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Abstract

Lattice light-sheet microscopy (LLSM) provides a crucial observation window into intra- and
inter-cellular physiology of living specimens with high speed and low phototoxicity, however, at
the diffraction-limited resolution or anisotropic super-resolution with structured illumination.
Here we present the meta-learning-empowered reflective lattice light-sheet virtual structured
illumination microscopy (Meta-rLLS-VSIM), which instantly upgrades LLSM to a near-isotropic
super resolution of ~120-nm laterally and ~160-nm axially, more than twofold improvement in
each dimension, without any modification of the optical system or sacrifice of other imaging
metrics. Moreover, to alleviate the tremendous demands on training data and time necessitated
by existing deep-learning (DL) methods, we devised an adaptive online training approach by
synergizing the front-end imaging system and back-end meta-learning framework, which
reduced the total time for data acquisition and model training down to tens of seconds. With this
method, a new model can be well-trained with tenfold less data and three orders of magnitude
less time than current standard supervised learning. We demonstrate the versatile functionalities
of Meta-rLLS-VSIM by imaging a variety of bioprocesses with ultrahigh spatiotemporal
resolution for long duration of hundreds of multi-color volumes, characterizing the dynamic
regulation of contractile ring filaments during mitosis and the growth of pollen tubes, and
delineating the nanoscale distributions, dispersion, and interaction pattern of multiple organelles

in embryos and eukaryotic cells.
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Introduction

Elaborate bioprocesses occur in the three-dimensional (3D) space of living organisms in a
complicated but organized way. Among all volumetric fluorescence imaging techniques, light-
sheet microscopy (LSM) or called selective plane illumination microscopy (SPIM) stands out
owing to its high spatiotemporal resolution and gentle 3D imaging capacity™2. By using a second
illumination objective placed perpendicular to the detection path, LSM confines the excitation
within a micron-level thickness, which results in inherent optical sectioning and minimal out-of-
focus excitation, massively reducing sample bleaching and phototoxicity compared to
conventional epi-fluorescence imaging techniques, such as wide-field (WF) or confocal
microscopy®4. To extend the spatial resolution beyond the diffraction limit, several super-
resolution (SR) techniques have been incorporated into LSM®8, among which the lattice light-
sheet structured illumination microscopy (LLS-SIM) achieves the optimal tradeoff between
resolution and other equally important metrics for live cell imaging. Nonetheless, conventional
LLS-SIM only permits a single orientation of structured illumination, so it suffers from
anisotropic resolution and likely produces distortions along the orientations without resolution
enhancement®®. Therefore, current LSM is short of the full capability to accurately measure 3D

subcellular morphology, biomolecular localization and signaling activity.

To overcome this issue, one recent study utilized oblique illumination coupled with a
mechanical image rotation, which allows for three-orientation structured illumination (SI) and
achieves laterally isotropic SR imaging®. The other latest work separated plane selection and Sl
pattern excitation by introducing reversibly photo-switchable fluorescent proteins, enabling
higher excitation numerical aperture (NA) and spatial resolution than the oblique plane
configuration!!. Nevertheless, both solutions rely on repetitive excitation and acquisitions, i.e.,
thousands of raw images per volume, to reconstruct the final SR results, limiting the four-
dimensional (4D) live imaging duration to no more than 50 timepoints'®. Moreover, these
methods only focus on addressing the anisotropy of lateral resolution, leaving the poor axial

resolution as an outstanding problem.

In addition to advances in microscope hardware, computational approaches, especially deep
learning-based methods, have brought a transformative impact on fluorescence microscopy. By
learning the statistical inverse function of image transformation processes, deep neural networks

(DNNSs) have been applied to enhance both lateral*?* and axial resolution®>2° of optical images.
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For instance, given the high-quality ground truth (GT) SR-SIM images as the training targets,
DNNs are able to generate SR images directly from their diffraction-limited counterpartst®4,
However, when applied to LLSM, such methods are subject to three major challenges: First, the
isotropic GT-SIM data is unobtainable by conventional LLS-SIM, thus hindering from directly
training an end-to-end network as previous works did; Second, improving the axial resolution
from the diffraction limit (~400 nm) to the lateral resolution of LLS-SIM (~150 nm) simply by
data-driven self-learning'21"-2 suffers from severe ill-posedness, leading to a significant risk of
phantasmal generation!®?!; Third, most DNN-based methods need to train a specific model for
each biological specimen with a large amount of high-quality training data, consuming plenty of
time spanning from several hours to a few days?2. Consequently, these limitations in both optics
and algorithms substantially impede a complete understanding of various animate bioprocesses,
which requires high-resolution imaging across all four dimensions of space and time

simultaneously.

In this study, we present the meta-learning-empowered reflective lattice light-sheet virtual
structured illumination microscopy (Meta-rLLS-VSIM) as well as an assortative dual-stage near-
isotropic SR reconstruction framework. We demonstrate the proposed method can extend the
single-dimensional (1D) SR capability of LLS-SIM to all three dimensions, resulting in a near-
isotropic super resolution of 120-nm in lateral and 160-nm in axial, without any modifications of
the optical system or sacrifice of other imaging metrics compared to LLSM. In practical
implementation, a DNN model for 1D SR inference is first trained using data acquired with the
SI mode of the LLS-SIM system. Distinct from existing standard supervised learning, we devise
a training scheme based on meta-learning®, which learns a comprehensive initial weight for fast
adaptation to the scenarios of new biospecimens or signal-to-noise ratios (SNRs) by means of
minimal training data. By synergizing the automatic data acquisition workflow and back-end
meta-learning algorithms, we show that a new DNN model can be well-trained within tens of
seconds, three orders of magnitude faster than standard training procedure. Next, we exploit the
structural similarity and orientational randomness of biological specimens within the lateral
space to infer anisotropic SR intermediates in multiple orientations (dubbed as virtual structured
illumination), which are then combined using a generalized Wiener filter approach to obtain
laterally isotropic SR volumes. Finally, instead of violently improving axial resolution by self-

learning and isotropic prediction!’?%24 we adopt a physically rationalized strategy of reflective
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imaging® that helps us create an additional virtual view of the sample complementary to the real
one in sheet-scanning. Different from previous Bayesian-based joint deconvolution methods?%,
we design a self-supervised Richardson-Lucy dual-cycle fusion network (RL-DFN) to fully
exploit the complementary resolution information from both views and recover the final near-
isotropic SR data volume. As such, we only need one-way sheet-scan acquisition of raw data to
reconstruct near-isotropic SR volumes, which thus fulfills an unmet need for rapid, long-term,
near-isotropic SR volumetric observation of subcellular dynamics with high fidelity and
quantifiability. We demonstrate the versatile usability of Meta-LLS-VSIM on a large variety of
specimens, including the botanic pollen tubes, thick mouse embryos, developmental C. elegans

embryos, and other eukaryotes during mitosis or interkinesis.

Results

Laterally isotropic SR reconstruction by virtual structured illumination

The homebuilt LLSM/LLS-SIM system was developed from the original design®, which operates
at two modes in our experiments by assigning different phase patterns on the spatial light
modulator: the structured illumination (SI) mode for training data acquisition, and the sheet-scan
mode for fast light-sheet imaging (Fig. 1a and Methods). We noted that the biological specimens
always arranged or grew in random orientation, so the training dataset of paired LLSM and LLS-
SIM images as a whole contains complete SR information about the specimens, even each of
which just carries SR information of a single dimension. Accordingly, the trained DNN model
actually carries complete feature maps of producing anisotropic SR intermediates for any given
single dimension. Therefore, anisotropic 1D SR images along any orientation can be produced
by simply rotating the input image relative to the original input data, and then reapplying the
trained DNN on the rotated images®”-?8, Similar to the reconstruction in standard SIM, multiple
1D SR stacks along equally spaced orientation angles were combined using a generalized Wiener
filter approach to obtain laterally isotropic SR volumes. Therefore, we named this method as
virtual structured illumination super-resolution (VSI-SR). Briefly, the VSI-SR scheme was
implemented by three steps: (i) Acquire the training dataset using SI mode of the system and
train a VSI-SR model (Fig. 1b); (ii) Apply the well-trained model onto the raw data that is
rotated to three orientations equally spaced by 60°, hence generating three anisotropic SR

components; and (iii) Combine the different components through joint deconvolution in the
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Fourier space (Fig. 1c). Of note, compared to the previous implementation?®, the VSI-SR scheme
possesses three advantages: First, we employed coherent structured illumination rather than
incoherent photo-reassignment to obtain the GT-SIM training data, offering higher resolution
improvement and acquisition efficiency (Methods); Second, we elaborately designed a multi-
input/output generative adversarial network (GAN) architecture with a Fourier space-regularized
loss function (Supplementary Note 1), yielding an optimal output with regard to both resolution
enhancement and high fidelity of SR information (Extended Data Figs. 1-3 and Supplementary
Fig. 1); Third, instead of calculating the max intensity projections (MIP) in frequency space?,
we incorporated the prior knowledge of the deterministic optical transfer function (OTF) of each
component into a generalized Wiener filter to combine the SR components at different

orientations, resulting in higher contrast and fewer artifacts (Extended Data Fig. 4).
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Fig. 1 | Laterally isotropic SR reconstruction by virtual structured illumination. a, lllustration of the LLS-SIM
system (upper panel) and its two imaging modes: structured illumination mode (bottom left corner) and sheet-scan
mode (bottom right corner), with sketches of the back pupil plane and illumination in x-z and x-y views shown for
each mode. b, Schematic of the training processes of the 2D VSI-SR network. We trained the VSI-SR model with
the diffraction-limited LLSM images as input and LLS-SIM images as targets to learn the mapping of resolution
improvement along the illumination orientation. ¢, Schematic of the 2D isotropic reconstruction process with the
trained VSR-SR model. d-g, Representative maximum intensity projections (MIPs) of F-actin image stacks obtained
by LLSM (d) and processed by RL deconvolution (e), conventional LLS-SIM (f), and VSI-SR (g). h-k, Logarithmic
power spectrum coverages (PSCs) of the MIP images shown in d-g. I, Comparison of the intensity profile plots of
LLSM (blue), deconvolved LLSM (yellow), Conv. LLS-SIM (green), and VSI-SR (red) along the short lines
labelled in d-g. Scale bar, 5 um (d), 2 um (zoom-in regions of d).

To characterize the performance of the VSI-SR method, we examined it on two different
SIM systems, LLS-SIM (Fig. 1d-l and Supplementary Fig. 2) and total internal reflective
fluorescence (TIRF) SIM (Supplementary Fig. 3), with a wide variety of subcellular structures
including clathrin-coated pits (CCPs), microtubules (MTs), endoplasmic reticulum (ER), and F-
actin filaments. We noted that although the OTF support could be extended along lateral x-axis
by conventional LLS-SIM with respect to the original or deconvolved LLSM images, the
diffraction-limited resolution along y-axis caused a bottleneck to clearly resolve the fine
structures of threadlike F-actin, punctate CCPs, tubular MTs, and reticulated ER in close
proximity (Fig. 1f and Supplementary Fig. 2). In contrast, VSI-SR reconstructions successfully
circumvented this problem by replenishing the high-frequency information in all lateral
dimensions (Fig. 1h-k), which permitted resolving the dense actin filaments crisscrossing each
other (Fig. 11). This high-fidelity resolution improvement by VSI-SR was further validated with
TIRF-SIM system and cross-modality testing, where the isotropic TIRF-SIM images could serve
as the GT references (Supplementary Figs. 3, 4, and Supplementary Note 2). These results
illustrate the effectiveness and robustness of the proposed VSI-SR strategy for reconstructing

laterally isotropic SR images from diffraction-limited lattice light-sheet raw images.

Meta-learning-based fast model adaptation for diverse biological specimens

Due to the extreme diversity of subcellular biological structures and limited representation
ability of DNNs, current deep learning-based SR methods usually need to train a dedicated
model for each specific biological structure in order to ensure optimal inference performance.
However, the training process for each model often necessitates a large amount of high-quality

data acquired from more than 30 distinct regions of interest (ROIs), and takes very long time of
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several hours to a few days™4?¢, which considerably impedes the applicability and efficiency of
using such methods in daily experiments. On the other hand, we noticed that meta-learning (or
called learning-to-learn) has been attracting growing attention of computer vison community in
recent years?. Instead of just learning task-specific knowledge, meta-learning aims to capture the
commonality of different tasks and find a sensitive and transferable point in the parameter space
where the trained meta-model can quickly adapt to a new task with a small number of gradient
updates and minimal data. Inspired by the model-agnostic meta-learning (MAML) algorithm?,
we devised a meta-learning framework for the VSI-SR model (Meta-VSI-SR), and equipped our
LLSM system with the meta-learning-empowered fast adaptation capability (Meta-LLS-VSIM)
by streamlining automatic data acquisition, pre-processing, and meta-finetuning procedures (Fig.
2a-d and Supplementary Note 3). Specifically, a meta-model (or meta-learner) was first trained
with a large pre-acquired dataset of 10 distinct biological structures at two excitation intensity
levels for each structure, which learned structure- and SNR-independent general knowledge of
the SR task (Fig. 2a, Methods, and Extended Data Fig. 5). It is noteworthy that the pre-trained
meta-model is not aimed to be directly used for image processing, but is capable of fast adapting
to the unseen scenario of specific structures or SNRs. Once the meta-model is well-trained by
experts, the adaptation procedure is very simple and friendly for end users: (i) firstly selecting
three ROIls in the wide-field overview window of the control software; (ii) then the data
acquisition and all computational procedures including LLS-SIM reconstruction, data
augmentation, and meta-finetuning will be automatically executed (Fig. 2b and Methods). We
demonstrated that the finetuning process could be accomplished in as fast as 30 seconds with 3
ROIs, i.e., 720-fold faster and 12-fold less data than standard training, respectively, while
yielding over 6dB improvement from the starting point in peak signal-to-noise ratio (PSNR) and
superb SR performance (Fig. 2c, Supplementary Video 1). In addition, distinct from most deep
learning SR methods that work in 2D imaging scenarios, Meta-VSI-SR models aimed to
optimize the volumetric SR reconstruction capability by adopting a custom-designed multi-slice
input/output scheme and a Fourier space-regularized discriminative loss function, which
permitted the Meta-VSI-SR network to effectively utilize the structural continuity along the axial
axis, and efficiently discriminated the high frequency components in Fourier space (Extended

Data Figs. 1-3 and Supplementary Note 1).


https://doi.org/10.1101/2024.05.09.593386
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.09.593386; this version posted May 31, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Mito [ Data acquisition and reconstruction ~ 2 min

Manually select multiple ROls Automatical imaging and reconstruction

v v v
Processing logs ~ Acquired images Saved files

Model finetuning for fast adaptation < 30 sec
Train a new model Finetune from the meta-model
38 10° 40

suonessy 0g
uiypm
ap9<

=)

Training time (sec)
3 3 2
x02L
ROls for training
N w
o o
xCl

0 10 20
Training iterations 10° 0

%)
S

Meta-LLS-SIM Meta-LLS-SIM
e (before finetuning) (after finetuning) Conv. LLS-SIM Zoom-in Regions Pre-trained model

Meta-model

2]
o
0
«

CCPs
siey og Ul
ary'9

Training iterations

-

F-actin

F-actin
sia) 0g Ul
arPy’L

Training iterations

Fig. 2 | Meta-LLS-VSIM with laterally isotropic resolution and fast adaptation capability. a-d, The pipeline of
Meta-LLS-VSIM imaging. A well-trained meta-model (a) can fast adapt to new biological structures (d) by a few
simple steps: manually selecting three ROIs in the overview window of the operation interface (left part of b),
waiting for automatic imaging, data pre-processing (right part of b), and meta-finetuning (c). The overall time for
ROI selection, data acquisition, reconstruction and model finetuning is often less than 2.5 minutes (Supplementary
Video 1). e, f, Representative max intensity projections (MIPs) of CCPs (e) and F-actin (f) imaged by LLSM (first
column), Meta-LLS-VSIM before (second column) and after (third column) finetuning, and conventional LLS-SIM
(fourth column). The right panel shows the magnified images of the boxed regions in the left images. Scale bar, 5
um (e, f), 1.5 um (zoom-in regions of e), 2 um (zoom-in regions of f). g, h, Reconstruction PSNR progressions of
meta-models and pre-trained models during finetuning procedures for CCPs (g) and F-actin (h) images.

Next, we performed an evaluation of Meta-VSI-SR methods by processing two new
structures of CCPs and F-actin filaments which were not included in the meta-training dataset
(Fig. 2d). We found that although the original meta-model without finetuning generated massive
background artifacts, after meta-finetuning, the SR performance was instantly boosted by a large
margin for both structures (Fig. 2e, f). In particular, Meta-VSI-SR eliminated the reconstruction

artifacts in anisotropic LLS-SIM images, thereby clearly resolving finer details of either CCP
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distribution or actin filament crisscrossing. Moreover, we compared the finetuning progression
of meta-models and pre-trained models, i.e., the model trained with the standard gradient descent
algorithm, both of which were trained using the same dataset. Compared to the pre-trained model,
the meta-model evolved dramatically faster and converged to a higher PSNR with only 30
minibatch iterations during finetuning (Fig. 2g, h), indicating that simply employing transfer
learning or finetuning from a pre-trained network does not yield superior SR performance or

generalization capability similar to our Meta-VSI-SR scheme.

4D SR live-cell imaging with extended duration and enhanced optical sectioning capacity

Volumetric SR imaging usually requires much higher excitation light intensity and more
acquisition time per volume than diffraction-limited 3D imaging®®, thus its live imaging duration
has been limited to ~50 timepoints even for single colori®?, Resorting to the fast adaptation
ability and superior SR performance of Meta-VSI-SR scheme, the Meta-LLS-VSIM is able to
generate laterally isotropic multi-color SR images for a wide variety of specimens by operating
at the sheet-scan mode and relatively low SNR condition. Hence, Meta-LLS-VSIM enables
multi-color imaging of light-sensitive bioprocesses at unparalleled spatial and temporal
resolution for a prolonged observation window. For instance, the F-actin contractile ring (CR)
plays a vital role in generating the constricting force to segregate the two dividing cells during
mitosis®®, but whether it facilitates the partitioning of other organelles has rarely been studied.
Here, we employed Meta-LLS-VSIM to image HelLa cells stably expressing Lifeact-mEmerald,
KDEL-mCherry, and Lamp1-Halo for 357 timepoints (>190,000 slices in total) at 8 seconds per
three-color whole cell volume, which recorded the entire process from CR formation, contraction
to disassembly during mitosis (Fig. 3a and Supplementary Video 2). The enhanced resolution
and volumetric imaging enabled accurate quantification of the contraction dynamics (Fig. 3b).
We identified that the CR was contracted at a stable velocity in each individual cell, although
varied from cell to cell (Fig. 3c, gray; Supplementary Fig. 5a). Moreover, the multi-color
imaging allowed us to examine the coordination dynamics between CR contraction and the
partitioning of membranous organelles. We observed that both the continuous ER and distributed
lysosomes (Lyso) autonomously moved away from the cross-sectional area of the CR in advance
of ring closing (Fig. 3c, magenta and yellow, and Fig. 3d), during which there are little

interactions between the CR and ER or Lyso (Supplementary Fig. 5b-i). These observations

10


https://doi.org/10.1101/2024.05.09.593386
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.09.593386; this version posted May 31, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

together implied that the CR was not directly involved in ER fission or Lyso partitioning in

cytokinesis.
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Fig. 3 | 4D SR live imaging by Meta-LLS-VSIM. a, Three-color Meta-LLS-VSIM images of F-actin (green), ER
(magenta), and Lyso (yellow) at different timepoints of mitosis, showing the spatiotemporal dynamics of the three
organelles along with the constriction of the CR (Supplementary Video 2). b, Meta-LLS-VSIM and LLSM images
of a representative timepoint, showing that Meta-LLS-VSIM resolves finer details of all three structures than
conventional LLSM. c, Plots of the contractile ring radius (gray), total intensity of ER (magenta) and Lyso (yellow)
in the cross-sectional area of the CR over the normalized time course. d, SR images of F-actin, ER, and Lyso at two
representative timepoints marked in the lower panel of c, showing the spatial distribution of CR, ER, and Lyso from
a view parallel to the CR plane. e, Representative Meta-LLS-VSIM image of a developing mouse embryo
expressing TOMM20-mEmerald, which is color-coded for distance from the substrate (Supplementary Video 3). f,
Time-lapse Meta-LLS-VSIM images of a growing pollen tube (Supplementary Video 4). g, Temporally color-coded
images of the pollen tube, the boxed regions imaged by Meta-LLS-VSIM and conventional LLSM are magnified on
the right for comparison. h, Two-color Meta-LLS-VSIM images of a C. elegans embryo labelled with apical
junction and Lyso before (left) and after (right) seam cell fusion. LLSM image is shown in the rightmost corner for
comparison. i-k, Three representative cases with different initiation fusion sites on apical junction between adjacent
seam cells: fusions beginning from both ends (i), from a single end (j), and from several intermediates (k). These
magnified images correspond to regions labelled by white boxes in h. Scale bar, 3 um (a, b, d, g, and i-k), 8 um (e),

6 um (f), 5 um (h).

The performance of conventional LLSM when imaging thick or scattering samples is limited
because of the sample-induced scattering and light-sheet broadening at the distance far from the
beam waist. Synchronizing the line illumination mode with rolling-shutter detection of an
electronic scientific complementary metal-oxide-semiconductor (SCMOS) to achieve a partial
confocal effect is able to enhance the optical sectioning capability®, which, however, is not
compatible with the super-resolution LLS-SIM mode®. To extend the application scope of
volumetric SR imaging to deep and scattering tissues, we incorporated the Meta-VSI-SR scheme
with synchronized rolling-shutter confocal slit-scan. Within this strategy, the Meta-VSI-SR
model learned SR capacity of LLS-SIM from shallow parts of the specimen, i.e., with little
scattering-induced aberration, and then was applied to the whole sample captured with the
rolling-shutter confocal slit-scan mode (Methods), thereby enabling laterally isotropic 4D SR
imaging for thick and scattering samples. To illustrate the potential of this method, we first
employed it to record the dynamics of mitochondria in a mouse embryo labelled with TOMMZ20-
mEmerald across a thick area of 95x95x96 um? for 100 timepoints (Fig. 3e). The high-quality
volumetric SR images enabled us to observe and track the active dynamics of mitochondria
(Supplementary Video 3), and we noticed that unlike mature somatic cells, the mitochondria in
early mouse embryo mostly present rounded or punctate morphology, which is consistent with

the observation by electron microscopy?2.
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Next, we examined the optical sectioning capability of Meta-LLS-VSIM by imaging a
growing pollen tube labelled with Lifeact-GFP (Methods) at a high speed of 4.125 Hz for 1,000
consecutive volumes (Fig. 3f and Supplementary Video 4). Despite being captured via the slit-
scan mode, the raw images were heavily contaminated by the strong scattering of plant
cytoplasm, and the fine details of F-actin could not be distinguished due to the poor spatial
resolution. In contrast, the isotropic SR reconstruction of Meta-LLS-VSIM substantially
improved both contrast and resolution, revealing the spatiotemporal dynamics of cytoskeleton

during the growing of pollen tubes (Fig. 3g).

The plasma membrane fusion in the development of C. elegans has been long attracting
interest of cell biologists, but was mostly studied with confocal or two-photon imaging deployed
within a thin layer at an interval of several minutes because of the vulnerability of the developing
embryo®. In virtue of the low phototoxicity and remarkable optical sectioning capacity of slit-
scan Meta-LLS-VSIM, we could capture a two-color video that clearly records the whole plasma
membrane fusion process during C. elegans embryo development with high spatiotemporal
resolution (Fig. 3h and Supplementary Video 5), which is difficult for existing SR techniques.
Interestingly, we observed three typical cases with different initiation fusion sites on the apical
junction between adjacent seam cells, i.e., fusions beginning from both ends (Fig. 3i), from a
single end (Fig. 3j), and from several intermediates (Fig. 3k), which suggested a multitudinous

mechanism of seam cell fusion regulation.

Near-isotropic SR reconstruction by Meta-rLLS-VSIM

Although the VSI-SR scheme can effectively extend the 1D SR capability to other lateral
orientations, it cannot be applied to enhance the axial resolution. In recent years, several DL-
based methods were developed to directly improve axial resolution by deep self-learning!?17:19.20
or cycle-consistent generative adversarial network®® in a reference-free manner. However, these
kinds of techniques are subject to two major defects. First, the precondition for using them is that
the sample structure itself has an isotropically morphological distribution in the 3D space, so that
the SR knowledge learned from the x-y plane can be generalized into x-z or y-z planes.
Unfortunately, this prerequisite is not always true for biological data, e.g., the majority of tubular
structures extend laterally but not axially in adherent cells. Second, the axial resolution is usually

three times worse than lateral, but improving both optical resolution and sampling rate by three
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times directly from diffraction-limited acquisitions suffers from severe ill-posedness, which
substantially degrades output fidelity!® (Extended Data Fig. 6).

a Reflective LLSM (rLLSM) acquisition b Richardson-Lucy dual-cycle fusion network (RL-DFN)
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Fig. 4 | Near-isotropic SR reconstruction by Meta-rLLS-VSIM. a, lllustration of the acquisition process via
reflective lattice light-sheet microscopy (rLLSM). The lower panel shows representative view-A and view-B images
acquired by rLLSM system (labelled by WF) or processed with the laterally isotropic SR reconstruction algorithm,
i.e., the Meta-VSI-SR method (labelled with Meta-LLS-VSIM). b, Schematic network architecture and data forward
propagation of RL-DFN. The x-z views of PSFs of view-A, view-B, and network output are shown in the bottom
right corner. ¢, 3D renderings (left) of synthetic wide-field microtubule data and its isotropic SR reconstruction by
RL-DFN, and corresponding orthogonal views generated via deep-learning for axial resolution enhancement (DL-
ARE)™, Self-Net?®, and RL-DFN. Partial synthetic view-A and view-B, as well as the ground-truth images are
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provided for reference. d, Statistical PSNR comparisons of DL-ARE, Self-Net, and RL-DFN on the synthetic
microtubule images. The PSNR values for original view-A and view-B are plotted for reference. e, Representative x-
y and x-z MIPs of view-A, view-B, joint deconvolved images (labelled with rLLSM), and Meta-rLLS-VSIM
reconstructions from view-A and view-B. f, Magnified images of the boxed regions in e. g, Plots of the intensity
profiles of the view-A, view-B, joint deconvolved image, and Meta-rLLS-VSIM image along the lines indicated by
the two arrowheads in f. Scale bar, 2 um (a), 1 um (3D rendering view of c), 1.5 um (planar MIP view of c), 3 um
(e), 1.5 um (f).

To rationally enhance axial resolution of Meta-LLS-VSIM, we modified our live imaging
configuration by replacing the transparent coverslip with a reflective one, which allowed us to
simultaneously detect two symmetrical views of the sample?® (Fig. 4a and Methods). Instead of
deploying the naive multi-view deconvolution®234 for view fusion, we devised a self-
supervised dual-view fusion algorithm, dubbed Richardson-Lucy dual-cycle fusion network (RL-
DFN), that incorporated the multi-view Richardson-Lucy (RL) iteration and deterministic point
spread function (PSF) priors into the network architecture and loss design (Fig. 4b, Methods,
Extended Data Fig. 7 and Supplementary Figs. 6). We reasoned that the inclusion of an
additional view essentially rationalizes the axial resolution enhancement, and the elaborately
designed prior-guided learning scheme is able to effectively improve the dual-fusion procedure
compared with either self-learning or conventional RL deconvolution (Supplementary Note 4).
To validate the performance of RL-DFN, we examined it on synthetic image stacks of tubular
structures and spherical shells (Fig. 4c, Extended Data Fig. 6, and Supplementary Note 5). We
found that although current self-learning-based methods could generate perceptually good
isotropic images under such ideal conditions where the simulated sample itself is isotropically
distributed, RL-DFN more precisely reconstructed the fine details of both structures with
isotropic resolution and higher PSNR (Fig. 4d and Extended Data Fig. 6).

Subsequently, in order to equip our Meta-LLS-VSIM system with reflection-based axial
resolution enhancement (Meta-rLLS-VSIM), we constructed an integrated 3D isotropic
reconstruction framework that consists of epifluorescence contamination removal, image stack
deskew, laterally isotropic reconstruction and rotation, dual-view separation and registration, and
the final dual-view fusion with RL-DFN (Extended Data Fig. 8 and Supplementary Note 6). We
demonstrate that after the entire processing workflow, the spatial resolution reaches 119 nm
(n=12 beads) laterally and 157 nm axially (n=9 beads), improving volumetric resolution by 15.4-

fold compared with conventional LLSM (Extended Data Fig. 9). Next, we compared Meta-rLLS-
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VSIM with other isotropic reconstruction techniques using experimentally acquired data of F-
actin, microtubules, and ER, and found that due to the huge morphology difference between
lateral and axial sections, self-learning-based methods cannot recover axial resolution
satisfactorily and generate massive artifacts (Extended Data Fig. 6). In contrast, Meta-rLLS-
VSIM dramatically improves resolution in all dimensions from the original dual-view
acquisitions (Fig. 4e), achieving the highest spatial resolution and best SR quality compared with
either deconvolution-based reflective LLSM (Fig. 4f, g) or DL-based computational

reconstruction (Extended Data Fig. 6).

Rapid, long-term, near-isotropic SR 4D subcellular imaging

In Meta-rLLS-VSIM, the reflective configuration introduces the other complementary view of
the sample within single captures, not sacrificing any imaging metrics relative to Meta-LLS-
VSIM or LLSM. To demonstrate the superior capability of Meta-rLLS-VSIM in fast, long-term,
near-isotropic SR 4D imaging applications, we imaged Cos-7 cells transferred with GFP-SKL,
ER-mCherry, and Lyso-Halo (labelling peroxisomes, ER, and lysosomes, respectively),
collecting 400 three-color whole cell volumes at 12-second intervals (Fig. 5a, Supplementary
Video 6). Despite working at almost the same speed and photon budget with standard LLSM,
Meta-rLLS-VSIM dramatically improved the resolution both laterally and axially compared to
the diffraction limit, clearly resolving reticular ER, punctate Perox, and ring-like Lyso (Fig. 5b).
We quantified the spatial resolution of Meta-rLLS-VSIM to be 122 nm in lateral (Fig. 5c) and
162nm in axial (Fig. 5d), respectively, by measuring the full width at half maximum (FWHM) of
intensity profiles of ER or Perox sections indicated by arrowheads in Fig. 5b (n=10). The power
spectrum coverages shown in Fig. 5e also indicated that Meta-rLLS-VSIM expectedly reached a
near-isotropic resolution in live-cell imaging experiments. Furthermore, we reduced the
acquisition interval to 8 seconds between adjacent timepoints and increased the total number of
three-color volumes to over 720, realizing 1.6-hour long visualization of another Cos-7 cell
without any noticeable photobleaching and phototoxicity (Supplementary Video 7, Extended
Data Fig. 10), which corresponds to prolonging the imaging duration by more than 10-fold
compared to the latest isotropic 3D-SIM working at even the single-color mode®®. The ultrahigh
volumetric resolution and extended time course of Meta-rLLS-VSIM allowed us to investigate

interactions between multiple organelles and discover interesting cases, e.g., tubular ER
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generation by hitchhiking on a moving Lyso (Fig. 5f), much more easily and explicitly than ever
before (Fig. 59).

€ Power spectrum

b
<

T c
o Meta-rLLsN?lM

122 nm

Intensity(a.u.)
o
o

o

o

200 400 600

o

Intensity(a.u.)
=)

xz
162 nm

rrrrr

=)

0 200 400 600
Distance (nm)

u RL-DFN VSI-SR LLSM

Perox / I Lyso

h 4 e i - P j i
(. Lateral distribution of organelles £ Axial distribution of organelles ] Perox that contact S’er{pher?l Lyso that contact
- with other organelles uxtanuclear  with other organelles
- SR P —
5 10 w10
Y | 3 . 5
< T & 2y T
m, @ 10 8§ os 838 os -
5 80 g choep g
X 08 =
g x x -
o 322 2 o6 8% os 4 82 os
B | 5 lllllllu e 5 2 s
c it c 04 lim.. el S S [
G 04 ‘ ............ 5 0 el . [0} O uj [}
x 2 i £ |||l|u o< 04 2 g 04 2
w g o2 S 02 s e § | = ] I3
i 00 L 00 £ 0 —'%l S %302 * | 5
0 10 20 30 0 ® - <
Distanc Di; [ w
e from nucleus center (um) stance from C°Ve'5|'P (pm) ER Lyso ] ER Perox D
- g 10 5 10 5
g \ kS 3 3 _ 8
= 5o + S t©x% S
B 2o © 107 S 2 o8] | £ 8§ o8 = £
[} [} £ J B2 X ca + ®
x 8 0.8 308 x7g = °oT . =
P 5o | 5 00 ||||\||1||“ l e Y i S
a 2. . 2 54 .. ag : ; ze
L - M H 5 || 55 : 55
w 302 | . £ o2 i, oz 04 = 2= 04
© E L &
2 e @ §% S
w 0.0 I 0.0 = g 3
§ Divtance 2 O pidan. 3 4 5 6 g 02 8 o2 *
istance from n istance fr i [ =
ucleus Center (Hm) om coverslip (um) MTs Lyso MTs Perox

Fig. 5 | Rapid, long-term, near-isotropic SR 4D subcellular imaging by Meta-rLLS-VSIM. a, Representative
LLSM (bottom left corner) and Meta-rLLS-VSIM (top right corner) image of a live Cos-7 cell expressing GFP-SKL,
ER-mCherry, and Lyso-Halo from a three-color video of 400 timepoints (Supplementary Video 6). b, Magnified x-y
and x-z sections of the region labelled with the white box in a imaged by LLSM (left) and Meta-rLLS-VSIM (right).

c,d, Lateral (c) and axial resolution (d) evaluation by profiling intensity along the lines indicated by white

arrowheads in b (n=10 for both lateral and axial resolution). e, Logarithmic power spectrum coverages of the Perox
images displayed in b. f, Time-lapses Meta-rLLS-VSIM images of ER and Lyso showing a special case of ER
generation hitchhiking on a moving Lyso. g, Comparison of images of a Lyso indicated by the blue box in f, imaged
by LLSM and reconstructed by RL-DFN and VSI-SR. h,i, Distributions of organelles in the lateral (h) and axial (i)
dimensions of two Cos-7 cells. j, Box whisker plots showing the fraction of Perox (left column) and Lyso (right

column) contacting each of the other labelled compartments in the juxtanuclear or peripheral regions of the cell

17


https://doi.org/10.1101/2024.05.09.593386
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.09.593386; this version posted May 31, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

(n=721 and 812 frames for the cells labelled ER and MTs, respectively). k,I, Time-lapse LLSM (k) and Meta-rLLS-
VSIM images showing a microtubule elongated by hitchhiking on a moving Lyso. Gamma value, 0.7 for Meta-
rLLS-VSIM images of ER, MT, and Perox in a, b, f, k, and 1. Scale bar, 3 um (a), 1 um (b, f, g, k, and I).

Different organelles each exhibit a characteristic distribution and dispersion pattern within
the three-dimensional space that is affected by cytoskeleton such as microtubules®®. To quantify
the spatiotemporal coordination and interactions between multiple organelles and cytoskeleton,
we employed Meta-rLLS-VSIM to image another Cos-7 cell labelled by 3xmEmerald-Ensconsin,
mCherry-SKL, and Lampl-Halo for 812 timepoints at 8 seconds per three-color whole cell
volume (Supplementary Video 8), and characterized the organelle distribution patterns in both
lateral and axial dimensions (Fig. 5h, i, Supplementary Fig. 7, Methods). We observed that in the
lateral dimension, ER and MT both had a wide distribution, whereas Perox displayed a narrow
distribution around the juxtanuclear zone (Fig. 5h). In the axial dimension, ER, MTs and Perox
were generally localized throughout the cell and kept relatively stable within the hour-long
observation window, while the distribution of Lyso varied along with time markedly (Fig. 5i,
Supplementary Fig. 7), implying their high dynamics and complex functionalities in maintaining
cell homeostasis®®. Next, we quantified the fraction of globular organelles (Perox and Lyso) that
made contacts with ER and MTs by tracking individual Lyso and Perox and mapping their
contacts with other organelles over time (Methods, Fig. 5j). We observed that ER and MTs
showed high contact rates with other two globular organelles in both peripheral and juxtanuclear
regions, whereas the Perox-Lyso contacts preponderantly happened in the juxtanuclear region
with relatively low contact rates (Fig. 5j). Additionally, during the investigation of the
intracellular contacts, we noticed an interesting hitchhiking event between MTs and Lyso (Fig.
5k, 1), which was previously reported to happen on ER tubules that adhered to moving
mitochondria or Lyso in mammalian cells*’. These observations and results illustrate the superior
SR capability of Meta-rLLS-VSIM in developing hypotheses about cellular organization and

dynamics.

Discussion

In this work, we first presented a virtual structured illumination SR reconstruction strategy, that
extends the 1D SR capability of conventional LLS-SIM to all lateral dimensions without any
hardware modification. By collaboratively optimizing the DNN architecture, loss function, and

joint deconvolution algorithms, we demonstrate the VSI-SR scheme achieves superior SR
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reconstruction for LLSM images with laterally isotropic resolution of 180 nm (Extended Data
Figs. 1-3, 9). Moreover, to overcome the longstanding problem of high costs for image SR
network training in practical usage, we devised Meta-LLS-VSIM by synergizing the advantages
of both optical front-end and meta-learning back-end methodologies, that could rapidly adapt to
any type of biological specimens or data SNR within tens of seconds, reducing the training data
and time cost by 12-fold and 720-fold, respectively. Of note, although demonstrated on SR
processing for LLSM, the proposed meta-learning scheme can be well applied to other DL-based
image restoration tasks for various imaging modalities, such as denoising'2>38, phase retrieval®®,
virtual staining*®*!, etc.

Furthermore, to enhance the axial resolution while not sacrificing other imaging metrics, we
incorporated reflective acquisition strategy?® into our Meta-LLS-VSIM system to simultaneously
capture two complementary views of the specimen with one-time scanning. Then we devised a
Richardson-Lucy dual-view fusion network, dubbed RL-DFN, that combined an unmatched back
projector-based RL iteration®** for fast deblurring and the conditional generative adversarial
network*? (cGAN) for feature fusion in a self-supervised manner. Compared with existing
methods that directly improve axial resolution by self-learning, RL-DFN is more physically
rational and achieves the best performance in axial resolution enhancement for both simulated
and experimental data. We also constituted an integrated reconstruction framework, which
covers the whole processing pipeline from the original dual-view acquisitions to near-isotropic
SR reconstructions, improving the spatial resolution to 120 nm in lateral and 160 nm in axial.

Taken all these advances together, we demonstrate that Meta-LLS-VSIM and Meta-rLLS-
VSIM fulfill the unmet requirement for 4D SR imaging at ultrahigh spatiotemporal resolution
with long duration of hundreds of multi-color volumes for a large variety of subcellular
bioprocesses, revealing fast dynamics and long-term interactions of multiple organelles. In
particular, by integrating the proposed SR reconstruction scheme with synchronized rolling-
shutter confocal slit detection, the isotropic SR capability can be further extended to image thick
or scattering samples such as pollen tubes, C. elegans and mouse embryo. These characteristics
underlie the versatile utility and superior performance of Meta-LLS-VSIM and Meta-rLLS-
VSIM methodology, offering great opportunities to better investigate and understand diverse

biological phenomena.
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Methods

LLS-SIM system

The home-built LLSM/LLS-SIM system was developed from the original design®. Three
lasers of 488 nm, 560 nm, and 640 nm (MPB Communications) were controlled by an AOTF,
and then illuminated the LLS pattern displayed on the SLM. In the SI mode, the LLS patterns of
3-phase were sequentially displayed onto the SLM and synchronized with the programmed “ON”
time of AOTF. The diffracted light was filtered by an annular mask equivalent to 0.5 outer NA
and 0.375 inner NA for the excitation objective (Special Optics). Subsequently, the filtered
excitation light was scanned by the z-galvo-objective in a step size of 0.2 um or by sample piezo
in a step size of 0.39 um to acquire the volumetric raw LLS-SIM images. In the ordinary sheet-
scan mode, a fixed LLS pattern was filtered by another annular mask equivalent to 0.35 outer
NA and 0.14 inner NA to elongate the light-sheet, then quickly dithered by x-galvo (Cambridge
Technology, 6210H), and then scanned by using of sample piezo in a step size of 0.39 um, rather
than using z-galvo-objective scan mode, because the sample holder has lighter-weight than
objective, which allows the sample piezo to run in high-speed with small hysteresis. Moreover,
instead of driving the sample piezo with the ramp wave, we used the triangle wave to minimize
the flyback time when reversing the scanning direction of the piezo stage. For the rolling-shutter
confocal slit-scan mode, a Gaussian beam instead of LLS patterns was quickly scanned along the
x-axis to create the light-sheet, which is synchronized with the camera’s rolling shutter to form a
virtual confocal slit effect. We used an active 15-pixel column in the sCMOS camera
(Hamamatsu, Orca Fusion) in our experiments for optimal tradeoff between the SNR and
contrast.

Live cell specimens were placed in a custom designed microscope incubator (OKO lab,
H301-LLSM-SS316) to maintain the physiology condition of 37°C and 5% CO2 during imaging.
Fluorescence emission was collected by the detection objective (Nikon, CFI Apo LWD 25XW,
1.1NA) and captured by the SCMOS camera. The reflective coverslips used in the Meta-rLLS-
VSIM experiments were customized by sputtering a 150-nm-thick aluminum film over the round
glass coverslip (¢=12 mm x 0.17-mm-thickness) and then protected with a 700-nm-thick layer

of SiO2. The imaging conditions of live-cell experiments are detailed in Supplementary Table 1.

Network architecture of the VSI-SR model
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The VSI-SR neural network model is constructed based on the conditional generative adversarial
network (cGAN)*, consisting of two models: one is the generator G, i.e., the model used for
inference (in the main manuscript the “VSI-SR model’ referred to G except as otherwise noted),
which transfers low-resolution (LR) images into SR images, and the other is the discriminator D
which determines whether an image comes from training dataset or G. Specifically, the VSI-SR
model G receives LR fluorescence images with the size of H X W x C;;,, and outputs SR images
upscaled by 1.5-fold with the size of 1.5H X 1.5W X C,,;. We adopted 7 and 3 as C;,, and C,,;,
respectively, in our experiments, which empirically achieve the best SR performance (Extended
Data Fig. 1, and Supplementary Note 1). The generator G begins with a 2D convolutional layer
for channel augmentation, and then the output feature maps are fed into four sequential residual
groups (RGs), each of which contains four channel attention blocks as is defined in previous
paper®’. After RGs, the extracted features are upscaled, and fed into two Conv-LeakyRelL U
modules to produce the final SR images. The discriminator D takes the outputs from G or GT SR
images as the input, and provides the probability of the input being the GT. D begins with 11
Conv-LeakyReLU modules for deep feature extraction. Then their outputs are fed sequentially
into a global average pooling layer, two fully connected layers with a LeakyRelL U activation,
and a sigmoid activation function to output the estimated probability. The overall network

architecture of G and D are depicted in Supplementary Fig. 1.

During the training phase, we elaborately designed a combined objective function for G
(Extended Data Fig. 3), which consists of four terms: mean square error (MSE) loss, structural
similarity (SSIM) loss, fast Fourier transform (FFT) loss, and the discriminative loss:

LopX,Y) = Lyse(X,Y) + v1Lssim (X, Y) + v2 Lppr (X, Y) + ¥3Lpisc (X, V)
= MSE(G(X),Y) + y1(1 = SSIM(G(X),Y))

+ ¥, MSE (FFT(g(X)), FFT(Y)) — v, log (D(g(X))), 1)
where X and Y denote the LR input images and the SR targets, respectively; y;,y,, and y; are
weighting scalars to balance the contributions from these four terms, and we sety; = 0.1, y, = 1,
vs = 0.1 empirically in our experiments. Within the combined loss function, the first two terms,
i.e., Lysg and Lggrpy, penalize the difference between predictions and GT images in the spatial
domain, while the third term Lz minimizes the errors in frequential space, which we found to

be helpful to learn more high frequency information® (Extended Data Fig. 3). The last term
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Lpise Serves as regularization based on the knowledge from the discriminator D, which also
benefits for generating finer details of biological structures.

On the other hand, the objective function of D is a binary cross-entropy function described as:

Lp(X,Y) = —log(D(Y)) — log (1 - D(Q(X))). 2)
G and D are trained alternately in the inner loop of meta-learning (see details in the next section),

during which they compete with each other, and finally reach an equilibrium state.

Meta-model training and finetuning

The datasets of different biological specimens were acquired via our home-built LLS-SIM
system. We generally acquired raw LLS-SIM images from about 30-50 distinct ROIs for each
type of samples. For each ROI, five different levels of light intensity ranging from low (about
100 average photon counts) to high (more than 1000 average photon counts) fluorescence level
were acquired, and the images of the highest fluorescence level (i.e. the GT raw images) were
reconstructed into high-quality GT LLS-SIM images via the conventional LLS-SIM
reconstruction algorithm. In order to generate the training dataset for meta-learning, we
established 20 diverse task datasets from 10 distinct biological specimens with low (about 200
average photon counts) and high (more than 1000 average photon counts) fluorescence levels.
Each task tackles a specific image SNR, i.e., low or high SNR, of a specified biological structure.
It needs to be emphasized that instead of generating more task datasets by introducing various
fluorescence levels, we only considered low or high SNR tasks since we found that too many
tasks that were similar to each other would degrade the meta-model into an ordinary one without
fast adaptation capability. The ten biological specimens used in meta-training in this paper were
the outermost granular component, chromosomes, innermost fibrillar center, fibrillarin, Lyso,
MTs, F-actin in pollen tubes, inner mitochondrial membrane, ER in adherent Cos-7 cells and ER
in mitotic Hela cells during metaphase. The detailed information of the datasets used for training

the meta-model is shown in Supplementary Table 2.

The pre-processing procedure of the raw data contains following steps: (i) applying deskew
to all LLSM images (averaged from the raw LLS-SIM images) and their corresponding GT LLS-
SIM images; (ii) removing the camera background, i.e., ~100 SCMOS counts, for LLSM images
and applying a 2D Gaussian filter with the standard deviation of 0.6 pixels for GT LLS-SIM

images to slightly suppress the noise-induced reconstruction artifacts; (iii) normalizing all
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images to [0,1]. Then, the whole dataset was augmented into ~ 54, 000 image patch pairs of
LLSM patches (64 x 64 x 7 voxels) and their corresponding GT LLS-SIM patches (96 x 96 X
3 voxels), that is, 2,700 pairs for each task. As illustrated above, we adopted a multi-slice 2D
training scheme which considered volumetric LLSM data as multi-channel 2D images, and
inferred the central three x-y slices from the corresponding seven consecutive input x-y slices.
This scheme outperformed others since it fully took advantage of the spatial continuity of z-axis
of both LLSM inputs and LLS-SIM targets (Extended Data Figs. 1 and 2).

The training process of meta-learning is different from conventional gradient descent since in
meta-training, the ultimate goal is to train a model such that fast learning and great improvement
occur on a new task within a small number of gradient updates using minimal training data.
Inspired by the MAML algorithm?®, we devised a meta-learning strategy for our cGAN-based
VSI-SR model, which generally consisted of outer-loop and inner-loop. In the outer-loop, three
tasks were randomly sampled from task sets and fed into the inner-loop to calculate task-
specified loss at every iteration. Then, all task-specified losses were used to update the meta-
generator G and meta-discriminator D via the Adam optimizer. The outer learning rates of G and
D were set as 1 x 10~* and 2 x 1075, respectively, in our experiments. In the inner loop, 16
LLSM and LLS-SIM image pairs were randomly sampled from every selected task, in which 8
pairs were used as the supported set and 8 pairs as the query set. The basic D learner and G
learner were alternately updated three times with the supported set via the SGD optimizer, then
every task-specified loss can be evaluated with the updated learners and the query set. The inner
learning rates of G and D were 1 X 1072 and 2 x 1073, respectively. In our experiments, deep-
learning models were trained and implemented on a computer work station equipped with an
Intel(R) Xeon(R) Platinum 8358 CPU at 2.60 GHz and three NVIDIA A800 graphic processing
cards with Python version 3.7 and Pytorch version 2.1.0. The meta-training process typically
lasted for ~24 hours with ~100,000 mini-batch iterations when three A800 cards were used
simultaneously for distributed data parallel training (DDP) of Pytorch. It is noteworthy that the
meta-training is a one-time procedure, and all VSI-SR models used in live imaging experiments
of this work were finetuned from the same Meta-VSR-SR model. The overall meta-training

procedure is depicted in Extended Data Fig. 5.
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At the finetuning stage, three ROIs of a target biological specimen were augmented into 600-
1000 LLSM/LLS-SIM patch pairs as the supported set, and we finetuned the meta-model G with
supported set in 30 gradient steps with a batch size of 20 via the SGD optimizer, of which the
learning rate was 2-10 times higher than the inner learning rate of G. After finetuning, the meta-
model G quickly adapted to the target specimen, yielding a specified VSI-SR model for the target
biological structure. The finetuning process was typically less than 10 seconds with an NVIDIA

AB800 or RTX3090 graphic processing card on our computer work station.

Laterally isotropic SR reconstruction via VSI-SR

Given the fluorescence distribution S of a sample, the image captured with LLSM can be
approximated as I;g = S @ Pr, Where P r represents the system PSF. If illuminating the
sample with sinusoidal stripe patterns in orientation ¢, (assume ¢,=0 for simplicity afterward),
we get the anisotropically frequency extended SR image by the conventional SIM reconstruction
algorithm expressed as Isg_o =S @ Psgr_o. Here, Psp_o is the anisotropic SR PSF as a
narrowing version of P in orientation ¢, = 0. As described above, the VSI-SR or Meta-VSI-
SR model was trained to map from the LLSM image I} to anisotropic SR image Isg_, and we
applied the trained VSI-SR model to process the image rotated by ¢-angle from the original I; g
(denoted as I gy = Rplr = RyS & Pr, Where Ry is the rotation operator by angle ¢) and
got the anisotropically super-resolved prediction fp{lLr—¢} = fo{RpS ® PLr}, Where f, denotes
the forward propagation of the VSI-SR model with trained parameters 8. Then by rotating the
output SR image backward, we got the final estimation of the anisotropic SR image in

orientation ¢:
Isr-¢ = R_p[fo{RpS @ Pir}] = S @ Psgr_¢p. 3)
Here, rotating the anisotropic PSF Psgz_, in the illumination orientation by angle ¢
approximates the anisotropically narrowed PSF Pgg_g4 in orientation ¢ . Generally, three
orientations of illumination equally spaced between 0 to m are used to isotropically fill the OTF

extension. Thus, we simply set ¢ to be 0, /3, and 2m/3.

To compute the final isotropic VSI-SR image, we combined the above anisotropic
predictions in Fourier space through a generalized Wiener filter approach. Each anisotropic SR

image Isg_g transformed to the Fourier space iSR_¢ is a summation of the zero-order frequency
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component, denoted as C¢?, and the symmetrically distributed first-order components C~$1. We

simplify the zero component to be C° since it is unaffected by the illumination. The image
assembled from m orientations in Fourier space is expressed as
¢o.BO 4+ ym, ~$1 i " Ispg, (PEL+P°) — (m—1)-CO-P°

iiso—SR: _ = _ 5 . (4)
w? + PO + |P+1| w? + PO + 37, |P+1|

The wiener filtering compensates for the frequency attenuation introduced by the system

OTF, with the parameter w relaxing the compensation in regions where the OTF value is low and

set according to the imaging SNR. The P° and P represent the OTF for zero-order and first-

order frequency components, respectively, and the zero component C° is computed as the

Fourier transform of the LLSM image I g.

Network architecture of RL-DFN

The RL-DFN is constructed based on the cGAN framework with dual discriminative cycles.
Specifically, it consists of three individual models: a 3D generator G, _pry that fuses features
from dual-view inputs and reconstructs isotropic SR image volumes, and two 2D discriminators
D, and Dy that distinguish whether a sectioned image comes from the input data or from the SR
volume generated by G. Of note, here ‘3D’ and ‘2D’ refer to the feature dimensions propagated
in the neural networks, i.e., the 3D model utilizes 3D convolutional layers and the 2D model uses

2D ones.

The network architecture of G, _ppy is illustrated in Fig. 4b and detailed in Supplementary
Fig. 6a, which begins with a Richardson-Lucy deconvolution module (RDM) that explicitly
executes one classical RL update step for two anisotropic inputs I,(x) and Ig(x). The
calculation in RDM can be formulated as

B Ip(x)
Frpa(§) _S!‘ffpo(f)PA(xlf)df

Ig(x)
Frrp(§) = ffEFO(E)PB( |&)dé

Pp(x|&)dx, (5)

Pg(x|$)dx, (6)

where F,(&) denotes the average of I,(x) and Iz(x), P5(x|&) and Pg(x|&) are PSFs of view A

and B, respectively, both as functions of their respective pixel locations x and &. Then the RL-
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deconvolved volumes F; 4 and Fg; 5 are fed into the fusion module to implicitly generate an
isotropic SR volume. In the fusion module, two identical feature extraction blocks, FEB, and
FEBg, are separately applied to extract features from Fg; , and Fg; 5, With each FEB consisting
of four convolutional layers (two of them followed by batch normalization and LeakyRelLU
activation) for feature extraction and a sigmoid activation to normalize the output to [0, 1].
Afterwards, the output features are merged by Hadamard product to obtain the fusion feature in
embedding space. Finally, another U-shaped feature extraction block FEBy (detailed in
Supplementary Fig. 6a) is applied to generate the final isotropic SR volume. The overall
operation in the fusion module can be represented as

Fsgp = FEBy(FEBA(Fr,a) X FEBg(Fr15)), (7

where x denotes the Hadamard product.

The discriminator D, and Dy share the same architecture and objective function, hence they
are collectively denoted as D, hereafter. D, consists of six convolutional layers, in which the
central four convolutional layers are followed by batch normalization and LeakyReL U activation
with a leaky factor of 0=0.1. Then the output of the last convolutional layer is fed into the

sigmoid activation function to obtain the predicted probability.

The objective function of Gz, _pry and Dy, denoted as L5 °™ and LF*~PFN, respectively,
are defined separately in a self-supervised manner. Specifically, L5 ”*" is defined as the sum
of three terms: cycle loss Ly, , discriminative loss Lp;s., and total variational (TV)

regularization Ry, which can be formulated as
Lg{b_DFN(IA' IB: Y) = [’cycle (IAf IB; Y) + aLDisc(Y) + .BRTV(Y) (8)

where 14, I are the original dual-view inputs, Y is the output SR volume by Gz, _pry, and a,
are scalar weighting factors to balance the corresponding terms, which are set empirically to a =

0.02, y=2 x 107 for best performance in our experiments.

In the objective function described in Eq. (8), the cycle loss L., penalizes the difference
between the anisotropic input of each view and the isotropic output of Gg,_pry degraded by

corresponding PSF P, and Pg. As such, the L., contains two components as such

LeycieUa I, Y) = MAE(Y &® Py, 14) + MAE(Y ® Pg, Ig), 9
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where MAE denotes the mean absolute error. L., is devised based on the physical model and
utilizes the prior knowledge of PSFs, which accelerates the training process and guarantees the
output fidelity. On the other hand, the discriminative loss £, is associated with the predicted
probability by D, and Dy for image sections sampled from the Gz, _pry OUtput. The sectioning
operation is performed using a rotation sectioning module, which samples two 2D slices S, and
S along the orientations perpendicular to the optical axis of view-A and view-B with a random
deviation ranging in [-n/6, n/6] (Extended Data Fig. 7a). We empirically found that the
introduction of the randomness of the sampling angle improved the robustness and overall

performance of RL-DFN. The £,;,. can be formulated as

wXxh

1
Loise(r) = —— > [10g(Da(5)) + log (D5 (S)], (10)
i=1

The TV regularization Ry, is applied as a spatial continuity prior of biological specimens,

which is calculated by

1
2 2 212
Ry = D" [(injn = Yign)" + (oo = Vi) + (g = ¥er) [, AD
i.j,h
where i, j, h denote the 3D coordinates of Y. The objective function of the discriminator D, is

defined as the binary cross-entropy. Taking y as the output of D, and y. as the ground truth

matrix (all 0 or 1 matrix in practice), then LEL=PFN can be described as
LgL_DFN(y' Yer) = —Yerlog(y) — (1 — yer)log(1 —y). (12)

During the training process, Gr;_prny @nd D45 is playing an adversarial game. The objective
of Gr._pry 1S tO deceive Dyp into taking the sections sampled from its output as the real
isotropic SR section sampled along the SR orientation of the anisotropic inputs. In contrary, the
objective of D, is to determine if the input image is sectioned from Gy, _prp’S OUtpuUt Or the

input anisotropic volumes.

Training and application of RL-DFN

To generate the training dataset of RL-DFN, we applied random cropping from the feature-only
regions, and augmented the original data into thousands of volume pairs of view-A and view-B
(256%256x64 pixels for each). During the training process, we randomly initialized the networks

and trained the generative and discriminative models with the Adam optimizer and a typical
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starting learning rate of 1 x 10~*. The generator and discriminator were updated once and twice
in each iteration with a batch size of 3 and 2, respectively. The rotation sectioning module
sampled a new set of 2D slices (250x60 pixels for each) before each training iteration along
randomly sampled orientations as described above. The overall training process of RL-DFN
typically lasted 15,000 minibatch iterations, taking ~8 hours. After the self-supervised training, a
well-trained RL-DFN, more specifically the generator of RL-DFN, can be utilized in the dual-
view fusion task for the same type of data within or out of the training dataset. It typically took

~1 second to merge two anisotropic image volumes of 512x512x150 pixels.

Organelle distribution and contact quantification

For analysis of organelle spatial distribution shown in Fig. 5h and i, the pixel-based
quantification is performed. Each channel of the images was low-pass filtered using a 3D
Gaussian kernel with sigma of 1 pixel. The smoothed images were then binarized with a
threshold optimized by the Otsu algorithm®. The histograms of positions of pixels above the
threshold in centroid coordinates are calculated. The nucleus center in lateral plane was
identified visually and the cell boundary was identified by using ER as the marker structure. The
pixel-based quantification was applied to each timestamp of the time-lapse images, and an
averaged result on both the full recording time and for each 10-minute duration was analyzed

(Supplementary Fig. 7).

For analysis of the organelle interactions shown in Fig. 5j, the multi-channel images were
first segmented using Imaris software with the surfaces tool. Background subtraction and manual
thresholding were performed for each channel, and split touching objects were used for the
globular organelles (i.e., peroxisomes and lysosomes). Next, distance transformation was
performed on each of the segmented surface channels to calculate the distance between
organelles. Segmented objects with a minimum distance of less than one voxel of the isotropic
SR volume between surfaces were considered to be interacting. For analysis of organelle
interactions related to spatial positions, the circular region in the cell with a thickness greater
than a predefined threshold (~2.5 um) was manually masked to be juxtanuclear. The contact
fraction for each granular organelle was calculated by dividing the count of objects in contact
with other organelles by its total count.
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Cell culture, lentivirus packaging, stable cell line and transfection

HelLa, Cos7 and HEK293T cells were cultured in DMEM (Gibco, cat. no. 11965092)
supplemented with 10% FBS (Gibco, cat. no. 10099141C) and 1% penicillin—streptomycin
(Thermo Fisher, 15140122) under 37 °C and 5% CO2 until 60-80% confluency was reached. For
live cell imaging experiments, the coverslips were pre-coated with 50 mg/ml of collagen for 1
hour, and cells were then seeded onto the coverslips for 16 hours before transient transfection or
imaging.

For lentivirus packaging, 1 pg lentiviral transfer vector DNA, together with 0.5 pg psPAX2
packaging vector and 0.5 ug pMD2.G envelope vector DNA were co-transfected to 90%
confluence HEK293T cells in a 6 cm petri dish using Lipofectamine 3000 (Invitrogen) following
the manufacturer’s protocol. After 2 days, supernatant containing viral particles was harvested
and filtered with a 0.22-um filter (Millipore). Supernatant was immediately used for transduction
or stored at —80 °C in aliquots.

For construction of stable cell line, HeLa cells were cultured to 10-20% confluency in six-
well plates, and 100-300 pl of filtered viral supernatant was added to the cells. Specifically,
lentiviruses carrying corresponding fluorescent protein-tagged organelle markers, including
mEmerald-NPM1, mCherry-H2B, Halo-RPA49, FBL-mEmerald, Mito-dsRed, mEmerald-
Lifeact, Lyso-Halo, and KDEL-mCherry, were used. Media containing virus were replaced with
fresh growth medium 24 hours after infection. 48 hours later, the cells were enriched by flow
cytometer (FACSAria I11, BD Biosciences) and then plated one cell per well into 96-well plates.
Monoclonal cells were used for our experiments.

For live cell imaging of Cos7 cells, samples were transfected with corresponding plasmids
using Lipofectamine 3000 (Invitrogen, cat. no. L3000150) according to the manufacturer’s
protocol. The plasmids used in transient transfection KDEL-mCherry, Lyso-Halo, GFP-SKL,
mCherry-SKL and 3xmEmerald-Ensconsin. Where indicated, the cells transfected with Halo Tag
plasmids were labelled with 10 nM JF642 ligand for 30 min before imaging. The inner
mitochondrial membrane was marked and stained without transfection by using PK Mito Red
(Genvivo, cat. No. PKMR-1).

Nicotiana tabacum growth, transgenic plant generation and pollen in vitro germination
Tobacco (Nicotiana tabacum) plants were grown in a greenhouse at 22 °C under a light cycle of

12-h light and 12-h darkness and the transgenic tobacco plants expressing UBQ10::Lifeact-GFP
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were prepared as described before*’8, Fresh and mature pollen grains were collected from these
individual plants and used for particle bombardment and in vitro pollen tube germination.
Tobacco pollen grains were suspended in tobacco-specific pollen germination medium
containing 10% sucrose, 0.01% boric acid, 1 mM CaCl;, 1 mM Ca(NO3)24H20, 1 mM
MgSO4+7H20, pH 6.5 at 27.5°C in an 85 rpm orbital rotary shaker for 2 h. Germinated pollen

tubes were gently and carefully pipetted onto the bottom cover slide for imaging.

Mouse embryo preparation

Mice used in this study were C57BL/6J background. All animal experiments were approved by
the Animal Care and Use Committees (IACUC) of the Institute of Biophysics, Chinese Academy
of Sciences, Beijing, China. Pre-implantation embryos were isolated from 5-6-week-old females,
superovulated by intraperitoneal injection of 5 international units (IU) of pregnant mares’ serum
gonadotropin (PMSG; LEE BIOSOLUTIONS) and 5 IU human chorionic gonadotropin (hCG;
Millipore) 48 h later, and mated with male mice. Zygotes were recovered at E0.5 in M2 medium
(Millipore).

T7 promoter-kozak sequence-Tomm20-mEmerald was constructed into RN3P plasmid vector.
Target sequence Tomm20-mEmerald was in vitro-transcripted with T7 in vitro transcription kit
(Thermo Fisher, AM1344). Zygotes were microinjected with 330 ng/uL Tomm20-mEmerald
with microinjection device (Eppendorf) and then cultured in KSOM medium (Millipore) in CO2
incubator (Thermo Fisher) at 37°C with 5% CO2. When imaging using LLSM, the chamber filled
with KSOM was pre-warmed with the live cell device of LLSM. Embryos were seeded on 12
mm coverslips suited for LLSM into the KSOM of chamber.

Experiments involving mouse tissue were performed in accordance with protocols approved
by the Institutional Animal Care and Use Committee of CAS, Center for Excellence in
Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of
Sciences.

C. elegans embryo preparation

C. elegans strains were cultured at 20 °C on nematode growth medium (NGM) plates seeded
with OP50 following standard protocols®. TV52712[wyEx51119[dlg-1p::GFP::PLCdPH];
jclsl[ajm-1::GFP+UNC-29(+)+rol-6(su1006)]; qxIs257 [ced-1p::nuc-1::mCherry + unc-
76(+)]] was used in this study. The plasmid dlg-1p::GFP::PLCdPH was constructed following
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the Clontech In-Fusion PCR Cloning System® and microinjected to jclsl;gxIs257.
Extrachromosomal array wyEx51119 marked epidermal cell membrane. jclsl marked the apical
junctional domain of C. elegans®. gxIs257 marked lysosomes in epidermal cells®.

About 50 L4 stage transgenic worms were put onto NGM plates with freshly OP50 48 to 60
hours before experiments. Transgenic eggs were collected under the dissecting fluorescent
microscope (Olympus MV X10), and mounted on 3% agarose pads. Lima bean to 2-fold stage

embryos were then imaged using our LLSM system.

Data availability

The LLS-SIM data for training the SR meta-model will be uploaded onto the publicly available
Zenodo repository after the paper is accepted by a peer-review journal. Other data that support
the findings of this study included in Figs. 1-5, Extended Data Figs. 1-10, Supplementary Figs.
1-7, Supplementary Notes 1-6, Supplementary Tables 1, 2, and Supplementary Videos 1-8 and

all the source data presented in this paper are available upon reasonable requests.

Code availability
The python codes of meta-learning, isotropic SR reconstruction, RL-DFN, several representative
pre-trained models, as well as some example images for testing will be uploaded on GitHub after

the paper is accepted by a peer-review journal.
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Extended Data Figures
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Extended Data Fig. 1 | Comparison of VSI-SR models with inputs/outputs (10) of single slices or multiple
slices. a-c, Representative images (MIP) acquired and generated by LLSM, conventional LLS-SIM, and VSI-SR
models with single-slice or multi-slices 10, which were trained by datasets of peroxisomes (a), lysosomes (b) and
ER (c), respectively. Scale bar, 5 pym (full-FOV images), 1 um (horizontal bars in magnified regions), and 3 pm
(vertical bars in magnified regions). d,e, Box-and-whisker plots of the PSNR (d) and SSIM (e) for images
reconstructed by VSI-SR models using dataset of peroxisome, ER and lysosomes (n=20 for each sample). Central
line, medians; limits, 75% and 25%; whiskers, maximum and minimum.
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Conventional imaging methods LLSM + VSI-SR
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Extended Data Fig. 2 | Comparison of VSI-SR models constituted with 2D and 3D convolutional architecture.
a-c, Representative images (MIP) acquired and generated by LLSM, conventional LLS-SIM, and VSI-SR models
constructed with 2D and 3D convolutional architectures, which were trained by dataset of peroxisomes (a),
lysosomes (b), and F-actin (c), respectively. Scale bar, 5 um (full-FOV images), 1 um (horizontal bars in magnified
regions), and 3 um (vertical bars in magnified regions). d,e, Box-and-whisker plots of the PSNR (d) and SSIM (e)
for images reconstructed by VSI-SR models (n=20 for each specimen). Central line, medians; limits, 75% and 25%;
whiskers, maximum and minimum.

38


https://doi.org/10.1101/2024.05.09.593386
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.09.593386; this version posted May 31, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

(o))
=
c
2
o
£
3
IS
©
£
2

£ g

& o

5]

o

-

S

S
o
£
=4
=
o
=
5
duf
©
£
&
<

b

j
£
c
2
o
£
T
1]
@
=
("] [
5 9
© Q
£ o
=
=
o
P
w
.
1)
o
c
©
°
-
o
2
Q
2
]
s
2
=
£
=
E 2
x =
S S
= B
£
'
@
©
f=
=
£
<
c ~ 1 =1 d [OMSE/SSIM [ GAN [ GAN+VGG M GAN+FFT [ LLS-SIM
3 LLS-SIM S LLS-SIM
KA MSE/SSIM loss 8 MSE/SSIM loss 17 15 :
2 0.8 GAN [bss @ 0.8 GANIoes - CCPs - F-actin
95 VGG+GANloss| © § \ VGG+GAN loss o S
206 —FFT+GANloss { 2 € 06 —— FFT+GAN loss 315 313
o 9 ®» 9 o o é
c o c Q @ 1]
8 E 8 E o o
[E1gi04 £g04 > 13 > 14
gz 8% X =
$ 02 $ 02 oy <] 06 :‘13
3 3 = 1 [ o
& lccps g [Factin ~ " E 2
= 0 o = 0 o o
= 0 0.2 0.4 0.6 0.8 1 = o 0.2 0.4 0.6 0.8 1
Normalized frequency (a.u.) Normalized frequency (a.u.) 0.9

39


https://doi.org/10.1101/2024.05.09.593386
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.09.593386; this version posted May 31, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Extended Data Fig. 3 | Comparison of VSI-SR models trained with different loss functions. a,b, Representative
images (MIP) acquired and generated by LLSM, conventional LLS-SIM, and Meta-VSI-SR models trained with
MSE+SSIM loss (first column), MSE+SSIM+GAN loss (second column), MSE+SSIM+VGG+GAN loss (third
column), and MSE+SSIM+FFT+GAN loss (fourth column), which were finetuned by datasets of CCPs (a) and F-
actin (b), respectively. Scale bar, 5 um, 1 um (magnified regions). ¢, Normalized log frequency intensity profiles of
CCPs (left) and F-actin (right) images reconstructed by methods compared in a and b. Each curve was averaged by
log frequency intensity profiles of 50 corresponding images. d, Box-and-whisker plots of the X-Y resolution ratio
for SR images of CCPs and F-actin (n=50 for each type of samples) reconstructed by the methods compared in a and
b. Central line, medians; limits, 75% and 25%; whiskers, maximum and minimum. Gamma value, 0.6 for all CCPs
images and 0.7 for all F-actin images.
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Extended Data Fig. 4 | Comparison of different joint deconvolution strategies. a, Schematic of two different
joint deconvolution strategies: the proposed generalized Wiener filter approach (upper panel) and the previous
Fourier projection approach!®?® (lower panel). b,c, Representative LLSM images, anisotropic SR images directly
inferred by VSI-SR models or imaged by conventional LLS-SIM, and laterally isotropic SR images reconstructed
via the Fourier projection method and the generalized Wiener approach (Meta-LLS-VSIM) for F-actin and outer
mitochondrial membrane. Scale bar, 5 um (b, ¢), 2 um (magnified regions of b, c).
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Extended Data Fig. 5 | Meta-training workflow of the Meta-VSI-SR model.
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Extended Data Fig. 6 | Comparison of RL-DFN with existing axial resolution enhancement methods. a-d,
Representative x-y slices and x-z slices of simulated spherical shells (a), simulated tubular structures (b),
experimentally acquired MTs (c), and experimentally acquired ER (d), reconstructed by multiple axial resolution
enhancement methods, including ID-Net®, DL-ARE?, Self-Net?®, multi-view RL deconvolution®, and the proposed
RL-DFN. Anisotropic inputs, 3D rendering of the inputs, and the GT images are shown for reference. f,g, Statistical
comparisons of ID-Net, DL-ARE, Self-Net, multi-view RL deconvolution, and RL-DFN in terms of PSNR and
SSIM using simulated data of spherical shells (f) and tubular structures (g). Central line, medians; limits, 75% and
25%; whiskers, maximum and minimum. Scale bar, 2 um (3D rendering images in a-d), and 1 um (slice-images in a-
d).
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Extended Data Fig. 7 | Comparison of RL-DFN with its
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variant architectures. a-c, Schematic of three compared

network architectures, i.e., RL-DFN (a), DFN (b), and RLN-DFN (c). Details of RL deconvolution module and
rotation sectioning module are schematically illustrated. d-g, Reconstruction results of F-actin images using multi-
view RL deconvolution (d), RLN-DFN (e), DFN (f), and RL-DFN (g). x-y MIPs and two different x-z slices along
the dashed arrows are shown. Scale bars, 3 um (full FOV images in d-g) and 1 um (magnified regions in d-g).
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Extended Data Fig. 8 | Pipeline of Meta-rLLS-VSIM reconstruction. a, lllustration of the imaging process of
reflective lattice light-sheet microscopy (rLLSM). b, Step-by-step processing procedures for laterally isotropic SR
reconstruction from wide-field input by VSI-SR models. ¢, Step-by-step processing procedures for isotropic 3D SR
reconstruction by RL-DFN from the anisotropic SR views.
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Extended Data Fig. 9 | Resolution characterization for LLSM, Meta-LLS-VSIM, and Meta-rLLS-VSIM. a-c,
LLSM (a), Meta-LLS-VSIM (b), and Meta-rLLS-VSIM (c) images (MIP) of beads shown in the x-y and x-z plane
and corresponding line profiles indicated by yellow arrows in both lateral (n=12) and axial (n=9). The FWHM
measured from the averaged profiles indicate that the resolution of Meta-rLLS-VSIM reaches 119 nm in lateral and
157 nm in axial. Central points, mean; whiskers, minimum and maximum. Scale bar, 1 um.
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Extended Data Fig. 10 | Three-color SR visualization of another Cos-7 cell by Meta-rLLS-VSIM. a-d, Three-
color MIP (a) and z-coded visualization (b) of the first timepoint (a, b) and the last timepoint (c, d) from a time-lapse
live recording of a Cos-7 cell expressing GFP-SKL, ER-mCherry, and Lyso-Halo by Meta-rLLS-VSIM
(Supplementary Video 7). Scale bar, 3 um (a-d), 1 um (zoom-in regions of ¢ and d).
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