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Abstract 

Major Depressive Disorder (MDD) poses a significant public health challenge due to its high 

prevalence and the substantial burden it places on individuals and healthcare systems. Real-

time functional magnetic resonance imaging neurofeedback (rtfMRI-NF) shows promise as a 

treatment for this disorder, although its mechanisms of action remain unclear. This study 

investigated whole-brain response patterns during rtfMRI-NF training to explain interindividual 

variability in clinical efficacy in MDD. We analyzed data from 95 participants (67 active, 28 

control) with MDD from previous rtfMRI-NF studies designed to increase left amygdala 

activation through positive autobiographical memory recall. Significant symptom reduction was 

observed in the active group (t=-4.404, d=-0.704, p<0.001) but not in the control group (t=-1.609, 

d=-0.430, p=0.111). However, left amygdala activation did not account for the variability in 

clinical efficacy. To elucidate the brain training process underlying the clinical effect, we 

examined whole-brain activation patterns during two critical phases of the neurofeedback 

procedure: activation during the self-regulation period, and transient responses to feedback 

signal presentations. Using a systematic process involving feature selection, manifold extraction, 

and clustering with cross-validation, we identified two subtypes of regulation activation and three 

subtypes of brain responses to feedback signals. These subtypes were significantly associated 

with the clinical effect (regulation subtype: F=8.735, p=0.005; feedback response subtype: 

F=5.326, p=0.008; subtypes’ interaction: F=3.471, p=0.039). Subtypes associated with 

significant symptom reduction were characterized by selective increases in control regions, 

including lateral prefrontal areas, and decreases in regions associated with self-referential 

thinking, such as default mode areas. These findings suggest that large-scale brain activity 

during training is more critical for clinical efficacy than the level of activation in the 

neurofeedback target region itself. Tailoring neurofeedback training to incorporate these 

patterns could significantly enhance its therapeutic efficacy.
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Introduction 1 

Major Depressive Disorder (MDD) presents a significant public health challenge, with 2 

approximately one-third of diagnosed patients not responding to first-line treatments such as 3 

antidepressants and psychotherapy. This results in substantial disability and economic losses 4 

due to treatment costs and lost productivity 1, 2. Real-time functional magnetic resonance 5 

imaging neurofeedback (rtfMRI-NF) has emerged as a promising alternative, demonstrating 6 

large to medium effect sizes in treating depressive symptoms 3-5. This noninvasive brain 7 

modulation technique involves the real-time analysis and visualization of brain activation signals, 8 

thereby enabling participants to self-regulate their brain activity. Its efficacy in training 9 

participants to modulate their brain activation is well-supported by many studies, including 10 

several meta-analyses 3-11. However, the direct impact of rtfMRI-NF on symptom relief is not yet 11 

fully understood due to incomplete knowledge of the neural mechanisms by which this training 12 

alleviates symptoms through the regulation of specific brain activations. 13 

Previous studies on the mechanisms of NF training 12-15, including investigations into brain 14 

responses to feedback signals 15-19, have identified a broad spectrum of brain activities 15 

associated with NF-mediated self-regulation training. This training process is considered to 16 

include aspects of reinforcement learning, and two types of brain activation - evaluation of 17 

feedback values and modulation of brain activation - are common components of the 18 

reinforcement learning process 20. Thus, to elucidate the learning mechanisms of NF-mediated 19 

brain regulation, investigating these two epochs is crucial. Active regions during these epochs 20 

typically include the prefrontal cortex, salience network, and reward processing areas 12-15. 21 

However, while many studies have focused on the success of regulating target brain activities, 22 

the relationship between these activities and subsequent symptom relief remains elusive. 23 

Furthermore, interindividual variability in the clinical efficacy of NF necessitates further 24 

investigation to identify brain response subtypes associated with therapeutic outcomes. 25 
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This study aimed to characterize whole-brain activation patterns during rtfMRI-NF training in 26 

individuals with MDD, with the goal of identifying brain activation subtypes associated with 27 

interindividual variability in therapeutic efficacy. To this end, we analyzed a large dataset from 28 

rtfMRI-NF studies where participants with MDD were trained to regulate left amygdala activity 29 

through neurofeedback 21-24. These studies consistently observed significant reductions in 30 

depressive symptoms on average post-training, albeit with variations in therapeutic outcomes 31 

among participants. 32 

We hypothesized that the observed variability in treatment efficacy could be explained by 33 

variations in whole-brain activation patterns during self-regulation training, extending beyond the 34 

NF target region (amygdala). The involvement of large-scale networks in NF training has been 35 

demonstrated in a meta-analysis of NF studies 12, and burgeoning evidence suggests that the 36 

effects of NF training may extend beyond the targeted brain region 25-27. Specifically, we focused 37 

on two types of brain activation critical for NF training: regulatory task activity throughout the 38 

task block and instantaneous responses to neurofeedback signal presentations (Figure 1). 39 

These two types of activation are thought to correspond to two critical components of the 40 

reinforcement learning process 20 and should characterize the training process for each 41 

individual. 42 

Methods 43 

Participants 44 

The present study was a secondary analysis of data from our previously published studies 21, 45 

22, 24 and a preliminary study utilizing the same rtfMRI-NF protocols in individuals diagnosed with 46 

MDD. The University of Oklahoma Institutional Review Board (IRB) or the Western IRB 47 

reviewed and approved the study protocols, ensuring adherence to the ethical principles of the 48 

Declaration of Helsinki. Participants provided written informed consent prior to participation and 49 

were financially compensated. Participants met DSM-IV-TR 28 criteria for MDD based on the 50 
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Structural Clinical Interview for DSM-IV disorders 29 or DSM-5 criteria for MDD based on the 51 

Mini-International Neuropsychiatric Interview (MINI) 30. Previous articles 21, 22, 24 detailed each 52 

study's inclusion and exclusion criteria. Common inclusion criteria across studies are ages 18-53 

65, current diagnosis of MDD, and common exclusion criteria are current diagnosis of PTSD, 54 

substance use disorder, bipolar disorder, active suicidal ideation or behavior within a year, a 55 

history of psychosis, pregnancy, and MRI contraindicators. 56 

The present analysis included data from 95 participants with MDD (68 females; mean age ± 57 

SD = 33.6 ± 10.4 years), consisting of 67 in the active NF group (46 females) who received left 58 

amygdala neurofeedback and 28 in the control group (22 females) who received neurofeedback 59 

from a brain region not associated with emotional processing. 60 

Real-time fMRI Neurofeedback Paradigm 61 

The NF training was designed to enhance the activation signal in the left amygdala while 62 

recalling happy autobiographical memories 31. The task sequence utilized a blocked design 63 

consisting of alternating periods of rest, self-regulation with NF, and number counting, each 64 

lasting 40 seconds. This sequence was repeated four times in a single training run, with 65 

participants undergoing three such runs per session. Because the number of sessions differed 66 

among the studies, the present analyses were confined to data from the three runs of the initial 67 

session. Depressive symptom severity was estimated with the Montgomery-Åsberg Depression 68 

Rating Scale (MADRS) 32 immediately before the NF session, and one-week post-training. 69 

MRI imaging in all experiments was conducted using the same 3T Discovery MR750 scanner 70 

(GE Healthcare). Blood Oxygenation Level-Dependent (BOLD) fMRI data acquisition employed 71 

a T2*-weighted gradient-echo planar imaging (EPI) sequence, with parameters set as follows: 72 

TR/TE = 2000/30 ms, acquisition matrix = 96 × 96, field of view (FOV)/slice thickness = 240 73 

mm/2.9 mm, flip angle = 90°, and 34 axial slices, using a SENSE acceleration factor of 2. EPI 74 

images were then reconstructed to a 128x128 matrix, resulting in an fMRI voxel size of 75 
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1.875x1.875x2.9 mm³. Anatomical reference was obtained using a T1-weighted magnetization-76 

prepared rapid gradient-echo (MPRAGE) sequence. 77 

A detailed description of the rtfMRI-NF procedure can be found in our previous publications 21, 78 

22, 24. Briefly, a custom in-house rtfMRI system was utilized for the experiments 31. For the active 79 

group, the NF signal was extracted from the left amygdala, defined by 7-mm diameter spheres 80 

centered at Talairach coordinates (x, y, z = -21, -5, -16 mm), and then mapped to each 81 

participant's brain space. For the control group, the NF signal was sourced from the horizontal 82 

segment of the intraparietal sulcus at Talairach coordinates (-42, -48, 48 mm), a region 83 

suggested to be unrelated to emotion regulation 33. During the happy memory recall block, the 84 

NF signal was quantified as the percent signal change from the mean signal in the preceding 85 

rest block. The signal was updated every 2 s and visually presented to participants as a red bar. 86 

MRI data processing 87 

The Analysis of Functional NeuroImages (AFNI; http://afni.nimh.nih.gov) software suite was 88 

utilized for image processing. After discarding the first three volumes to achieve signal 89 

equilibrium, preprocessing steps were conducted, including despike, RETROICOR 34 along with 90 

respiratory volume per time (RVT) regression 35 for physiological noise correction, slice-timing 91 

and motion corrections, nonlinear warping to the MNI template brain with resampling to 2 mm³ 92 

voxels using the Advanced Normalization Tools (ANTs; http://stnava.github.io/ANTs/), spatial 93 

smoothing with a 6 mm full-width at half maximum (FWHM) Gaussian kernel, and scaling of 94 

signals to percent change relative to the voxel-wise mean. 95 

Activation during the self-regulation was assessed using a general linear model (GLM) 96 

analysis. We extracted the two types of brain response in this process (Fig. 1). The GLM 97 

regressors included response models for the regulation and counting blocks, each modeled with 98 

a boxcar function convolved with the canonical hemodynamic response function (HRF). The 99 

regressor for the regulation block was used for estimating the first type of brain activation, 100 

regulation block activation (Fig. 1). The GLM regressors also included twelve motion parameters 101 
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(three rotations, three translations, and their temporal derivatives), three principal components 102 

of ventricle signals, local white matter signals (ANATICOR) 36, and an event-related regressor 103 

for the onset of any condition block (modeled as a delta function convolved with HRF) as 104 

nuisance covariates. Volumes with frame-wise displacement greater than 0.3 and their 105 

preceding volume were censored in the GLM. 106 

Another type of brain response, the feedback event-related response (Figure 1), was 107 

evaluated using additional event-related regressors for each feedback presentation. The 108 

response was modeled as a delta function, modulated by the feedback amplitude normalized in 109 

each run, and convolved with the hemodynamic response function (HRF). Since the feedback 110 

signal was presented during the regulation block and this event regressor could be collinear with 111 

the regulation block regressor, we orthogonalized the feedback-response-event regressor with 112 

respect to the regulation block regressor. The beta coefficients from the general linear model 113 

(GLM) analysis were used as response estimates. 114 

These response estimates were assessed for each block independently using the least 115 

squares - separate (LS-S) approach 37, in which separate regressors for the target block and all 116 

other blocks were included to estimate the response in a block, and repeated for each block in 117 

separate GLM analyses. The use of this block-wise response facilitates subsequent group 118 

analysis using linear mixed-effect model and provides the estimates with better test-retest 119 

reliability 38, 39. 120 

Clustering analysis 121 

Clustering analysis was conducted on the whole-brain beta maps solely for the active group 122 

participants to categorize their brain activation patterns. This approach was chosen because 123 

including the control group could introduce brain activation patterns with various unspecific 124 

effects. Such inclusion might increase the dimensionality of latent subtypes and complicate the 125 

extraction of subtypes relevant to the active NF training process. 126 
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A significant challenge posed by this analysis is the high dimensionality of the whole-brain 127 

beta maps; the problem often referred to as the "curse of dimensionality" 40. This phenomenon 128 

refers to the issues arising in high-dimensional spaces, where distances between points 129 

become uniformly large, data points are sparsely distributed, and there is a high risk of 130 

overfitting, leading to clustering solutions that are difficult to reproduce. 131 

To address this challenge, we implemented a multi-step strategy to reduce dimensionality and 132 

identify an informative space associated with treatment outcomes. Additionally, we employed 133 

cross-validation to ensure the clustering solution's stability and reproducibility. Our approach 134 

involved (1) aggregating voxel-wise responses into regional averages using a functional brain 135 

atlas, (2) removing the regions irrelevant to treatment outcomes, (3) applying Uniform Manifold 136 

Approximation and Projection (UMAP) 41 to extract a low-dimensional representation, (4) 137 

applying k-means clustering in the UMAP space, and (5) employing repeated cross-validation to 138 

assess the robustness of the clustering solution 42. Figure 2 illustrates the flowchart of the 139 

analysis performed to delineate subtypes of brain activation. 140 

Initially, voxel-wise beta values were averaged within each functional region defined by the 141 

Shen 268 atlas 43, 44. This atlas was chosen for its demonstrated performance in various 142 

predictive modeling studies 43, 45-49. The data for each participant are averaged across the three 143 

runs or for each run. We tested both approaches as a hyperparameter to test which one yielded 144 

the most stable clustering solution. Subsequently, we identified regions correlating with changes 145 

in the MADRS score (change relative to the baseline score expressed as a ratio) after adjusting 146 

for the effects of age and sex. A threshold of p < 0.1 was used for this selection, prioritizing 147 

dimensionality reduction rather than finding significantly related regions. After excluding the 148 

regions irrelevant to the treatment outcome, we utilized UMAP for dimensionality reduction, 149 

followed by k-means clustering. The UMAP parameters were set to optimize the clustered 150 

distribution within the reduced-dimensional space, with 'n_neighbors' (the number of 151 

neighboring points used in the local manifold approximation) set to 50, and 'min_dist' (the 152 
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minimum distance apart that points are allowed to be in the low-dimensional representation) set 153 

to 0. The large 'n_neighbors' value and small 'min_dist' value encourage the UMAP to extract a 154 

space with a clustered distribution. Subsequently, k-means clustering was executed within the 155 

UMAP-defined space. 156 

The stability of the clusters was rigorously evaluated through cross-validation, facilitated by 157 

the 'reval' Python package 42. This involved dividing the dataset into two halves, applying 158 

clustering to one half, and then applying the derived clustering rule to the opposite half, and vice 159 

versa, to assess the consistency of the cluster labels between the two rules (Fig. 2). This 160 

procedure was repeated 10 times, each with a unique data split, to calculate the average 161 

stability score. The stability measure is the mean normalized Hamming distance between the 162 

two solutions, ranging from 0 to 1. A smaller value indicates a more stable and reproducible 163 

solution. Since this measure is larger with a larger number of clusters, it was scaled by the 164 

stability of random labeling of the same number of clusters 50. 165 

In summary, these procedures were conducted across the hyperparameter space of response 166 

summary (average across runs or a sequence of three runs), UMAP random seed (50 values), 167 

UMAP dimension (ranging from 2 to 50), and the number of clusters (ranging from 2 to 5) to find 168 

robust clustering with the smallest mean distance between the cross-validated solutions. 169 

Mapping the brain responses in each subtype 170 

After identifying the subtypes, we evaluated the voxel-wise response patterns for each 171 

subtype using a linear mixed-effect (LME) model analysis performed voxel-wise with the ‘lme4’ 172 

package 51 in R language and environment for statistical computing. This LME analysis was 173 

applied to the beta values for each block, run, and participant, incorporating fixed effects for the 174 

run, the identified subtype from the clustering analysis, age, and sex, as well as a random effect 175 

for participants at the intercept level. The mean response for each subtype was calculated using 176 

the ‘emmeans’ package 52 in R. The mean maps of the subtypes were thresholded at a voxel-177 

wise p < 0.001, corrected for cluster size with a p < 0.05 using AFNI 3dClustSim. 178 
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Statistical testing 179 

LME analysis was performed to investigate changes in MADRS scores one week after a NF 180 

session for both active and control groups. The LME model included fixed effects for time (pre-181 

/post-NF), group (active/control), age, and sex, as well as a random effect for participants at the 182 

intercept. We also examined whether treatment efficacy was correlated with NF training 183 

performance measures, including the mean NF amplitude, mean left amygdala response during 184 

the regulation block, and the change in left amygdala response between the first and the last 185 

training runs using linear model analysis. 186 

We then examined whether the identified subtypes of brain activation during NF training were 187 

associated with demographic and training performance variables, as well as the depressive 188 

symptom score (MADRS) at the baseline and its change post-NF. Each variable was examined 189 

using linear model analysis, with subtypes serving as independent variables. The post-hoc 190 

analysis for the mean response for each subtype and the difference between the subtypes was 191 

performed using the ‘emmeans’ package 52, and p-values for the post-hoc comparisons were 192 

corrected by multivariate t adjustment. 193 

In addition, the subtyping rules established in the active group were applied to the control 194 

group to assess if similar patterns in MADRS score changes could be observed across the 195 

subtypes. The presence of consistent subtype associations with symptom reduction in both the 196 

active and control groups would suggest the operation of a common treatment mechanism. This 197 

could indicate that the efficacy of NF training is not specific to the neurofeedback signal from an 198 

emotion-related region. 199 

Results 200 

Data selection 201 

Post-training MADRS scores were not available for two participants in the active group. fMRI 202 

data from five participants were excluded from the analysis due to problems with physiological 203 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 16, 2024. ; https://doi.org/10.1101/2024.05.01.592108doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.01.592108
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11

signal acquisition (two from the active group and one from the control group) or excessive head 204 

motion (two from the active group) with more than 30% of time points censored (Framewise 205 

Displacement [FD] > 0.3) in all training runs. Additionally, four participants in the active group 206 

who exhibited excessive head motion in any one of the training runs were excluded only when 207 

analyzing data with a series of three training runs. Analyses were performed using the largest 208 

sample size available for each test measure, regardless of missing data on other variables (see 209 

Supplementary Information [SI], Section 1). No significant differences in age, sex, and baseline 210 

MADRS scores were observed between the active and control groups in any of these selected 211 

datasets. 212 

Reduction of depressive symptoms following NF training 213 

Figure 3 shows the MADRS scores before and after NF training for each group, with average 214 

scores represented by the height of bars and individual participant scores depicted as points 215 

connected by lines. LME analysis identified a significant main effect of time. Post-hoc analysis 216 

revealed a significant decrease in post-session scores (t = -4.404, d = -0.704, p < 0.001). SI 217 

Table S2a provides the ANOVA tables for the LME analysis. While the time by group interaction 218 

was not statistically significant (p = 0.090), the active group showed a significant symptom 219 

reduction (t = -5.576, d = -0.978, p < 0.001) but not the control group (t = -1.609, d = -0.430, p = 220 

0.111). 221 

However, left amygdala activation had no significant main effect of the group (F = 2.870, p = 222 

0.094) and the interaction between the group and run (F = 0.597, p = 0.551). Furthermore, 223 

within the active group, no significant associations were found between changes in MADRS 224 

scores and measures of NF training performance, including mean NF amplitude, average left 225 

amygdala response during regulation blocks, or changes in left amygdala response from the 226 

first to the last training runs (see SI Section 2 for comprehensive details). 227 
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Clustering results 228 

In clustering of activation maps related to the regulation block, the optimal stability score of 229 

0.217 was obtained using the following hyperparameters: averaging responses across runs for 230 

each participant, extracting a 40-dimensional UMAP space, and clustering into two subtypes, 231 

which included 32 and 31 participants respectively. Similarly, in the clustering of activation maps 232 

associated with the feedback event, an optimal stability score of 0.229 was reached by 233 

analyzing a series of responses across three runs, extracting a 14-dimensional UMAP space, 234 

and forming three subtypes consisting of 23, 15, and 22 participants each. However, no 235 

significant association was found between the subtypes identified in the regulation block and 236 

those in the feedback event (χ2 = 3.143, p = 0.208). 237 

Figure 4 shows t-maps of the mean beta values for the subtypes of regulation block 238 

activations (REG subtypes), with detailed peak coordinates available in SI, Section 3, Table S3. 239 

The first subtype, REG-A, exhibited increased BOLD signals in regions commonly identified in 240 

NF studies 12, including the lateral prefrontal cortex, superior and inferior parietal lobules, 241 

supplementary motor area (SMA), anterior insula, thalamus, and cerebellum. In contrast, 242 

decreased BOLD signals were observed in Heschl's gyrus, posterior insula, middle cingulate 243 

cortex, and cuneus. The second subtype, REG-B, demonstrated increased BOLD signals in the 244 

lateral prefrontal cortex, SMA, and anterior insula, with decreased activity in default mode 245 

network (DMN) areas such as the precuneus, posterior cingulate cortex, mediodorsal prefrontal 246 

cortex, Rolandic operculum, and fusiform gyrus. 247 

Figure 5 presents t-maps of the mean beta values for subtypes of the brain responses to the 248 

feedback event (FBR subtypes), with peak coordinates detailed in SI, Section 4, Table S4. The 249 

first subtype, labeled FBR0, demonstrated a limited response, particularly in the Rolandic 250 

operculum and right supramarginal gyrus. The second subtype, labeled FBR-, was 251 

characterized by a negative association of BOLD signal changes in response to NF signals, 252 

affecting regions including the SMA, middle cingulate cortex, Heschl's gyrus, Rolandic 253 
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operculum, and visual cortex. In contrast, the third subtype, labeled FBR+, displayed a positive 254 

association of BOLD signal changes in areas such as the precuneus, middle cingulate cortex, 255 

lateral prefrontal cortex, nucleus accumbens, cerebellum, and inferior occipital regions. 256 

Subtype associations with demographics, NF-training characteristics, and the 257 

depressive symptom in the active group 258 

Linear model analyses examining associations of the REG and FBR subtypes with age, mean 259 

NF signal amplitude, mean left amygdala activation across runs, and baseline MADRS scores 260 

revealed no significant differences between the subtypes. Similarly, χ2 tests showed no 261 

significant associations of these subtypes with sex or study participation (refer to SI section 5 for 262 

further detailed statistics). 263 

However, changes in MADRS scores, indicative of clinical efficacy, were significantly 264 

associated with these subtypes. The main effects of both REG and FBR subtypes, as well as 265 

their interaction effect on changes in MADRS scores, were statistically significant (REG, F = 266 

8.735, p = 0.005; FBR, F = 5.326, p = 0.008; interaction F = 3.471, p = 0.039). Post-hoc 267 

analysis revealed a significant decrease in MADRS scores within the REG-B subtype (t = -6.077, 268 

d = -1.702, p < 0.001), in contrast to REG-A (t = -2.170, d = -0.608, p = 0.068). For the FBR 269 

subtypes, significant decreases in MADRS scores were observed in both FBR- (t = -4.995, d = -270 

1.399, p < 0.001) and FBR+ (t = -3.818, d = -1.069, p = 0.001), whereas the FBR0 subtype 271 

exhibited no significant change (t = -0.839, d = -0.235, p = 0.786). 272 

Moreover, changes in MADRS scores varied by subtype combination, as illustrated in Figure 273 

6. A significant reduction in scores was noted when REG-A was paired with FBR- (t = -3.327, d 274 

= -0.931, p = 0.003). Within the REG-B group, no significant reduction was observed with the 275 

FBR0 subtype (t = -1.221, d = -0.342, p = 0.401). However, significant reductions were seen 276 

when REG-B was paired with FBR- (t = -3.789, d = -1.061, p < 0.001) and FBR+ (t = -6.018, d = 277 

-1.685, p < 0.001). In summary, participants in the active group classified as REG-A with FBR-, 278 
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or REG-B with FBR- or FBR+ experienced significant reductions in MADRS scores one week 279 

after NF training. 280 

Application of clustering rules to the control group 281 

When the clustering rules derived from the active group were applied to the control group, 282 

participants were classified as follows: 13 into REG-A and 14 into REG-B for the REG subtypes; 283 

and 11 into FBR0, 5 into FBR-, and 11 into FBR+ for the FBR subtypes. No significant 284 

association was observed between the REG and FBR subtypes within the control group (χ² = 285 

0.345, p = 0.842). Additionally, the distribution of participants across subtypes did not 286 

significantly differ from that observed in the active group for both REG (χ² = 0, p = 1.000) and 287 

FBR (χ² = 0.526, p = 0.768) subtypes. 288 

In the control group, no significant associations were found between the subtypes and 289 

variables such as age, sex, study participation, mean NF signal amplitude, changes in left 290 

amygdala activation, or baseline MADRS scores, as detailed in SI Section 6. Contrary to the 291 

active group, there were no significant differences in MADRS score changes across subtypes 292 

within the control group. 293 

Discussion 294 

The primary objective of this study was to identify subtypes of brain activation patterns during 295 

NF training that could explain interindividual differences in clinical response. Our analysis 296 

revealed that training characteristics within the target brain region, such as mean NF signal 297 

amplitude, mean left amygdala activation, and signal changes in the left amygdala, were not 298 

associated with changes in depressive symptoms. However, we found significant associations 299 

between subtypes of whole-brain activation patterns during NF training and changes in MADRS 300 

scores. In contrast, the control group showed no significant associations between the subtypes 301 

and changes in MADRS scores, underscoring that the effects of NF treatment are distinct from 302 

placebo effects. 303 
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Significant symptom reduction was observed across multiple subtype combinations, indicating 304 

the existence of multiple brain functional pathways to successful treatment. Notably, individuals 305 

classified within the FBR0 subtype, characterized by their non-responsiveness to feedback 306 

signals, did not experience significant symptom reduction, highlighting the critical role of brain 307 

response to feedback signals in effective NF training. Significant symptom reduction was 308 

evident in individuals exhibiting brain activation correlated with feedback signals, either in a 309 

positive (FBR+) or negative (FBR-) manner. However, the efficacy of this response pattern was 310 

dependent on their regulation subtype. Individuals exhibiting increased activation across broad 311 

brain areas during self-regulation (REG-A), which overlap with areas commonly reported in NF 312 

studies 12, required a negative response to NF signals (FBR-) to achieve significant symptom 313 

reduction. Conversely, individuals in the REG-B subtype, who showed increased activation in 314 

executive control areas such as the lateral prefrontal cortex and SMA and salience network 315 

regions such as the anterior insula (areas that overlap with those involved in general skill 316 

learning and emotion regulation 53, 54), alongside suppressive activation in DMN regions during 317 

self-regulation, achieved symptom reduction regardless of the polarity of their brain response to 318 

feedback signals. These findings suggest that nonspecific increases in brain activation do not 319 

contribute to treatment efficacy; rather, selective modulation of brain responses is crucial for 320 

successful NF therapy. 321 

Increased activation of the DMN, often associated with self-referential thoughts 55, 56, has 322 

been frequently observed in individuals with MDD compared to healthy controls, and is linked to 323 

repetitive negative thinking 57-65. Particularly relevant to the pathophysiology of MDD and its 324 

treatment mechanisms could be the significant role of deactivating the posterior DMN, 325 

especially the posterior cingulate cortex (PCC). Current evidence suggests that the PCC acts as 326 

a major cortical hub for various self-referential phenomena, ranging from spatial body 327 

localization to self-talk and autobiographical information processing 66-69. In this context, the 328 

characteristic deactivation of the PCC observed in brain activation subtypes associated with 329 
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clinical response in our study supports the hypothesis that this region may underlie the 330 

persistent and intensified negative self-referential mentation that characterizes depression. 331 

The absence of suppressive activation during the regulation task can be compensated for by 332 

negative responses to feedback signals in the SMA, middle cingulate cortex (MCC), auditory 333 

cortex (including Heschl's gyrus and Rolandic operculum), and visual cortex. Although the 334 

functional mechanism of these negative responses to NF signals remains unclear, they may 335 

counteract maladaptive brain activation patterns associated with MDD. Notably, alterations in 336 

SMA activity, frequently reported in MDD 70-73, and changes in middle cingulate activation during 337 

reward anticipation have also been highlighted in a meta-analysis 74. The association between 338 

less MCC activation during NF training and greater symptom reduction was also reported 26. 339 

Furthermore, increased connectivity in the auditory cortex was associated with repetitive 340 

negative thinking 75, and heightened activity or connectivity in the visual cortex have also been 341 

reported in individuals with MDD 48, 76. 342 

Selective increases and decreases in brain activation associated with successful NF training 343 

have also been documented in a meta-analysis of amygdala NF studies 4. This study reported 344 

that successful amygdala modulation was linked to deactivation in the posterior insula and DMN 345 

regions, including the ventromedial prefrontal cortex and PCC, during the regulation period. 346 

Additionally, negative activations in successful modulators were noted in the left 347 

parahippocampal gyrus and cuneus, aligning with the present results observed in the FBR- 348 

subtype. Notably, this meta-analysis 4 defined training success as the ability to down-regulate 349 

amygdala activation, in contrast to our study, which focused on up-regulating amygdala 350 

activation and evaluated training success by changes in depressive symptoms. This suggests a 351 

common underlying mechanism in emotion regulation training that leads to depressive symptom 352 

reduction, despite varying approaches to NF signal definition and operational definitions of 353 

success. 354 
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In light of our findings, the therapeutic effects of NF targeting the left amygdala cannot be 355 

solely attributed to changes in its activity alone. This observation aligns with previous research 356 

showing that activations in brain regions beyond the intended target during NF training can 357 

mediate symptom reduction 26. Such evidence supports the notion that brain self-regulation 358 

through NF involves a large-scale network, extending well beyond a single target region. 359 

Although amygdala activity is a reliable marker of emotional states and can indicate successful 360 

regulatory efforts, as demonstrated in many NF protocols 11, our findings underscore the 361 

importance of the regulation process itself in achieving treatment success and explaining the 362 

observed variability in treatment outcomes. 363 

To our knowledge, this study is the first to explore interindividual differences in brain activation 364 

during NF training and its association with therapeutic effects on depressive symptoms. This 365 

investigation marks a significant step toward understanding the mechanisms of NF as a 366 

treatment for psychiatric disorders. Our findings, which highlight the importance of the whole-367 

brain regulation process over the mere amplitude of amygdala activity, could pave the way for 368 

improvements in NF protocols. Thus, incorporating feedback that targets both regulation-related 369 

activities and responses to feedback within large-scale brain networks could potentially enhance 370 

treatment efficacy. As NF methodologies continue to evolve, focusing on the process of 371 

regulating affective states rather than merely activating specific brain regions might yield more 372 

effective treatments. In this context, pattern-based NF approaches such as DecNef 77, 373 

connectome-based neurofeedback 78, and semantic neurofeedback 79, 80, which emphasize 374 

extracting feedback signals from multivariate brain activation patterns, offer a promising 375 

direction for refining training protocols. 376 

The limitations of this study warrant careful consideration. Although the clustering analysis 377 

was designed to classify individuals into distinct subtypes, it is possible that these subtypes do 378 

not represent distinct groups per se. Rather, the subtypes may be part of a continuous 379 

distribution with no clear demarcation between groups. This is suggested by the fact that the 380 
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obtained optimal stability scores, which indicate the discrepancy between cross-validated 381 

solutions, were greater than 0.2, indicating potential ambiguity in cluster definition. In scenarios 382 

where the samples have a continuous distribution, splitting into an equal number of participants 383 

could emerge as a more stable approach. This phenomenon may explain why our analysis 384 

resulted in nearly equal numbers of participants being categorized into each subtype, 385 

highlighting that these identified subtypes may not delineate distinct groups but rather capture 386 

different facets of the continuous response spectrum. It is also noteworthy that subtype 387 

classification was not related to age, sex, or baseline severity of depressive symptoms. 388 

However, the relationship between the subtypes and other demographic factors or 389 

neurobiological indicators before and after treatment remains unexplored. Further investigation 390 

may reveal subtypes of treatment response based on specific pretreatment characteristics. 391 

In conclusion, the present study demonstrates that the therapeutic outcomes of NF training 392 

are significantly influenced by whole-brain activation patterns both during the process of affect 393 

regulation and during the response to feedback signals. Our findings reveal multiple patterns of 394 

brain activity associated with significant therapeutic effects, suggesting a variety of potential 395 

pathways to recovery through NF training. In future studies, the optimization of NF training may 396 

involve real-time monitoring of brain activity during regulation efforts and in response to 397 

feedback signals, as well as tailoring feedback signals to the individual's current state of training 398 

progress. Such an approach could enhance treatment precision, adjusting it to match each 399 

participant's unique neural response patterns, thus potentially increasing the effectiveness of NF 400 

training. 401 
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Figure 1. Schematic diagram of the neurofeedback-based brain regulation training loop (left 

panel) and the models used to estimate brain activation at each epoch (right panel). The 

reinforcement learning process is typically characterized by the evaluation of a feedback signal 

followed by the adjustment of action (mental regulation) to increase the reward (feedback) 

signal. Brain activations corresponding to these two components were analyzed using a block-

wise response model during the neurofeedback regulation blocks and an event-related 

response model for each neurofeedback presentation at every TR, modulated by feedback 

amplitude. 
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Figure 2. Procedures of subtyping whole-brain beta maps. 
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Figure 3: MADRS scores before and after NF training in the active and control groups. The bars

show the mean MADRS scores for each group, with the error bars representing their standard 

error. Individual participant scores are shown as dots, with lines connecting pre- and post-

training scores to highlight changes for each individual. A statistically significant decrease in 

post-training MADRS scores was observed in the active group (***, p < 0.001). 
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Figure 4. t maps of mean activation in the regulation block for the REG subtypes. The maps are 

thresholded at a voxel-wise p < 0.001, with cluster-size correction at p < 0.05. 
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Figure 5. t maps of mean activation in response to NF signals for the FBR subtypes. The maps 

are thresholded at a voxel-wise p < 0.001, with cluster-size correction at p < 0.05. 
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Figure 6. Ratio of change in MADRS score from baseline for each REG and FBR subtype. **, p 

< 0.005; ***, p < 0.001. 
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