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Abstract

Major Depressive Disorder (MDD) poses a significant public health challenge due to its high
prevalence and the substantial burden it places on individuals and healthcare systems. Real-
time functional magnetic resonance imaging neurofeedback (rtfMRI-NF) shows promise as a
treatment for this disorder, although its mechanisms of action remain unclear. This study
investigated whole-brain response patterns during rtfMRI-NF training to explain interindividual
variability in clinical efficacy in MDD. We analyzed data from 95 participants (67 active, 28
control) with MDD from previous rtfMRI-NF studies designed to increase left amygdala
activation through positive autobiographical memory recall. Significant symptom reduction was
observed in the active group (t=-4.404, d=-0.704, p<0.001) but not in the control group (t=-1.609,
d=-0.430, p=0.111). However, left amygdala activation did not account for the variability in
clinical efficacy. To elucidate the brain training process underlying the clinical effect, we
examined whole-brain activation patterns during two critical phases of the neurofeedback
procedure: activation during the self-regulation period, and transient responses to feedback
signal presentations. Using a systematic process involving feature selection, manifold extraction,
and clustering with cross-validation, we identified two subtypes of regulation activation and three
subtypes of brain responses to feedback signals. These subtypes were significantly associated
with the clinical effect (regulation subtype: F=8.735, p=0.005; feedback response subtype:
F=5.326, p=0.008; subtypes’ interaction: F=3.471, p=0.039). Subtypes associated with
significant symptom reduction were characterized by selective increases in control regions,
including lateral prefrontal areas, and decreases in regions associated with self-referential
thinking, such as default mode areas. These findings suggest that large-scale brain activity
during training is more critical for clinical efficacy than the level of activation in the
neurofeedback target region itself. Tailoring neurofeedback training to incorporate these

patterns could significantly enhance its therapeutic efficacy.
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Introduction

Major Depressive Disorder (MDD) presents a significant public health challenge, with
approximately one-third of diagnosed patients not responding to first-line treatments such as
antidepressants and psychotherapy. This results in substantial disability and economic losses
due to treatment costs and lost productivity * 2. Real-time functional magnetic resonance
imaging neurofeedback (rtfMRI-NF) has emerged as a promising alternative, demonstrating
large to medium effect sizes in treating depressive symptoms *°. This noninvasive brain
modulation technique involves the real-time analysis and visualization of brain activation signals,
thereby enabling participants to self-regulate their brain activity. Its efficacy in training
participants to modulate their brain activation is well-supported by many studies, including
several meta-analyses ***. However, the direct impact of rtfMRI-NF on symptom relief is not yet
fully understood due to incomplete knowledge of the neural mechanisms by which this training
alleviates symptoms through the regulation of specific brain activations.

Previous studies on the mechanisms of NF training *2*°

, including investigations into brain
responses to feedback signals *>*°, have identified a broad spectrum of brain activities
associated with NF-mediated self-regulation training. This training process is considered to
include aspects of reinforcement learning, and two types of brain activation - evaluation of
feedback values and modulation of brain activation - are common components of the
reinforcement learning process %. Thus, to elucidate the learning mechanisms of NF-mediated
brain regulation, investigating these two epochs is crucial. Active regions during these epochs
typically include the prefrontal cortex, salience network, and reward processing areas ***°.
However, while many studies have focused on the success of regulating target brain activities,
the relationship between these activities and subsequent symptom relief remains elusive.

Furthermore, interindividual variability in the clinical efficacy of NF necessitates further

investigation to identify brain response subtypes associated with therapeutic outcomes.
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This study aimed to characterize whole-brain activation patterns during rtfMRI-NF training in
individuals with MDD, with the goal of identifying brain activation subtypes associated with
interindividual variability in therapeutic efficacy. To this end, we analyzed a large dataset from
rtfMRI-NF studies where participants with MDD were trained to regulate left amygdala activity
through neurofeedback ?*%*. These studies consistently observed significant reductions in
depressive symptoms on average post-training, albeit with variations in therapeutic outcomes
among participants.

We hypothesized that the observed variability in treatment efficacy could be explained by
variations in whole-brain activation patterns during self-regulation training, extending beyond the
NF target region (amygdala). The involvement of large-scale networks in NF training has been
demonstrated in a meta-analysis of NF studies *?, and burgeoning evidence suggests that the
effects of NF training may extend beyond the targeted brain region *%’. Specifically, we focused
on two types of brain activation critical for NF training: regulatory task activity throughout the
task block and instantaneous responses to neurofeedback signal presentations (Figure 1).
These two types of activation are thought to correspond to two critical components of the
reinforcement learning process ?° and should characterize the training process for each

individual.

Methods

Participants

The present study was a secondary analysis of data from our previously published studies #*
224 and a preliminary study utilizing the same rtfMRI-NF protocols in individuals diagnosed with
MDD. The University of Oklahoma Institutional Review Board (IRB) or the Western IRB
reviewed and approved the study protocols, ensuring adherence to the ethical principles of the

Declaration of Helsinki. Participants provided written informed consent prior to participation and

were financially compensated. Participants met DSM-IV-TR 2 criteria for MDD based on the
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Structural Clinical Interview for DSM-IV disorders ?° or DSM-5 criteria for MDD based on the
Mini-International Neuropsychiatric Interview (MINI) *°. Previous articles ?*'?* ?* detailed each
study's inclusion and exclusion criteria. Common inclusion criteria across studies are ages 18-
65, current diagnosis of MDD, and common exclusion criteria are current diagnosis of PTSD,
substance use disorder, bipolar disorder, active suicidal ideation or behavior within a year, a
history of psychosis, pregnancy, and MRI contraindicators.

The present analysis included data from 95 participants with MDD (68 females; mean age +
SD = 33.6 + 10.4 years), consisting of 67 in the active NF group (46 females) who received left
amygdala neurofeedback and 28 in the control group (22 females) who received neurofeedback

from a brain region not associated with emotional processing.

Real-time fMRI Neurofeedback Paradigm

The NF training was designed to enhance the activation signal in the left amygdala while
recalling happy autobiographical memories *!. The task sequence utilized a blocked design
consisting of alternating periods of rest, self-regulation with NF, and number counting, each
lasting 40 seconds. This sequence was repeated four times in a single training run, with
participants undergoing three such runs per session. Because the number of sessions differed
among the studies, the present analyses were confined to data from the three runs of the initial
session. Depressive symptom severity was estimated with the Montgomery-Asberg Depression
Rating Scale (MADRS) ** immediately before the NF session, and one-week post-training.

MRI imaging in all experiments was conducted using the same 3T Discovery MR750 scanner
(GE Healthcare). Blood Oxygenation Level-Dependent (BOLD) fMRI data acquisition employed
a T2*-weighted gradient-echo planar imaging (EPI) sequence, with parameters set as follows:
TR/TE = 2000/30 ms, acquisition matrix = 96 x 96, field of view (FOV)/slice thickness = 240
mm/2.9 mm, flip angle = 90°, and 34 axial slices, using a SENSE acceleration factor of 2. EPI

images were then reconstructed to a 128x128 matrix, resulting in an fMRI voxel size of
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1.875x1.875x2.9 mms3. Anatomical reference was obtained using a T1-weighted magnetization-
prepared rapid gradient-echo (MPRAGE) sequence.

A detailed description of the rtfMRI-NF procedure can be found in our previous publications %
2224 Briefly, a custom in-house rtfMRI system was utilized for the experiments *!. For the active
group, the NF signal was extracted from the left amygdala, defined by 7-mm diameter spheres
centered at Talairach coordinates (x, y, z = -21, -5, -16 mm), and then mapped to each
participant's brain space. For the control group, the NF signal was sourced from the horizontal
segment of the intraparietal sulcus at Talairach coordinates (-42, -48, 48 mm), a region
suggested to be unrelated to emotion regulation *. During the happy memory recall block, the
NF signal was quantified as the percent signal change from the mean signal in the preceding

rest block. The signal was updated every 2 s and visually presented to participants as a red bar.

MRI data processing

The Analysis of Functional Neurolmages (AFNI; http://afni.nimh.nih.gov) software suite was
utilized for image processing. After discarding the first three volumes to achieve signal
equilibrium, preprocessing steps were conducted, including despike, RETROICOR 3* along with
respiratory volume per time (RVT) regression * for physiological noise correction, slice-timing
and motion corrections, nonlinear warping to the MNI template brain with resampling to 2 mm3
voxels using the Advanced Normalization Tools (ANTSs; http://stnava.github.io/ANTSs/), spatial
smoothing with a 6 mm full-width at half maximum (FWHM) Gaussian kernel, and scaling of
signals to percent change relative to the voxel-wise mean.

Activation during the self-regulation was assessed using a general linear model (GLM)
analysis. We extracted the two types of brain response in this process (Fig. 1). The GLM
regressors included response models for the regulation and counting blocks, each modeled with
a boxcar function convolved with the canonical hemodynamic response function (HRF). The
regressor for the regulation block was used for estimating the first type of brain activation,

regulation block activation (Fig. 1). The GLM regressors also included twelve motion parameters
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(three rotations, three translations, and their temporal derivatives), three principal components
of ventricle signals, local white matter signals (ANATICOR) *®, and an event-related regressor
for the onset of any condition block (modeled as a delta function convolved with HRF) as
nuisance covariates. Volumes with frame-wise displacement greater than 0.3 and their
preceding volume were censored in the GLM.

Another type of brain response, the feedback event-related response (Figure 1), was
evaluated using additional event-related regressors for each feedback presentation. The
response was modeled as a delta function, modulated by the feedback amplitude normalized in
each run, and convolved with the hemodynamic response function (HRF). Since the feedback
signal was presented during the regulation block and this event regressor could be collinear with
the regulation block regressor, we orthogonalized the feedback-response-event regressor with
respect to the regulation block regressor. The beta coefficients from the general linear model
(GLM) analysis were used as response estimates.

These response estimates were assessed for each block independently using the least
squares - separate (LS-S) approach ¥, in which separate regressors for the target block and all
other blocks were included to estimate the response in a block, and repeated for each block in
separate GLM analyses. The use of this block-wise response facilitates subsequent group
analysis using linear mixed-effect model and provides the estimates with better test-retest
38, 39

reliability

Clustering analysis

Clustering analysis was conducted on the whole-brain beta maps solely for the active group
participants to categorize their brain activation patterns. This approach was chosen because
including the control group could introduce brain activation patterns with various unspecific
effects. Such inclusion might increase the dimensionality of latent subtypes and complicate the

extraction of subtypes relevant to the active NF training process.


https://doi.org/10.1101/2024.05.01.592108
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.01.592108; this version posted May 16, 2024. The copyright holder for this preprint (which

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A significant challenge posed by this analysis is the high dimensionality of the whole-brain
beta maps; the problem often referred to as the "curse of dimensionality" *°. This phenomenon
refers to the issues arising in high-dimensional spaces, where distances between points
become uniformly large, data points are sparsely distributed, and there is a high risk of
overfitting, leading to clustering solutions that are difficult to reproduce.

To address this challenge, we implemented a multi-step strategy to reduce dimensionality and
identify an informative space associated with treatment outcomes. Additionally, we employed
cross-validation to ensure the clustering solution's stability and reproducibility. Our approach
involved (1) aggregating voxel-wise responses into regional averages using a functional brain
atlas, (2) removing the regions irrelevant to treatment outcomes, (3) applying Uniform Manifold
Approximation and Projection (UMAP) * to extract a low-dimensional representation, (4)
applying k-means clustering in the UMAP space, and (5) employing repeated cross-validation to
assess the robustness of the clustering solution *?. Figure 2 illustrates the flowchart of the
analysis performed to delineate subtypes of brain activation.

Initially, voxel-wise beta values were averaged within each functional region defined by the
Shen 268 atlas ** **. This atlas was chosen for its demonstrated performance in various
predictive modeling studies ** *>*°. The data for each participant are averaged across the three
runs or for each run. We tested both approaches as a hyperparameter to test which one yielded
the most stable clustering solution. Subsequently, we identified regions correlating with changes
in the MADRS score (change relative to the baseline score expressed as a ratio) after adjusting
for the effects of age and sex. A threshold of p < 0.1 was used for this selection, prioritizing
dimensionality reduction rather than finding significantly related regions. After excluding the
regions irrelevant to the treatment outcome, we utilized UMAP for dimensionality reduction,
followed by k-means clustering. The UMAP parameters were set to optimize the clustered
distribution within the reduced-dimensional space, with 'n_neighbors' (the number of

neighboring points used in the local manifold approximation) set to 50, and 'min_dist' (the
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minimum distance apart that points are allowed to be in the low-dimensional representation) set
to 0. The large 'n_neighbors' value and small 'min_dist' value encourage the UMAP to extract a
space with a clustered distribution. Subsequently, k-means clustering was executed within the
UMAP-defined space.

The stability of the clusters was rigorously evaluated through cross-validation, facilitated by
the 'reval' Python package **. This involved dividing the dataset into two halves, applying
clustering to one half, and then applying the derived clustering rule to the opposite half, and vice
versa, to assess the consistency of the cluster labels between the two rules (Fig. 2). This
procedure was repeated 10 times, each with a unique data split, to calculate the average
stability score. The stability measure is the mean normalized Hamming distance between the
two solutions, ranging from 0 to 1. A smaller value indicates a more stable and reproducible
solution. Since this measure is larger with a larger number of clusters, it was scaled by the
stability of random labeling of the same number of clusters °.

In summary, these procedures were conducted across the hyperparameter space of response
summary (average across runs or a sequence of three runs), UMAP random seed (50 values),
UMAP dimension (ranging from 2 to 50), and the number of clusters (ranging from 2 to 5) to find

robust clustering with the smallest mean distance between the cross-validated solutions.

Mapping the brain responses in each subtype

After identifying the subtypes, we evaluated the voxel-wise response patterns for each

subtype using a linear mixed-effect (LME) model analysis performed voxel-wise with the ‘ime4’

package ! in R language and environment for statistical computing. This LME analysis was
applied to the beta values for each block, run, and participant, incorporating fixed effects for the
run, the identified subtype from the clustering analysis, age, and sex, as well as a random effect
for participants at the intercept level. The mean response for each subtype was calculated using
the ‘emmeans’ package *? in R. The mean maps of the subtypes were thresholded at a voxel-

wise p < 0.001, corrected for cluster size with a p < 0.05 using AFNI 3dClustSim.
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Statistical testing

LME analysis was performed to investigate changes in MADRS scores one week after a NF
session for both active and control groups. The LME model included fixed effects for time (pre-
/post-NF), group (active/control), age, and sex, as well as a random effect for participants at the
intercept. We also examined whether treatment efficacy was correlated with NF training
performance measures, including the mean NF amplitude, mean left amygdala response during
the regulation block, and the change in left amygdala response between the first and the last
training runs using linear model analysis.

We then examined whether the identified subtypes of brain activation during NF training were
associated with demographic and training performance variables, as well as the depressive
symptom score (MADRS) at the baseline and its change post-NF. Each variable was examined
using linear model analysis, with subtypes serving as independent variables. The post-hoc
analysis for the mean response for each subtype and the difference between the subtypes was
performed using the ‘emmeans’ package 2, and p-values for the post-hoc comparisons were
corrected by multivariate t adjustment.

In addition, the subtyping rules established in the active group were applied to the control
group to assess if similar patterns in MADRS score changes could be observed across the
subtypes. The presence of consistent subtype associations with symptom reduction in both the
active and control groups would suggest the operation of a common treatment mechanism. This
could indicate that the efficacy of NF training is not specific to the neurofeedback signal from an

emotion-related region.

Results

Data selection

Post-training MADRS scores were not available for two participants in the active group. fMRI

data from five participants were excluded from the analysis due to problems with physiological

10
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signal acquisition (two from the active group and one from the control group) or excessive head
motion (two from the active group) with more than 30% of time points censored (Framewise
Displacement [FD] > 0.3) in all training runs. Additionally, four participants in the active group
who exhibited excessive head motion in any one of the training runs were excluded only when
analyzing data with a series of three training runs. Analyses were performed using the largest
sample size available for each test measure, regardless of missing data on other variables (see
Supplementary Information [SI], Section 1). No significant differences in age, sex, and baseline
MADRS scores were observed between the active and control groups in any of these selected

datasets.

Reduction of depressive symptoms following NF training

Figure 3 shows the MADRS scores before and after NF training for each group, with average
scores represented by the height of bars and individual participant scores depicted as points
connected by lines. LME analysis identified a significant main effect of time. Post-hoc analysis
revealed a significant decrease in post-session scores (t = -4.404, d = -0.704, p < 0.001). SI
Table S2a provides the ANOVA tables for the LME analysis. While the time by group interaction
was not statistically significant (p = 0.090), the active group showed a significant symptom
reduction (t =-5.576, d =-0.978, p < 0.001) but not the control group (t =-1.609, d =-0.430, p =
0.111).

However, left amygdala activation had no significant main effect of the group (F = 2.870, p =
0.094) and the interaction between the group and run (F = 0.597, p = 0.551). Furthermore,
within the active group, no significant associations were found between changes in MADRS
scores and measures of NF training performance, including mean NF amplitude, average left
amygdala response during regulation blocks, or changes in left amygdala response from the

first to the last training runs (see Sl Section 2 for comprehensive details).
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Clustering results

In clustering of activation maps related to the regulation block, the optimal stability score of
0.217 was obtained using the following hyperparameters: averaging responses across runs for
each participant, extracting a 40-dimensional UMAP space, and clustering into two subtypes,
which included 32 and 31 participants respectively. Similarly, in the clustering of activation maps
associated with the feedback event, an optimal stability score of 0.229 was reached by
analyzing a series of responses across three runs, extracting a 14-dimensional UMAP space,
and forming three subtypes consisting of 23, 15, and 22 participants each. However, no
significant association was found between the subtypes identified in the regulation block and
those in the feedback event (x* = 3.143, p = 0.208).

Figure 4 shows t-maps of the mean beta values for the subtypes of regulation block
activations (REG subtypes), with detailed peak coordinates available in SI, Section 3, Table S3.
The first subtype, REG-A, exhibited increased BOLD signals in regions commonly identified in
NF studies *?, including the lateral prefrontal cortex, superior and inferior parietal lobules,
supplementary motor area (SMA), anterior insula, thalamus, and cerebellum. In contrast,
decreased BOLD signals were observed in Heschl's gyrus, posterior insula, middle cingulate
cortex, and cuneus. The second subtype, REG-B, demonstrated increased BOLD signals in the
lateral prefrontal cortex, SMA, and anterior insula, with decreased activity in default mode
network (DMN) areas such as the precuneus, posterior cingulate cortex, mediodorsal prefrontal
cortex, Rolandic operculum, and fusiform gyrus.

Figure 5 presents t-maps of the mean beta values for subtypes of the brain responses to the
feedback event (FBR subtypes), with peak coordinates detailed in Sl, Section 4, Table S4. The
first subtype, labeled FBRO, demonstrated a limited response, particularly in the Rolandic
operculum and right supramarginal gyrus. The second subtype, labeled FBR-, was
characterized by a negative association of BOLD signal changes in response to NF signals,

affecting regions including the SMA, middle cingulate cortex, Heschl's gyrus, Rolandic

12


https://doi.org/10.1101/2024.05.01.592108
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.01.592108; this version posted May 16, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

254  operculum, and visual cortex. In contrast, the third subtype, labeled FBR+, displayed a positive
255  association of BOLD signal changes in areas such as the precuneus, middle cingulate cortex,

256 lateral prefrontal cortex, nucleus accumbens, cerebellum, and inferior occipital regions.

257 Subtype associations with demographics, NF-training characteristics, and the
258 depressive symptom in the active group

259 Linear model analyses examining associations of the REG and FBR subtypes with age, mean
260  NF signal amplitude, mean left amygdala activation across runs, and baseline MADRS scores
261 revealed no significant differences between the subtypes. Similarly, x* tests showed no

262  significant associations of these subtypes with sex or study participation (refer to Sl section 5 for
263  further detailed statistics).

264 However, changes in MADRS scores, indicative of clinical efficacy, were significantly

265  associated with these subtypes. The main effects of both REG and FBR subtypes, as well as
266 their interaction effect on changes in MADRS scores, were statistically significant (REG, F =

267 8.735, p = 0.005; FBR, F = 5.326, p = 0.008; interaction F = 3.471, p = 0.039). Post-hoc

268 analysis revealed a significant decrease in MADRS scores within the REG-B subtype (t = -6.077,
269 d=-1.702, p <0.001), in contrast to REG-A (t =-2.170, d = -0.608, p = 0.068). For the FBR

270  subtypes, significant decreases in MADRS scores were observed in both FBR- (t =-4.995, d = -
271  1.399, p <0.001) and FBR+ (t =-3.818, d =-1.069, p = 0.001), whereas the FBRO subtype

272  exhibited no significant change (t =-0.839, d = -0.235, p = 0.786).

273 Moreover, changes in MADRS scores varied by subtype combination, as illustrated in Figure
274 6. Asignificant reduction in scores was noted when REG-A was paired with FBR- (t =-3.327, d
275 =-0.931, p = 0.003). Within the REG-B group, no significant reduction was observed with the
276  FBRO subtype (t =-1.221, d = -0.342, p = 0.401). However, significant reductions were seen
277  when REG-B was paired with FBR- (t =-3.789, d =-1.061, p < 0.001) and FBR+ (t =-6.018, d =

278  -1.685, p < 0.001). In summary, participants in the active group classified as REG-A with FBR-,
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279  or REG-B with FBR- or FBR+ experienced significant reductions in MADRS scores one week

280  after NF training.

281  Application of clustering rules to the control group

282 When the clustering rules derived from the active group were applied to the control group,
283  participants were classified as follows: 13 into REG-A and 14 into REG-B for the REG subtypes;
284 and 11 into FBRO, 5 into FBR-, and 11 into FBR+ for the FBR subtypes. No significant

285  association was observed between the REG and FBR subtypes within the control group (x? =
286  0.345, p = 0.842). Additionally, the distribution of participants across subtypes did not

287  significantly differ from that observed in the active group for both REG (x2 = 0, p = 1.000) and
288 FBR (x¥2=0.526, p = 0.768) subtypes.

289 In the control group, no significant associations were found between the subtypes and

290 variables such as age, sex, study participation, mean NF signal amplitude, changes in left
291 amygdala activation, or baseline MADRS scores, as detailed in SI Section 6. Contrary to the
292  active group, there were no significant differences in MADRS score changes across subtypes

293  within the control group.

294 Discussion

295 The primary objective of this study was to identify subtypes of brain activation patterns during
296  NF training that could explain interindividual differences in clinical response. Our analysis

297  revealed that training characteristics within the target brain region, such as mean NF signal

298 amplitude, mean left amygdala activation, and signal changes in the left amygdala, were not
299  associated with changes in depressive symptoms. However, we found significant associations
300 Dbetween subtypes of whole-brain activation patterns during NF training and changes in MADRS
301 scores. In contrast, the control group showed no significant associations between the subtypes
302 and changes in MADRS scores, underscoring that the effects of NF treatment are distinct from

303 placebo effects.
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304 Significant symptom reduction was observed across multiple subtype combinations, indicating
305 the existence of multiple brain functional pathways to successful treatment. Notably, individuals
306 classified within the FBRO subtype, characterized by their non-responsiveness to feedback
307 signals, did not experience significant symptom reduction, highlighting the critical role of brain
308 response to feedback signals in effective NF training. Significant symptom reduction was

309 evidentin individuals exhibiting brain activation correlated with feedback signals, either in a
310 positive (FBR+) or negative (FBR-) manner. However, the efficacy of this response pattern was
311 dependent on their regulation subtype. Individuals exhibiting increased activation across broad
312  brain areas during self-regulation (REG-A), which overlap with areas commonly reported in NF
313  studies *? required a negative response to NF signals (FBR-) to achieve significant symptom
314  reduction. Conversely, individuals in the REG-B subtype, who showed increased activation in
315 executive control areas such as the lateral prefrontal cortex and SMA and salience network
316 regions such as the anterior insula (areas that overlap with those involved in general skill

317 learning and emotion regulation °*>*

), alongside suppressive activation in DMN regions during
318  self-regulation, achieved symptom reduction regardless of the polarity of their brain response to
319 feedback signals. These findings suggest that nonspecific increases in brain activation do not
320 contribute to treatment efficacy; rather, selective modulation of brain responses is crucial for
321  successful NF therapy.

322 Increased activation of the DMN, often associated with self-referential thoughts > *°, has

323  been frequently observed in individuals with MDD compared to healthy controls, and is linked to
324  repetitive negative thinking *"°°. Particularly relevant to the pathophysiology of MDD and its

325 treatment mechanisms could be the significant role of deactivating the posterior DMN,

326  especially the posterior cingulate cortex (PCC). Current evidence suggests that the PCC acts as
327  amajor cortical hub for various self-referential phenomena, ranging from spatial body

328 localization to self-talk and autobiographical information processing ©®°. In this context, the

329 characteristic deactivation of the PCC observed in brain activation subtypes associated with
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clinical response in our study supports the hypothesis that this region may underlie the
persistent and intensified negative self-referential mentation that characterizes depression.

The absence of suppressive activation during the regulation task can be compensated for by
negative responses to feedback signals in the SMA, middle cingulate cortex (MCC), auditory
cortex (including Heschl's gyrus and Rolandic operculum), and visual cortex. Although the
functional mechanism of these negative responses to NF signals remains unclear, they may
counteract maladaptive brain activation patterns associated with MDD. Notably, alterations in
SMA activity, frequently reported in MDD "3, and changes in middle cingulate activation during
reward anticipation have also been highlighted in a meta-analysis "*. The association between
less MCC activation during NF training and greater symptom reduction was also reported .
Furthermore, increased connectivity in the auditory cortex was associated with repetitive
negative thinking °, and heightened activity or connectivity in the visual cortex have also been
reported in individuals with MDD “*® ™®,

Selective increases and decreases in brain activation associated with successful NF training
have also been documented in a meta-analysis of amygdala NF studies . This study reported
that successful amygdala modulation was linked to deactivation in the posterior insula and DMN
regions, including the ventromedial prefrontal cortex and PCC, during the regulation period.
Additionally, negative activations in successful modulators were noted in the left
parahippocampal gyrus and cuneus, aligning with the present results observed in the FBR-
subtype. Notably, this meta-analysis * defined training success as the ability to down-regulate
amygdala activation, in contrast to our study, which focused on up-regulating amygdala
activation and evaluated training success by changes in depressive symptoms. This suggests a
common underlying mechanism in emotion regulation training that leads to depressive symptom
reduction, despite varying approaches to NF signal definition and operational definitions of

SUCCesSS.
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In light of our findings, the therapeutic effects of NF targeting the left amygdala cannot be
solely attributed to changes in its activity alone. This observation aligns with previous research
showing that activations in brain regions beyond the intended target during NF training can
mediate symptom reduction ?°. Such evidence supports the notion that brain self-regulation
through NF involves a large-scale network, extending well beyond a single target region.
Although amygdala activity is a reliable marker of emotional states and can indicate successful
regulatory efforts, as demonstrated in many NF protocols ™, our findings underscore the
importance of the regulation process itself in achieving treatment success and explaining the
observed variability in treatment outcomes.

To our knowledge, this study is the first to explore interindividual differences in brain activation
during NF training and its association with therapeutic effects on depressive symptoms. This
investigation marks a significant step toward understanding the mechanisms of NF as a
treatment for psychiatric disorders. Our findings, which highlight the importance of the whole-
brain regulation process over the mere amplitude of amygdala activity, could pave the way for
improvements in NF protocols. Thus, incorporating feedback that targets both regulation-related
activities and responses to feedback within large-scale brain networks could potentially enhance
treatment efficacy. As NF methodologies continue to evolve, focusing on the process of
regulating affective states rather than merely activating specific brain regions might yield more
effective treatments. In this context, pattern-based NF approaches such as DecNef ”/,
connectome-based neurofeedback "¢, and semantic neurofeedback " #, which emphasize
extracting feedback signals from multivariate brain activation patterns, offer a promising
direction for refining training protocols.

The limitations of this study warrant careful consideration. Although the clustering analysis
was designed to classify individuals into distinct subtypes, it is possible that these subtypes do
not represent distinct groups per se. Rather, the subtypes may be part of a continuous

distribution with no clear demarcation between groups. This is suggested by the fact that the
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obtained optimal stability scores, which indicate the discrepancy between cross-validated
solutions, were greater than 0.2, indicating potential ambiguity in cluster definition. In scenarios
where the samples have a continuous distribution, splitting into an equal number of participants
could emerge as a more stable approach. This phenomenon may explain why our analysis
resulted in nearly equal numbers of participants being categorized into each subtype,
highlighting that these identified subtypes may not delineate distinct groups but rather capture
different facets of the continuous response spectrum. It is also noteworthy that subtype
classification was not related to age, sex, or baseline severity of depressive symptoms.
However, the relationship between the subtypes and other demographic factors or
neurobiological indicators before and after treatment remains unexplored. Further investigation
may reveal subtypes of treatment response based on specific pretreatment characteristics.

In conclusion, the present study demonstrates that the therapeutic outcomes of NF training
are significantly influenced by whole-brain activation patterns both during the process of affect
regulation and during the response to feedback signals. Our findings reveal multiple patterns of
brain activity associated with significant therapeutic effects, suggesting a variety of potential
pathways to recovery through NF training. In future studies, the optimization of NF training may
involve real-time monitoring of brain activity during regulation efforts and in response to
feedback signals, as well as tailoring feedback signals to the individual's current state of training
progress. Such an approach could enhance treatment precision, adjusting it to match each
participant's unique neural response patterns, thus potentially increasing the effectiveness of NF

training.

Acknowledgement
This work was supported by the Laureate Institute for Brain Research, NIMH grant
K99MH101235, R21MH113871, NIGMS grant P20GM121312, and NARSAD Young Investigator

Grant from the Brain and Behavior Research Foundation. The funding sources had no role in

18


https://doi.org/10.1101/2024.05.01.592108
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.01.592108; this version posted May 16, 2024. The copyright holder for this preprint (which

406

407

408

409

410

411

412

413

414

415

416

417

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

the study design, data collection and analysis, decision to publish, or preparation of the
manuscript. The authors are solely responsible for the content. The authors would like to
acknowledge Jerzy Bodurka, Ph.D. (1964—-2021), for his intellectual and scientific contributions
to the designing the left amygdala neurofeedback protocols and development of the real-time
fMRI neurofeedback systems, which provided the foundation for the present work. During the
preparation of this work the authors used ChatGPT (https://chat.openai.com/) and DeepL
(https://www.deepl.com/write) in order to improve language and readability. After using these
tools, the authors reviewed and edited the content as needed and take full responsibility for the

content of the publication.

Conflict of Interest
The authors report no financial relationships with commercial interests in relation to the work

described.

19


https://doi.org/10.1101/2024.05.01.592108
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.01.592108; this version posted May 16, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

References

1.

10.

11.

12.

Institute for Health Metrics and Evaluation (IHME). Global Burden of Disease Study 2019.

IHME, https://www.healthdata.org/research-analysis/gbd2020.

Greenberg PE, Fournier A-A, Sisitsky T, Simes M, Berman R, Koenigsberg SH et al. The
Economic Burden of Adults with Major Depressive Disorder in the United States (2010
and 2018). PharmacoEconomics 2021; 39(6): 653-665.

Pindi P, Houenou J, Piguet C, Favre P. Real-time fMRI neurofeedback as a new
treatment for psychiatric disorders: A meta-analysis. Progress in neuro-
psychopharmacology & biological psychiatry 2022; 119: 110605.

Goldway N, Jalon I, Keynan JN, Hellrung L, Horstmann A, Paret C et al. Feasibility and
utility of amygdala neurofeedback. Neurosci Biobehav Rev 2022; 138: 104694.

Fernandez-Alvarez J, Grassi M, Colombo D, Botella C, Cipresso P, Perna G et al.
Efficacy of bio- and neurofeedback for depression: a meta-analysis. Psychological
medicine 2022; 52(2): 201-216.

Taylor SF, Martz ME. Real-time fMRI neurofeedback: the promising potential of brain-
training technology to advance clinical neuroscience. Neuropsychopharmacology :
official publication of the American College of Neuropsychopharmacology 2023; 48(1):
238-239.

Girges C, Vijiaratnam N, Zrinzo L, Ekanayake J, Foltynie T. Volitional Control of Brain
Motor Activity and Its Therapeutic Potential. Neuromodulation 2022; 25(8): 1187-1196.

Dudek E, Dodell-Feder D. The efficacy of real-time functional magnetic resonance
imaging neurofeedback for psychiatric illness: A meta-analysis of brain and behavioral
outcomes. Neurosci Biobehav Rev 2021; 121: 291-306.

Trambaiolli LR, Kohl SH, Linden DEJ, Mehler DMA. Neurofeedback training in major
depressive disorder: A systematic review of clinical efficacy, study quality and reporting
practices. Neurosci Biobehav Rev 2021; 125: 33-56.

Martz ME, Hart T, Heitzeg MM, Peltier SJ. Neuromodulation of brain activation
associated with addiction: A review of real-time fMRI neurofeedback studies.
Neurolmage Clinical 2020; 27: 102350.

Barreiros AR, Almeida |, Baia BC, Castelo-Branco M. Amygdala Modulation During
Emotion Regulation Training With fMRI-Based Neurofeedback. Frontiers in human
neuroscience 2019; 13: 89.

Emmert K, Kopel R, Sulzer J, Bruhl AB, Berman BD, Linden DEJ et al. Meta-analysis of

real-time fMRI neurofeedback studies using individual participant data: How is brain
regulation mediated? Neuroimage 2016; 124(Pt A): 806-812.

20


https://doi.org/10.1101/2024.05.01.592108
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.01.592108; this version posted May 16, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

available under aCC-BY-NC-ND 4.0 International license.

Zotev V, Phillips R, Misaki M, Wong CK, Wurfel BE, Krueger F et al. Real-time fMRI
neurofeedback training of the amygdala activity with simultaneous EEG in veterans with
combat-related PTSD. Neurolmage Clinical 2018; 19: 106-121.

Herwig U, Lutz J, Scherpiet S, Scheerer H, Kohlberg J, Opialla S et al. Training emotion
regulation through real-time fMRI neurofeedback of amygdala activity. Neuroimage
2019; 184: 687-696.

Paret C, Zahringer J, Ruf M, Gerchen MF, Mall S, Hendler T et al. Monitoring and control
of amygdala neurofeedback involves distributed information processing in the human
brain. Hum Brain Mapp 2018; 39(7): 3018-3031.

Lubianiker N, Paret C, Dayan P, Hendler T. Neurofeedback through the lens of
reinforcement learning. Trends Neurosci 2022; 45(8): 579-593.

Sitaram R, Ros T, Stoeckel L, Haller S, Scharnowski F, Lewis-Peacock J et al. Closed-
loop brain training: the science of neurofeedback. Nat Rev Neurosci 2017; 18(2): 86-100.

Lawrence EJ, Su L, Barker GJ, Medford N, Dalton J, Williams SC et al. Self-regulation of
the anterior insula: Reinforcement learning using real-time fMRI neurofeedback.
Neuroimage 2014, 88: 113-124.

Skottnik L, Sorger B, Kamp T, Linden D, Goebel R. Success and failure of controlling the
real-time functional magnetic resonance imaging neurofeedback signal are reflected in
the striatum. Brain Behav 2019; 9(3): e01240.

Sutton RS, Barto AG. Reinforcement learning: An introduction. 2nd edn. MIT Press
Cambridge, MA2018.

Young KD, Zotev V, Phillips R, Misaki M, Yuan H, Drevets WC et al. Real-time FMRI
neurofeedback training of amygdala activity in patients with major depressive disorder.
PL0S One 2014; 9(2): e88785.

Young KD, Siegle GJ, Bodurka J, Drevets WC. Amygdala Activity During
Autobiographical Memory Recall in Depressed and Vulnerable Individuals: Association
With Symptom Severity and Autobiographical Overgenerality. Am J Psychiatry 2016;
173(1): 78-89.

Yuan H, Young KD, Phillips R, Zotev V, Misaki M, Bodurka J. Resting-state functional
connectivity modulation and sustained changes after real-time functional magnetic
resonance imaging neurofeedback training in depression. Brain connectivity 2014; 4(9):
690-701.

Tsuchiyagaito A, Smith JL, EI-Sabbagh N, Zotev V, Misaki M, Al Zoubi O et al. Real-time
fMRI neurofeedback amygdala training may influence kynurenine pathway metabolism in
major depressive disorder. Neurolmage Clinical 2021; 29: 102559.

Misaki M, Mulyana B, Zotev V, Wurfel BE, Krueger F, Feldner M et al. Hippocampal
volume recovery with real-time functional MRI amygdala neurofeedback emotional
training for posttraumatic stress disorder. Journal of affective disorders 2021; 283: 229-
235.

21


https://doi.org/10.1101/2024.05.01.592108
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.01.592108; this version posted May 16, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

available under aCC-BY-NC-ND 4.0 International license.

Misaki M, Phillips R, Zotev V, Wong CK, Wurfel BE, Krueger F et al. Brain activity
mediators of PTSD symptom reduction during real-time fMRI amygdala neurofeedback
emotional training. Neurolmage Clinical 2019; 24: 102047.

Misaki M, Phillips R, Zotev V, Wong CK, Wurfel BE, Krueger F et al. Real-time fMRI
amygdala neurofeedback positive emotional training normalized resting-state functional
connectivity in combat veterans with and without PTSD: a connectome-wide
investigation. Neurolmage Clinical 2018; 20: 543-555.

American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders
DSM-IV-TR Fourth Edition (Text Revision). American Psychiatric Publishing: Washington,
DC, 2000.

First MB. Structured clinical interview for DSM - IV - TR axis | disorders, research
version, patient edition (SCID - I/P). Biometrics research: New York, NY, 2002.

Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E et al. The Mini-
International Neuropsychiatric Interview (M.1.N.1.): the development and validation of a
structured diagnostic psychiatric interview for DSM-IV and ICD-10. The Journal of
clinical psychiatry 1998; 59 Suppl 20: 22-33;quiz 34-57.

Zotev V, Krueger F, Phillips R, Alvarez RP, Simmons WK, Bellgowan P et al. Self-
regulation of amygdala activation using real-time FMRI neurofeedback. PLoS One 2011;
6(9): e24522.

Montgomery SA, Asberg M. A new depression scale designed to be sensitive to change.
The British journal of psychiatry : the journal of mental science 1979; 134: 382-389.

Fias W, Lammertyn J, Caessens B, Orban GA. Processing of Abstract Ordinal
Knowledge in the Horizontal Segment of the Intraparietal Sulcus. The Journal of
Neuroscience 2007; 27(33): 8952-8956.

Glover GH, Li TQ, Ress D. Image-based method for retrospective correction of
physiological motion effects in fMRI: RETROICOR. Magn Reson Med 2000; 44(1): 162-
167.

Birn RM, Smith MA, Jones TB, Bandettini PA. The respiration response function: the
temporal dynamics of fMRI signal fluctuations related to changes in respiration.
Neuroimage 2008; 40(2): 644-654.

Jo HJ, Saad ZS, Simmons WK, Milbury LA, Cox RW. Mapping sources of correlation in
resting state FMRI, with artifact detection and removal. Neuroimage 2010; 52(2): 571-
582.

Mumford JA, Turner BO, Ashby FG, Poldrack RA. Deconvolving BOLD activation in

event-related designs for multivoxel pattern classification analyses. Neuroimage 2012;
59(3): 2636-2643.

22


https://doi.org/10.1101/2024.05.01.592108
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.01.592108; this version posted May 16, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

available under aCC-BY-NC-ND 4.0 International license.

Chen G, Taylor PA, Stoddard J, Cox RW, Bandettini PA, Pessoa L. Sources of
Information Waste in Neuroimaging: Mishandling Structures, Thinking Dichotomously,
and Over-Reducing Data. Aperture Neuro 2022; 2: 1-22.

Chen G, Padmala S, Chen Y, Taylor PA, Cox RW, Pessoa L. To pool or not to pool: Can
we ignore cross-trial variability in FMRI? Neuroimage 2021; 225: 117496.

Altman N, Krzywinski M. The curse(s) of dimensionality. Nature methods 2018; 15(6):
399-400.

Mclnnes L, Healy J, Melville J. Umap: Uniform manifold approximation and projection for
dimension reduction. arXiv preprint arXiv:180203426 2018.

Landi I, Mandelli V, Lombardo MV. reval: A Python package to determine best clustering
solutions with stability-based relative clustering validation. Patterns (N Y) 2021; 2(4):
100228.

Shen X, Finn ES, Scheinost D, Rosenberg MD, Chun MM, Papademetris X et al. Using
connectome-based predictive modeling to predict individual behavior from brain
connectivity. Nature protocols 2017; 12(3): 506-518.

Shen X, Tokoglu F, Papademetris X, Constable RT. Groupwise whole-brain parcellation
from resting-state fMRI data for network node identification. Neuroimage 2013; 82: 403-
415.

Greene AS, Gao S, Scheinost D, Constable RT. Task-induced brain state manipulation
improves prediction of individual traits. Nature communications 2018; 9(1): 2807.

Greene AS, Gao S, Noble S, Scheinost D, Constable RT. How Tasks Change Whole-
Brain Functional Organization to Reveal Brain-Phenotype Relationships. Cell Rep 2020;
32(8): 108066.

Ju S, Horien C, Shen X, Abuwarda H, Trainer A, Constable RT et al. Connectome-based
predictive modeling shows sex differences in brain-based predictors of memory
performance. Frontiers in Dementia 2023; 2.

Misaki M, Tsuchiyagaito A, Guinjoan SM, Rohan ML, Paulus MP. Trait repetitive negative
thinking in depression is associated with functional connectivity in negative thinking state
rather than resting state. Journal of affective disorders 2023; 340: 843-854.

Yoo K, Rosenberg MD, Hsu WT, Zhang S, Li CR, Scheinost D et al. Connectome-based
predictive modeling of attention: Comparing different functional connectivity features and
prediction methods across datasets. Neuroimage 2018; 167: 11-22.

Lange T, Roth V, Braun ML, Buhmann JM. Stability-Based Validation of Clustering
Solutions. Neural Computation 2004; 16(6): 1299-1323.

Bates D, Machler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Usingime4.
Journal of Statistical Software 2015; 67(1): 1-48.

23


https://doi.org/10.1101/2024.05.01.592108
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.01.592108; this version posted May 16, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

available under aCC-BY-NC-ND 4.0 International license.

emmeans: Estimated Marginal Means, aka Least-Squares Means. https://CRAN.R-
project.org/package=emmeans, 2022, Accessed Date Accessed 2022 Accessed.

Linhartova P, Latalova A, Kosa B, Kasparek T, Schmahl C, Paret C. fMRI neurofeedback
in emotion regulation: A literature review. Neuroimage 2019; 193: 75-92.

Etkin A, Buchel C, Gross JJ. The neural bases of emotion regulation. Nat Rev Neurosci
2015; 16(11): 693-700.

Axelrod V, Rees G, Bar M. The default network and the combination of cognitive
processes that mediate self-generated thought. Nature Human Behaviour 2017; 1(12):
896-910.

Andrews-Hanna JR, Smallwood J, Spreng RN. The default network and self-generated
thought: component processes, dynamic control, and clinical relevance. Annals of the
New York Academy of Sciences 2014; 1316(1): 29-52.

Hamilton JP, Farmer M, Fogelman P, Gotlib IH. Depressive Rumination, the Default-
Mode Network, and the Dark Matter of Clinical Neuroscience. Biol Psychiatry 2015;
78(4): 224-230.

Wise T, Marwood L, Perkins AM, Herane-Vives A, Joules R, Lythgoe DJ et al. Instability
of default mode network connectivity in major depression: a two-sample confirmation
study. Translational psychiatry 2017; 7(4): e1105.

Zhu X, Zhu Q, Shen H, Liao W, Yuan F. Rumination and Default Mode Network
Subsystems Connectivity in First-episode, Drug-Naive Young Patients with Major
Depressive Disorder. Sci Rep 2017; 7: 43105.

Bessette KL, Jenkins LM, Skerrett KA, Gowins JR, DelDonno SR, Zubieta JK et al.
Reliability, Convergent Validity and Time Invariance of Default Mode Network Deviations
in Early Adult Major Depressive Disorder. Front Psychiatry 2018; 9: 244.

Jacob Y, Morris LS, Huang KH, Schneider M, Rutter S, Verma G et al. Neural correlates
of rumination in major depressive disorder: A brain network analysis. Neurolmage
Clinical 2020; 25: 102142.

Makovac E, Fagioli S, Rae CL, Critchley HD, Ottaviani C. Can't get it off my brain: Meta-
analysis of neuroimaging studies on perseverative cognition. Psychiatry Res
Neuroimaging 2020; 295: 111020.

Misaki M, Tsuchiyagaito A, Al Zoubi O, Paulus M, Bodurka J, Tulsa I. Connectome-wide
search for functional connectivity locus associated with pathological rumination as a
target for real-time fMRI neurofeedback intervention. Neurolmage Clinical 2020; 26:
102244.

Stern ER, Eng GK, De Nadai AS, losifescu DV, Tobe RH, Collins KA. Imbalance

between default mode and sensorimotor connectivity is associated with perseverative
thinking in obsessive-compulsive disorder. Translational psychiatry 2022; 12(1): 19.

24


https://doi.org/10.1101/2024.05.01.592108
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.01.592108; this version posted May 16, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

available under aCC-BY-NC-ND 4.0 International license.

Yang MH, Guo ZP, Lv XY, Zhang ZQ, Wang WD, Wang J et al. BMRMI Reduces
Depressive Rumination Possibly through Improving Abnormal FC of Dorsal ACC. Neural
Plast 2022; 2022: 8068988.

Agathos J, Steward T, Davey CG, Felmingham KL, Ince S, Moffat BA et al. Differential
engagement of the posterior cingulate cortex during cognitive restructuring of negative
self- and social beliefs. Social cognitive and affective neuroscience 2023; 18(1).

Natu VS, Lin JJ, Burks A, Arora A, Rugg MD, Lega B. Stimulation of the Posterior
Cingulate Cortex Impairs Episodic Memory Encoding. J Neurosci 2019; 39(36): 7173-
7182.

Guterstam A, Bjornsdotter M, Gentile G, Ehrsson HH. Posterior cingulate cortex
integrates the senses of self-location and body ownership. Curr Biol 2015; 25(11): 1416-
1425.

Foster BL, Koslov SR, Aponik-Gremillion L, Monko ME, Hayden BY, Heilbronner SR. A
tripartite view of the posterior cingulate cortex. Nat Rev Neurosci 2023; 24(3): 173-189.

Andreescu C, Butters M, Lenze EJ, Venkatraman VK, Nable M, Reynolds Il CF et al.
fMRI activation in late-life anxious depression: a potential biomarker. International
Journal of Geriatric Psychiatry 2009; 24(8): 820-828.

lonescu DF, Niciu MJ, Mathews DC, Richards EM, Zarate Jr CA. NEUROBIOLOGY OF
ANXIOUS DEPRESSION: A REVIEW. Depression and Anxiety 2013; 30(4): 374-385.

Sarkheil P, Odysseos P, Bee |, Zvyagintsev M, Neuner |, Mathiak K. Functional
connectivity of supplementary motor area during finger-tapping in major depression.
Comprehensive psychiatry 2020; 99: 152166.

Northoff G, Hirjak D, Wolf RC, Magioncalda P, Martino M. All roads lead to the motor
cortex: psychomotor mechanisms and their biochemical modulation in psychiatric
disorders. Molecular psychiatry 2021; 26(1): 92-102.

Jauhar S, Fortea L, Solanes A, Albajes-Eizagirre A, McKenna PJ, Radua J. Brain
activations associated with anticipation and delivery of monetary reward: A systematic
review and meta-analysis of fMRI studies. PLOS ONE 2021; 16(8): e0255292.

Tsuchiyagaito A, Sanchez SM, Misaki M, Kuplicki R, Park H, Paulus MP et al. Intensity of
repetitive negative thinking in depression is associated with greater functional
connectivity between semantic processing and emotion regulation areas. Psychological
medicine 2023; 53(12): 5488-5499.

Wu F, Lu Q, Kong Y, Zhang Z. A Comprehensive Overview of the Role of Visual Cortex
Malfunction in Depressive Disorders: Opportunities and Challenges. Neuroscience
Bulletin 2023; 39(9): 1426-1438.

Shibata K, Lisi G, Cortese A, Watanabe T, Sasaki Y, Kawato M. Toward a comprehensive

understanding of the neural mechanisms of decoded neurofeedback. Neuroimage 2019;
188: 539-556.

25


https://doi.org/10.1101/2024.05.01.592108
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.01.592108; this version posted May 16, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

78.

79.

80.

available under aCC-BY-NC-ND 4.0 International license.

Scheinost D, Hsu TW, Avery EW, Hampson M, Constable RT, Chun MM et al.
Connectome-based neurofeedback: A pilot study to improve sustained attention.
Neuroimage 2020; 212: 116684.

Ciarlo A, Russo AG, Ponticorvo S, di Salle F, Lihrs M, Goebel R et al. Semantic fMRI
neurofeedback: a multi-subject study at 3 tesla. Journal of Neural Engineering 2022;
19(3): 036020.

Russo AG, Luhrs M, Di Salle F, Esposito F, Goebel R. Towards semantic fMRI

neurofeedback: navigating among mental states using real-time representational
similarity analysis. J Neural Eng 2021; 18(4): 046015.

26


https://doi.org/10.1101/2024.05.01.592108
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.01.592108; this version posted May 16, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Regulation
block
activation

e ol (o (ol (-

Respond (Evaluate) | | ‘ | |

Feedback
event-related
response

1 "

Regulate (Action)

Feedback

Figure 1. Schematic diagram of the neurofeedback-based brain regulation training loop (left
panel) and the models used to estimate brain activation at each epoch (right panel). The
reinforcement learning process is typically characterized by the evaluation of a feedback signal
followed by the adjustment of action (mental regulation) to increase the reward (feedback)
signal. Brain activations corresponding to these two components were analyzed using a block-
wise response model during the neurofeedback regulation blocks and an event-related
response model for each neurofeedback presentation at every TR, modulated by feedback

amplitude.

27


https://doi.org/10.1101/2024.05.01.592108
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.01.592108; this version posted May 16, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Whole-brain voxel-wise beta maps

 J
Parcellate beta maps in functional atlas regions K-means > Cluster
L 2 Split clustering labels (1)
Exclude regions unrelated to data (1)
treatment outcome Iacblzlssk(g)
 J UMAP Evaluate
UMAP dimension data stability
reduction ¥ Cluster
L 4 labels (1)
o . - Split
ustering witl data (2) K cl
. - ter
repeated split-half means P us
cross-validation clustering labels (2)

Figure 2. Procedures of subtyping whole-brain beta maps.
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Figure 3: MADRS scores before and after NF training in the active and control groups. The bars
show the mean MADRS scores for each group, with the error bars representing their standard
error. Individual participant scores are shown as dots, with lines connecting pre- and post-
training scores to highlight changes for each individual. A statistically significant decrease in

post-training MADRS scores was observed in the active group (***, p < 0.001).
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Figure 4. t maps of mean activation in the regulation block for the REG subtypes. The maps are

thresholded at a voxel-wise p < 0.001, with cluster-size correction at p < 0.05.
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Figure 5. t maps of mean activation in response to NF signals for the FBR subtypes. The maps

are thresholded at a voxel-wise p < 0.001, with cluster-size correction at p < 0.05.
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Figure 6. Ratio of change in MADRS score from baseline for each REG and FBR subtype. **, p

< 0.005; ***, p < 0.001.
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