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Abstract

Prior studies have described the complex interplay that exists between glioma cells and
neurons, however, the electrophysiological properties endogenous to tumor cells remain
obscure. To address this, we employed Patch-sequencing on human glioma specimens and
found that one third of patched cells in IDH mutant (IDH™") tumors demonstrate properties of
both neurons and glia by firing single, short action potentials. To define these hybrid cells (HCs)
and discern if they are tumor in origin, we developed a computational tool, Single Cell Rule
Association Mining (SCRAM), to annotate each cell individually. SCRAM revealed that HCs
represent tumor and non-tumor cells that feature GABAergic neuron and oligodendrocyte
precursor cell signatures. These studies are the first to characterize the combined
electrophysiological and molecular properties of human glioma cells and describe a new cell
type in human glioma with unique electrophysiological and transcriptomic properties that are

likely also present in the non-tumor mammalian brain.
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Introduction

Glioma is the most common central nervous system tumor with an estimated 20,000 cases
diagnosed each year'. These diffuse glial tumors include isocitrate dehydrogenase (IDH) mutant
(IDH™") and IDH wildtype (IDH"") subtypes, each of which presents with unique clinical and

histopathological correlates. Prognostic outcomes for IDH""

tumors are poor, conferring a
median survival of less than 14 months?® In contrast, IDH™" tumors confer significantly better
prognoses, with a median survival of 31-65 months after diagnosis®. While IDH"" tumors
typically result from driver mutations in tumor suppressors or oncogenes®, IDH™' tumors
uniformly feature mutations in IDH1 or IDH2. Robust molecular and genomic studies conducted
over the last two decades have revealed that the disparity in survival outcomes between glioma
subtypes is primarily attributed to differences in tumor cell proliferation and invasiveness®, which
are mediated by an intricate compendium of tumor intrinsic and extrinsic factors. Among these,
communication between tumor cells and their microenvironmental constituents has proven to be
a critical mediator of glioma progression and is largely conducted by immunological and neural
cellular components®’. With regards to the latter, recent advances in the field of cancer
neuroscience have revealed that glioma cells form functional synapses with peritumoral neurons
and that excitatory neuronal activity promotes glioma progression via increased proliferation and
infiltration’™°. Conversely, reports have suggested that inhibitory neuronal activity mediated by
y-aminobutyric acid (GABA) slows glioma growth™, however emerging studies have
demonstrated pro-tumorigenic effects of GABAergic signaling as well>. While tumor-neuron
interactions have garnered significant attention, the electrophysiological profiles of tumor cells

as they exist in situ within the human brain remain poorly defined.

Over the past decade, technological advances in single cell genomics have generated an

abundance of sequencing data, elucidating the robust transcriptional and genomic

13-15

heterogeneity that exists in glioma Moreover, Patch-sequencing (Patch-seq), which
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integrates whole cell recordings, morphological analysis and single cell RNA-sequencing
(scRNA-seq), permits characterization of both electrophysiological and transcriptomic features
in individual cells® and has been used to expound the extraordinary array of neuronal subtypes
present in the mammalian brain'’. While these technical advances have generated ample
substrate in the form of sequencing data, the challenge of accurately identifying cell types from
these data remains cumbersome. Specifically, a streamlined computational framework capable
of annotating glioma cells has yet to be developed and cell annotation algorithms remain ill-
equipped to assign integrated genomic and transcriptional profiles to single cells on a cell-by-
cell basis. Because glioma cells frequently share molecular profiles with their non-tumor glial
analogs, development of reliable methodologies for identifying tumor cells within the brain poses

a difficult but necessary task.

To address the aforementioned computational limitations and improve our biological
understanding of tumor cell electrophysiology, we performed in situ Patch-seq studies on
surgically-resected human glioma samples and developed a new single cell computational tool,
Single Cell Rule Association Mining (SCRAM), to characterize the genomic and transcriptomic
features of recorded cells. Collectively, our studies demonstrate that a subset of human glioma
cells fire single, short action potentials (APs) and are defined by an amalgamation of GABAergic

neuron and oligodendrocyte precursor cell (OPC) transcriptomes, which we term GABA-OPCs.

Results

Hybrid cells fire single action potentials and are distinct from neurons and glia

To determine the electrophysiological properties of tumor cells in malignant glioma, we
performed whole-cell patch clamp recordings followed by scRNA-seq (Patch-seq) on brain
slices surgically-resected from nine patients, including six IDH™" gliomas, two IDH"" gliomas

and one non-tumor sample (Fig. 1a, Table S1-2). We recorded from a total of 148 cells; 95
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95  were used to recover high-quality RNA for scRNA-seq, and 44 were preserved with biocytin for
96 morphological analysis. For the 95 cells used for sequencing, an average of 4491 genes were
97 identified per cell (Table S3). Of the 148 cells, 105 showed electrophysiological and
98 morphological profiles consistent with established neural cell types in the mammalian brain and
99  could be broadly classified as pyramidal cells (PCs; n=54), inhibitory neurons (INs; n=24) or glia
100 (GL; n=27) based on maximal AP firing rates, AP amplitudes, input resistances and
101  morphology™®*® (Figs. 1b-d; Fig. S1-3; Tables S2). It should be noted that we are using the
102 electrophysiological annotation of GL to generally describe electrically inert cells, which may
103 also include immature neurons and neural precursor cells (NPCs). Intriguingly, 43 cells across
104  four IDH™" glioma and one non-tumor sample displayed select neuronal electrophysiological
105 properties but were morphologically inconsistent with mature neuronal cell types, frequently
106 resembling GL or NPCs (Figs. le-g; Fig. S1-3; Tables S2). These cells, which we assigned as
107  hybrid cells (HCs), electrophysiologically represented 34% of IDH™" and 30% of non-tumor
108 patched cells (Fig. 1h), had higher input resistances than neurons or GL, and were uniformly
109 capable of firing single, small APs (Figs. 1i-k; Fig. S1-3, Fig. S4-7). Here, we define AP by a
110  minimum dv/dt of 20V/S, minimum peak height of 2mV, a minimum absolute peak level of -
111  20mV, a maximum interval of 10mS, and thresh fraction of 0.05. In contrast, none of the 20 cells
112  recorded from two IDH"" tumors demonstrated HC profiles and no HCs or GL (Fig. S1h).
113
114  To investigate the molecular profiles of Patch-seq cells, we first performed principal component
115 analysis (PCA) and found that all HCs clustered together and with GL (Fig. 11). Notably, a group
116  of ten PCs (hereto referred to as APCs) coming from one recurrent IDH™" patient that were
117 embedded within this PCA cluster (Fig. 1I, black dashed line) also featured abnormally high
118 input resistances, like those of HCs, and had lower maximal AP firing rates than other recorded

119 PCs (Fig. S8). We hypothesized that the HCs, GL and APCs within this PCA cluster
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120 represented tumor cells, thus we sought to confirm this using RNA-inferred single nucleotide
121  variant (SNV) and copy number variant (CNV) analysis. We looked for the canonical IDHR132H
122  mutation, chromosome 1p and 19q deletions, and chromosome 7p amplifications, which are
123  established genomic markers of glioma and found that in IDH™" patients, seven HCs, six APCs
124  and two GL were tumor cells, and that two GL were tumor cells in IDH"" samples (Fig. 1m;
125 Table S2, Fig. S9). Two HCs from IDH™' samples were euploid, had coverage of the
126 IDH1R132 locus and were not mutated, and three HCs were detected in the non-tumor sample,
127  confirming that HC electrophysiology is not exclusive to tumor cells (Fig. 1I, Fig. S2). These
128 initial studies are the first to show that bona fide glioma cells are neurophysiologically diverse
129 and can present with inert, single-spiking or excitatory electrophysiology profiles.

130

131 SCRAM s areliable annotation tool for human scRNA-seq datasets

132 To better define the HCs identified in our Patch-seq studies, we sought to create a new
133 computational platform that could annotate each cell from Patch-seq individually. Because of
134  the low cell numbers obtained using Patch-seq and the rarity of human glioma samples for use
135 in these experiments, our annotation tool needed to be capable of analyzing each cell without a
136 dependency on clustering methodologies, which requires hundreds to thousands of cells for
137  optimal analysis. Accordingly, we developed the Single Cell Rule Association Mining (SCRAM)
138 tool that can annotate each cell on a cell-by-cell basis, independently of clusters. SCRAM uses
139 a three-step orthogonal process to provide detailed transcriptional and RNA-inferred genomic
140 profiles for each cell: (1) cell type transcriptional annotation using machine-learned neural
141  network models (NNMs): (2) single nucleotide variant (SNV) profiling using the XCVATR? tool;
142  and (3) copy number variant (CNV) calling using the CaSpER? and NUMBAT? tools (Fig. 2a-
143 d). SCRAM NNMs are trained on 11 previously published scRNA-seq (totaling ~1M cells)
144 human tumor and non-tumor datasets, including developing brain, immune, and glioma cell

145 atlases™?#* 3 (Table S4-5). Each cell from Patch-seq is assigned a probability score for each
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146  cell type in the training datasets (Fig. 2e). Using this methodology, individual cells may be
147  annotated as more than one cell type, which permits for the characterization of hybrid cellular
148  states like those of HCs from our Patch-seq experiments. SNVs and CNVs are also considered
149 for each cell and added to the cell annotation. Cells are assigned as “tumor” if they have >2
150 tumor features (see Methods). We validated that SCRAM can reliably discriminate between
151 tumor and non-tumor tissue, which it does with >99% sensitivity (true positive rate: TPR) in
152  Allen Brain Atlas (ABA)®, Bhaduri et al.?® , Aldinger et al. *°, CoDEx* and >96% sensitivity in
153  Human Protein Atlas (HPA)-Brain® (Table S6). Additionally, we ran SCRAM on glioma scRNA-

154  seq datasets™*>*

, in which tumor and non-tumor annotations are reported in cluster resolution,
155 finding that SCRAM achieved 100% specificity (true negative rate: TNR) for tumor cells in
156 IDH™'and IDH"" glioma datasets.

157

158 HCs express hybrid GABAergic neuron-OPC transcriptomes

159 We ran SCRAM on the 95 cells from Patch-seq experiments and found that all cells with IN
160 electrophysiology (n=17) were correctly annotated as GABAergic neurons, and that 24 out of 41
161 cells with PC electrophysiology were appropriately annotated as glutamatergic neurons (Fig.
162  2e). All cells with GL electrophysiology (n=16) were annotated as glial subtypes and/or glioma
163 cells. Thirteen PCs identified from one IDH"T patient and one recurrent IDH™" patient were
164 annotated as GABAergic neurons. These cells featured maximal AP firing rates consistent with
165 excitatory neurons despite robust GABAergic neuron transcriptomic profiles (Figs. 2e-g), a
166  dichotomy reminiscent of the neurodevelopmental paradigm in which GABA neurotransmission
167 confers excitatory signaling®. Using cell cycle scoring, we found that only three cells showed
168 proliferative signatures and that two of these were IDH1R132H mutant (Fig. 2g); however, the
169 majority of HCs showed low G2/M scores. Expectedly, mutation burden was highest in HCs and

170 GL and was specifically enriched in HCs bearing the IDH1R132H mutation. Consistent with their

171  electrophysiological profiles, all HCs (n=21) showed concurrent annotation as OPCs,


https://doi.org/10.1101/2024.03.02.583026
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.02.583026; this version posted May 10, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

172  oligodendrocytes (OLs) and GABAergic neurons (an amalgam hereto referred to as GABA-
173 OPC) and tumor cells, signifying that HCs are endowed with a mixture of neuronal and
174  oligodendroglial transcriptional features that may be responsible for the functional
175 electrophysiological properties of these cells (Figs. 2e-g; Fig. S10).

176

177  To validate our Patch-seq findings in larger datasets, we used SCRAM to analyze our in-house
178 scRNA-seq dataset consisting of 234,880 cells from 12 IDH™" and IDH"" glioma patients*® (Fig.
179 2b-d, Fig. S11; Table S7). SCRAM-assigned probability scores >0.9 were used for final cell
180 annotations and to generate a SCRAM UMAP of our scRNA-seq glioma dataset, which clusters
181 cells based on cell identity rather than similarity of transcriptional features (Fig. 3a, Figs. S12-
182  21). Visualization of SNVs, CNVs and tumor expression markers specific to glioma subtypes
183 revealed that SCRAM segregates the majority of IDH™" from IDH"" tumor cells (Fig. 3b). Given
184 that the HCs we observed in our Patch-seq experiment were found in IDH™" patients, we
185 focused on SCRAM clusters encompassing the majority of IDH™" tumor cells, which were
186 predominantly distributed amongst three discrete SCRAM clusters (Clusters 13, 18, and 19) that
187  collectively contained <5% of IDH"" tumor cells (Figs. 3c-e). Importantly, all IDH™" tumor

188 patients had robust GABA-OPC expression profiles, whereas only one IDH"'

patient showed
189 the same expression profile (Figs. 3f-g, Figs. S22-24). An analysis of tumor cells by patient
190 revealed that on average 41.3% of IDH™" tumor cells were GABA-OPCs (Fig. 3h), which was
191 consistent with the presence of HC electrophysiology in 34% of recorded cells from these
192  tumors. In contrast, only 2.2% of tumor cells received GABA-OPC annotations in IDHYT tumors
193 (Fig. 3h), which was consistent with the absence of HC electrophysiologies from Patch-seq
194  experiments.

195

196 Feature extraction of GABA-OPCs reveals GABAergic neuron and OPC transcriptional

197 dependencies
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198 Having identified that HCs are defined by GABA-OPC transcriptomes and that these cells
199 constitute a large proportion of tumor cells in IDH™" patients, we sought to extract a GABA-OPC
200 molecular signature by identifying transcriptional markers. To do this, we used SHapley Additive
201 exPlanations (SHAP) analysis, which extracts essential features from machine-learning NNMs.
202  We identified SHAP markers from each cell type in our training dataset (e.g. GABAergic PVALB
203 neuron from ABA; Figs. S25-30) and compared these genes to the differentially expressed
204 genes (DEGs) obtained for GABA-OPC tumor cells as compared to other tumor cells in our
205 scRNA-seq dataset (Fig. S31-32, Table S8). The intersection of SHAP genes and DEGs
206  produced a list of 61 genes (log,FC > 1), which we present as the GABA-OPC gene set. The
207 GABA-OPC gene set is comprised of SHAP genes that are critical transcriptional features of cell
208 types from tumor and non-tumor training datasets (Figs. 4a-b, Table S8). The training cell types
209 that were most highly represented by GABA-OPC SHAP features were GABAergic neuron and
210 OPC, demonstrating that the majority of GABA-OPC transcriptional characteristics derive from
211 GABAergic neurons and OPCs. Given that OPCs and OLs represent a complex and
212  transcriptionally heterogenous spectrum of cells, we studied OPC and OL cell state signatures
213 from three different studies to better understand which specific OPC and OL annotations were
214  enriched in GABA-OPCs**?**. We found that GABA-OPC cells are transcriptionally most like
215 late-stage OPCs and early differentiated OLs, which implies that GABA-OPCs exist in a
216 transitional state between precursor OPC and fully differentiated OL lineages (Fig. S33-34).
217  Further bioinformatics analyses determined that on average 48% percent of OPCs from non-
218 tumor and developmental brain atlases possess GABA-OPC molecular profiles and that these
219 cell profiles are more frequent in the adult brain than they are in neurodevelopmental contexts
220 (Fig. S35). These results suggest that GABA-OPC tumor cells are malignant manifestations of a
221  GABA-enriched OPC subclass that is normally found in non-tumor human brain.

222
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223 Having extracted a GABA-OPC transcriptional signature, we next sought to elucidate the
224  molecular constituents that transcriptionally confer GABAergic neuronal properties in HCs.
225 Preceding reports have documented the existence of GABARs and GABA synthesis genes in
226  OPCs*™’, which prompted us to investigate the expression of these genes in GABA-OPC
227  tumor cells. We found high expression of glutamate decarboxylase 1 (GAD1) and GABA
228 transaminase (ABAT), which are crucial for GABA synthesis and metabolism (Fig. 4c). Analysis
229 of these genes in our Patch-seq cohort confirmed that ABAT and GAD1 are highly expressed by
230 HCs (Fig. 4d), the latter of which we confirmed through immunostaining in human IDH™" glioma
231 (Fig. 4e). Select GABARs were also expressed in GABA-OPC tumor cells as compared to other
232  tumor cells, suggesting that GABA-OPC tumor cells are transcriptionally equipped to receive
233 GABA-mediated inputs from neurons (Figs. 4c-d). Given this precedent, our analyses suggest
234  that the electrophysiological activity of GABA-OPC tumor cells may be in part conferred through
235 the expression of GABAergic neuronal gene sets.

236

237 We next sought to understand how GABA-OPCs are mechanistically producing APs.
238 Importantly, prior investigations have demonstrated that a subgroup of white matter OPCs in the
239 rat brain fire single®, short APs that are similar to those observed in HCs from our Patch-seq
240 studies. The AP capacity of these spiking OPCs is dependent on voltage-gated ion channels,
241  particularly voltage-gated sodium channels (Na,s) and voltage-gated potassium channels (K,s),
242  which we found were selectively expressed by non-tumor OPCs (Fig. 4f). We found that most
243  GABA-OPC tumor cells have high expression of Na,s but that expression of K,s is restricted to a
244  smaller population of cells and is not uniformly present across HC transriptomes (Fig. 4c).
245  Immunostaining for the voltage-gated sodium channel Na,1.1, encoded by the SCN1A gene, in
246  a human IDH™" tumor confirmed GABA-OPC tumor cells express Na,s, which are essential for

247  the rising phase of APs®%* (Fig. 4g). These data suggest that GABA-OPC tumor cells are
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248 endowed with requisite machinery that can mechanistically produce the APs observed in these
249  cells.

250

251 Strong GABA-OPC signatures confer increased survival in IDH™ glioma

252  To validate our observation that GABA-OPC signatures were more prominent in our IDH™"

HWT HWT

253  cohort as compared to IDH"™', we used the GABA-OPC-like glioma gene set to score 216 ID
254 and 366 IDH™' bulk RNA-seq samples from TCGA (Fig. 5a). Consistent with our internal
255 scRNA-seq dataset, we found that IDH™" samples had higher GABA-OPC scores than IDH""

256  samples. An analysis of scores by IDH"T

molecular subtypes revealed the highest GABA-OPC
257  scores belonged to OPC-like and NPC-like molecular subtypes (Fig. 5b). Consistent with these
258 observations, OPC-like samples had significantly higher GABA-OPC tumor percentages than
259  the other molecular subtypes™ (Fig. 5c). Reexamination of our internal scRNA-seq dataset
260 revealed that the only IDH"" patient in whom a strong GABA-OPC signature was detected was
261 an OPC-like IDH"T subtype, which explains why GABA-OPC tumor cells were enriched in this
262 sample (see Fig. 3g). An analysis of the TCGA IDH™" samples by histopathological subtype
263  showed that GABA-OPC scores were higher in low-grade glioma (LGG) than high-grade glioma
264 (HGG), suggesting that stronger GABA-OPC phenotypes are associated with lower grade
265 tumors (Fig. 5d). RNAvelocity pseudotime analyses of three IDH™" and one OPC-like IDH"'
266 samples revealed that GABA-OPC tumor cells emerge from more primitive tumor cell types to
267 become the largest population of glioma cells in tumors that bear them, demonstrating that
268 some tumor cells from the divergent genetic backgrounds of IDH™" and IDH"" converge at a
269 shared transcriptional phenotype (Figs. 5e-f).

270

271  To determine the effect of GABA-OPC tumor cells on glioma progression, we assigned GABA-

272  OPC scores to bulk RNA-seq IDH™" glioma samples for which long-term survival follow up was

273  collected®. Samples were split into low (n=41) and high (h=41) GABA-OPC groups based on
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274  median expression. Kaplan-Meier survival analysis showed that low GABA-OPC tumor patients
275 had a median survival of 84.5 months whereas high GABA-OPC tumor patients showed a
276  median survival of 156.9 months (Fig. 5g). Even amongst the high grade IDH™" patients, low
277 GABA-OPC scores conferred worse survival outcomes, with a median survival of 80.5 and
278 182.5 for low and high GABA-OPC groups, respectively (Fig. 5h). Collectively, these analyses
279  confirm that GABA-OPC tumor cells are a defining feature of IDH™" glioma and select subtypes
280 of IDH"" glioma and demonstrate that reduced GABA-OPC signatures confer significantly
281  worse survival outcomes in IDH™" glioma patients (Figs. S36-37). To our knowledge, long-term
282  survival data for IDH"" glioma with matched expression data using Neftel et al.’s classification
283 system is not available. Accordingly, future studies should investigate the correlation of GABA-
284  OPC signatures with prognostic outcomes in these patients.

285

286 Tumor intrinsic depolarizations differentially alter proliferation in an IDH subtype-
287 dependent manner

288  Given that GABA-OPC signatures correlate with improved survival outcomes in IDH™" glioma
289 patients, we sought to understand the effects of GABA-OPC cells on tumor cell proliferation. To
290  do this in IDH™" tumors, we utilized immunostaining with an IDH1R132H-specific antibody and
291 OLIG2 to estimate the percentage of GABA-OPC tumor cells in four IDH™" patient samples
292 including grade Il oligodendroglioma, grade Il astrocytoma, grade Il astrocytoma and grade IV
293 astrocytoma. Our bioinformatics analyses revealed that approximately 85% of GABA-OPC
294  tumor cells are OLIG2+ and that 58% of tumor cells that are not GABA-OPCs also express
295 OLIG2 (Fig S38). Immunostaining analyses revealed that 38% of cells are
296 IDH1R132H+OLIG2+; factoring in the percentages of GABA-OPCs and non-GABA-OPC tumor
297  cells that similarly express OLIG2, we estimate roughly half of these IDH132H+OLIG2+ cells to
298 be true GABA-OPCs, which is approximately 18-20% (Fig. 6a). Adding KI67 immunostaining to

299  this analysis showed that IDH1R132H+OLIG2+ cells are largely non-proliferative, with only
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300 3.1% double positive cells also showing K167 positivity (Figs. 6b-c). Intriguingly, we noted that
301 KI67+ cells were frequently negative for OLIG2 but retained IDH1R132H positivity, suggesting
302 that actively proliferating cells in IDH™" tumors lose OLIG2 expression as compared to cells not
303 undergoing G2/M transitions (Fig. 6¢-d). Indeed, our Patch-seq analyses confirmed that the
304 three GABA-OPCs with highest G2/M cell cycle scores show reduced OLIG2 expression when
305 compared to GABA-OPCs with low G2/M scores. These results are consistent with our data
306 showing high GABA-OPC scores confer better survival outcomes in IDH™" glioma and support
307 the notion that HCs with short, tumor intrinsic APs are not largely proliferative.

308

309 While performing our bioinformatics analyses, we observed that GABA-OPCs in NPC- and
310 OPC-like IDH"T tumors showed high G2/M scores, which suggests that GABA-OPCs may have
311 opposing effects on tumor cell proliferation that are dependent on IDH-subtype (Figs. 6e-f; Fig
312  Fig S39). In contrast to the IDH1R132H mutation that occurs in more than 90% of IDH™"
313 gliomas, mutations occurring in IDH"" tumors are heterogenous and thus antibodies specific for
314 IDHYT tumor cells are lacking. To overcome this limitation and examine the effects of tumor
315 intrinsic depolarizations on proliferation in IDH" tumors, we employed optogenetics to induce
316  tumor cell depolarizations using an RFP-labeled in utero electroporation (IUE) mouse model of
317 de novo IDH"T glioma® (Fig. 6g). Critically, an analogous population of GABA-OPC tumor cells
318 and corresponding HC electrophysiology have been identified in our IUE tumor mice, making it
319 an appropriate model in which these experiments can be performed (Fig. 6h; Figs. S40-41).
320 Overexpression of RFP with or without channelrhodopsin 2 (ChR2) was driven by piggyBac
321 transposase in Glast-expressing progenitor cells alongside CRISPR/Cas9 guides targeting three

322  of the most frequently mutated tumor suppressors in IDH""

tumors: tumor protein 53 (TP53),
323 phosphatase and tensin homolog (PTEN) and neurofibromin 1 (NF1). Briefly, IUEs were
324  performed at E16.5 and fiber optic implants were placed ipsilaterally to the tumor at P40. After

325 one week of recovery, mice received 10 consecutive days of photostimulation to induce
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326 repeated depolarizations over 10 minutes and were then pulsed with BrdU before brains were
327 harvested for processing. Immunostaining for ChR2 and BrdU revealed that tumors expressing
328 ChR2 (pbCAG-ChR2-RFP) were more proliferative than tumors without ChR2 (pbCAG-RFP)
329 (Figs. 6i-k). These data suggest that repeated tumor cell depolarizations promote glioma cell
330 proliferation in an IDH"T context. Despite these differences in proliferation, overall survival
331 outcomes for IDH"" glioma patients based on high and low GABA-OPC scores were not
332 significantly different, which likely reflects the smaller percentages of GABA-OPC glioma cells in
333 these tumors as compared to IDH™" tumors (Fig. S42). Taken together with the results of our
334 IDH™' immunostaining, these collective experiments implicate tumor cell depolarization as a
335 differential regulator of glioma proliferation that is dependent upon the molecular and genetic
336  context in which they occur.

337

338 Discussion

339 In the 1990s, whole cell patch clamp experiments reported that cells firing single, short APs
340 were the majority of cells found in human glioma slices. These early electrophysiology studies
341 described spiking cells that were dependent on voltage-gated sodium currents, however,
342  definitively showing these cells were tumor in origin necessitated the advent of single cell
343 transcriptomics**™*. Separately, scientists identifying a class of spiking OPCs in the healthy rat
344  brain posited that neurons are not the only cells capable of firing APs and suggested that an
345 analogous population of spiking OPCs exists in human®®. Given these precedents, we believe
346 that these previously described cell types are electrophysiologically equivalent to our HCs,
347 which are transcriptionally defined by GABA-OPC signatures and represent a heterogenous
348 group malignant and non-malignant cells. There is mounting evidence to support the OPC as a
349 cell of origin in glioma**", which represents the largest proliferative neural cell population in the
350 adult brain and are frequently mutated in non-tumor brain*®“°. Similarly large percentages of

351 GABA-OPCs detected in all IDH™" glioma samples used for Patch-seq, whole cell recordings
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352 and scRNA-seq in this study support the theory of OPC as cell of origin and implicate the
353 malignant transformation of GABA-OPCs as an initiating event in IDH™" and NPC- and OPC-
354  like IDH"T tumors.

355

356 Indeed, GABAergic neurons and OPCs share common neurodevelopmental origins in which
357 most cells from each lineage emerge from Nkx2.1-expressing precursors in the medial, lateral
358 and caudal ganglionic eminences®®°%. In addition to emanating from the same embryonic loci,
359 GABAergic neurons and OPCs sit at a transcriptional intersection that is uniquely shared by
360 these two cell types, which includes the expression of OLIG2°* and GABARs®® and PDGFRA
361 (Fig. 4b). These features, which are also hallmarks of GABA-OPCs, render glioma cells well-
362 equipped to participate in the complex relay of tumor and neuronal communication that
363 manifests as cancer neuroscience. In recent years, studies in this field have elucidated how
364 glioma cells interact with surrounding neural networks to direct disease progression***. These
365 reports demonstrate that human glioma cells receive synaptic inputs from the surrounding
366 neuronal circuitry, which can be sufficient to evoke tumor cell excitatory postsynaptic currents
367 (EPSCs)®'2. Moreover, tumor cells form intricately connected networks mediated by calcium
368 signaling, the ablation of which limits tumor cell proliferation and progression®®. Our studies build
369 upon these earlier findings to demonstrate that glioma cells are capable of AP firing, raising the
370 question of whether this tumor intrinsic activity contributes to the aberrant neurophysiology and
371 frequent seizure incidence encountered in glioma patients. Up to 75% of IDH™" glioma patients
372  suffer from glioma-related epilepsy (GRE), which is more than double the seizure incidence in
373 IDH"T glioma patients®>*®. Given the high percentage of GABA-OPC tumor cells in IDH™"
374  glioma, future endeavors should aim to discern whether epileptic peritumoral neuronal networks
375 are also driven in part by tumor cell AP firing.

376
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377  Perhaps one of the most intriguing and unexpected findings of our study is the discovery of two
378 HCs from two IDH™" glioma samples that retained IDH1R132 wild-type homozygosity and
379  euploidy despite being found within the surgically-defined core of IDH1R132H-mutant tumors.
380  While these cells are few in number, an average of 5 million reads per Patch-seq cell leaves us
381 confident that the absence of the IDH1R132H mutation is an accurate representation of their
382  genomic status and clearly demonstrates that HC electrophysiology is not exclusive to a tumor
383 state. Concordantly, the presence of three HCs detected in a histopathologically-diagnosed non-
384  tumor sample, strongly support the conclusion that HCs are present in the non-tumor human
385 brain. The implication of AP-firing non-neuronal cells stands as a biological iconoclast, insofar
386 as the prevailing tenets of neuroscience hold that neurons are the only cells capable of firing
387 APs®. Whether GABA-OPCs with HC electrophysiology are endemic to the healthy human
388  brain remains to be determined, however given that OPCs are estimated to represent 3-4% of

389 all grey matter cells and 8-9% of white matter cells in the mammalian brain®®®°

, the cumulative
390 neurophysiological contributions of these cells are poised to be significant and should not be
391 ignored in either tumor or non-tumor contexts.

392
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430 Figure 1. Patch-seq of human glioma samples reveals tumor cells fire action potentials.
431 (a) Experimental workflow for whole-cell recordings and whole-cell patch clamp recordings,
432 followed by singe-cell RNA-sequencing (Patch-seq) assays. (b) Exemplary membrane
433  responses from patched PCs, INs and GL to a 600-ms hyperpolarizing current step (black) and
434  suprathreshold depolarizing current step (colored). (c) Matched traced cell morphologies are
435 shown for recorded neuronal and glial cells. (d) Matched images of biocytin-filled cell
436  morphologies for patched neuronal and glial cells; scale bar: 50 um. (e) Exemplary membrane
437  responses from IDH™" HCs to a 600-ms hyperpolarizing current step (black) and suprathreshold
438 depolarizing current step (colored). (f) Matched traced cell morphologies are shown for recorded
439 HCs. (g) Matched images of biocytin-filled cell morphologies for patched HCs; scale bar: 50 pm.
440  (h) Pie chart showing percentage of PC, IN, GL and HC patched by experimental group. (i) Box
441  plot showing HC cells have AP amplitudes compared to neurons. (j) Box plot showing HCs fire
442  fewer spikes compared to neurons. (k) Box plot showing HCs have higher input resistance
443  compared with non-tumor neurons. () Principal component analysis (PCA) plot of 95 Patch-seq
444  cells shows clustering of cells based on electrophysiological properties. HCs are
445  transcriptionally similar to each other, GL and select PCs. Cells are colored according to
446  electrophysiological properties, IDH1R132H status and CNV status. Black dashed line denotes
447  PCA cluster. For Patch-seq, two voltage traces are shown: the hyperpolarization trace obtained
448  with injected currents (black) and the depolarization trace showing maximal AP firing rate;
449  injected current: =100 pA. p-values for pairwise comparisons are noted in the figure. AP: action
450 potential; GABA: y-aminobutyric acid; GL: glia; GSC: glioma stem cell; IN: interneuron; OL:

451 oligodendrocyte; OPC: oligodendrocyte precursor cell; PC: pyramidal cell.

452
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454  Figure 2. SCRAM reveals HC cells are GABA-OPC tumor cells. (a) Schematic of the
455 SCRAM pipeline. Briefly, 11 scRNA-seq datasets were used to train cell type neural network
456  models (NNMs). Each cell from scRNA-seq is then assigned cell type annotation independently
457  of all other cells using NNM trained models. CNVs are added for each cell using CaSpER and
458 NUMBAT. SNVs are added for each cell using XCAVTR. (b) Seurat clusters are shown for
459 234,880 cells from our in-house glioma scRNA-seq dataset. (c) Zoom-in of black dashed box
460 from (b) Seurat clusters 3, 12, 16 and 22 colored by Seurat clusters. (d) Zoom-in of black
461 dashed box from (b) Seurat clusters 3, 12, 16 and 22 colored by SCRAM cell-by-cell
462  annotations. (e) Heatmap showing SCRAM cell type probability scores for 95 Patch-seq cells. (f)
463 Heatmap showing cell-type markers for 95 Patch-seq cells. (g) Heatmap showing composite
464 SNV scores (mutational burden) and cell cycle score (G2/M score) for 95 Patch-seq cells. Grey
465  box denotes cells marked in PCA cluster from Figure 1l. CNV: copy number variant; SNV: single
466  nucleotide variant.
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470  Figure 3. GABA-OPC tumor cells in human glioma. (a) SCRAM UMAP of 234,880 scRNA-
471 seq cells. (b) Commonly used IDH™" (top row) and IDH"T (bottom row) tumor features are
472  shown. Top (from left to right): chromosome 1p deletion feature plot, IDH1 mutation density plot,
473 PDGFRA expression feature plot. Bottom (from left to right): chromosome 7p amplification
474  feature plot, EGFR mutation density plot, EGFR expression feature plot. (¢) SCRAM tumor and
475 non-tumor cell annotation. (d) Zoom-in of inset from (c) showing SCRAM cell type annotations
476 for each cell. (e) Bar graph showing the majority of cells in (d) are from IDH™" tumor patients. (f)
477  SCRAM probability scores are shown for cell types of interest. (g) Heatmap of SCRAM cell type
478  annotations for IDH™" (n=5) and IDH"" (n=7) glioma patients. (h) Bar graph showing the

479 percentage of tumor cells with GABA-OPC annotations; p-value is noted in the figure.
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482  Figure 4. GABAergic, neuronal and OPC features are hallmarks of GABA-OPCs. (a) Circos
483  plot showing the 61 genes (log,FC > 1) comprising the GABA-OPC tumor cell signature. DEGs
484  from GABA-OPC tumor cells versus all other tumor cells were extracted from our scRNA-seq
485 dataset and crossmatched with SHAP genes from our trained NNMs. (b) Heatmap of Allen Brain
486  Atlas non-tumor human scRNA-seq data showing GABAergic neurons and OPCs share
487  subtype-specific markers. Grey boxes outline LAMP5+ GABAergic neurons and OPCs. (c)
488 DotPlot showing the average expression of GABARs and GABA metabolism genes in human
489 non-tumor OPCs and in GABA-OPC tumor cells. (d) Heatmap showing the expression of
490 GABARs, GABA metabolism genes, voltage-gated sodium channels (Na,s), voltage-gated
491 potassium channels (K,s) and voltage-gated calcium channels (Ca?") in Patch-seq data. (e)
492  Immunostaining for GAD1 (white), IDHR132H (green) and OLIG2 (pink) in a human IDH™"
493 tumor sample; scale bar = 20 ym. White box denotes inset. White dashed lines denote
494  IDH1R132H+OLIG2+GAD1+ tumor cells. (f) DotPlot showing the average expression of
495 voltage-gated sodium channels (Na,s) and voltage-gated potassium channels (K,s) genes in
496 human non-tumor OPCs and also in GABA-OPC tumor cells. (g) Immunostaining for Nay1.1
497  (SCN1A; white), IDHR132H (green) and OLIG2 (pink) in a human IDH™" tumor sample; scale
498 bar = 20 um. White box denotes inset. White dashed lines denote
499 IDH1R132H+OLIG2+SCN1A+ tumor cells. NNM: neural network module; SHAP: SHapley
500 Additive exPlanations.

501
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503 Figure 5. GABA-OPC tumor cells are protective in IDH™" tumors (a) Density plot of GABA-
504 OPC tumor scores is shown for IDH™" (n=366) and IDH"" (n=216) TCGA bulk RNA-seq glioma
505 samples; p-value is noted in the figure. (b) Box and whiskers plot showing GABA-OPC scores
506 for TCGA samples by IDH"" tumor subtype: MES-like (n=149); AC-like (n=157); NPC-like
507 (n=12); OPC-like (n=9); p-values for pairwise comparisons are noted in the figure. (c) Bar graph
508 showing the percentage of tumor cells that are GABA-OPC tumor from Neftel et al.’s IDH"'
509 SMART-seq dataset. (d) Density plot of GABA-OPC tumor scores is shown for IDH™' TCGA
510 bulk RNA-seq glioma samples by histology subtype: oligodendroglioma (n=150); astrocytoma
511 (n=111); diffuse astrocytoma (n=8); p-values for pairwise comparisons are noted in the figure (e)
512 RNAvelocity pseudotime analyses are shown for one IDH"" and three IDH™" samples. Black
513 dashed lines denote cells of interest. (f) Bar graphs showing percentage of tumor cells by
514 cluster over pseudotime. (g) Kaplan-Meier survival analysis in IDH™" patient cohort. (h) Kaplan-

515  Meier survival analysis in HGG IDH™" patient cohort.
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518 Figure 6. Tumor cell depolarization differentially alter glioma cell proliferation in an IDH-
519 dependent manner (a) Bar plot showing the percentage of IDH1R132H+OLIG2+ cells and
520 IDH1R132H+OLIG2+KI67+ cells detected in IDH™" tumor samples (n=4) using immunostaining.
521 (b) Representative images of IDH1R132H (green), OLIG2 (pink) and KI67 (white)
522  immunostaining shows IDH1R132H+OLIG2+ cells are largely negative for KI67. White box
523 denotes inset; scale bar = 20 um. (c) Box and whiskers plot showing the percentage of
524  IDH1R132H+OLIG2+ cells detected by immunostaining for each IDH™" tumor sample. (d) Box
525 and whiskers plot showing the percentage of IDH1R132H+OLIG2+KI67+ cells detected by
526  immunostaining for each IDH™"' tumor sample. (e) DotPlot of cell cycle scoring showing the
527 percentage and average expression of GABA-OPC tumor cells undergoing G2/M in our in-
528 house scRNA-seq dataset of human glioma. (f) DotPlot of cell cycle scoring showing the
529 percentage and average expression of GABA-OPC tumor cells undergoing G2/M in IDHWT
530 glioma from Neftel et al.'s scRNA-seq dataset. (g) Schematic showing the experimental design
531 used in our optogenetics experiment. (h) Schematic illustrating whole cell recording experiments
532 in fluorescent-labeled IUE tumor mice. Representative traces of cells with glial and HC
533 electrophysiologies are shown. (i) Representative images of optogenetic IUE tumor mice
534  showing positive immunostaining for ChR2 (green) is detected in ppCAG-ChR2-RFP mice and
535 is not detected in pbCAG-RFP mice; scale bar = 20 um. (j) Representative images of
536  optogenetic IUE tumor mice showing immunostaining for Olig2 (pink) BrdU (white); scale bar =
537 20 um. (k) Box and whiskers plot showing quantification of BrdU+ cells per field of view (FOV).
538

539 Experimental Methods

540 Human data

541 Adult patients at St. Luke's Medical Center and Ben Taub General Hospital provided

542  preoperative informed consent to participate in the study and gave consent under Institutional
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543  Review Board Protocol H35355. Patients included males and females. Clinical characteristics
544  were maintained in a deidentified patient database and are summarized in Table S1 and S7.
545

546  Tumor samples were collected during surgery and immediately placed on ice. Tissue was
547  divided for use in subsequent transcriptomic, histopathological, proteomic, or biochemical
548 studies. Patient samples were collected separately for pathology and molecular subtyping.
549  Histopathology and molecular subtyping of IDH and 1p19q deletion status were confirmed by
550 board-certified pathologists. Samples for scRNA-seq and immunoprecipitation assays were
551 fixed in LN, and kept at —80°C.

552

553 Single cell RNA-sequencing

554 Human tumors were prepared as single-cell suspensions. Briefly, samples were coarsely
555 chopped with surgical scissors and enzymatically digested with Papain supplemented with
556 DNase | (Worthington Biochemical Corporation, LK003150). Samples were incubated for 15
557  minutes at 37°C on a thermocycler kept at 1400xg and briefly pipetted every 5 minutes. Cells
558  were pelleted at 13,000xg for 10 seconds and resuspended in phosphate-buffered saline (PBS)
559  before processing for debris and dead cell removal. Cell suspensions were processed using the
560 MACS Debris Removal Kit (Miltenyl, 130-109-398) and MACS Dead Cell Removal Kit (Miltenyl,
561  130-090-101), according to the manufacturer’s instructions. Live cells were collected through
562 negative selection using an MS Column in the magnetic field of a MiniMACS Separator
563  (Miltenyl, 130-042-102). Eluted cells were spun at 300xg for 5 minutes and resuspended in
564  Gibco Dulbecco's Modified Eagle Medium with GlutaMAX (DMEM; ThermoFisher, 10566016)
565 supplemented with 10% foetal bovine serum (FBS; ThermoFisher, 16000044). Single cells were
566  processed with the 10X Chromium 3' Single-Cell Platform using the Chromium Single-Cell 3’
567 Library, Gel Bead, and Chip Kits (10X Genomics) following the manufacturer’s protocol. Briefly,

568 approximately 5,000-15,000 cells were added to each channel of a chip to be partitioned into
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569 Gel Beads in Emulsion (GEMSs) in the Chromium instrument, followed by cell lysis and barcoded
570 reverse transcription of RNA in droplets. GEMs were broken, and cDNA from each single cell
571 was pooled. Clean-up was performed using Dynabeads MyOne Silane Beads (ThermoFisher,
572  37002D). Subsequently, the cDNA was amplified and fragmented to optimal size before end
573  repair, A-tailing, and adaptor ligation. Libraries were run individually using a NextSeq 500/550
574 High Output Kit v2.5 (75 Cycles) (lllumina, 20024907) and sequenced on an lllumina
575  NextSeq550 instrument.

576

577 Human tumor slice preparation

578  Fresh tumor samples were immediately placed into a cold (0-4°C) oxygenated N-methyl-d-
579  glucamine (NMDG) solution (93 mM NMDG, 93 mM HCI, 2.5 mM KCI, 1.2 mM NaH,PQ,, 30
580 mM NaHCO3z, 20 mM HEPES, 25 mM glucose, 5 mM sodium ascorbate, 2 mM thiourea, 3 mM
581 sodium pyruvate, 10 mM MgSO,, and 0.5 mM CacCl,, pH 7.35). Slices were cut at 300-um
582  thickness with a microslicer (Leica VT 1200) and kept at 37.0+0.5°C in oxygenated NMDG
583  solution for 10-15 minutes before being transferred to artificial cerebrospinal fluid (ACSF, 125
584 mM NaCl, 2.5 mM KCI, 1.25 nM NaH,PQO,, 25 mM NaHCO3, 1 mM MgCl,, 25 mM glucose, and
585 2 mM CaCl,, pH 7.4) for 1 hour before recording.

586

587  Single cell processing

588 We ran samples on the 10X Chromium platform to produce next-generation sequencing
589 libraries. We performed standard procedures for filtering, mitochondrial gene removal, and
590 variable gene selection using the Seurat pipeline. The criteria for cell/gene inclusion were as
591 follows: genes present in more than three cells were included, cells that expressed >300 genes
592  were included, the number of genes detected in each cell was >200 and <5000, and the
593 mitochondria ratio was 10. We integrated cells from different patients using the Harmony

594  algorithm®. Next, we visualized clusters using a uniform manifold approximation and projection
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595 constructed from the Harmony-corrected PCA. We also performed lineage tracing, trajectory
596 analysis, and RNA velocity assessments to create developmental hierarchies and lineage
597 histories of glioma cells using the scvelo R package®® and IntrExtract®.

598

599 SCRAM pipeline and methodology

600 SCRAM input consisted of aligned scRNA-seq reads and our neural network model trained on
601 11 diverse single-cell RNA-Seq datasets encompassing 1 million cells of publicly available data
602 from healthy adult and developing brain samples, as well as brain tumor samples. Tumor and
603 normal cells were annotated independently for two reasons. (1) Significant overlap exists
604  between tumor and non-tumor expression markers. For example, EGFR and PDGFRA are often
605 used to denote tumor cells* but are also cell type markers for OPCs and ependymal host cells,
606 respectively (Supplemental Figure S43) (2) We hypothesize that by separating tumor-specific
607 and normal-specific features, we can achieve more robust identification of hybrid cells (HCs).
608 This hypothesis is supported by our observation that existing cell type assignment methods,
609  which typically classify both tumor and normal cells together, fail to accurately characterize HCs.
610 These tumor/normal features were systematically employed in our pipeline as follows:

611

612  Step 1. Annotation of non- tumor cells:

613  Training Neural Network Models (NNMs). We trained our neural network model (NNMs) on 11
614 diverse single-cell RNA-Seq datasets, which collectively contain 1 million cells. These datasets
615 comprise publicly available data sourced from various datasets, including healthy adult and
616  developing brain samples, as well as brain tumor samples**>**%_We trained our model using
617 a deep neural network (DNN), with an input layer of around 20K genes, three intermediate
618 layers (256, 64, 32), and an output layer of size 16 or 21, depending on the number of
619 referenced cell types. Following the dense connection within each hidden layer, there are batch

620 normalization, activation, and dropout functions. We use the popular Rectified Linear Unit
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621 (ReLU) for hidden layer activation and set dropout rate to be 0.1. The output layer uses Softmax
622 activation function so that each node outputs a non-negative value smaller than 1 and all the
623 values sum up to 1. Therefore, each output corresponds to the probability of one cell type. We
624  compile the model using categorical crossentropy as loss function, Adam as optimizer, and
625 accuracy as metrics. In order to achieve a more balanced class distribution, we opted to
626  subsample cell types within our training model. We train one neural network-based classifier on
627 each developmental-like, normal, tumor cells datasets and save the model in repository. We
628 predicted the developmental-like, normal and tumor cells, in our glioma scRNA-Seq data using
629  our trained NNMs. Model probability scores >0.9 were used for final cell annotations. In building
630 our NNMs, we utilized the Python packages TensorFlow and Keras. Additionally, we used the
631 Python Scipy package for processing the scRNA-Seq data. Prerequisite packages for data
632  preprocessing and model training include Numpy 1.19.5, Pandas 1.1.5, Scanpy 1.7.2, Anndata
633 0.7.8, Scipy 1.5.4, and Scikit-learn 0.24.2.

634

635 For a single cell to be classified as "immune"” within our framework, it must be annotated as
636 immune with a probability score above 0.9 in three or more trained datasets.

637

638 SHapley Additive exPlanations (SHAP) analysis.

639 SHAP analysis was employed to gain insights into the main features that affect the output of the
640 NNMs, we used SHAP method, to explain how each feature affects the NNMs in inhouse glioma
641 single-cell dataset. To perform the SHAP analysis, the model predictions were decomposed into
642  contributions from individual features, allowing us to assess their impact on the final outcome
643  using the shap python package.

644

645  Step 2. Annotation of tumor cells:
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646 The SCRAM pipeline integrates multiple orthogonal tumor features to identify tumor cells at a
647  single-cell resolution. These features include:

648 Module 1. Neural Network Model-Based Tumor Cell Prediction: Above explained NNMs is used
649  to predict tumor cells based on the probability score. Cells with a probability score above 0.9 are
650 classified as tumor cells.

651 Module 2. Marker based Expression Modeling: SCRAM employs finite Gaussian mixture
652 modeling to model marker expression of three tumor marker genes: SOX2, EGFR PDGFRA.
653 This approach helps to distinguish tumor cells based on their specific marker gene expression
654 profiles (details explained below section “Marker Expression Modeling for tumor annotation”).
655 Module 3. RNA-Inferred Genotyping of Chromosome Alterations: A modified version of our
656 CNV-calling algorithm, CaSpER?, another state of art CNV calling method numbat®? is used in
657 SCRAM to perform RNA-inferred genotyping of large-scale chromosome alterations.

658 Module 4. RNA-Inferred Mutational Profiling: SCRAM utilizes our XCVATR® tool, a recently
659 developed tool, to deduce rare deleterious single-nucleotide variants (SNVs) present in the
660 tumor cells. This analysis involves considering SNVs that are reported in the COSMIC®-
661 database and have a frequency of less than 0.1% in the dbSNP®*database.

662

663 These orthogonal tumor features are called separately in the SCRAM pipeline. By combining
664 these different approaches, SCRAM aims to accurately identify tumor cells at a single-cell
665 resolution.

666

667 For a single cell to be classified as "tumor” within our framework, it needs to meet two or more
668  of the following criteria:

669 1. Neural Network Model-Based Tumor Cell Prediction (Module 1): The cell is annotated as

670 "tumor" when it receives a probability score greater than 0.9 from the trained Neural
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671 Network Models (NNMs) in Richards et al.'®, or Venteicher et al.** or Neftel et al.** or
672 Tirosh et al.”® datasets.

673 2. Marker Expression Modeling (Module 2): The expression levels of at least two tumor
674 cell markers, (SOX2, EGFR, or PDGFRA) should surpass a predetermined threshold.
675 This threshold is established using finite Gaussian mixture modeling (details explained
676 below section “Marker Expression Modeling for tumor annotation”), as depicted in
677 Supplemental Figure S43.

678 3. RNA-Inferred Genotyping of Chromosome Alterations (Module 3): The presence of
679 large-scale copy number variations (CNVSs) is considered a tumor cell.

680 4. RNA-Inferred Mutational Profiling (Module 4):  Tumor cells that have SNVs in genes
681 IDH (R132H/R132C) or EGFR.

682

683 Module 2. Marker Expression Modeling for tumor annotation: Given the expressional

684  heterogeneity of tumor markers in normal cells, we used previously published tumor and non-
685 tumor cell datasets to establish a marker expression—based tumor classification model (i.e.,
686 thresholding requirements for “high expression” annotation) for the tumor markers PDGFRA,
687 EGFR, and SOX2. For each tumor marker, an independent classifier model was built using (1)
688 Allen Brain Atlas human scRNA-seq data, which represent the largest compendium of healthy
689 brain data as a training set for normal cells; and (2) a compendium of publicly available brain
690 tumor scRNA-seq datasets as a training set for tumor cells**. The following statistical models
691  were used to infer the class (normal vs tumor) of our in-house tumor scRNA-seq data.

692

693 We modelled expression as a mixture of Gaussian distributions to identify and classify normal
694  and tumor cells:

695  LetX; = {xy,Xy, .., X ..., X} D€ the training expression vector of normal and tumor cells for gene

696 j, where x; is the expression value of celli. The distribution of every expression value is
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697  specified by a probability density function through a finite mixture model of G=2 classes (normal

698  vs tumor):

G

O7) = ) e Gs 60

k=1
699 where z = {m; mg, 6,,...085} represents the parameters of the mixture model and f; (x;; 6) is
700 the kth component density, which is assumed to follow a Gaussian distribution
701 fi, (x5 0y) ~ N(ug, 0x). {my_ms} is the vector of probabilities, non-negative values that sum to 1,
702  known as the mixing proportion. The mixing proportion, m, follows a multinomial distribution.

703

704  We used the above model to predict normal vs tumor class in our in-house glioma cells. For
705 each gene, j, z parameters were estimated by maximizing the log-likelihood function via the

706  expectation-maximization algorithm. The log-likelihood function is formulated as:
n
130 = ) logfy (xi; 7)
i=1

707  For each tumor marker, we generated a matrix, with genes indicated by rows and cells indicated
708 by columns, and the cell value index was 1 if the cell had a high “tumor class” probability for the
709 corresponding gene. A cell was classified as “tumor” if at least two markers had high “tumor
710 class” probabiliies. We used the mclust R package for Gaussian mixture model
711  implementation®®.

712

713 Module 3. RNA-Inferred Genotyping of Chromosome Alterations: CNVs are hallmark features of

714 tumor cells that can be used to classify tumor vs non-tumor cells with or without expression
715 markers. However, CNV detection from scRNA-seq data is inherently noisy due to dropouts and
716  unmatched control sets, among other factors, requiring a set of known tumor cells. To estimate
717 a “clean” set of CNV calls to provide reliable CNV-based tumor scores, we used a pure tumor

718 pseudobulk sample.
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719

720  Estimation of CNV profiles using patient-specific pure tumor pseudobulk samples: We first used
721  our marker expression—based and NNMs models from Module 1 and Module 2 to identify tumor
722  cells. Cells assigned as “tumor” cells using Module 1 and 2 were treated as a pure tumor cell
723  cohort. Cells assigned as “immune” cells using our NNMs are considered control cells.

724

725 CNV calling of patient-specific pure pseudobulk samples: We hypothesized that the pseudobulk
726 sample contained representative sets of CNVs with high probability and, therefore, should be
727  useful to identify a clean CNV call set. CNV calling of the pseudobulk samples from each patient
728  was performed using our CNV-calling algorithm, CaSpER. CaSpER CNV calls were used as the
729  ground truth, large-scale CNV calls for each patient.

730

731  Genotyping of CNVs of all cells: After CNVs were identified from the pseudobulk sample, we
732  genotyped the CNVs in all cells and generated a binary matrix that represents the existence of
733 CNVsincells, i.e., CNV,;.

734

735 Module 4. RNA-Inferred Mutational Profiling: We performed RNA-inferred rare deleterious

736  (COSMIC®*-reported and dbSNP®, <0.1% frequency) mutational profiling via our recently
737 developed XCVATR® tool. We detected mutations in IDH (R132H/R132C), EGFR and

738 annotated cells harboring these mutations as tumor cells.

739  Visualization and clustering of single cells

740  We used the probability score output from NNMs instead of relying solely on the most variable
741  genes for clustering and visualization of our in-house single-cell data. This, named as SCRAM

742  UMAP, involved applying UMAP and clustering techniques to the model probability scores using
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743  the Seurat package's runUMAP, FindNeighbors, and FindClusters functions. Additionally, we
744  employed the most variable genes for cell data clustering and visualization, referring to this

745  UMAP representation as the original/Seurat UMAP.

746  Summarizing co-occurring cell types using maximally frequent gene set identification
747 We summarized co-occurring cell types using a frequent itemset rule mining approach. CNV
748 and SNV calls were added to provide an integrated transcriptomic and genomic summary for
749 each cell. An example SCRAM output for a single cell is given as “glioma stem cell,
750 oligodendrocyte precursor cell, chrip_deletion, chr19q_deletion + IDH:2:208248389 mutation”.
751  We used the tumor and normal cell assignments of Step 1 and Step 2 to integrate co-occurring
752  tumor and normal cell features.

753

754  The simplest method for detecting maximally frequent tumor and host feature sets is a brute
755 force approach in which each possible subset of features is a candidate frequent set. The a
756  priori algorithm is an efficient implementation for finding maximally frequent sets with support
757 above a given threshold. In the a priori algorithm, the minimum support threshold is set to min
758 (50, number_cells_in cluster*0.1), and the maximum number of genes in a gene set is set to 50.
759  Using the a priori algorithm, we identified co-occurring gene sets expressed concurrently within
760 each cell and provided annotation of high-resolution cellular identities using a three-step co-
761  occurrence analysis. We performed our co-occurrence analysis at multiple levels: 1) cell type
762 level (example output of this step: tumor AND radial glia AND astrocyte); 2) cell class level
763  (example output of this step: tumor AND neural cells are commonly upregulated).

764

765 Maximally frequent cell type (or cell class) co-occurrence analysis: Within each cluster, m, we

766 calculated the maximally frequent cell types (or cell lineage or cell class) using the a priori
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767  algorithm. The input was the binarized matrix E™, where the cell types (or cell lineage or cell
768 class) were the rows, and the cells in cluster m were the columns.

m_ {1, if cell type(or cell lineage or cell class) i is annotated in cell j in cluster m

e;;Mm = .
Y 0, otherwise

769  Analyzing bulk expression data and survival analysis

770 TCGA-GBM (high grade glioma), TCGA-LGG (low grade glioma) raw read counts and
771  accompanying clinical data are downloaded using TCGAbiolinks R package®’. TCGA-GBM,
772 TCGA-LGG and our bulk RNA-Seq data of the IDH Mutant cohort were both normalized and
773  applied variance stabilizing transformation using the DESeq2 package®. Single sample gene
774  set enrichment analysis (ssGSEA) was performed using GSVA R package. We used our GABA-
775 OPC tumor gene sets and also the MES-like, AC-like, NPC-like and OPC-like gene sets
776  reported in a previous study®. SsGSEA GABA-OPC scores were split by median to assign
777  high-OPC-GABA and low-OPC-GABA scored samples. Those groups are compared against
778  “overall survival” in a Cox Proportional Hazards (Cox) survival model. used in survival analysis
779 and compared using a Log-rank test P-value. We used survminer and survival R package for
780  the survival analysis.

781

782  Optogenetics

783  This experimental setup forces expression of ChR in tumor cells, which will be activated by light
784 using fiber optic implants, resulting in the depolarization of tumor cells. ChR causes
785  depolarization of cells by allowing sodium to flow into the cell when in the presence of light. Mice
786  were implanted with fiber optic cables at P42 and began light stimulation sessions at P50. Our
787  protocol was modified from Venkatesh et al.” for use in our IUE system. Briefly, light pulses at

788 20 Hz, 473 nm, and 5mWatt for 30 seconds were administered followed by 90 seconds of
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789 recovery, over 10 minutes for 10 consecutive days. Following final stimulation, mice were
790 injected with a single 200mg/kg BrdU pulse and harvested 1 hour later.

791

792 Patch-seq recording procedures

793  Electrophysiological, morphological, and transcriptomic data from the same cell were obtained
794  simultaneously using the Patch-seq protocol described previously'®®. Briefly, patch pipettes
795  (5-7 MQ) were filled with RNase-free intracellular solution (111 mM potassium gluconate, 4 mM
796 KCIl, 10 mM HEPES, 0.2 mM EGTA, 4 mM MgATP, 0.3 mM NasGTP, 5 mM sodium
797  phosphocreatine, and 13.4 mM biocytin). Whole-cell recordings were performed using a Quadro
798 EPC 10 amplifier (HEKA Electronic). After 5-10 minutes of whole-cell recording of firing
799 patterns, the nucleus was extracted using gentle and continuous negative pressure. The
800 contents in the pipette were ejected into a 0.2-mL PCR tube containing 4 mL lysis buffer®®. RNA
801 in the lysis buffer was denatured, reverse transcribed, amplified, and purified following the

802 Smart-seq2-based protocol™

. Only high-quality cDNA samples (yield 22 ng, average length
803 21500 bp) were sequenced.

804  Sequencing libraries were constructed from the cDNA using the lllumina Nextera XT DNA
805 Library Preparation Kit (lllumina, FC-131-1096). The cDNA library was sequenced on a
806 NovaSeq 6000 instrument using 150-bp paired-end reads.

807

808 Biocytin staining and morphological reconstruction

809 Following slice recording, slices were fixed by immersion in the fixation solution at 4°C for at
810 least 48 hours and processed with an avidin-biotin-peroxidase method to reveal the cell
811 morphology. The morphology of the cells was reconstructed and analysed using a 100x oil-
812 immersion objective lens and camera lucida system (Neurolucida, MicroBrightField).

813

814 Histology
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815 Human samples were retrieved from the operating room on ice and then fixed in 4%
816 paraformaldehyde in PBS for 12 hours at 4°C before being transferred to 70% EtOH. Paraffin
817 embedding was performed by the Breast Cancer Pathology Core at Baylor College of Medicine.
818 All human specimens were evaluated by a board-certified neuropathologist according to current
819 guidelines and standard practices.

820

821 Immunostaining

822  For immunostaining, 10 um paraffin-embedded human glioma sections were cut, deparaffinized
823 and subject to heat-induced epitope retrieval (HIER) using antigen retrieval buffer (10 mM
824  sodium citrate, 0.05% Tween 20, pH 6.0) when needed. Sections were blocked for 1 hour at
825 room temperature and kept in primary antibody incubation overnight at 4°C. The following
826  primary antibodies were used: rat anti-BrdU (1:200; Abcam, ab6326), mouse anti-ChR2 (1:100,
827  Progen, 651180), mouse anti-IDHR132H (1:50; Dianova, DIA-H09), rabbit anti-GAD1 (1:200;
828  Synaptic Systems, 198013), goat anti-OLIG2 (1:100; R&D, AF2418), rabbit anti-RFP (1:1000;
829 Rockland, 600-401), rabbit anti-SCN1A (Nayl1.1) (1:200; Alomone Labs, ASC-001). Species-
830 specific secondary antibodies tagged with Alexa Fluor corresponding to emission spectra 488
831 nm, 568 nm, or 647 nm (1:1,000, ThermoFisher) were used for immunofluorescence and
832 Hoechst nuclear counter staining (1:50,000; ThermoFisher, H3570) was performed before
833  coverslipping with Vectashield antifade mounting medium (Vector Laboratories, H-1000). For
834  quantification, n=3 biological samples were used. For imaging, n=3 images were taken per
835 tissue section x n=3 sections x n23 biological samples.

836

837 Patch-seq data processing

838 The Patch-seq reads were mapped using STAR’* to hg38 assemblies for humans. Read count
839 matrices were generated using FeatureCounts’> with the latest gene annotations from

840 GENCODE™ consortia. DEGs and transcripts were identified using DESeq2®® and limma™.
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841 Cells were clustered and visualized using PCA methods. Cell type enrichment analyses were
842  performed with enrichR" using the PanglaoDB_Augmented 2021 and
843 CellMarker_Augmented 2021 cell type marker sets. IDH mutations were identified using our
844  variant detection tool, XCVATR?, and visually confirmed using the Integrative Genomics
845  Viewer'®.

846

847  Statistical analysis

848  For electrophysiology analyses, a Kruskal-Wallis test or two-way ANOVA was used, followed by
849 unpaired t-tests with a two-stage step-up (Benjamini, Krieger, and Yekutieli). For RT-gPCR, a
850 two-tailed Student’s t-test was used. Significant differences are denoted by asterisks in
851 associated graphs. Data are presented as the meanzstandard error of the mean. Levels of
852 statistical significance are indicated as follows: ns: not significant, *p<0.05, **p<0.01,
853 ***p<0.001, and ****p<0.0001.

854

855

856

857

858
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