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Abstract

Tandem repeats (TR) play important roles in genomic variation and disease risk in humans.
Long-read sequencing allows for the accurate characterisation of TRs, however, the
underlying bioinformatics perspectives remain challenging.

We present otter and TREAT: otter is a fast targeted local assembler, cross-compatible across
different sequencing platforms. It is integrated in TREAT, an end-to-end workflow for TR
characterisation, visualisation and analysis across multiple genomes.

In a comparison with existing tools based on long-read sequencing data from both Oxford
Nanopore Technology (ONT, Simplex and Duplex) and PacBio (Sequel 2 and Revio), otter
and TREAT achieved state-of-the-art genotyping and motif characterisation accuracy.
Applied to clinically relevant TRs, TREAT/otter significantly identified individuals with
pathogenic TR expansions. When applied to a case-control setting, we significantly replicated
previously reported associations of TRs with Alzheimer’s Disease, including those near or
within APOC1 (p=2.63x10-9), SPI1 (p=6.5x10-3) and ABCA7 (p=0.04) genes.

We finally used TREAT/otter to systematically evaluate potential biases when genotyping TRs
using diverse ONT and PacBio long-read sequencing datasets. We showed that, in rare cases
(0.06%), long-read sequencing suffers from coverage drops in TRs, including the disease-
associated TRs in ABCA7 and RFC1 genes. Such coverage drops can lead to TR mis-
genotyping, hampering the accurate characterisation of TR alleles.

Taken together, our tools can accurately genotype TR across different sequencing
technologies and with minimal requirements, allowing end-to-end analysis and comparisons

of TR in human genomes, with broad applications in research and clinical fields.
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1. Introduction

Roughly 30% of the human genome consists of tandem repeats (TR) characterised by one or
more repeat motifs that are defined by their consecutive repetition.” This repetitive pattern
often leads to DNA instability, facilitating not only expansions and contractions of the repeating
motif sequence, but also allelic diversity within the sequence.?® Several definitions of TRs
have been introduced based on the motif length and size variability, including microsatellites,
minisatellites, and macrosatellites. Microsatellites (or short tandem repeats, STR) are the most
abundant TRs in the human genome, are characterised by a repetitive motif of less than 6
base pairs (bp), and tend to cluster in non-coding regions of the genome.* Minisatellites are
characterised by a repetitive motif with a size ranging 7-100 bp, and they are highly enriched
in the telomeric regions of the genome.®> Macrosatellites are characterised by larger tandem
repeat units (>100 bp), and are enriched in the telomeric and centromeric portions of the

genome.®

TRs can disrupt gene-expression regulation and contribute to over 40 neurological
disorders."”® Pathogenic TR expansions, surpassing critical lengths, are linked to conditions
like spinocerebellar ataxias, Huntington’s disease, Fragile-X syndrome, Amyotrophic lateral
sclerosis (ALS), and Myotonic Dystrophy.”~® For instance, Fragile-X syndrome results from a
GGC repeat expansion in the FMR1 gene, with affected individuals having up to 4,000 copies
compared to less than 50 in healthy individuals.'® Similarly, ALS is caused by an intronic hexa-
nucleotide repeat expansion (GCCCCGQG) in the C9orf72 gene, exceeding a critical length of
more than 200 copies." Beyond diseases-causing, TRs have been also identified as risk
factor for complex human diseases: for example, the intronic TR in the ABCA7 gene is
associated with a 4.5-fold increased risk of Alzheimer’s Disease (AD) when the TR exceeds

12,13

5720 base pairs.
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75  Traditionally, the evaluation of TR lengths and sequences has been challenging. Conventional
76  methods, such as repeat-primed polymerase chain reaction (RP-PCR) and Southern blot
77  assays, are time-consuming and limited in detecting TRs within PCR-based boundaries.
78  Short-read sequencing approaches offer an alternative, but their limited read lengths often fail
79  to span repetitive regions effectively. Despite heuristic methods and statistical modelling,'*"°
80 accurately assessing clinically relevant TRs remains difficult. The advent of long-read
81  sequencing, particularly with PacBio's High Fidelity (HiFi) and Oxford Nanopore Technology's
82 (ONT) Duplex technology (10-20kb on average, >99% accuracy),?>?' has significantly
83 improved TR evaluation by providing long and accurate sequencing fragments.

84

85  Characterising TRs with long-read sequencing technology currently has two main limitations.
86  First, there is the need to characterise TRs across different (long-read) sequencing
87  technologies and data-types.?>** This is critically important given the growing long-read
88  sequencing initiatives aiming to comprehensively assess TRs in large genomic datasets,?
89  spanning both population-wide and clinical contexts. For example, some existing tools are
90 constrained by predefined TR databases, hindering the identification of new TR features such
91  as novel motif sequences;?® other tools are technology and data-type-dependent,®? or do not
92  produce generalizable multi-sample outputs.?2*

93

94  Second, there is a lack of comprehensive studies that have investigated potential biases when
95 sequencing TRs. For example, DNA methylation has been previously shown to impact base-
96 calling accuracy in long-read sequencing data.?’~2° Similarly, the formation of secondary
97  structures due to TRs could impact enzyme efficiency (e.g. polymerase or nanopores),*
98 potentially reducing read-quality and sequencing throughput in current long-read sequencing

99 technologies. Furthermore, some technologies require the alignment of noisy reads to

100  generate high quality consensus sequences, which might be more difficult in case of repetitive
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101 regions. These problems may impact genotyping accuracy and lead to incorrect assessments
102  of allele-sequences, including disease-associated TRs in patients.

103

104 Here, we present TREAT (Tandem REpeat Annotation Toolkit), a unified workflow for
105 characterising TRs across multiple genomes, cross-compatible with diverse long-read
106 technologies and data-types (e.g. read-alignments and de novo assemblies). TREAT employs
107 a novel generic targeted local assembler, ofter, that can adapt to different sequencing
108 chemistries to accurately characterise TRs. We benchmarked TREAT and otter with currently

109  available tools for TR genotyping (PacBio’s TRGT and LongTR)%?’

in terms of genotyping
110  accuracy, motif identification, and running performances. We then showcase TREAT and otter
111 applicability in a population-, clinical-, and case-control setting. Finally, we performed a
112  systematic analysis of ~864K genome-wide TRs in CHM13 reference genome to evaluate
113  sporadic coverage drops that can affect TR genotyping accuracy. We did so using the well-
114  characterised HG002 genome based on long-read sequencing data from ONT (Duplex and

115  Simplex), HiFi and non-HiFi data from PacBio’s Revio and Sequel 2 instruments.

116

117 2. Results

118 2.1 Cross-compatible workflow for characterising tandem

119 repeats with otter and TREAT

120 We present ofter and TREAT, two bioinformatic tools that enable tandem repeat (TR)
121  characterisation across different long-read sequencing technologies and data-types with
122 minimal input requirements (Figure 1). Otter is a stand-alone generic targeted local assembler
123  for long-read sequencing data, which automatically adapts to sequencing error-rates and
124  coverage levels per target region. TREAT integrates ofter to enable end-to-end unified

125 workflow for de novo motif characterisation and downstream analysis, including TR
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126  visualisation, outlier-based and case-control comparisons (see Methods). Both tools require
127  sequencing data aligned to a reference genome (.bam files), the reference genome used
128 (.fasta file), and the coordinates of the regions of interest (chromosome, start and end
129  positions encoded in a .bed file). TREAT/otter outputs a multi-sample gVCF (Genomic Variant
130  Call Format) file reporting genotyped alleles, their size and relative repeat content (motif and
131 number of copies), of each TR in each sample.

132

133 Otter is written in C++ and the source code is freely available at

134 https://qgithub.com/holstegelab/otter.

135
136 TREAT is written in Python and R (for plots). The source code is freely available at

137  https://github.com/holstegelabl/treat along with example datasets, documentation, a dedicated

138  Conda configuration file and a Docker image to ease the installation.

A TREAT (Tandem REpeat Annotation Toolkit) B
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141 Figure 1: Schematic workflow of TREAT and ofter. A. Shows TREAT workflow, highlighting the required
142 inputs, the main features, and the main outputs of the tool. The red box highlights the main genotyping
143  engine based on ofter. B. Summarises the main algorithmic steps of otter, a novel targeted local

144  assembler for long-read sequencing data.

145
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146 2.2 Otter and TREAT enable accurate characterisation of both

147 PacBio and ONT long-read data

148  We benchmarked TREAT and otter with TRGT and LongTR,?23! currently available tools to
149 characterise TRs in long-read sequencing data. We compared: (/) genotyping accuracy, i.e.
150 the accuracy of the predicted allele sequences for a TR, (ii) motif characterisation accuracy,
151  and (iii) computational resources. We varied different long-read sequencing technologies
152  (PacBio Sequel 2 and Revio, ONT Simplex and Duplex) as well as different coverages (5x,
153 10x, 15x, 20x, 25x, and 30x) of HG002.*2 We focussed on a set of 161,382 TRs from PacBio’s
154  repeat catalogue (see Methods). Predicted TR alleles were compared to the expected alleles
155  based on the HG002 T2T assembly (see Methods).

156

157  In PacBio data, we found comparable genotyping accuracy between otter (TREAT genotyping
158 engine) and TRGT, for both Sequel 2 and Revio datasets, although otter generated more
159  accurate genotypes for larger TRs (e.g. >500bp), achieving average error-rates of 0.2-2.5%,
160 compared to 0.6-3.8% of TRGT. Both methods were more accurate when increasing the
161  coverage, although this was less pronounced for larger TRs (>500 bp). Notably, genotyping
162  accuracy for both ofter and TRGT was higher for PacBio’s Sequel 2 data in comparison with
163  Revio data (Figure 2A and Supplementary Results). In ONT data, ofter was generally more
164  accurate than LongTR although differences for large TRs were less clear. For both tools, we
165  observed better accuracies for Duplex data in comparison to Simplex data (Figure 2B and
166  Supplementary Results). Altogether, our benchmark across all tools revealed that PacBio led
167 to more accurate genotypes for TRs <500 bp, with PacBio and ONT having similar
168  performances for TRs ranging 500-1000 bp, and ONT leading to more accurate genotypes for
169 TRs >=1000 bp (see Figure 2A-B and Supplementary Results).

170
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171 The above observations remain when using different distance metrics and partitioned by
172  different TR-types. For example, we observed similar performances when using the raw edit
173  distance and correlation between observed and expected allele sizes (Figure S1 and
174  Supplementary Results). Furthermore, we found that TRs characterised by dinucleotide
175 repeat motifs were on average less accurate than TRs with longer motifs (Figure S2). The
176  fraction of alleles perfectly genotyped (i.e. with an edit distance of 0), compared to expected
177  alleles, increased with higher coverage across all technologies and tools (Figure S3), with
178  Sequel 2 data having the largest fraction of alleles perfectly matched, and ONT Simplex having
179 the least. In PacBio Sequel 2 and Revio data, TRGT generated a slightly higher fraction of
180 perfectly matched alleles with respect to otter (max difference 2.8%). In ONT data, otter
181  outperformed LongTR in all settings.

182

183  Similarly, TREAT, which makes use of TR-genotypes from otter, achieved similar motif
184  characterisation accuracy relative to TRGT (Figure 2C). In the GRCh38 reference genome,
185 the motifs of the 161K TRs were mostly dinucleotide (49%), followed by tetranucleotide (22%)
186  and 16+ bp motifs (11%) (Figure S4). Because LongTR does not directly report the identified
187 TR motifs, we compared TR motifs between TREAT and TRGT. On average, TREAT identified
188 the same motifs as TRGT in 96% of cases (Figure 2C), and this did not change for different
189 technologies (Sequel 2 or Revio) or different coverages. We observed a higher concordance
190 in motif detection between tools for shorter motifs (Figure 2C). When looking at the motifs
191  identified by TREAT on the GRCh38 reference genome, these matched known TR annotations
192  in 91% of the cases.

193

194  Finally, we evaluated the computational performances of otter (stand-alone), TREAT
195  (integrated workflow with otter), TRGT and LongTR. When using four threads, TRGT and otter
196  had similar run-time performances, while both were slightly faster than the integrated workflow

197  from TREAT (Figure 2D). On the other hand, for the ONT data, otter and TREAT were faster
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198 than LongTR. In terms of memory consumption, performances were comparable between
199 TREAT and LongTR, while otter and TRGT used significantly less memory (Figure 2D). When
200 evaluating the multithreading capabilities in TREAT, we saw that when increasing the number
201  of threads to 6, 8, 10 and 12, the running times decreased by 1.3-, 1.5-, 1.6- and 1.8-fold (on
202  average across the different technologies), compared to 4 CPU threads (Figure S5).

203

204 In addition to the high-quality HiFi data, PacBio can output non-HiFi data, i.e. reads that did
205 not pass PacBio’s internal HiFi quality thresholds, and that constitute a significant fraction of
206  all sequenced data (45% in HG002). We explored whether integrating both HiFi and non-HiFi
207  data could improve ofter's capability to accurately characterise TR allele sequences. Because
208 Revio uses a subset of these non-HiFi reads (those with at least 90% read quality) to improve
209  throughput and accuracy via DeepConsensus,* we performed this analysis only for Sequel 2
210 data. We found that non-HiFi data improved accuracy across all TR-lengths. Specifically, when
211 integrating non-HiFi reads of at least 85-90% read quality, genotyping accuracy improved by
212  nearly two-fold (Figure S6).

213
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215 Figure 2: Benchmarking between TREAT/otter, TRGT, and LongTR. A. Genotyping accuracy of otter
216  and TRGT on PacBio Sequel 2 and Revio data, stratified by TR size and sequencing depth. B.
217 Genotyping accuracy of ofter and LongTR on ONT Simplex and Duplex data, stratified by TR size and
218 sequencing depth. C. Motif identification accuracy of TREAT and TRGT on PacBio Sequel 2 and Revio
219 data, showing the overlap of matching motifs, stratified by motif size and sequencing depth. D. Memory
220  usage and running time of otter, TREAT, TRGT, and LongTR, across technologies and sequencing
221 coverages.

222

223 2.3 TREAT's unified workflow enables diverse characterisations
224  of tandem repeats

225  We applied TREAT’s unified workflow to characterise TRs in a population and clinical setting.

226  First, we genotyped the set of 161K TRs in 47 genomes from the Human Pangenome

10
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227  Research Consortium (HPRC),** for which PacBio HiFi data was available. We then extracted
228  thetop 20% most variable TRs (N=32,208, based on the coefficient of variation, see Methods),
229  and performed a principal component analysis (PCA, Figure 3A) on the joint allele sizes (i.e.
230 the sum of the maternal and paternal alleles). We found that PC1 explained 12% of the total
231 variance and genetically represented the African-American axis, while PC2 explained 3.5% of
232  variance and corresponded to the American-Asian axis. The explained variance was similar
233  tothat of a PCA including 40/47 matching samples and 30,544 random common (minor allele
234  frequency >10%) Single Nucleotide Polymorphisms (SNPs) (PC1: 14%, PC2: 4%, Figure S7).
235

236 We then used TREAT's outlier analysis to detect and score extreme TR expansions or
237  contractions of 35 clinically relevant TRs (Table S1) in 47 genomes from the HPRC, as well
238 as two Dutch CANVAS patients and 10 parent-offspring duos (see Methods).*>*® The two
239  CANVAS patients were previously characterised to harbour expansions in the intronic TR in
240 RFC1.% For all individuals, PacBio HiFi data were generated with Sequel 2 instrument. In total,
241  we identified 30 instances where the TR length in certain samples were significantly different
242  from the distribution of TR lengths across all 69 genomes. The most significant deviations
243  were observed for the two CANVAS patients in the TR intronic of RFC1 gene (p<2x10-16 for
244  both patients, Figure 3B-D). The joint allele size for these samples was 78- and 89-fold higher
245  than the median TR size across all 69 genomes. Significant TR expansions were also found
246 in the TR in ATXN8 gene (HG01123 sample, p<2x10-16, Figure S8), and in DMD gene
247 (HG02622 sample, p=6.90x10-3, Figure S9). Interestingly, in the TR intronic of RFC1 gene,
248 we also observed a significant heterozygous expansion in one parent of the parent-offspring
249  duos (p=1.7x10-3 and p=5.18x10-11, respectively for the short and long alleles, Figure 3B).
250  Unexpectedly, the child reported a homozygous non-expanded genotype, suggesting a mis-
251  assembly or an allele dropout.

252

11
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253  Finally, we applied TREAT to characterise unique TRs that are present in CHM13 reference
254  genome but absent in GRCh38 across the 47 HPRC genomes. We first curated a set of ~864K
255  genome-wide TRs in the CHM13 reference genome (see Methods). We evaluated genotyping
256  accuracy by applying TREAT/otter to CHM13-aligned long-read datasets of HG002 (PacBio’s
257 Revio and Sequel 2 as well as ONT’s Duplex and Simplex). We observed similar
258 performances as those observed when using ~161K TRs from GRCh38 (see Figure S10 and
259  Supplementary Results). These results showcase otter and TREAT’s ability to de novo
260 characterise TRs across different reference genomes, and without prior knowledge of TR motif
261  composition. Based on a CHM13-to-GRCH38 liftover procedure, we found 1017 unique TRs
262  present in CHM13 and absent in GRCh38, 37% of which overlapped coding sequences
263  (Supplementary Methods and Table S2). We used TREAT/otter to characterise these TRs
264  across the 47 HPRC genomes and found a mean TR size of 129 bp (median=45 bp), mainly
265 composed of trinucleotide motifs (42%), followed by homopolymers (26%), and 6+ nucleotide
266  motifs (22%, Figure S11).

267
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269  Figure 3: TREAT visualisation and analysis modules. A. The PCA of the ancestry-based analysis based

270  on the 20% most variable TRs across 47 HPRC genomes. B. The main TR in the RFC1 gene. Y-axis:
271 individuals, X-axis: TR size (in bp). Blue dots: smaller allele, orange dots: larger allele, red dots;
272  homozygous genotypes. Dashed line: the allele in the reference genome GRCh38. The right side of the
273  plot reports, for each sample and each allele, the motif and relative number of copies. The TR length of
274 the two CANVAS patients were identified as significant outliers compared to the length-distribution of
275 47 samples from the HPRC. C. The distribution of allele sizes for the TR in RFC1 gene. D. Motif
276  representation in CANVAS patients, as produced with MotifScope.>”
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278 2.4 Tandem repeats may be sensitive to coverage dropouts in

279 long-read sequencing

280 A closer investigation of PacBio long-read data revealed unexpected drops of coverage in
281 clinical TRs, consequently leading to mis-genotyping of disease-associated TRs. One
282 example is the CANVAS-associated intronic TR in RFC1, where the most common allele
283  consists of an (AAAAG)11 motif, with a total size of ~55bp. In CANVAS patients, the TR can
284  range from 2-10 Kbp in total length (Figure 3B-D and Supplementary Results). In one parent-
285  child duo, we found that the parent harboured an expanded heterozygous version of the TR:
286  ashorter allele with a total length of 244 bp with the (AAAAG)50 motif; and a longer allele with
287  atotal length of 2.49 Kbp, composed primarily of the (AAGGG)490 motifs (Figure 4A). Long-
288 read sequencing of brain tissue from the same individual (PacBio Sequel 2) confirmed these
289  results, although the longer allele was further expanded by 180 bp (36 additional motif-copies),
290 suggesting a somatic expansion in the brain relative to blood (Figure 4A). However, long-read
291  data from the child yielded a homozygous allele-sequence of 63 bp with the (AAAAG)12 motif
292  (Figure 4A). This was unexpected as at least one of the two allele-sequences from the parent
293  should be inherited in the child. A closer analysis of HiFi long-read-pileup overwhelmingly
294  supported this genotype. However, we observed an abnormal coverage drop in both the
295 parent and child for this TR, which was alleviated when including non-HiFi data
296  (Supplementary Results). After merging HiFi and non-HiFi data of the child, TREAT/otter
297  correctly assembled the expanded allele-sequence at 2.65 Kbp in size with (AAGGG)>374.
298 Penta-repeat primed PCR (RP-PCR) confirmed that both parent and child harboured repeat
299  expansions separately composed of the (AAAAG) and (AAGGG) motifs (Figure S12).
300 Therefore, HiFi data alone failed to capture this expanded allele-sequence, which was
301  recoverable when including the non-HiFi data.

302
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303 We observed similar situations of abnormal coverage drops in PacBio data in a separate
304 intronic TR in ABCA7, previously associated with Alzheimer's disease (AD). We
305 experimentally validated the lengths of this TR using Southern Blotting in a subset of nine
306 centenarians for which long-read sequencing was performed (Figure S13 and Supplementary
307  Methods). The local HiFi coverage for these individuals ranged 1-7x (Figure 4B and
308  Supplementary Results). The correlation between experimentally validated alleles and HiFi-
309 based alleles was 0.58 (Pearson correlation, Figure 4B). However, the inclusion of non-HiFi
310 data increased read-support by four-fold to an average coverage of 22x. As a result, the
311 correlation with experimentally validated allele sizes increased to 0.99 (Figure 4B). These
312  results highlight standing challenges of characterising TRs with long-read sequencing data,
313  and suggest systematic biases of long-read sequencing in certain genomic regions.

314

315  The above observations motivated us to systematically characterise genome-wide coverage
316  drops of TRs across long-read sequencing technologies. We did this by investigating coverage
317  drops in the curated set of ~864K genome-wide TRs in the CHM13 reference genome, using
318  both PacBio and ONT long-read datasets of HG002 at ~38x coverage (see Supplemental
319  Results and Methods). The average TR-length in this curated set was 93 bp, with motifs being
320 mostly 16+bp motifs (23%), followed by dinucleotide (18%), tetranucleotide (14%), and
321 homopolymers (13%, Figure S4). For each TR, we defined the coverage ratio by dividing the
322 local TR coverage vs. global genome-wide coverage. We found the average coverage ratio to
323 be 1.01, 1.02, 0.99 and 1.03, respectively for Sequel 2, Revio, ONT Simplex and Duplex
324  technologies. This indicated generally no unexpected coverage-drops in TRs (Figure S14A).
325 However, 486 (0.06%) unique TRs had ratios below 0.25 (i.e. a four-fold lower coverage than
326  expected based on the global average coverage), of which 454 (93%) were present in the
327 HGO002 T2T reference assembly (Table S3). The majority of the low-coverage TRs (294/454,
328 65%) overlapped gene annotations, potentially leading to mis-genotyping that may impact

329  biological interpretation. Furthermore, we observed that some of these TRs were within 5 Kbp
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330 of each other, suggesting that coverage drops can extend across multi-Kbp regions. Overall,
331  we observe significantly more low-coverage TRs in PacBio datasets compared to ONT
332 (OR=9.4, p-value<2x10-16, Fisher's exact test), with N=437 TRs (89%) being specific to
333 PacBio datasets. Moreover, 22% of these TRs (N=98) had low coverage in both Sequel 2 and
334 Revio datasets, suggesting potential systematic challenges in both technologies (Figure
335 S1714B-G). This included the intronic TR in ABCA?7, previously associated with Alzheimer’s
336 disease. Interestingly, the average number of non-HiFi reads in these TRs was 10, indicating
337 that although reads were generated for these TRs, most were flagged as low-quality during
338  HiFi data generation.

339

340  Within the ONT datasets, we observe significantly more low-coverage TRs in the Duplex
341 dataset relative to the Simplex dataset (OR=2.6, p-value=1.76x10-3, Fisher’s exact test).

342

343  We characterised the sequences of all low-coverage TRs to investigate potential characteristic
344  features. When comparing the 454 low-coverage TRs with the remaining of ~864K genome-
345 wide TRs, we found that low-coverage TRs were longer (p-value = 8.68e-14; 493 bp longer
346 on average) and harboured higher GC-content (p-value = 2.28e-50; 17.4% higher on
347  average). A comparison of dinucleotide content revealed that AG, CC, CG, CT, and GG
348 dinucleotides were significantly enriched in the low-coverage TRs (Figure S14H-I). Moreover,
349  we found that G-quadruplex DNA secondary structures (G4s) were more likely to occur in low-
350 coverage TRs (p-value=2.48e-45; 3.76% higher, Figure S14H and Supplementary Methods).

351
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Figure 4: Coverage drops in TR in RFC1 and ABCAY genes, associated with CANVAS and Alzheimer’s
Disease. A. Shows the genotyped TR alleles and relative motif characterisation in a parent-child duo
using only HiFi data, and HiFi + non-HiFi data. Long-read data from the brain of the parent were also
available. Adding non-HiFi data rescued the missing allele in the child. B. Shows the comparison
between experimentally validated alleles in the TR intronic of ABCA7 gene, and genotyped alleles
based on HiFi data alone, and HiFi + non-HiFi. Experimental validation of TR alleles was performed

with Southern Blot assay, and was available for 9 individuals for which long-read data was also
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360  available. When adding non-HiFi data, we could recover the expanded alleles in the child that were
361  missed by HiFi data alone.

362

363 2.5 Comparing tandem repeats across multiple genomes in a

364 case-control setting

365  With the acquired knowledge about possible allele dropouts in TRs, we used TREAT/ofter in
366  a case-control setting to replicate the association of four TRs that were previously shown to
367  associate with Alzheimer’s Disease (AD) risk (Table 1, Table S4). We did so by using a set of
368 246 AD patients (mean age = 67.949.8, 70% females) and N=248 cognitively healthy
369 centenarians (mean age = 101.2+2.5, 70% females) that were sequenced with PacBio Sequel
370 2 instrument (Methods and Figure S15).% Across all 494 genomes, we observed a median
371  coverage (HiFi data) of 14, 15, 14, and 4, respectively for the TRs in APOC1, SPI1, FERMT2,
372  and ABCAY (Figure 5A). The combined allele size (i.e. the sum of the maternal and paternal
373  alleles) of the TR nearby APOC1 (chr19:44921096-44921134) was significantly expanded in
374  AD patients compared to cognitively healthy centenarians (beta=0.38, p=2.63x10-9, Figure
375 5B and Table 1). In contrast, the short allele of the TR within SPI/1 gene was significantly
376 contracted in AD patients compared to cognitively healthy centenarians (beta=-0.03,
377  p=6.5x10-3, Figure 5B and Table 1). The direction of effect of these TRs was in line with the
378  original studies.®®**® We could not replicate the association of the TR within FERMT2
379  (beta=0.01, p=0.27, short allele) (Figure 5B and Table 1).

380

381  For the intronic TR in ABCA7, we found significant expansions in AD cases after integrating
382  non-HiFi data (beta=8.63x10-5, p=0.04, joint allele size, Figure 5C-D). We note that 22
383  samples were omitted due to reduced coverage levels even after integrating HiFi and non-HiFi
384  data. We then identified TR size boundaries in the centenarian controls corresponding to the

385  5th and 95th percentiles of the joint TR allele sizes (2.2 Kbp and 8.4 Kbp, respectively). The
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number of centenarians with a TR size lower than the 5th percentile was three-fold higher than
that of AD cases (1-tailed Fisher’s exact test p=0.023, OR=3.2, Figure 5E), and the number of
AD cases with a TR size larger than the 95th percentile was two-fold higher than that of
centenarians (1-tailed Fisher's exact test p=0.04, OR=2.0, Figure 5E). Given the difficulties in
correctly assessing the allele sequences of this TR, we cannot exclude that additional samples

suffer from allelic dropouts, especially for the larger expanded allele-sequences.
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Figure 5: Replication of the association with AD of TRs in APOC1, SPI1, FERMT2 and ABCA7. A. The
coverage distribution of the four TRs in AD patients and cognitively healthy centenarians. B. The TR
size difference between AD patients and cognitively healthy centenarians in APOC1, SPI1 and

FERMT?2. For the associations, we used logistic regression models using the TR size as predictor for
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398  AD case-control status. C. HiFi and combined HiFi + non-HiFi coverage distribution of the TR intronic
399  of ABCA7 gene. D. Comparison of the joint allele size of ABCA7 TR between AD cases and cognitively
400 healthy centenarians, respectively using HiFi data, non-HiFi data, and the merged dataset of HiFi and
401 non-HiFi. E. Number of AD cases and cognitively healthy centenarians in the lower 5" quantile and
402 upper 95" quantile. Quantiles were defined based on the distribution of the joint TR-allele size in the
403 centenarians. We tested for the differential enrichment of AD and centenarians in each quantile with
404  Fisher’s exact tests.
405
406  Table 1: Replication of TR previously associated with Alzheimer’s Disease (AD)
TRs previously associated with AD
Region chr19:44921096- | chr11:47775208- | chr19:1049436- | chr14:52832909-
44921134 47775243 1050066 52832938
Gene APOC1 SPI1 ABCA7 FERMT2
Best model Joint alleles Short alleles Joint alleles Short alleles
Beta (OR) 0.38 (1.46) -0.03 (0.97) 8.63x10-5 (1.01) 0.01 (1.01)
P-value 2.6x10-9 6.5x10-3 0.041 0.27
Original study 38014121 37745545 29589097 37745545
Original OR NA -0.01 (0.99) 4.5 0.01 (1.01)
Original model Longer allele Joint alleles Individuals with Joint alleles
alleles >5720 bp
Original Logistic Mixed linear Fisher’s exact Mixed linear
method regression models models
Original p- 4.3x10-10 NA 0.008 NA
value
Original 1489 AD vs. 1492 | 6328 AD vs. 6580 | 275 AD vs. 177 | 6328 AD vs. 6580
samples controls controls controls controls
Data type Short read Short read Southern blot Short read
sequencing sequencing sequencing
407  Region: genomic coordinates of the TR with respect to GRCh38; Gene: the closest gene as reported in
408 the original publications; Best model: model that yielded the most significant association, in our
409  comparison: Short allele, Long allele or Joint alleles size; Beta (OR): effect size and relative Odds Ratio
410 with respect to AD: an increased TR size leads to increased AD risk for positive estimates; P-value: p-
411 value of association. We used logistic regression models using TR size (short allele, long allele and
412 combined allele size) as predictor for AD case-control status, using 246 AD patients (cases) and 248
413  cognitively healthy centenarians (controls); Original study: the Pubmed ID of the original study; Original
414  OR: the odds ratio as reported in the original study; Original model: model used for association in the
415 original study; Original method: method used for association in the original study; Original p-value: the
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416  p-value reported in the original study; Original samples: the number of AD cases and controls used in

417 the original study; Data type: the data on which the association were identified.
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218 3. Discussion

419  In this study, we provide novel contributions to better characterise tandem repeats (TRs) with
420 long-read sequencing data. First, we present our novel tools, otter and TREAT, that provide a
421  unified workflow to accurately characterise TRs using both Pacific Bioscience (PacBio) and
422  Oxford Nanopore Sequencing Technologies (ONT) datasets. This enabled us to characterise
423  genome-wide TRs in patients with neurodegenerative diseases and genomes from the Human
424  Pangenome Research Consortium (HPRC). Second, we show that in rare instances, long-
425 read sequencing technologies can suffer from abnormal coverage drops in TRs due to
426  potential systematic challenges, particularly in PacBio’s HiFi technology. These coverage
427  drops can lead to TR mis-genotyping, as we observed in CANVAS and Alzheimer’s disease
428 (AD)-associated TRs. Finally, we applied TREAT/otter to a case-control setting and replicated
429 TRs previously associated with AD across 494 long-read sequenced AD patients and
430  cognitively healthy centenarian genomes.

431

432  Our benchmark of ofter and TREAT highlighted state-of-the-art performances of our tools in
433 terms of TR genotyping and motif identification accuracy. We showed that otter, TREAT, and
434  other existing tools provide generally accurate characterisations of TRs on both PacBio and
435 ONT datasets, and with improved accuracies at higher sequencing coverages. Across
436 technologies, our benchmark revealed that PacBio leads to generally more accurate
437  genotypes for relatively smaller TRs, with PacBio and ONT having similar performances for
438 TRsranging 500-1000 bp, and ONT leading to more accurate genotypes for larger TRs. These
439 results remained when using other distance metrics as well as in a similar benchmark using
440 the CHM13 reference genome and a larger set of genome-wide TRs.

441

442  Our systematic analysis of coverage drops revealed that overall, coverage drops of TRs are
443 rare (0.6%), and do not impact the overall genotyping performances of TREAT/otter and other

444  tools. However, our analysis relied on HG002, a highly homozygous genome sequenced at
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445  high coverage (38x). Hence, TR coverage drops may be more prevalent in other (low-
446  coverage) genomes that harbour expanded TR sequences, especially those with GC-rich
447  sequences. TRs with coverage drops were often large (>500 bp), high in GC-content, and with
448  higher densities of predicted G-quadruplex DNA secondary structures (G4s). G4s have been
449  previously reported to reduce polymerase efficiency.*® As PacBio’s HiFi technology relies on
450  multiple successful passes of a DNA polymerase in a circular DNA template,?® we speculate
451 that the interference of G4s might reduce the number of passes in the circular template,
452  possibly leading to lower quality reads (non-HiFi reads). Altogether, incidents of TR coverage
453  drops were enriched in PacBio’s Revio and Sequel 2 datasets, and to a lower extent in ONT’s
454  Duplex and Simplex datasets, with ONT Simplex suffering the least. Although rare, we showed
455  and experimentally validated that coverage drops in TRs can occur at clinically relevant TRs,
456  requiring extra attention when characterising these TRs. To this end, we showed that local vs.
457  global coverage ratio is an effective way to identify such problematic regions, and that for
458 PacBio, these regions can be (in part) rescued by adding noisier non-HiFi data, as shown for
459  the TRs in ABCA7 and RFC1 genes.

460

461 TREAT and otter can be used to genotype and characterise potentially any type of repetitive
462  sequences. However, this remains challenging for very large TRs spanning several kilobases,
463 for example those in telomeric and centromeric regions of the genome. We also note that
464  regions where sequencing error-rates exceed inter-allele dissimilarities may still be difficult to
465  genotype. As the error rate in ONT Simplex data is relatively higher than PacBio and ONT
466  Duplex, this is likely driving the lower genotyping accuracy observed in ONT Simplex. These
467 limitations are not only specific to TREAT and ofter, but extend to other existing tools. With
468 newer sequencing technologies bringing longer read lengths (e.g., ONT ultra-long reads),
469 together with more complete reference genome assemblies, it might become possible to
470 genotype any satellite region (micro-, mini-, and macro-satellites) in the genome with TREAT

471 and ofter.
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472

473  We were able to replicate previously reported TRs associated with AD by comparing a cohort
474  of AD patients and cognitively healthy centenarians. We acknowledge that these TRs were
475  previously identified using different experimental methods (e.g. short-read sequencing,
476  southern blotting), and analyses strategies (logistic regressions, linear mixed models, fisher’s
477  exact test)."2383% While this heterogeneity hampers the direct comparison of the effect size
478  estimates, all associations we observed were in the same direction as the original studies. In
479  particular, the TR intronic of ABCA7 was shown to carry an odds ratio for AD of 4.5 when one
480 allele was expanded >5.7 Kbp."? Similarly, we observed that individuals carrying larger allele-
481 sequences were significantly associated with AD. However, in our cohort, the effect was
482  mainly driven by cognitively healthy centenarians having a shorter joint-allele size (i.e. more
483  AD-protection), rather than AD cases having a more expanded TR-sizes. While we cannot
484  exclude that we have missed some expanded genotypes due to allele dropouts, the
485  centenarians that we included were previously shown to be enriched with the protective alleles
486 in the majority of Single Nucleotide Polymorphisms (SNPs) associated with AD.*'

487

488 In summary, ofter and TREAT are flexible and accurate bioinformatics tools compatible with
489  different sequencing platforms and requiring minimal input requirements, that enable end-to-
490 end analysis and comparisons of tandem repeats in human genomes with broad applications

491 in research and clinical fields.

492 4. Methods

493 4.1 TREAT

494  The main analysis is the assembly analysis, which uses otter for TR genotyping, and is

495 followed by TR content characterisation (identification of motif and number of copies) on the
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496 individual TR alleles. In addition to the assembly analysis, TREAT implements a reads
497 analysis. Here, TR genotyping is performed using an iterative clustering framework based on
498 TR sizes (Supplementary Methods). This is followed by TR content characterisation, which is
499 done on all individual reads (Supplementary Methods and Supplementary Results). This
500 analysis may be preferred when information from all reads is needed, for example for
501  performing a multiple sequence alignment, or when studying somatic instability.

502 Inall cases, TR content characterisation is performed with pytrf (https://github.com/Imdu/pytrf).

503 When multiple motif annotations for the same sequence are found by pytrf, a consensus
504 representation of the repeat content is generated. Briefly, if the fraction of sequence annotated
505  with a given motif is >95%, then the relative motif is regarded as the best motif describing the
506 TR. In case two or more motifs are found, each describing a portion of the sequence, then the
507 intersection is calculated by intersecting the motif-specific start and end positions. If the
508 intersection is <90%, then the motifs and the relative number of copies are combined. For
509 example, for sequence TGTGTGTGTGTGTGGAGAGAGAGAGAGA, pytrf identifies (i) 7
510 copies of TG (ranging positions 1-14, 50% of the sequence covered), and (i) 7 copies of GA
511  (ranging positions 15-28, 50% of the sequence covered). In this case, the combined sequence
512  annotation will be TG+GA, repeated 7+7 times (see Supplementary Methods).

513 TREAT’s analysis module consists of an outlier-detection framework, and a case-control
514  analysis. The outlier-detection scores extreme variations in TR allele sizes across a set of
515  samples. Outliers are detected using a normalised distance that quantifies how far each allele
516 size is from the median allele size, scaled by the variability of the data (Supplementary
517  Methods). A p-value for each individual is then calculated by comparing each data point's
518 distance to a chi-squared distribution. The case-control analysis employs logistic regression
519  models to compare allele sizes (short allele, long allele, and joint allele size) between cases

520 and controls.
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521 4.2 Oftter: a stand-alone, fast, local assembler

522  Otter is a generic stand-alone method for generating fast local assemblies of a given region
523  or genotyping whole-genome de novo assemblies. Otter in the main genotyping engine of
524  TREAT assembly analysis. Briefly, given a region of interest, ofter uses the htslib library to
525 identify spanning reads (region of interest is fully contained in the reads) and non-spanning
526 reads (only partially contained) in a given BAM file, and extracts the corresponding

527  subsequence per read based on their alignment (Figure 1B).*?

When a reference genome is
528  provided, it will perform local read-realignments on non-spanning reads if it detects a clipping-
529  signal, which can indicate suboptimal mappings to due highly divergent sequences (Figure
530  1B). This is done by aligning (using WFA2-lib alignment library)*® the flanking sequences of a
531 region (100 bp by default, modifiable with ‘--flank-size’ parameter) derived from the reference
532 genome onto each read, which are then used to recalibrate the corresponding subsequence
533  of the region of interest. Recalibrated non-spanning reads are reclassified as spanning if both
534 flanking sequences are successfully aligned with a minimum length and sequence similarity
535 (by default, 90% sequence similarity, modifiable with ‘--min-sim’ parameter). In the context of
536  TRs, this realignment procedure often correctly recalibrates the alignments of TRs with major
537 length and/or motif-composition differences relative to a reference genome.

538

539  Otter identifies unique allele-sequences by clustering spanning-reads via pairwise-sequence
540 alignment (Figure 1B and Supplementary Methods). To manage high somatic variation and/or
541  sequencing errors, otter estimates local baseline error-rates per region using a gaussian-
542  kernel density estimator. This produces a one-dimensional distribution of spanning pairwise-
543  sequence distances. In single homozygous allele-sequences, the distribution is unimodal
544  centred at 0. With multiple allele-sequences, the distribution is multimodal, where peaks
545  represent sequence errors between reads from different allele-sequences. Oftter identifies
546  these peaks and performs hierarchical clustering, stopping when distances exceed the

547  densest peak, partitioning reads into initial clusters. This procedure is followed by a curation
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548  step to ensure sufficient read support, adapting to local coverage (Figure 1B). If no maximum
549  number of alleles (a) is enforced, otter outputs all clusters. Otherwise, clusters below the
550 coverage threshold are merged, and if clusters exceed a, hierarchical clustering continues
551 until a clusters remain. Ofter then generates a final consensus sequence per cluster via
552  pseudo-partial order alignment procedure of spanning and non-spanning reads inspired from
553  Ye and Ma, 2016.*

554

555 4.3 Genomes included for testing

556  HPRC: Publicly available PacBio long-read HiFi data of 47 individuals from the Human
557  Pangenome Reference Consortium (HPRC) were downloaded (Data Accession).** For the

558  well characterised HG002 genome,

we also downloaded data generated with Oxford
559  Nanopore (ONT, Duplex and Simplex chemistries) and PacBio Revio technologies. Finally,
560 we generated long-read sequencing data for HG002 using the PacBio Sequel 2 instrument
561  across three SMRT cells, keeping both HiFi and non-HiFi data. ONT data was aligned to the
562 reference genomes (GRCh38 and CHM13) using minimap2 (2.21-r1071, specifying -x map-
563  ont).* PacBio data was aligned using ppmm2 (1.9.0, specifying —preset CCS and —preset
564  SUBREADS respectively for HiFi and non-HiFi data).®

565

566  100-plus Study cohort and Alzheimer Dementia Cohort: For the replication of TRs previously
567  associated with Alzheimer’'s Disease (AD), we used HiFi sequencing (Sequel 2) data from the
568  blood DNA of N=246 patients with AD from the Amsterdam Dementia Cohort (ADC),**¢ and
569  N=248 cognitively healthy centenarians from the 100-plus Study cohort.***” Ten cognitively
570 healthy centenarians were sequenced as a trio, including the blood-derived DNA from the

571 centenarian, the brain-derived DNA from the centenarian and blood-derived DNA from a child

572  of the centenarian. The combined set of a centenarian and child is referred to as parent-child
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573  duo throughout the manuscript. Sequencing data pre-processing was conducted as previously
574  described (Supplementary Methods).*

575

576  CANVAS patients: We used the HiFi data (Sequel 2) of two patients diagnosed with CANVAS
577  (Cerebellar ataxia with neuropathy and vestibular areflexia syndrome), caused by a TR
578  expansion in RFC1 gene.*

579

580 4.4 Evaluating ofter and TREAT performances

581  Comparison with existing tools: We compared TREAT/otter to TRGT and LongTR.??*' For the
582  comparison, we used the HG002 genome and a set of 161,382 TRs from PacBio’s repeat

583 catalogue (version 0.3.0, available at

584  https://github.com/PacificBiosciences/trgt/tree/main/repeats). We compared the tools’
585  genotyped alleles to the expected alleles from the T2T assembly of HG002. As metrics, we
586  used (/) normalised edit distance, (ii) raw edit distance, (jii) allele size correlation between the
587  observed and expected alleles, and (iv) fraction of perfectly genotyped alleles. In addition, we
588 evaluated motif identification accuracy, and computational resources.

589

590 TREAT/otter applications: We compared the performances of TREAT assembly and reads
591 analyses by correlating the estimated TR allele sizes with each other (Supplementary
592  Results). Then, we used TRs for a population stratification analysis: using the set of 161K
593 TRs, we selected the top 20% most variable TRs based on the coefficient of variation (ratio of
594  standard deviation to the mean TR joint allele size). Then we applied Principal Component
595 Analysis (PCA) based on the joint allele sizes. For 40/47 matching samples with Single
596  Nucleotide Polymorphisms (SNP) data from the 1000Genome project,*® we also performed

597 PCA based on 30,544 randomly sampled common (minor allele frequency >10%) SNPs.
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598 To evaluate clinical applicability, we applied the TREAT/otter outlier analysis module on the
599 combined dataset of 47 HPRC genomes plus the two CANVAS patients and the ten parent-
600 child duos. For this analysis, we focused on 35 clinically relevant TRs (Table S1), that were
601  previously associated with neurological diseases.”®'? Finally, TREAT/otter case-control
602 analysis module was used to replicate the association of four TRs that were previously
603  associated with Alzheimer’s Disease (AD).'#%3° The commands used for the outlier and case-
604  control analyses are available in Supplementary Methods.

605

606 4.5 Systematic analysis of allele dropouts in tandem repeats

607  Curated set of TRs in CHM13: We downloaded and curated repeat annotations for the CHM13

608 reference genome (version 2.0, https://github.com/marbl/CHM13, Supplementary Methods).

609 This curated dataset counted 864,424 TRs genome-wide. We extracted the corresponding
610  parental and maternal allele-sequences in HG002 for these TRs by aligning the HG002 T2T
611  assembly (version 0.7) to CHM13.%2

612

613  TRs unique to CHM13: We first genotyped the 864K TRs using ofter in HG002 from different
614  technologies (Sequel 2, Revio, Simplex and Duplex), and at different coverage levels (5x, 10x,
615  15x, 20x, 25x and 30x), and calculated the normalised edit distance between observed and
616  expected TR alleles (Supplementary Results). We then focussed on a set of TRs present in
617 CHM13 and absent in GRCh38, and used TREAT/otter to characterise the repeat content of
618 these TRs in 47 genomes from HPRC.

619

620  Evaluation of coverage drops in TR: Using HG002 data from Sequel 2, Revio, Simplex and
621 Duplex technologies (~30x coverage each), we calculated the ratio between local TR
622  coverage and average global coverage. TRs where this ratio was <0.25 were regarded as low-

623 coverage TRs. We then investigated sequence characteristics of low-coverage TR, including
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624  average size, dinucleotide content, and propensity to form G-quadruplex DNA secondary
625  structures (G4s). For the latter, we used pgsfinder (v2.10.1) with 'min_score = 20' parameter.*®

626

627 Data access

628 Human Pangenome Consortium data is publicly available and can be downloaded from

629 https://github.com/human-pangenomics/HPP Year1 Data Freeze v1.0?tab=readme-ov-

630 file.
631 Long-read sequencing data generated with PacBio Sequel 2 for the 2 CANVAS patients as
632  wellas 246 AD patients and 248 cognitively healthy centenarians is available upon submission

633  of a research proposal to the Alzheimer Genetics Hub (AGH, https://alzheimergenetics.org/).

634
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