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Abstract 26 

Tandem repeats (TR) play important roles in genomic variation and disease risk in humans. 27 

Long-read sequencing allows for the accurate characterisation of TRs, however, the 28 

underlying bioinformatics perspectives remain challenging. 29 

We present otter and TREAT: otter is a fast targeted local assembler, cross-compatible across 30 

different sequencing platforms. It is integrated in TREAT, an end-to-end workflow for TR 31 

characterisation, visualisation and analysis across multiple genomes.  32 

In a comparison with existing tools based on long-read sequencing data from both Oxford 33 

Nanopore Technology (ONT, Simplex and Duplex) and PacBio (Sequel 2 and Revio), otter 34 

and TREAT achieved state-of-the-art genotyping and motif characterisation accuracy. 35 

Applied to clinically relevant TRs, TREAT/otter significantly identified individuals with 36 

pathogenic TR expansions. When applied to a case-control setting, we significantly replicated 37 

previously reported associations of TRs with Alzheimer’s Disease, including those near or 38 

within APOC1 (p=2.63x10-9), SPI1 (p=6.5x10-3) and ABCA7 (p=0.04) genes.  39 

We finally used TREAT/otter to systematically evaluate potential biases when genotyping TRs 40 

using diverse ONT and PacBio long-read sequencing datasets. We showed that, in rare cases 41 

(0.06%), long-read sequencing suffers from coverage drops in TRs, including the disease-42 

associated TRs in ABCA7 and RFC1 genes. Such coverage drops can lead to TR mis-43 

genotyping, hampering the accurate characterisation of TR alleles. 44 

Taken together, our tools can accurately genotype TR across different sequencing 45 

technologies and with minimal requirements, allowing end-to-end analysis and comparisons 46 

of TR in human genomes, with broad applications in research and clinical fields. 47 

 48 
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1. Introduction 49 

Roughly 30% of the human genome consists of tandem repeats (TR) characterised by one or 50 

more repeat motifs that are defined by their consecutive repetition.1 This repetitive pattern 51 

often leads to DNA instability, facilitating not only expansions and contractions of the repeating 52 

motif sequence, but also allelic diversity within the sequence.2,3 Several definitions of TRs 53 

have been introduced based on the motif length and size variability, including microsatellites, 54 

minisatellites, and macrosatellites. Microsatellites (or short tandem repeats, STR) are the most 55 

abundant TRs in the human genome, are characterised by a repetitive motif of less than 6 56 

base pairs (bp), and tend to cluster in non-coding regions of the genome.4 Minisatellites are 57 

characterised by a repetitive motif with a size ranging 7-100 bp, and they are highly enriched 58 

in the telomeric regions of the genome.5 Macrosatellites are characterised by larger tandem 59 

repeat units (>100 bp), and are enriched in the telomeric and centromeric portions of the 60 

genome.6  61 

 62 

TRs can disrupt gene-expression regulation and contribute to over 40 neurological 63 

disorders.1,7,8 Pathogenic TR expansions, surpassing critical lengths, are linked to conditions 64 

like spinocerebellar ataxias, Huntington’s disease, Fragile-X syndrome, Amyotrophic lateral 65 

sclerosis (ALS), and Myotonic Dystrophy.7–9 For instance, Fragile-X syndrome results from a 66 

GGC repeat expansion in the FMR1 gene, with affected individuals having up to 4,000 copies 67 

compared to less than 50 in healthy individuals.10 Similarly, ALS is caused by an intronic hexa-68 

nucleotide repeat expansion (GCCCCG) in the C9orf72 gene, exceeding a critical length of 69 

more than 200 copies.11 Beyond diseases-causing, TRs have been also identified as risk 70 

factor for complex human diseases: for example, the intronic TR in the ABCA7 gene is 71 

associated with a 4.5-fold increased risk of Alzheimer’s Disease (AD) when the TR exceeds 72 

5720 base pairs.12,13 73 

  74 
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Traditionally, the evaluation of TR lengths and sequences has been challenging. Conventional 75 

methods, such as repeat-primed polymerase chain reaction (RP-PCR) and Southern blot 76 

assays, are time-consuming and limited in detecting TRs within PCR-based boundaries. 77 

Short-read sequencing approaches offer an alternative, but their limited read lengths often fail 78 

to span repetitive regions effectively. Despite heuristic methods and statistical modelling,14–19 79 

accurately assessing clinically relevant TRs remains difficult. The advent of long-read 80 

sequencing, particularly with PacBio's High Fidelity (HiFi) and Oxford Nanopore Technology's 81 

(ONT) Duplex technology (10-20kb on average, >99% accuracy),20,21 has significantly 82 

improved TR evaluation by providing long and accurate sequencing fragments. 83 

 84 

Characterising TRs with long-read sequencing technology currently has two main limitations. 85 

First, there is the need to characterise TRs across different (long-read) sequencing 86 

technologies and data-types.22–24 This is critically important given the growing long-read 87 

sequencing initiatives aiming to comprehensively assess TRs in large genomic datasets,25 88 

spanning both population-wide and clinical contexts. For example, some existing tools are 89 

constrained by predefined TR databases, hindering the identification of new TR features such 90 

as novel motif sequences;26 other tools are technology and data-type-dependent,22 or do not 91 

produce generalizable multi-sample outputs.23,24  92 

 93 

Second, there is a lack of comprehensive studies that have investigated potential biases when 94 

sequencing TRs. For example, DNA methylation has been previously shown to impact base-95 

calling accuracy in long-read sequencing data.27–29 Similarly, the formation of secondary 96 

structures due to TRs could impact enzyme efficiency (e.g. polymerase or nanopores),30 97 

potentially reducing read-quality and sequencing throughput in current long-read sequencing 98 

technologies. Furthermore, some technologies require the alignment of noisy reads to 99 

generate high quality consensus sequences, which might be more difficult in case of repetitive 100 
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regions. These problems may impact genotyping accuracy and lead to incorrect assessments 101 

of allele-sequences, including disease-associated TRs in patients. 102 

 103 

Here, we present TREAT (Tandem REpeat Annotation Toolkit), a unified workflow for 104 

characterising TRs across multiple genomes, cross-compatible with diverse long-read 105 

technologies and data-types (e.g. read-alignments and de novo assemblies). TREAT employs 106 

a novel generic targeted local assembler, otter, that can adapt to different sequencing 107 

chemistries to accurately characterise TRs. We benchmarked TREAT and otter with currently 108 

available tools for TR genotyping (PacBio’s TRGT and LongTR)22,31 in terms of genotyping 109 

accuracy, motif identification, and running performances. We then showcase TREAT and otter 110 

applicability in a population-, clinical-, and case-control setting. Finally, we performed a 111 

systematic analysis of ~864K genome-wide TRs in CHM13 reference genome to evaluate 112 

sporadic coverage drops that can affect TR genotyping accuracy. We did so using the well-113 

characterised HG002 genome based on long-read sequencing data from ONT (Duplex and 114 

Simplex), HiFi and non-HiFi data from PacBio’s Revio and Sequel 2 instruments. 115 

 116 

2. Results 117 

2.1 Cross-compatible workflow for characterising tandem 118 

repeats with otter and TREAT 119 

We present otter and TREAT, two bioinformatic tools that enable tandem repeat (TR) 120 

characterisation across different long-read sequencing technologies and data-types with 121 

minimal input requirements (Figure 1). Otter is a stand-alone generic targeted local assembler 122 

for long-read sequencing data, which automatically adapts to sequencing error-rates and 123 

coverage levels per target region. TREAT integrates otter to enable end-to-end unified 124 

workflow for de novo motif characterisation and downstream analysis, including TR 125 
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visualisation, outlier-based and case-control comparisons (see Methods). Both tools require 126 

sequencing data aligned to a reference genome (.bam files), the reference genome used 127 

(.fasta file), and the coordinates of the regions of interest (chromosome, start and end 128 

positions encoded in a .bed file). TREAT/otter outputs a multi-sample gVCF (Genomic Variant 129 

Call Format) file reporting genotyped alleles, their size and relative repeat content (motif and 130 

number of copies), of each TR in each sample. 131 

  132 

Otter is written in C++ and the source code is freely available at 133 

https://github.com/holstegelab/otter. 134 

 135 

TREAT is written in Python and R (for plots). The source code is freely available at 136 

https://github.com/holstegelab/treat along with example datasets, documentation, a dedicated 137 

Conda configuration file and a Docker image to ease the installation. 138 

 139 

140 

Figure 1: Schematic workflow of TREAT and otter. A. Shows TREAT workflow, highlighting the required 141 

inputs, the main features, and the main outputs of the tool. The red box highlights the main genotyping 142 

engine based on otter. B. Summarises the main algorithmic steps of otter, a novel targeted local 143 

assembler for long-read sequencing data.  144 

 145 
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2.2 Otter and TREAT enable accurate characterisation of both 146 

PacBio and ONT long-read data 147 

We benchmarked TREAT and otter with TRGT and LongTR,22,31 currently available tools to 148 

characterise TRs in long-read sequencing data. We compared: (i) genotyping accuracy, i.e. 149 

the accuracy of the predicted allele sequences for a TR, (ii) motif characterisation accuracy, 150 

and (iii) computational resources. We varied different long-read sequencing technologies 151 

(PacBio Sequel 2 and Revio, ONT Simplex and Duplex) as well as different coverages (5x, 152 

10x, 15x, 20x, 25x, and 30x) of HG002.32 We focussed on a set of 161,382 TRs from PacBio’s 153 

repeat catalogue (see Methods). Predicted TR alleles were compared to the expected alleles 154 

based on the HG002 T2T assembly (see Methods).  155 

 156 

In PacBio data, we found comparable genotyping accuracy between otter (TREAT genotyping 157 

engine) and TRGT, for both Sequel 2 and Revio datasets, although otter generated more 158 

accurate genotypes for larger TRs (e.g. >500bp), achieving average error-rates of 0.2-2.5%, 159 

compared to 0.6-3.8% of TRGT. Both methods were more accurate when increasing the 160 

coverage, although this was less pronounced for larger TRs (>500 bp). Notably, genotyping 161 

accuracy for both otter and TRGT was higher for PacBio’s Sequel 2 data in comparison with 162 

Revio data (Figure 2A and Supplementary Results). In ONT data, otter was generally more 163 

accurate than LongTR although differences for large TRs were less clear. For both tools, we 164 

observed better accuracies for Duplex data in comparison to Simplex data (Figure 2B and 165 

Supplementary Results). Altogether, our benchmark across all tools revealed that PacBio led 166 

to more accurate genotypes for TRs <500 bp, with PacBio and ONT having similar 167 

performances for TRs ranging 500-1000 bp, and ONT leading to more accurate genotypes for 168 

TRs >=1000 bp (see Figure 2A-B and Supplementary Results).  169 

 170 
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The above observations remain when using different distance metrics and partitioned by 171 

different TR-types. For example, we observed similar performances when using the raw edit 172 

distance and correlation between observed and expected allele sizes (Figure S1 and 173 

Supplementary Results). Furthermore, we found that TRs characterised by dinucleotide 174 

repeat motifs were on average less accurate than TRs with longer motifs (Figure S2). The 175 

fraction of alleles perfectly genotyped (i.e. with an edit distance of 0), compared to expected 176 

alleles, increased with higher coverage across all technologies and tools (Figure S3), with 177 

Sequel 2 data having the largest fraction of alleles perfectly matched, and ONT Simplex having 178 

the least. In PacBio Sequel 2 and Revio data, TRGT generated a slightly higher fraction of 179 

perfectly matched alleles with respect to otter (max difference 2.8%). In ONT data, otter 180 

outperformed LongTR in all settings. 181 

 182 

Similarly, TREAT, which makes use of TR-genotypes from otter, achieved similar motif 183 

characterisation accuracy relative to TRGT (Figure 2C). In the GRCh38 reference genome, 184 

the motifs of the 161K TRs were mostly dinucleotide (49%), followed by tetranucleotide (22%) 185 

and 16+ bp motifs (11%) (Figure S4). Because LongTR does not directly report the identified 186 

TR motifs, we compared TR motifs between TREAT and TRGT. On average, TREAT identified 187 

the same motifs as TRGT in 96% of cases (Figure 2C), and this did not change for different 188 

technologies (Sequel 2 or Revio) or different coverages. We observed a higher concordance 189 

in motif detection between tools for shorter motifs (Figure 2C). When looking at the motifs 190 

identified by TREAT on the GRCh38 reference genome, these matched known TR annotations 191 

in 91% of the cases. 192 

 193 

Finally, we evaluated the computational performances of otter (stand-alone), TREAT 194 

(integrated workflow with otter), TRGT and LongTR. When using four threads, TRGT and otter 195 

had similar run-time performances, while both were slightly faster than the integrated workflow 196 

from TREAT (Figure 2D). On the other hand, for the ONT data, otter and TREAT were faster 197 
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than LongTR. In terms of memory consumption, performances were comparable between 198 

TREAT and LongTR, while otter and TRGT used significantly less memory (Figure 2D). When 199 

evaluating the multithreading capabilities in TREAT, we saw that when increasing the number 200 

of threads to 6, 8, 10 and 12, the running times decreased by 1.3-, 1.5-, 1.6- and 1.8-fold (on 201 

average across the different technologies), compared to 4 CPU threads (Figure S5). 202 

 203 

In addition to the high-quality HiFi data, PacBio can output non-HiFi data, i.e. reads that did 204 

not pass PacBio’s internal HiFi quality thresholds, and that constitute a significant fraction of 205 

all sequenced data (45% in HG002). We explored whether integrating both HiFi and non-HiFi 206 

data could improve otter’s capability to accurately characterise TR allele sequences. Because 207 

Revio uses a subset of these non-HiFi reads (those with at least 90% read quality) to improve 208 

throughput and accuracy via DeepConsensus,33 we performed this analysis only for Sequel 2 209 

data. We found that non-HiFi data improved accuracy across all TR-lengths. Specifically, when 210 

integrating non-HiFi reads of at least 85-90% read quality, genotyping accuracy improved by 211 

nearly two-fold (Figure S6). 212 

 213 
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 214 

Figure 2: Benchmarking between TREAT/otter, TRGT, and LongTR. A. Genotyping accuracy of otter 215 

and TRGT on PacBio Sequel 2 and Revio data, stratified by TR size and sequencing depth. B. 216 

Genotyping accuracy of otter and LongTR on ONT Simplex and Duplex data, stratified by TR size and 217 

sequencing depth. C. Motif identification accuracy of TREAT and TRGT on PacBio Sequel 2 and Revio 218 

data, showing the overlap of matching motifs, stratified by motif size and sequencing depth. D. Memory 219 

usage and running time of otter, TREAT, TRGT, and LongTR, across technologies and sequencing 220 

coverages. 221 

 222 

2.3 TREAT’s unified workflow enables diverse characterisations 223 

of tandem repeats 224 

We applied TREAT’s unified workflow to characterise TRs in a population and clinical setting. 225 

First, we genotyped the set of 161K TRs in 47 genomes from the Human Pangenome 226 
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Research Consortium (HPRC),34 for which PacBio HiFi data was available. We then extracted 227 

the top 20% most variable TRs (N=32,208, based on the coefficient of variation, see Methods), 228 

and performed a principal component analysis (PCA, Figure 3A) on the joint allele sizes (i.e. 229 

the sum of the maternal and paternal alleles). We found that PC1 explained 12% of the total 230 

variance and genetically represented the African-American axis, while PC2 explained 3.5% of 231 

variance and corresponded to the American-Asian axis. The explained variance was similar 232 

to that of a PCA including 40/47 matching samples and 30,544 random common (minor allele 233 

frequency >10%) Single Nucleotide Polymorphisms (SNPs) (PC1: 14%, PC2: 4%, Figure S7). 234 

  235 

We then used TREAT’s outlier analysis to detect and score extreme TR expansions or 236 

contractions of 35 clinically relevant TRs (Table S1) in 47 genomes from the HPRC, as well 237 

as two Dutch CANVAS patients and 10 parent-offspring duos (see Methods).35,36 The two 238 

CANVAS patients were previously characterised to harbour expansions in the intronic TR in 239 

RFC1.35 For all individuals, PacBio HiFi data were generated with Sequel 2 instrument. In total, 240 

we identified 30 instances where the TR length in certain samples were significantly different 241 

from the distribution of TR lengths across all 69 genomes. The most significant deviations 242 

were observed for the two CANVAS patients in the TR intronic of RFC1 gene (p<2x10-16 for 243 

both patients, Figure 3B-D). The joint allele size for these samples was 78- and 89-fold higher 244 

than the median TR size across all 69 genomes. Significant TR expansions were also found 245 

in the TR in ATXN8 gene (HG01123 sample, p<2x10-16, Figure S8), and in DMD gene 246 

(HG02622 sample, p=6.90x10-3, Figure S9). Interestingly, in the TR intronic of RFC1 gene, 247 

we also observed a significant heterozygous expansion in one parent of the parent-offspring 248 

duos (p=1.7x10-3 and p=5.18x10-11, respectively for the short and long alleles, Figure 3B). 249 

Unexpectedly, the child reported a homozygous non-expanded genotype, suggesting a mis-250 

assembly or an allele dropout. 251 

 252 
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Finally, we applied TREAT to characterise unique TRs that are present in CHM13 reference 253 

genome but absent in GRCh38 across the 47 HPRC genomes. We first curated a set of ~864K 254 

genome-wide TRs in the CHM13 reference genome (see Methods). We evaluated genotyping 255 

accuracy by applying TREAT/otter to CHM13-aligned long-read datasets of HG002 (PacBio’s 256 

Revio and Sequel 2 as well as ONT’s Duplex and Simplex). We observed similar 257 

performances as those observed when using ~161K TRs from GRCh38 (see Figure S10 and 258 

Supplementary Results). These results showcase otter and TREAT’s ability to de novo 259 

characterise TRs across different reference genomes, and without prior knowledge of TR motif 260 

composition. Based on a CHM13-to-GRCH38 liftover procedure, we found 1017 unique TRs 261 

present in CHM13 and absent in GRCh38, 37% of which overlapped coding sequences 262 

(Supplementary Methods and Table S2). We used TREAT/otter to characterise these TRs 263 

across the 47 HPRC genomes and found a mean TR size of 129 bp (median=45 bp), mainly 264 

composed of trinucleotide motifs (42%), followed by homopolymers (26%), and 6+ nucleotide 265 

motifs (22%, Figure S11). 266 

 267 
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 268 
Figure 3: TREAT visualisation and analysis modules. A. The PCA of the ancestry-based analysis based 269 

on the 20% most variable TRs across 47 HPRC genomes. B. The main TR in the RFC1 gene. Y-axis: 270 

individuals, X-axis: TR size (in bp). Blue dots: smaller allele, orange dots: larger allele, red dots; 271 

homozygous genotypes. Dashed line: the allele in the reference genome GRCh38. The right side of the 272 

plot reports, for each sample and each allele, the motif and relative number of copies. The TR length of 273 

the two CANVAS patients were identified as significant outliers compared to the length-distribution of 274 

47 samples from the HPRC. C. The distribution of allele sizes for the TR in RFC1 gene. D. Motif 275 

representation in CANVAS patients, as produced with MotifScope.37 276 

 277 
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2.4 Tandem repeats may be sensitive to coverage dropouts in 278 

long-read sequencing 279 

A closer investigation of PacBio long-read data revealed unexpected drops of coverage in 280 

clinical TRs, consequently leading to mis-genotyping of disease-associated TRs. One 281 

example is the CANVAS-associated intronic TR in RFC1, where the most common allele 282 

consists of an (AAAAG)11 motif, with a total size of ~55bp. In CANVAS patients, the TR can 283 

range from 2-10 Kbp in total length (Figure 3B-D and Supplementary Results). In one parent-284 

child duo, we found that the parent harboured an expanded heterozygous version of the TR: 285 

a shorter allele with a total length of 244 bp with the (AAAAG)50 motif; and a longer allele with 286 

a total length of 2.49 Kbp, composed primarily of the (AAGGG)490 motifs (Figure 4A). Long-287 

read sequencing of brain tissue from the same individual (PacBio Sequel 2) confirmed these 288 

results, although the longer allele was further expanded by 180 bp (36 additional motif-copies), 289 

suggesting a somatic expansion in the brain relative to blood (Figure 4A). However, long-read 290 

data from the child yielded a homozygous allele-sequence of 63 bp with the (AAAAG)12 motif 291 

(Figure 4A). This was unexpected as at least one of the two allele-sequences from the parent 292 

should be inherited in the child. A closer analysis of HiFi long-read-pileup overwhelmingly 293 

supported this genotype. However, we observed an abnormal coverage drop in both the 294 

parent and child for this TR, which was alleviated when including non-HiFi data 295 

(Supplementary Results). After merging HiFi and non-HiFi data of the child, TREAT/otter 296 

correctly assembled the expanded allele-sequence at 2.65 Kbp in size with (AAGGG)>374. 297 

Penta-repeat primed PCR (RP-PCR) confirmed that both parent and child harboured repeat 298 

expansions separately composed of the (AAAAG) and (AAGGG) motifs (Figure S12). 299 

Therefore, HiFi data alone failed to capture this expanded allele-sequence, which was 300 

recoverable when including the non-HiFi data. 301 

 302 
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We observed similar situations of abnormal coverage drops in PacBio data in a separate 303 

intronic TR in ABCA7, previously associated with Alzheimer’s disease (AD). We 304 

experimentally validated the lengths of this TR using Southern Blotting in a subset of nine 305 

centenarians for which long-read sequencing was performed (Figure S13 and Supplementary 306 

Methods). The local HiFi coverage for these individuals ranged 1-7x (Figure 4B and 307 

Supplementary Results). The correlation between experimentally validated alleles and HiFi-308 

based alleles was 0.58 (Pearson correlation, Figure 4B). However, the inclusion of non-HiFi 309 

data increased read-support by four-fold to an average coverage of 22x. As a result, the 310 

correlation with experimentally validated allele sizes increased to 0.99 (Figure 4B). These 311 

results highlight standing challenges of characterising TRs with long-read sequencing data, 312 

and suggest systematic biases of long-read sequencing in certain genomic regions. 313 

 314 

The above observations motivated us to systematically characterise genome-wide coverage 315 

drops of TRs across long-read sequencing technologies. We did this by investigating coverage 316 

drops in the curated set of ~864K genome-wide TRs in the CHM13 reference genome, using 317 

both PacBio and ONT long-read datasets of HG002 at ~38x coverage (see Supplemental 318 

Results and Methods). The average TR-length in this curated set was 93 bp, with motifs being 319 

mostly 16+bp motifs (23%), followed by dinucleotide (18%), tetranucleotide (14%), and 320 

homopolymers (13%, Figure S4). For each TR, we defined the coverage ratio by dividing the 321 

local TR coverage vs. global genome-wide coverage. We found the average coverage ratio to 322 

be 1.01, 1.02, 0.99 and 1.03, respectively for Sequel 2, Revio, ONT Simplex and Duplex 323 

technologies. This indicated generally no unexpected coverage-drops in TRs (Figure S14A). 324 

However, 486 (0.06%) unique TRs had ratios below 0.25 (i.e. a four-fold lower coverage than 325 

expected based on the global average coverage), of which 454 (93%) were present in the 326 

HG002 T2T reference assembly (Table S3). The majority of the low-coverage TRs (294/454, 327 

65%) overlapped gene annotations, potentially leading to mis-genotyping that may impact 328 

biological interpretation. Furthermore, we observed that some of these TRs were within 5 Kbp 329 
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of each other, suggesting that coverage drops can extend across multi-Kbp regions. Overall, 330 

we observe significantly more low-coverage TRs in PacBio datasets compared to ONT 331 

(OR=9.4, p-value<2x10-16, Fisher’s exact test), with N=437 TRs (89%) being specific to 332 

PacBio datasets. Moreover, 22% of these TRs (N=98) had low coverage in both Sequel 2 and 333 

Revio datasets, suggesting potential systematic challenges in both technologies (Figure 334 

S14B-G). This included the intronic TR in ABCA7, previously associated with Alzheimer’s 335 

disease. Interestingly, the average number of non-HiFi reads in these TRs was 10, indicating 336 

that although reads were generated for these TRs, most were flagged as low-quality during 337 

HiFi data generation. 338 

  339 

Within the ONT datasets, we observe significantly more low-coverage TRs in the Duplex 340 

dataset relative to the Simplex dataset (OR=2.6, p-value=1.76x10-3, Fisher’s exact test).  341 

 342 

We characterised the sequences of all low-coverage TRs to investigate potential characteristic 343 

features. When comparing the 454 low-coverage TRs with the remaining of ~864K genome-344 

wide TRs, we found that low-coverage TRs were longer (p-value = 8.68e-14; 493 bp longer 345 

on average) and harboured higher GC-content (p-value = 2.28e-50; 17.4% higher on 346 

average). A comparison of dinucleotide content revealed that AG, CC, CG, CT, and GG 347 

dinucleotides were significantly enriched in the low-coverage TRs (Figure S14H-I). Moreover, 348 

we found that G-quadruplex DNA secondary structures (G4s) were more likely to occur in low-349 

coverage TRs (p-value=2.48e-45; 3.76% higher, Figure S14H and Supplementary Methods). 350 

 351 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.03.15.585288doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.15.585288
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

17 

 352 

Figure 4: Coverage drops in TR in RFC1 and ABCA7 genes, associated with CANVAS and Alzheimer’s 353 

Disease. A. Shows the genotyped TR alleles and relative motif characterisation in a parent-child duo 354 

using only HiFi data, and HiFi + non-HiFi data. Long-read data from the brain of the parent were also 355 

available. Adding non-HiFi data rescued the missing allele in the child. B. Shows the comparison 356 

between experimentally validated alleles in the TR intronic of ABCA7 gene, and genotyped alleles 357 

based on HiFi data alone, and HiFi + non-HiFi. Experimental validation of TR alleles was performed 358 

with Southern Blot assay, and was available for 9 individuals for which long-read data was also 359 
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available. When adding non-HiFi data, we could recover the expanded alleles in the child that were 360 

missed by HiFi data alone. 361 

 362 

2.5 Comparing tandem repeats across multiple genomes in a 363 

case-control setting  364 

With the acquired knowledge about possible allele dropouts in TRs, we used TREAT/otter in 365 

a case-control setting to replicate the association of four TRs that were previously shown to 366 

associate with Alzheimer’s Disease (AD) risk (Table 1, Table S4). We did so by using a set of 367 

246 AD patients (mean age = 67.9±9.8, 70% females) and N=248 cognitively healthy 368 

centenarians (mean age = 101.2±2.5, 70% females) that were sequenced with PacBio Sequel 369 

2 instrument (Methods and Figure S15).36 Across all 494 genomes, we observed a median 370 

coverage (HiFi data) of 14, 15, 14, and 4, respectively for the TRs in APOC1, SPI1, FERMT2, 371 

and ABCA7 (Figure 5A). The combined allele size (i.e. the sum of the maternal and paternal 372 

alleles) of the TR nearby APOC1 (chr19:44921096-44921134) was significantly expanded in 373 

AD patients compared to cognitively healthy centenarians (beta=0.38, p=2.63x10-9, Figure 374 

5B and Table 1). In contrast, the short allele of the TR within SPI1 gene was significantly 375 

contracted in AD patients compared to cognitively healthy centenarians (beta=-0.03, 376 

p=6.5x10-3, Figure 5B and Table 1). The direction of effect of these TRs was in line with the 377 

original studies.38,39 We could not replicate the association of the TR within FERMT2 378 

(beta=0.01, p=0.27, short allele) (Figure 5B and Table 1).  379 

  380 

For the intronic TR in ABCA7, we found significant expansions in AD cases after integrating 381 

non-HiFi data (beta=8.63x10-5, p=0.04, joint allele size, Figure 5C-D). We note that 22 382 

samples were omitted due to reduced coverage levels even after integrating HiFi and non-HiFi 383 

data. We then identified TR size boundaries in the centenarian controls corresponding to the 384 

5th and 95th percentiles of the joint TR allele sizes (2.2 Kbp and 8.4 Kbp, respectively). The 385 
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number of centenarians with a TR size lower than the 5th percentile was three-fold higher than 386 

that of AD cases (1-tailed Fisher’s exact test p=0.023, OR=3.2, Figure 5E), and the number of 387 

AD cases with a TR size larger than the 95th percentile was two-fold higher than that of 388 

centenarians (1-tailed Fisher’s exact test p=0.04, OR=2.0, Figure 5E). Given the difficulties in 389 

correctly assessing the allele sequences of this TR, we cannot exclude that additional samples 390 

suffer from allelic dropouts, especially for the larger expanded allele-sequences. 391 

 392 

 393 
Figure 5: Replication of the association with AD of TRs in APOC1, SPI1, FERMT2 and ABCA7. A. The 394 

coverage distribution of the four TRs in AD patients and cognitively healthy centenarians. B. The TR 395 

size difference between AD patients and cognitively healthy centenarians in APOC1, SPI1 and 396 

FERMT2. For the associations, we used logistic regression models using the TR size as predictor for 397 
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AD case-control status. C. HiFi and combined HiFi + non-HiFi coverage distribution of the TR intronic 398 

of ABCA7 gene. D. Comparison of the joint allele size of ABCA7 TR between AD cases and cognitively 399 

healthy centenarians, respectively using HiFi data, non-HiFi data, and the merged dataset of HiFi and 400 

non-HiFi. E. Number of AD cases and cognitively healthy centenarians in the lower 5th quantile and 401 

upper 95th quantile. Quantiles were defined based on the distribution of the joint TR-allele size in the 402 

centenarians. We tested for the differential enrichment of AD and centenarians in each quantile with 403 

Fisher’s exact tests. 404 

 405 

Table 1: Replication of TR previously associated with Alzheimer’s Disease (AD) 406 

  TRs previously associated with AD 
Region chr19:44921096-

44921134 
chr11:47775208-

47775243 
chr19:1049436-

1050066 
chr14:52832909-

52832938 
Gene APOC1 SPI1 ABCA7 FERMT2 

Best model Joint alleles Short alleles Joint alleles Short alleles 
Beta (OR) 0.38 (1.46)  -0.03 (0.97) 8.63x10-5 (1.01) 0.01 (1.01) 
P-value 2.6x10-9 6.5x10-3 0.041 0.27 

Original study 38014121 37745545 29589097 37745545 

Original OR NA -0.01 (0.99) 4.5 0.01 (1.01) 
Original model Longer allele Joint alleles Individuals with 

alleles >5720 bp 
Joint alleles 

Original 
method 

Logistic 
regression 

Mixed linear 
models 

Fisher’s exact Mixed linear 
models 

Original p-
value 

4.3x10-10 NA  0.008 NA 

Original 
samples 

1489 AD vs. 1492 
controls 

6328 AD vs. 6580 
controls 

275 AD vs. 177 
controls 

6328 AD vs. 6580 
controls 

Data type Short read 
sequencing 

Short read 
sequencing 

Southern blot Short read 
sequencing 

Region: genomic coordinates of the TR with respect to GRCh38; Gene: the closest gene as reported in 407 

the original publications; Best model: model that yielded the most significant association, in our 408 

comparison: Short allele, Long allele or Joint alleles size; Beta (OR): effect size and relative Odds Ratio 409 

with respect to AD: an increased TR size leads to increased AD risk for positive estimates; P-value: p-410 

value of association. We used logistic regression models using TR size (short allele, long allele and 411 

combined allele size) as predictor for AD case-control status, using 246 AD patients (cases) and 248 412 

cognitively healthy centenarians (controls); Original study: the Pubmed ID of the original study; Original 413 

OR: the odds ratio as reported in the original study; Original model: model used for association in the 414 

original study; Original method: method used for association in the original study; Original p-value: the 415 
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p-value reported in the original study; Original samples: the number of AD cases and controls used in 416 

the original study; Data type: the data on which the association were identified.  417 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.03.15.585288doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.15.585288
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

22 

3. Discussion 418 

In this study, we provide novel contributions to better characterise tandem repeats (TRs) with 419 

long-read sequencing data. First, we present our novel tools, otter and TREAT, that provide a 420 

unified workflow to accurately characterise TRs using both Pacific Bioscience (PacBio) and 421 

Oxford Nanopore Sequencing Technologies (ONT) datasets. This enabled us to characterise 422 

genome-wide TRs in patients with neurodegenerative diseases and genomes from the Human 423 

Pangenome Research Consortium (HPRC). Second, we show that in rare instances, long-424 

read sequencing technologies can suffer from abnormal coverage drops in TRs due to 425 

potential systematic challenges, particularly in PacBio’s HiFi technology. These coverage 426 

drops can lead to TR mis-genotyping, as we observed in CANVAS and Alzheimer’s disease 427 

(AD)-associated TRs. Finally, we applied TREAT/otter to a case-control setting and replicated 428 

TRs previously associated with AD across 494 long-read sequenced AD patients and 429 

cognitively healthy centenarian genomes.  430 

 431 

Our benchmark of otter and TREAT highlighted state-of-the-art performances of our tools in 432 

terms of TR genotyping and motif identification accuracy. We showed that otter, TREAT, and 433 

other existing tools provide generally accurate characterisations of TRs on both PacBio and 434 

ONT datasets, and with improved accuracies at higher sequencing coverages. Across 435 

technologies, our benchmark revealed that PacBio leads to generally more accurate 436 

genotypes for relatively smaller TRs, with PacBio and ONT having similar performances for 437 

TRs ranging 500-1000 bp, and ONT leading to more accurate genotypes for larger TRs. These 438 

results remained when using other distance metrics as well as in a similar benchmark using 439 

the CHM13 reference genome and a larger set of genome-wide TRs. 440 

 441 

Our systematic analysis of coverage drops revealed that overall, coverage drops of TRs are 442 

rare (0.6%), and do not impact the overall genotyping performances of TREAT/otter and other 443 

tools. However, our analysis relied on HG002, a highly homozygous genome sequenced at 444 
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high coverage (38x). Hence, TR coverage drops may be more prevalent in other (low-445 

coverage) genomes that harbour expanded TR sequences, especially those with GC-rich 446 

sequences. TRs with coverage drops were often large (>500 bp), high in GC-content, and with 447 

higher densities of predicted G-quadruplex DNA secondary structures (G4s). G4s have been 448 

previously reported to reduce polymerase efficiency.40 As PacBio’s HiFi technology relies on 449 

multiple successful passes of a DNA polymerase in a circular DNA template,20 we speculate 450 

that the interference of G4s might reduce the number of passes in the circular template, 451 

possibly leading to lower quality reads (non-HiFi reads). Altogether, incidents of TR coverage 452 

drops were enriched in PacBio’s Revio and Sequel 2 datasets, and to a lower extent in ONT’s 453 

Duplex and Simplex datasets, with ONT Simplex suffering the least. Although rare, we showed 454 

and experimentally validated that coverage drops in TRs can occur at clinically relevant TRs, 455 

requiring extra attention when characterising these TRs. To this end, we showed that local vs. 456 

global coverage ratio is an effective way to identify such problematic regions, and that for 457 

PacBio, these regions can be (in part) rescued by adding noisier non-HiFi data, as shown for 458 

the TRs in ABCA7 and RFC1 genes. 459 

 460 

TREAT and otter can be used to genotype and characterise potentially any type of repetitive 461 

sequences. However, this remains challenging for very large TRs spanning several kilobases, 462 

for example those in telomeric and centromeric regions of the genome. We also note that 463 

regions where sequencing error-rates exceed inter-allele dissimilarities may still be difficult to 464 

genotype. As the error rate in ONT Simplex data is relatively higher than PacBio and ONT 465 

Duplex, this is likely driving the lower genotyping accuracy observed in ONT Simplex. These 466 

limitations are not only specific to TREAT and otter, but extend to other existing tools. With 467 

newer sequencing technologies bringing longer read lengths (e.g., ONT ultra-long reads), 468 

together with more complete reference genome assemblies, it might become possible to 469 

genotype any satellite region (micro-, mini-, and macro-satellites) in the genome with TREAT 470 

and otter. 471 
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 472 

We were able to replicate previously reported TRs associated with AD by comparing a cohort 473 

of AD patients and cognitively healthy centenarians. We acknowledge that these TRs were 474 

previously identified using different experimental methods (e.g. short-read sequencing, 475 

southern blotting), and analyses strategies (logistic regressions, linear mixed models, fisher’s 476 

exact test).12,38,39 While this heterogeneity hampers the direct comparison of the effect size 477 

estimates, all associations we observed were in the same direction as the original studies. In 478 

particular, the TR intronic of ABCA7 was shown to carry an odds ratio for AD of 4.5 when one 479 

allele was expanded >5.7 Kbp.12 Similarly, we observed that individuals carrying larger allele-480 

sequences were significantly associated with AD. However, in our cohort, the effect was 481 

mainly driven by cognitively healthy centenarians having a shorter joint-allele size (i.e. more 482 

AD-protection), rather than AD cases having a more expanded TR-sizes. While we cannot 483 

exclude that we have missed some expanded genotypes due to allele dropouts, the 484 

centenarians that we included were previously shown to be enriched with the protective alleles 485 

in the majority of Single Nucleotide Polymorphisms (SNPs) associated with AD.41  486 

 487 

In summary, otter and TREAT are flexible and accurate bioinformatics tools compatible with 488 

different sequencing platforms and requiring minimal input requirements, that enable end-to-489 

end analysis and comparisons of tandem repeats in human genomes with broad applications 490 

in research and clinical fields. 491 

4. Methods 492 

4.1 TREAT 493 

The main analysis is the assembly analysis, which uses otter for TR genotyping, and is 494 

followed by TR content characterisation (identification of motif and number of copies) on the 495 
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individual TR alleles. In addition to the assembly analysis, TREAT implements a reads 496 

analysis. Here, TR genotyping is performed using an iterative clustering framework based on 497 

TR sizes (Supplementary Methods). This is followed by TR content characterisation, which is 498 

done on all individual reads (Supplementary Methods and Supplementary Results). This 499 

analysis may be preferred when information from all reads is needed, for example for 500 

performing a multiple sequence alignment, or when studying somatic instability. 501 

In all cases, TR content characterisation is performed with pytrf (https://github.com/lmdu/pytrf). 502 

When multiple motif annotations for the same sequence are found by pytrf, a consensus 503 

representation of the repeat content is generated. Briefly, if the fraction of sequence annotated 504 

with a given motif is >95%, then the relative motif is regarded as the best motif describing the 505 

TR. In case two or more motifs are found, each describing a portion of the sequence, then the 506 

intersection is calculated by intersecting the motif-specific start and end positions. If the 507 

intersection is <90%, then the motifs and the relative number of copies are combined. For 508 

example, for sequence TGTGTGTGTGTGTGGAGAGAGAGAGAGA, pytrf identifies (i) 7 509 

copies of TG (ranging positions 1-14, 50% of the sequence covered), and (ii) 7 copies of GA 510 

(ranging positions 15-28, 50% of the sequence covered). In this case, the combined sequence 511 

annotation will be TG+GA, repeated 7+7 times (see Supplementary Methods).  512 

TREAT’s analysis module consists of an outlier-detection framework, and a case-control 513 

analysis. The outlier-detection scores extreme variations in TR allele sizes across a set of 514 

samples. Outliers are detected using a normalised distance that quantifies how far each allele 515 

size is from the median allele size, scaled by the variability of the data (Supplementary 516 

Methods). A p-value for each individual is then calculated by comparing each data point's 517 

distance to a chi-squared distribution. The case-control analysis employs logistic regression 518 

models to compare allele sizes (short allele, long allele, and joint allele size) between cases 519 

and controls. 520 
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4.2 Otter: a stand-alone, fast, local assembler 521 

Otter is a generic stand-alone method for generating fast local assemblies of a given region 522 

or genotyping whole-genome de novo assemblies. Otter in the main genotyping engine of 523 

TREAT assembly analysis. Briefly, given a region of interest, otter uses the htslib library to 524 

identify spanning reads (region of interest is fully contained in the reads) and non-spanning 525 

reads (only partially contained) in a given BAM file, and extracts the corresponding 526 

subsequence per read based on their alignment (Figure 1B).42 When a reference genome is 527 

provided, it will perform local read-realignments on non-spanning reads if it detects a clipping-528 

signal, which can indicate suboptimal mappings to due highly divergent sequences (Figure 529 

1B). This is done by aligning (using WFA2-lib alignment library)43 the flanking sequences of a 530 

region (100 bp by default, modifiable with ‘--flank-size’ parameter) derived from the reference 531 

genome onto each read, which are then used to recalibrate the corresponding subsequence 532 

of the region of interest. Recalibrated non-spanning reads are reclassified as spanning if both 533 

flanking sequences are successfully aligned with a minimum length and sequence similarity 534 

(by default, 90% sequence similarity, modifiable with ‘--min-sim’ parameter). In the context of 535 

TRs, this realignment procedure often correctly recalibrates the alignments of TRs with major 536 

length and/or motif-composition differences relative to a reference genome. 537 

 538 

Otter identifies unique allele-sequences by clustering spanning-reads via pairwise-sequence 539 

alignment (Figure 1B and Supplementary Methods). To manage high somatic variation and/or 540 

sequencing errors, otter estimates local baseline error-rates per region using a gaussian-541 

kernel density estimator. This produces a one-dimensional distribution of spanning pairwise-542 

sequence distances. In single homozygous allele-sequences, the distribution is unimodal 543 

centred at 0. With multiple allele-sequences, the distribution is multimodal, where peaks 544 

represent sequence errors between reads from different allele-sequences. Otter identifies 545 

these peaks and performs hierarchical clustering, stopping when distances exceed the 546 

densest peak, partitioning reads into initial clusters. This procedure is followed by a curation 547 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.03.15.585288doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.15.585288
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

27 

step to ensure sufficient read support, adapting to local coverage (Figure 1B). If no maximum 548 

number of alleles (α) is enforced, otter outputs all clusters. Otherwise, clusters below the 549 

coverage threshold are merged, and if clusters exceed α, hierarchical clustering continues 550 

until α clusters remain. Otter then generates a final consensus sequence per cluster via 551 

pseudo-partial order alignment procedure of spanning and non-spanning reads inspired from  552 

Ye and Ma, 2016.44  553 

 554 

4.3 Genomes included for testing 555 

HPRC: Publicly available PacBio long-read HiFi data of 47 individuals from the Human 556 

Pangenome Reference Consortium (HPRC) were downloaded (Data Accession).34 For the 557 

well characterised HG002 genome,32 we also downloaded data generated with Oxford 558 

Nanopore (ONT, Duplex and Simplex chemistries) and PacBio Revio technologies. Finally, 559 

we generated long-read sequencing data for HG002 using the PacBio Sequel 2 instrument 560 

across three SMRT cells, keeping both HiFi and non-HiFi data. ONT data was aligned to the 561 

reference genomes (GRCh38 and CHM13) using minimap2 (2.21-r1071, specifying -x map-562 

ont).45 PacBio data was aligned using pbmm2 (1.9.0, specifying –preset CCS and –preset 563 

SUBREADS respectively for HiFi and non-HiFi data).20  564 

  565 

100-plus Study cohort and Alzheimer Dementia Cohort: For the replication of TRs previously 566 

associated with Alzheimer’s Disease (AD), we used HiFi sequencing (Sequel 2) data from the 567 

blood DNA of N=246 patients with AD from the Amsterdam Dementia Cohort (ADC),36,46 and 568 

N=248 cognitively healthy centenarians from the 100-plus Study cohort.36,47 Ten cognitively 569 

healthy centenarians were sequenced as a trio, including the blood-derived DNA from the 570 

centenarian, the brain-derived DNA from the centenarian and blood-derived DNA from a child 571 

of the centenarian. The combined set of a centenarian and child is referred to as parent-child 572 
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duo throughout the manuscript. Sequencing data pre-processing was conducted as previously 573 

described (Supplementary Methods).36  574 

  575 

CANVAS patients: We used the HiFi data (Sequel 2) of two patients diagnosed with CANVAS 576 

(Cerebellar ataxia with neuropathy and vestibular areflexia syndrome), caused by a TR 577 

expansion in RFC1 gene.35  578 

 579 

4.4 Evaluating otter and TREAT performances 580 

Comparison with existing tools: We compared TREAT/otter to TRGT and LongTR.22,31 For the 581 

comparison, we used the HG002 genome and a set of 161,382 TRs from PacBio’s repeat 582 

catalogue (version 0.3.0, available at 583 

https://github.com/PacificBiosciences/trgt/tree/main/repeats). We compared the tools’ 584 

genotyped alleles to the expected alleles from the T2T assembly of HG002. As metrics, we 585 

used (i) normalised edit distance, (ii) raw edit distance, (iii) allele size correlation between the 586 

observed and expected alleles, and (iv) fraction of perfectly genotyped alleles. In addition, we 587 

evaluated motif identification accuracy, and computational resources. 588 

 589 

TREAT/otter applications: We compared the performances of TREAT assembly and reads 590 

analyses by correlating the estimated TR allele sizes with each other (Supplementary 591 

Results). Then, we used TRs for a population stratification analysis: using the set of 161K 592 

TRs, we selected the top 20% most variable TRs based on the coefficient of variation (ratio of 593 

standard deviation to the mean TR joint allele size). Then we applied Principal Component 594 

Analysis (PCA) based on the joint allele sizes. For 40/47 matching samples with Single 595 

Nucleotide Polymorphisms (SNP) data from the 1000Genome project,48 we also performed 596 

PCA based on 30,544 randomly sampled common (minor allele frequency >10%) SNPs. 597 
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To evaluate clinical applicability, we applied the TREAT/otter outlier analysis module on the 598 

combined dataset of 47 HPRC genomes plus the two CANVAS patients and the ten parent-599 

child duos. For this analysis, we focused on 35 clinically relevant TRs (Table S1), that were 600 

previously associated with neurological diseases.7,8,12 Finally, TREAT/otter case-control 601 

analysis module was used to replicate the association of four TRs that were previously 602 

associated with Alzheimer’s Disease (AD).12,38,39 The commands used for the outlier and case-603 

control analyses are available in Supplementary Methods. 604 

 605 

4.5 Systematic analysis of allele dropouts in tandem repeats 606 

Curated set of TRs in CHM13: We downloaded and curated repeat annotations for the CHM13 607 

reference genome (version 2.0, https://github.com/marbl/CHM13, Supplementary Methods). 608 

This curated dataset counted 864,424 TRs genome-wide. We extracted the corresponding 609 

parental and maternal allele-sequences in HG002 for these TRs by aligning the HG002 T2T 610 

assembly (version 0.7) to CHM13.32  611 

 612 

TRs unique to CHM13: We first genotyped the 864K TRs using otter in HG002 from different 613 

technologies (Sequel 2, Revio, Simplex and Duplex), and at different coverage levels (5x, 10x, 614 

15x, 20x, 25x and 30x), and calculated the normalised edit distance between observed and 615 

expected TR alleles (Supplementary Results). We then focussed on a set of TRs present in 616 

CHM13 and absent in GRCh38, and used TREAT/otter to characterise the repeat content of 617 

these TRs in 47 genomes from HPRC. 618 

 619 

Evaluation of coverage drops in TR: Using HG002 data from Sequel 2, Revio, Simplex and 620 

Duplex technologies (~30x coverage each), we calculated the ratio between local TR 621 

coverage and average global coverage. TRs where this ratio was <0.25 were regarded as low-622 

coverage TRs. We then investigated sequence characteristics of low-coverage TR, including 623 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.03.15.585288doi: bioRxiv preprint 

https://github.com/marbl/CHM13
https://github.com/marbl/CHM13
https://doi.org/10.1101/2024.03.15.585288
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

30 

average size, dinucleotide content, and propensity to form G-quadruplex DNA secondary 624 

structures (G4s). For the latter, we used pqsfinder (v2.10.1) with 'min_score = 20' parameter.49  625 

 626 

Data access 627 

Human Pangenome Consortium data is publicly available and can be downloaded from 628 

https://github.com/human-pangenomics/HPP_Year1_Data_Freeze_v1.0?tab=readme-ov-629 

file. 630 

Long-read sequencing data generated with PacBio Sequel 2 for the 2 CANVAS patients as 631 

well as 246 AD patients and 248 cognitively healthy centenarians is available upon submission 632 

of a research proposal to the Alzheimer Genetics Hub (AGH, https://alzheimergenetics.org/). 633 

  634 

Consent statement 635 

The Medical Ethics Committee of the Amsterdam UMC and Radboud UMC approved all 636 
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