitation intensity 

levels for each structure, which learned structure- and SNR-independent general knowledge of 

the SR task (Fig. 2a, Methods, and Extended Data Fig. 5). It is noteworthy that the pre-trained 

meta-model is not aimed to be directly used for image processing, but is capable of fast adapting 

to the unseen scenario of specific structures or SNRs. Once the meta-model is well-trained by 

experts, the adaptation procedure is very simple and friendly for end users: (i) firstly selecting 

three ROIs in the wide-field overview window of the control software; (ii) then the data 

acquisition and all computational procedures including LLS-SIM reconstruction, data 

augmentation, and meta-finetuning will be automatically executed (Fig. 2b and Methods). We 

demonstrated that the finetuning process could be accomplished in as fast as 30 seconds with 3 

ROIs, i.e., 720-fold faster and 12-fold less data than standard training, respectively, while 

yielding over 6dB improvement from the starting point in peak signal-to-noise ratio (PSNR) and 

superb SR performance (Fig. 2c, Supplementary Video 1). In addition, distinct from most deep 

learning SR methods that work in 2D imaging scenarios, Meta-VSI-SR models aimed to 

optimize the volumetric SR reconstruction capability by adopting a custom-designed multi-slice 

input/output scheme and a Fourier space-regularized discriminative loss function, which 

permitted the Meta-VSI-SR network to effectively utilize the structural continuity along the axial 

axis, and efficiently discriminated the high frequency components in Fourier space  (Extended 

Data Figs. 1-3 and Supplementary Note 1). 
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Fig. 2 | Meta-LLS-VSIM with laterally isotropic resolution and fast adaptation capability. a-d, The pipeline of 

Meta-LLS-VSIM imaging. A well-trained meta-model (a) can fast adapt to new biological structures (d) by a few 

simple steps: manually selecting three ROIs in the overview window of the operation interface (left part of b), 

waiting for automatic imaging, data pre-processing (right part of b), and meta-finetuning (c). The overall time for 

ROI selection, data acquisition, reconstruction and model finetuning is often less than 2.5 minutes (Supplementary 

Video 1). e, f, Representative max intensity projections (MIPs) of CCPs (e) and F-actin (f) imaged by LLSM (first 

column), Meta-LLS-VSIM before (second column) and after (third column) finetuning, and conventional LLS-SIM 

(fourth column). The right panel shows the magnified images of the boxed regions in the left images. Scale bar, 5 

μm (e, f), 1.5 μm (zoom-in regions of e), 2 μm (zoom-in regions of f). g, h, Reconstruction PSNR progressions of 

meta-models and pre-trained models during finetuning procedures for CCPs (g) and F-actin (h) images. 

Next, we performed an evaluation of Meta-VSI-SR methods by processing two new 

structures of CCPs and F-actin filaments which were not included in the meta-training dataset 

(Fig. 2d). We found that although the original meta-model without finetuning generated massive 

background artifacts, after meta-finetuning, the SR performance was instantly boosted by a large 

margin for both structures (Fig. 2e, f). In particular, Meta-VSI-SR eliminated the reconstruction 

artifacts in anisotropic LLS-SIM images, thereby clearly resolving finer details of either CCP 
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distribution or actin filament crisscrossing. Moreover, we compared the finetuning progression 

of meta-models and pre-trained models, i.e., the model trained with the standard gradient descent 

algorithm, both of which were trained using the same dataset. Compared to the pre-trained model, 

the meta-model evolved dramatically faster and converged to a higher PSNR with only 30 

minibatch iterations during finetuning (Fig. 2g, h), indicating that simply employing transfer 

learning or finetuning from a pre-trained network does not yield superior SR performance or 

generalization capability similar to our Meta-VSI-SR scheme. 

4D SR live-cell imaging with extended duration and enhanced optical sectioning capacity 

Volumetric SR imaging usually requires much higher excitation light intensity and more 

acquisition time per volume than diffraction-limited 3D imaging8,9, thus its live imaging duration 

has been limited to ~50 timepoints even for single color10,28. Resorting to the fast adaptation 

ability and superior SR performance of Meta-VSI-SR scheme, the Meta-LLS-VSIM is able to 

generate laterally isotropic multi-color SR images for a wide variety of specimens by operating 

at the sheet-scan mode and relatively low SNR condition. Hence, Meta-LLS-VSIM enables 

multi-color imaging of light-sensitive bioprocesses at unparalleled spatial and temporal 

resolution for a prolonged observation window. For instance, the F-actin contractile ring (CR) 

plays a vital role in generating the constricting force to segregate the two dividing cells during 

mitosis30, but whether it facilitates the partitioning of other organelles has rarely been studied. 

Here, we employed Meta-LLS-VSIM to image HeLa cells stably expressing Lifeact-mEmerald, 

KDEL-mCherry, and Lamp1-Halo for 357 timepoints (>190,000 slices in total) at 8 seconds per 

three-color whole cell volume, which recorded the entire process from CR formation, contraction 

to disassembly during mitosis (Fig. 3a and Supplementary Video 2). The enhanced resolution 

and volumetric imaging enabled accurate quantification of the contraction dynamics (Fig. 3b). 

We identified that the CR was contracted at a stable velocity in each individual cell, although 

varied from cell to cell (Fig. 3c, gray; Supplementary Fig. 5a). Moreover, the multi-color 

imaging allowed us to examine the coordination dynamics between CR contraction and the 

partitioning of membranous organelles. We observed that both the continuous ER and distributed 

lysosomes (Lyso) autonomously moved away from the cross-sectional area of the CR in advance 

of ring closing (Fig. 3c, magenta and yellow, and Fig. 3d), during which there are little 

interactions between the CR and ER or Lyso (Supplementary Fig. 5b-i). These observations 
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together implied that the CR was not directly involved in ER fission or Lyso partitioning in 

cytokinesis. 
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Fig. 3 | 4D SR live imaging by Meta-LLS-VSIM. a, Three-color Meta-LLS-VSIM images of F-actin (green), ER 

(magenta), and Lyso (yellow) at different timepoints of mitosis, showing the spatiotemporal dynamics of the three 

organelles along with the constriction of the CR (Supplementary Video 2). b, Meta-LLS-VSIM and LLSM images 

of a representative timepoint, showing that Meta-LLS-VSIM resolves finer details of all three structures than 

conventional LLSM. c, Plots of the contractile ring radius (gray), total intensity of ER (magenta) and Lyso (yellow) 

in the cross-sectional area of the CR over the normalized time course. d, SR images of F-actin, ER, and Lyso at two 

representative timepoints marked in the lower panel of c, showing the spatial distribution of CR, ER, and Lyso from 

a view parallel to the CR plane. e, Representative Meta-LLS-VSIM image of a developing mouse embryo 

expressing TOMM20-mEmerald, which is color-coded for distance from the substrate (Supplementary Video 3). f, 

Time-lapse Meta-LLS-VSIM images of a growing pollen tube (Supplementary Video 4). g, Temporally color-coded 

images of the pollen tube, the boxed regions imaged by Meta-LLS-VSIM and conventional LLSM are magnified on 

the right for comparison. h, Two-color Meta-LLS-VSIM images of a C. elegans embryo labelled with apical 

junction and Lyso before (left) and after (right) seam cell fusion. LLSM image is shown in the rightmost corner for 

comparison. i-k, Three representative cases with different initiation fusion sites on apical junction between adjacent 

seam cells: fusions beginning from both ends (i), from a single end (j), and from several intermediates (k). These 

magnified images correspond to regions labelled by white boxes in h. Scale bar, 3 μm (a, b, d, g, and i-k), 8 μm (e), 

6 μm (f), 5 μm (h). 

The performance of conventional LLSM when imaging thick or scattering samples is limited 

because of the sample-induced scattering and light-sheet broadening at the distance far from the 

beam waist. Synchronizing the line illumination mode with rolling-shutter detection of an 

electronic scientific complementary metal-oxide-semiconductor (sCMOS) to achieve a partial 

confocal effect is able to enhance the optical sectioning capability31, which, however, is not 

compatible with the super-resolution LLS-SIM mode8. To extend the application scope of 

volumetric SR imaging to deep and scattering tissues, we incorporated the Meta-VSI-SR scheme 

with synchronized rolling-shutter confocal slit-scan. Within this strategy, the Meta-VSI-SR 

model learned SR capacity of LLS-SIM from shallow parts of the specimen, i.e., with little 

scattering-induced aberration, and then was applied to the whole sample captured with the 

rolling-shutter confocal slit-scan mode (Methods), thereby enabling laterally isotropic 4D SR 

imaging for thick and scattering samples. To illustrate the potential of this method, we first 

employed it to record the dynamics of mitochondria in a mouse embryo labelled with TOMM20-

mEmerald across a thick area of 95ൈ95ൈ96 μm3 for 100 timepoints (Fig. 3e). The high-quality 

volumetric SR images enabled us to observe and track the active dynamics of mitochondria 

(Supplementary Video 3), and we noticed that unlike mature somatic cells, the mitochondria in 

early mouse embryo mostly present rounded or punctate morphology, which is consistent with 

the observation by electron microscopy32.  
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Next, we examined the optical sectioning capability of Meta-LLS-VSIM by imaging a 

growing pollen tube labelled with Lifeact-GFP (Methods) at a high speed of 4.125 Hz for 1,000 

consecutive volumes (Fig. 3f and Supplementary Video 4).  Despite being captured via the slit-

scan mode, the raw images were heavily contaminated by the strong scattering of plant 

cytoplasm, and the fine details of F-actin could not be distinguished due to the poor spatial 

resolution. In contrast, the isotropic SR reconstruction of Meta-LLS-VSIM substantially 

improved both contrast and resolution, revealing the spatiotemporal dynamics of cytoskeleton 

during the growing of pollen tubes (Fig. 3g).  

The plasma membrane fusion in the development of C. elegans has been long attracting 

interest of cell biologists, but was mostly studied with confocal or two-photon imaging deployed 

within a thin layer at an interval of several minutes because of the vulnerability of the developing 

embryo33. In virtue of the low phototoxicity and remarkable optical sectioning capacity of slit-

scan Meta-LLS-VSIM, we could capture a two-color video that clearly records the whole plasma 

membrane fusion process during C. elegans embryo development with high spatiotemporal 

resolution (Fig. 3h and Supplementary Video 5), which is difficult for existing SR techniques. 

Interestingly, we observed three typical cases with different initiation fusion sites on the apical 

junction between adjacent seam cells, i.e., fusions beginning from both ends (Fig. 3i), from a 

single end (Fig. 3j), and from several intermediates (Fig. 3k), which suggested a multitudinous 

mechanism of seam cell fusion regulation. 

Near-isotropic SR reconstruction by Meta-rLLS-VSIM 

Although the VSI-SR scheme can effectively extend the 1D SR capability to other lateral 

orientations, it cannot be applied to enhance the axial resolution. In recent years, several DL-

based methods were developed to directly improve axial resolution by deep self-learning12,17,19,20 

or cycle-consistent generative adversarial network18 in a reference-free manner. However, these 

kinds of techniques are subject to two major defects. First, the precondition for using them is that 

the sample structure itself has an isotropically morphological distribution in the 3D space, so that 

the SR knowledge learned from the x-y plane can be generalized into x-z or y-z planes. 

Unfortunately, this prerequisite is not always true for biological data, e.g., the majority of tubular 

structures extend laterally but not axially in adherent cells. Second, the axial resolution is usually 

three times worse than lateral, but improving both optical resolution and sampling rate by three 
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times directly from diffraction-limited acquisitions suffers from severe ill-posedness, which 

substantially degrades output fidelity13 (Extended Data Fig. 6). 

 

Fig. 4 | Near-isotropic SR reconstruction by Meta-rLLS-VSIM. a, Illustration of the acquisition process via 

reflective lattice light-sheet microscopy (rLLSM). The lower panel shows representative view-A and view-B images 

acquired by rLLSM system (labelled by WF) or processed with the laterally isotropic SR reconstruction algorithm, 

i.e., the Meta-VSI-SR method (labelled with Meta-LLS-VSIM). b, Schematic network architecture and data forward 

propagation of RL-DFN. The x-z views of PSFs of view-A, view-B, and network output are shown in the bottom 

right corner. c, 3D renderings (left) of synthetic wide-field microtubule data and its isotropic SR reconstruction by 

RL-DFN, and corresponding orthogonal views generated via deep-learning for axial resolution enhancement (DL-

ARE)19, Self-Net20, and RL-DFN. Partial synthetic view-A and view-B, as well as the ground-truth images are 
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provided for reference. d, Statistical PSNR comparisons of DL-ARE, Self-Net, and RL-DFN on the synthetic 

microtubule images. The PSNR values for original view-A and view-B are plotted for reference. e, Representative x-

y and x-z MIPs of view-A, view-B, joint deconvolved images (labelled with rLLSM), and Meta-rLLS-VSIM 

reconstructions from view-A and view-B. f, Magnified images of the boxed regions in e. g, Plots of the intensity 

profiles of the view-A, view-B, joint deconvolved image, and Meta-rLLS-VSIM image along the lines indicated by 

the two arrowheads in f. Scale bar, 2 μm (a), 1 μm (3D rendering view of c), 1.5 μm (planar MIP view of c), 3 μm 

(e), 1.5 μm (f). 

To rationally enhance axial resolution of Meta-LLS-VSIM, we modified our live imaging 

configuration by replacing the transparent coverslip with a reflective one, which allowed us to 

simultaneously detect two symmetrical views of the sample25 (Fig. 4a and Methods). Instead of 

deploying the naive multi-view deconvolution25,26,34 for view fusion, we devised a self-

supervised dual-view fusion algorithm, dubbed Richardson-Lucy dual-cycle fusion network (RL-

DFN), that incorporated the multi-view Richardson-Lucy (RL) iteration and deterministic point 

spread function (PSF) priors into the network architecture and loss design (Fig. 4b, Methods, 

Extended Data Fig. 7 and Supplementary Figs. 6). We reasoned that the inclusion of an 

additional view essentially rationalizes the axial resolution enhancement, and the elaborately 

designed prior-guided learning scheme is able to effectively improve the dual-fusion procedure 

compared with either self-learning or conventional RL deconvolution (Supplementary Note 4). 

To validate the performance of RL-DFN, we examined it on synthetic image stacks of tubular 

structures and spherical shells (Fig. 4c, Extended Data Fig. 6, and Supplementary Note 5). We 

found that although current self-learning-based methods could generate perceptually good 

isotropic images under such ideal conditions where the simulated sample itself is isotropically 

distributed, RL-DFN more precisely reconstructed the fine details of both structures with 

isotropic resolution and higher PSNR (Fig. 4d and Extended Data Fig. 6).  

Subsequently, in order to equip our Meta-LLS-VSIM system with reflection-based axial 

resolution enhancement (Meta-rLLS-VSIM), we constructed an integrated 3D isotropic 

reconstruction framework that consists of epifluorescence contamination removal, image stack 

deskew, laterally isotropic reconstruction and rotation, dual-view separation and registration, and 

the final dual-view fusion with RL-DFN (Extended Data Fig. 8 and Supplementary Note 6). We 

demonstrate that after the entire processing workflow, the spatial resolution reaches 119 nm 

(n=12 beads) laterally and 157 nm axially (n=9 beads), improving volumetric resolution by 15.4-

fold compared with conventional LLSM (Extended Data Fig. 9). Next, we compared Meta-rLLS-

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 31, 2024. ; https://doi.org/10.1101/2024.05.09.593386doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.09.593386
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

VSIM with other isotropic reconstruction techniques using experimentally acquired data of F-

actin, microtubules, and ER, and found that due to the huge morphology difference between 

lateral and axial sections, self-learning-based methods cannot recover axial resolution 

satisfactorily and generate massive artifacts (Extended Data Fig. 6). In contrast, Meta-rLLS-

VSIM dramatically improves resolution in all dimensions from the original dual-view 

acquisitions (Fig. 4e), achieving the highest spatial resolution and best SR quality compared with 

either deconvolution-based reflective LLSM (Fig. 4f, g) or DL-based computational 

reconstruction (Extended Data Fig. 6). 

Rapid, long-term, near-isotropic SR 4D subcellular imaging 

In Meta-rLLS-VSIM, the reflective configuration introduces the other complementary view of 

the sample within single captures, not sacrificing any imaging metrics relative to Meta-LLS-

VSIM or LLSM. To demonstrate the superior capability of Meta-rLLS-VSIM in fast, long-term, 

near-isotropic SR 4D imaging applications, we imaged Cos-7 cells transferred with GFP-SKL, 

ER-mCherry, and Lyso-Halo (labelling peroxisomes, ER, and lysosomes, respectively), 

collecting 400 three-color whole cell volumes at 12-second intervals (Fig. 5a, Supplementary 

Video 6). Despite working at almost the same speed and photon budget with standard LLSM, 

Meta-rLLS-VSIM dramatically improved the resolution both laterally and axially compared to 

the diffraction limit, clearly resolving reticular ER, punctate Perox, and ring-like Lyso (Fig. 5b). 

We quantified the spatial resolution of Meta-rLLS-VSIM to be 122 nm in lateral (Fig. 5c) and 

162nm in axial (Fig. 5d), respectively, by measuring the full width at half maximum (FWHM) of 

intensity profiles of ER or Perox sections indicated by arrowheads in Fig. 5b (n=10). The power 

spectrum coverages shown in Fig. 5e also indicated that Meta-rLLS-VSIM expectedly reached a 

near-isotropic resolution in live-cell imaging experiments. Furthermore, we reduced the 

acquisition interval to 8 seconds between adjacent timepoints and increased the total number of 

three-color volumes to over 720, realizing 1.6-hour long visualization of another Cos-7 cell 

without any noticeable photobleaching and phototoxicity (Supplementary Video 7, Extended 

Data Fig. 10), which corresponds to prolonging the imaging duration by more than 10-fold 

compared to the latest isotropic 3D-SIM working at even the single-color mode19. The ultrahigh 

volumetric resolution and extended time course of Meta-rLLS-VSIM allowed us to investigate 

interactions between multiple organelles and discover interesting cases, e.g., tubular ER 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 31, 2024. ; https://doi.org/10.1101/2024.05.09.593386doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.09.593386
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

generation by hitchhiking on a moving Lyso (Fig. 5f), much more easily and explicitly than ever 

before (Fig. 5g).  

 

Fig. 5 | Rapid, long-term, near-isotropic SR 4D subcellular imaging by Meta-rLLS-VSIM. a, Representative 

LLSM (bottom left corner) and Meta-rLLS-VSIM (top right corner) image of a live Cos-7 cell expressing GFP-SKL, 

ER-mCherry, and Lyso-Halo from a three-color video of 400 timepoints (Supplementary Video 6). b, Magnified x-y 

and x-z sections of the region labelled with the white box in a imaged by LLSM (left) and Meta-rLLS-VSIM (right). 

c,d, Lateral (c) and axial resolution (d) evaluation by profiling intensity along the lines indicated by white 

arrowheads in b (n=10 for both lateral and axial resolution). e, Logarithmic power spectrum coverages of the Perox 

images displayed in b. f, Time-lapses Meta-rLLS-VSIM images of ER and Lyso showing a special case of ER 

generation hitchhiking on a moving Lyso. g, Comparison of images of a Lyso indicated by the blue box in f, imaged 

by LLSM and reconstructed by RL-DFN and VSI-SR. h,i, Distributions of organelles in the lateral (h) and axial (i) 

dimensions of two Cos-7 cells. j, Box whisker plots showing the fraction of Perox (left column) and Lyso (right 

column) contacting each of the other labelled compartments in the juxtanuclear or peripheral regions of the cell 
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(n=721 and 812 frames for the cells labelled ER and MTs, respectively). k,l, Time-lapse LLSM (k) and Meta-rLLS-

VSIM images showing a microtubule elongated by hitchhiking on a moving Lyso. Gamma value, 0.7 for Meta-

rLLS-VSIM images of ER, MT, and Perox in a, b, f, k, and l. Scale bar, 3 μm (a), 1 μm (b, f, g, k, and l). 

Different organelles each exhibit a characteristic distribution and dispersion pattern within 

the three-dimensional space that is affected by cytoskeleton such as microtubules35. To quantify 

the spatiotemporal coordination and interactions between multiple organelles and cytoskeleton, 

we employed Meta-rLLS-VSIM to image another Cos-7 cell labelled by 3×mEmerald-Ensconsin, 

mCherry-SKL, and Lamp1-Halo for 812 timepoints at 8 seconds per three-color whole cell 

volume (Supplementary Video 8), and characterized the organelle distribution patterns in both 

lateral and axial dimensions (Fig. 5h, i, Supplementary Fig. 7, Methods). We observed that in the 

lateral dimension, ER and MT both had a wide distribution, whereas Perox displayed a narrow 

distribution around the juxtanuclear zone (Fig. 5h). In the axial dimension, ER, MTs and Perox 

were generally localized throughout the cell and kept relatively stable within the hour-long 

observation window, while the distribution of Lyso varied along with time markedly (Fig. 5i, 

Supplementary Fig. 7), implying their high dynamics and complex functionalities in maintaining 

cell homeostasis36. Next, we quantified the fraction of globular organelles (Perox and Lyso) that 

made contacts with ER and MTs by tracking individual Lyso and Perox and mapping their 

contacts with other organelles over time (Methods, Fig. 5j). We observed that ER and MTs 

showed high contact rates with other two globular organelles in both peripheral and juxtanuclear 

regions, whereas the Perox-Lyso contacts preponderantly happened in the juxtanuclear region 

with relatively low contact rates (Fig. 5j). Additionally, during the investigation of the 

intracellular contacts, we noticed an interesting hitchhiking event between MTs and Lyso (Fig. 

5k, l), which was previously reported to happen on ER tubules that adhered to moving 

mitochondria or Lyso in mammalian cells37. These observations and results illustrate the superior 

SR capability of Meta-rLLS-VSIM in developing hypotheses about cellular organization and 

dynamics. 

Discussion 

In this work, we first presented a virtual structured illumination SR reconstruction strategy, that 

extends the 1D SR capability of conventional LLS-SIM to all lateral dimensions without any 

hardware modification. By collaboratively optimizing the DNN architecture, loss function, and 

joint deconvolution algorithms, we demonstrate the VSI-SR scheme achieves superior SR 
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reconstruction for LLSM images with laterally isotropic resolution of 180 nm (Extended Data 

Figs. 1-3, 9). Moreover, to overcome the longstanding problem of high costs for image SR 

network training in practical usage, we devised Meta-LLS-VSIM by synergizing the advantages 

of both optical front-end and meta-learning back-end methodologies, that could rapidly adapt to 

any type of biological specimens or data SNR within tens of seconds, reducing the training data 

and time cost by 12-fold and 720-fold, respectively. Of note, although demonstrated on SR 

processing for LLSM, the proposed meta-learning scheme can be well applied to other DL-based 

image restoration tasks for various imaging modalities, such as denoising12,15,38, phase retrieval39, 

virtual staining40,41, etc. 

Furthermore, to enhance the axial resolution while not sacrificing other imaging metrics, we 

incorporated reflective acquisition strategy25 into our Meta-LLS-VSIM system to simultaneously 

capture two complementary views of the specimen with one-time scanning. Then we devised a 

Richardson-Lucy dual-view fusion network, dubbed RL-DFN, that combined an unmatched back 

projector-based RL iteration34 for fast deblurring and the conditional generative adversarial 

network42 (cGAN) for feature fusion in a self-supervised manner. Compared with existing 

methods that directly improve axial resolution by self-learning, RL-DFN is more physically 

rational and achieves the best performance in axial resolution enhancement for both simulated 

and experimental data. We also constituted an integrated reconstruction framework, which 

covers the whole processing pipeline from the original dual-view acquisitions to near-isotropic 

SR reconstructions, improving the spatial resolution to 120 nm in lateral and 160 nm in axial. 

Taken all these advances together, we demonstrate that Meta-LLS-VSIM and Meta-rLLS-

VSIM fulfill the unmet requirement for 4D SR imaging at ultrahigh spatiotemporal resolution 

with long duration of hundreds of multi-color volumes for a large variety of subcellular 

bioprocesses, revealing fast dynamics and long-term interactions of multiple organelles. In 

particular, by integrating the proposed SR reconstruction scheme with synchronized rolling-

shutter confocal slit detection, the isotropic SR capability can be further extended to image thick 

or scattering samples such as pollen tubes, C. elegans and mouse embryo. These characteristics 

underlie the versatile utility and superior performance of Meta-LLS-VSIM and Meta-rLLS-

VSIM methodology, offering great opportunities to better investigate and understand diverse 

biological phenomena. 
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Methods 

LLS-SIM system 

The home-built LLSM/LLS-SIM system was developed from the original design8. Three 

lasers of 488 nm, 560 nm, and 640 nm (MPB Communications) were controlled by an AOTF, 

and then illuminated the LLS pattern displayed on the SLM. In the SI mode, the LLS patterns of 

3-phase were sequentially displayed onto the SLM and synchronized with the programmed “ON” 

time of AOTF. The diffracted light was filtered by an annular mask equivalent to 0.5 outer NA 

and 0.375 inner NA for the excitation objective (Special Optics). Subsequently, the filtered 

excitation light was scanned by the z-galvo-objective in a step size of 0.2 μm or by sample piezo 

in a step size of 0.39 μm to acquire the volumetric raw LLS-SIM images. In the ordinary sheet-

scan mode, a fixed LLS pattern was filtered by another annular mask equivalent to 0.35 outer 

NA and 0.14 inner NA to elongate the light-sheet, then quickly dithered by x-galvo (Cambridge 

Technology, 6210H), and then scanned by using of sample piezo in a step size of 0.39 μm, rather 

than using z-galvo-objective scan mode, because the sample holder has lighter-weight than 

objective, which allows the sample piezo to run in high-speed with small hysteresis. Moreover, 

instead of driving the sample piezo with the ramp wave, we used the triangle wave to minimize 

the flyback time when reversing the scanning direction of the piezo stage. For the rolling-shutter 

confocal slit-scan mode, a Gaussian beam instead of LLS patterns was quickly scanned along the 

x-axis to create the light-sheet, which is synchronized with the camera’s rolling shutter to form a 

virtual confocal slit effect. We used an active 15-pixel column in the sCMOS camera 

(Hamamatsu, Orca Fusion) in our experiments for optimal tradeoff between the SNR and 

contrast.  

Live cell specimens were placed in a custom designed microscope incubator (OKO lab, 

H301-LLSM-SS316) to maintain the physiology condition of 37℃ and 5% CO2 during imaging. 

Fluorescence emission was collected by the detection objective (Nikon, CFI Apo LWD 25XW, 

1.1NA) and captured by the sCMOS camera. The reflective coverslips used in the Meta-rLLS-

VSIM experiments were customized by sputtering a 150-nm-thick aluminum film over the round 

glass coverslip (𝜙=12 mm × 0.17-mm-thickness) and then protected with a 700-nm-thick layer 

of SiO2. The imaging conditions of live-cell experiments are detailed in Supplementary Table 1. 

Network architecture of the VSI-SR model 
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The VSI-SR neural network model is constructed based on the conditional generative adversarial 

network (cGAN)43, consisting of two models: one is the generator 𝒢, i.e., the model used for 

inference (in the main manuscript the ‘VSI-SR model’ referred to 𝒢 except as otherwise noted), 

which transfers low-resolution (LR) images into SR images, and the other is the discriminator 𝒟 

which determines whether an image comes from training dataset or 𝒢. Specifically, the VSI-SR 

model 𝒢 receives LR fluorescence images with the size of 𝐻 ൈ𝑊 ൈ 𝐶௜௡, and outputs SR images 

upscaled by 1.5-fold with the size of  1.5𝐻 ൈ 1.5𝑊 ൈ 𝐶௢௨௧. We adopted 7 and 3 as 𝐶௜௡ and 𝐶௢௨௧, 

respectively, in our experiments, which empirically achieve the best SR performance (Extended 

Data Fig. 1, and Supplementary Note 1). The generator 𝒢 begins with a 2D convolutional layer 

for channel augmentation, and then the output feature maps are fed into four sequential residual 

groups (RGs), each of which contains four channel attention blocks as is defined in previous 

paper44. After RGs, the extracted features are upscaled, and fed into two Conv-LeakyReLU 

modules to produce the final SR images. The discriminator 𝒟 takes the outputs from 𝒢 or GT SR 

images as the input, and provides the probability of the input being the GT. 𝒟 begins with 11 

Conv-LeakyReLU modules for deep feature extraction. Then their outputs are fed sequentially 

into a global average pooling layer, two fully connected layers with a LeakyReLU activation, 

and a sigmoid activation function to output the estimated probability. The overall network 

architecture of 𝒢 and 𝒟 are depicted in Supplementary Fig. 1. 

During the training phase, we elaborately designed a combined objective function for 𝒢 

(Extended Data Fig. 3), which consists of four terms: mean square error (MSE) loss, structural 

similarity (SSIM) loss, fast Fourier transform (FFT) loss, and the discriminative loss: 

ℒ𝒢|𝒟ሺ𝑋,𝑌ሻ ൌ ℒெௌாሺ𝑋,𝑌ሻ ൅ 𝛾ଵℒௌௌூெሺ𝑋,𝑌ሻ ൅ 𝛾ଶℒிி்ሺ𝑋,𝑌ሻ ൅ 𝛾ଷℒ஽௜௦௖ሺ𝑋,𝑌ሻ 

ൌ 𝑀𝑆𝐸ሺ𝒢ሺ𝑋ሻ,𝑌ሻ ൅  𝛾ଵ൫1 െ 𝑆𝑆𝐼𝑀ሺ𝒢ሺ𝑋ሻ,𝑌ሻ൯ 

൅ 𝛾ଶ𝑀𝑆𝐸 ቀ𝐹𝐹𝑇൫𝒢ሺ𝑋ሻ൯,𝐹𝐹𝑇ሺ𝑌ሻቁ െ 𝛾ଷ log ቀ𝒟൫𝒢ሺ𝑋ሻ൯ቁ , ሺ1ሻ 

where X and Y denote the LR input images and the SR targets, respectively; 𝛾ଵ, 𝛾ଶ, and 𝛾ଷ are 

weighting scalars to balance the contributions from these four terms, and we set 𝛾ଵ ൌ 0.1, 𝛾ଶ ൌ 1, 

𝛾ଷ ൌ 0.1 empirically in our experiments. Within the combined loss function, the first two terms, 

i.e., ℒெௌா and ℒௌௌூெ, penalize the difference between predictions and GT images in the spatial 

domain, while the third term ℒிி் minimizes the errors in frequential space, which we found to 

be helpful to learn more high frequency information45 (Extended Data Fig. 3). The last term 
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ℒ஽௜௦௖  serves as regularization based on the knowledge from the discriminator 𝒟, which also 

benefits for generating finer details of biological structures.  

On the other hand, the objective function of 𝒟 is a binary cross-entropy function described as: 

ℒ஽ሺ𝑋,𝑌ሻ ൌ െ log൫𝒟ሺ𝑌ሻ൯ െ log ቀ1 െ 𝒟൫𝒢ሺ𝑋ሻ൯ቁ . ሺ2ሻ 

𝒢 and 𝒟 are trained alternately in the inner loop of meta-learning (see details in the next section), 

during which they compete with each other, and finally reach an equilibrium state. 

Meta-model training and finetuning 

The datasets of different biological specimens were acquired via our home-built LLS-SIM 

system. We generally acquired raw LLS-SIM images from about 30-50 distinct ROIs for each 

type of samples. For each ROI, five different levels of light intensity ranging from low (about 

100 average photon counts) to high (more than 1000 average photon counts) fluorescence level 

were acquired, and the images of the highest fluorescence level (i.e. the GT raw images) were 

reconstructed into high-quality GT LLS-SIM images via the conventional LLS-SIM 

reconstruction algorithm. In order to generate the training dataset for meta-learning, we 

established 20 diverse task datasets from 10 distinct biological specimens with low (about 200 

average photon counts) and high (more than 1000 average photon counts) fluorescence levels. 

Each task tackles a specific image SNR, i.e., low or high SNR, of a specified biological structure. 

It needs to be emphasized that instead of generating more task datasets by introducing various 

fluorescence levels, we only considered low or high SNR tasks since we found that too many 

tasks that were similar to each other would degrade the meta-model into an ordinary one without 

fast adaptation capability. The ten biological specimens used in meta-training in this paper were 

the outermost granular component, chromosomes, innermost fibrillar center, fibrillarin, Lyso, 

MTs, F-actin in pollen tubes, inner mitochondrial membrane, ER in adherent Cos-7 cells and ER 

in mitotic Hela cells during metaphase. The detailed information of the datasets used for training 

the meta-model is shown in Supplementary Table 2. 

The pre-processing procedure of the raw data contains following steps: (i) applying deskew 

to all LLSM images (averaged from the raw LLS-SIM images) and their corresponding GT LLS-

SIM images; (ii) removing the camera background, i.e., ~100 sCMOS counts, for LLSM images 

and applying a 2D Gaussian filter with the standard deviation of 0.6 pixels for GT LLS-SIM 

images to slightly suppress the noise-induced reconstruction artifacts; (iii) normalizing all 
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images to [0,1]. Then, the whole dataset was augmented into ~ 54, 000 image patch pairs of 

LLSM patches (64 ൈ 64 ൈ 7 voxels) and their corresponding GT LLS-SIM patches (96 ൈ 96 ൈ

3 voxels), that is, 2,700 pairs for each task. As illustrated above, we adopted a multi-slice 2D 

training scheme which considered volumetric LLSM data as multi-channel 2D images, and 

inferred the central three x-y slices from the corresponding seven consecutive input x-y slices. 

This scheme outperformed others since it fully took advantage of the spatial continuity of z-axis 

of both LLSM inputs and LLS-SIM targets (Extended Data Figs. 1 and 2). 

The training process of meta-learning is different from conventional gradient descent since in 

meta-training, the ultimate goal is to train a model such that fast learning and great improvement 

occur on a new task within a small number of gradient updates using minimal training data. 

Inspired by the MAML algorithm23, we devised a meta-learning strategy for our cGAN-based 

VSI-SR model, which generally consisted of outer-loop and inner-loop. In the outer-loop, three 

tasks were randomly sampled from task sets and fed into the inner-loop to calculate task-

specified loss at every iteration. Then, all task-specified losses were used to update the meta-

generator 𝒢 and meta-discriminator 𝒟 via the Adam optimizer. The outer learning rates of 𝒢 and 

𝒟 were set as 1 ൈ 10ିସ and 2 ൈ 10ିହ, respectively, in our experiments. In the inner loop, 16 

LLSM and LLS-SIM image pairs were randomly sampled from every selected task, in which 8 

pairs were used as the supported set and 8 pairs as the query set. The basic 𝒟 learner and 𝒢 

learner were alternately updated three times with the supported set via the SGD optimizer, then 

every task-specified loss can be evaluated with the updated learners and the query set. The inner 

learning rates of 𝒢 and 𝒟 were 1 ൈ 10ିଶ and 2 ൈ 10ିଷ, respectively. In our experiments, deep-

learning models were trained and implemented on a computer work station equipped with an 

Intel(R) Xeon(R) Platinum 8358 CPU at 2.60 GHz and three NVIDIA A800 graphic processing 

cards with Python version 3.7 and Pytorch version 2.1.0. The meta-training process typically 

lasted for ~24 hours with ~100,000 mini-batch iterations when three A800 cards were used 

simultaneously for distributed data parallel training (DDP) of Pytorch. It is noteworthy that the 

meta-training is a one-time procedure, and all VSI-SR models used in live imaging experiments 

of this work were finetuned from the same Meta-VSR-SR model. The overall meta-training 

procedure is depicted in Extended Data Fig. 5. 
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At the finetuning stage, three ROIs of a target biological specimen were augmented into 600-

1000 LLSM/LLS-SIM patch pairs as the supported set, and we finetuned the meta-model 𝒢 with 

supported set in 30 gradient steps with a batch size of 20 via the SGD optimizer, of which the 

learning rate was 2-10 times higher than the inner learning rate of 𝒢. After finetuning, the meta-

model 𝒢 quickly adapted to the target specimen, yielding a specified VSI-SR model for the target 

biological structure. The finetuning process was typically less than 10 seconds with an NVIDIA 

A800 or RTX3090 graphic processing card on our computer work station.  

Laterally isotropic SR reconstruction via VSI-SR 

Given the fluorescence distribution 𝑆  of a sample, the image captured with LLSM can be 

approximated as 𝐼୐ୖ ൌ 𝑆 ⊗ 𝑃୐ୖ , where 𝑃୐ୖ  represents the system PSF. If illuminating the 

sample with sinusoidal stripe patterns in orientation 𝜙଴ (assume 𝜙଴=0 for simplicity afterward), 

we get the anisotropically frequency extended SR image by the conventional SIM reconstruction 

algorithm expressed as  𝐼ୗୖି଴ ൌ 𝑆 ⊗ 𝑃ୗୖି଴ . Here, 𝑃ௌோି଴  is the anisotropic SR PSF as a 

narrowing version of 𝑃୐ୖ in orientation 𝜙଴ ൌ 0. As described above, the VSI-SR or Meta-VSI-

SR model was trained to map from the LLSM image 𝐼୐ୖ to anisotropic SR image 𝐼ୗୖି଴ and we 

applied the trained VSI-SR model to process the image rotated by 𝜙-angle from the original 𝐼୐ୖ 

(denoted as 𝐼୐ୖିథ ൌ  𝑅థ𝐼୐ୖ ൌ  𝑅థ𝑆⊗ 𝑃୐ୖ, where 𝑅థ is the rotation operator by angle 𝜙) and 

got the anisotropically super-resolved prediction 𝑓ఏ൛𝐼୐ୖିథൟ ൌ 𝑓ఏ൛𝑅థ𝑆 ⊗ 𝑃୐ୖൟ, where 𝑓ఏ denotes 

the forward propagation of the VSI-SR model with trained parameters 𝜃. Then by rotating the 

output SR image backward, we got the final estimation of the anisotropic SR image in 

orientation 𝜙: 

 𝐼ୗୖିథ ൌ 𝑅ିథൣ𝑓ఏ൛𝑅థ𝑆 ⊗ 𝑃୐ୖൟ൧ ൌ  𝑆 ⊗  𝑃ୗୖିథ. ሺ3ሻ 

Here, rotating the anisotropic PSF 𝑃ୗୖି଴  in the illumination orientation by angle 𝜙 

approximates the anisotropically narrowed PSF 𝑃ୗୖିథ  in orientation 𝜙 . Generally, three 

orientations of illumination equally spaced between 0 to π are used to isotropically fill the OTF 

extension. Thus, we simply set 𝜙 to be 0, π/3, and 2π/3.  

To compute the final isotropic VSI-SR image, we combined the above anisotropic 

predictions in Fourier space through a generalized Wiener filter approach. Each anisotropic SR 

image 𝐼ୗୖିథ transformed to the Fourier space 𝐼ሚୗୖିథ is a summation of the zero-order frequency 
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component, denoted as 𝐶ሚథ
଴, and the symmetrically distributed first-order components 𝐶ሚథ

േଵ. We 

simplify the zero component to be C෨଴  since it is unaffected by the illumination. The image 

assembled from 𝑚 orientations in Fourier space is expressed as 

𝐼ሚ୧ୱ୭ିୗୖ ൌ
𝐶ሚ଴ ⋅ 𝑃෨଴  ൅  ∑ 𝐶ሚథ೔

േଵ ⋅ 𝑃෨థ೔
േଵ௠

௜ୀଵ

 𝜔ଶ  ൅  ห𝑃෨଴ห
ଶ

 ൅  ∑ ቚ𝑃෨థ೔
േଵቚ

ଶ
௠
௜ୀଵ  

ൌ
 ∑ 𝐼ሚୗୖିథ೔ ⋅ ൫𝑃෨థ೔

േଵ ൅ 𝑃෨଴൯௠
௜ୀଵ  െ  ሺ𝑚 െ 1ሻ ⋅ 𝐶ሚ଴ ⋅ 𝑃෨଴ 

𝜔ଶ  ൅  ห𝑃෨଴ห
ଶ

 ൅  ∑ ቚ𝑃෨థ೔
േଵቚ

ଶ
௠
௜ୀଵ

. ሺ4ሻ 

The wiener filtering compensates for the frequency attenuation introduced by the system 

OTF, with the parameter 𝜔 relaxing the compensation in regions where the OTF value is low and 

set according to the imaging SNR. The 𝑃෨଴ and 𝑃෨థ೔
േଵ represent the OTF for zero-order and first-

order frequency components, respectively, and the zero component C෨଴  is computed as the 

Fourier transform of the LLSM image 𝐼୐ୖ. 

Network architecture of RL-DFN 

The RL-DFN is constructed based on the cGAN framework with dual discriminative cycles. 

Specifically, it consists of three individual models: a 3D generator 𝒢ோ௅ି஽ிே that fuses features 

from dual-view inputs and reconstructs isotropic SR image volumes, and two 2D discriminators 

𝒟஺ and 𝒟஻  that distinguish whether a sectioned image comes from the input data or from the SR 

volume generated by 𝒢. Of note, here ‘3D’ and ‘2D’ refer to the feature dimensions propagated 

in the neural networks, i.e., the 3D model utilizes 3D convolutional layers and the 2D model uses 

2D ones. 

The network architecture of 𝒢ோ௅ି஽ிே is illustrated in Fig. 4b and detailed in Supplementary 

Fig. 6a, which begins with a Richardson-Lucy deconvolution module (RDM) that explicitly 

executes one classical RL update step for two anisotropic inputs 𝐼୅ሺ𝑥ሻ  and 𝐼୆ሺ𝑥ሻ . The 

calculation in RDM can be formulated as 

𝐹ோ௅,஺ሺ𝜉ሻ ൌ න
𝐼୅ሺ𝑥ሻ

׬ 𝐹଴ሺ𝜉ሻ𝑃୅ሺ𝑥|𝜉ሻ𝑑𝜉
 
క

 

௫

𝑃୅ሺ𝑥|𝜉ሻ𝑑𝑥, ሺ5ሻ 

𝐹ோ௅,஻ሺ𝜉ሻ ൌ න
𝐼୆ሺ𝑥ሻ

׬ 𝐹଴ሺ𝜉ሻ𝑃୆ሺ𝑥|𝜉ሻ𝑑𝜉
 
క

 

௫

𝑃୆ሺ𝑥|𝜉ሻ𝑑𝑥, ሺ6ሻ 

where 𝐹଴ሺ𝜉ሻ denotes the average of  𝐼୅ሺ𝑥ሻ and 𝐼୆ሺ𝑥ሻ, 𝑃୅ሺ𝑥|𝜉ሻ and 𝑃୆ሺ𝑥|𝜉ሻ are PSFs of view A 

and B, respectively, both as functions of their respective pixel locations 𝑥 and 𝜉. Then the RL-
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deconvolved volumes 𝐹ோ௅,஺ and 𝐹ோ௅,஻  are fed into the fusion module to implicitly generate an 

isotropic SR volume. In the fusion module, two identical feature extraction blocks, FEB୅ and 

FEB୆, are separately applied to extract features from 𝐹ோ௅,஺ and 𝐹ோ௅,஻, with each FEB consisting 

of four convolutional layers (two of them followed by batch normalization and LeakyReLU 

activation) for feature extraction and a sigmoid activation to normalize the output to [0, 1]. 

Afterwards, the output features are merged by Hadamard product to obtain the fusion feature in 

embedding space. Finally, another U-shaped feature extraction block FEB୙  (detailed in 

Supplementary Fig. 6a) is applied to generate the final isotropic SR volume. The overall 

operation in the fusion module can be represented as  

𝐹ௌோ ൌ FEB୙ሺFEB୅ሺ𝐹ோ௅,஺ሻ ൈ FEB୆ሺ𝐹ோ௅,஻ሻሻ, ሺ7ሻ 

where ൈ denotes the Hadamard product. 

The discriminator 𝒟஺ and 𝒟஻  share the same architecture and objective function, hence they 

are collectively denoted as 𝒟஺஻ hereafter. 𝒟஺஻  consists of six convolutional layers, in which the 

central four convolutional layers are followed by batch normalization and LeakyReLU activation 

with a leaky factor of α=0.1. Then the output of the last convolutional layer is fed into the 

sigmoid activation function to obtain the predicted probability.  

The objective function of 𝒢ோ௅ି஽ிே and 𝒟஺஻, denoted as ℒ𝒢|𝒟
ோ௅ି஽ிே and ℒ𝒟

ோ௅ି஽ிே, respectively, 

are defined separately in a self-supervised manner. Specifically, ℒ𝒢|𝒟
ோ௅ି஽ிே is defined as the sum 

of three terms: cycle loss 𝐿௖௬௖௟௘ , discriminative loss 𝐿஽௜௦௖ , and total variational (TV) 

regularization 𝑅்௏, which can be formulated as 

ℒ𝒢|𝒟
ோ௅ି஽ிேሺ𝐼஺, 𝐼஻,𝑌ሻ ൌ   ℒ௖௬௖௟௘ሺ𝐼஺, 𝐼஻ ,𝑌ሻ ൅ 𝛼ℒ஽௜௦௖ሺ𝑌ሻ ൅ 𝛽𝑅்௏ሺ𝑌ሻ ሺ8ሻ 

where 𝐼஺, 𝐼஻ are the original dual-view inputs, 𝑌 is the output SR volume by 𝒢ோ௅ି஽ிே, and 𝛼,  𝛽 

are scalar weighting factors to balance the corresponding terms, which are set empirically to 𝛼 = 

0.02, γ=2 ൈ 10ି଺ for best performance in our experiments. 

In the objective function described in Eq. (8), the cycle loss ℒ௖௬௖௟௘ penalizes the difference 

between the anisotropic input of each view and the isotropic output of 𝒢ோ௅ି஽ிே  degraded by 

corresponding PSF 𝑃୅ and 𝑃୆. As such, the ℒ௖௬௖௟௘ contains two components as such 

ℒ௖௬௖௟௘ሺ𝐼୅, 𝐼୆,𝑌ሻ ൌ MAEሺ𝑌 ⊗ 𝑃୅, 𝐼୅ሻ ൅ MAEሺ𝑌 ⊗ 𝑃୆, 𝐼୆ሻ, ሺ9ሻ 
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where MAE denotes the mean absolute error. ℒ௖௬௖௟௘ is devised based on the physical model and 

utilizes the prior knowledge of PSFs, which accelerates the training process and guarantees the 

output fidelity. On the other hand, the discriminative loss ℒ஽௜௦௖ is associated with the predicted 

probability by 𝒟஺ and 𝒟஻ for image sections sampled from the 𝒢ோ௅ି஽ிே output. The sectioning 

operation is performed using a rotation sectioning module, which samples two 2D slices 𝑆஺ and 

𝑆஻ along the orientations perpendicular to the optical axis of view-A and view-B with a random 

deviation ranging in [-π/6, π/6] (Extended Data Fig. 7a). We empirically found that the 

introduction of the randomness of the sampling angle improved the robustness and overall 

performance of RL-DFN. The ℒ஽௜௦௖ can be formulated as 

ℒ஽௜௦௖ሺ𝑌ሻ ൌ
1

𝑤 ൈ ℎ
෍ൣ𝑙𝑜𝑔൫𝐷஺ሺ𝑆஺ሻ൯ ൅ 𝑙𝑜𝑔൫𝐷஻ሺ𝑆஻ሻ൯൧௜

௪ൈ௛

௜ୀଵ

ሺ10ሻ 

The TV regularization 𝑅்௏ is applied as a spatial continuity prior of biological specimens, 

which is calculated by 

𝑅்௏ሺ𝑌ሻ ൌ ෍ቂ൫𝑌௜ାଵ,௝,௛ െ 𝑌௜,௝,௛൯
ଶ
൅ ൫𝑌௜,௝ାଵ,௛ െ 𝑌௜,௝,௛൯

ଶ
൅ ൫𝑌௜,௝,௛ାଵ െ 𝑌௜,௝,௛൯

ଶ
ቃ
ଵ
ଶ ,

 

௜,௝,௛

ሺ11ሻ 

where 𝑖, 𝑗,ℎ denote the 3D coordinates of 𝑌. The objective function of the discriminator 𝒟஺஻ is 

defined as the binary cross-entropy. Taking 𝑦 as the output of 𝒟஺஻ and 𝑦ீ் as the ground truth 

matrix (all 0 or 1 matrix in practice), then ℒ𝒟
ோ௅ି஽ிே can be described as 

ℒ𝒟
ோ௅ି஽ிேሺ𝑦,𝑦ீ்ሻ ൌ  െ𝑦ீ்𝑙𝑜𝑔ሺ𝑦ሻ െ  ሺ1 െ 𝑦ீ்ሻ𝑙𝑜𝑔ሺ1 െ 𝑦ሻ. ሺ12ሻ 

During the training process, 𝒢ோ௅ି஽ிே and 𝒟஺஻ is playing an adversarial game. The objective 

of 𝒢ோ௅ି஽ிே  is to deceive 𝒟஺஻  into taking the sections sampled from its output as the real 

isotropic SR section sampled along the SR orientation of the anisotropic inputs. In contrary, the 

objective of 𝒟஺஻ is to determine if the input image is sectioned from 𝒢ோ௅ି஽ிே’s output or the 

input anisotropic volumes.  

Training and application of RL-DFN 

To generate the training dataset of RL-DFN, we applied random cropping from the feature-only 

regions, and augmented the original data into thousands of volume pairs of view-A and view-B 

(256×256×64 pixels for each). During the training process, we randomly initialized the networks 

and trained the generative and discriminative models with the Adam optimizer and a typical 
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starting learning rate of 1 ൈ 10ିସ. The generator and discriminator were updated once and twice 

in each iteration with a batch size of 3 and 2, respectively. The rotation sectioning module 

sampled a new set of 2D slices (250×60 pixels for each) before each training iteration along 

randomly sampled orientations as described above. The overall training process of RL-DFN 

typically lasted 15,000 minibatch iterations, taking ~8 hours. After the self-supervised training, a 

well-trained RL-DFN, more specifically the generator of RL-DFN, can be utilized in the dual-

view fusion task for the same type of data within or out of the training dataset. It typically took 

~1 second to merge two anisotropic image volumes of 512×512×150 pixels. 

Organelle distribution and contact quantification 

For analysis of organelle spatial distribution shown in Fig. 5h and i, the pixel-based 

quantification is performed. Each channel of the images was low-pass filtered using a 3D 

Gaussian kernel with sigma of 1 pixel. The smoothed images were then binarized with a 

threshold optimized by the Otsu algorithm46. The histograms of positions of pixels above the 

threshold in centroid coordinates are calculated. The nucleus center in lateral plane was 

identified visually and the cell boundary was identified by using ER as the marker structure. The 

pixel-based quantification was applied to each timestamp of the time-lapse images, and an 

averaged result on both the full recording time and for each 10-minute duration was analyzed 

(Supplementary Fig. 7).  

For analysis of the organelle interactions shown in Fig. 5j, the multi-channel images were 

first segmented using Imaris software with the surfaces tool. Background subtraction and manual 

thresholding were performed for each channel, and split touching objects were used for the 

globular organelles (i.e., peroxisomes and lysosomes). Next, distance transformation was 

performed on each of the segmented surface channels to calculate the distance between 

organelles. Segmented objects with a minimum distance of less than one voxel of the isotropic 

SR volume between surfaces were considered to be interacting. For analysis of organelle 

interactions related to spatial positions, the circular region in the cell with a thickness greater 

than a predefined threshold (~2.5 μm) was manually masked to be juxtanuclear. The contact 

fraction for each granular organelle was calculated by dividing the count of objects in contact 

with other organelles by its total count.  
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Cell culture, lentivirus packaging, stable cell line and transfection 

HeLa, Cos7 and HEK293T cells were cultured in DMEM (Gibco, cat. no. 11965092) 

supplemented with 10% FBS (Gibco, cat. no. 10099141C) and 1% penicillin–streptomycin 

(Thermo Fisher, 15140122) under 37 ℃ and 5% CO2 until 60-80% confluency was reached. For 

live cell imaging experiments, the coverslips were pre-coated with 50 mg/ml of collagen for 1 

hour, and cells were then seeded onto the coverslips for 16 hours before transient transfection or 

imaging.  

For lentivirus packaging, 1 μg lentiviral transfer vector DNA, together with 0.5 μg psPAX2 

packaging vector and 0.5 μg pMD2.G envelope vector DNA were co-transfected to 90% 

confluence HEK293T cells in a 6 cm petri dish using Lipofectamine 3000 (Invitrogen) following 

the manufacturer’s protocol. After 2 days, supernatant containing viral particles was harvested 

and filtered with a 0.22-μm filter (Millipore). Supernatant was immediately used for transduction 

or stored at −80 °C in aliquots.      

For construction of stable cell line, HeLa cells were cultured to 10–20% confluency in six-

well plates, and 100–300 μl of filtered viral supernatant was added to the cells. Specifically, 

lentiviruses carrying corresponding fluorescent protein-tagged organelle markers, including 

mEmerald-NPM1, mCherry-H2B, Halo-RPA49, FBL-mEmerald, Mito-dsRed, mEmerald-

Lifeact, Lyso-Halo, and KDEL-mCherry, were used. Media containing virus were replaced with 

fresh growth medium 24 hours after infection. 48 hours later, the cells were enriched by flow 

cytometer (FACSAria III, BD Biosciences) and then plated one cell per well into 96-well plates. 

Monoclonal cells were used for our experiments. 

    For live cell imaging of Cos7 cells, samples were transfected with corresponding plasmids 

using Lipofectamine 3000 (Invitrogen, cat. no. L3000150) according to the manufacturer’s 

protocol. The plasmids used in transient transfection KDEL-mCherry, Lyso-Halo, GFP-SKL, 

mCherry-SKL and 3×mEmerald-Ensconsin. Where indicated, the cells transfected with Halo Tag 

plasmids were labelled with 10 nM JF642 ligand for 30 min before imaging. The inner 

mitochondrial membrane was marked and stained without transfection by using PK Mito Red 

(Genvivo, cat. No. PKMR-1). 

Nicotiana tabacum growth, transgenic plant generation and pollen in vitro germination 

Tobacco (Nicotiana tabacum) plants were grown in a greenhouse at 22 oC under a light cycle of 

12-h light and 12-h darkness and the transgenic tobacco plants expressing UBQ10::Lifeact-GFP 
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were prepared as described before47,48. Fresh and mature pollen grains were collected from these 

individual plants and used for particle bombardment and in vitro pollen tube germination. 

Tobacco pollen grains were suspended in tobacco-specific pollen germination medium 

containing 10% sucrose, 0.01% boric acid, 1 mM CaCl2, 1 mM Ca(NO3)2
.4H2O, 1 mM 

MgSO4
.7H2O, pH 6.5 at 27.5°C in an 85 rpm orbital rotary shaker for 2 h. Germinated pollen 

tubes were gently and carefully pipetted onto the bottom cover slide for imaging. 

Mouse embryo preparation 

Mice used in this study were C57BL/6J background. All animal experiments were approved by 

the Animal Care and Use Committees (IACUC) of the Institute of Biophysics, Chinese Academy 

of Sciences, Beijing, China. Pre-implantation embryos were isolated from 5-6-week-old females, 

superovulated by intraperitoneal injection of 5 international units (IU) of pregnant mares’ serum 

gonadotropin (PMSG; LEE BIOSOLUTIONS) and 5 IU human chorionic gonadotropin (hCG; 

Millipore) 48 h later, and mated with male mice. Zygotes were recovered at E0.5 in M2 medium 

(Millipore). 

T7 promoter-kozak sequence-Tomm20-mEmerald was constructed into RN3P plasmid vector. 

Target sequence Tomm20-mEmerald was in vitro-transcripted with T7 in vitro transcription kit 

(Thermo Fisher, AM1344). Zygotes were microinjected with 330 ng/μL Tomm20-mEmerald 

with microinjection device (Eppendorf) and then cultured in KSOM medium (Millipore) in CO2 

incubator (Thermo Fisher) at 37℃ with 5% CO2. When imaging using LLSM, the chamber filled 

with KSOM was pre-warmed with the live cell device of LLSM. Embryos were seeded on 12 

mm coverslips suited for LLSM into the KSOM of chamber. 

Experiments involving mouse tissue were performed in accordance with protocols approved 

by the Institutional Animal Care and Use Committee of CAS, Center for Excellence in 

Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of 

Sciences. 

C. elegans embryo preparation 

C. elegans strains were cultured at 20 °C on nematode growth medium (NGM) plates seeded 

with OP50 following standard protocols49. TV52712[wyEx51119[dlg-1p::GFP::PLCdPH]; 

jcIs1[ajm-1::GFP+UNC-29(+)+rol-6(su1006)]; qxIs257 [ced-1p::nuc-1::mCherry + unc-

76(+)]] was used in this study. The plasmid dlg-1p::GFP::PLCdPH was constructed following 
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the Clontech In-Fusion PCR Cloning System50 and microinjected to jcIs1;qxIs257. 

Extrachromosomal array wyEx51119 marked epidermal cell membrane. jcIs1 marked the apical 

junctional domain of C. elegans50. qxIs257 marked lysosomes in epidermal cells51.  

About 50 L4 stage transgenic worms were put onto NGM plates with freshly OP50 48 to 60 

hours before experiments. Transgenic eggs were collected under the dissecting fluorescent 

microscope (Olympus MVX10), and mounted on 3% agarose pads. Lima bean to 2-fold stage 

embryos were then imaged using our LLSM system.  

Data availability 

The LLS-SIM data for training the SR meta-model will be uploaded onto the publicly available 

Zenodo repository after the paper is accepted by a peer-review journal. Other data that support 

the findings of this study included in Figs. 1-5, Extended Data Figs. 1-10, Supplementary Figs. 

1-7, Supplementary Notes 1-6, Supplementary Tables 1, 2, and Supplementary Videos 1-8 and 

all the source data presented in this paper are available upon reasonable requests. 

Code availability 

The python codes of meta-learning, isotropic SR reconstruction, RL-DFN, several representative 

pre-trained models, as well as some example images for testing will be uploaded on GitHub after 

the paper is accepted by a peer-review journal.  
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Extended Data Figures 

 
Extended Data Fig. 1 | Comparison of VSI-SR models with inputs/outputs (IO) of single slices or multiple 

slices. a-c, Representative images (MIP) acquired and generated by LLSM, conventional LLS-SIM, and VSI-SR 

models with single-slice or multi-slices IO, which were trained by datasets of peroxisomes (a), lysosomes (b) and 

ER (c), respectively. Scale bar, 5 μm (full-FOV images), 1 μm (horizontal bars in magnified regions), and 3 μm 

(vertical bars in magnified regions). d,e, Box-and-whisker plots of the PSNR (d) and SSIM (e) for images 

reconstructed by VSI-SR models using dataset of peroxisome, ER and lysosomes (n=20 for each sample). Central 

line, medians; limits, 75% and 25%; whiskers, maximum and minimum. 
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Extended Data Fig. 2 | Comparison of VSI-SR models constituted with 2D and 3D convolutional architecture. 

a-c, Representative images (MIP) acquired and generated by LLSM, conventional LLS-SIM, and VSI-SR models 

constructed with 2D and 3D convolutional architectures, which were trained by dataset of peroxisomes (a), 

lysosomes (b), and F-actin (c), respectively. Scale bar, 5 μm (full-FOV images), 1 μm (horizontal bars in magnified 

regions), and 3 μm (vertical bars in magnified regions). d,e, Box-and-whisker plots of the PSNR (d) and SSIM (e) 

for images reconstructed by VSI-SR models (n=20 for each specimen). Central line, medians; limits, 75% and 25%; 

whiskers, maximum and minimum. 
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Extended Data Fig. 3 | Comparison of VSI-SR models trained with different loss functions. a,b, Representative 

images (MIP) acquired and generated by LLSM, conventional LLS-SIM, and Meta-VSI-SR models trained with 

MSE+SSIM loss (first column), MSE+SSIM+GAN loss (second column), MSE+SSIM+VGG+GAN loss (third 

column), and MSE+SSIM+FFT+GAN loss (fourth column), which were finetuned by datasets of CCPs (a) and F-

actin (b), respectively. Scale bar, 5 μm, 1 μm (magnified regions). c, Normalized log frequency intensity profiles of 

CCPs (left) and F-actin (right) images reconstructed by methods compared in a and b. Each curve was averaged by 

log frequency intensity profiles of 50 corresponding images. d, Box-and-whisker plots of the X-Y resolution ratio 

for SR images of CCPs and F-actin (n=50 for each type of samples) reconstructed by the methods compared in a and 

b. Central line, medians; limits, 75% and 25%; whiskers, maximum and minimum. Gamma value, 0.6 for all CCPs 

images and 0.7 for all F-actin images. 
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Extended Data Fig. 4 | Comparison of different joint deconvolution strategies. a, Schematic of two different 

joint deconvolution strategies: the proposed generalized Wiener filter approach (upper panel) and the previous 

Fourier projection approach19,28 (lower panel). b,c, Representative LLSM images, anisotropic SR images directly 

inferred by VSI-SR models or imaged by conventional LLS-SIM, and laterally isotropic SR images reconstructed 

via the Fourier projection method and the generalized Wiener approach (Meta-LLS-VSIM) for F-actin and outer 

mitochondrial membrane. Scale bar, 5 μm (b, c), 2 μm (magnified regions of b, c). 
  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 31, 2024. ; https://doi.org/10.1101/2024.05.09.593386doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.09.593386
http://creativecommons.org/licenses/by-nc-nd/4.0/


42 
 

 
Extended Data Fig. 5 | Meta-training workflow of the Meta-VSI-SR model. 
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Extended Data Fig. 6 | Comparison of RL-DFN with existing axial resolution enhancement methods. a-d, 

Representative x-y slices and x-z slices of simulated spherical shells (a), simulated tubular structures (b), 

experimentally acquired MTs (c), and experimentally acquired ER (d), reconstructed by multiple axial resolution 

enhancement methods, including ID-Net18, DL-ARE19, Self-Net20, multi-view RL deconvolution26, and the proposed 

RL-DFN. Anisotropic inputs, 3D rendering of the inputs, and the GT images are shown for reference. f,g, Statistical 

comparisons of ID-Net, DL-ARE, Self-Net, multi-view RL deconvolution, and RL-DFN in terms of PSNR and 

SSIM using simulated data of spherical shells (f) and tubular structures (g). Central line, medians; limits, 75% and 

25%; whiskers, maximum and minimum. Scale bar, 2 μm (3D rendering images in a-d), and 1 μm (slice-images in a-

d). 
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Extended Data Fig. 7 | Comparison of RL-DFN with its variant architectures. a-c, Schematic of three compared 
network architectures, i.e., RL-DFN (a), DFN (b), and RLN-DFN (c). Details of RL deconvolution module and 
rotation sectioning module are schematically illustrated. d-g, Reconstruction results of F-actin images using multi-
view RL deconvolution (d), RLN-DFN (e), DFN (f), and RL-DFN (g). x-y MIPs and two different x-z slices along 
the dashed arrows are shown. Scale bars, 3 μm (full FOV images in d-g) and 1 μm (magnified regions in d-g). 
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Extended Data Fig. 8 | Pipeline of Meta-rLLS-VSIM reconstruction. a, Illustration of the imaging process of 

reflective lattice light-sheet microscopy (rLLSM). b, Step-by-step processing procedures for laterally isotropic SR 

reconstruction from wide-field input by VSI-SR models. c, Step-by-step processing procedures for isotropic 3D SR 

reconstruction by RL-DFN from the anisotropic SR views.  
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Extended Data Fig. 9 | Resolution characterization for LLSM, Meta-LLS-VSIM, and Meta-rLLS-VSIM. a-c, 
LLSM (a), Meta-LLS-VSIM (b), and Meta-rLLS-VSIM (c) images (MIP) of beads shown in the x-y and x-z plane 
and corresponding line profiles indicated by yellow arrows in both lateral (n=12) and axial (n=9). The FWHM 
measured from the averaged profiles indicate that the resolution of Meta-rLLS-VSIM reaches 119 nm in lateral and 
157 nm in axial. Central points, mean; whiskers, minimum and maximum. Scale bar, 1 μm. 
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Extended Data Fig. 10 | Three-color SR visualization of another Cos-7 cell by Meta-rLLS-VSIM. a-d, Three-
color MIP (a) and z-coded visualization (b) of the first timepoint (a, b) and the last timepoint (c, d) from a time-lapse 
live recording of a Cos-7 cell expressing GFP-SKL, ER-mCherry, and Lyso-Halo by Meta-rLLS-VSIM 
(Supplementary Video 7). Scale bar, 3 μm (a-d), 1 μm (zoom-in regions of c and d). 
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