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Abstract

Strong and shifting selective pressures of the anthropocene are rapidly shaping phenomes
and genomes of organisms worldwide. One major selective force on insect genomes is crops
expressing pesticidal proteins from Bacillus thuringiensis (Bt). Here we characterize a rapid
response to selection by Bt crops in a major crop pest, Helicoverpa zea. We reveal the polygenic
architecture of Bt resistance evolution in H. zea and identify multiple genomic regions
underlying this trait. In the genomic region of largest effect, we identified a gene cluster
amplification, where resistant individuals showed variation in copy number for multiple genes.
Signals of this amplification increased over time, consistent with the history of field-evolved Bt
resistance evolution. Modern wild populations from disparate geographical regions are positive
for this variant at high, but not fixed, allele frequencies. We also detected selection against single
copy variants at this locus in wild H. zea collected from Bt expressing plants, further supporting
its role in resistance. Seven trypsin genes were present in this genomic region and all appeared
to be significantly upregulated in Bt resistant H. zea. Biochemically inhibiting trypsin activity
decreased H. zea’s tolerance to Bt. These findings characterize rapid genome evolution in a
major crop pest following anthropogenic selection and highlight the role that gene copy number

variants can have in rapid evolutionary responses.
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Introduction

The study of evolution in the Anthropocene has revealed that adaptive organismal
responses can occur on timescales much shorter than previously thought possible (Carroll et al.
2007). Human activities impose strong and shifting selection pressure on communities of
organisms, shaping their phenomes and genomes (Palumbi, 2001). Empirical evidence of rapid
evolutionary change is mounting (e.g. Bergland et al., 2014; Bi et al., 2019; Campbell-Staton et
al., 2017; Chaturvedi et al., 2021; Ergon et al., 2019; Mikheyev et al., 2015; Roberts Kingman et
al., 2021; Rudman et al., 2022; Schiebelhut et al., 2018; Stahlke et al., 2021; Storz & Wheat,
2010), and has linked the strength and nature of selection to specific genomic variants that
enhance the fitness of wild organisms. Rapid evolution can result from allele frequency changes
at a single major effect locus, or at many loci across the genome (reviewed in Bay et al., 2017).
Currently, a major objective of the field of evolutionary genomics is to move beyond
documenting the phenomenon of rapid evolution, and instead, uncover the rules that govern how
these responses occur on short timescales. This includes characterizing the types of genomic
variants (i.e. single nucleotide polymorphisms, insertion/deletion polymorphisms, copy number
variants, epigenetic modifications) that are most critical for and facilitate rapid evolutionary
responses. Perhaps even more important is understanding how fitness-conferring variants came
to be; whether they arose de novo, were introduced through migration, or were selected from
standing genetic variation.

Agricultural ecosystems (agroecosystems) are useful for investigating mechanisms of
rapid evolution, both due to the well-understood nature of selection in these ecosystems and their
relatively simplified ecosystem structure (Chen & Schoville, 2018). One common feature of
agroecosystems is the use of population suppression practices, which exert strong pressure on so-

called agricultural pests to evade management through resistance evolution. High levels of
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4
resistance can evolve rapidly (Brevik et al., 2018), and in arthropods alone, resistance to over
300 pesticidal compounds in more than 600 species has been documented (Fritz, 2022; Mota-
Sanchez & Wise, 2022). Rapid pesticide resistance evolution also has economic and
environmental consequences, which provides incentive for its study. Resistance evolution
causes billions of dollars in crop losses every year, and often results in increased environmental
pesticide inputs in an attempt to prevent these losses (Gould et al., 2018; Palumbi, 2001).

We have adopted the Bt cropping system as an experimental model for the study of rapid
organismal evolution. Since 1996, Bt crops have provided area-wide pest suppression, while
decreasing reliance on harmful broad-spectrum pesticides (Cattaneo et al., 2006; Dively et al.,
2018; Hutchison et al., 2010; Kathage & Qaim, 2012; Perry et al., 2016). Bt crops have been
engineered to express genes from the bacterium, Bacillus thuringiensis, which encode crystalline
(Cry) and vegetative insecticidal proteins (Vip). The proteins specifically target lepidopteran
and coleopteran species that damage crops, some of which have been historically challenging to
manage with sprayable, synthetic pesticides. They have been widely adopted for insect
management around the globe, and at present, 85% of corn and 89% of cotton planted in the
United States express Bt traits (USDA-ERS, 2023). Bt crops are, therefore, a major selective
force in agroecosystems (Gassmann & Reisig, 2023; Tabashnik & Carriere, 2017).

To improve the durability of these crops and slow resistance evolution, management
plans strongly rooted in evolutionary theory, modeling-based studies, and past empirical
observations were developed (e.g. Alstad & Andow, 1995; Frutos et al., 1999; Gould et al., 2018;
McGaughey et al., 1998). Bt crops were designed to produce a “high dose”, or 25 times the
amount of pesticidal protein needed to cause mortality in susceptible target pests (US EPA-SRP,

1998). Such a high dose was predicted to favor resistance arising from a single mutation of
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102  major effect, rather than from standing genetic variation across the genome (McKenzie &
103  Batterham, 1994). Multiple toxins were also pyramided into Bt crops to redundantly kill pests
104  that evolved resistance to a single protein. Finally, non-expressing plants, or a “refuge” planted
105 nearby, should produce homozygous susceptible pests that dilute resistance alleles in a local
106  landscape (Gould, 1998; Huang et al., 2011). Under these circumstances, if resistance was
107  recessive and resistance alleles incurred a fitness cost in the absence of these toxic proteins, the
108 emergence and spread of resistance may be preventable (Gould, 1998). Although there have
109  been cases of successful resistance management in some target pests of Bt crops, practical
110  resistance has emerged in several lepidopteran and coleopteran species, including the
111 polyphagous pest, Helicoverpa zea (Tabashnik & Carriére, 2017).
112 H. zea, a pest of corn and cotton, was successfully managed by Bt crops when they were

113  commercially released in 1996. Yet within 20 years, susceptibility to Cry proteins in H. zea had
114  decreased and crop damage increased (Dively et al., 2016; Dively et al., 2023; Kaur et al., 2019;
115  Yangetal., 2019; Yang et al., 2022). Resistance evolution in H. zea had been predicted because
116  Cry expressing Bt crops do not produce a “high” dose for H. zea (Horner et al., 2003), and refuge
117  implementation for corn and cotton was often insufficient (Reisig, 2017; Reisig & Kurtz, 2018).
118  Resistance may also have been facilitated by cross pollination between Bt and refuge corn,

119  which produces kernels expressing low Cry toxin doses (Pezzini et al., 2024; Dively et al., 2020;
120  Yangetal., 2015). The Cry resistance that emerged in wild H. zea has provided an opportunity
121 to empirically examine the mechanisms underlying rapid adaptation in this human-altered

122 system. If H. zea’s Cry toxin exposure was not high dose and the strength of selection allowed
123  for survivors within their natural viability distribution, adaptive responses should have a

124  polygenic trait architecture (McKenzie & Batterham, 1994). Our previous work supported this
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6
prediction, using two single-family QTL analyses to characterize the molecular architecture of
resistance to two separate Bt crop cultivars (Taylor et al., 2021).

Cry toxicity is generally understood to begin with solubilization and activation of the Cry
protoxin by proteolytic enzymes in the insect digestive system, although this activation step is
not necessary for the activated toxins expressed by many Bt crops (Clark et al., 2005; Gould,
1998; Székacs et al., 2010). Activated toxins interact with a series of midgut receptors,
eventually causing lysis of the midgut epithelial cells and leading to growth suppression or
mortality in targeted insects (Heckel, 2020; Jurat-Fuentes et al., 2021; L. Liu et al., 2021). The
multi-step and complex molecular mechanism of Cry toxicity provides many molecular and
physiological pathways for the evolution of resistance. In other lepidopteran species, resistance
has generally been connected to the disruption of the midgut toxin binding sites or reduced
expression of target genes, although there are also examples of resistance associated with altered
Bt protein processing, detoxification, and changes in immune function (Heckel, 2020; Jurat-
Fuentes et al., 2021; L. Liu et al., 2021). Our prior work with H. zea led us to reject most of the
common Cry resistance mechanisms described in other lepidopteran species, and instead pointed
to novel resistance-related genomic regions (Taylor et al., 2021), with one under particularly
strong selection by Cry toxins (Pezzini et al. 2024).

Here, we have expanded our analysis of the rapid adaptation to Bt crops observed in wild
H. zea, describing its underlying genetic architecture. We provide further evidence to support a
polygenic trait architecture of Cry resistance in wild H. zea. We also provide the first evidence
that a copy number variant (CNV) containing a cluster of 10 genes plays a major role in the Cry
resistance phenotype we observed in H. zea. Our results connect the introduction and adoption

of transgenic crops in the landscape, which resulted in a resistance phenotype, to genomic targets
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7
of selection, and the nature of the genomic variants that facilitated H. zea’s rapid evolutionary

response.

Results

Cry resistance and general growth phenotypes

To link regions of the H. zea genome to Cry resistance phenotypes, we used a replicated
quantitative trait locus (QTL) analysis. This well-established approach relies on crosses between
individuals from phenotypically distinct inbred lines or outbred populations to produce F>
offspring, whose chromosomes represent unique genomic combinations from cross founders
(Falconer, 1996; Lynch & Walsh, 1998). Correlated traits within phenotypically distinct cross-
founding populations are, therefore, uncorrelated in F» progeny due to genome-wide
recombination during meiosis. We crossed field-evolved resistant grandparents to one of very
few known susceptible H. zea populations in our replicated design. This allowed us to test for
genome-wide associations between field-relevant Cry resistance phenotypes and genotypes
across recombined F» chromosomes. While multiple genomic regions were associated with Cry
resistance in our previous work (Taylor et al. 2021), testing of additional replicate families
increased our power to detect loci of major effect that commonly contribute to field-evolved Cry
resistance in wild H. zea.

We initially measured Cry resistance phenotypes for a field resistant population and a
long-term laboratory-reared susceptible population, as well as the F> hybrid offspring from 10
intercross families. Resistant individuals should be able to grow while feeding on diets
containing Cry toxins, though at different rates depending on the number and effect size of their

Cry resistance alleles, while susceptible individuals should not. Thus, measuring weight
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8
following 7 days exposure to Cry toxin-incorporated diet served as our metric of resistance. A
critical component of our experimental design included measurement of intra-family controls,
where half of the offspring from each cross were assayed on identical diets lacking Cry toxin.
These intra-family controls served as a way to measure and, if necessary, exclude general
growth-related QTL as candidates for resistance. If a QTL were truly related to Cry resistance,
we reasoned that QTL associated with growth on Cry toxin-incorporated diet in one half of the
family should not overlap with QTL for general growth in their siblings reared on a diet lacking
Cry toxins. Therefore, larvae from each family were exposed to diets containing either a
diagnostic dose of CrylAb or CrylA.105 + Cry2Ab2 expressing corn leaf tissue and leaf tissue
from the non-expressing corn near isolines, as described in Dively et al. (2016) and Taylor et al.
(2021) (Figure 1, Figure S1, Table S1, Table S2).

The larval population from which resistant cross-founding grandparents were drawn
grew significantly larger than laboratory-reared, susceptible larvae on both Cryl Ab and
CrylA.105 + Cry2Ab2 expressing corn leaf tissue incorporated diets (Figure 1, Table S1). Yet
even in the absence of Cry toxins, the susceptible population grew significantly less than did the
resistant population, suggesting that growth on toxin and general growth were correlated in the
grandparental populations. This was likely a result of long-term reproductive isolation between
these populations resulting in substantial phenotypic and genomic divergence between them.
Growth phenotypes in the F> offspring suggested that resistance to all the Cry toxins we tested,
as well as growth on the control treatments were quantitative genetic traits (SI Results). Based
on our experimental design, we predicted that recombination in the F1 generation should reduce

correlations between growth on control and toxin-incorporated diet within individual F>
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9
offspring, resulting in limited overlap between general growth and Cry resistance QTLs

discovered in our assays.

Marker generation and variant calling

Grandparents, parents, and progeny from 10 replicated intercross families were
sequenced on an Illumina NovaSeq 6000. Whole genome sequencing (WGS) of the 20 cross
parents resulted in a total of 4,716,009 high quality genome wide single nucleotide
polymorphisms (SNPs) following read filter-trimming and alignment to the H. zea genome (v.
1.0, PRINA767434; Benowitz et al., 2022). Genome wide average sequencing coverage of
18.6X (st. dev. = 2.4) ensured accuracy of the genotyping calls. Divergence between the field
collected resistant and laboratory susceptible founding populations was high genome wide
(Figures S2 & 3, SI Results), as would be expected due to the long-term sexual isolation
between them.

Double digest restriction site associated DNA (ddRAD) sequencing of F» offspring
resulted in 78,580 - 79,408 high quality SNP markers for genotype-phenotype association in
each treatment. Final SNP marker numbers likely varied because of true differences in SNP
presence, different loci passing quality control filters, and genetic variation among individuals at
restriction cut sites used for marker development (Davey et al., 2013). The average sequencing
coverage per ddRAD locus across all Fas was 52,225X (st. dev. = 45,011), and the average
coverage per locus per individual was 63X. SNPs were further filtered to include only those
variants where the allele origin population (field resistant vs. lab susceptible) could be reliably
predicted to determine their directional effect on growth. This produced the smaller filtered sets
of 6,717 - 6,749 genome wide SNPs for each treatment that were used for visualization of effect

size and direction.
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215

216 Polygenic Cry resistance architecture

217 To link ddRAD marker genotypes with Cry resistance phenotypes, we used gemma

218  (Zhou et al., 2013). This software estimates both the number of loci underlying complex traits
219  (including those of small effect size), as well as the impact of each large effect locus on a trait,
220  while accounting for the relatedness among individuals in a test population. A significant

221  proportion of phenotypic variation (PVE) in the F> offspring could be explained by the full set of
222  ddRAD markers. Mean PVE estimates were 69.7% [95% CI =45.4 - 93.7] for the CrylAb

223  treatment and 71.1% [95% CI =43.6 - 96.5] for the Cry1A.105 + Cry2Ab2 toxin blend, and

224  lower for the control growth treatments 44.7% [95% CI=20.3 - 71.9] and 51.2% [95% CI =27.1
225 -74.1] (Figure S4).

226 The numbers of variants predicted to have large effect sizes on growth were similar

227  across treatments, with mean estimates ranging from 11.3 - 34.1, further supporting a polygenic
228  trait architecture. In all cases, there were wide overlapping credible intervals around these

229  means, suggesting that tens of genomic variants of major effect underlie phenotypic differences
230 in all growth-related traits (Figure S4). Large effect size variants contributed to 74.0% [95% CI
231  =36.9 - 98.6] of the Cryl Ab growth-related variance explained by our full marker panel (PGE).
232  For the CrylA.105 + Cry2Ab2 treatment, 77.8% [95% CI = 46.8 - 98.9] of the growth-related
233  variance could be explained by variants of large effect size. These values dropped to 53.4%

234 [95% CI=0.5-97.3%] and 73.6% [95% CI = 24 - 99.2] for the control treatments (Figure S4).
235  Notably, the high PVE and PGE estimates for both Cry treatments suggest that our data captured

236  much of the genetic basis of field evolved resistance in H. zea.
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Genomic regions underlying Bt Cry resistance

To identify the chromosomal regions underlying field evolved Cry resistance, we
estimated the additive effect (B) of a single resistant cross-founder allele on 7 day weight in mg.
Smoothed additive effects of genome-wide markers on growth are shown for CrylAb,
CrylA.105 + Cry2Ab2, and control treatments in Figure 2. The major effect QTL revealed in
Figure 2 were also identified using multiple SNP filtering criteria and in the unsmoothed data set
(Figures S5 & 6), indicating that our detection of major effect QTL is robust to differences in
bioinformatic and analytical approaches. A resistant parent allele in F» offspring significantly
and strongly increased growth on CrylAb in regions of Chromosomes (Chr) 2, 3, 6, 9, and 30
with a significance threshold of Bonferroni corrected p < 0.01 (Figure 2A). With the less
stringent criteria of Bonferroni corrected p < 0.05 we also detected an association of parts of Chr
11 and 21 (Figure 2A). For CrylA.105 + Cry2Ab2, we only detected a significant effect of Chr
9, though non-significant peaks suggest possible shared QTL with the Cry1Ab treatment on Chr
2 and 30 (Figure 2C). We detected genomic regions associated with general growth in the
laboratory assays on Chr 10, 14 and 27 (Figure 2B). As predicted for F» offspring, we observed
little overlap between QTL underlying growth on toxin-containing and control treatments. Chr
10 was the only Chr with a major effect on growth on both control and toxin-containing
(CrylAb) treatments (Figures 2A & B). Therefore, we did not consider this region to be Cry
resistance related. The negative direction of this effect also suggested that the growth associated
allele on Chr 10 is more common in the susceptible parent population. Notably, we did not
detect any fitness cost of Cry resistance-associated genomic regions, which would have appeared
as negative values for these variants in the subsets of F2s on non-Cry expressing treatments

(Figures 2B & D).
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The region of the genome with the largest additive effect on resistance was on Chr 9 for
both Cry-containing treatments (Figures 2A & C). There was no signal of an effect of Chr 9 on
general growth, however (Figures 2B & D). For individuals grown on the Cryl Ab treatment, we
identified a clear peak between 5 and 6 Mb on Chr 9. This aligned well with previously
identified signals of genomic divergence over time at 5.75 Mb on Chr 9 in wild H. zea (Taylor et
al. 2021). We also identified a directly overlapping divergence peak at 5.75 Mb between
resistant and susceptible cross founders (SI Results). Between 5 and 6 Mb on Chr 9, there were
45 genome annotations (Table S3), several of which we examined further (see below). The QTL
on Chr 30 had clear peaks at ~2.5 and ~3.3 Mb, making it possible to describe nearby gene
candidates for the Cry resistance observed in our study. Within 100 Kb of those Chr 30
association peaks (2.4 - 3.4 Mb) were a MAP kinase-activated protein kinase 2-like,
HzeaTryp129, and HzeaABCCl11, toll-like receptors, a cluster of carboxylesterases, and
carboxylase-like genes (Table S4), suggesting that several known Bt candidate gene families and
insecticide resistance related genes could underlie this QTL. The other identified QTL on Chr 2,
3 and 6 had more diffuse genomic signals with less well-defined peaks, making it difficult to
identify narrow regions most linked to resistance. In the SI Results, we further describe the

limited evidence for any role of other major candidate genes.

Resistance-associated differential gene expression

We paired our QTL study with differential gene expression analyses to narrow in on
potential targets of selection. The mechanism of Cry toxin action takes place in the larval
midgut, and changes in gene expression in this tissue have strong potential to impact resistance.
Therefore, we initially focused on differential midgut gene expression between wild, resistant A.

zea larvae collected directly from Cryl1A.105+Cry2Ab2-expressing corn and laboratory-reared,
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283  susceptible larvae. Of the 14,600 annotated genes, 527 genes were significantly upregulated and
284 352 were significantly downregulated in the population collected from Cry expressing corn
285 relative to the susceptible population (p-adjusted < 0.01; Table S5). Of those significantly
286  differentially expressed genes, 33 were within 100 kb of at least one SNP significantly associated
287  with resistance to CrylAb, CrylA.105 + Cry2Ab2, or both treatments (Table S6). This analysis
288 identified several significantly upregulated genes in resistant larvae that were found near QTL,
289  signaling their potential involvement in resistance. One was an aminopeptidase gene found on
290  Chr 9 (apnl) (Table S6). apnl is a known Cry resistance candidate gene, for which reduction of
291  expression increases Cry resistance (Herrero et al., 2005; X. Ma et al., 2022; Sun et al., 2022). In
292  our work, however, apnl expression increased in our resistant population, which was
293  inconsistent with its previously described role in resistance. The most striking gene expression
294  differences were found among seven significantly upregulated trypsin genes arranged in tandem
295  between 5 and 6 Mb in the Chr 9 QTL. Six of these trypsins in the tandem array on Chr 9 were
296  among the top 50 most differentially expressed genes genome wide (Figure 3B, Table S5).
297 Trans-acting factors also impact regulation of gene expression, which would result in
298  separation of differentially expressed genes from QTL. When we considered only our
299  differential gene expression analysis, six other trypsins spread across multiple chromosomes
300  were also among the top 50 most differentially expressed genes (Table S5). Several other
301 insecticide resistance candidate gene families also had members among the top 50 most
302  differentially expressed genes, including, a cadherin-87A-like gene and a cytochrome P450
303 (CYP301B1), both of which were downregulated in resistant individuals (Table S5).
304 We also tested for Cry inducible gene expression changes between wild H. zea larvae

305  collected from Cry expressing and non-expressing corn. A comparison of midgut gene
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306  expression for these groups revealed that expression of a small number of genes was modulated
307 by Cry toxin exposure. Thirteen genes were significantly upregulated and 20 genes significantly
308  downregulated in larvae collected from expressing corn (Table S7). Four trypsins and one
309 chymotrypsin were among the most upregulated genes in Cry exposed resistant individuals. Only
310  one of the trypsins found between 5 and 6 Mb on Chr 9, tryp80, was in this group showing Cry
311  inducible expression changes. Downregulated genes in Cry exposed individuals included a

312  cadherin-87A-like gene and the immune-related gene, Lysozymel.

313 A potential genetic mechanism of large effect on Bt Cry resistance

314 Taken together, evidence from the QTL and differential expression analysis suggested
315  that a region of Chr 9 containing a cluster of differentially expressed genes, including 7 trypsins,
316  was strongly associated with Cry resistance (Figures 3B & C). Closer investigation of this

317  region revealed a structural variant from 5.22 - 5.37 Mb on Chr 9 (Figure 4A). In this region
318  encompassing the full cluster of differentially expressed genes, resistant cross founders had

319  increased whole genome sequencing depth of coverage relative to their genome wide average
320  (Figure 4A). Elevated coverage depth indicated this region of the genome was at least

321  duplicated in resistant cross founders. The observed upregulation of most genes in this gene
322 cluster in resistant individuals was consistent with a mutational event that duplicated the entire
323  gene cluster (Figure 3B).

324 To confirm that the coverage and differential expression signals we detected were truly
325 related to gene cluster duplication, we quantified the copy number variation for one

326  representative gene in the cluster (¢ryp77) using droplet digital polymerase chain reaction

327  (ddPCR) (Figure 4B). If tryp77 existed as a single copy gene, our ddPCR results should reveal a

328  copy number equal to two in this diploid species. Instead, our analysis showed that all resistant
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cross founders from our study had more than two copies of #ryp77, while all susceptible founders
had the expected two copies. Variation in copy number existed among the field-collected
resistant individuals used in our analysis, indicating there is not a single allele, but multiple
alleles linked to resistance at this Chr 9 locus. There was a strong relationship between copy
number detected by ddPCR and relative coverage depth of the gene cluster (r>= 0.95), suggesting
that WGS coverage depth is a reasonable proxy measure for copy number.

We used publicly available WGS data from Taylor et al. (2021) and Pezzini et al. (2024)
to determine whether variation in copy number at this Chr 9 locus could also be found in other
wild North American H. zea populations. Increased depth of coverage was not found in WGS
data from the susceptible lab population or in field samples collected in 2002, decades before
Cry resistance was widespread (Figures 4A-D). Absence of this variant in samples collected in
2002 suggested that: 1) it may have arisen after 2002, 2) it existed as a rare allele at our study
site prior to 2002, or 3) it arose in or before 2002, but at a location not sampled for our work.

Analysis of WGS data from these H. zea samples collected from Louisiana in 2017
(Figures 4C & D), and North Carolina in 2019 (Figures 4E & F) revealed signals of increased
coverage depth in this Chr 9 region, similar to what we observed in the resistant cross founding
individuals collected from Maryland in 2019 and 2020 (Figure 4A). The presence of this
sequence duplication in samples collected across 3 separate regions of North America over
multiple years, suggests that this genetic variant is widespread. Notably, depth of coverage at
this locus increased over time, with increased coverage depth first appearing in 2012 and the
strength of that signal increasing in 2017 (Figures 4C & D).

In 109 samples collected from experimental plots in North Carolina in 2019, we detected

increased coverage depth in this Cry resistance-associated Chr 9 region in individuals collected
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from Cry expressing plants compared to individuals collected from non-Bt plants in structured
and blended refuge plots (Structured refuge: t = 2.61, adjusted p = 0.039, Blended refuge: t =
2.67, adjusted p = 0.033) (Figure 4E & F). The consistent difference in coverage depth between
the population collected on Cry expressing plants and both refuge conditions and suggests that
selection by the Cry expressing plants limited the growth and survival of individuals with lower
sequence duplication in this region, providing another line of evidence for the role of this genetic
variant in Cry resistance evolution. In these samples, we also observed a continued increase in
sequencing depth over time, with samples from 2019 and 2020 (Figure 4A & E) showing
stronger signals of this amplification than those from 2012 and 2017 (Figure 4C). This could
reflect increased numbers of individuals homozygous for a duplication or additional duplication
events. Though none of the resistant samples collected in MD and NC in 2019 and 2020 appear
to be single copy in this region (Figure 4A & E & F), some individuals collected from non-
expressing plants are (Figure 4E & F), indicating that this variant is likely at high frequency but
not fixed in modern populations. Samples collected in 2019 and 2020 also have markedly higher
coverage between 5.32 and 5.35 Mb, region contains tryp79 and tryp80, relative to other parts of
the duplicated cluster and historical samples. We speculate that this particular region may have
undergone multiple duplication events.

The strong association of #7yp77 copy number and depth of WGS coverage motivated us
to analyze the correlation between ddRAD sequencing coverage depth and weight for the F»
offspring from our experimental crosses (Figure 4G). We reasoned that F» individuals with
higher coverage at this locus should, on average, have higher weights than those with low
coverage, if copy number variation was involved in Cry resistance. Likewise, if increasing copy

number is only related to Cry resistance and not generally associated with weight gain, we
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reasoned that any positive correlation between weight and coverage depth should be observed for
individuals fed on Cry-treated diet, but not for their siblings on untreated diet. Indeed, ddRAD-
seq coverage depth of the Chr 9 gene cluster was significantly higher for the F» offspring that
grew most on both toxin containing diets compared to the offspring which grew the least
(CrylA.105 + Cry2Ab2: t = 5.2054, p adjusted < 0.001, CrylAb: t = 3.4574, p adjusted <0.001)
(Figure 4G). On both control diets, there was no relationship between relative coverage and
growth (Control 1: t=-1.5115, p=0.1323, Control 2: t = 0.46397, p = 0.6432) (Figure 4G). As
this is a polygenic trait and the Chr 9 locus was not the only one to confer Cry resistance (Figure
2A), we expected that F> genotype at this locus would not perfectly predict phenotypes.
However, the strong association of ddRAD-seq coverage with resistance phenotype indicates that
the region containing this amplified gene cluster likely explains most of the association between

Chr 9 and Cry resistance.

Synergistic effect of trypsin inhibition and a Cry toxin

Ten genes were found in the region of copy number variation on Chr 9, and seven of
these genes encoded trypsins. To assess whether trypsins, including those on Chr 9, were
involved in Cry resistance, we inhibited their activity with N-o-tosyl-1-lysine chloromethyl
ketone (TLCK) in resistant and susceptible populations of H. zea. If trypsin activity, including
the activity of those on Chr 9, were involved in Cry resistance, we reasoned that their inhibition
should interfere with growth on Cry treated diet. Trypsins are generally involved in lepidopteran
metabolism (Muhlia-Almazan et al., 2008), and their inhibition could also lead to stunted growth
on untreated diet. Yet if the midgut expressed trypsins on Chr 9 had activity unique to Cry
resistance, we reasoned that increasing dosages of a trypsin inhibitor should more strongly

impact the weights of larvae feeding on Cry-treated diet, compared to those fed trypsin inhibitor
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398  on an untreated control diet. This trend should be true for both susceptible individuals bearing
399 single copy genes in the cluster, as well as resistant individuals with copy number variation. We
400  solubilized TLCK in a phosphate saline buffer (PBS) to make different concentrations of trypsin
401  inhibitor, and each concentration was mixed with our leaf tissue-incorporated diets. Early
402  second instar larvae were grown on either a diagnostic diet of Cryl Ab expressing corn leaf tissue
403  or leaf tissue from the non-expressing near isoline, each with increasing dosages of TLCK.
404  Larval weight was examined after a 7 day diet exposure. We confirmed that incorporation of
405 PBS did not impact larval growth relative to our standard non-expressing leaf tissue diet (p >
406  0.05, data not shown), and therefore larval growth on buffer alone was used as a control for all
407  further analyses and visualization.
408 To understand the extent to which trypsin inhibition influenced Cry resistance, we
409  calculated a growth ratio, which compared growth on the Cry-treated and untreated diets at each
410 TLCK dose. If trypsins, including those in our Chr 9 cluster, showed no special activity related
411  to Cry resistance, we reasoned that the ratio of larval weights on these diet treatments should
412  remain constant with increasing doses of a trypsin inhibitor. Instead the growth ratio was
413  negatively correlated with TLCK dose, suggesting that increased suppression of trypsin activity
414  had a proportionally greater impact on the weights of larvae grown on Cry-treated diets, than
415  those on untreated diet (Figure 5). The interaction between TLCK dose and CrylAb exposure
416  on larval weight was statistically significant for both resistant and susceptible H. zea populations
417  (p<0.001) (Figure 5, Table S8), and post hoc contrasts of the estimated marginal means
418  confirmed that a trypsin inhibitor paired with Cry1Ab toxin significantly decreased larval growth
419  (Table S9). Notably, the mean weight of larvae from the resistant population fed on the CrylAb

420 and 10X TLCK treatment was 17.4 mg, suggesting that strongly inhibiting trypsins in resistant
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individuals could reduce their Cry tolerance to levels observed in the susceptible population
(mean = 20.7 mg; Table S8). These results failed to falsify a role for trypsins in Cry resistance,
including those from our Chr 9 copy number variant (CNV). Overall, our findings suggest that

trypsin activity serves as one protective mechanism against Cry1Ab toxin expressed in corn.

Discussion

Here, we confirm the polygenic nature of H. zea’s adaptation to transgenic crops in
agroecosystems, and we begin to shed light on the mechanisms underlying their rapid
evolutionary response. Using replicated, split-family QTL analyses, we identified multiple
genomic regions associated with Bt resistance, most of which are not shared by siblings that
grew well on untreated diets (Figure 2). This lack of overlap demonstrates that the multiple
genomic regions associated with growth on Cry-containing diets are Cry resistance loci.
Polygenic adaptation to Cry toxins was predicted for H. zea because selection by Bt crops was
expected to act within its broad phenotypic range of Cry tolerance values. Early studies of field-
collected H. zea described this range and documented that laboratory selection could rapidly
increase population-level Cry tolerance (Luttrell et al., 1999). Our data provide empirical support
for the prediction that polygenic adaptation is favored when selection acts on phenotypes within
the natural range of variation of a population (McKenzie and Batterham 1994).

Tens of loci contribute to the polygenic basis of Cry resistance in H. zea, but the genomic
region of largest effect on both CrylAb and Cry1A.105 + Cry2Ab2 resistance was found on Chr
9. All resistance associated genomic regions are likely to be important to the Cry tolerance
observed in wild H. zea, and other loci should be the focus of future investigations. It is likely
that genetic interactions among the Cry resistance loci revealed in our work are critical for

production of strong Cry resistance phenotypes, as is observed in other species (Ma et al. 2022,
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Sun et al. 2022). However, much of our analyses focused on Chr 9, providing us with insight
into the nature of the genetic mutations that facilitated rapid evolution in this system. We used
multiple lines of evidence to document the nature of the Chr 9 locus and demonstrate its
importance to Cryl Ab resistance both in our lab-based QTL experiments, as well as in field-
collected populations.

For our first line of evidence, we showed that field-collected Cry resistant H. zea
overexpressed multiple genes in a 10 gene cluster situated within the Chr 9 genotype-phenotype
association peak (Figure 3). Changes in gene expression are well known to underlie adaptive
phenotypes, including for cases of rapid insecticide resistance evolution (Amezian et al., 2021;
Guo et al., 2021; Nauen et al., 2022; Wilding, 2018). An alternative explanation for increased
expression of an entire gene cluster is sequence duplication, however (Heckel, 2022;
Kondrashov, 2012). We used ddPCR of our cross-founding parents to demonstrate that field-
evolved Cry resistant H. zea currently carry multiple copies of at least one representative gene
(tryp77) in the cluster. From this, we concluded that a CNV found in the 5-6 Mb region of Chr 9
was strongly (but not exclusively) associated with field-evolved Cry resistance in H. zea. It was
not possible to reconstruct the full sequence of this large CNV with the short read sequencing
approaches used in this study, and future studies should employ long read sequencing to describe
haplotypic variation in this genomic region.

Our second line of evidence for the role of this region in Cry resistance was the change in
copy number variation on Chr 9 over time in wild H. zea. Changes in CrylAb and
CrylA.105+Cry2Ab2 tolerance in wild H. zea slowly increased following commercialization of
Bt crops in 1996 (Dively et al. 2016). Early warning signs of resistance emerged in 2008

(Brévault et al., 2013) and widespread practical resistance to both Cryl A and Cry2A toxins was
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documented by 2016 (Dively et al., 2016; Reisig et al., 2018; US-EPA, 2018; Yang et al., 2019).
Using WGS read coverage depth as a proxy for copy number, we documented an increase in
copy number at this locus in wild H. zea over time. Consistent with previous resistance
observations, H. zea collected from LA in 2002 showed no evidence of a CNV, those from 2012
showed evidence of a rare CNV, and most 2017 individuals carried the variant. This indicated
that the Chr 9 CNV was widespread by the time H. zea could readily feed on Cry-expressing
corn ears in the field.

Our recent collections of the cross-founding parents from MD in 2019 and 2020 showed
that the Chr 9 CNV was not fixed for a specific copy number. While all resistant cross founders
carried a Chr 9 CNV, some carried different numbers of copies (Figure 4B), which likely confer
different levels of fitness under selection pressure by Cry toxins. This idea motivated the
analysis which provides a third line of evidence for the involvement of the Chr 9 CNV in AH.
zea’s rapid adaptation to Bt crops. A re-analysis of WGS data from wild H. zea collected as part
of a field experiment in NC in 2019-2020 (Pezzini et al. 2024) documented that the Chr 9 locus
continues to be under strong selection by Cry toxins. Larvae collected directly from
Cryl Ab+Cry1F expressing field corn showed significantly greater WGS coverage depth of this
loci, our proxy for copy number variation, than did individuals collected from structured or
blended refuge ears (Figures 4E & F). We previously showed that SNPs in this CNV-
containing region were under strong Cry selection (Pezzini et al. 2024), but here we
demonstrated that a generation of selection by Cryl Ab+Cry1F increased the copy number in
wild H. zea. Moreover, coverage signals suggested that no individuals collected from
Cryl Ab+Cry1F expressing corn had single copy genotypes, while their conspecifics collected

from non-expressing corn in the same small experimental plots did. These data suggest that the
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CNYV on Chr 9 continues to be under selection for increased copy number, even though copy
number variation is widespread in the North American landscape.

Interestingly, seven of the ten genes within the CNV were trypsins, all of which were
differentially expressed (Figure 3B). The highest WGS coverage depth in wild H. zea collected
on Cryl Ab+CrylF expressing corn in NC also spanned two of those trypsins. Moreover,
expression of one of the trypsin genes within this cluster, t7yp80, appeared to be inducible upon
exposure to Cry-expressing corn (Table S7). Trypsins are a gene family previously thought to
be involved in lepidopteran Cry resistance via toxin activation or degradation (Gong et al., 2020;
Gonzalez-Cabrera et al., 2013; C. Liu et al., 2014; Y. Ma et al., 2013). We demonstrated that
trypsin inhibition synergistically reduced growth in Cry containing treatments for both resistant
and susceptible populations. These findings demonstrated a significant protective effect of
trypsin activity in Cry exposed H. zea. When exposed to the highest TLCK dose and Cry toxin
together, growth in the resistant population was suppressed to the level of the susceptible
population on Cry toxin alone. The shared response of susceptible and resistant populations to
TLCK in this assay suggests that the increased expression and duplication of trypsins might
allow the resistant population to better utilize a mechanism already present in the susceptible
population.

Previous work has also linked trypsin activity to Cry resistance in H. zea, for example,
Lawrie et al. (2020) found strong signals of trypsin upregulation in resistant H. zea while Zhang
et al. (2019) found that trypsin down regulation was related to H. zea Cry resistance in a
laboratory selected line. The upregulation of trypsins in resistant individuals observed here
suggests degradation rather than activation as the potential mechanism for these genes'

involvement in resistance. This would be expected in the case of resistance to crops that express
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activated toxin. Phenotypic resistance due to Cry toxin degradation by trypsins has been reported
in field populations of Spodoptera exigua (Y. Ma et al., 2013). Our findings along with results
from other Lepidoptera suggest a potential resistance mechanism: gene amplification causes
increased expression of these trypsins which, in turn, may degrade activated Cry toxins.

The CNV on Chr 9, likely plays an important role in resistance, but we emphasize that it
is not the only region involved in H. zea’s rapid adaptation to Bt crops. We also identified
resistance associated genomic regions on Chr 2, 3, 6, and 30. Multiple promising candidate genes
were found in the QTL peak on Chr 30 and near other QTL. There were also multiple candidate
Bt resistance genes among the top differentially expressed genes between resistant and
susceptible H. zea, including a cadherin gene. The genomic architecture of Bt resistance likely
involves interactions between some of these candidates of large to moderate effect size, as well
as undetected small effect size loci to produce the resistance observed in wild H. zea. Indeed,
our results showed that, on average, large Cry-exposed F2s had significantly higher depth of
sequencing coverage, and therefore copy number in our Chr 9 CNV, than did smaller Cry-
exposed F»s (Figure 4G). However, some small Fas contained the Chr 9 CNV, while some large
F2s did not. As expected based on the multiple QTL regions uncovered in our analysis, this
suggests one or more additional segregating resistance alleles are additively or synergistically
interacting with the Chr 9 CNV to produce resistance phenotypes. Consistent with our findings,
interactions between mutations in multiple genes have been described in laboratory studies of
other lepidopteran species (Ma et al. 2022, Sun et al. 2022). Further experimental work targeting
the Cry resistance associated regions on Chr 2, 3, 6 and 30 will be necessary to identify the

additional mutations underlying field-evolved Cry resistance.
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In our non-expressing control growth treatments, we did not detect any fitness costs of
this Cry resistance associated gene amplification, or any of the other detected major effect loci
(Figure 2). The lack of fitness cost for resistance, the low dose of the toxins, incomplete refuge
implementation, and cross pollination, likely contributed together to the failure of Cry resistance
management strategies for H. zea. A degradation mechanism for toxin resistance could explain
the rapid evolution of resistance to multiple toxins that do not share binding sites. Our findings
link the same gene amplification to resistance to both CrylAb and blends of CrylA.105 +
Cry2Ab2 and Cryl Ab+CrylF. It may also be associated with resistance to other Cry toxins not
tested here. If, as our results suggest, trypsin activity underlies Bt resistance phenotypes in field
H. zea populations, then targeted synergist trypsin inhibitors could potentially be developed to
restore efficacy of Bt crops in controlling H. zea (Correy et al., 2019).

Gene duplications, an important source of genetic variation for phenotypic evolution,
have been linked to many cases of insecticide and herbicide resistance evolution (Bass & Field,
2011; Heckel, 2022). Duplications of detoxification related genes can immediately confer
resistance by increasing the quantity of already functional detoxification enzymes or can
additionally lead to new mechanisms of resistance by neofunctionalization. Multiple cases of
insecticide resistance have been functionally linked to new duplications of cytochrome P450s
and carboxylesterases, two detoxification related gene families (Bass et al., 2013; Cattel et al.,
2021; Mouches et al., 1990; Puinean et al., 2010; Schmidt et al., 2010). Our findings here
suggest a new example of the duplication of a detoxification related gene leading to insecticide
resistance, and the first case of this mechanism linked to Bt resistance. It is possible that gene
duplication may be more likely to underlie rapid phenotypic evolution than other variant types,

but the prevalence of structural variants is not well described as detection is difficult with current
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technologies (Ho et al., 2020; Mahmoud et al., 2019). As gene amplifications have frequently
been linked to resistance evolution, genomic monitoring for resistance should be extended to

consider a range of genomic variant types beyond SNPs (Fritz 2022).

Methods

Insect samples and phenotypes

Field samples of Cry resistant H. zea, defined as surviving to late instar on a Bt corn plant
expressing CrylA.105 + Cry2Ab2, were collected in 2019 and 2020 in Prince George’s County
(MD) at the University of Maryland CMREC farm in Beltsville. Late instars were collected from
CrylA.105 + Cry2 Ab2 expressing sweet corn and reared in the lab on a 16:8 long day light cycle
at 25°C and 50% room humidity. Newly emerged adults from field collections were single pair
mated to produce a second generation of resistant field derived H. zea. Susceptible H. zea were
acquired from a population that has been maintained in the laboratory without exposure to Cry
toxins at Benzon Research (Cumberland County, PA). Cry tolerance in both the resistant field
and susceptible lab populations was measured with a diagnostic dose in a corn leaf tissue
incorporation assay as described in Taylor et al. (2021) to confirm resistant and susceptible
status. Briefly, early second instar caterpillars were fed for seven days on a laboratory diet mixed
with powdered lyophilized leaf tissue from Bt expressing corn and their non-Bt expressing near
isolines. Resistance was measured by weight gain after seven days on Bt expressing leaf diets.
Weight gain on the non-expressing near isoline control diets served as a measure of non-
resistance associated growth.

The field derived progeny that grew well in the Cry expressing resistance assay (not in

the bottom quartile for growth) were single pair mated to a susceptible individual from the lab
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580  colony. The specific susceptible individuals used in crosses were not exposed to the Cry toxin
581  resistance assay due to the significant growth suppression that would be experienced by this
582  highly susceptible population. Offspring of the single pair matings between the resistant and
583  susceptible populations were sibling mated to produce an F, generation. Cry toxin resistance
584  phenotypes were assessed in the F» progeny also using the leaf tissue incorporation assay, as
585  described in Taylor et al. (2021). Five F» intercross families were assessed for resistance to
586  CrylAb by measuring growth on diet with incorporated powdered Cryl Ab expressing leaf
587 tissue. The other half of the offspring were assayed for growth related advantages on the diets
588  with powdered leaf tissue from the non-expressing near isoline of CrylAb expressing corn. Five
589 different intercross families were assessed for resistance to CrylA.105 + Cry2Ab2 by measuring
590  growth on diet with leaf tissue expressing both toxins for half of the offspring. The other half of
591  the offspring were used to assess growth related advantages on diets containing leaf tissue from
592  the non-expressing near isoline. Between 146 and 282 F; offspring were split across treatments
593  and phenotyped from each family, resulting in 73 to 142 F» offspring phenotyped per treatment
594  from each family. F> numbers varied due to differences in larval availability for assays. After
595  phenotyping, the larvae were grown on a non-expressing lab diet to increase in size before DNA
596 isolation. All samples were flash frozen and stored at -80°C.
597 The impact of experimental treatment and population on weight phenotypes after seven
598  days of growth in the laboratory assays was assessed using a model reduction approach between
599  nested general linear models all with a gamma distribution, as is appropriate for the continuous
600 and positive weight phenotypes (Bolker, 2008). The treatments compared were 1) Cryl Ab
601  expressing corn leaf tissue, 2) control tissue from the non-expressing near isoline of Cryl Ab

602 corn, 3) CrylA.105 + Cry2Ab2 expressing corn leaf tissue, and 4) control tissue from the non-
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603  expressing near isoline for CrylA.105 + Cry2Ab2 corn. The populations compared were 1) the
604 resistant field derived Fo, 2) susceptible lab colony Fo, and 3) the intercross F» offspring. The
605 models were compared using a likelihood ratio y? test with an a priori a of 0.01. Post hoc
606  pairwise contrasts were calculated with the R package emmeans (v. 1.8.6; Lenth et al., 2023)

607  with a bonferroni correction to p-values.

608 DNA extraction and sequencing

609 Individuals in the top and bottom 20% of weight phenotypes from each treatment and
610  family were selected for DNA extraction and sequencing. When individuals in the top or bottom
611  20% did not survive to preservation, they were replaced by individuals in the top or bottom 30%.
612  Genomic DNA was extracted from 833 high and low weight intercross F» offspring and all F;
613  and Fo parents with a DNeasy (Qiagen, Hilden, Germany) extraction kit using the modified

614  mouse tail protocol of Fritz et al. (2020). Larval and pupal tissue from the rear 'z - 3 of the

615  insect was used for extraction, while for adults, % of the thorax was used. DARAD libraries were
616  prepared for all F> samples as described in Fritz et al. (2016, 2018). Briefly, samples were

617  digested with the restriction enzymes EcoRI and MSPI (New England Biolabs, Ipswich, MA),
618  and unique 6-mer or 8-mer barcodes were annealed prior to pooling with 38 - 39 other samples.
619  Pools were size-selected for 450-650 bp fragments using a Pippin Prep (Sage Scientific, Beverly,
620 MA), then 12 replicated PCR reactions with 14 cycles each were used to amplify DNA and add a
621  standard Illumina TruSeq index as an identifier to each pool. Pools were sequenced at North

622  Carolina State Genomic Sciences Laboratory on an S4 flow cell of the Illumina NovaSeq 6000,
623  resulting in 173.9 - 97.5 million raw 150 bp paired-end reads per sample pool with an average of
624 128 million reads per pool. Additionally whole genome sequencing was performed for the 20

625  cross founding parents on part of an S4 flow cell of an Illumina NovaSeq 6000 at the University
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of Maryland Baltimore Institute for Genome Science. This sequencing resulted in 30.9 - 48

million raw reads per sample with an average of 39.5 million raw reads.

Bioinformatic analysis

F> ddRAD sequencing reads were demultiplexed and quality controlled using the stacks
script process_radtags (v.2.61; Rochette et al., 2019). The reads were only retained if they had
exact matches to the correct barcode sequence, quality scores above 20 in all 15 bp length sliding
windows, and no evidence of adapter contamination allowing up to 2 bp mismatch in adapter
sequence. Quality controlled reads were aligned to a H. zea chromosome scale assembly (v. 1.0,
PRINA767434; Benowitz et al., 2022) with Bowtie (v.2.2.5; Langmead & Salzberg, 2012) using
the “very sensitive” alignment option. Variants were called with beftools mpileup (v. 1.9;
Danecek et al., 2016) and pruned to include biallelic SNPs with a minor allele frequency > 0.05,
with a quality score > 50, present in > 50% of samples. The average sequencing coverage per
individual at a called ddRAD locus in the final variant set was 63X. The total number of ddRAD
sequencing markers remaining for genotype phenotype association ranged from 78,580 - 79,408
(CrylAb treatment group = 79,261, Cryl Ab control group = 79,182, Cryl1A.105 + Cry2Ab2
treatment group = 79,408, CrylA.105 + Cry2Ab2 control group = 78,580).

Whole genome sequencing reads were quality controlled with Trimmomatic (v. 0.39;
Bolgar et al 2014), to remove Illumina adapters, low quality regions at the beginning or end of
the read or where the average quality of a four base pair window fell below 30, and any reads
shorter than 36 bp. Trimmed reads were aligned and variants were called as described above for
the ddRADseq reads. In the filtered WGS data, a total of 4,716,009 high quality SNPs were
identified between resistant and susceptible populations, with a genome wide average sequencing

coverage depth of 18.6X (st. dev. = 2.4). For those analyses of the ddRAD sequencing data that
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identified the direction of allele effect, SNPs were further filtered to include only those variants
where the allele origin (resistant or susceptible population) could be predicted with some
certainty. To identify SNPs where the likely origin population of the allele could be predicted,
only those SNPs with an allele count difference > 15 (out of a possible 20 alleles in each
population) between the resistant and susceptible parent populations were used. The population
where the allele was more common was used to identify the allele as resistance or susceptibility
associated. After filtering for effect direction, 6,717 - 6,749 SNPs remained (Cry1Ab treatment
group = 6,737, Cryl Ab control group = 6,749, Cryl1A.105 + Cry2 Ab2 treatment group = 6,733,

CrylA.105 + Cry2Ab2 control group = 6,717).

Resistant and susceptible founding populations genome wide comparison

Genome-wide patterns of differentiation between the founding resistant and susceptible
populations were described using the variants identified by whole genome sequencing of the ten
field resistant and ten laboratory susceptible Fo individuals founding the family crosses. A
principal components analysis was performed with Plink (v. 1.90b; Chang et al., 2015).
Divergence was measured by Weir and Cockerham's windowed Fst across 40kb windows with a
10kb step using VCFtools (v. 0.1.17; Danecek et al., 2011). A genome wide zFsr significance
threshold of 6 was used (Rubin et al., 2010). Downstream analysis of this data and all other data
presented here were performed in R (v.4.2.1; (R Development Core Team, 2023) with tidyverse
R package (v.2.0.0; Wickham et al., 2019), and visualizations were made with the R package

ggplot2 (v.3.4.1; Wickham, 2016)
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Quantitative trait mapping for Cry resistance

Cry resistance genomic architecture was characterized by Bayesian sparse linear mixed
models (BSLMM) in gemma (v. 0.98.4; Zhou et al., 2013). For each treatment the model was run
five separate times, each time with a total of 5 million sampling steps with the first 500 thousand
discarded as burn-in. Hyperparameter estimates for each treatment were averaged across all five
runs. The association between SNPs across the genome and weight phenotype from the
resistance and control growth assays were detected with linear mixed models (LMM) also in
gemma (v. 0.98.4; Zhou & Stephens, 2012). Both the BSLMM and LMM account for relatedness

among the five replicated families for each treatment.

Differential gene expression analysis

In 2022, Cry1A.105 + Cry2 Ab2 expressing corn ears and ears from the non-Bt
expressing near isoline were collected from the University of Maryland CMREC farm at
Beltsville. Ears that were infested with H. zea were identified by the loosened silk and brought to
the laboratory. In the lab, each corn ear was open and any 5th instar larvae present were
identified and removed from the ear; caterpillars at other developmental stages were not included
in the experiment. Immediately following removal, larvae were chilled and immobilized in a
70% solution of ice cold RNAlater (Invitrogen, Waltham, MA) and PBS. The head capsule on
each larva was removed and stored for later measurement to confirm instar. All larvae were later
confirmed as 5th instar by head measurements between 1.60 to 2.70 mm (Bilbo et al., 2019). The
midgut was cut away from the crop and intestine, and the malpighian tubules were removed.
Corn was cleared from midgut using forceps and a rinse of 70% RNAlater. Midguts were flash

frozen and stored at -80°C. The dissection process was repeated with individuals from the
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laboratory susceptible colony, which had been reared on a standard laboratory diet not containing
any corn tissue or Bt toxins.

Midguts of 5th instars from Bt expressing corn, non-Bt corn and the susceptible
laboratory colony were organized into eight randomized pools per treatment with four samples in
each pool (n = 32 per treatment). RNA was extracted from each pool using am RNeasy® Mini
Kit (Qiagen, Hilden, Germany) according to the manufacturer protocol except for the initial
pooling of samples. Poly-A selection, library preparation, and sequencing were completed by the
University of Maryland Baltimore Genomics Core Facility. All RNA libraries had a RIN value
between 8.7 and 10, with 22/24 having RIN of 10, indicating very high quality. Libraries were
100 bp paired end sequenced on an Illumina NovaSeq 6000.

Raw reads were quality controlled with Trimmomatic (v. 0.39; Bolger et al., 2014) to
remove Illumina adapters, trim reads where 4 bp sliding window quality score fell below 20, and
drop any reads shorter than 36 bp after trimming. The paired quality controlled reads were
aligned to a chromosome scale H. zea assembly (Benowitz et al., 2022; GCA 022343045.1) with
HISAT?2 (v. 2.2.1; Kim et al., 2019) using default parameters. Gene annotations were lifted from
the older reference genome Hzea 1.0 (Pearce et al., 2017; GCA_002150865.1) to the new
chromosome scale assembly using Liftoff (v. 1.6.1; Shumate & Salzberg, 2021). Gene
expression counts were generated with HTSeq-count (v. 0.13.5; Anders et al., 2015). Expression
patterns across all 24 pools were compared through differential expression analysis in DESeq2
(v. 1.38.3; Love et al., 2014). Two-way differential expression analysis was conducted between
resistant field individuals collected from Bt expressing corn and susceptible lab colony samples
to identify expression changes associated with resistance. An additional two-way differential

expression analysis between the field collected individuals from Bt expressing corn and non
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expressing corn was conducted to identify Cry exposure inducible gene expression changes.

Statistical significance was indicated by a false discovery rate adjusted p-value of 0.01.

Structural variant detection

Sequencing coverage depth signals were extracted from aligned .bam files from the WGS
of the cross founders, the ddRAD sequencing of F2, and two publicly available data sets. The
genome wide coverage depth and the average coverage depth for the trypsin cluster were
calculated with Qualimap (v. 2.2.1; Okonechnikov et al., 2016), while windowed coverage depth
calculations were from samtools depth (v. 1.10; Danecek et al., 2021) results. Calculations of
mean coverage of the amplified region for these analyses included all reads aligning between
5.22 - 5.37 Mb on Chr 9. Significant differences in coverage depth across samples were
determined by pairwise t-tests with a bonferroni correction to p. The presence of the structural
variant in 2002, 2012, and 2017 was assessed using the publicly available whole genome
sequencing data from Taylor et al. (2021) (PRJINA751583). The presence of the structural
variant in samples collected from Cry expressing and non-expressing corn was assessed using
sequencing data from the Pezzini et al. (2024) (PRINA1055981).

The structural variant was validated with digital droplet PCR (ddPCR) for tryp77, one of
seven trypsins in the putative duplication. ATP dependent DNA helicase was used as a control
gene, as it is single copy in Lepidoptera in OrthoDB (Zdobnov et al., 2021). Twenty-five ng of
DNA per sample was mixed with HindIII and analyzed in multiplexed assay for ##yp77 and ATP
dependent DNA helicase at MOgene (St. Louis, MO). The genes were targeted with the primers
shown in (Table S10) and the following amplification conditions: activation at 95°C for 10
minutes, followed by 40 cycles of denaturing at 94°C for 30 seconds, annealing and extension at

58°C for 1 minute, finally the enzyme was deactivated at 98°C for 10 minutes and held at 4°C.


https://www.zotero.org/google-docs/?broken=y0xPoa
https://www.zotero.org/google-docs/?broken=Mcp6hD
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ddPCR was performed with QX200 Automated Droplet Generator and Reader and analyzed
using the QX Manager 1.2 Standard Edition software (Bio-Rad, Hercules CA). All samples were
run with a synthesized gBlock positive control and a no template negative control. Copy number

for samples was calculated as in Karlin-Neumann et al. (2012) with the following formula:

I (1 _ target gene positive droplets)
n total number of droplets

control gene positive droplets) *
total number of droplets

CN =

In (1 -

Field resistant colony collection and rearing

Cry resistant H. zea late instar caterpillars were collected from Cryl Ab expressing sweet
corn (‘BC0805’) ears grown at the Central Maryland Research and Education Center in
Beltsville, Maryland. Approximately 450 caterpillars were collected during each of two
collection dates (August 18 and September 7, 2023). Caterpillars were reared on H. zea diet
(Southland Products Inc., Arkansas, USA) until adulthood and bucket mated in a growth
chamber set at 25°C with 70% relative humidity and 16:8 light:dark cycle. Eggs from bucket
matings were placed onto diet and reared until the second instar under the same conditions.
Occasionally, larvae were held at 4°C once they reached the appropriate size to ensure sufficient

numbers at the same developmental stage for assays.

Trypsin inhibition assay

To determine whether trypsin activity impacts Cry toxicity in H. zea, we
compared 7-day larval weight after exposure to corn leaf tissue incorporated diet. Larvae were
exposed to one of 12 treatments: 1) 1X TLCK trypsin inhibitor and CrylAb expressing leaf
tissue, 2) 2X TLCK trypsin inhibitor and CrylAb expressing leaf tissue, 3) 5X TLCK trypsin

inhibitor and Cry1Ab expressing leaf tissue, 4) 10X TLCK trypsin inhibitor and CrylAb
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expressing leaf tissue, 5) 1X TLCK trypsin inhibitor and non-expressing leaf tissue, 6) 2X
TLCK trypsin inhibitor and non-expressing leaf tissue, 7) 5X TLCK trypsin inhibitor and non-
expressing leaf tissue, 8) 10X TLCK trypsin inhibitor and non-expressing leaf tissue, 9) buffer
and CrylAb expressing leaf tissue, 10) buffer and non-expressing leaf tissue, 11) CrylAb
expressing leaf tissue alone, 12) non-expressing leaf tissue alone. These treatments enabled us to
separately determine the growth effect of Cry expressing tissue, the buffer, and the inhibitor at
different concentrations. Second instars from the laboratory Cry susceptible H. zea population
from Benzon research and field-collected Cry resistant H. zea were reared on these treatments
for seven days before they were individually weighed to assess growth. In each assay, 8 - 16
individuals were exposed to each treatment, due to availability of appropriately sized larvae.
Final sample sizes were > 70 in each treatment, and are reported in Table S8.

Based upon Ma et al. (2013) and preliminary trials, we selected N-a-tosyl-1-lysine
chloromethyl ketone hydrochloride (TLCK, Sigma-Aldrich®, St. Louis, MO) as our trypsin
inhibitor. To make the inhibitor solutions, 350 mg of TLCK was dissolved in 10 mL of
phosphate buffer solution (0.1M, pH 5.8, bioWORLD, Dublin, OH) to make a stock solution of
35 mg/mL (10X). This solution was further diluted to 3.5 mg/mL (1X), 7 mg/mL (2X), and 17.5
mg/mL (5X) as needed. The inhibitor solutions were freshly made for each assay date. A 10 mL
aliquot of phosphate buffer was used for the buffer control treatment. The bioassays were
prepared as in Dively (2016), Taylor et al. (2021), and as described above, except, in the
inhibitor and buffer treatments 1.6 mL of the TLCK solution or phosphate buffer were mixed
into 25 mL of experimental diet, resulting in the following final TLCK concentrations: 1X: 224.5
pg of TLCK per mL diet, 2X: 449 pg of TLCK per mL diet, 5X: 1.1 mg of TLCK per mL diet,

10X: 2.2 mg of TLCK per mL diet.
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First we compared the two control groups (incorporated leaf tissue only and incorporated
leaf tissue with buffer) using t tests with an a of 0.01 to identify any potential effects of the
buffer alone. Then, we tested for a synergistic effect of trypsin inhibition and Cry exposure on
growth in H. zea with a general linear model comparison approach. A gamma distribution was
used for the weight response variable. The fit of the models was compared with a likelihood ratio
chi-squared test using an o of 0.01. We tested for combined effects by comparing a full model
with Cry treatment and trypsin inhibition main effects and an interaction between the two, to a
model with only the two main effects. Bonferroni corrected post hoc contrasts were calculated
with the R package emmeans (v. 1.8.6; Lenth et al., 2023). We also calculated a growth ratio at
each TLCK dose as:

CR = weight on Cry expressing leaf tissue at TLCK dose x

weight on the non — expressing leaf tissue at TLCK dose x
The growth ratio measured the combined effect of TLCK and Cry toxins, and would be expected
to stay consistent across doses if the effects of TLCK and Cry toxins on growth suppression are

not linked.
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Figure Legends

Figure 1. Distribution of weights for H. zea individuals after seven days in a laboratory leaf
tissue incorporation assay for Cry toxin and control treatments.

Figure 2. Association of genome wide markers and weight after seven days of feeding on Cry
toxin containing and control treatments. The additive effect (beta from LMM) is the weight in
mg associated with the presence of a single resistant population allele smoothed for visualization
by averaging over 21 SNP windows with a 5 SNP step for markers on 31 H. zea chromosomes.
The genotype-phenotype association is shown for A. weight after seven days of exposure to
CrylAb, B. weight on the non-toxin near isoline control diet for Cryl Ab, C. weight after seven
days of exposure to Cryl A.105 + Cry2Ab2, D. weight on the non-toxin near isoline control diet
for Cryl1A.105 + Cry2Ab2. Chromosomes are plotted in alternating dark and light gray with each
point representing a 21 SNP window. Windows with at least one significantly associated SNP
are highlighted in color, with orange indicating an adjusted p value < 0.05 and red indicating an
adjusted p value < 0.01.

Figure 3. Genomic signals indicate that a region between 5.2 and 5.4 Mb on H. zea Chr 9 is
duplicated in field resistant individuals and associated with resistance phenotype. The absolute
value of the effect size (beta from the LMM) for ddRAD SNPs is plotted in (A). A differential
expression plot for all genes on Chr 9 between resistant and susceptible populations is shown in
(B). In (C) the gene annotations between 5.2 and 5.4 Mb on Chr 9 are shown above a plot of
relative depth of sequencing coverage for field resistant H. zea. Gene abbreviations are as
follows: Myrl = myrosinase 1-like, Dlh = disks large homolog 4-like, Tryp = Trypsin, Npr =
neuropeptide receptor A35. In all panels the region between 5.2 and 5.4 Mb on Chr 9 is
highlighted in blue.

Figure 4. Resistance evolution and the gene cluster amplification on H. zea Chr 9. (A) Relative
sequencing depth is plotted for susceptible and resistant cross founders. In A, C, and E each
point represents the average sequencing depth in that 10 kb window for a single individual
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844  relative to that individual's genome wide average sequencing coverage. (B) Coverage is

845  associated with ddPCR copy number variant analysis for trypsin 77 (r= = 0.95) for the resistant
846  (dark gray) and susceptible (light gray) founders of mapping families. (C) Relative sequencing
847  depth is plotted for individuals collected in LA in 2002 before Cry resistance evolution, 2012 as
848  resistance was evolving, and 2017 after practical resistance was first detected. (D) The mean
849  coverage depth of the amplified region from 5.22 - 5.37 Mb is plotted for the same individuals
850 shown in C. (E) Relative sequencing depth is plotted for individuals collected in 2019 in NC
851  from structured refuge, blended refuge and Cry1 Ab+Cry1F expressing corn. (F) The mean

852  coverage depth of the amplified region is plotted for the same individuals shown in E. Coverage
853  was significantly higher for the individuals taken from Cry expressing plants compared to both
854  refuge types (t=2.61, p=0.039; t=2.67, p = 0.033), suggesting selection for higher copy

855  numbers. (G) Mean ddRAD sequencing coverage for F» offspring that were the top and bottom
856  for 7 day weight in each treatment. Relative coverage was significantly higher for the F»

857  offspring that grew largest on both toxins (t = 3.46, p <0.001; t =5.21, p <0.001). On both

858  control treatments there was no relationship between coverage and growth (t=0.46, p > 0.05; t =
859 -1.51,p>0.05).

860

861

862  Figure 5. Effect of trypsin inhibition. (A) Distribution of weights for laboratory susceptible and
863 field resistant H. zea individuals after seven days in a trypsin inhibition assay with CrylAb

864  containing corn leaf tissue and leaf tissue from the non-expressing near isoline. (B) The growth
865 ratio for each trypsin inhibitor dose, a measure of how much weight is suppressed by Cry toxins
866 and TLCK combined compared to the effects TLCK alone.
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