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Abstract 30 

Prior studies have described the complex interplay that exists between glioma cells and 31 

neurons, however, the electrophysiological properties endogenous to tumor cells remain 32 

obscure. To address this, we employed Patch-sequencing on human glioma specimens and 33 

found that one third of patched cells in IDH mutant (IDHmut) tumors demonstrate properties of 34 

both neurons and glia by firing single, short action potentials. To define these hybrid cells (HCs) 35 

and discern if they are tumor in origin, we developed a computational tool, Single Cell Rule 36 

Association Mining (SCRAM), to annotate each cell individually. SCRAM revealed that HCs 37 

represent tumor and non-tumor cells that feature GABAergic neuron and oligodendrocyte 38 

precursor cell signatures. These studies are the first to characterize the combined 39 

electrophysiological and molecular properties of human glioma cells and describe a new cell 40 

type in human glioma with unique electrophysiological and transcriptomic properties that are 41 

likely also present in the non-tumor mammalian brain.42 
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Introduction 43 

Glioma is the most common central nervous system tumor with an estimated 20,000 cases 44 

diagnosed each year1. These diffuse glial tumors include isocitrate dehydrogenase (IDH) mutant 45 

(IDHmut) and IDH wildtype (IDHWT) subtypes, each of which presents with unique clinical and 46 

histopathological correlates. Prognostic outcomes for IDHWT tumors are poor, conferring a 47 

median survival of less than 14 months2. In contrast, IDHmut tumors confer significantly better 48 

prognoses, with a median survival of 31-65 months after diagnosis3. While IDHWT tumors 49 

typically result from driver mutations in tumor suppressors or oncogenes4, IDHmut tumors 50 

uniformly feature mutations in IDH1 or IDH2. Robust molecular and genomic studies conducted 51 

over the last two decades have revealed that the disparity in survival outcomes between glioma 52 

subtypes is primarily attributed to differences in tumor cell proliferation and invasiveness5, which 53 

are mediated by an intricate compendium of tumor intrinsic and extrinsic factors. Among these, 54 

communication between tumor cells and their microenvironmental constituents has proven to be 55 

a critical mediator of glioma progression and is largely conducted by immunological and neural 56 

cellular components6,7. With regards to the latter, recent advances in the field of cancer 57 

neuroscience have revealed that glioma cells form functional synapses with peritumoral neurons 58 

and that excitatory neuronal activity promotes glioma progression via increased proliferation and 59 

infiltration7–10. Conversely, reports have suggested that inhibitory neuronal activity mediated by 60 

γ-aminobutyric acid (GABA) slows glioma growth11, however emerging studies have 61 

demonstrated pro-tumorigenic effects of GABAergic signaling as well12. While tumor-neuron 62 

interactions have garnered significant attention, the electrophysiological profiles of tumor cells 63 

as they exist in situ within the human brain remain poorly defined.  64 

 65 

Over the past decade, technological advances in single cell genomics have generated an 66 

abundance of sequencing data, elucidating the robust transcriptional and genomic 67 

heterogeneity that exists in glioma13–15. Moreover, Patch-sequencing (Patch-seq), which 68 
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integrates whole cell recordings, morphological analysis and single cell RNA-sequencing 69 

(scRNA-seq), permits characterization of both electrophysiological and transcriptomic features 70 

in individual cells16 and has been used to expound the extraordinary array of neuronal subtypes 71 

present in the mammalian brain17. While these technical advances have generated ample 72 

substrate in the form of sequencing data, the challenge of accurately identifying cell types from 73 

these data remains cumbersome. Specifically, a streamlined computational framework capable 74 

of annotating glioma cells has yet to be developed and cell annotation algorithms remain ill-75 

equipped to assign integrated genomic and transcriptional profiles to single cells on a cell-by-76 

cell basis. Because glioma cells frequently share molecular profiles with their non-tumor glial 77 

analogs, development of reliable methodologies for identifying tumor cells within the brain poses 78 

a difficult but necessary task. 79 

 80 

To address the aforementioned computational limitations and improve our biological 81 

understanding of tumor cell electrophysiology, we performed in situ Patch-seq studies on 82 

surgically-resected human glioma samples and developed a new single cell computational tool, 83 

Single Cell Rule Association Mining (SCRAM), to characterize the genomic and transcriptomic 84 

features of recorded cells. Collectively, our studies demonstrate that a subset of human glioma 85 

cells fire single, short action potentials (APs) and are defined by an amalgamation of GABAergic 86 

neuron and oligodendrocyte precursor cell (OPC) transcriptomes, which we term GABA-OPCs. 87 

 88 

Results 89 

Hybrid cells fire single action potentials and are distinct from neurons and glia 90 

To determine the electrophysiological properties of tumor cells in malignant glioma, we 91 

performed whole-cell patch clamp recordings followed by scRNA-seq (Patch-seq) on brain 92 

slices surgically-resected from nine patients, including six IDHmut gliomas, two IDHWT gliomas 93 

and one non-tumor sample (Fig. 1a, Table S1-2). We recorded from a total of 148 cells; 95 94 
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were used to recover high-quality RNA for scRNA-seq, and 44 were preserved with biocytin for 95 

morphological analysis. For the 95 cells used for sequencing, an average of 4491 genes were 96 

identified per cell (Table S3). Of the 148 cells, 105 showed electrophysiological and 97 

morphological profiles consistent with established neural cell types in the mammalian brain and 98 

could be broadly classified as pyramidal cells (PCs; n=54), inhibitory neurons (INs; n=24) or glia 99 

(GL; n=27) based on maximal AP firing rates, AP amplitudes, input resistances and 100 

morphology18,19 (Figs. 1b-d; Fig. S1-3; Tables S2). It should be noted that we are using the 101 

electrophysiological annotation of GL to generally describe electrically inert cells, which may 102 

also include immature neurons and neural precursor cells (NPCs). Intriguingly, 43 cells across 103 

four IDHmut glioma and one non-tumor sample displayed select neuronal electrophysiological 104 

properties but were morphologically inconsistent with mature neuronal cell types, frequently 105 

resembling GL or NPCs (Figs. 1e-g; Fig. S1-3; Tables S2). These cells, which we assigned as 106 

hybrid cells (HCs), electrophysiologically represented 34% of IDHmut and 30% of non-tumor 107 

patched cells (Fig. 1h), had higher input resistances than neurons or GL, and were uniformly 108 

capable of firing single, small APs (Figs. 1i-k; Fig. S1-3, Fig. S4-7). Here, we define AP by a 109 

minimum dv/dt of 20V/S, minimum peak height of 2mV, a minimum absolute peak level of -110 

20mV, a maximum interval of 10mS, and thresh fraction of 0.05. In contrast, none of the 20 cells 111 

recorded from two IDHWT tumors demonstrated HC profiles and no HCs or GL (Fig. S1h).  112 

 113 

To investigate the molecular profiles of Patch-seq cells, we first performed principal component 114 

analysis (PCA) and found that all HCs clustered together and with GL (Fig. 1l). Notably, a group 115 

of ten PCs (hereto referred to as ΔPCs) coming from one recurrent IDHmut patient that were 116 

embedded within this PCA cluster (Fig. 1l, black dashed line) also featured abnormally high 117 

input resistances, like those of HCs, and had lower maximal AP firing rates than other recorded 118 

PCs (Fig. S8). We hypothesized that the HCs, GL and ΔPCs within this PCA cluster 119 
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represented tumor cells, thus we sought to confirm this using RNA-inferred single nucleotide 120 

variant (SNV) and copy number variant (CNV) analysis. We looked for the canonical IDHR132H 121 

mutation, chromosome 1p and 19q deletions, and chromosome 7p amplifications, which are 122 

established genomic markers of glioma and found that in IDHmut patients, seven HCs, six ΔPCs 123 

and two GL were tumor cells, and that two GL were tumor cells in IDHWT samples (Fig. 1m; 124 

Table S2, Fig. S9). Two HCs from IDHmut samples were euploid, had coverage of the 125 

IDH1R132 locus and were not mutated, and three HCs were detected in the non-tumor sample, 126 

confirming that HC electrophysiology is not exclusive to tumor cells (Fig. 1l, Fig. S2). These 127 

initial studies are the first to show that bona fide glioma cells are neurophysiologically diverse 128 

and can present with inert, single-spiking or excitatory electrophysiology profiles. 129 

 130 

SCRAM is a reliable annotation tool for human scRNA-seq datasets 131 

To better define the HCs identified in our Patch-seq studies, we sought to create a new 132 

computational platform that could annotate each cell from Patch-seq individually. Because of 133 

the low cell numbers obtained using Patch-seq and the rarity of human glioma samples for use 134 

in these experiments, our annotation tool needed to be capable of analyzing each cell without a 135 

dependency on clustering methodologies, which requires hundreds to thousands of cells for 136 

optimal analysis. Accordingly, we developed the Single Cell Rule Association Mining (SCRAM) 137 

tool that can annotate each cell on a cell-by-cell basis, independently of clusters. SCRAM uses 138 

a three-step orthogonal process to provide detailed transcriptional and RNA-inferred genomic 139 

profiles for each cell: (1) cell type transcriptional annotation using machine-learned neural 140 

network models (NNMs); (2) single nucleotide variant (SNV) profiling using the XCVATR20 tool; 141 

and (3) copy number variant (CNV) calling using the CaSpER21 and NUMBAT22 tools (Fig. 2a-142 

d). SCRAM NNMs are trained on 11 previously published scRNA-seq (totaling ~1M cells) 143 

human tumor and non-tumor datasets, including developing brain, immune, and glioma cell 144 

atlases14,15,23–30 (Table S4-5). Each cell from Patch-seq is assigned a probability score for each 145 
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cell type in the training datasets (Fig. 2e). Using this methodology, individual cells may be 146 

annotated as more than one cell type, which permits for the characterization of hybrid cellular 147 

states like those of HCs from our Patch-seq experiments. SNVs and CNVs are also considered 148 

for each cell and added to the cell annotation. Cells are assigned as “tumor” if they have ≥2 149 

tumor features (see Methods). We validated that SCRAM can reliably discriminate between 150 

tumor and non-tumor tissue, which it does with >99% sensitivity (true positive rate: TPR) in 151 

Allen Brain Atlas (ABA)23, Bhaduri et al.25 , Aldinger et al. 29, CoDEx26 and >96% sensitivity in 152 

Human Protein Atlas (HPA)-Brain30 (Table  S6). Additionally, we ran SCRAM on glioma scRNA-153 

seq datasets13,15,24, in which tumor and non-tumor annotations are reported in cluster resolution, 154 

finding that SCRAM achieved 100%  specificity (true negative rate: TNR) for tumor cells in 155 

IDHmut and IDHWT glioma datasets. 156 

 157 

HCs express hybrid GABAergic neuron-OPC transcriptomes 158 

We ran SCRAM on the 95 cells from Patch-seq experiments and found that all cells with IN 159 

electrophysiology (n=17) were correctly annotated as GABAergic neurons, and that 24 out of 41 160 

cells with PC electrophysiology were appropriately annotated as glutamatergic neurons (Fig. 161 

2e). All cells with GL electrophysiology (n=16) were annotated as glial subtypes and/or glioma 162 

cells. Thirteen PCs identified from one IDHWT patient and one recurrent IDHmut patient were 163 

annotated as GABAergic neurons. These cells featured maximal AP firing rates consistent with 164 

excitatory neurons despite robust GABAergic neuron transcriptomic profiles (Figs. 2e-g), a 165 

dichotomy reminiscent of the neurodevelopmental paradigm in which GABA neurotransmission 166 

confers excitatory signaling31. Using cell cycle scoring, we found that only three cells showed 167 

proliferative signatures and that two of these were IDH1R132H mutant (Fig. 2g); however, the 168 

majority of HCs showed low G2/M scores. Expectedly, mutation burden was highest in HCs and 169 

GL and was specifically enriched in HCs bearing the IDH1R132H mutation. Consistent with their 170 

electrophysiological profiles, all HCs (n=21) showed concurrent annotation as OPCs, 171 
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oligodendrocytes (OLs) and GABAergic neurons (an amalgam hereto referred to as GABA-172 

OPC) and tumor cells, signifying that HCs are endowed with a mixture of neuronal and 173 

oligodendroglial transcriptional features that may be responsible for the functional 174 

electrophysiological properties of these cells (Figs. 2e-g; Fig. S10). 175 

 176 

To validate our Patch-seq findings in larger datasets, we used SCRAM to analyze our in-house 177 

scRNA-seq dataset consisting of 234,880 cells from 12 IDHmut and IDHWT glioma patients32 (Fig. 178 

2b-d, Fig. S11; Table S7). SCRAM-assigned probability scores >0.9 were used for final cell 179 

annotations and to generate a SCRAM UMAP of our scRNA-seq glioma dataset, which clusters 180 

cells based on cell identity rather than similarity of transcriptional features (Fig. 3a, Figs. S12-181 

21). Visualization of SNVs, CNVs and tumor expression markers specific to glioma subtypes 182 

revealed that SCRAM segregates the majority of IDHmut from IDHWT tumor cells (Fig. 3b). Given 183 

that the HCs we observed in our Patch-seq experiment were found in IDHmut patients, we 184 

focused on SCRAM clusters encompassing the majority of IDHmut tumor cells, which were 185 

predominantly distributed amongst three discrete SCRAM clusters (Clusters 13, 18, and 19) that 186 

collectively contained <5% of IDHWT tumor cells (Figs. 3c-e). Importantly, all IDHmut tumor 187 

patients had robust GABA-OPC expression profiles, whereas only one IDHWT patient showed 188 

the same expression profile (Figs. 3f-g, Figs. S22-24). An analysis of tumor cells by patient 189 

revealed that on average 41.3% of IDHmut tumor cells were GABA-OPCs (Fig. 3h), which was 190 

consistent with the presence of HC electrophysiology in 34% of recorded cells from these 191 

tumors. In contrast, only 2.2% of tumor cells received GABA-OPC annotations in IDHWT tumors 192 

(Fig. 3h), which was consistent with the absence of HC electrophysiologies from Patch-seq 193 

experiments. 194 

 195 

Feature extraction of GABA-OPCs reveals GABAergic neuron and OPC transcriptional 196 

dependencies 197 
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Having identified that HCs are defined by GABA-OPC transcriptomes and that these cells 198 

constitute a large proportion of tumor cells in IDHmut patients, we sought to extract a GABA-OPC 199 

molecular signature by identifying transcriptional markers. To do this, we used SHapley Additive 200 

exPlanations (SHAP) analysis, which extracts essential features from machine-learning NNMs. 201 

We identified SHAP markers from each cell type in our training dataset (e.g. GABAergic PVALB 202 

neuron from ABA; Figs. S25-30) and compared these genes to the differentially expressed 203 

genes (DEGs) obtained for GABA-OPC tumor cells as compared to other tumor cells in our 204 

scRNA-seq dataset (Fig. S31-32, Table S8). The intersection of SHAP genes and DEGs 205 

produced a list of 61 genes (log2FC > 1), which we present as the GABA-OPC gene set. The 206 

GABA-OPC gene set is comprised of SHAP genes that are critical transcriptional features of cell 207 

types from tumor and non-tumor training datasets (Figs. 4a-b, Table S8). The training cell types 208 

that were most highly represented by GABA-OPC SHAP features were GABAergic neuron and 209 

OPC, demonstrating that the majority of GABA-OPC transcriptional characteristics derive from 210 

GABAergic neurons and OPCs. Given that OPCs and OLs represent a complex and 211 

transcriptionally heterogenous spectrum of cells, we studied OPC and OL cell state signatures 212 

from three different studies to better understand which specific OPC and OL annotations were 213 

enriched in GABA-OPCs33,34. We found that GABA-OPC cells are transcriptionally most like 214 

late-stage OPCs and early differentiated OLs, which implies that GABA-OPCs exist in a 215 

transitional state between precursor OPC and fully differentiated OL lineages (Fig. S33-34). 216 

Further bioinformatics analyses determined that on average 48% percent of OPCs from non-217 

tumor and developmental brain atlases possess GABA-OPC molecular profiles and that these 218 

cell profiles are more frequent in the adult brain than they are in neurodevelopmental contexts 219 

(Fig. S35). These results suggest that GABA-OPC tumor cells are malignant manifestations of a 220 

GABA-enriched OPC subclass that is normally found in non-tumor human brain. 221 

 222 
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Having extracted a GABA-OPC transcriptional signature, we next sought to elucidate the 223 

molecular constituents that transcriptionally confer GABAergic neuronal properties in HCs. 224 

Preceding reports have documented the existence of GABARs and GABA synthesis genes in 225 

OPCs35–37, which prompted us to investigate the expression of these genes in GABA-OPC 226 

tumor cells. We found high expression of glutamate decarboxylase 1 (GAD1) and GABA 227 

transaminase (ABAT), which are crucial for GABA synthesis and metabolism (Fig. 4c). Analysis 228 

of these genes in our Patch-seq cohort confirmed that ABAT and GAD1 are highly expressed by 229 

HCs (Fig. 4d), the latter of which we confirmed through immunostaining in human IDHmut glioma 230 

(Fig. 4e). Select GABARs were also expressed in GABA-OPC tumor cells as compared to other 231 

tumor cells, suggesting that GABA-OPC tumor cells are transcriptionally equipped to receive 232 

GABA-mediated inputs from neurons (Figs. 4c-d). Given this precedent, our analyses suggest 233 

that the electrophysiological activity of GABA-OPC tumor cells may be in part conferred through 234 

the expression of GABAergic neuronal gene sets. 235 

 236 

We next sought to understand how GABA-OPCs are mechanistically producing APs. 237 

Importantly, prior investigations have demonstrated that a subgroup of white matter OPCs in the 238 

rat brain fire single38, short APs that are similar to those observed in HCs from our Patch-seq 239 

studies. The AP capacity of these spiking OPCs is dependent on voltage-gated ion channels, 240 

particularly voltage-gated sodium channels (Navs) and voltage-gated potassium channels (Kvs), 241 

which we found were selectively expressed by non-tumor OPCs (Fig. 4f). We found that most 242 

GABA-OPC tumor cells have high expression of Navs but that expression of Kvs is restricted to a 243 

smaller population of cells and is not uniformly present across HC transriptomes (Fig. 4c). 244 

Immunostaining for the voltage-gated sodium channel Nav1.1, encoded by the SCN1A gene, in 245 

a human IDHmut tumor confirmed GABA-OPC tumor cells express Navs, which are essential for 246 

the rising phase of APs38,39 (Fig. 4g). These data suggest that GABA-OPC tumor cells are 247 
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endowed with requisite machinery that can mechanistically produce the APs observed in these 248 

cells.  249 

 250 

Strong GABA-OPC signatures confer increased survival in IDHmut glioma 251 

To validate our observation that GABA-OPC signatures were more prominent in our IDHmut 252 

cohort as compared to IDHWT, we used the GABA-OPC-like glioma gene set to score 216 IDHWT 253 

and 366 IDHmut bulk RNA-seq samples from TCGA (Fig. 5a). Consistent with our internal 254 

scRNA-seq dataset, we found that IDHmut samples had higher GABA-OPC scores than IDHWT 255 

samples. An analysis of scores by IDHWT molecular subtypes revealed the highest GABA-OPC 256 

scores belonged to OPC-like and NPC-like molecular subtypes (Fig. 5b). Consistent with these 257 

observations, OPC-like samples had significantly higher GABA-OPC tumor percentages than 258 

the other molecular subtypes14 (Fig. 5c). Reexamination of our internal scRNA-seq dataset 259 

revealed that the only IDHWT patient in whom a strong GABA-OPC signature was detected was 260 

an OPC-like IDHWT subtype, which explains why GABA-OPC tumor cells were enriched in this 261 

sample (see Fig. 3g). An analysis of the TCGA IDHmut samples by histopathological subtype 262 

showed that GABA-OPC scores were higher in low-grade glioma (LGG) than high-grade glioma 263 

(HGG), suggesting that stronger GABA-OPC phenotypes are associated with lower grade 264 

tumors (Fig. 5d). RNAvelocity pseudotime analyses of three IDHmut and one OPC-like IDHWT 265 

samples revealed that GABA-OPC tumor cells emerge from more primitive tumor cell types to 266 

become the largest population of glioma cells in tumors that bear them, demonstrating that 267 

some tumor cells from the divergent genetic backgrounds of IDHmut and IDHWT converge at a 268 

shared transcriptional phenotype (Figs. 5e-f).  269 

 270 

To determine the effect of GABA-OPC tumor cells on glioma progression, we assigned GABA-271 

OPC scores to bulk RNA-seq IDHmut glioma samples for which long-term survival follow up was 272 

collected40. Samples were split into low (n=41) and high (n=41) GABA-OPC groups based on 273 
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median expression. Kaplan-Meier survival analysis showed that low GABA-OPC tumor patients 274 

had a median survival of 84.5 months whereas high GABA-OPC tumor patients showed a 275 

median survival of 156.9 months (Fig. 5g). Even amongst the high grade IDHmut patients, low 276 

GABA-OPC scores conferred worse survival outcomes, with a median survival of 80.5 and 277 

182.5 for low and high GABA-OPC groups, respectively (Fig. 5h). Collectively, these analyses 278 

confirm that GABA-OPC tumor cells are a defining feature of IDHmut glioma and select subtypes 279 

of IDHWT glioma and demonstrate that reduced GABA-OPC signatures confer significantly 280 

worse survival outcomes in IDHmut glioma patients (Figs. S36-37). To our knowledge, long-term 281 

survival data for IDHWT glioma with matched expression data using Neftel et al.’s classification 282 

system is not available. Accordingly, future studies should investigate the correlation of GABA-283 

OPC signatures with prognostic outcomes in these patients. 284 

 285 

Tumor intrinsic depolarizations differentially alter proliferation in an IDH subtype-286 

dependent manner 287 

Given that GABA-OPC signatures correlate with improved survival outcomes in IDHmut glioma 288 

patients, we sought to understand the effects of GABA-OPC cells on tumor cell proliferation. To 289 

do this in IDHmut tumors, we utilized immunostaining with an IDH1R132H-specific antibody and 290 

OLIG2 to estimate the percentage of GABA-OPC tumor cells in four IDHmut patient samples 291 

including grade II oligodendroglioma, grade II astrocytoma, grade III astrocytoma and grade IV 292 

astrocytoma. Our bioinformatics analyses revealed that approximately 85% of GABA-OPC 293 

tumor cells are OLIG2+ and that 58% of tumor cells that are not GABA-OPCs also express 294 

OLIG2 (Fig S38). Immunostaining analyses revealed that 38% of cells are 295 

IDH1R132H+OLIG2+; factoring in the percentages of GABA-OPCs and non-GABA-OPC tumor 296 

cells that similarly express OLIG2, we estimate roughly half of these IDH132H+OLIG2+ cells to 297 

be true GABA-OPCs, which is approximately 18-20% (Fig. 6a). Adding KI67 immunostaining to 298 

this analysis showed that IDH1R132H+OLIG2+ cells are largely non-proliferative, with only 299 
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3.1% double positive cells also showing KI67 positivity (Figs. 6b-c). Intriguingly, we noted that 300 

KI67+ cells were frequently negative for OLIG2 but retained IDH1R132H positivity, suggesting 301 

that actively proliferating cells in IDHmut tumors lose OLIG2 expression as compared to cells not 302 

undergoing G2/M transitions (Fig. 6c-d). Indeed, our Patch-seq analyses confirmed that the 303 

three GABA-OPCs with highest G2/M cell cycle scores show reduced OLIG2 expression when 304 

compared to GABA-OPCs with low G2/M scores. These results are consistent with our data 305 

showing high GABA-OPC scores confer better survival outcomes in IDHmut glioma and support 306 

the notion that HCs with short, tumor intrinsic APs are not largely proliferative. 307 

 308 

While performing our bioinformatics analyses, we observed that GABA-OPCs in NPC- and 309 

OPC-like IDHWT tumors showed high G2/M scores, which suggests that GABA-OPCs may have 310 

opposing effects on tumor cell proliferation that are dependent on IDH-subtype (Figs. 6e-f; Fig 311 

Fig S39). In contrast to the IDH1R132H mutation that occurs in more than 90% of IDHmut 312 

gliomas, mutations occurring in IDHWT tumors are heterogenous and thus antibodies specific for 313 

IDHWT tumor cells are lacking. To overcome this limitation and examine the effects of tumor 314 

intrinsic depolarizations on proliferation in IDHWT tumors, we employed optogenetics to induce 315 

tumor cell depolarizations using an RFP-labeled in utero electroporation (IUE) mouse model of 316 

de novo IDHWT glioma41 (Fig. 6g). Critically, an analogous population of GABA-OPC tumor cells 317 

and corresponding HC electrophysiology have been identified in our IUE tumor mice, making it 318 

an appropriate model in which these experiments can be performed (Fig. 6h; Figs. S40-41). 319 

Overexpression of RFP with or without channelrhodopsin 2 (ChR2) was driven by piggyBac 320 

transposase in Glast-expressing progenitor cells alongside CRISPR/Cas9 guides targeting three 321 

of the most frequently mutated tumor suppressors in IDHWT tumors: tumor protein 53 (TP53), 322 

phosphatase and tensin homolog (PTEN) and neurofibromin 1 (NF1). Briefly, IUEs were 323 

performed at E16.5 and fiber optic implants were placed ipsilaterally to the tumor at P40. After 324 

one week of recovery, mice received 10 consecutive days of photostimulation to induce 325 
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repeated depolarizations over 10 minutes and were then pulsed with BrdU before brains were 326 

harvested for processing. Immunostaining for ChR2 and BrdU revealed that tumors expressing 327 

ChR2 (pbCAG-ChR2-RFP) were more proliferative than tumors without ChR2 (pbCAG-RFP) 328 

(Figs. 6i-k). These data suggest that repeated tumor cell depolarizations promote glioma cell 329 

proliferation in an IDHWT context. Despite these differences in proliferation, overall survival 330 

outcomes for IDHWT glioma patients based on high and low GABA-OPC scores were not 331 

significantly different, which likely reflects the smaller percentages of GABA-OPC glioma cells in 332 

these tumors as compared to IDHmut tumors (Fig. S42). Taken together with the results of our 333 

IDHmut immunostaining, these collective experiments implicate tumor cell depolarization as a 334 

differential regulator of glioma proliferation that is dependent upon the molecular and genetic 335 

context in which they occur. 336 

 337 

Discussion 338 

In the 1990s, whole cell patch clamp experiments reported that cells firing single, short APs 339 

were the majority of cells found in human glioma slices. These early electrophysiology studies 340 

described spiking cells that were dependent on voltage-gated sodium currents, however, 341 

definitively showing these cells were tumor in origin necessitated the advent of single cell 342 

transcriptomics42–44. Separately, scientists identifying a class of spiking OPCs in the healthy rat 343 

brain posited that neurons are not the only cells capable of firing APs and suggested that an 344 

analogous population of spiking OPCs exists in human38. Given these precedents, we believe 345 

that these previously described cell types are electrophysiologically equivalent to our HCs, 346 

which are transcriptionally defined by GABA-OPC signatures and represent a heterogenous 347 

group malignant and non-malignant cells. There is mounting evidence to support the OPC as a 348 

cell of origin in glioma45–47, which represents the largest proliferative neural cell population in the 349 

adult brain and are frequently mutated in non-tumor brain48,49. Similarly large percentages of 350 

GABA-OPCs detected in all IDHmut glioma samples used for Patch-seq, whole cell recordings 351 
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and scRNA-seq in this study support the theory of OPC as cell of origin and implicate the 352 

malignant transformation of GABA-OPCs as an initiating event in IDHmut and NPC- and OPC-353 

like IDHWT tumors.  354 

 355 

Indeed, GABAergic neurons and OPCs share common neurodevelopmental origins in which 356 

most cells from each lineage emerge from Nkx2.1-expressing precursors in the medial, lateral 357 

and caudal ganglionic eminences50,51. In addition to emanating from the same embryonic loci, 358 

GABAergic neurons and OPCs sit at a transcriptional intersection that is uniquely shared by 359 

these two cell types, which includes the expression of OLIG252 and GABARs53 and PDGFRA 360 

(Fig. 4b). These features, which are also hallmarks of GABA-OPCs, render glioma cells well-361 

equipped to participate in the complex relay of tumor and neuronal communication that 362 

manifests as cancer neuroscience. In recent years, studies in this field have elucidated how 363 

glioma cells interact with surrounding neural networks to direct disease progression41,54. These 364 

reports demonstrate that human glioma cells receive synaptic inputs from the surrounding 365 

neuronal circuitry, which can be sufficient to evoke tumor cell excitatory postsynaptic currents 366 

(EPSCs)8,9,12. Moreover, tumor cells form intricately connected networks mediated by calcium 367 

signaling, the ablation of which limits tumor cell proliferation and progression10. Our studies build 368 

upon these earlier findings to demonstrate that glioma cells are capable of AP firing, raising the 369 

question of whether this tumor intrinsic activity contributes to the aberrant neurophysiology and 370 

frequent seizure incidence encountered in glioma patients. Up to 75% of IDHmut glioma patients 371 

suffer from glioma-related epilepsy (GRE), which is more than double the seizure incidence in 372 

IDHWT glioma patients55,56. Given the high percentage of GABA-OPC tumor cells in IDHmut 373 

glioma, future endeavors should aim to discern whether epileptic peritumoral neuronal networks 374 

are also driven in part by tumor cell AP firing. 375 

 376 
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Perhaps one of the most intriguing and unexpected findings of our study is the discovery of two 377 

HCs from two IDHmut glioma samples that retained IDH1R132 wild-type homozygosity and 378 

euploidy despite being found within the surgically-defined core of IDH1R132H-mutant tumors. 379 

While these cells are few in number, an average of 5 million reads per Patch-seq cell leaves us 380 

confident that the absence of the IDH1R132H mutation is an accurate representation of their 381 

genomic status and clearly demonstrates that HC electrophysiology is not exclusive to a tumor 382 

state. Concordantly, the presence of three HCs detected in a histopathologically-diagnosed non-383 

tumor sample, strongly support the conclusion that HCs are present in the non-tumor human 384 

brain. The implication of AP-firing non-neuronal cells stands as a biological iconoclast, insofar 385 

as the prevailing tenets of neuroscience hold that neurons are the only cells capable of firing 386 

APs57. Whether GABA-OPCs with HC electrophysiology are endemic to the healthy human 387 

brain remains to be determined, however given that OPCs are estimated to represent 3-4% of 388 

all grey matter cells and 8-9% of white matter cells in the mammalian brain58–60, the cumulative 389 

neurophysiological contributions of these cells are poised to be significant and should not be 390 

ignored in either tumor or non-tumor contexts. 391 

 392 
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Figure 1 428 
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Figure 1. Patch-seq of human glioma samples reveals tumor cells fire action potentials. 430 

(a) Experimental workflow for whole-cell recordings and whole-cell patch clamp recordings, 431 

followed by singe-cell RNA-sequencing (Patch-seq) assays. (b) Exemplary membrane 432 

responses from patched PCs, INs and GL to a 600-ms hyperpolarizing current step (black) and 433 

suprathreshold depolarizing current step (colored). (c) Matched traced cell morphologies are 434 

shown for recorded neuronal and glial cells. (d) Matched images of biocytin-filled cell 435 

morphologies for patched neuronal and glial cells; scale bar: 50 µm. (e) Exemplary membrane 436 

responses from IDHmut HCs to a 600-ms hyperpolarizing current step (black) and suprathreshold 437 

depolarizing current step (colored). (f) Matched traced cell morphologies are shown for recorded 438 

HCs. (g) Matched images of biocytin-filled cell morphologies for patched HCs; scale bar: 50 µm. 439 

(h) Pie chart showing percentage of PC, IN, GL and HC patched by experimental group. (i) Box 440 

plot showing HC cells have AP amplitudes compared to neurons. (j) Box plot showing HCs fire 441 

fewer spikes compared to neurons. (k) Box plot showing HCs have higher input resistance 442 

compared with non-tumor neurons. (l) Principal component analysis (PCA) plot of 95 Patch-seq 443 

cells shows clustering of cells based on electrophysiological properties. HCs are 444 

transcriptionally similar to each other, GL and select PCs. Cells are colored according to 445 

electrophysiological properties, IDH1R132H status and CNV status. Black dashed line denotes 446 

PCA cluster. For Patch-seq, two voltage traces are shown: the hyperpolarization trace obtained 447 

with injected currents (black) and the depolarization trace showing maximal AP firing rate; 448 

injected current: −100 pA. p-values for pairwise comparisons are noted in the figure. AP: action 449 

potential; GABA: γ-aminobutyric acid; GL: glia; GSC: glioma stem cell; IN: interneuron; OL: 450 

oligodendrocyte; OPC: oligodendrocyte precursor cell; PC: pyramidal cell.  451 

 452 
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Figure 2453 
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Figure 2. SCRAM reveals HC cells are GABA-OPC tumor cells. (a) Schematic of the 454 

SCRAM pipeline. Briefly, 11 scRNA-seq datasets were used to train cell type neural network 455 

models (NNMs). Each cell from scRNA-seq is then assigned cell type annotation independently 456 

of all other cells using NNM trained models. CNVs are added for each cell using CaSpER and 457 

NUMBAT. SNVs are added for each cell using XCAVTR. (b) Seurat clusters are shown for 458 

234,880 cells from our in-house glioma scRNA-seq dataset. (c) Zoom-in of black dashed box 459 

from (b) Seurat clusters 3, 12, 16 and 22 colored by Seurat clusters. (d) Zoom-in of black 460 

dashed box from (b) Seurat clusters 3, 12, 16 and 22 colored by SCRAM cell-by-cell 461 

annotations. (e) Heatmap showing SCRAM cell type probability scores for 95 Patch-seq cells. (f) 462 

Heatmap showing cell-type markers for 95 Patch-seq cells. (g) Heatmap showing composite 463 

SNV scores (mutational burden) and cell cycle score (G2/M score) for 95 Patch-seq cells. Grey 464 

box denotes cells marked in PCA cluster from Figure 1l. CNV: copy number variant; SNV: single 465 

nucleotide variant. 466 

  467 
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Figure 3468 

 469 
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Figure 3. GABA-OPC tumor cells in human glioma. (a)  SCRAM UMAP of 234,880 scRNA-470 

seq cells.  (b)  Commonly used IDHmut (top row) and IDHWT (bottom row) tumor features are 471 

shown. Top (from left to right): chromosome 1p deletion feature plot, IDH1 mutation density plot, 472 

PDGFRA expression feature plot. Bottom (from left to right): chromosome 7p amplification 473 

feature plot, EGFR mutation density plot, EGFR expression feature plot. (c) SCRAM tumor and 474 

non-tumor cell annotation. (d) Zoom-in of inset from (c) showing SCRAM cell type annotations 475 

for each cell. (e) Bar graph showing the majority of cells in (d) are from IDHmut tumor patients. (f) 476 

SCRAM probability scores are shown for cell types of interest. (g) Heatmap of SCRAM cell type 477 

annotations for IDHmut (n=5) and IDHWT (n=7) glioma patients. (h) Bar graph showing the 478 

percentage of tumor cells with GABA-OPC annotations; p-value is noted in the figure.479 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2024. ; https://doi.org/10.1101/2024.03.02.583026doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.02.583026
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4 480 

481 
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Figure 4. GABAergic, neuronal and OPC features are hallmarks of GABA-OPCs. (a) Circos 482 

plot showing the 61 genes (log2FC > 1) comprising the GABA-OPC tumor cell signature. DEGs 483 

from GABA-OPC tumor cells versus all other tumor cells were extracted from our scRNA-seq 484 

dataset and crossmatched with SHAP genes from our trained NNMs. (b) Heatmap of Allen Brain 485 

Atlas non-tumor human scRNA-seq data showing GABAergic neurons and OPCs share 486 

subtype-specific markers. Grey boxes outline LAMP5+ GABAergic neurons and OPCs. (c) 487 

DotPlot showing the average expression of GABARs and GABA metabolism genes in human 488 

non-tumor OPCs and in GABA-OPC tumor cells. (d) Heatmap showing the expression of 489 

GABARs, GABA metabolism genes, voltage-gated sodium channels (Navs), voltage-gated 490 

potassium channels (Kvs)  and voltage-gated calcium channels (Ca2+) in Patch-seq data. (e) 491 

Immunostaining for GAD1 (white), IDHR132H (green) and OLIG2 (pink) in a human IDHmut 492 

tumor sample; scale bar = 20 μm. White box denotes inset. White dashed lines denote 493 

IDH1R132H+OLIG2+GAD1+ tumor cells.  (f) DotPlot showing the average expression of 494 

voltage-gated sodium channels (Navs) and voltage-gated potassium channels (Kvs) genes in 495 

human non-tumor OPCs and also in GABA-OPC tumor cells. (g) Immunostaining for NaV1.1 496 

(SCN1A; white), IDHR132H (green) and OLIG2 (pink) in a human IDHmut tumor sample; scale 497 

bar = 20 μm. White box denotes inset. White dashed lines denote 498 

IDH1R132H+OLIG2+SCN1A+ tumor cells. NNM: neural network module; SHAP: SHapley 499 

Additive exPlanations. 500 
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Figure 5  502 
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Figure 5. GABA-OPC tumor cells are protective in IDHmut tumors (a) Density plot of GABA-503 

OPC tumor scores is shown for IDHmut (n=366) and IDHWT (n=216) TCGA bulk RNA-seq glioma 504 

samples; p-value is noted in the figure. (b) Box and whiskers plot showing GABA-OPC scores 505 

for TCGA samples by IDHWT tumor subtype: MES-like (n=149); AC-like (n=157); NPC-like 506 

(n=12); OPC-like (n=9); p-values for pairwise comparisons are noted in the figure. (c) Bar graph 507 

showing the percentage of tumor cells that are GABA-OPC tumor from Neftel et al.’s IDHWT 508 

SMART-seq dataset. (d) Density plot of GABA-OPC tumor scores is shown for IDHmut TCGA 509 

bulk RNA-seq glioma samples by histology subtype: oligodendroglioma (n=150); astrocytoma 510 

(n=111); diffuse astrocytoma (n=8); p-values for pairwise comparisons are noted in the figure (e) 511 

RNAvelocity pseudotime analyses are shown for one IDHWT and three IDHmut samples. Black 512 

dashed lines denote cells of interest. (f) Bar graphs showing percentage of tumor cells by 513 

cluster over pseudotime. (g) Kaplan-Meier survival analysis in IDHmut patient cohort. (h) Kaplan-514 

Meier survival analysis in HGG IDHmut patient cohort.   515 
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Figure 6 516 
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Figure 6. Tumor cell depolarization differentially alter glioma cell proliferation in an IDH-518 

dependent manner (a) Bar plot showing the percentage of IDH1R132H+OLIG2+ cells and 519 

IDH1R132H+OLIG2+KI67+ cells detected in IDHmut tumor samples (n=4) using immunostaining. 520 

(b) Representative images of IDH1R132H (green), OLIG2 (pink) and KI67 (white) 521 

immunostaining shows IDH1R132H+OLIG2+ cells are largely negative for KI67. White box 522 

denotes inset; scale bar = 20 μm. (c) Box and whiskers plot showing the percentage of 523 

IDH1R132H+OLIG2+ cells detected by immunostaining for each IDHmut tumor sample. (d) Box 524 

and whiskers plot showing the percentage of IDH1R132H+OLIG2+KI67+ cells detected by 525 

immunostaining for each IDHmut tumor sample. (e) DotPlot of cell cycle scoring showing the 526 

percentage and average expression of GABA-OPC tumor cells undergoing G2/M in our in-527 

house scRNA-seq dataset of human glioma. (f) DotPlot of cell cycle scoring showing the 528 

percentage and average expression of GABA-OPC tumor cells undergoing G2/M in IDHWT 529 

glioma from Neftel et al.’s scRNA-seq dataset. (g) Schematic showing the experimental design 530 

used in our optogenetics experiment. (h) Schematic illustrating whole cell recording experiments 531 

in fluorescent-labeled IUE tumor mice. Representative traces of cells with glial and HC 532 

electrophysiologies are shown. (i) Representative images of optogenetic IUE tumor mice 533 

showing positive immunostaining for ChR2 (green) is detected in pbCAG-ChR2-RFP mice and 534 

is not detected in pbCAG-RFP mice; scale bar = 20 μm. (j) Representative images of 535 

optogenetic IUE tumor mice showing immunostaining for Olig2 (pink) BrdU (white); scale bar = 536 

20 μm. (k) Box and whiskers plot showing quantification of BrdU+ cells per field of view (FOV). 537 

 538 

Experimental Methods 539 

Human data  540 

Adult patients at St. Luke’s Medical Center and Ben Taub General Hospital provided 541 

preoperative informed consent to participate in the study and gave consent under Institutional 542 
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Review Board Protocol H35355. Patients included males and females. Clinical characteristics 543 

were maintained in a deidentified patient database and are summarized in Table S1 and S7. 544 

 545 

Tumor samples were collected during surgery and immediately placed on ice. Tissue was 546 

divided for use in subsequent transcriptomic, histopathological, proteomic, or biochemical 547 

studies. Patient samples were collected separately for pathology and molecular subtyping. 548 

Histopathology and molecular subtyping of IDH and 1p19q deletion status were confirmed by 549 

board-certified pathologists. Samples for scRNA-seq and immunoprecipitation assays were 550 

fixed in LN2 and kept at −80°C. 551 

 552 

Single cell RNA-sequencing 553 

Human tumors were prepared as single-cell suspensions. Briefly, samples were coarsely 554 

chopped with surgical scissors and enzymatically digested with Papain supplemented with 555 

DNase I (Worthington Biochemical Corporation, LK003150). Samples were incubated for 15 556 

minutes at 37°C on a thermocycler kept at 1400×g and briefly pipetted every 5 minutes. Cells 557 

were pelleted at 13,000×g for 10 seconds and resuspended in phosphate-buffered saline (PBS) 558 

before processing for debris and dead cell removal. Cell suspensions were processed using the 559 

MACS Debris Removal Kit (Miltenyl, 130-109-398) and MACS Dead Cell Removal Kit (Miltenyl, 560 

130-090-101), according to the manufacturer’s instructions. Live cells were collected through 561 

negative selection using an MS Column in the magnetic field of a MiniMACS Separator 562 

(Miltenyl, 130-042-102). Eluted cells were spun at 300×g for 5 minutes and resuspended in 563 

Gibco Dulbecco's Modified Eagle Medium with GlutaMAX (DMEM; ThermoFisher, 10566016) 564 

supplemented with 10% foetal bovine serum (FBS; ThermoFisher, 16000044). Single cells were 565 

processed with the 10X Chromium 3′ Single-Cell Platform using the Chromium Single-Cell 3′ 566 

Library, Gel Bead, and Chip Kits (10X Genomics) following the manufacturer’s protocol. Briefly, 567 

approximately 5,000–15,000 cells were added to each channel of a chip to be partitioned into 568 
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Gel Beads in Emulsion (GEMs) in the Chromium instrument, followed by cell lysis and barcoded 569 

reverse transcription of RNA in droplets. GEMs were broken, and cDNA from each single cell 570 

was pooled. Clean-up was performed using Dynabeads MyOne Silane Beads (ThermoFisher, 571 

37002D). Subsequently, the cDNA was amplified and fragmented to optimal size before end 572 

repair, A-tailing, and adaptor ligation. Libraries were run individually using a NextSeq 500/550 573 

High Output Kit v2.5 (75 Cycles) (Illumina, 20024907) and sequenced on an Illumina 574 

NextSeq550 instrument. 575 

 576 

Human tumor slice preparation 577 

Fresh tumor samples were immediately placed into a cold (0−4°C) oxygenated N-methyl-d-578 

glucamine (NMDG) solution (93 mM NMDG, 93 mM HCl, 2.5 mM KCl, 1.2 mM NaH2PO4, 30 579 

mM NaHCO3, 20 mM HEPES, 25 mM glucose, 5 mM sodium ascorbate, 2 mM thiourea, 3 mM 580 

sodium pyruvate, 10 mM MgSO4, and 0.5 mM CaCl2, pH 7.35). Slices were cut at 300-μm 581 

thickness with a microslicer (Leica VT 1200) and kept at 37.0±0.5°C in oxygenated NMDG 582 

solution for 10–15 minutes before being transferred to artificial cerebrospinal fluid (ACSF, 125 583 

mM NaCl, 2.5 mM KCl, 1.25 nM NaH2PO4, 25 mM NaHCO3, 1 mM MgCl2, 25 mM glucose, and 584 

2 mM CaCl2, pH 7.4) for 1 hour before recording. 585 

 586 

Single cell processing  587 

We ran samples on the 10X Chromium platform to produce next-generation sequencing 588 

libraries. We performed standard procedures for filtering, mitochondrial gene removal, and 589 

variable gene selection using the Seurat pipeline. The criteria for cell/gene inclusion were as 590 

follows: genes present in more than three cells were included, cells that expressed >300 genes 591 

were included, the number of genes detected in each cell was >200 and <5000, and the 592 

mitochondria ratio was 10. We integrated cells from different patients using the Harmony 593 

algorithm61. Next, we visualized clusters using a uniform manifold approximation and projection 594 
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constructed from the Harmony-corrected PCA. We also performed lineage tracing, trajectory 595 

analysis, and RNA velocity assessments to create developmental hierarchies and lineage 596 

histories of glioma cells using the scvelo R package62 and IntrExtract63. 597 

 598 

SCRAM pipeline and methodology 599 

SCRAM input consisted of aligned scRNA-seq reads and our neural network model trained on 600 

11 diverse single-cell RNA-Seq datasets encompassing 1 million cells of publicly available data 601 

from healthy adult and developing brain samples, as well as brain tumor samples. Tumor and 602 

normal cells were annotated independently for two reasons. (1) Significant overlap exists 603 

between tumor and non-tumor expression markers. For example, EGFR and PDGFRA are often 604 

used to denote tumor cells14 but are also cell type markers for OPCs and ependymal host cells, 605 

respectively (Supplemental Figure S43) (2) We hypothesize that by separating tumor-specific 606 

and normal-specific features, we can achieve more robust identification of hybrid cells (HCs). 607 

This hypothesis is supported by our observation that existing cell type assignment methods, 608 

which typically classify both tumor and normal cells together, fail to accurately characterize HCs. 609 

These tumor/normal features were systematically employed in our pipeline as follows: 610 

 611 

Step 1. Annotation of non- tumor cells:  612 

Training Neural Network Models (NNMs). We trained our neural network model (NNMs) on 11 613 

diverse single-cell RNA-Seq datasets, which collectively contain 1 million cells. These datasets 614 

comprise publicly available data sourced from various datasets, including healthy adult and 615 

developing brain samples, as well as brain tumor samples13–15,23–30. We trained our model using 616 

a deep neural network (DNN), with an input layer of around 20K genes, three intermediate 617 

layers (256, 64, 32), and an output layer of size 16 or 21, depending on the number of 618 

referenced cell types. Following the dense connection within each hidden layer, there are batch 619 

normalization, activation, and dropout functions. We use the popular Rectified Linear Unit 620 
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(ReLU) for hidden layer activation and set dropout rate to be 0.1. The output layer uses Softmax 621 

activation function so that each node outputs a non-negative value smaller than 1 and all the 622 

values sum up to 1. Therefore, each output corresponds to the probability of one cell type. We 623 

compile the model using categorical crossentropy as loss function, Adam as optimizer, and 624 

accuracy as metrics. In order to achieve a more balanced class distribution, we opted to 625 

subsample cell types within our training model. We train one neural network-based classifier on 626 

each developmental-like, normal, tumor cells datasets and save the model in repository. We 627 

predicted the developmental-like, normal and tumor cells, in our glioma scRNA-Seq data using 628 

our trained NNMs. Model probability scores >0.9 were used for final cell annotations. In building 629 

our NNMs, we utilized the Python packages TensorFlow and Keras. Additionally, we used the 630 

Python Scipy package for processing the scRNA-Seq data. Prerequisite packages for data 631 

preprocessing and model training include Numpy 1.19.5, Pandas 1.1.5, Scanpy 1.7.2, Anndata 632 

0.7.8, Scipy 1.5.4, and Scikit-learn 0.24.2. 633 

 634 

For a single cell to be classified as "immune" within our framework, it must be annotated as 635 

immune with a probability score above 0.9 in three or more trained datasets. 636 

 637 

SHapley Additive exPlanations (SHAP) analysis. 638 

SHAP analysis was employed to gain insights into the main features that affect the output of the 639 

NNMs, we used SHAP method, to explain how each feature affects the NNMs in inhouse glioma 640 

single-cell dataset. To perform the SHAP analysis, the model predictions were decomposed into 641 

contributions from individual features, allowing us to assess their impact on the final outcome 642 

using the shap python package. 643 

 644 

Step 2. Annotation of tumor cells:  645 
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The SCRAM pipeline integrates multiple orthogonal tumor features to identify tumor cells at a 646 

single-cell resolution. These features include:  647 

Module 1. Neural Network Model-Based Tumor Cell Prediction: Above explained NNMs is used 648 

to predict tumor cells based on the probability score. Cells with a probability score above 0.9 are 649 

classified as tumor cells.  650 

Module 2. Marker based Expression Modeling: SCRAM employs finite Gaussian mixture 651 

modeling to model marker expression of three tumor marker genes: SOX2, EGFR PDGFRA. 652 

This approach helps to distinguish tumor cells based on their specific marker gene expression 653 

profiles (details explained below section “Marker Expression Modeling for tumor annotation”).  654 

Module 3. RNA-Inferred Genotyping of Chromosome Alterations: A modified version of our  655 

CNV-calling algorithm, CaSpER21, another state of art CNV calling method numbat22 is used in 656 

SCRAM to perform RNA-inferred genotyping of large-scale chromosome alterations.  657 

Module 4. RNA-Inferred Mutational Profiling: SCRAM utilizes our XCVATR20 tool, a recently 658 

developed tool, to deduce rare deleterious single-nucleotide variants (SNVs) present in the 659 

tumor cells. This analysis involves considering SNVs that are reported in the COSMIC64- 660 

database and have a frequency of less than 0.1% in the dbSNP65database.  661 

 662 

These orthogonal tumor features are called separately in the SCRAM pipeline. By combining 663 

these different approaches, SCRAM aims to accurately identify tumor cells at a single-cell 664 

resolution. 665 

 666 

For a single cell to be classified as "tumor" within our framework, it needs to meet two or more 667 

of the following criteria:  668 

1. Neural Network Model-Based Tumor Cell Prediction (Module 1): The cell is annotated as 669 

"tumor" when it receives a probability score greater than 0.9 from the trained Neural 670 
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Network Models (NNMs) in Richards et al.15,  or Venteicher et al.24 or Neftel et al.14 or 671 

Tirosh et al.13 datasets. 672 

2. Marker Expression Modeling (Module 2):  The expression levels of at least two tumor 673 

cell markers, (SOX2, EGFR, or PDGFRA) should surpass a predetermined threshold. 674 

This threshold is established using finite Gaussian mixture modeling (details explained 675 

below section “Marker Expression Modeling for tumor annotation”), as depicted in 676 

Supplemental Figure S43.  677 

3. RNA-Inferred Genotyping of Chromosome Alterations (Module 3):   The presence of 678 

large-scale copy number variations (CNVs) is considered a tumor cell. 679 

4. RNA-Inferred Mutational Profiling (Module 4):    Tumor cells that have SNVs in genes 680 

IDH (R132H/R132C) or EGFR. 681 

 682 

Module 2. Marker Expression Modeling for tumor annotation: Given the expressional 683 

heterogeneity of tumor markers in normal cells, we used previously published tumor and non-684 

tumor cell datasets to establish a marker expression–based tumor classification model (i.e., 685 

thresholding requirements for “high expression” annotation) for the tumor markers PDGFRA, 686 

EGFR, and SOX2. For each tumor marker, an independent classifier model was built using (1) 687 

Allen Brain Atlas human scRNA-seq data, which represent the largest compendium of healthy 688 

brain data as a training set for normal cells; and (2) a compendium of publicly available brain 689 

tumor scRNA-seq datasets as a training set for tumor cells14. The following statistical models 690 

were used to infer the class (normal vs tumor) of our in-house tumor scRNA-seq data. 691 

 692 

We modelled expression as a mixture of Gaussian distributions to identify and classify normal 693 

and tumor cells: 694 

Let X� � � x�, x� , … , x�, … , x�� be the training expression vector of normal and tumor cells for gene 695 

j, where x� is the expression value of cell i. The distribution of every expression value is 696 
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specified by a probability density function through a finite mixture model of G=2 classes (normal 697 

vs tumor): 698 

f�x�; z� �  � π�f� �x�;  θ��
�

�	�

 

where z � �π�,….,π�, θ�, … θ� � represents the parameters of the mixture model and �
 ��� ;  �
� is 699 

the kth component density, which is assumed to follow a Gaussian distribution 700 

�
 ��� ;  �
� ~ ���
 , �
�. ���,….,��� is the vector of probabilities, non-negative values that sum to 1, 701 

known as the mixing proportion. The mixing proportion, π, follows a multinomial distribution. 702 

 703 

We used the above model to predict normal vs tumor class in our in-house glioma cells. For 704 

each gene, j, z parameters were estimated by maximizing the log-likelihood function via the 705 

expectation-maximization algorithm. The log-likelihood function is formulated as: 706 

l�z; x� �  � log f� �x�;  z�
�

�	�

 

For each tumor marker, we generated a matrix, with genes indicated by rows and cells indicated 707 

by columns, and the cell value index was 1 if the cell had a high “tumor class” probability for the 708 

corresponding gene. A cell was classified as “tumor” if at least two markers had high “tumor 709 

class” probabilities. We used the mclust R package for Gaussian mixture model 710 

implementation66. 711 

 712 

Module 3. RNA-Inferred Genotyping of Chromosome Alterations: CNVs are hallmark features of 713 

tumor cells that can be used to classify tumor vs non-tumor cells with or without expression 714 

markers. However, CNV detection from scRNA-seq data is inherently noisy due to dropouts and 715 

unmatched control sets, among other factors, requiring a set of known tumor cells. To estimate 716 

a “clean” set of CNV calls to provide reliable CNV-based tumor scores, we used a pure tumor 717 

pseudobulk sample. 718 
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 719 

Estimation of CNV profiles using patient-specific pure tumor pseudobulk samples: We first used 720 

our marker expression–based and NNMs models from Module 1 and Module 2 to identify tumor 721 

cells. Cells assigned as “tumor” cells using Module 1 and 2  were treated as a pure tumor cell 722 

cohort. Cells assigned as “immune” cells using our NNMs are considered control cells.  723 

 724 

CNV calling of patient-specific pure pseudobulk samples: We hypothesized that the pseudobulk 725 

sample contained representative sets of CNVs with high probability and, therefore, should be 726 

useful to identify a clean CNV call set. CNV calling of the pseudobulk samples from each patient 727 

was performed using our CNV-calling algorithm, CaSpER. CaSpER CNV calls were used as the 728 

ground truth, large-scale CNV calls for each patient. 729 

 730 

Genotyping of CNVs of all cells: After CNVs were identified from the pseudobulk sample, we 731 

genotyped the CNVs in all cells and generated a binary matrix that represents the existence of 732 

CNVs in cells, i.e., ����,�. 733 

 734 

Module 4. RNA-Inferred Mutational Profiling: We performed RNA-inferred rare deleterious 735 

(COSMIC64-reported and dbSNP65, <0.1% frequency) mutational profiling via our recently 736 

developed XCVATR20 tool. We detected mutations in IDH (R132H/R132C), EGFR and 737 

annotated cells harboring these mutations as tumor cells. 738 

Visualization and clustering of single cells 739 

We used the probability score output from NNMs instead of relying solely on the most variable 740 

genes for clustering and visualization of our in-house single-cell data. This, named as SCRAM 741 

UMAP, involved applying UMAP and clustering techniques to the model probability scores using 742 
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the Seurat package's runUMAP, FindNeighbors, and FindClusters functions. Additionally, we 743 

employed the most variable genes for cell data clustering and visualization, referring to this 744 

UMAP representation as the original/Seurat UMAP. 745 

Summarizing co-occurring cell types using maximally frequent gene set identification 746 

We summarized co-occurring cell types using a frequent itemset rule mining approach. CNV 747 

and SNV calls were added to provide an integrated transcriptomic and genomic summary for 748 

each cell. An example SCRAM output for a single cell is given as “glioma stem cell, 749 

oligodendrocyte precursor cell, chr1p_deletion, chr19q_deletion + IDH:2:208248389 mutation”. 750 

We used the tumor and normal cell assignments of Step 1 and Step 2 to integrate co-occurring 751 

tumor and normal cell features. 752 

 753 

The simplest method for detecting maximally frequent tumor and host feature sets is a brute 754 

force approach in which each possible subset of features is a candidate frequent set. The a 755 

priori algorithm is an efficient implementation for finding maximally frequent sets with support 756 

above a given threshold. In the a priori algorithm, the minimum support threshold is set to min 757 

(50, number_cells_in cluster*0.1), and the maximum number of genes in a gene set is set to 50. 758 

Using the a priori algorithm, we identified co-occurring gene sets expressed concurrently within 759 

each cell and provided annotation of high-resolution cellular identities using a three-step co-760 

occurrence analysis. We performed our co-occurrence analysis at multiple levels: 1) cell type 761 

level (example output of this step: tumor AND radial glia AND astrocyte); 2) cell class level 762 

(example output of this step: tumor AND neural cells are commonly upregulated). 763 

 764 

Maximally frequent cell type (or cell class) co-occurrence analysis: Within each cluster, m, we 765 

calculated the maximally frequent cell types (or cell lineage or cell class) using the a priori 766 
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algorithm. The input was the binarized matrix ��, where the cell types (or cell lineage or cell 767 

class) were the rows, and the cells in cluster m were the columns. 768 

 ��
� � !1, #� $ %% &'( �)* $ %% %#+ ,-  )* $ %% $%,..� # #. ,++)&,& / #+ $ %% 0 #+ $%1.& * 2

0, otherwise : 

Analyzing bulk expression data and survival analysis 769 

TCGA-GBM (high grade glioma), TCGA-LGG (low grade glioma)  raw read counts and 770 

accompanying clinical data are downloaded using TCGAbiolinks  R package67. TCGA-GBM, 771 

TCGA-LGG  and our bulk RNA-Seq data of the IDH Mutant cohort were both normalized and 772 

applied variance stabilizing transformation using the DESeq2 package68. Single sample gene 773 

set enrichment analysis (ssGSEA) was performed using GSVA R package. We used our GABA-774 

OPC tumor gene sets and also the MES-like, AC-like, NPC-like and OPC-like gene sets 775 

reported in a previous study14.   SsGSEA GABA-OPC scores were split by median to assign 776 

high-OPC-GABA and low-OPC-GABA scored samples. Those groups are compared against 777 

“overall survival” in a Cox Proportional Hazards (Cox) survival model. used in survival analysis 778 

and compared using a Log-rank test P-value. We used survminer and survival R package for 779 

the survival analysis. 780 

 781 

Optogenetics 782 

This experimental setup forces expression of ChR in tumor cells, which will be activated by light 783 

using fiber optic implants, resulting in the depolarization of tumor cells. ChR causes 784 

depolarization of cells by allowing sodium to flow into the cell when in the presence of light. Mice 785 

were implanted with fiber optic cables at P42 and began light stimulation sessions at P50. Our 786 

protocol was modified from Venkatesh et al.7 for use in our IUE system. Briefly, light pulses at 787 

20 Hz, 473 nm, and 5mWatt for 30 seconds were administered followed by 90 seconds of 788 
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recovery, over 10 minutes for 10 consecutive days. Following final stimulation, mice were 789 

injected with a single 200mg/kg BrdU pulse and harvested 1 hour later.   790 

 791 

Patch-seq recording procedures 792 

Electrophysiological, morphological, and transcriptomic data from the same cell were obtained 793 

simultaneously using the Patch-seq protocol described previously16,69. Briefly, patch pipettes 794 

(5−7 MΩ) were filled with RNase-free intracellular solution (111 mM potassium gluconate, 4 mM 795 

KCl, 10 mM HEPES, 0.2 mM EGTA, 4 mM MgATP, 0.3 mM Na3GTP, 5 mM sodium 796 

phosphocreatine, and 13.4 mM biocytin). Whole-cell recordings were performed using a Quadro 797 

EPC 10 amplifier (HEKA Electronic). After 5–10 minutes of whole-cell recording of firing 798 

patterns, the nucleus was extracted using gentle and continuous negative pressure. The 799 

contents in the pipette were ejected into a 0.2-mL PCR tube containing 4 mL lysis buffer69. RNA 800 

in the lysis buffer was denatured, reverse transcribed, amplified, and purified following the 801 

Smart-seq2-based protocol70. Only high-quality cDNA samples (yield ≥2 ng, average length 802 

≥1500 bp) were sequenced. 803 

Sequencing libraries were constructed from the cDNA using the Illumina Nextera XT DNA 804 

Library Preparation Kit (Illumina, FC-131-1096). The cDNA library was sequenced on a 805 

NovaSeq 6000 instrument using 150-bp paired-end reads. 806 

 807 

Biocytin staining and morphological reconstruction 808 

Following slice recording, slices were fixed by immersion in the fixation solution at 4°C for at 809 

least 48 hours and processed with an avidin-biotin-peroxidase method to reveal the cell 810 

morphology. The morphology of the cells was reconstructed and analysed using a 100× oil-811 

immersion objective lens and camera lucida system (Neurolucida, MicroBrightField). 812 

 813 

Histology 814 
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Human samples were retrieved from the operating room on ice and then fixed in 4% 815 

paraformaldehyde in PBS for 12 hours at 4°C before being transferred to 70% EtOH. Paraffin 816 

embedding was performed by the Breast Cancer Pathology Core at Baylor College of Medicine. 817 

All human specimens were evaluated by a board-certified neuropathologist according to current 818 

guidelines and standard practices. 819 

 820 

Immunostaining 821 

For immunostaining, 10 μm paraffin-embedded human glioma sections were cut, deparaffinized 822 

and subject to heat-induced epitope retrieval (HIER) using antigen retrieval buffer (10 mM 823 

sodium citrate, 0.05% Tween 20, pH 6.0) when needed. Sections were blocked for 1 hour at 824 

room temperature and kept in primary antibody incubation overnight at 4°C. The following 825 

primary antibodies were used: rat anti-BrdU (1:200; Abcam, ab6326), mouse anti-ChR2 (1:100, 826 

Progen, 651180), mouse anti-IDHR132H (1:50; Dianova, DIA-H09), rabbit anti-GAD1 (1:200; 827 

Synaptic Systems, 198013), goat anti-OLIG2 (1:100; R&D, AF2418), rabbit anti-RFP (1:1000; 828 

Rockland, 600-401), rabbit anti-SCN1A (NaV1.1) (1:200; Alomone Labs, ASC-001). Species-829 

specific secondary antibodies tagged with Alexa Fluor corresponding to emission spectra 488 830 

nm, 568 nm, or 647 nm (1:1,000, ThermoFisher) were used for immunofluorescence and  831 

Hoechst nuclear counter staining (1:50,000; ThermoFisher, H3570) was performed before 832 

coverslipping with Vectashield antifade mounting medium (Vector Laboratories, H-1000). For 833 

quantification, n≥3 biological samples were used. For imaging, n≥3 images were taken per 834 

tissue section × n≥3 sections × n≥3 biological samples.  835 

 836 

Patch-seq data processing 837 

The Patch-seq reads were mapped using STAR71 to hg38 assemblies for humans. Read count 838 

matrices were generated using FeatureCounts72 with the latest gene annotations from 839 

GENCODE73 consortia. DEGs and transcripts were identified using DESeq268 and limma74. 840 
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Cells were clustered and visualized using PCA methods. Cell type enrichment analyses were 841 

performed with enrichR75 using the PanglaoDB_Augmented_2021 and 842 

CellMarker_Augmented_2021 cell type marker sets. IDH mutations were identified using our 843 

variant detection tool, XCVATR20, and visually confirmed using the Integrative Genomics 844 

Viewer76. 845 

 846 

Statistical analysis 847 

For electrophysiology analyses, a Kruskal–Wallis test or two-way ANOVA was used, followed by 848 

unpaired t-tests with a two-stage step-up (Benjamini, Krieger, and Yekutieli). For RT-qPCR, a 849 

two-tailed Student’s t-test was used. Significant differences are denoted by asterisks in 850 

associated graphs. Data are presented as the mean±standard error of the mean. Levels of 851 

statistical significance are indicated as follows: ns: not significant, *p<0.05, **p<0.01, 852 

***p<0.001, and ****p<0.0001. 853 

 854 

 855 

 856 

 857 

 858 
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