

The multi-level effect of chlorpyrifos during clownfish metamorphosis

Mathieu Reynaud^{1, 2 ¶}, Stefano Vianello^{3 ¶}, Shu-Hua Lee³, Pauline Salis⁴, Kai Wu³, Bruno Frederich⁵, David Lecchini^{1, 6}, Laurence Besseau⁴, Natacha Roux^{7, \$} and Vincent Laudet^{*1, 3, 8, \$}

¹ Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan

² PSL Université Paris, EPHE-UPVD-CNRS, UAR3278 CRIODE, 98729 Moorea, French Polynesia

³ Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10, Dah-Uen Rd, Jiau Shi, I-Lan 262, Taiwan

⁴ Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France

⁵ Laboratory of Evolutionary Ecology, FOCUS, University of Liège, Liège, Belgium

⁶ Laboratoire d'Excellence “CORAIL”, 66100 Perpignan, France

⁷ Computational Neuroethology Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan

⁸ CNRS JRL 2028 “Eco-Evo-Devo of Coral Reef Fish Life Cycle” (EARLY)

* Corresponding author

E-mail: VINCENT.LAUDET@oist.jp (VL)

*These authors contributed equally to this work.

[§]These authors contributed equally to this work.

Keywords: Pesticide, Clownfishes, Thyroid Hormones, Metamorphosis, Endocrine disruption

33 **Highlights**

34

35 • Chlorpyrifos (CPF) is an insecticide widely used in agriculture for the past five decades and has
36 adverse effects on marine life and humans

37

38 • CPF exposure impairs the formation of characteristic white bands in clownfish larvae,
39 indicative of metamorphosis progression

40

41 • During metamorphosis, clownfish larvae lose their elongated body shape and transform into
42 miniature ovoid-shaped adults, these shape changes are less advanced in CPF-treated larvae

43

44 • CPF induces systemic effects on cholesterol and vitamin D metabolism, DNA repair, and
45 immunity, highlighting its broader TH-independent impacts

46 Abstract

47 Chemical pollution in coastal waters, particularly from agricultural runoff organophosphates, poses a
48 significant threat to marine ecosystems, including coral reefs. Pollutants such as chlorpyrifos (CPF) are
49 widely used in agriculture and have adverse effects on marine life and humans. In this paper, we
50 investigate the impact of CPF on the metamorphosis of a coral reef fish model, the clownfish
51 *Amphiprion ocellaris*, focusing on the disruption of thyroid hormone (TH) signalling pathways. Our
52 findings reveal that by reducing TH levels, CPF exposure impairs the formation of characteristic white
53 bands in clownfish larvae, indicative of metamorphosis progression. Interestingly, TH treatment can
54 rescue these effects, establishing a direct causal link between CPF effect and TH disruption. The body
55 shape changes occurring during metamorphosis are also impacted by CPF exposure, shape changes are
56 less advanced in CPF-treated larvae than in control conditions. Moreover, transcriptomic analysis
57 elucidates CPF's effects on all components of the TH signalling pathway. Additionally, CPF induces
58 systemic effects on cholesterol and vitamin D metabolism, DNA repair, and immunity, highlighting its
59 broader TH-independent impacts. Pollutants are often overlooked in marine ecosystems, particularly in
60 coral reefs. Developing and enhancing coral reef fish models, such as *Amphiprion ocellaris*, offers a
61 more comprehensive understanding of how chemical pollution affects these ecosystems. This approach
62 provides new insights into the complex mechanisms underlying CPF toxicity during fish
63 metamorphosis, shedding light on the broader impact of environmental pollutants on marine
64 organisms.

65

66 1. Introduction

67 Chemical pollution in coastal waters, stemming from residential, industrial, and agricultural
68 sewage, is a global concern (Tornero & Hanke, 2016; Polidoro et al., 2017; Triassi et al., 2019).
69 Agricultural runoff has been pinpointed as a significant source of pollutants — including of a wide
70 range of pesticides (fungicides, herbicides, insecticides, and antifoulants) — within marine ecosystems
71 (Haynes & Johnson, 2000; Carvalho et al., 2002; Shaw et al., 2010; Bartley et al., 2017; Islam &
72 Tanaka, 2004; Ponce-Vélez & de la Lanza-Espino, 2019; Sabdoni et al., 2019), including reefs
73 throughout the globe (Bocquené and Franco, 2005; Kitada et al., 2008, Sheikh et al., 2009; Roche et
74 al., 2011; King et al., 2013; Ponce-Vélez & de la Lanza-Espino, 2019). One of the most extensively
75 used families of insecticides worldwide is the organophosphate family. Despite their efficacy in pest
76 management, organophosphates have also been found to have adverse off-target effects as endocrine
77 disrupting compounds and to lead to mortality, neurotoxicity, and physiological imbalance in both
78 humans and wildlife (Abreu-Villaça & Levin, 2017; Wong et al., 2018; Ubaid Ur Rahman et al., 2021).

79 Among these endocrine disrupting organophosphates is chlorpyrifos (CPF), an insecticide
80 widely used in agriculture for the past five decades (Juberg et al., 2013a; Kumar et al., 2016; Trasande,
81 2017). Around 2 million tonnes of CPF are used worldwide annually, 90-99% of which persists in the
82 environment due to low degradability, then leaching into soil, freshwater, and ending up in coastal
83 waters over protracted periods of time (Bosu et al; 2024). Within coral reef ecosystems, comprehensive
84 analyses of pesticides in sediments, water, and biota have revealed the presence of CPF across all
85 compartments, with notably higher occurrences in sediments (Botté et al., 2012; Carvalho et al., 2002;
86 Ponce-Vélez & de la Lanza-Espino, 2019). Occurrences of endocrine disrupting compounds such as
87 CPF in coastal waters could particularly affect coral reef fish whose life cycle includes an oceanic

88 dispersal phase followed by a settled reef phase, during which larvae or young juveniles return to the
89 reef ecosystem (Leis, 2006; Leis et al., 2011). The arrival in the coastal ecosystem is a crucial period
90 involving numerous changes under the control of hormonal processes, known as metamorphosis
91 (Laudet, 2011; McMenamin & Parichy, 2013; Holzer et al., 2017; Besson et al., 2020, Roux et al.,
92 2022).

93 Metamorphosis is a crucial post-embryonic transition that includes spectacular ecological,
94 morphological, physiological, and behavioural changes (Bishop et al., 2006; Xu et al., 2016; Salis et
95 al., 2018; Campinho, 2019; Nguyen et al., 2022; Roux et al., 2022). Thyroid hormones (THs) are the
96 main hormones triggering metamorphosis in vertebrates, including in coral reef fish (Laudet, 2011;
97 McMenamin & Parichy, 2013, Holzer et al., 2017). For example, during zebrafish metamorphosis, THs
98 promote and regulate skin morphogenesis, adult pigment pattern, visual system, nervous system,
99 skeleton development, and shape craniofacial bones during zebrafish metamorphosis (Baumann et al.,
100 2016; Guillot et al., 2016; Xu et al., 2016; Galindo et al., 2019; Saunders et al., 2019; Aman et al.,
101 2021; Farías-Serratos et al., 2021; Keer et al., 2022). In flatfish, THs control the symmetrical-to-
102 asymmetrical transformation of larvae, including eye migration from one side to the other, and the
103 change from a pelagic to a bottom swimmer (Bao et al., 2011; Xu et al., 2016; Shao et al., 2017).
104 Additionally, functional experiments using compounds impairing THs signalling (called goitrogens)
105 result in limiting cell proliferation, delaying lateral flattening, and decreasing body height during
106 flatfish metamorphosis, demonstrating that THs are necessary for body shape changes (Xu et al.,
107 2016). THs have also been demonstrated to be involved in coral reef fish metamorphosis, such as that
108 of the convict surgeonfish (*Acanthurus triostegus*; Holzer et al., 2017) and of the false clownfish
109 (*Amphiprion ocellaris*; Roux et al., 2023), which they trigger and coordinate at multiple levels.

110 CPF is mostly known to cause nervous damage in insects through its action as an inhibitor of
111 its main target acetylcholinesterase. Crucially however, it has also been shown to impair the TH
112 signalling pathway in vertebrates (Wołejko et al., 2022; Fortenberry et al., 2012) such as mice (Otênia
113 et al. 2019), zebrafish (Qiao et al., 2021) and convict surgeonfish (Holzer et al., 2017; Besson et al.,
114 2020). To date, the mechanisms of action of CPF on THs signalling is far from being understood,
115 especially given that CPF also affects other hormonal and metabolic pathways (reviewed in Ubaid Ur
116 Rahman et al., 2021). A better understanding of the broad impact of CPF on metamorphosing fish
117 would therefore be needed. Our study thus investigates the impact of CPF at the morphological,
118 hormonal, and transcriptomic level in order to shed light on the intricate interplay between CPF
119 exposure and coral reef fish metamorphosis. To test the effects of CPF we used the anemonefish
120 *Amphiprion ocellaris*, a model organism with well-characterised metamorphic processes (Roux et al.,
121 2019, Roux et al., 2023; Laudet and Ravasi, 2022). We show that CPF effectively impairs
122 metamorphosis progression, exemplified in clownfish by white band formation, and does this by
123 decreasing TH hormone levels. We also show that this effect of CPF can be rescued by TH treatment,
124 showing that this effect on metamorphosis progression is effectively linked to the decrease in TH
125 levels. To gain a better insight on the complexity of CPF effect and its relationship with THs, we
126 further perform transcriptomic analysis after treatment of whole clownfish larvae and show that CPF
127 functions *de facto* as a goitrogen on the TH signalling pathway. Interestingly, we also uncover
128 systemic CPF-specific, TH-independent effects on cholesterol and vitamin D metabolism, as well as
129 signatures of genotoxicity and inflammation, suggesting that CPF simultaneously hits several unrelated
130 targets.

131

132 2. Materials and Methods

133 2.1. Animal Rearing methods

134 Experiments were performed on larvae from *A. ocellaris* raised in rearing structures located in
135 Banyuls sur mer (France) and at the LinHai Marine Research Station (Taiwan), maintained as
136 previously detailed in Roux et al, 2021, and as in Roux et al., 2023, with minimal developmental
137 differences observed between the two locations. To minimize these differences, treatments were
138 initiated before metamorphosis, at 5 dph at the Observatoire Océanologique of Banyuls-sur-Mer and 8
139 dph at the LinHai Marine Research Station. A more detailed description is provided in supplementary
140 Materials and methods (1.1 and 1.2).

141 2.2. Pharmacological treatments, experimental design and sample collection

142 2.2.1. Chemicals

143 Larvae were treated with one of the following: 0.1% v/v DMSO (Merck/Sigma-Aldrich,
144 CAT#D5879), MPI (10^{-5} M Methimazole, Merck/Supelco CAT#M8506; 10^{-6} M Potassium perchlorate
145 KClO_4 , Merck/Sigma-Aldrich CAT#460494; 10^{-7} M Iopanoic Acid, Merck/Sigma-Aldrich
146 CAT#14131; in DMSO), T3+IOP (10^{-7} M 3,3',5-Triiodo-L-thyronine, Merck/Sigma-Aldrich
147 CAT#T2877; 10^{-7} M Iopanoic Acid, Merck/Sigma-Aldrich CAT#14131; in DMSO), 10-30 μ g/L CPF
148 (Merck/Sigma-Aldrich CAT#45395; in DMSO), or the combination treatment CPF+T3+IOP. All final
149 concentrations reported above were obtained by dilution of 1000X stocks (i.e. applying stocks at 0.1%
150 v/v). Note that — to simplify the presentation of the results — we refer to the “T3+IOP” and
151 “CPF+T3+IOP” treatments as “T3” and “CPF+T3”, respectively, throughout the main text of the paper
152 (i.e. they both contain 10^{-7} M IOP, to suppress background endogenous T3 metabolism).

153 2.2.2 Experimental design

154 To investigate the effects of CPF on clownfish metamorphosis and compare it to the artificial
155 reduction of THs signaling, we conducted four different experiments. In the first experiment, three
156 batches of larvae were exposed to increasing concentrations of CPF (10, 20, or 30 μ g/L) for 3 and 5
157 days. These larvae were used to study the effect of CPF on white band formation and TH levels. In our
158 conditions, these 5 days post-treatment (dpt) correspond to the time window of formation of the first 2
159 white bands in the control condition. In the second experiment, we tested whether T3 treatment could
160 rescue the CPF-induced phenotype by co-exposing pre-metamorphic larvae to CPF alone (20 μ g/L), T3
161 alone (10 μ mol/L), or a combination of CPF and T3 (20 μ g/L and 10 μ mol/L, respectively) for 5
162 days. In the third experiment, three batches of larvae were exposed to control conditions, CPF (20
163 μ g/L), MPI (10 μ mol/L), and T3 alone (10 μ mol/L). Fish were sampled at 0, 5, 7, 12, and 19 dpt
164 to investigate body shape changes and obtain a complete developmental frame. Finally, the fourth
165 experiment focused on transcriptomic changes in metamorphosing larvae exposed to CPF or
166 pharmacological treatments affecting TH signaling. Larvae were exposed to CPF (20 μ g/L), MPI
167 (10 μ mol/L), or a combination of CPF and T3 (20 μ g/L and 10 μ mol/L, respectively) for 5 days.

168 2.2.3 Sample collection

169 On the day of collection, all surviving larvae were collected, immediately euthanised in a petri-
170 dish filled with overdosed tricaine methanesulfonate (MS-222, ethyl 3-aminobenzoate
171 methanesulfonate salt; Merck/Supelco CAT#A5040, 200 mg/L), and quickly imaged (see dedicated
172 section). Each larva was then transferred to a dedicated sterile 2mL microcentrifuge tube filled with
173 750mL ice-cold Trizol (TRI Reagent; Merck/Sigma-Aldrich CAT#T9424) containing three autoclaved
174 stainless steel beads (EBL Biotechnology CAT#SB2006). Samples were disrupted and homogenised
175 by mechanical agitation in a vibrating bead mill (TissueLyser II, Qiagen CAT#85300,

176 RRID:SCR_018623; 3 min, 30Hz, room temperature). Homogenised sample lysates were stored at -
177 20°C for THs quantification or at -80°C overnight for RNA extraction. RNA extraction was resumed
178 the following day for 10 selected samples per condition (i.e. 50 samples total: maximum sample
179 number to maintain sufficient per-sample data output (\geq 25 million reads/sample) from a single
180 Illumina P3 flow cell). Selection criteria the 10 larvae actually selected for sequencing were chosen
181 based on homogeneity of end of treatment phenotype. Specifically, for treatments with homogeneous
182 outcomes (DMSO, T3), larvae were selected randomly, while for treatments with heterogeneous
183 outcomes (MPI, CPF, CPF+T3), the most extreme phenotypes were discarded. Specifically, MPI-
184 treated larvae with the most noticeable head-bar were discarded (inferred to be least responsive to
185 MPI). In the CPF treatment, the two larvae looking most- and least- affected were discarded, and all
186 other larvae were sequenced. In the CPF+T3 treatment, larvae looking the least advanced in their
187 metamorphosis were discarded (based on trunk bar development).

188 2.3. Quantification of TH levels

189 THs were extracted from pools of 5 larvae. Following the protocol developed by Holzer et al,
190 2017, larvae were weighed, crushed in 500 μ l of Methanol with a high-speed benchtop homogeniser
191 (FastPrep 24, MP Biochemicals; RRID:SCR_018599), and centrifuged at 4°C for 10 minutes.
192 Centrifugation was repeated twice, and supernatants from each step were collected and pooled. Then,
193 the pellets were resuspended in a mix of methanol (300 μ l), chloroform (100 μ l) and barbital buffer
194 (150 μ l), crushed, and centrifuged at 4°C. Supernatants were collected and preserved with the previous
195 supernatants. Pooled supernatants were then dried at 65°C. Hormones were re-extracted twice from the
196 dried extracts with a mix of methanol, chloroform and barbital buffer, centrifuged. Supernatants were
197 pooled and dried at 65°C. Final extracts were re-suspended in 250 μ l of Phosphate Buffer Saline (PBS)
198 and kept at -20°C until quantification. TH concentrations were measured by a medical laboratory of

199 Perpignan (Médipole) using an ELISA kit (Access Free T3, Access Free T4, Beckman Coulter). TH
200 quantification experiments were replicated three times, from three different clutches.

201 2.4. Imaging of treated larvae

202 Larvae were imaged in a transparent petri dish of overdosed MS-222, just before further
203 processing for RNA extraction (see dedicated section). Pictures were taken on a SC180 digital camera
204 mounted to a SZ61 Zoom Stereomicroscope (RRID:SCR_018950) with a Plan achromatic 0.5x
205 auxiliary objective (110ALK-0.5X-2, CAT#N2165500), transmitted LED illumination, and an external
206 LG-LSLED light source (all Olympus/Evident), using Olympus cellSens Software
207 (RRID:SCR_014551). Scale bars (1mm) were added to all pictures using Fiji/ImageJ (Schindelin et al.,
208 2012; RRID:SCR_002285) Analyze > Tools > Scale Bar. Montages, for each condition, were made
209 using Fiji/ImageJ function Image > Stacks > Stack to Images, on a cropped portion of the image
210 containing the fish.

211 2.5. Morpho-phenotypic markers of metamorphosis

212 2.5.1 White band formation

213 White band formation is one of the most salient features of clownfish metamorphosis and has
214 been shown to be regulated by THs (Salis et al., 2018). The adult color pattern of *Amphiprion ocellaris*
215 is characterized by three white bands on an orange body background (Salis et al., 2018, 2019). Using
216 the developmental timing of the white bands formation, specifically at 10 dph under control conditions
217 (DMSO and at the Observatoire Océanologique of Banyuls-sur-Mer), when the fish typically exhibit
218 nearly one full white band, we compared the number of white bands across different experimental
219 conditions with increasing concentrations of CPF (10, 20, or 30 μ g/L), T3 (10^{-7} M), or MPI (10^{-7} M).

220 2.5.2 Allometric relation and body shape analyses

221 To assess the impact of treatments related to TH on body morphology, we studied allometric
222 relations and body shape changes. To do so, the standard length (SL, distance from the snout to the
223 middle of the caudal peduncle; mm) of each fish was measured using Fiji/ImageJ from fish
224 photographs. Variation in body shape during metamorphosis was investigated by using landmark-based
225 geometric morphometric methods (James Rohlf & Marcus, 1993). To study allometric body variation,
226 the x and y coordinates of 13 homologous landmarks were digitised using the software TpsDIG2 v2.31
227 (© 2017, Rohlf). Generalised Procrustes Analysis (GPA) was conducted to align specimens (gpaen
228 function from the R-package geomorph (version 4.0.6); Adams & Otárola-Castillo, 2013; Baken et al.,
229 2021), resulting in a shape dataset. Differences in the pattern of shape variation among treatments were
230 examined through various comparative analyses. Initially, principal component analysis (PCA) was
231 performed on shape variables to explore and visually compare the trajectory of body shape variation
232 among and within treatments along the first two principal component axes. Deformation grids
233 generated by tpsRelw32 V1.70 (© 2017, Rohlf) were used to illustrate and describe shape changes
234 associated with PC axes. Furthermore, we assessed the variation in the pattern of shape transformation
235 among treatments by fitting linear models with all shape variables using geomorph's procD.lm
236 function, followed by an analysis of variance (ANOVA) conducted with geomorph's LM.RRPP
237 function (Collyer and Adams, 2018). Subsequently, ontogenetic trajectories defined by days post
238 treatment (0dpt, 5dpt, 7dpt, 12dpt, and 19dpt) in morphospace were compared by using the function
239 trajectory.analysis from geomorph. Pairwise comparisons were then used to assess differences in the
240 amount of body shape changes (i.e. the length of the ontogenetic trajectory in morphospace) among
241 treatments.

242 2.6. Analysis after RNA extraction and sequencing

243 2.6.1. RNA extraction and sequencing

244 RNA was extracted and sequenced from *A. ocellaris* tissues, with full details provided in the
245 Supplementary Materials and Methods (Section 2). The methods are comprehensively described in the
246 Supplementary Materials and Methods, including RNA extraction (Section 2.1), library preparation
247 and sequencing (Section 2.3), and the analysis of bulk RNA-seq data (Section 2.4).

248 2.6.2. Analysis

249 Trimmed reads were quantified at the transcript-level using the pseudo-aligner salmon v1.10.1
250 (RRID:SCR_017036; Patro et al., 2017) against the clownfish *Amphiprion ocellaris* reference
251 transcriptome, using the genome as a decoy (decoy-aware pseudo-alignment; assembly
252 ASM2253959v1; Ryu et al., 2022), as per documentation, and using flags --validateMappings --
253 seqBias --gcBias. The average mapping rate was 85.12% of total reads.

254 Salmon output transcript-based quantification files (quant.sf) were imported in RStudio
255 (RRID:SCR_000432; Posit team, 2023) and summarised at the gene level using the tximport function
256 from the tximport package (RRID:SCR_016752; Soneson et al., 2015), referencing the gene models of
257 the *Amphiprion ocellaris* reference genome assembly ASM2253959v1. The counts matrix was
258 obtained by re-calculating counts through the flag countsFromAbundance = "lengthScaledTPM". Gene
259 metadata (names, descriptions) were loaded from a custom-curated reference file based on the
260 integration of Ensembl (still based on assembly AmpOce1.0) and NCBI annotations. This metadata
261 reference is available at the code repository associated with this publication. Counts were processed as
262 a DGEobject (edgeR package, RRID:SCR_012802; Robinson et al., 2010; McCarthy et al., 2012; Chen
263 et al., 2016; Chen et al., 2024) and differences in library size were taken into account by obtaining
264 counts per million (CPM) values (edgeR's function cpm) to allow a comparable threshold to filter out

265 of lowly expressed genes. Here, we only maintained genes for which at least 10 counts could be
266 detected (arbitrary) in at least 10 samples (our smallest experimental unit being $n=10$ per treatment).
267 This corresponded to a threshold of 1.226291 CPM based on the sample with lowest library size,
268 resulting in a filtering out of 5351 out of 26889 genes (19.9%).

269 PCA, sample correlation plots, and heatmap visualisations were computed on the filtered count
270 data, taking into account library size differences and correcting against compositional bias through the
271 Median of ratios method internal to the DeSeq2 pipeline (DESeq2 package, RRID:SCR_015687; Love
272 et al., 2014). Counts were then further variance stabilised (DESeq2's
273 varianceStabilizingTransformation function). PCA and correlation plots were calculated on the most
274 variant genes of the dataset, with a variance threshold set based on the knee of the variance distribution
275 of all genes (kneedle function from kneedle package; Tam etam4260.github.io/kneedle/). Here, this
276 corresponded to a sample variance (s^2) threshold of 0.21, leading to selecting the top 3418 (15.87%)
277 genes as being “most variant”. Pearson correlation matrix: pairwise Spearman's rank correlation
278 coefficients between samples were calculated using the “cor” function (base R). PCA plot: PCA was
279 computed on centered, unscaled counts (prcomp function, base R) and the samples' PC scores were
280 plotted using ggplot2 (RRID:SCR_014601; Wickham 2016), using ggalt's geom_encircle function
281 (Rudis et al., 2017) to enclose samples from the same treatment within polygons. Heatmaps: all
282 heatmaps were plotted using the function Heatmap from the ComplexHeatmap package (Gu et al.,
283 2016; Gu 2022) reporting z-scores ((counts – mean)/sample standard deviation; base R's “scale”
284 function with default parameters). Similarity: the similarity categorisation was computed — for each
285 differentially expressed gene — by calculating the average z-score value under each treatment, and
286 calculating z-score differences between treatments (i.e. distances in standard deviation units). If the
287 closest value was more than one standard deviation away, the treatment response was categorised as

288 unique to that treatment (similar to neither). If the values in both other treatments were within 1
289 standard deviation from the one of the treatment of interest, the treatment response was not adjudicated
290 to either (similar to both). Otherwise, similarity was adjudicated to the treatment with the closest
291 distance.

292 Differential Expression analysis was computed on the filtered count data, normalised using the
293 trimmed mean of M values (TMM) method with reference to the sample with smallest library size to
294 remove compositional bias (Robinson, Oshlack, 2010; through edgeR's calcNormFactors function),
295 and then processed through the limma-voom pipeline (voom function from limma package,
296 RRID:SCR_010943; Ritchie et al., 2015) feeding the model matrix $-1 + \text{treatment}$ given that no
297 dominant batch effect was apparent by PCA exploratory analysis (i.e. no effect stronger than the
298 treatment effect). Differential Expression: Linear regression models were fit to the counts data, using
299 voom's mean-variance precision weights (limma's lmFit). Pairwise treatment–DMSO contrast
300 matrices were built (limma's makeContrasts), and computed coefficients (limma's contrasts.fit) were
301 moderated by Empirical Bayes smoothing of standard errors (limma's eBayes). A gene was
302 categorised as differentially expressed if showing a $\log_2 \text{FC} < -1$ or $> +1$ (i.e. two folds or more), and
303 associated with a Benjamini-Hochberg-corrected (adjusted) p value < 0.05 (limma's topTable
304 adjust.method = "BH"). Gene-enrichment and over-representation analysis: was performed based on
305 the Ensembl "biological_process" Gene Ontology annotation for *Amphiprion ocellaris*
306 ("aocellaris_gene_ensembl" dataset; useMart and getBM functions from biomaRt package,
307 RRID:SCR_019214; Durinck et al., 2005; Durinck et al., 2009). Given that Ensembl annotations are
308 based on a different (earlier) genome assembly (AmpOce1.0), genes with no matching Ensembl ID
309 could not be taken into account. Enrichment analysis was performed using the enricher function from
310 the clusterProfiler package (RRID:SCR_016884; Yu et al., 2012; Wu et al., 2021) with default

311 parameters (minGSSize = 10, maxGSSize = 500, universe = all Ensembl genes) and qvalueCutoff =
312 0.05. Highlighted pathways were consistent across alternative enrichment and over-representation tests
313 (see notebook). Each set of differentially-expressed genes was also parsed and annotated manually to
314 complement GO-based approaches. Venn plots were plotted with the ggVennDiagram function from
315 the ggVennDiagram package (Gao et al., 2021), or venneuler from the venneuler package (preserving
316 relative scale). Alluvial plots: were plotted using functions from the ggalluvial package (Brunson, Read
317 2023; Brunson 2020). Of genes with a statistically-significant change in expression in both of the
318 treatments compared, expression was classified as “increased” if the change in expression (compared
319 to control) in the second treatment was stronger than the one in the first treatment (higher for genes
320 with positive change, or lower for genes with negative change), “attenuated” if the change in
321 expression was weaker, and “reversed” if the change in expression was of opposite sign across the two
322 treatments.

323 3. Results

324 3.1. CPF impairs white band formation in clownfish in a TH-dependent manner

325 To determine CPF effects during metamorphosis in clownfish, we exposed larvae for 5 days
326 (from 5dph, i.e. before metamorphosis), to different concentrations of CPF (10 μ g/L, 20 μ g/L or
327 30 μ g/L). We observed that fish exposed to CPF show a delay in the appearance of white bands when
328 compared to DMSO vehicle controls (**Fig. 1A-D**). This effect is dose-dependent with 100% of the fish
329 exhibiting one or two bands in controls, 60% at 10 μ g/L, 52% at 20 μ g/L, and 25% at 30 μ g/L of CPF
330 (**Fig. 1E**). Fish in the control conditions have significantly more white bands than fish exposed to
331 CPF, at all pesticide concentrations (Control vs CPF-10 μ g/L, p-value = 0.0007559; Control vs CPF-

332 20 μ g/L, p-value = 0.0006033; Control vs CPF-10 μ g/L, p-value = 5.29E-06; χ^2 test). These results
333 demonstrate that CPF alters the timing formation of white bands during clownfish metamorphosis. We
334 indeed observed that white bands eventually appear, but at much later time points (after 19 days of
335 treatment, **Fig. S1**).

336 As white band formation has been shown to be dependent on THs (Salis et al., 2021) we next
337 evaluated whether CPF was effectively able to decrease TH levels during clownfish metamorphosis.
338 Accordingly, we again exposed pre-metamorphosis larvae to increasing concentrations of CPF (10, 20
339 or 30 μ g/L CPF) and we quantified T3 and T4 levels at 3dpt and 5dpt. At 3dpt, T3 levels were
340 significantly reduced in larvae exposed to 10 and 30 μ g/L of CPF compared to the control (**Fig. 1F**, P-
341 value <0.05), and they were reduced, albeit non significantly, after treatment at 20 μ g/L CPF. T4 3dpt
342 levels remained instead stable for all CPF concentrations (**Fig. 1G**, P-value >0.05). At the end of the
343 exposure period (5dpt), no significant differences in T3 and T4 were observed between the control and
344 CPF conditions. These results, showing a transient effect on T3 but not on T4, are strikingly similar to
345 those observed in surgeonfish larvae (Holzer et al., 2017).

346 Having observed a concomitant effect of CPF on white band formation and T3 levels, we next
347 tested whether a causal relationship exists between the two. We therefore tested whether T3 treatment
348 was able to rescue the CPF-induced phenotype. For this, we conducted co-exposure treatment of pre-
349 metamorphic larvae (at 5dph) with CPF alone (20 μ g/L), T3 alone (10^{-7} mol/L) and a mix of CPF + T3
350 (20 μ g/L, 10^{-7} mol/L, respectively) for 5 days. Again, the effect on white bands caused by CPF was
351 significant compared to the control (**Fig. 2**; P-value: 0.005) and T3 treatment accelerated white band
352 formation as observed in Salis et al., 2021. Interestingly, co-exposure of T3 and CPF rescued the
353 phenotype induced by CPF alone: co-treated larvae are similar to the control group (**Fig. 2**; P-value:

354 0.855). This result clearly shows that the CPF effect on white band formation is causally linked to the
355 observed decrease of T3.

356 3.2. CPF alters the pattern of ontogenetic shape changes in clownfish larvae

357 Although white band formation is the most noticeable phenotypic effect of THs in clownfish, it
358 is not the only readout of metamorphosis. We therefore explored the effect of CPF exposure on the
359 known changes in larval body shape that occur during clownfish metamorphosis (Roux et al., 2023).
360 To this aim, we used a geometric morphology approach based on 13 anatomical landmarks (Fig. S2)
361 comparing larvae exposed to CPF (20 μ g/L) to control larvae treated with DMSO, as well as to larvae
362 treated with T3 (10⁻⁷mol/L) or with a cocktail of goitrogens that impair TH production (Methimazole,
363 Potassium Perchlorate, Iopanoic Acid: MPI, 10⁻⁷mol/L), as described in Roux et al., 2023. Larvae were
364 treated at 8 dph, for 19 days (0dpt to 19dpt) to fully capture the temporality of the developmental
365 trajectory affected by CPF.

366 Developmental trajectories are clearly discernible in the shape space defined by the two first
367 principal components (Fig. 3A). The main shape changes revealed by PC1 (45.3 % of total shape
368 variation), clearly associated with fish development, concerned modification of relative body depth
369 (Fig. 3D-E). PC2 (9.15% of total shape variation) captured changes associated with head shape (Fig.
370 3B-C). Samples from Control treatment draw a clear developmental trajectory along PC1 from 0dpt to
371 19dpt. Small variation along PC2 is also observed between 5dpt and 7dpt, revealing transient head
372 shape transformation during clownfish metamorphosis. Globally, during metamorphosis, clownfish
373 larvae lose their elongated body shape and transform into miniature ovoid-shaped adults. In CPF-
374 exposed larvae, the separation of sampling periods along PC1 is far less pronounced than in control.
375 Notably, 5dpt individuals remain mixed with 0dpt, 7dpt, and 12dpt fish, suggesting a profound

376 alteration of the pattern of shape changes. Overall, shape changes are less advanced in CPF-treated fish
377 than in control. Similarly, fish exposed to MPI are less advanced than the control condition, and less
378 regularly distributed along PC1 as a function of age. Larvae exposed to T3 are, in contrast, clearly
379 distributed according to age along the PC1 axis. In particular, 5dpt larvae are totally separated from
380 0dpt ones, and only marginally mixed with 7dpt fish, reflecting an acceleration of the shape changes in
381 this treatment. Moreover, we noticed that the PC2 values of T3-treated fish have a stronger increase at
382 5dpt compared to the control, an effect we do not see in CPF or MPI-treated fish.

383 Multivariate linear models reinforce our visual exploration of morphospace occupation. The
384 models confirm that body shape varies across time and treatment (**Table S1**). Treatment significantly
385 affects the rate of shape changes during the studied period of development ($F= 10.40$, $Z=8.41$ p-
386 value=0.001; **Table S1**). Developmental trajectories within the morphospace were delineated by
387 connecting four linear segments representing the five sampling periods (0dpt, 5dpt, 7dpt, 12dpt, and
388 19dpt). Comparative analysis of these time-segmented developmental trajectories revealed differences
389 in terms of distance (**Fig. 3F**). Larvae exposed to CPF exhibited the shortest trajectory (0.055),
390 followed by MPI larvae (0.062), indicating that the amount of shape variation observed at 19dpt is
391 lower than the shape transformation observed under the control condition during the same period of
392 time (0.067). The longest trajectory was observed in T3-treated larvae (0.070). Significant differences
393 were observed between CPF and T3 treatment ($d= 0.0148$, $Z= 1.7385$, p-value = 0.033). Taken
394 together, these results highlight the similarity of CPF and MPI treatment on shape transformation,
395 reinforcing the notion that CPF acts here too by decreasing T3 levels.

396 3.3. CPF triggers unique transcriptomic changes in metamorphosing larvae, with mixed
397 features of both TH-activation and TH-blockade.

398 The effects described above, highlight a strong similarity between CPF- and MPI treatments
399 (decreased TH levels, impaired metamorphosis). Still, we do not expect these readouts to capture the
400 full complexity of the mode of action of the pesticide. Accordingly, we performed bulk transcriptomic
401 analysis of whole CPF-, T3-, and MPI- treated larvae, as well as CPF+T3 (rescued treatment; same
402 concentrations as used throughout, see materials and methods). These analyses are likely able to
403 provide a more global view of the effects of CPF on clownfish larvae and on the metamorphic process.
404 An overview of the main features of the bulk RNAseq dataset is presented in **Fig. 4**, and the
405 phenotype of treated larvae (similar to those observed in the corresponding treatments in Roux et al.,
406 2023) is shown in **Fig. S3**. Summary data relating to the technical aspects of library preparation
407 (library size, mapping rates, etc.) is provided in the materials and methods, and in the documents
408 associated with this publication.

409 We observe that, unlike T3 and MPI treatment, exposure to 20 μ g/L of CPF results in a rather
410 heterogeneous transcriptomic response in clownfish juveniles. Indeed, the transcriptomes of CPF-
411 treated larvae show the most variable within-treatment correlation coefficients, as well as amongst the
412 lowest ones (section framed in yellow in **Fig. 4A**). Such a high heterogeneity in the response to CPF
413 treatment is similarly reflected by the wider spread of CPF samples across the main principal
414 components plane (**Fig. 4B**), though each treatment condition clusters distinctly. To our surprise, we
415 also notice that, within such heterogeneity, transcriptomic changes resulting from CPF exposure not
416 only correlate to MPI but also to T3, and to similar degrees (**Fig. 4A**). In summary, even though the
417 pesticide clearly results in an impaired-metamorphosis phenotype at the phenotypic level (see

418 previously, **Fig. 1** and **Fig. S3**), the effects of the pesticide may not be correctly described as being
419 MPI-like or TH-like at the transcriptome level. Rather, CPF appears to induce unique transcriptomic
420 changes involving — among others — TH-sensitive genes (i.e. genes also modulated by T3 or MPI).

421

422 While T3 has mostly an activating action on gene expression (70% of differentially expressed
423 (DE) genes are upregulated) and MPI a repressive action on gene expression (59% of DE genes are
424 downregulated), CPF is seen to have a more mixed action (48% DE genes upregulated, 52%
425 downregulated) (**Fig. 4C**). Notably, it shares almost equal proportions of DE genes with either of the
426 two opposite treatments (16.7% and 17.7% of its DE shared with T3 and MPI DE genes, respectively),
427 suggesting that CPF acts mimicking both MPI, and paradoxically T3 (**Fig. 4C**). Accordingly, the
428 pattern of expression of differentially expressed genes under CPF treatment is mostly unique to the
429 CPF condition. Yet expression levels can at times be seen to be similar to those of T3-treated samples,
430 at times instead to those in MPI-treated samples. In this, CPF thus correlates to the effects of both
431 treatments, though globally remaining distinct (**Fig. S4**).

432 Overall, we thus find that CPF triggers a distinct transcriptomic response in metamorphosing
433 clownfish larvae (which respond heterogeneously to the pesticide), and though MPI-like effects may be
434 seen at the phenotypic level, at the transcriptome level these also involve responses normally caused by
435 increased TH levels.

436

437 3.4. CPF has goitrogenic effects on the larval HPT axis, though also shares systemic
438 effects with T3

439 Given the role played by TH in driving vertebrate metamorphosis, a role we have previously
440 extensively documented in clownfish (Roux et al., 2023), and knowing the link between CPF and TH
441 action in a number of experimental settings (Holzer et al, 2017; Besson et al, 2020), we first sought to
442 fully characterise the points of overlap between the genes affected by CPF treatment, and those
443 regulated by TH or MPI. That is, within the unique transcriptomic signature induced by CPF, we
444 isolate the most likely candidates that could explain the effects of CPF on metamorphosis progression.
445 For this, we focused on genes involved in the TH-signalling pathway itself, as well as on the genes
446 responsive to this pathway, such as iridophore genes (Salis et al., 2019; Libin et al., 2022), and on the
447 genes involved in the upstream control of TH production (Hypothalamo-Pituitary-Thyroid axis, HPT;
448 see Blanton and Specker, 2007). In vertebrates, particularly in amphibians, a connection also exists
449 between THs and the ACTH/corticoid (Hypothalamo-Pituitary-Interrenal axis, HPI) axes. Indeed, the
450 CRH (the hypothalamic peptide controlling the HPI axis) has also been found to control TSH and TH
451 production (Larsen et al., 1998; De Groef et al., 2006; de Jesus 1990) (**Fig. 5A**). Though the presence
452 or activity of this link in fish is still debated (Huerliman et al. 2024), we nonetheless analysed the effect
453 of CPF on both axes.

454 At the level of the expression of TH-signalling pathway components we critically find that CPF
455 mimics the effects of goitrogens (MPI), especially in the downregulation of TH synthesis genes (**Fig.**
456 **5B, middle panel**). Specifically, the observed downregulation of the iodothyronine deiodinase *dio1*, of
457 the two dual oxidases *duox1* and *duox2*, as well as the decrease in expression of the sodium-iodide
458 symporter *slc5a5* suggests that CPF, like MPI, impairs T3 production, as observed in **Fig. 1**.
459 Consistently, we observe a significant increase of expression of embryonic development genes

460 normally associated with thyroid growth and differentiation (*nkx2.1*, *pax8*, *pax2a*), likely reflecting
461 compensatory changes to hypothyroidism. Similar changes have been recently described in zebrafish in
462 response to 2-ethylhexyl diphenyl phosphate (EHDPP) another organophosphate pesticide (Shu et al.,
463 2024). Furthermore, we see that the goitrogenic effect of CPF can be completely rescued by T3
464 supplementation: CPF+T3 samples show a reversed TH pathway signature analogous to that of T3-
465 only samples (**Fig. 5B, middle panel**). This latter observation therefore suggests that CPF does not
466 directly damage thyroid follicular cells, but rather only impairs their ability to produce active THs.

467 Interestingly, these data are also sufficient to explain the effect of CPF treatment (and T3
468 rescue) on white band formation described in previous sections (**Fig. 2**). Indeed, *duox1*, a gene found
469 to mediate band patterning dynamics during clownfish metamorphosis (Salis et al., 2019), and which is
470 a known regulator of iridophore development in zebrafish (Chopra et al., 2019; Salis et al., 2019), is
471 downregulated by CPF in a T3-dependent fashion. In addition, we observe that all iridophore
472 development genes downregulated by MPI, and therefore correlated to the observed failure of white
473 band development (*fhl1b*, *alkal2b*, *pnp4a*, *slc2a15a*, *gpnmb*, *apod1a*, *saiyan/si:ch211-256m1.8*), are
474 similarly downregulated by CPF, again in a T3-dependent manner (**Fig. 5B, bottom panel**). The
475 relative level of expression of these genes within the CPF condition qualitatively correlates with the
476 actual band phenotype of the larvae themselves, since the larvae with the lowest level of expression are
477 also the ones with the faintest bands (larvae 1,5,6; highlighted in yellow in **Fig. S3**).

478 It is less clear whether the effect of CPF on TH production derives from upstream disruption of
479 the HPT or HPI axes. Indeed, of the hypothalamic peptides controlling TSH production, TRH and
480 CRH expression levels do not have significant change compared to control. A significant CPF-
481 treatment-specific increase in expression, though heterogeneous and of low magnitude, is however
482 detected for the receptors of TRH and CRH on pituitary cells, and for the TRH-degrading ectoenzyme

483 (Fig. 5B, top panels). Still, the expression of TSH itself is undetectable, as well as that of the receptor
484 that would transduce this signal to thyroid follicles (*thsr*). Accordingly, and though we see clear
485 goitrogenic effects at the level of the TH-synthesis and signalling pathway, we believe that our data is
486 unable to address whether such effect may (also) derive from disruption of the hypothalamic/pituitary
487 control of TH-production.

488 Having found that CPF effectively acts as a goitrogen on the larval TH-pathway genes, we note
489 that comparison between differentially expressed gene sets across treatments had shown that CPF only
490 partially recapitulates the transcriptomic signature of the MPI goitrogen mix: that is, only 36% of MPI
491 regulated genes are also regulated by CPF (Fig. 4C). Based on the available clownfish Gene Ontology
492 reference, no pathway appears to be significantly enriched within this conserved transcriptional
493 response (not shown; see code associated with this publication). Literature-based manual imputation of
494 function (for the genes where this was possible at the time of writing) highlights disparate functions
495 that, to the best of our knowledge about teleost metamorphosis, we are unable to summarise or to link
496 to specific modes of action of MPI. We do however identify genes with clear developmental or
497 metamorphic roles, as also based on our previous work on the topic (Roux et al., 2023; Salis et al.,
498 2019). Accordingly, we highlight that amongst CPF's MPI-like effects — in addition to those on white
499 band pigmentation mentioned above — are effects indicating an impaired switch to post-
500 metamorphosis haemoglobins (also discussed later), as well as downregulation of genes involved in
501 intestinal development (anterior gradient 2 *agr2*), intestinal/digestive function (aquaporin 8a *aqp8.2*;
502 acidic mammalian chitinase 3/4-like; two trypsinogen1-like; elastase 2a-like), and ion regulation
503 (sodium-phosphate symporter *slc34a2b*) (Fig. 5C). A complete list of all genes in each treatment
504 intersection is provided as a **Supplementary File**.

505 The observation that CPF acts as a goitrogen on the larval TH-signalling pathway yet sharing
506 transcriptomic effects with T3 treatment (i.e. TH activation; 30% of T3 upregulated and downregulated
507 genes combined) may appear paradoxical. Yet this suggests that some of the transcriptional effects
508 observed in the T3 condition can be triggered by T3-independent processes (i.e. are not necessarily
509 caused by increased TH levels). Again, we focus on genes we know to be intimately associated with
510 clownfish metamorphosis, or with clear function during clownfish development. As shown in **Fig. 5C**,
511 both CPF and T3 lead to downregulation of lipid metabolism genes (specifically, the fatty acid
512 synthase gene *fasn*, and the fatty acid elongases *elovl5* and *elovl6* mediating short- and long-chain
513 unsaturated fatty acid synthesis, but also of the lipid precursor generating enzymes acetoacetyl-CoA
514 synthetase and acetyl-CoA carboxylase). We have previously described how the T3-regulated natural
515 metamorphosis of clownfish larvae is characterised by a major metabolic shift in energy production
516 involving divestment from lipogenesis/fatty acid elongation (Roux et al., 2023). This is what we also
517 recover here. Accordingly, the apparent incongruence between the CPF-treated larvae and a T3-like
518 transcriptomic responses simply appear to represent the overlap between — on one hand — the natural
519 switching-off of specific metabolic functions (dependent on an active TH signalling pathway) and —
520 on the other hand — CPF-specific transcriptional response (TH signalling independent). The shared
521 upregulation of immune genes (**Fig. 5C**) may similarly reflect the overlap between the T3-regulated
522 natural development of immunity during metamorphosis, and the damage-induced upregulation of
523 these components in larvae exposed to CPF.

524 Another T3-like effect of CPF, yet decoupled from accompanying systemic changes that would
525 however happen during TH-regulated metamorphosis, is seen in its downregulation of pre-
526 metamorphosis haemoglobins. Fish metamorphosis is characterised by a switch of the haemoglobin
527 gene sets expressed, endowing the larva with a specialised post-metamorphosis (haemo)globin

528 complement that, in clownfish, has been suggested to be tailored to the hypoxic environment of coral
529 reefs (Downie et al., 2023). Here, though CPF leads to the downregulation of pre-metamorphosis
530 globins just like T3, it also leads, unlike T3, to the downregulation of post-metamorphosis ones (as
531 noted in the MPI-like effects; **Fig. 5C**). Just as what we see for lipogenesis genes, it again appears that
532 at least some of the (unexpected) similarities between T3 and CPF treatments may stem from the
533 partial overlap between i) the switching-off phase of T3-induced physiological transitions, and ii) the
534 widespread switching off of gene functions under CPF. Of interest, comparing the transcriptional
535 response of CPF vs CPF+T3 (and vice versa) shows that exogenous T3 carries a strong attenuating
536 power on the transcriptional responses induced by CPF (**Fig. 5D, left**), especially on the genes
537 downregulated by the pesticide. Still, and though T3 supplementation to CPF can recover a T3-like TH
538 signalling pathway status (**Fig. 5B**), it does not fully recapitulate the T3-only status (**Fig. 5D, right**),
539 and only recovers around 68% of the differentially expressed genes of the T3 condition.

540 In conclusion, we find that CPF acts as a goitrogen on the TH signalling pathway of clownfish
541 larvae, impairing normal T3-mediated processes such a white band formation, intestinal development,
542 and blood oxygen transport, in an analogous fashion to the reference compound mix MPI. The
543 goitrogenic effect on the larval TH signalling pathway can be fully rescued by the addition of
544 exogenous T3: all pathway components are expressed at T3-like levels even in the presence of CPF.
545 Still, T3 addition and the recovery of an active TH-signalling status is not sufficient to contrast all
546 CPF-induced responses. Conversely, we also find that while CPF may appear to recapitulate T3-
547 regulated changes that normally accompany metamorphosis (e.g. lipogenesis switch off, haemoglobin
548 switch), in contrast to T3 effects, this clearly occurs in a way that is not coordinated at the organism
549 level. Still, it is evident that CPF triggers effects that cannot be attributable to TH signalling pathway

550 modulation as they are unaffected by either T3 or MPI (**Fig. 5C**). In fact, these are the majority of the
551 differentially expressed genes detected in our study.

552 3.5. CPF affects cholesterol and vitamin D synthesis pathways, DNA repair, and
553 immunity.

554 Regardless of the effect of CPF on the larval TH signalling pathway and TH levels, GO-driven
555 analysis of differentially expressed genes between CPF-treated and DMSO-control juveniles highlights
556 three major effects of the organophosphate pesticide, which in fact dominate the transcriptional
557 response of the larvae. These involve: i) cholesterol and vitamin D synthesis, ii) DNA damage/repair,
558 and iii) immunity/antiviral responses (**Fig. 6A**). The prevalence of these three main areas of effect was
559 also independently highlighted by manual literature-based categorisation of gene functions.

560 Accordingly, we find that CPF-treated juveniles display a unique, coordinated, downregulation
561 of nearly all genes involved in cholesterol synthesis (**Fig. 6B**). Specifically, and with few exceptions,
562 all enzymatic functions leading from acetyl-CoA to the cholesterol final product are downregulated
563 under CPF. Genes involved in cholesterol storage/export are upregulated (e.g. esterifying enzymes
564 sterol O-acyltransferases) despite an overall downregulation of all genes encoding for apolipoproteins
565 (see **Fig. S5C**). Our interpretation is that cells may be attempting to export as much as they can of the
566 little cholesterol they have in the face of depressed cholesterol synthesis and cholesterol transport
567 status. Notably, none of these metabolic changes can be rescued by T3 supplementation, and these
568 pathways are not regulated by T3 or MPI alone. Moreover, the downregulation of the cholesterol
569 synthesis pathway is accompanied by downregulation of the genes involved in vitamin D synthesis
570 (liver vitamin D 25-hydroxylase *cyp2r1* and kidney 25-Hydroxyvitamin D 1-alpha-hydroxylase
571 *cyp27b1*), matched by upregulation of vitamin D degradation (kidney vitamin D 24-hydroxylase

572 *cyp24a1*). Notably, no other cholesterol-utilising pathway, notably steroidogenesis and bile acid
573 conversion, undergoes analogous coordinated changes in expression (**Fig. S5**).

574 Another important set of targets downregulated by CPF, picked up by GO-driven analysis,
575 involves DNA damage repair genes (**Fig. 6C**), consistent with the genotoxic effect of this pesticide
576 observed in other contexts (e.g. Li et al., 2015). Of these, we specifically note the downregulation of
577 multiple genes involved in the detection and repair of double-strand DNA breaks: most of the core
578 Fanconi Anemia complex genes, the gene coding for the downstream FancI/KIAA1794 protein, both
579 BRCA genes (Breast cancer 1 and 2 *brca1/2*) and their associated proteins (Retinoblastoma-binding
580 protein 8 *rbbp8/CtIP*, BRCA1-associated RING domain protein 1 *bard1*, Partner and localizer of
581 BRCA2 *palb2*), as well as the repair protein RAD52 homolog *rad52*. We also note that CPF exposure
582 leads to downregulation of many base excision repair pathway components, including notably the
583 Apurinic/apyrimidinic endodeoxyribonuclease 1 *apexl/ape1* (the major AP endonuclease of this
584 pathway) and downstream repair enzymes DNA ligase I *ligI* and Flap structure-specific endonuclease
585 1 *fen1*, as well as the two DNA glycosylases Nei endonuclease VIII-like 3 *neil3* and Uracil-DNA
586 glycosylase *unga*, detecting oxidised and deaminated bases respectively. Finally, we also detect
587 downregulation of ssDNA damage detection proteins (Replication protein A 1 and 2, *rpa1/2*) as well as
588 key ssDNA damage checkpoint components Serine/threonine-protein kinase ATR *atr* and Checkpoint
589 kinase 1 *chek1*. Incidentally, CPF also leads to the downregulation of most of the major cyclins and
590 cyclin-dependent kinases (cyclinB2; wee1, cdk2, cyclinA2/E1/E2; **Fig. 6C**), which are also key
591 components of cell cycle checkpoint mechanisms. Again, none of these genes are differentially
592 expressed by T3 or MPI alone. In summary, we detect transcriptomic responses suggesting that
593 clownfish larvae exposed to CPF, or at least specific subpopulations of cells within them, are left
594 extremely vulnerable to genomic instability (given the depressed repair capabilities) if not cell-cycle

595 impaired. Downregulation of DNA repair genes in the absence of cell proliferation has been linked —
596 in other contexts — to the activation of programmes of cellular senescence in response to genotoxic
597 stress (Collins et al., 2018).

598 Among upregulated genes, a striking unique signature of CPF treatment consists in the
599 upregulation of genes normally associated with antiviral response, or response to intracellular nucleic
600 acids, and therefore also associated with a proinflammatory status (Fig. 6D). Apart from the
601 upregulation of multiple cytokine and chemokine genes, pathway components of the type II interferon
602 response (Interferon gamma 1 *ifng1*, Signal transducer and activator of transcription 1a and 2 *stat1a*,
603 *stat2*), and a multitude of interferon response genes; we were surprised to see upregulation of pathways
604 normally responsive to cytosolic viral RNAs and DNA. Specifically, we detect upregulation of both
605 RIG (DEXH (Asp-Glu-X-His) box polypeptide 58 *dhx58*) and MAD5 signalling pathways (interferon
606 induced with helicase C domain 1 *ifih1*) detecting ssRNA, short dsRNA, and long dsRNA; downstream
607 transcriptional interferon regulatory factors, as well as multiple genes involved in the innate antiviral
608 response or viral RNA translation termination. The dsRNA sensor zinc finger, NFX1-type containing 1
609 *znf1x1* (Wang et al., 2019) is also strongly upregulated. Moreover, all components of the pathway
610 detecting cytosolic dsDNA, cGAs-STING, are also uniquely upregulated in response to CPF treatment.
611 Interestingly, these effects seem to specifically affect Nk- κ B components involved in the non-
612 canonical signalling pathway (*relB* + *NfkB2*). These transcriptomic responses would normally be
613 indicative of viral infection. We postulate that these pathways may be activated by the cell's own
614 nucleic acids, possibly in relation to the genomic instability detected above. In this case again, the
615 transcriptomic response cannot be rescued by T3 supplementation and in fact appears to become more
616 consistent across T3-treated juveniles.

617 Finally, because one of CPF's main mechanism of action is the inhibition of neuromuscular
618 junction cholinesterases (see e.g. Reiss et al., 2012), demonstrated at equivalent concentrations in
619 juveniles of other reef species (Botté et al., 2012), we also tested whether we could recover such an
620 effect in clownfish larvae, based on the pattern of expression of neuromuscular junction components
621 (**Fig. 6E**). Accordingly, we observe transcriptomic changes consistent with cholinergic
622 overstimulation and muscle damage, as also observed histologically in other CPF-treated fish
623 (Sudhakaran et al., 2023). Clownfish larvae exposed to CPF downregulate a number of choline
624 transporters (*slc5a7*-like) as well as the alpha subunit characteristic of the mature nicotinic
625 acetylcholine receptor (*chrna1*). Similarly, the upregulation of the ColQ subunit of the
626 acetylcholinesterase itself (*colq*) may suggest a compensatory attempt to increase recruitment of the
627 enzyme at the neuromuscular junction due to its effective loss of activity under CPF. Interestingly, the
628 neuromuscular damage experienced by larvae exposed to organophosphate is translated into the
629 upregulation of the gamma subunit of the acetylcholine receptor (*chrng*), establishing channels with
630 lower conductance typical of the receptors on foetal and denervated muscles (Mishina et al., 1986).

631 Overall, and in addition to the expected dysfunctionalisation of neuromuscular junction
632 signalling, we find that CPF has major disruptive effects on the biology of metamorphosing larvae,
633 mostly affecting the cholesterol synthesis pathway (and intermediate products), precursor of vitamin D.
634 CPF also appears to induce a surprising immunological response, and drastic depression of the larval
635 genomic repair machinery.

636

637 4. Discussion

638 Previous efforts in larval rearing development by our lab have succeeded in establishing low-
639 volume rearing conditions for pre- and peri-metamorphosis clownfish stages (Roux et al., 2021). These

640 modified rearing conditions allow us to perform routine pharmacological perturbation of clownfish
641 larvae and early juveniles. By coupling such treatments with i) photographic documentation of the end-
642 phenotype of each treated larva, and ii) end-of-treatment whole-larva RNA extraction + bulk RNA
643 sequencing, we were able to systematically obtain peri-metamorphosis “treatment → phenotype →
644 transcriptome” integrated datasets across a variety of pharmacological perturbations. We have adopted
645 this approach to outline the response of *Amphiprion ocellaris* larvae to CPF during metamorphosis, and
646 further use this transformation as a readout of TH activity to focus on the intersection between CPF
647 and the TH-signalling pathway. We show that CPF exposure, by reducing TH levels, impairs the
648 formation of white bands in clownfish larvae in a dose-dependent way, and alters the trajectory of
649 larval growth, both readouts of metamorphosis progression. Interestingly these effects can be rescued
650 by TH treatment, establishing a direct causal link between CPF effects and TH disruption. By
651 transcriptomic analysis, we fully detail the effects of the pesticide (and T3 rescue) on the larval TH
652 signalling pathway and find that CPF acts on this pathway as the reference goitrogen mix MPI. Still,
653 we find that CPF also induces systemic, TH-independent, effects on cholesterol and vitamin D
654 metabolism, DNA repair, and immunity, highlighting broader impacts on metamorphosing larvae that
655 may not be immediately discernible from phenotypic analysis alone. Our findings thus explore two
656 major areas of interest: 1) the extent- and the nature of the intersection between exposure to CPF, a
657 potential endocrine disrupting compound, and the TH-synthesis axis, with potential applications on
658 human and animal health; and 2) the general effects of CPF, as pesticide polluting many reef
659 environments, on clownfish larvae undergoing a key transition period in their life, with implication on
660 conservation, ecosystem management, and on studies of metamorphosis itself that in fact also extend to
661 species that cannot be studied in a laboratory setting (e.g. surgeonfish; Holzer et al., 2017; Besson et
662 al., 2020).

663 4.1. Endocrine disrupting effects of CPF on the TH-signalling axis

664 By profiling the response to CPF of all major- and accessory components of the TH-signalling
665 pathway, we show that this pesticide acts *de facto* as the mix of goitrogens MPI on metamorphosing
666 clownfish larvae, which we see translated in decreased measured T3 hormone levels. In addition to the
667 observed downregulation of *duox1/2* and *dio1*, our results also highlight gene expression changes
668 suggestive of hypothyroidism, as observed zebrafish larvae exposed to the organophosphate pesticide
669 EHDPP (Shu et al., 2024). Though CPF has been described as being able to damage thyroid follicle
670 cells (De Angelis et al., 2009), our CPF+T3 rescue experiments suggests that this is not the case in
671 metamorphosing larvae (or is reversible), as normal function can be fully restored even in the presence
672 of CPF. We were however unable to recover expression of some of the components of the HPT axis
673 (*tsh*, *tshR*), likely also due to the minimal proportion of pituitary tissue in our samples. Consequently,
674 we are unable to ascertain whether the suppressive action that we see on the TH signalling axis and on
675 measured T3 levels may come from upstream disruption of hypothalamic or pituitary function (as
676 suggested for CPF in zebrafish, and for other organophosphate pesticides in rat; Qiao et al., 2021;
677 Xiong et al., 2018). Interestingly, Shu et al, 2024 show that the organophosphate pesticide EHDPP
678 exerts its mechanism of action by competitively binding transthyretin (*ttr*) as a T4 mimic, such that the
679 exact mode of action of CPF remains unclear. Our data suggests that the functional intersection
680 between CPF and TH signalling lies upstream to T3 production, given our rescue experiment results
681 and hormone measurement levels. Our data also suggests that the action of the pesticide does not
682 derive from damage or irreversible inhibition of the cellular or molecular components of the TH
683 synthesis and signalling axis, given that a T3-like TH-signalling signature can be re-established in the
684 CPF-T3 condition even though CPF is still present.

685 Though we find that CPF has MPI-like effects at both the phenotypic, hormonal, and TH-
686 signalling levels, we also note that only 36% of MPI regulated genes are also regulated by CPF. Given
687 that MPI specifically targets the TH-signalling pathway, other compounds that have an MPI-like effect
688 on this pathway would be expected to recover the full response signature of the goitrogen mix. The
689 TH-signalling inhibitory effects of CPF instead do not entirely extend to all expected responsive genes.
690 As summarised in **Fig. 7**, we expect any downstream effects of CPF's goitrogenic action on the TH-
691 signalling axis to have to occur within a widely dysfunctional, CPF-toxified context (i.e. a context of
692 promiscuous acetylcholinesterase inhibition), which as such may only allow those goitrogen-induced
693 effects possible in such a broadly altered context. Accordingly, our results may not be as unexpected:
694 an underlying toxic effect of CPF on specific cell types or tissues of the clownfish larva may explain
695 differences in the sets of responding TH-controlled genes despite the same TH-signalling context.

696 As discussed in the main body of the paper, our observation that CPF also shares 30% of the
697 transcriptomics signatures of T3 treatment (i.e. TH-signalling stimulation) appears counterintuitive.
698 Yet, by analysing these shared signatures we find clear examples illustrating that these may generally
699 represent genes that, under T3, are downregulated as part of coordinated metabolic and physiological
700 switches preparing the larva to its new post-metamorphosis environment, and, under CPF, are
701 downregulated though clearly not as part of global compensatory changes in other gene sets. Taking
702 the example of haemoglobin genes mentioned previously, a toxic effect of CPF on blood cells (e.g.
703 tissue "a" in **Fig. 7**), would lead to observed downregulation of haemoglobin genes compared to
704 control, and as such overlap with the coordinated downregulation of pre-metamorphosis haemoglobins
705 in T3-treated larvae. In CPF however, post-metamorphosis haemoglobins are also downregulated, a
706 signature that would instead be recovered in MPI-treated larvae. With the examples of the lipogenesis
707 to beta-oxidation switch and of the haemoglobin complement switch, our results also incidentally

708 underscore a key role of THs in the control of metamorphosis. That is, the importance of THs is not
709 necessarily to be found in the specific genes downregulated or upregulated — as these same effects
710 will also be recapitulated e.g. by pesticides — but in the fact that these effects are coordinated in time
711 and at the system level to other changes in complementary sets of genes. Simply recapitulating either,
712 without coordination, will not work.

713 4.2. Systemic effects of CPF on clownfish larvae

714 Beyond the TH-suppressive role of CPF, we further highlight three main domains of effect of
715 the pesticide on clownfish larvae: downregulation of cholesterol and vitamin D synthesis genes,
716 downregulation of DNA damage/repair genes, and activation of immunity/antiviral genes.

717 The liver is the main site of cholesterol synthesis and CPF is known to have hepatotoxic effects
718 in several organisms (Das et al., 2008; He et al., 2015; Akhtar et al., 2009) as it is a major site of
719 bioactivation of the pesticide into its more dangerous derivative oxon (Sultatos 1991). Yet, the absence
720 of change we detect in liver functions other than cholesterol synthesis, and the continued detected
721 expression of other liver function genes, suggests that the downregulation of cholesterol synthesis
722 genes we here describe is the result of a regulatory change rather than that of tissue cytotoxicity. Where
723 investigated, CPF has been found in fact to *increase* cholesterol and triglyceride levels (He et al., 2015;
724 Akhtar et al., 2009; Tanvir et al., 2016; Djekkoun e tal. 2022) through mechanisms opposite to the
725 changes we detect here. Less is known for fish, though available data critically highlights the reverse
726 effect: CPF often tends to result in lower measured cholesterol levels (Hatami et al., 2019; Ghayyur et
727 al., 2019; Sanden et al; 2018), though contrasting reports exist (Abdel-Daim et al., 2020; Prakash 2020;
728 Velmurugan et al., 2022). The response we see in clownfish larvae thus appears to represent a fish-
729 specific response to CPF, with widespread implications given the central role played by cholesterol and

730 its derivatives in animal biology. In terms of lipid metabolism, the selective downregulation of fatty
731 acid desaturases under CPF matches quantitative analyses performed in CPF-exposed salmons,
732 showing relative accumulation of saturated intermediates and a decrease in polyunsaturated fatty acids
733 (Olsvik et al., 2015; Sanden et al; 2018). More literature at the CPF-cholesterol intersection focuses
734 instead on cholesterol as precursor of corticosteroids, signalling components of another key endocrine
735 pathway. Effects of CPF on the hypothalamic-pituitary-gonadal axis and on steroidogenic pathways
736 indeed abound (Oruç 2010; see Ur Rahman 2021). In our study however, CPF did not seem to affect
737 cholesterol-utilising pathways other than vitamin D metabolism. We note that the gonadal system in
738 clownfish larvae is not developed, and in fact clownfish do not possess a differentiated gonad until
739 much later in development (Miura et al., 2007), warning against extrapolating these data as a support to
740 the absence of endocrine disrupting effects of CPF on steroidogenic and sexual differentiation
741 endocrine systems. We also note that it is believed that vitamin D synthesis from endogenous
742 cholesterol does not take place in fish (skin) due to this requiring a light-mediated step that may not be
743 possible given the low penetrance of light through water (Lock et al., 2010). Yet, the coordinated shift
744 we observe in both pathways (and not in other cholesterol branches), combined with experimental
745 evidence of endogenous vitamin D synthesis in other fish species (Pierens et al., 2015), would suggest
746 that clownfish larvae may in fact be capable of endogenous vitamin D synthesis, and that such a
747 process is strongly impaired/downregulated following CPF exposure. Demonstration of effective
748 vitamin D synthesis in clownfish larvae and quantification of vitamin D levels in response to CPF
749 exposure will be needed to verify our inferences based on the transcriptomic response we detected.

750 The second major CPF effect we find signatures of — genotoxicity — has been described in
751 several contexts and though contrasting results exist on the ability of the pesticide to actually bind
752 DNA and create adducts (Cui et al., 2006; ur Rahman et al., 2021), it has been shown to induce both

753 single-stranded and double-stranded DNA breaks in a variety of species and experimental contexts (Li
754 et al, 2015; Yin et al., 2009; Ali et al., 2008, Mehta et al., 2008; Soum et al., 2022; see also ur Rahman
755 et al., 2021), likely through the associated generation of reactive oxygen species (Gupta et al., 2010). In
756 fact, Wang et al., 2024 see transgenerational effects of CPF exposure, which they link to the
757 genotoxifying action of the pesticide. Critically, studies have suggested that CPF-exposure can cause
758 not only damage of DNA, but also damage of its repair enzymes by reactive oxygen species and impair
759 DNA metabolic functions (including repair) due to the induction of DNA-protein cross-links (Ohjia et
760 al., 2015). We find a similar response, at the transcriptional level, in clownfish larvae: many of the
761 larvae exposed to CPF undergo a strong downregulation of components involved at all levels of the
762 DNA-repair apparatus, from DNA damage sensing to single strand and double strand break repair, to
763 nucleotide excision repair. Clownfish larvae thus appear to become extremely sensitised to genomic
764 instability (given the depressed repair capabilities) and these changes seem to be further coupled to the
765 downregulation of cyclins and to the suppression of major cell cycle checkpoint effectors, suggesting
766 cell cycle arrest. In fact, the signature we recover has been defined as a hallmark of cellular senescence
767 (Collins et al., 2018). The question remains on whether this is a systemic response of the whole
768 clownfish larva, or only of specific subpopulations within it. The fact that the genotoxic effects of CPF
769 have often been observed in blood populations (e.g. Samajdar et al., 2015), and that we find CPF to be
770 strongly toxic to clownfish blood cells or to their precursors (downregulation of all haemoglobin
771 genes), may suggest that it is blood populations that are the ones damaged the most. In fact,
772 acetylcholinesterase is an important membrane component of red blood cells and erythropoietic cells
773 (Lawson and Barr, 1987; Basirun et al., 2019) and, at least in humans, has been found to be a more
774 sensitive readout of organophosphate exposure than other isoforms (Chen et al., 1999).

775 Finally, while the general immune stimulation triggered by CPF in clownfish larvae is not
776 surprising given the oxidative damage expected from the pesticide and has indeed been observed
777 across exposed fish species (e.g. Chen et al., 2014; Jin et al., 2015; reviewed in Díaz-Resendiz et al.,
778 2015), the specific upregulation of innate immune response genes responsive to cytosolic nucleic acid,
779 including dsDNA, is puzzling. To our knowledge, this response has not been described before and
780 would be expected from viral infection. We note that this possibility is unlikely in our experimental
781 setup, given that the antiviral response is specific to CPF-treated larvae, and all larvae in all treatments
782 shared the same water source and the same air. It is however possible that CPF weakens clownfish
783 larvae making them more susceptible to ambient viruses (natural sea water). Larvae in other treatment
784 conditions would instead remain resistant to these viruses. Immunosuppressive roles of CPF are known
785 (El-Bouhy et al., 2016), and the cytokine imbalance created by ongoing inflammatory processes (Chen
786 et al., 2014) may itself be a source of sensitisation. A likely alternative explanation would be that the
787 activation of viral-response-like pathways we observe is triggered not by viruses but by DNA leaking
788 from damaged mitochondria. Oxidative damage (a key consequence of CPF biotransformation) has
789 indeed been found to trigger pyroptosis, cause extracellular leakage of mitochondrial DNA and evoke
790 cGAS-STING responses in other contexts (Miao et al., 2024).

791 4.3. Pesticides and larval metamorphosis (TH as a tuning dial)

792 We have recently elaborated an Eco-Evo-Devo model of the role of THs across the animal
793 kingdom, whereby THs help animals one on the other hand to match their ontogenetic transitions with
794 environmental conditions, and on the other hand to compensate adverse environmental conditions in
795 order to nonetheless guarantee the successful completion of such transitions (see Zwahlen et al., 2024).
796 In the context of this model, the results we describe in this paper highlight criticalities on the ecological
797 consequences of organophosphate and pesticide pollution which we find of fundamental importance.

798 Specifically, the rescue experiments are particularly informative as they suggest that clownfish
799 larvae could, for the most part, counter the effects of environmental pesticides (at least, of CPF) by a
800 compensatory increase of T3 levels. Accordingly, supplementation of T3 to CPF leads to the recovery
801 — at the scale of the whole transcriptome — of almost 70% of the T3-only signature, including those
802 expression programmes that drive key transformations such as body shape changes and white band
803 formation. This is a striking recovery effect, that highlights the considerable compensatory power held
804 by THs as guardians of larval quality in the face of environmental challenge. Critically however, CPF
805 also affects the very larval ability to synthesise T3, and thus nullifies any possibility for such
806 compensatory changes to occur (that is, outside of a laboratory setting where such hormone could be
807 supplied exogenously). We therefore put forward that pesticides with thyromodulatory potential, such
808 as CPF, represent a qualitatively different kind of threat to marine larvae, and one of much bigger
809 importance: aside from their systemic effects on larval physiology, these pesticides also critically block
810 a major mechanism through which larvae could compensate such changes, as we reveal by supplying
811 T3 exogenously.

812 Still, we note that were larvae able to produce more T3 and recover a T3-like gene expression
813 signature, and thus were they able to metamorphose (CPF+T3, or the case of a non-thyromodulatory
814 pesticide), they would be left with all the additional pesticide effects we have found to be TH-
815 independent (for CPF: cholesterol repression, inflammation, genomic instability, neuromuscular
816 toxicity). Pesticide pollution, regardless of its thyromodulatory effects, thus profoundly alters the
817 fitness landscape of exposed larvae, such that visual readouts of successful metamorphosis may not be
818 sufficient to assess the true extent of such alterations.

819 4.4. Technical, and limitations

820 CPF levels in coastal environments and reef ecosystems have been found to range from <3.6-
821 83ng/L (Carvalho et al, 2002), to up to 0.5 μ g/L, sometimes exceeding 10 μ g/L, in Australian surface
822 waters (NRA, 2000), with effects on fish larvae already at 0.5-1 μ g/L (Jarveinen et al., 1983; Besson et
823 al., 2017; Botté et al., 2012; Besson et al., 2020; Bertucci et al., 2018). In this study we expose
824 clownfish larvae to the higher end of such pesticide concentrations, with nominal concentrations
825 ranging from 10 μ g/L to 30 μ g/L, measuring transcriptional responses at 20 μ g/L. These concentrations
826 remain below those inducing behavioural abnormalities in metamorphic or juvenile stages of other reef
827 fish (Besson et al., 2017; Botté et al., 2012) and fall within the range of what typically applied for CPF
828 studies on these species (Besson et al., 2017; Botté et al., 2012; Holzer et al., 2017; Besson et al.,
829 2020). We use relatively high and sublethal CPF concentrations to ensure we magnify effects that may
830 be otherwise too weak to detect, and to be sure to capture the potential effects of the pesticide on the
831 TH signalling axis, one of the primary aims of our investigation. Indeed, reports do not consider CPF
832 as an endocrine disruptor at the concentrations that already cause acetylcholinesterase inhibition
833 (Juberg et al., 2013), underscoring the fact that such effects may only become apparent at higher
834 concentrations. Our lowest treatment concentration matches CPF's IC₅₀ (9.7 μ g/L) for the inhibition of
835 acetylcholinesterase activity in spiny damselfish juveniles (Botté et al., 2012), as well as the minimal
836 concentrations required to see changes in TH levels in surgeonfish (Holzer et al., 2017; Besson et al.,
837 2020). Though analogous studies at environmental concentrations will reveal whether these are already
838 sufficient to disrupt larval development in wild clownfish larvae, the clear TH-disrupting,
839 metamorphosis-impairing, and TH-independent systemic effects we here describe spell clear warnings
840 about the environmental risk carried by this pollutant, underscoring the importance of its management.
841 At the same time, it should also be noted that exposure to high-concentrations of CPF is a present

842 reality for e.g. frontline agricultural workers using this pesticide (Liem et al., 2021), that TH-disrupting
843 effects are noted across these demographics (Liem et al., 2023), and that concentrations of chlorpyrifos
844 of 10-30 µg/L are already detected in waterways across the globe (Marino et al., 2005; Leong et al.,
845 2007, Alvarez et al., 2009).

846 From a strictly Eco-Devo point of view, exposing clownfish larvae to high CPF levels also
847 allows us to stress-test the buffering role we believe TH plays during post-embryonic larval
848 development (as discussed above), and to assess the limits to which TH-mediated changes can
849 effectively compensate changes in ecological conditions. Incidentally, even at these high CPF levels,
850 we see that larval transcriptomic and hormonal responses are highly heterogeneous, hinting at the fact
851 that such a heterogeneity may be a feature of the response to pesticide exposure, rather than a sign of
852 underdosing. The observed heterogeneity in response is similarly reflected in our TH-level
853 measurements, though this may be exacerbated by the limited number of replicates we had available
854 for hormone assays and confounded by the need to use pools of larvae, obscuring individual responses
855 to CPF exposure. Still, the larval heterogeneity we observe (genetic or other) may itself be an adaptive
856 strategy of marine species, favouring resilience to pollutant challenge just as it is starting to be
857 recognised in the context of fish climate change resilience strategies (Schunter et al., 2022). Overall,
858 our results enhance understanding of the intricate interplay between CPF exposure, TH signalling and
859 metamorphosis, emphasising the urgent need for mitigating the detrimental consequences of chemical
860 pollutants on marine ecosystems.

861 Bibliography

862 Abdel-Daim, Mohamed M., Mahmoud AO Dawood, Mohamed Elbadawy, Lotfi Aleya, and Saad
863 Alkahtani. "Spirulina platensis reduced oxidative damage induced by chlorpyrifos toxicity in Nile
864 tilapia (*Oreochromis niloticus*)." *Animals* 10, no. 3 (2020): 473.

865 Abreu-Villaça, Y., & Levin, E. D. (2017). Developmental neurotoxicity of succeeding generations of
866 insecticides. *Environment International*, 99, 55–77. <https://doi.org/10.1016/J.ENVINT.2016.11.019>

867 Adams, D. C., & Otárola-Castillo, E. (2013). Geomorph: An r package for the collection and analysis
868 of geometric morphometric shape data. *Methods in Ecology and Evolution*, 4(4), 393–399.
869 <https://doi.org/10.1111/2041-210X.12035>

870 Akhtar, Nahid, M. K. Srivastava, and R. B. Raizada. "Assessment of chlorpyrifos toxicity on certain
871 organs in rat, *Rattus norvegicus*." *J Environ Biol* 30, no. 6 (2009): 1047-1053.

872 Ali, Daoud, Naresh Sahebrao Nagpure, Sudhir Kumar, Ravindra Kumar, and Basdeo Kushwaha.
873 "Genotoxicity assessment of acute exposure of chlorpyrifos to freshwater fish *Channa punctatus*
874 (Bloch) using micronucleus assay and alkaline single-cell gel electrophoresis." *Chemosphere* 71, no.
875 10 (2008): 1823-1831.

876 Alvarez, Melina, Cecile Du Mortier, Soledad Jaureguiberry, and Andrés Venturino. "Joint probabilistic
877 analysis of risk for aquatic species and exceedence frequency for the agricultural use of chlorpyrifos in
878 the Pampean region, Argentina." *Environmental toxicology and chemistry* 38, no. 8 (2019): 1748-
879 1755.

880 Aman, A. J., Kim, M., Saunders, L. M., & Parichy, D. M. (2021). Thyroid hormone regulates abrupt
881 skin morphogenesis during zebrafish postembryonic development. *Developmental Biology*, 477, 205–
882 218. <https://doi.org/10.1016/j.ydbio.2021.05.019>

883 Andrews, S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]

884 Baken, E. K., Collyer, M. L., Kaliontzopoulou, A., & Adams, D. C. (2021). geomorph v4.0 and
885 gmShiny: Enhanced analytics and a new graphical interface for a comprehensive morphometric
886 experience. *Methods in Ecology and Evolution*, 12(12), 2355–2363. <https://doi.org/10.1111/2041-210X.13723>

888 Bao, B., Ke, Z., Xing, J., Peatman, E., Liu, Z., Xie, C., Xu, B., Gai, J., Gong, X., Yang, G., Jiang, Y.,
889 Tang, W., & Ren, D. (2011). Proliferating cells in suborbital tissue drive eye migration in flatfish.
890 *Developmental Biology*, 351(1), 200–207. <https://doi.org/10.1016/j.ydbio.2010.12.032>

891 Bartley, R., Waters, D., Turner, R., Kroon, F., Garzon-Garcia, A., Kuhnert, P., Lewis, S., Smith, R.,
892 Bainbridge, Z., Olley, J., Brooks, A., Burton, J., Brodie, J., & Waterhouse, J. (2017). 2017 Scientific
893 Consensus Statement: land use impacts on the Great Barrier Reef water quality and ecosystem
894 condition, Chapter 2: sources of sediment, nutrients, pesticides and other pollutants to the Great Barrier
895 Reef. <http://www.reefplan.qld.gov.au/about/assets/2017-scientific-consensus-statement-summary-chap02.pdf>

897 Basirun, Ain Aqilah, Siti Aqlima Ahmad, Mohd Khalizan Sabullah, Nur Adeela Yasid, Hassan Mohd
898 Daud, Ariff Khalid, and Mohd Yunus Shukor. "In vivo and in vitro effects on cholinesterase of blood
899 of *Oreochromis mossambicus* by copper." *3 Biotech* 9 (2019): 1-12.

900 Baumann, L., Ros, A., Rehberger, K., Neuhauss, S. C. F., & Segner, H. (2016). Thyroid disruption in
901 zebrafish (*Danio rerio*) larvae: Different molecular response patterns lead to impaired eye development
902 and visual functions. *Aquatic Toxicology*, 172, 44–55. <https://doi.org/10.1016/j.aquatox.2015.12.015>

903 Besson, Marc, William E. Feeney, Isadora Moniz, Loïc François, Rohan M. Brooker, Guillaume
904 Holzer, Marc Metian, Natacha Roux, Vincent Laudet, and David Lecchini. "Anthropogenic stressors
905 impact fish sensory development and survival via thyroid disruption." *Nature Communications* 11, no.
906 1 (2020): 3614.

907 Besson, Marc, Camille Gache, Frédéric Bertucci, Rohan M. Brooker, Natacha Roux, Hugo Jacob,
908 Cécile Berthe, Valeria Anna Sovrano, Danielle L. Dixson, and David Lecchini. "Exposure to
909 agricultural pesticide impairs visual lateralization in a larval coral reef fish." *Scientific Reports* 7, no. 1
910 (2017): 9165.

911 Bishop, C. D., D. F. Ereyilmaz, Thomas Flatt, C. D. Georgiou, M. G. Hadfield, A. Heyland, J. Hodin
912 et al. "What is metamorphosis?." *Integrative and Comparative Biology* 46, no. 6 (2006): 655-661.

913 Blanton, Michael L., and Jennifer L. Specker. "The hypothalamic-pituitary-thyroid (HPT) axis in fish
914 and its role in fish development and reproduction." *Critical reviews in toxicology* 37, no. 1-2 (2007):
915 97-115.

916 Bocquené, G. and Franco, A., 2005. Pesticide contamination of the coastline of Martinique. *Marine
917 Pollution Bulletin*, 51(5-7), pp.612-619.

918 Bosu, Subrajit, Natarajan Rajamohan, Shatha Al Salti, Manivasagan Rajasimman, and Papiya Das.
919 "Biodegradation of chlorpyrifos pollution from contaminated environment-A review on operating
920 variables and mechanism." *Environmental Research* (2024): 118212.

921 Botté, E. S., D. R. Jerry, S. Codi King, C. Smith-Keune, and A. P. Negri. "Effects of chlorpyrifos on
922 cholinesterase activity and stress markers in the tropical reef fish *Acanthochromis polyacanthus*."
923 *Marine pollution bulletin* 65, no. 4-9 (2012): 384-393.

924 Botté, E. S., D. R. Jerry, S. Codi King, C. Smith-Keune, and A. P. Negri. "Effects of chlorpyrifos on
925 cholinesterase activity and stress markers in the tropical reef fish *Acanthochromis polyacanthus*."
926 *Marine pollution bulletin* 65, no. 4-9 (2012): 384-393.

927 Brunson, Jason Cory. "Ggalluvial: layered grammar for alluvial plots." *Journal of Open Source
928 Software* 5, no. 49 (2020).

929 Campinho, M. A. (2019). Teleost metamorphosis: The role of thyroid hormone. *Frontiers in
930 Endocrinology*, 10(JUN), 383. <https://doi.org/10.3389/fendo.2019.00383>

931 Carvalho, F. P., Gonzalez-Farias, F., Villeneuve, J. P., Cattini, C., Hernandez-Garza, M., Mee, L. D., &
932 Fowler, S. W. (2002). Distribution, fate and effects of pesticide residues in tropical coastal lagoons of
933 northwestern mexico. *Environmental Technology* (United Kingdom), 23(11), 1257–1270.
934 <https://doi.org/10.1080/09593332308618321>

935 Chen, Dechun, Ziwei Zhang, Haidong Yao, Ye Cao, Houjuan Xing, and Shiwen Xu. "Pro-and anti-
936 inflammatory cytokine expression in immune organs of the common carp exposed to atrazine and
937 chlorpyrifos." *Pesticide biochemistry and physiology* 114 (2014): 8-15.

938 Chen, William L., Joel J. Sheets, Richard J. Nolan, and Joel L. Mattsson. "Human red blood cell
939 acetylcholinesterase inhibition as the appropriate and conservative surrogate endpoint for establishing
940 chlorpyrifos reference dose." *Regulatory toxicology and pharmacology* 29, no. 1 (1999): 15-22.

941 Chen, Yunshun, Aaron TL Lun, and Gordon K. Smyth. "From reads to genes to pathways: differential
942 expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline."
943 *F1000Research* 5 (2016).

944 Chen, Yunshun, Lizhong Chen, Aaron TL Lun, Pedro L. Baldoni, and Gordon K. Smyth. "edgeR 4.0:
945 powerful differential analysis of sequencing data with expanded functionality and improved support for
946 small counts and larger datasets." *bioRxiv* (2024): 2024-01.

947 Chopra, Kunal, Shoko Ishibashi, and Enrique Amaya. "Zebrafish duox mutations provide a model for
948 human congenital hypothyroidism." *Biology Open* 8, no. 2 (2019): bio037655.

949 Collin, Guillaume, Anda Huna, Marine Warnier, Jean-Michel Flaman, and David Bernard.
950 "Transcriptional repression of DNA repair genes is a hallmark and a cause of cellular senescence." *Cell
951 death & disease* 9, no. 3 (2018): 259.

952 Collyer, M.L. and Adams, D.C., 2018. RRPP: An r package for fitting linear models to
953 high-dimensional data using residual randomization. *Methods in Ecology and Evolution*, 9(7),
954 pp.1772-1779.

955 Cui, Yong, Jiangfeng Guo, Bujin Xu, and Ziyuan Chen. "Potential of chlorpyrifos and cypermethrin
956 forming DNA adducts." *Mutation Research/Genetic Toxicology and Environmental Mutagenesis* 604,
957 no. 1-2 (2006): 36-41.

958 Danecek, Petr, James K. Bonfield, Jennifer Liddle, John Marshall, Valeriu Ohan, Martin O. Pollard,
959 Andrew Whitwham et al. "Twelve years of SAMtools and BCFtools." *Gigascience* 10, no. 2 (2021):
960 giab008.

961 Das, Parikshit C., Yan Cao, Randy L. Rose, Nathan Cherrington, and Ernest Hodgson. "Enzyme
962 induction and cytotoxicity in human hepatocytes by chlorpyrifos and N, N-diethyl-m-toluamide
963 (DEET)." *Drug metabolism and drug interactions* 23, no. 3-4 (2008): 237-260.

964 De Angelis, Simona, Roberta Tassinari, Francesca Maranghi, Agostino Eusepi, Antonio Di Virgilio,
965 Flavia Chiarotti, Laura Ricceri et al. "Developmental exposure to chlorpyrifos induces alterations in
966 thyroid and thyroid hormone levels without other toxicity signs in Cd1 mice." *Toxicological Sciences*
967 108, no. 2 (2009): 311-319.

968 De Groef, Bert, Serge Van der Geyten, Veerle M. Darras, and Eduard R. Kühn. "Role of corticotropin-
969 releasing hormone as a thyrotropin-releasing factor in non-mammalian vertebrates." *General and*
970 *comparative endocrinology* 146, no. 1 (2006): 62-68.

971 de Jesus, Evelyn Grace, Yasuo Inui, and Tetsuya Hirano. "Cortisol enhances the stimulating action of
972 thyroid hormones on dorsal fin-ray resorption of flounder larvae in vitro." *General and Comparative*
973 *Endocrinology* 79, no. 2 (1990): 167-173.

974 Djekkoun, Narimane, Flore Depeint, Marion Guibourdenche, Hiba El Khayat El Sabbouri, Aurélie
975 Corona, Larbi Rhazi, Jerome Gay-Queheillard et al. "Chronic perigestational exposure to chlorpyrifos
976 induces perturbations in gut bacteria and glucose and lipid markers in female rats and their offspring."
977 *Toxics* 10, no. 3 (2022): 138.

978 Downie, Adam T., Sjannie Lefevre, Björn Illing, Jessica Harris, Michael D. Jarrold, Mark I.
979 McCormick, Göran E. Nilsson, and Jodie L. Rummer. "Rapid physiological and transcriptomic
980 changes associated with oxygen delivery in larval anemonefish suggest a role in adaptation to life on
981 hypoxic coral reefs." *PLoS biology* 21, no. 5 (2023): e3002102.

982 Durinck, Steffen, Paul T. Spellman, Ewan Birney, and Wolfgang Huber. "Mapping identifiers for the
983 integration of genomic datasets with the R/Bioconductor package biomaRt." *Nature protocols* 4, no. 8
984 (2009): 1184-1191.

985 Durinck, Steffen, Yves Moreau, Arek Kasprzyk, Sean Davis, Bart De Moor, Alvis Brazma, and
986 Wolfgang Huber. "BioMart and Bioconductor: a powerful link between biological databases and
987 microarray data analysis." *Bioinformatics* 21, no. 16 (2005): 3439-3440.

988 Díaz-Resendiz, KARINA JANICE GUADALUPE, GLADYS ALEJANDRA Toledo-Ibarra, and
989 MANUEL IVAN Girón-Pérez. "Modulation of immune response by organophosphorus pesticides:
990 fishes as a potential model in immunotoxicology." *Journal of immunology research* 2015 (2015).

991 El-Bouhy, Z., G. El-Nobi, R. Reda, and R. Ibrahim. "Effect of insecticide "chlorpyrifos" on immune
992 response of *Oreochromis niloticus*. *Zagazig Vet. J.* 44, 196–204." (2016).

993 Farías-Serratos, B. M., Lazcano, I., Villalobos, P., Darras, V. M., & Orozco, A. (2021). Thyroid
994 hormone deficiency during zebrafish development impairs central nervous system myelination. *PLOS
995 ONE*, 16(8), e0256207. <https://doi.org/10.1371/journal.pone.0256207>

996 Fortenberry, G. Z., Hu, H., Turyk, M., Barr, D. B., & Meeker, J. D. (2012). Association between
997 urinary 3, 5, 6-trichloro-2-pyridinol, a metabolite of chlorpyrifos and chlorpyrifos-methyl, and serum
998 T4 and TSH in NHANES 1999–2002. *Science of the Total Environment*, 424, 351–355.
999 <https://doi.org/10.1016/j.scitotenv.2012.02.039>

000 Galindo, D., Sweet, E., DeLeon, Z., Wagner, M., DeLeon, A., Carter, C., McMenamin, S. K., &
001 Cooper, W. J. (2019). Thyroid hormone modulation during zebrafish development recapitulates
002 evolved diversity in danionin jaw protrusion mechanics. *Evolution and Development*, 21(5), 231–246.
003 <https://doi.org/10.1111/ede.12299>

004 Gao, Chun-Hui, Guangchuang Yu, and Peng Cai. "ggVennDiagram: an intuitive, easy-to-use, and
005 highly customizable R package to generate Venn diagram." *Frontiers in Genetics* 12 (2021): 706907.

006 Ghayyur, Shehzad, Sadia Tabassum, Munawar Saleem Ahmad, Naveed Akhtar, and Muhammad Fiaz
007 Khan. "Effect of chlorpyrifos on hematological and seral biochemical components of fish *Oreochromis
008 mossambicus*." *Pakistan journal of zoology* 51, no. 3 (2019): 1047.

009 Gu, Z., Eils, R., & Schlesner, M. (2016). Complex heatmaps reveal patterns and correlations in
010 multidimensional genomic data. *Bioinformatics*, 32(18), 2847-2849.

011 Gu, Zuguang. Complex heatmap visualization. *Imeta*, 2022, vol. 1, no 3, p. E43.

012 Guillot, R., Muriach, B., Rocha, A., Rotllant, J., Kelsh, R. N., & Cerdá-Reverter, J. M. (2016). Thyroid
013 Hormones Regulate Zebrafish Melanogenesis in a Gender-Specific Manner. *PLOS ONE*, 11(11),
014 e0166152. <https://doi.org/10.1371/JOURNAL.PONE.0166152>

015 Gupta, Subash C., et al. "Chlorpyrifos induces apoptosis and DNA damage in *Drosophila* through
016 generation of reactive oxygen species." *Ecotoxicology and Environmental Safety* 73.6 (2010): 1415-
017 1423.

018 Hatami, Mahdiye, Mahdi Banaee, and Behzad Nematdoost Haghi. "Sub-lethal toxicity of chlorpyrifos
019 alone and in combination with polyethylene glycol to common carp (*Cyprinus carpio*)."*Chemosphere*
020 219 (2019): 981-988.

021 Haynes, D., & Johnson, J. E. (2000). Organochlorine, Heavy Metal and Polyaromatic Hydrocarbon
022 Pollutant Concentrations in the Great Barrier Reef (Australia) Environment: a Review. *Marine*
023 *Pollution Bulletin*, 41(7–12), 267–278. [https://doi.org/10.1016/S0025-326X\(00\)00134-X](https://doi.org/10.1016/S0025-326X(00)00134-X)

024 He, Wei, Wenli Guo, Yi Qian, Shuping Zhang, Difeng Ren, and Sijin Liu. "Synergistic hepatotoxicity
025 by cadmium and chlorpyrifos: disordered hepatic lipid homeostasis."*Molecular medicine reports* 12,
026 no. 1 (2015): 303-308.

027 Holzer, G., Besson, M., Lambert, A., François, L., Barth, P., Gillet, B., Hughes, S., Piganeau, G.,
028 Leulier, F., Viriot, L., Lecchini, D., & Laudet, V. (2017). Fish larval recruitment to reefs is a thyroid
029 hormone-mediated metamorphosis sensitive to the pesticide chlorpyrifos. *eLife*, 6.
030 <https://doi.org/10.7554/eLife.27595>

031 Huerlimann, Roger, Natacha Roux, Ken Maeda, Polina Pilieva, Saori Miura, Hsiao Chian, Michael
032 Izumiya, Vincent Laudet, and Timothy Ravasi. "The transcriptional landscape underlying larval
033 development and metamorphosis in the Malabar grouper (*Epinephelus malabaricus*)."*eLife* 13 (2024).

034 Islam, M. S., & Tanaka, M. (2004). Impacts of pollution on coastal and marine ecosystems including
035 coastal and marine fisheries and approach for management: A review and synthesis. In *Marine*
036 *Pollution Bulletin* (Vol. 48, Issues 7–8, pp. 624–649). Pergamon.
037 <https://doi.org/10.1016/j.marpolbul.2003.12.004>

038 Jarvinen, Alfred W., and Danny K. Tanner. "Toxicity of selected controlled release and corresponding
039 unformulated technical grade pesticides to the fathead minnow *Pimephales promelas*."*Environmental*
040 *Pollution Series A, Ecological and Biological* 27, no. 3 (1982): 179-195.

041 Jason Cory Brunson and Quentin D. Read (2023). *ggalluvial*: Alluvial Plots in 'ggplot2'. R package
042 version 0.12.5. <http://corybrunson.github.io/ggalluvial/>

043 Jin, Yuanxiang, Zhenzhen Liu, Tao Peng, and Zhengwei Fu. "The toxicity of chlorpyrifos on the early
044 life stage of zebrafish: a survey on the endpoints at development, locomotor behavior, oxidative stress
045 and immunotoxicity."*Fish & shellfish immunology* 43, no. 2 (2015): 405-414.

046 Juberg, D. R., Gehen, S. C., Coady, K. K., LeBaron, M. J., Kramer, V. J., Lu, H., & Marty, M. S.
047 (2013). Chlorpyrifos: Weight of evidence evaluation of potential interaction with the estrogen,
048 androgen, or thyroid pathways. *Regulatory Toxicology and Pharmacology*, 66(3), 249–263.
049 <https://doi.org/10.1016/J.YRTPH.2013.03.003>

050 Keer, S., Storch, J. D., Nguyen, S., Prado, M., Singh, R., Hernandez, L. P., & McMenamin, S. K.
051 (2022). Thyroid hormone shapes craniofacial bones during postembryonic zebrafish development.
052 *Evolution and Development*, 24(1–2), 61–76. <https://doi.org/10.1111/ede.12399>

053 King, Juliette, Frances Alexander, and Jon Brodie. "Regulation of pesticides in Australia: The Great
054 Barrier Reef as a case study for evaluating effectiveness." *Agriculture, ecosystems & environment* 180
055 (2013): 54-67.

056 Kitada, Y., Kawahata, H., Suzuki, A. and Oomori, T., 2008. Distribution of pesticides and bisphenol A
057 in sediments collected from rivers adjacent to coral reefs. *Chemosphere*, 71(11), pp.2082-2090.

058 Kumar, S., Kaushik, G., & Villarreal-Chiu, J. F. (2016). Scenario of organophosphate pollution and
059 toxicity in India: A review. *Environmental Science and Pollution Research*, 23(10), 9480–9491.
060 <https://doi.org/10.1007/s11356-016-6294-0>

061 Langmead, Ben, and Steven L. Salzberg. "Fast gapped-read alignment with Bowtie 2." *Nature methods*
062 9, no. 4 (2012): 357-359.

063 Larsen, Donald A., Penny Swanson, Jon T. Dickey, Jean Rivier, and Walton W. Dickhoff. "In
064 vitrothyrotropin-releasing activity of corticotropin-releasing hormone-family peptides in Coho Salmon,
065 *Oncorhynchus kisutch*." *General and Comparative Endocrinology* 109, no. 2 (1998): 276-285.

066 Laudet, V. (2023). The multi-level regulation of clownfish metamorphosis by thyroid hormones. *Cell*
067 *Reports*, 42(7). <https://doi.org/10.1016/j.celrep.2023.112661>

068 Laudet, Vincent, and Timothy Ravasi, eds. *Evolution, development and ecology of anemonefishes: model organisms for marine science*. CRC Press, 2022.

070 Laudet, V. (2011). The Origins and Evolution of Vertebrate Metamorphosis. *Current Biology*, 21(18),
071 R726–R737. <https://doi.org/10.1016/J.CUB.2011.07.030>

072 Lawson, A.A. and Barr, R.D., 1987. Acetylcholinesterase in red blood cells. *American journal of
073 hematology*, 26(1), pp.101-112.

074 Leis, J. M., Siebeck, U., & Dixson, D. L. (2011). How Nemo Finds Home: The Neuroecology of
075 Dispersal and of Population Connectivity in Larvae of Marine Fishes. *Integrative and Comparative
076 Biology*, 51(5), 826–843. <https://doi.org/10.1093/icb/icr004>

077 Leis, J. M., & Fisher, R. (2006). Swimming speed of settlement-stage reef-fish larvae measured in the
078 laboratory and in the field: a comparison of critical speed and in situ speed Thesis-Spatial and temporal
079 water quality changes during a large scale dredging operation View project Signif.
080 <https://www.researchgate.net/publication/280976006>

081 Leong, Kok Hoong, LL Benjamin Tan, and Ali Mohd Mustafa. "Contamination levels of selected
082 organochlorine and organophosphate pesticides in the Selangor River, Malaysia between 2002 and
083 2003." *Chemosphere* 66, no. 6 (2007): 1153-1159.

084 Li, Diqui, Qingchun Huang, Miaoqing Lu, Lei Zhang, Zhichuan Yang, Mimi Zong, and Liming Tao.
085 "The organophosphate insecticide chlorpyrifos confers its genotoxic effects by inducing DNA damage
086 and cell apoptosis." *Chemosphere* 135 (2015): 387-393.

087 Libin, He, Huang Zhen, Wu Shuiqing, and Zheng Leyun. "Transcriptome analysis identifies candidate
088 genes related to albinism mechanism in the skin of the Picasso clownfish." *Acta Oceanographica* 44,
089 no. 2 (2022): 67-76.

090 Liem, Jen Fuk, Imam Subekti, Muchtaruddin Mansyur, Dewi S. Soemarko, Aria Kekalih, Franciscus
091 D. Suyatna, Dwi A. Suryandari, Safarina G. Malik, and Bertha Pangaribuan. "The determinants of
092 thyroid function among vegetable farmers with primary exposure to chlorpyrifos: A cross-sectional
093 study in Central Java, Indonesia." *Heliyon* 9, no. 6 (2023).

094 Liem, Jen Fuk, Muchtaruddin Mansyur, Dewi S. Soemarko, Aria Kekalih, Imam Subekti, Franciscus
095 D. Suyatna, Dwi A. Suryandari, Safarina G. Malik, and Bertha Pangaribuan. "Cumulative exposure
096 characteristics of vegetable farmers exposed to Chlorpyrifos in Central Java-Indonesia; a cross-
097 sectional study." *BMC Public Health* 21, no. 1 (2021): 1066.

098 Lock, E.J., Waagbø, R., Wendelaar Bonga, S. and Flik, G., 2010. The significance of vitamin D for
099 fish: a review. *Aquaculture nutrition*, 16(1), pp.100-116.

100 Love, Michael I., Wolfgang Huber, and Simon Anders. "Moderated estimation of fold change and
101 dispersion for RNA-seq data with DESeq2." *Genome biology* 15 (2014): 1-21.

102 Marino, Damián José Gabriel, and Alicia Estela Ronco. "Cypermethrin and chlorpyrifos concentration
103 levels in surface water bodies of the Pampa Ondulada, Argentina." *Bulletin of environmental
104 contamination and toxicology* 75 (2005).

105 McCarthy, Davis J., Yunshun Chen, and Gordon K. Smyth. "Differential expression analysis of
106 multifactor RNA-Seq experiments with respect to biological variation." *Nucleic acids research* 40, no.
107 10 (2012): 4288-4297.

108 McMenamin, S. K., & Parichy, D. M. (2013). Metamorphosis in Teleosts. In *Current Topics in
109 Developmental Biology* (Vol. 103, pp. 127–165). Academic Press. [https://doi.org/10.1016/B978-0-12-385979-2.00005-8](https://doi.org/10.1016/B978-0-12-
110 385979-2.00005-8)

111 Mehta, Anugya, Radhey S. Verma, and Nalini Srivastava. "Chlorpyrifos-induced DNA damage in rat
112 liver and brain." *Environmental and molecular mutagenesis* 49, no. 6 (2008): 426-433.

113 Miao, Zhiruo, Wei Wang, Zhiying Miao, Qiyuan Cao, and Shiwen Xu. "Role of Selenoprotein W in
114 participating in the progression of non-alcoholic fatty liver disease." *Redox Biology* (2024): 103114.

115 Mishina, Masayoshi, Toshiyuki Takai, Keiji Imoto, Masaharu Noda, Tomoyuki Takahashi, Shosaku
116 Numa, Christoph Methfessel, and Bert Sakmann. "Molecular distinction between fetal and adult forms
117 of muscle acetylcholine receptor." *Nature* 321, no. 6068 (1986): 406-411.

118 Miura, Saori, Shigeo Nakamura, Yasuhisa Kobayashi, Francesc Piferrer, and Masaru Nakamura.
119 "Differentiation of ambisexual gonads and immunohistochemical localization of P450 cholesterol side-
120 chain cleavage enzyme during gonadal sex differentiation in the protandrous anemonefish, *Amphiprion*
121 *clarkii*." *Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology* 149,
122 no. 1 (2008): 29-37.

123 NRA, 2000. NRA Review of Chlorpyrifos, vol. 1, Series 00.5. National Registration Authority for
124 Agricultural and Veterinary Chemicals.

125 Ojha, A., and Y. K. Gupta. "Evaluation of genotoxic potential of commonly used organophosphate
126 pesticides in peripheral blood lymphocytes of rats." *Human & Experimental Toxicology* 34, no. 4
127 (2015): 390-400.

128 Olsvik, Pål A., Marc HG Berntssen, and Liv Søfteland. "Modifying effects of vitamin E on
129 chlorpyrifos toxicity in Atlantic salmon." *PLoS one* 10, no. 3 (2015): e0119250.

130 Oruç, E.Ö., 2010. Oxidative stress, steroid hormone concentrations and acetylcholinesterase activity in
131 *Oreochromis niloticus* exposed to chlorpyrifos. *Pesticide biochemistry and physiology*, 96(3), pp.160-
132 166.

133 Otênia, J. K., Souza, K. D., Alberton, O., Alberton, L. R., Moreno, K. G. T., Gasparotto Junior, A.,
134 Palozi, R. A. C., Lourenço, E. L. B., & Jacomassi, E. (2022). Thyroid-disrupting effects of chlorpyrifos
135 in female Wistar rats. *Drug and Chemical Toxicology*, 45(1), 387-392.
136 <https://doi.org/10.1080/01480545.2019.1701487>

137 Patro, Rob, Geet Duggal, Michael I. Love, Rafael A. Irizarry, and Carl Kingsford. "Salmon provides
138 fast and bias-aware quantification of transcript expression." *Nature methods* 14, no. 4 (2017): 417-419.

139 Pierens, S. L., and D. R. Fraser. "The origin and metabolism of vitamin D in rainbow trout." *The
140 Journal of steroid biochemistry and molecular biology* 145 (2015): 58-64.

141 Polidoro, B. A., Comeros-Raynal, M. T., Cahill, T., & Clement, C. (2017). Land-based sources of
142 marine pollution: Pesticides, PAHs and phthalates in coastal stream water, and heavy metals in coastal
143 stream sediments in American Samoa. *Marine Pollution Bulletin*, 116(1-2), 501-507.
144 <https://doi.org/10.1016/j.marpolbul.2016.12.058>

145 Ponce-Vélez, G., & de la Lanza-Espino, G. (2019). Organophosphate Pesticides in Coastal Lagoon of
146 the Gulf of Mexico. *Journal of Environmental Protection*, 10(02), 103–117.
147 <https://doi.org/10.4236/jep.2019.102007>

148 Posit team (2023). RStudio: Integrated Development Environment for R. Posit Software, PBC, Boston,
149 MA. URL <http://www.posit.co/>

150 Prakash, Sadguru. "Toxic effect of chlorpyrifos pesticides on the behaviour and serum biochemistry of
151 *Heteropnetues fossilis* (Bloch)." *International journal on agricultural Sciences* 11, no. 1 (2020): 22-27.

152 Qiao, Kun, Tiantian Hu, Yao Jiang, Jianping Huang, Jingjin Hu, Wenjun Gui, Qingfu Ye, Shuying Li,
153 and Guonian Zhu. "Crosstalk of cholinergic pathway on thyroid disrupting effects of the insecticide
154 chlorpyrifos in zebrafish (*Danio rerio*)." *Science of The Total Environment* 757 (2021): 143769.

155 Reiss, Richard, Barbara Neal, James C. Lamb IV, and Daland R. Juberg. "Acetylcholinesterase
156 inhibition dose–response modeling for chlorpyrifos and chlorpyrifos-oxon." *Regulatory Toxicology
157 and Pharmacology* 63, no. 1 (2012): 124-131.

158 Robinson, Mark D., and Alicia Oshlack. "A scaling normalization method for differential expression
159 analysis of RNA-seq data." *Genome biology* 11 (2010): 1-9.

160 Robinson, Mark D., Davis J. McCarthy, and Gordon K. Smyth. "edgeR: a Bioconductor package for
161 differential expression analysis of digital gene expression data." *bioinformatics* 26, no. 1 (2010): 139-
162 140.

163 Roche, H., Salvat, B., & Ramade, F. (2011). Assessment of the pesticides pollution of coral reefs
164 communities from french polynesia. *Revue d'Ecologie (La Terre et La Vie)*, 66(1), 3–10.
165 <http://documents.irevues.inist.fr/handle/2042/55860>

166 Rohlf, F.J. and Marcus, L.F., 1993. A revolution morphometrics. *Trends in ecology & evolution*, 8(4),
167 pp.129-132.

168 Roux, Natacha, Saori Miura, Mélanie Dusenne, Yuki Tara, Shu-hua Lee, Simon de Bernard, Mathieu
169 Reynaud et al. "The multi-level regulation of clownfish metamorphosis by thyroid hormones." *Cell
170 reports* 42, no. 7 (2023).

171 Roux, Natacha, Valentin Logeux, Nancy Trouillard, Rémi Pillot, Kévin Magré, Pauline Salis, David
172 Lecchini, Laurence Besseau, Vincent Laudet, and Pascal Romans. "A star is born again: Methods for
173 larval rearing of an emerging model organism, the False clownfish *Amphiprion ocellaris*." *Journal of
174 Experimental Zoology Part B: Molecular and Developmental Evolution* 336, no. 4 (2021): 376-385.

175 Roux, N., Salis, P., Lambert, A., Logeux, V., Soulat, O., Romans, P., Frédéric, B., Lecchini, D., &
176 Laudet, V. (2019). Staging and normal table of postembryonic development of the clownfish
177 (*Amphiprion ocellaris*). *Developmental Dynamics*, 248(7), 545–568. <https://doi.org/10.1002/DVDY.46>

178 Rudis, Bob, Ben Bolker, Jan Schulz, A. Kothari, and J. Sidi. "ggalt: extra coordinate systems, geoms',
179 statistical transformations, scales and fonts for 'ggplot2'." Available at: <<https://CRAN.R-project.org/package=ggalt>> (2017).

181 Ryu, Taewoo, Marcela Herrera, Billy Moore, Michael Izumiya, Erina Kawai, Vincent Laudet, and
182 Timothy Ravasi. "A chromosome-scale genome assembly of the false clownfish, *Amphiprion*
183 *ocellaris*." *G3* 12, no. 5 (2022): jkac074.

184 Sabdono, A., Radjasa, O. K., Trianto, A., Sarjito, Munasik, & Wijayanti, D. P. (2019). Preliminary
185 study of the effect of nutrient enrichment, released by marine floating cages, on the coral disease
186 outbreak in Karimunjawa, Indonesia. *Regional Studies in Marine Science*, 30, 100704.
187 <https://doi.org/10.1016/J.RSMA.2019.100704>

188 Salis, Pauline, Thibault Lorin, Victor Lewis, Carine Rey, Anna Marcionetti, Marie-Line Escande,
189 Natacha Roux et al. "Developmental and comparative transcriptomic identification of iridophore
190 contribution to white barring in clownfish." *Pigment Cell & Melanoma Research* 32, no. 3 (2019): 391-
191 402.

192 Salis, P., Roux, N., Soulat, O., Lecchini, D., Laudet, V., & Frédéric, B. (2018). Ontogenetic and
193 phylogenetic simplification during white stripe evolution in clownfishes. *BMC Biology*, 16(1), 1–13.
194 <https://doi.org/10.1186/s12915-018-0559-7>

195 Samajdar, Ishita, and Dipak Kumar Mandal. "Acute toxicity and impact of an organophosphate
196 pesticide, chlorpyrifos on some haematological parameters of an Indian minor carp, *Labeo bata*
197 (Hamilton 1822)." *International journal of environmental sciences* 6, no. 1 (2015): 106-113.

198 Sanden, M., P. A. Olsvik, L. Søfteland, J. D. Rasinger, G. Rosenlund, B. Garlito, Maria Ibáñez, and
199 Marc HG Berntssen. "Dietary pesticide chlorpyrifos-methyl affects arachidonic acid metabolism
200 including phospholipid remodeling in Atlantic salmon (*Salmo salar* L.)." *Aquaculture* 484 (2018): 1-
201 12.

202 Saunders, L. M., Mishra, A. K., Aman, A. J., Lewis, V. M., Toomey, M. B., Packer, J. S., Qiu, X.,
203 McFaline-Figueroa, J. L., Corbo, J. C., Trapnell, C., & Parichy, D. M. (2019). Thyroid hormone
204 regulates distinct paths to maturation in pigment cell lineages. *eLife*, 8.
205 <https://doi.org/10.7554/eLife.45181>

206 Sayols, Sergi, Denise Scherzinger, and Holger Klein. "dupRadar: a Bioconductor package for the
207 assessment of PCR artifacts in RNA-Seq data." *BMC bioinformatics* 17 (2016): 1-5.

208 Schindelin, Johannes, Ignacio Arganda-Carreras, Erwin Frise, Verena Kaynig, Mark Longair, Tobias
209 Pietzsch, Stephan Preibisch et al. "Fiji: an open-source platform for biological-image analysis." *Nature*
210 methods 9, no. 7 (2012): 676-682.

211 Schunter, Celia, Jennifer M. Donelson, Philip L. Munday, and Timothy Ravasi. "Resilience and
212 Adaptation to Local and Global Environmental Change." In *Evolution, Development and Ecology of*
213 *Anemonefishes*, pp. 253-274. CRC Press, 2022.

214 Shaw, M., Furnas, M. J., Fabricius, K., Haynes, D., Carter, S., Eaglesham, G., & Mueller, J. F. (2010).
215 Monitoring pesticides in the Great Barrier Reef. *Marine Pollution Bulletin*, 60(1), 113–122.
216 <https://doi.org/10.1016/J.MARPOLBUL.2009.08.026>

217 Sheikh, M.A., Fujimura, H., Miyagi, T., Uechi, Y., Yokota, T., Yasumura, S. and Oomori, T., 2009.
218 Detection and ecological threats of PSII herbicide diuron on coral reefs around the Ryukyu
219 Archipelago, Japan. *Marine pollution bulletin*, 58(12), pp.1922-1926.

220 Shu, Yan, Julin Yuan, Christer Hogstrand, Zhiyu Xue, Xilan Wang, Chunsheng Liu, Tao Li, Dapeng
221 Li, and Liqin Yu. "Bioaccumulation and thyroid endocrine disruption of 2-ethylhexyl diphenyl
222 phosphate at environmental concentration in zebrafish larvae." *Aquatic Toxicology* 267 (2024):
223 106815.

224 Soneson, C., Love, M. I., & Robinson, M. D. (2015). Differential analyses for RNA-seq: transcript-
225 level estimates improve gene-level inferences. *F1000Research*, 4.

226 Soum, Thorn, Raymond James Ritchie, Raphatphorn Navakanitworakul, Sakshin Bunthawin, and
227 Vipawee Dum mee. "Acute toxicity of chlorpyrifos (CPF) to juvenile Nile tilapia (*Oreochromis*
228 *niloticus*): genotoxicity and histological studies." (2022): 130-140.

229 Sudhakaran, Bindu Vijayakumari, and SREEJA S. "Impact of acute chlorpyrifos toxicity on the
230 histology and biochemistry of the stomach, intestine, and muscle of the *Anabas testudineus*." *bioRxiv*
231 (2023): 2023-10.

232 Sultatos, Lester G. "Metabolic activation of the organophosphorus insecticides chlorpyrifos and
233 fenitrothion by perfused rat liver." *Toxicology* 68, no. 1 (1991): 1-9.

234 Tanvir, E. M., Rizwana Afroz, M. A. Z. Chowdhury, S. H. Gan, N. Karim, M. N. Islam, and M. I.
235 Khalil. "A model of chlorpyrifos distribution and its biochemical effects on the liver and kidneys of
236 rats." *Human & experimental toxicology* 35, no. 9 (2016): 991-1004.

237 Trasande, L., 2017. When enough data are not enough to enact policy: The failure to ban chlorpyrifos.
238 *PLoS Biology*, 15(12), p.e2003671.

239 Triassi, M., Nardone, A., Giovinetti, M. C., de Rosa, E., Canzanella, S., Sarnacchiaro, P., & Montuori,
240 P. (2019). Ecological risk and estimates of organophosphate pesticides loads into the Central
241 Mediterranean Sea from Volturno River, the river of the “Land of Fires” area, southern Italy. *Science
242 of the Total Environment*, 678, 741–754. <https://doi.org/10.1016/j.scitotenv.2019.04.202>

243 Tornero, V., & Hanke, G. (2016). Chemical contaminants entering the marine environment from sea-
244 based sources: A review with a focus on European seas. In *Marine Pollution Bulletin* (Vol. 112, Issues
245 1–2, pp. 17–38). Pergamon. <https://doi.org/10.1016/j.marpolbul.2016.06.091>

246 Ubaid Ur Rahman, H., Asghar, W., Nazir, W., Sandhu, M. A., Ahmed, A., & Khalid, N. (2021). A
247 comprehensive review on chlorpyrifos toxicity with special reference to endocrine disruption:
248 Evidence of mechanisms, exposures and mitigation strategies. *The Science of the Total Environment*,
249 755(Pt 2), 142649. <https://doi.org/10.1016/j.scitotenv.2020.142649>

250 Velmurugan, Babu, Elif İpek Satar, Murat Yolcu, and Ersin Uysal. "Toxic impact of chlorpyrifos, an
251 organophosphate pesticide, on serum biochemical parameters of *Anabas testudineus*." *Acta Biologica
252 Turcica* 35, no. 1 (2022): 5-13.

253 Wang, Ruike, Mengxue Yang, Ye Zheng, Fuyong Song, Xiulan Zhao, and Chen Chen. "Interactive
254 transgenerational effects of parental co-exposure to prochloraz and chlorpyrifos: Disruption in multiple
255 biological processes and induction of genotoxicity." *Pesticide Biochemistry and Physiology* 198
256 (2024): 105713.

257 Wang, Yao, Shaochun Yuan, Xin Jia, Yong Ge, Tao Ling, Meng Nie, Xihong Lan, Shangwu Chen,
258 and Anlong Xu. "Mitochondria-localised ZNFX1 functions as a dsRNA sensor to initiate antiviral
259 responses through MAVS." *Nature cell biology* 21, no. 11 (2019): 1346-1356.

260 Wickham, Hadley. *Data analysis*. Springer International Publishing, 2016.

261 Wingett, Steven W., and Simon Andrews. "FastQ Screen: A tool for multi-genome mapping and
262 quality control." *F1000Research* 7 (2018).

263 Wołejko, E., Łozowicka, B., Jabłońska-Trypuć, A., Pietruszyńska, M., & Wydro, U. (2022).
264 Chlorpyrifos Occurrence and Toxicological Risk Assessment: A Review. In *International Journal of
265 Environmental Research and Public Health* (Vol. 19, Issue 19, p. 12209). Multidisciplinary Digital
266 Publishing Institute. <https://doi.org/10.3390/ijerph191912209>

267 Wong, H. L., Garthwaite, D. G., Ramwell, C. T., & Brown, C. D. (2018). Assessment of occupational
268 exposure to pesticide mixtures with endocrine-disrupting activity. *Environmental Science and
269 Pollution Research* 2018 26:2, 26(2), 1642–1653. <https://doi.org/10.1007/S11356-018-3676-5>

270 Wu, Tianzhi, Erqiang Hu, Shuangbin Xu, Meijun Chen, Pingfan Guo, Zehan Dai, Tingze Feng et al.
271 "clusterProfiler 4.0: A universal enrichment tool for interpreting omics data." *The innovation* 2, no. 3
272 (2021).

273 Xiong, Jingyuan, Liantian Tian, Yongjie Qiu, Ding Sun, Hao Zhang, Mei Wu, and Jintao Wang.
274 "Evaluation on the thyroid disrupting mechanism of malathion in Fischer rat thyroid follicular cell line
275 FRTL-5." *Drug and Chemical Toxicology* 41, no. 4 (2018): 501-508.

276 Xu, J., Ke, Z., Xia, J., He, F., & Bao, B. (2016). Change of body height is regulated by thyroid
277 hormone during metamorphosis in flatfishes and zebrafish. *General and Comparative Endocrinology*,
278 236, 9–16. <https://doi.org/10.1016/j.ygcen.2016.06.028>

279 Yin, XiaoHui, GuoNian Zhu, Xian Bing Li, and ShaoYing Liu. "Genotoxicity evaluation of
280 chlorpyrifos to amphibian Chinese toad (Amphibian: Anura) by comet assay and micronucleus test."
281 *Mutation Research/Genetic Toxicology and Environmental Mutagenesis* 680, no. 1-2 (2009): 2-6.

282 Yu, Guangchuang, Li-Gen Wang, Yanyan Han, and Qing-Yu He. "clusterProfiler: an R package for
283 comparing biological themes among gene clusters." *Omics: a journal of integrative biology* 16, no. 5
284 (2012): 284-287.

285 Zwahlen, J., Gairin, E., Vianello, S., Mercader, M., Roux, N. and Laudet, V., 2024. The ecological
286 function of thyroid hormones. *Philosophical Transactions of the Royal Society B*, 379(1898),
287 p.20220511.

288 Data Availability

- 289 • Raw reads of bulkRNAseq datasets are available to download under NCBI BioProject
290 accession number PRJNA1138483 (<https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1138483>)
- 291 • Counts matrix and code to reproduce the transcriptomics analysis is available at:
292 https://github.com/StefanoVianello/ReynaudVianello_AoceCPF . Lists of all genes in each
293 treatment intersection, as indicated in the text, are also made available.

295 Acknowledgments

296 We thank the High Throughput Genomics Core of the Biodiversity Research Center at Academia
297 Sinica for performing the NGS experiments. The core facility is funded by Academia Sinica Core
298 Facility and Innovative Instrument Project (AS-CFII-108-114). We further thank Dr. Mei-Yeh Lu and
299 Ms. Pei-Lin Chao for their assistance and discussion troubleshooting quality-control metrics. We also
300 thank the staff of the ICOB Marine Research Station for superb help for fish husbandry. Work from
301 our laboratory is supported by a Grand Challenge Grant from Academia Sinica and JSPS KAKENHI
302 grant 22H02678 at OIST. L.B. and D.L. have been supported by a grant from Agence Nationale de la
303 Recherche SENSO (ANR19-CE14-0010).

304

305 Figure captions

306 **Figure 1. Chlorpyrifos treatment leads to a delay in white band formation and induces TH levels disruption.**

307 (A-D) Stereomicroscope images of larvae at 5 dpt in control (A) or CPF at 10 μ g/L (B), 20 μ g/L (C),
308 and 30 μ g/L (D). White arrows indicate the presence of white bands. Scale bar = 1000 μ m. (E)
309 Percentage of larvae having 0 (white), 1 (yellow) or 2 (orange) white bands. (nDMSO=21, nCPF
310 10 μ g/l =25, nCPF 20 μ g/l=22, nCPF 30 μ g/l=19 individuals). Chi² tests are significant between
311 DMSO and CPF 10 μ g/L, CPF 20 μ g/L or CPF 30 μ g/L (p-value <0.001). Significant differences are
312 indicated by a star (***(p-value<0.001). (F-G) TH levels (F) T3, (G) T4, at 3 and 5dpt. Data are
313 indicated as mean (coloured circles) \pm SD (error bars), and grey circles indicate each data point.
314 Significant differences are indicated by a star (*, p-value <0.5, Dunn tests, Holm method).

315 **Figure 2. Additional T3 treatment rescues the white band phenotype disrupted by Chlorpyrifos treatment.**

316 (A-D) Stereomicroscope images of larvae at 5 dpt in control (A), (B) CPF 20 μ g/L, (C) CPF 20 μ g/L
317 and T3 10⁻⁷mol/L or (D) T3 at 10⁻⁷mol/L. (E) Percentage of larvae having 0 (yellow), 1 (blue) or 2
318 (orange) white bands. (nDMSO=21, nCPF 20 μ g/L =14, nCPF + T3 =15, nT3 =34 individuals).
319 Letters refer to significant differences among treatments calculated by a chi² test.

320 **Figure 3. CPF alters body shape changes associated with metamorphosis.**

321 (A) plots of the first two principal components (PC1 and PC2) defining the shape space. Larvae of
322 each treatment are separated into different scatter plots (grey = Control DMSO, light blue =CPF
323 (20 μ g/l), red = MPI (10⁻⁷mol/L)(Methymazole+Potassium Perchlorate+Iopanoic acid, green = T3 (10⁻⁷

324 $^7\text{mol/L}$. The shape of the point illustrates the time in dpt (filled squares: 0dpt, empty squares: 5dpt,
325 triangles: 7dpt, stars: 12dpt, circles: 19dpt). The percentage of shape variation explained by each PC
326 is provided on the y and x-axes of the plot. Deformation grids illustrate shape changes associated with
327 each PC: (B) PC2 max, (C) PC2 min, (D) PC1 min, (E) PC1 max. (F) Length of the ontogenetic
328 trajectories translating the amount of shape variation observed after 19dpt. Letters show significant
329 differences among treatments.

330 **Figure 4: CPF triggers unique transcriptomic changes in metamorphosing larvae, with mixed features of**
331 **both TH-activation and TH-blockade.**

332 **A) left:** schematic of the experimental treatment of samples processed for bulkRNAseq analysis; **right:**
333 correlation matrix showing pairwise Spearman's rank correlation coefficients, calculated on the top
334 most variable genes across all conditions. Area framed in yellow: correlation coefficient values among
335 CPF-treated larvae. **B)** PCA plot showing the distribution of samples across PC1 and PC2, based on
336 the top most variable genes across all conditions. Technical replicates: data from the two lanes of the
337 same chip. **C)** Venn diagrams of the number of differentially expressed (DE) genes under each
338 treatment (compared to vehicle controls), and their overlaps between treatments. Genes that changed
339 in the same direction in treatments with expected opposite effects (MPI and T3) are shaded out.

340 **Figure 5: CPF has goitrogenic effects on the larval HPT, though also shares systemic effects with T3.**

341 **A)** schematic of the main components of the HPT (light blue) and HPI (magenta) axis in clownfish, and
342 of the TH signalling pathway (dark blue). The role of CRH as an activator of the HPT axis is still
343 debated in teleosts. Genes not detected in the dataset are shaded light-grey **B)** expression pattern (z-
344 scores) of genes involved in TH signalling (all members of the pathway), and in white band formation,
345 HPT axis, and HPI axis (only genes showing significant change in CPF with respect to vehicle
346 controls. Genes highlighted in blue have $\text{abs}(\text{logFC}) > 1$ (i.e. they pass threshold of differential
347 expression) **C) Left:** Venn diagrams showing the overlap (to scale) between genes differentially
348 expressed in CPF and in either T3 or MPI. **Right:** expression pattern (z-scores) of selected
349 metamorphosis-related genes at different treatment intersections. **D) Left:** scatterplot comparing the
350 magnitude and direction of change of each gene to CPF, and to CPF+T3. Genes changing in opposite
351 directions to the two treatments are indicated in dark blue ("reverse direction"). For genes with
352 coherent direction of change, genes whose response is magnified by the addition of T3 are indicated in
353 purple ("increased", above the diagonal), genes whose response is dampened by the addition of T3
354 are indicated in light blue ("attenuated", below the diagonal). **Middle:** alluvial plots linking DE genes
355 upon CPF treatment, to their response when T3 is also present (i.e. rescue treatment); and vice versa.

356 **Right:** Venn diagrams showing the overlap (to scale) between the genes changing under T3 treatment,
357 green, and those changing when T3 is supplied on a CPF background.

358 **Figure 6: CPF affects DNA repair, immunity, as well as the cholesterol and vitaminD synthesis pathways.**

359 **A) Left:** MA plot of the \log_2 change in gene expression between CPF-treated larvae and vehicle-
360 controls (DMSO), against the average expression level of each gene. Differentially expressed genes
361 ($\text{abs}(\log_2\text{FC}) \geq 1$; $\text{adj.p.val} < 0.05$) are coloured in red (upregulated) or blue (downregulated).
362 **Right:** results from GO-enrichment analysis for CPF differentially expressed genes. **B)** expression
363 pattern (z -scores) of DE genes involved in cholesterol and vitamin D metabolism. **C)** expression
364 pattern of DE genes involved in DNA repair. **D)** expression pattern of DE genes involved interferon
365 and dsRNA response. **E)** expression pattern of DE genes involved at the neuromuscular junction. For
366 all heatmaps, each column within each treatment condition represents a different larva (with technical
367 replicates). Gene rows in B) are ordered by metabolic pathway sequence; genes in C), D) are grouped
368 by category; genes in E) are clustered based on pattern of expression.
369

370 **Figure 7: summary diagram of the intersection between CPF and TH-driven metamorphic changes, and the**
371 **expected overlaps between post-metamorphosis gene expression profiles.**

372 The status of the TH axis (active or inactive, green or red light) determines T3 levels and its peripheral
373 signalling effects on different larval tissues (“a”, “b”, “c”), through direct activation or repression, or
374 in cooperation with intermediate co-effectors (“X”, “Y”, “Z”). During T3-coordinated
375 metamorphosis, this leads to a switch between the expression of pre-metamorphosis genes (top row) to
376 post-metamorphosis genes (bottom row), which would include, for example, the genes responsible for
377 band pattern formation. The known and postulated actions of MPI and CPF, respectively, are
378 illustrated. Notably, the incomplete overlap between MPI and CPF responses, despite both treatments
379 leading to the same TH-signalling status, suggests that CPF affects either intermediary effectors, or
380 prevents gene expression changes e.g. by toxic effects on specific tissues (here, tissue “a”). Note,
381 secondary TH-control effectors repressed by T3, which normally block the expression of post-
382 metamorphosis genes (and possibly activate the expression of pre-metamorphosis genes), are not
383 shown for the sake of simplicity.
384

385 Supporting information: figure captions

386 **Figure S1: The white band phenotype at 19 dpt**

387 Percentage of larvae having 0 (white), 1 (yellow), 2 (orange) or 3 (dark orange) white bands.
388 ($n_{\text{DMSO}}=21$, $n_{\text{CPF } 20\mu\text{g/l}}=11$, $n_{\text{MPI}}=16$, $n_{\text{T3}}=21$ individuals).

389 **Figure S2: anatomical landmarks of geometric morphology approach.**

390 *Landmarks (in red) used in this study defining the overall body shape of Amphiprion ocellaris shown at*
391 *two stages: 0 dpt (left) and 5 dpt (right). The landmarks are as follow: (1) centre of the eye; (2) mouth*
392 *tip; (3) end of lower jaw articulation; (4) anterior insertion of the stomach; (5) anus; (6) posterior*
393 *insertion of anal fin; (7) ventral base of the caudal fin; (8) end of notochords (9) posterior insertion of*
394 *the anal fin; (10) anterior insertion of the anal fin; (11) dorsal insertion of the stomach, (12) posterior*
395 *end of the nuchal crest; (13) dorsal margin through the midline of the eye. Ten curve landmarks (in*
396 *orange) have been used to specifically capture the head shape changes.*

397 **Figure S3: Phenotype of treated larvae used for bulkRNA seq.**

398 *Photos of larvae after 5 days of treatment under each of the conditions indicated (final age: 13dph).*
399 *From top to bottom: DMSO vehicle control, T3, MPI, CPF, and CPF+T3. For 10 larvae from each*
400 *treatment total RNA was extracted following picture acquisition (except larvae with red strike through;*
401 *see materials and methods). Larvae framed in yellow: CPF-treated larvae with strongest*
402 *downregulation of iridophore genes compared to control; see text relating to Fig. 5). Scale bar: 1mm.*

403 **Figure S4: Comparative overview of the pattern of expression of differentially expressed genes**
404 **under each treatment.**

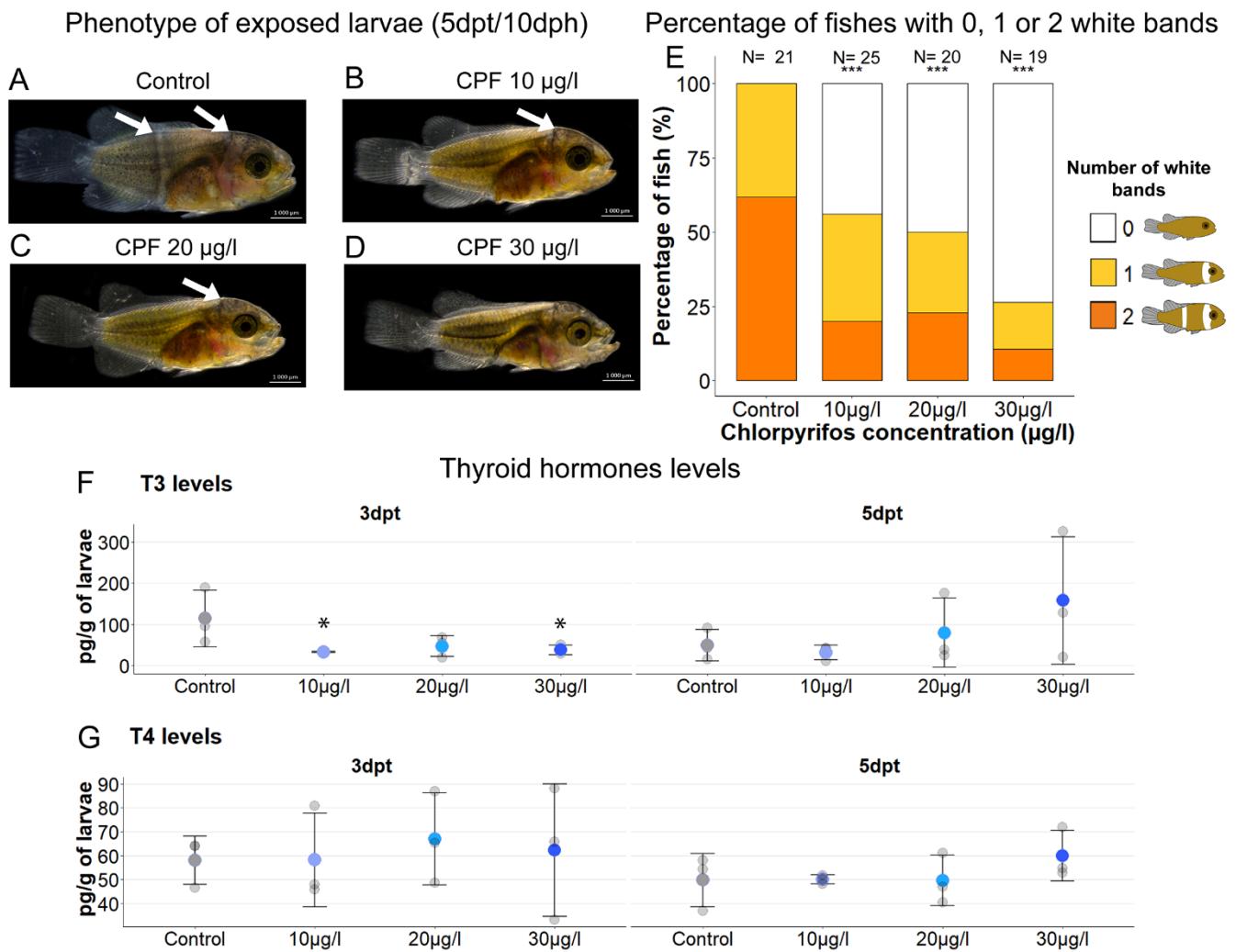
405 *For each of the three single treatments T3 (A), MPI (B), CPF (C): Left: “MA” plots (\log_2 change in*
406 *gene expression between treated larvae and vehicle-controls (DMSO), against the average expression*
407 *level of each gene). Differentially expressed genes are highlighted in blue and red ($\text{abs}(\log_2\text{FC}) > 1$;*
408 *$\text{adj.p.Val} < 0.05$). Right: expression pattern (z-scores) of upregulated (top) and downregulated (bot-*
409 *tom) differentially expressed genes under each treatment. Asterisk: single treatment with the closest*
410 *expression pattern (see materials and methods). Green: T3; Red: MPI; Blue: CPF. Responses unlike*
411 *either of the two other treatments are in grey. Responses similar to both other treatments are in white*
412 *(no colour). The MA plot in (C) is shown again in Fig. 6.*

413 **Figure S5: CPF effects on other gene sets of interest.**

414 *Expression pattern (z-scores) of genes involved in other liver- and cholesterol-related pathways. All*
415 *genes shown have different expression in CPF than control, at $\text{adj.p.value} < 0.05$. Genes highlighted in*
416 *blue have $\text{abs}(\log\text{FC}) > 1$ (i.e. they pass threshold of differential expression). For all heatmaps, each*
417 *column within each treatment condition represents a different larva (with technical replicates).*

418

419

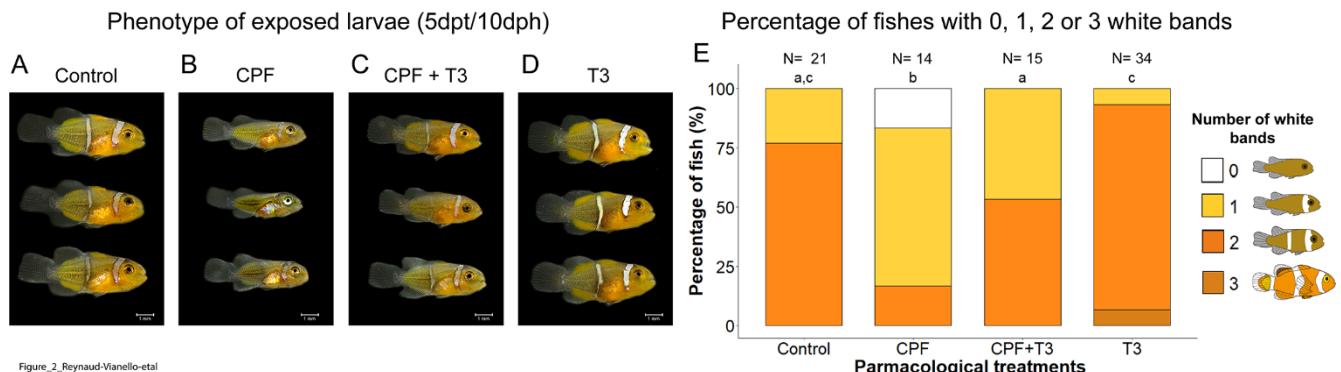

420

421

422

423

424 **Figure 1**

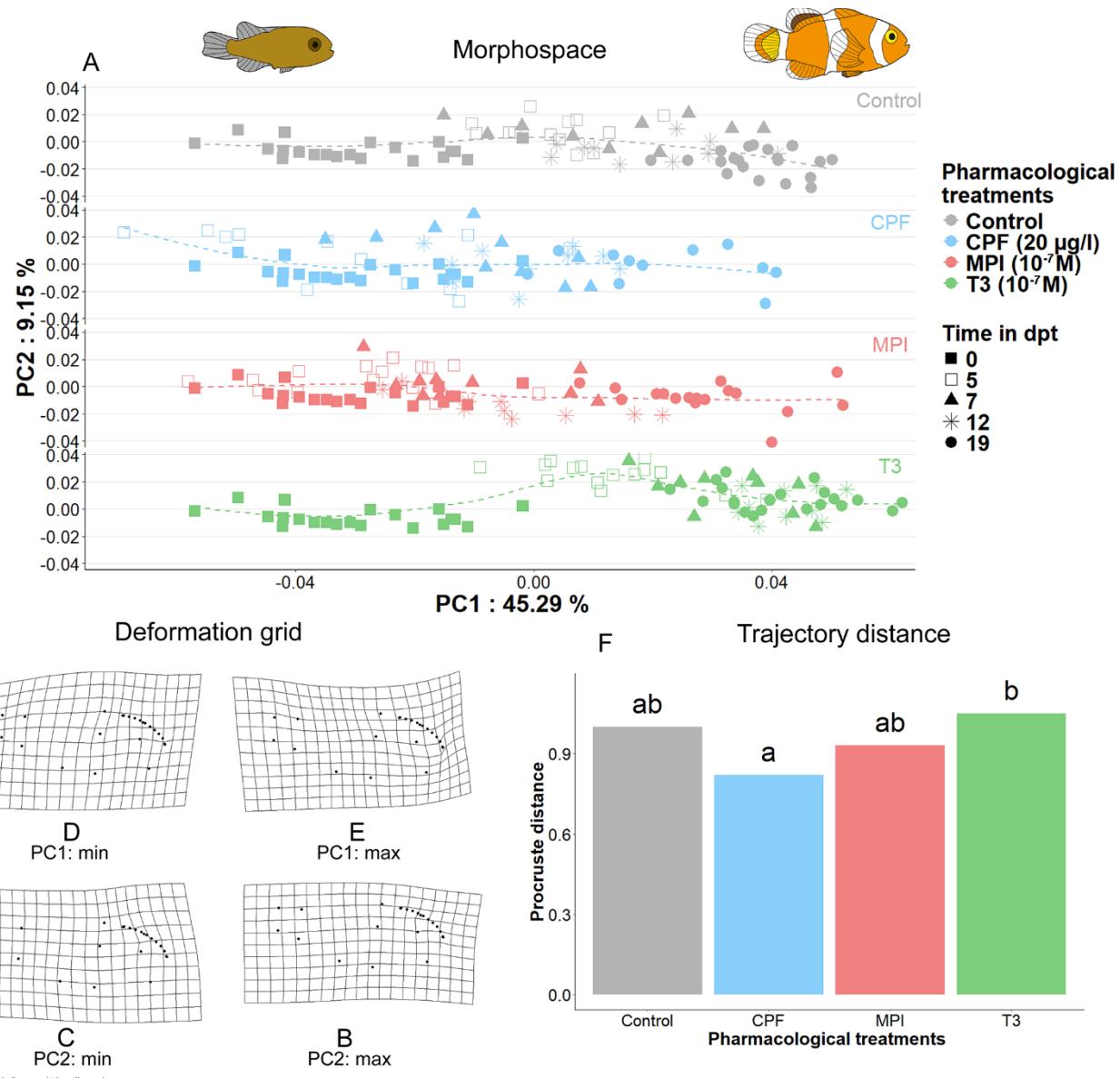


Figure_1_Reynaud-Vianello-etal

425

426

427 **Figure 2**



Figure_2_Reynaud-Vianello-etal

428

429

430 **Figure 3**

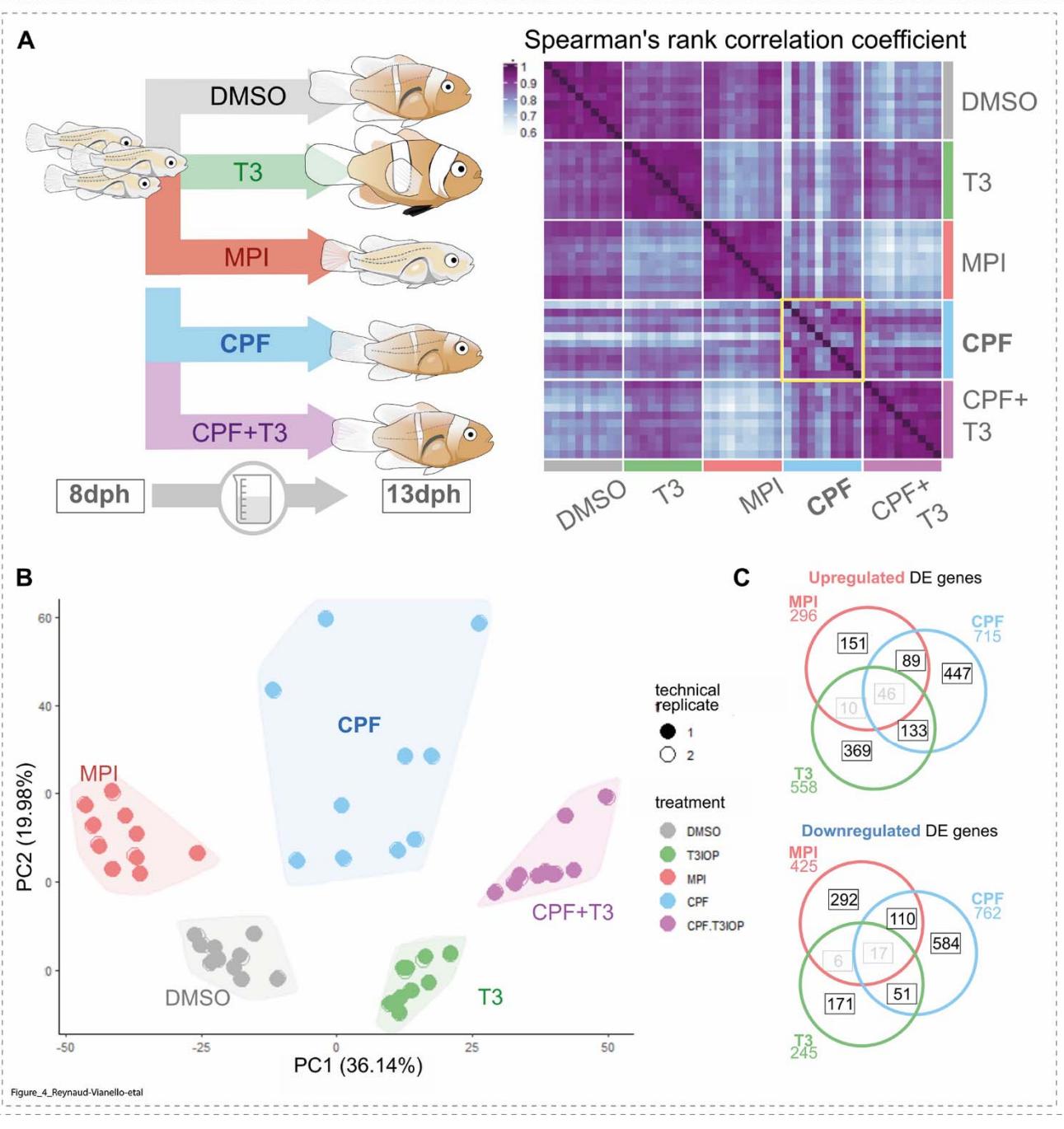
431

432

433

434

435


436

437

438

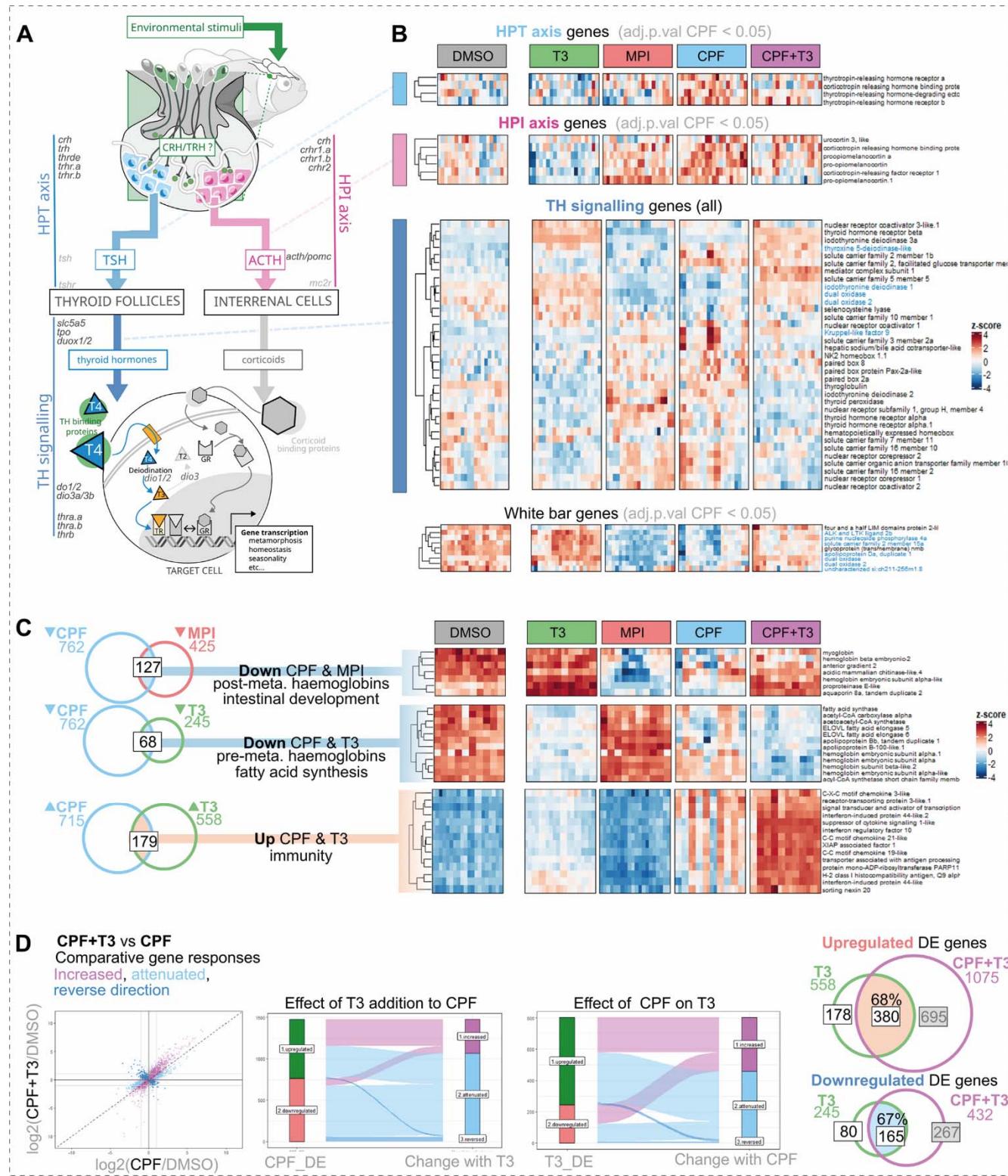
439

440 **Figure 4**

441

442

443

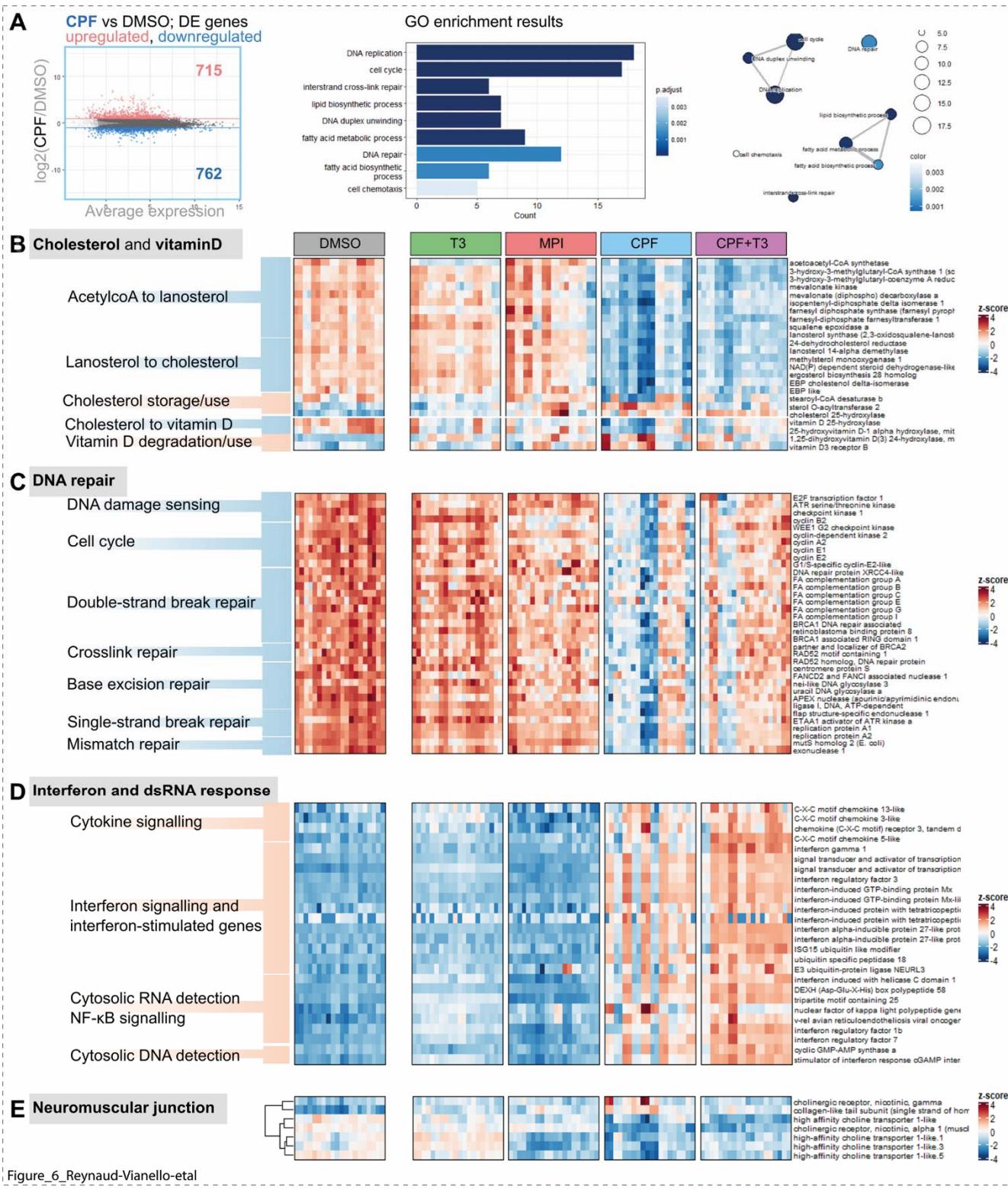

444

445

446

447

Figure 5

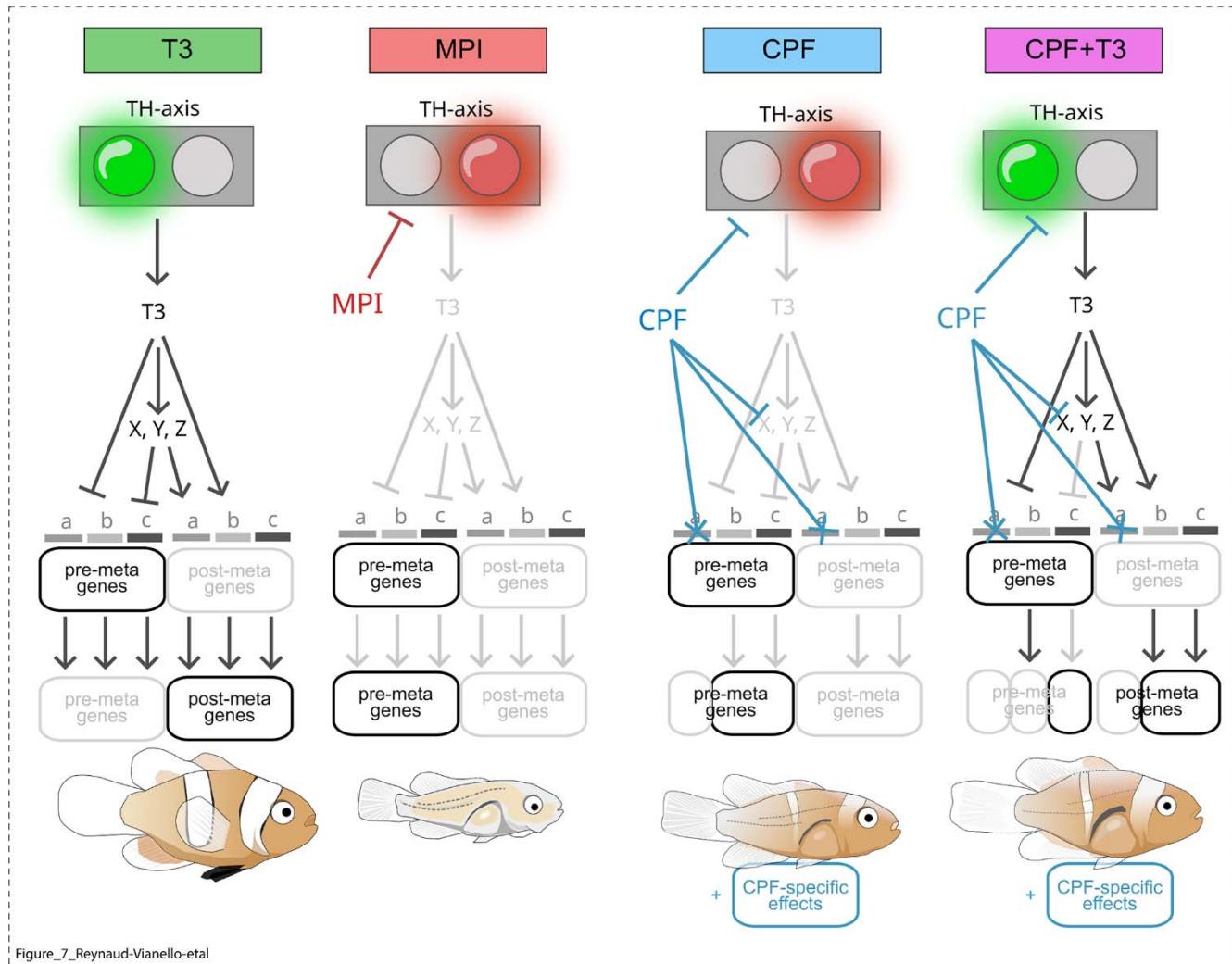

Figure_5_Reynaud-Vianello-etal

448

449

450

Figure 6


451

Figure_6_Reynaud-Vianello-etal

452

453

454 **Figure 7**

455

Figure_7_Reynaud-Vianello-etal

456

457

458

459

460

461

462

463

464

465

466