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Abstract

The advent of long-read sequencing of microbiomes necessitates the development of new taxonomic
profilers tailored to long-read shotgun metagenomic datasets. Here, we introduce Lemur and Magnet, a
pair of tools optimized for lightweight and accurate taxonomic profiling for long-read shotgun metage-
nomic datasets. Lemur is a marker-gene-based method that leverages an EM algorithm to reduce false
positive calls while preserving true positives; Magnet is a whole-genome read-mapping-based method
that provides detailed presence and absence calls for bacterial genomes. We demonstrate that Lemur
and Magnet can run in minutes to hours on a laptop with 32 GB of RAM, even for large inputs, a
crucial feature given the portability of long-read sequencing machines. Furthermore, the marker gene
database used by Lemur is only 4 GB and contains information from over 300,000 RefSeq genomes.
Lemur and Magnet are open-source and available at https://github.com/treangenlab/lemur| and
https://github.com/treangenlab/magnet.

1 Introduction

The democratization of long-read sequencing has arrived (Marx [2023) and it is now common practice in
metagenomic studies due to a combination of higher accuracy, increased affordability, and greater genomic
resolution provided by longer reads (Agustinho et al.|2024). One of the most common tasks in metagenomics
is to perform taxonomic profiling of a microbial community specific to a host microbiome or environmental
microbiome. Existing taxonomic read classification tools such as Kraken 2 (Wood et al.|2019)) have established
themselves as a de facto standard approach for taxonomic read classification and taxonomic profiling with
short-read data (when used in combination with Bracken (Lu et al.[2017)). Several new tools have recently
been developed to leverage long-reads for taxonomic profiling. Common approaches taken by the developers
consist of methods based on k-mers (e.g., Kraken 2 (Wood et al. 2019), Sourmash (Irber et al. 2022)),
read-mapping to a succinct index (e.g., Centrifuger (Song and Langmead 2024), MetaMaps (Dilthey et al.
2019), proteins (e.g., MEGAN-LR (Huson et al. [2018)) and marker genes (M Wu and Eisen [2008)) (e.g.,
Melon (Chen et al. [2024]), PhyloSift (Darling et al. 2014), MetaPhyler (B Liu et al. |2011])).

Prior studies have highlighted the challenges in benchmarking metagenomic profilers (Sun et al.|2021)) and
have evaluated the accuracy of new and existing methods for long-read microbiome profiling (Portik et al.
2022); methods explicitly designed for long reads tend to perform better. However, in these prior studies, the
experimental evaluation focused primarily on precision and recall. Given that the long-read technologies offer
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Figure 1: Overview of Lemur (A) and Magnet (B) pipelines. Input FASTQ files with the * symbol indicate
same file. The taxonomic profile table provided to Magnet can come from any taxonomic profiler or classifier,
as long as it respects formatting and uses the same set of taxonomic ids.

potential for portable and streaming sequence analysis (Quick et al. [2016)), it is also important to evaluate
scalability and fitness for execution in low-resource environments such as laptops and tablet computers. In
particular, depending on the database size and computational requirements, several currently available tools
need dedicated server nodes with high RAM (> 32 GB) and/or high parallelization capacity to achieve
time-to-answer below a few hours (Simon et al. 2019)).

To address these issues, we present a two-tool suite consisting of Lemur, a marker-gene-based long-read
taxonomic profiler, and Magnet, a genome-based validation tool for confirming the presence and absence of
microbial genomes present in a sample. Combined, Lemur and Magnet can run in limited resource settings,
such as individual laptops, and yield comparable or superior performance in terms of precision and recall.
Our overall contribution hence is threefold: (1) we propose two novel methods for taxonomic profiling that
achieve superior precision and portability, (2) we extend the marker gene database to include fungal genes
for fungi classification, and (3) we facilitate taxonomic profiling in lightweight compute environments.

2 Results

2.1 Method overview

An overview of Lemur and Magnet is presented in Figure [I] Both methods require a FASTQ file containing
sequencing reads as input. Lemur additionally requires a marker gene (MG) database, whereas Magnet
requires a (ideally small) set of genomes. In both cases, the first step is to map the reads to the database
using minimap2 (H Li 2018)). For our study, we built a new marker gene database with 43 markers for
bacteria+archaea and 48 markers for fungi. These markers were validated by prior studies (Nguyen et al.
2014; Shah et al. 2021} Chen et al. 2024} D Kim et al. 2023)). For all marker genes, we downloaded the HMM
profiles from both the TIPP2 reference package (Shah et al. 2021)) and the KofamKOALA database (Aramaki
et al.[2020). All HMM profiles used in the studies are provided in the source data. We then built the database
using recent versions of NCBI RefSeq: version 221 for both bacteria (329,194 assemblies) and archaea (1,911)
and version 222 for fungi (564). A total of 331,669 genome assemblies, including all of their annotated protein
sequences and corresponding CDS sequences, were downloaded from NCBI RefSeq. All of the pseudogenes
were excluded. We used fetchMGs (v1.2) to extract the selected marker gene sequences with command
fetchMGs.pl -m extraction (Sunagawa et al. [2013)) and created a mapping between the sequences and
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Method Recall Precision F1 score
Lemur 0.951 0.703 0.808
Lemur + Magnet 0.927 0.950 0.938
Melon 0.963 0.929 0.946
MetaMaps 1.000 0.862 0.926
Sourmash 0.927 0.938 0.932
~ Centrifuger 0.774  0.050  0.093
Kraken 2 0.976 0.055 0.104

Table 1: Performance on simulated data from (Dilthey et al. [2019)). Recall, precision, and F1 score are
defined in methods. Tools listed below the horizontal dashed line focus on the taxonomic classification of
reads.

Dataset Tool Recall Precision F1 L1 error (normalized)
Lemur 0.980 0.596  0.737 0.205
Lemur + Magnet 0.960 0.980 0.969 N/A
Melon 0.800 0.889  0.842 0.226
EVEN 1% MetaMaps 1.000 0.909 0.952 0.340
Sourmash 0.800 0.727  0.762 0.901
~ Centrifuger 0.800 0.571 0667 0.413
Kraken 2 1.000 0.589 0.741 0.321
Lemur 1.000 0.669  0.801 0.144
Lemur + Magnet 0.860 0.844 0.851 N/A
Melon 0.800 0.800  0.800 0.194
EVEN 75% MetaMaps 1.000 0.909 0.952 0.329
Sourmash 0.800 0.727  0.762 0.893
" Centrifuger 0.800  0.571 0667 0.415
Kraken 2 1.000 0.556 0.714 0.321

Table 2: Mean performance and standard deviation across 5 replicate runs of all methods on Zymo EVEN,
bold values show best performance. Magnet does not report relative abundance, so the L1 error cannot
be computed. Tools listed below the horizontal dashed lines (for EVEN 1% and EVEN 75%) focus on the
taxonomic classification of reads.

their corresponding species rank taxonomic ids with our custom Python script. We used the Emu database
creation tool (Curry et al. 2022)) for the final step in the database construction for individual marker genes
with the command emu build-database --ncbi-taxonomy. Finally, individual marker gene databases were
concatenated, and a single joint taxonomy mapping was generated for the combined database. The final
database was 4.1 GB, containing 3,335,783 sequences.

We conducted a series of evaluations of increased complexity on synthetic, simulated and real data. We
compared the performance of our proposed tool Lemur to Centrifuger, Kraken 2, Melon, MetaMaps, and
Sourmash. For Lemur results, we also show post-processing with Magnet for improved specificity (Lemur +
Magnet).

2.2 Prior simulated data

We first evaluated the methods on simulated data from a prior study (Dilthey et al.|2019)). On the simulated
community of 96 bacterial strains, MetaMaps shows perfect recall at the species level, followed by Kraken
2 with a recall of 0.976. Table [I] contains the full precision and recall data for these five methods on this
data. Kraken 2 has high recall but low precision. Melon, Lemur and MetaMaps, all EM-algorithms, each
have high recall and moderate to high precision.

For this analysis we used the MetaMaps results provided in the original manuscript (Dilthey et al. 2019)).
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Dataset  Tool Recall Precision F1 Spearman’s p
Lemur 0.500 0.301  0.376 0.984
Lemur + Magnet 0.360 0.683  0.468 N/A
Melon 0.420 0.587 0.488 0.960
LOG 10% MetaMaps 0.960 0.009  0.017 0.976
Sourmash 0.500 0.615  0.550 0.940
- Centrifuger 1 0.960 0.002 0.005 0.906
Kraken 2 0.760 0.249  0.375 0.910
Lemur 0.700 0.219  0.333 0.971
Lemur + Magnet 0.580 0.852 0.690 N/A
Melon 0.600 0.592  0.595 0.974
LOG 75% MetaMaps 1.000 0.002  0.005 0.985
Sourmash 0.500 0.352  0.413 0.920
~ Centrifuger 0.960 ~  0.001 0.003 0.909
Kraken 2 0.720 0.246  0.367 0.903

Table 3: Mean performance and standard deviation across 5 replicate runs of all methods on Zymo LOG,
bold values show best performance. Magnet does not report relative abundance, so the Spearman’s p cannot
be computed. Tools listed below the horizontal dashed lines (for LOG 10% and LOG 75%) focus on the

taxonomic classification of reads.

2.3 ZymoBIOMICS Microbial Standards

We evaluated our tools on the Zymo EVEN and LOG datasets. We evaluated tools on 5 replicate subsamples
of the EVEN community (Table [2) at 1% and 75% sampling rates, and 5 replicate subsamples of LOG
community (Table[3]) at 10% and 75% sampling rates. This was done in order to simulate low and high flow
cell usage experiments, respectively.

On the EVEN community, Lemur showed high recall matched by MetaMaps and Kraken 2. We note that
Lemur can achieve full recall without restricting evaluation to bacteria-only, suggesting that it is capable of
accurately evaluating both kingdoms jointly. Additionally, the benefit of polishing the abundance profiles
with Magnet is supported by an increase in precision particularly in low-coverage scenarios where false-
positives are more likely. Finally, in both low and high-coverage settings, Lemur showed lowest L1 error.

On the LOG community, recall of all tools except MetaMaps drops as some species are present at such
a low level that their expected genome copy number is less than 0.05. In particular, marker-gene-based
tools Melon and Lemur have recall lower than MetaMaps, Centrifuger and Kraken 2 which can utilize the
information from across the whole genome (Table [3]). By contrast, the combination of many low-abundance
taxa and low-coverage creates a large number of false positives as shown by the lower precision of most tools
(Table . However, Magnet does well with identifying false positives and improves the precision by nearly
0.6 over Lemur alone. This indicates that the tools retain the ability to make confident species level calls in
extremely low-abundance settings (Table .

Additionally, Lemur shows strong performance on Spearman’s p (see Section for details) indicating
that its abundance estimates are broadly accurate vis-a-vis ordering of the microbes within a sample. Further,
the reduction in variance of p in the higher-coverage sample is reassuring since this is an expected outcome
of the additional data (Table 3] rightmost column).

2.4 Simulated metagenome

The simulated metagenome dataset is intended to present the tools with a more challenging setting, with
more diverse taxa present, but where ground truth is known. At the species level, Sourmash and Melon
show the highest recall, closely followed by Lemur (Figure ) Post-processing with Magnet reduces recall
but improves precision, in particular achieving the highest precision among all tools at both species and
genus levels (Figure -B). We also note that Sourmash and Lemur have high precision at the genus level
(Figure [2B), indicating that most false positive species-level calls made by these tools come from the correct
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Figure 2: Performance of all methods on a simulated metagenomic community (A, B) and Zymo fecal
reference (C, D). Panels show recall, precision, F1 score and Spearman’s p (C, D) for each of the tools.
Dotted lines (C, D) indicate maximum recall based on the NCBI RefSeq v222 composition.

genus.

2.5 ZymoBIOMICS Fecal Reference

Next, we evaluated the performance of all tools on the ZymoBIOMICS fecal reference samples (Figure —D).
We did not include MetaMaps in this evaluation due to computational constraints. Lemur and Melon are
the most sensitive tools at the species level, closely followed by Sourmash (Figure ), at the genus level
Sourmash has the highest recall with Lemur and Melon matching closely (Figure ) However, the precision
of Sourmash and Lemur is higher than Melon at both ranks. As with the previous datasets, post-processing
with Magnet improves precision, although it imposes a penalty on recall. The tool combination maintains
the highest F1 score (Figure —D). Lemur also has the highest p at the species level. At the genus level,
Centrifuger has the highest Spearman’s p, although as noted in section [£.7] the calculation in this case
ignores false positives and false negatives (Figure —D, rightmost panels).

2.6 Human gut metagenome

Finally, species and genus level calls made by Lemur were evaluated on stool sample from a healthy donor (CY
Kim et al. 2022). We note that the most abundant phyla identified by Lemur (Figure match those
in the prior literature. In particular Actinomycetota, Bactriodota, Bacillota, and Pseudomonadota are
well-represented phyla (Figure ) Additionally, Faecalibacterium prausnitzii, Bacteroides ovatus, Parabac-
teroides distasonis, and Alistipes onderdonkii (Figure ) are all supported by the co-assemblies from the
original study. Other bacterial species identified by Lemur such as Roseburia faecis and Phocaeicola vulgatus,
have all been previously isolated from human feces and can be considered putative true-positives (Almeida
et al. [2021; Mancabelli et al.|2024; J Li et al. [2014} Costea et al. |2017))(Figure )

To perform a deeper dive, we also investigated the concordance between the species and genus level calls
across the tools. One genus level call that is uniquely inferred by Lemur corresponds to Massilimicrobiota.
A recent isolate from the human gut belonging to the Massilimicrobiota genus has been identified (Tall et al.
2019)), indicating that this call is a plausible true positive. Conversely, 9 genera were identified by Kraken
2 and Melon but not Lemur. Those include several genera whose reported isolation sources are distant
from the human gut, including a biogas fermenter, two from marine thermal vents, marine sediment, and a
wastewater treatment plant. The remaining four genera were previously found in the human gut. The list
of genera, their isolation source, and relevant citations is contained in Section [A-2.T] of the Supplement.


https://doi.org/10.1101/2024.06.01.596961
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.01.596961; this version posted August 25, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

0.007;f dobacteriaceae 0.012

Oﬁ;%iachnospim pectinoschiza
0.00763 . 003 ostridinceae— bactiospira 063]§°SEbMia faecis
0007R;fi dobacteriales ostticiaceae™ 20

0.0813 .

_— 3 Roseburi: 3 %aeca]ibacterium prausnitzii
- <Lachmospiracea X o erium
T . : 0.0866 -
g'%ctihomycetes Oé)gg?onobaclenales “D0seillospiraceae 00138 cultured Dialister sp.
- oriobacteriia g : 0194 2. - i
0.207 - jubactﬁn ales o Y ialister o168 acteroides ovatus
00103 . . 063JClostndlaL 003} wcfales_ 0.645 JBacteroides . OéBactermdes sp.
023 ctinomycetof O-Olg]ﬁrysipelouic i : ittonellales e & Bacteroides stercoris
0.992 }aci]lota : - Bacteroidaceae g 0314
0.707 : .
oor JPhocaelcola ‘JPhocaelcola vulgatus
. acteroidales Pt
acteria acteroidia 00208 ikenellaceae g‘g%(l)ﬁlisﬁpes g%ﬁlisﬁpes onderdonkii
Bacteroidota “~—Tannerellaceae '-/i’a:abacteroides L3P 4 rabacteroides distasonis
%%%Olqafandidatus Saccharibacteria *%0!¥usobacteriia 001
o '000 Rusobacteriota 001 “—Burkholderiales 001 gy trerellaceae
603;5 ycoplasmatota 00260 ctaproteobacteria 00238y erobacterales— X2 Bnterobacteriaceae - *L8fischerichia
“=Pseudomonadota 2264 p oteobacterid 002p, 1lal
O‘WOO%nergistota
00053 ermodesulfobacteriota 00058 esulfovibrionia %% Besulfovibrionales
T T T T T T 1
K P Cc o F G S

Figure 3: Sankey plot of major taxonomic groups inferred by Lemur from a stool sample from a healthy
human donor.

While this is not a conclusive experiment to assess false positives, it represents a sensible evaluation of a
new method and a step towards improved precision in challenging settings.

2.7 Chicken gut metagenome

Additionally, we have analyzed a chicken gut metagenome spanning four major sections of the intestinal
tract: duodenum, jejunum, ileum, and colorectum (last two shown in Figure , B). Similar to prior studies,
our results highlight an increase in microbial diversity along the intestinal tract (Y Zhang et al. 2022; P
Huang et al.|2018]). Furthermore, we noted that the samples from foregut (duodenum, jejunum, ileum) were
dominated by a few abundant taxa from the Lactobacillacea family (Figure ) At the same time, the
hindgut showed a more even abundance distribution across a broader set of taxa. These observations are
consistent with results obtained from metagenomic assembly in the original study (Y Zhang et al.|2022).

The colorectum shows the most diverse set of taxa (Figure [4B), including a single archaeal species in
class Methanobacteriota. Notably, among the 337 assemblies from the original study (Y Zhang et al. 2022]),
there is exactly one archaeal genome. Analogously to the human gut metagenome example, this data does
not definitively assess the accuracy of Lemur; however, it suggests that the inferred taxonomic profiles match
closely with the prior literature (P Huang et al. [2018; Y Zhang et al. [2022)).

2.8 Computational performance

The computational performance of Centrifuger, Kraken 2, Melon, MetaMaps, Sourmash, and Lemur for
each of the four main datasets is captured in Figure Sourmash, Melon and Lemur have their total
RAM requirement consistently under 32 GB, with Lemur requiring more RAM than Melon and Sourmash
(Figure [5iG-J). The RAM requirement for MetaMaps exceeds 300 GB, as indicated by an asterisk (*) on the
plot. CPU time requirements for the tools are consistent on small and medium-sized datasets (Figure —E),
with Kraken 2 requiring the least time, followed by Lemur. Notably, Sourmash and MetaMaps require at
least an order of magnitude more CPU time (Figure —E, log-scale y-axis). Finally, post-processing with
Magnet doesn’t incur much additional cost for small and medium datasets (Figure —E7 time shown for
serial execution of Lemur and Magnet). On the large and diverse data (Figure [5[F) the overall trend remains
the same with Kraken 2 being the fastest tool, followed by Lemur. However, in this case post-processing
with Magnet takes a significant portion of total time due to richer microbial composition of the dataset.
Overall, Kraken 2 is well-known for its ultrafast processing of metagenomic samples but at the cost of
high RAM requirements for larger databases. Lemur has the second lowest CPU time requirement and
performs comparably to Melon in terms of wall clock time for small and medium-sized datasets. For large
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Figure 4: Sankey plot of major taxonomic groups inferred by Lemur from a chicken gut metagenome of
two intestinal compartments. Top panel corresponds to the ileum (A) and bottom panel represents the
colorectum (B).
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Figure 5: Computational performance metrics evaluated on Zymo EVEN (A, B, G), Zymo LOG (D, E,
H), simulated metagenome (C, I), and Zymo fecal reference (F, J) datasets. Top six panels show CPU and
wall clock times (A-F), and bottom four panels show peak RAM usage (G-J).
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Figure 6: Median F1 score achieved by the tools as the function of required CPU time for processing (on
logarithmic scale) for the datasets used in the study.

datasets, Lemur appears to have a larger CPU time advantage over the other methods. Magnet incurs a
moderate additional cost for post-processing of the results and hence is an attractive option for improved
precision of the analyses.

Lastly, the feasibility of using Lemur for taxonomic profiling directly on a user laptop was evaluated
using two datasets of different sizes. Both were run with Lemur on a MacBook Pro (macOS Sonoma 14.2.1)
having a 2.3 GHz Intel Core i9 and 32 GB of RAM using 4 threads. The first dataset was a 3 GB Zymo
LOG sample which ran in 13.56 mins (CPU time: 21.99 mins) with peak RAM usage of 17.09 GB. The
second was a 77 GB Zymo Fecal Reference sample, which ran in 73.45 mins (CPU time: 206.66 mins) with
peak RAM usage of 23.05 GB. Given the real-time and portable nature of long-read sequencing devices, this
demonstrates an essential element of compatibility with many envisioned use cases in the future.

2.9 F1 score per CPU time unit

For the combination of the datasets and tools evaluated, we have also investigated the median achieved F1
score as a function of the CPU time required to analyze the data. We note that for Zymo EVEN 1%, Zymo
LOG 75%, and Zymo fecal reference data Lemur + Magnet achieve the highest total F1 score while requiring
an amount of CPU time comparable to other tools (Figure @A, E, F). For the cases where Lemur + Magnet
do not achieve the highest F1 score (Figure —D) the tools that do require at least an order of magnitude
more CPU time.

3 Discussion

Lemur and Magnet represent a novel computational tandem tailored for long-read taxonomic profiling of
metagenomes. Lemur exhibits competitive performance by most standard metrics; when paired with Magnet,
particularly in the presence of low-abundance or low-coverage data, it can improve precision by detecting and
filtering out many false positive calls. Our results indicate that Lemur can efficiently process large datasets
within minutes to hours in limited computational resource settings. Furthermore, consistent RAM usage
below 32 GB makes it an attractive software for laptops and lightweight workstations. This reduced resource
need does not come at the cost of accuracy. Lemur and Magnet combined offer high recall and precision on
the experimental datasets included in our evaluation. Our comparative analysis of human gut microbiomes
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indicates that Lemur produces a taxonomic profile consistent with the gut microbiome while avoiding outlier
species calls.

Inspired by previous marker-gene-based approaches (B Liu et al. [2011)), relying on a wide pool of single-
copy universal marker genes allows Lemur to achieve high recall and relative abundance estimation accuracy
while using only a small portion of the input data. These markers cover all bacteria but only a fraction of any
given genome. In contrast, Magnet starts with the set of genomes identified by Lemur and evaluates the read-
alignment quality and coverage distributions across the genome to make a maximally informed call about
whether the putative genome is actually in the sample. Additionally, the inclusion of fungi into the database
broadens the scope of the tool and allows for a more comprehensive characterization of metagenomes.

As with any computational method, Lemur and Magnet have limitations that vary by use case. Reliance
on bacterial marker genes necessarily implies it cannot generalize to viral genome classification. Also, while
Lemur and Magnet can filter out false positives in low-abundance/low-coverage settings, the reliance on
the marker genes makes it less sensitive than alternatives like Kraken 2 or MetaMaps, which use all long
reads and complete genomes. Third, the nature of the EM algorithm employed means that it is by necessity
a closed-reference method, and thus, a bacteria from a novel, i.e. out-of-database family will necessarily
be missed by Lemur. Finally, marker gene methods inherently lack the resolution to perform strain-level
classification or other sub-species analysis. However, the pairing with Magnet suggests one approach for
sub-species inference that could change this in the future.

Overall, our results on simulated, synthetic, and real datasets provide experimental support that the
combination of Lemur and Magnet represents an efficient and accurate taxonomic profiling workflow explicitly
designed for long-read sequenced metagenomes. In future work, we intend to expand our benchmark to
include additional tools (J Kim and Steinegger [2024; Shaw and Yu [2023; Peres da Silva et al. 2024) and
datasets to provide a more comprehensive landscape of long-read taxonomic profilers and classifiers, including
analysis of how the performance of these tools varies with differences in reference database compositon (Nasko
et al. 2018). Furthermore, we acknowledge that while our study focused on taxonomic profiling and binary
presence and absence metrics for taxa, several of the considered methods (Kraken 2, Centrifuger, MetaMaps)
are in fact metagenomic read classifiers. Thus, a separate benchmark that focuses on the percentage of
classified reads and the proportion of correctly classified reads is warranted to properly assess the accuracy
of these methods for the specific computational tasks they were designed for.

4 Methods

4.1 Lemur

Lemur estimates a relative abundance taxonomic profile using an Expectation-Maximization (EM) frame-
work, similar to the 16S profiler Emu (Curry et al.|[2022). The EM algorithm proceeds in two steps. First, in
the E-step, we compute the probability P(¢|r) of taxon ¢ being in the sample given an observed read r, which
uses an abundance prior F(¢t) and Bayes rule: P(t|r) = %, where P(r|t) is the probability of
observing read r originating from taxon ¢. Second, in the M-step, the abundance vector F(t) is re-estimated

2rer PUT

using P(t|r) for all reads r in the dataset as F(t) = Al ), VYt € T. Finally, we compute the total

log-likelihood

L= P(rlt)F(t)
rcRteT

and the change in log-likelihood ALL from the prior step L’ as ALL = L — L’. These steps are repeated
until ALL < e, where ¢ is a user-defined threshold with a default value of 0.01 (see blue cycle of Figure )
After convergence, Lemur removes any taxonomic assignments below a user-specified threshold (default: 1 /
number of reads that map to marker genes) and then runs a final iteration of the EM algorithm to re-estimate
F(t).

The EM algorithm begins by initializing F'(¢) to the uniform distribution and initializing P(r[t) for each
read and taxon pair (r,t). Lemur implements several options for calculating P(r|t). The fastest and default
option is to take the alignment score output by minimap2 and normalize it: P(r|s) = AS(r,s)/2L where
AS is the alignment score from the minimap2 SAM file and L is the alignment length. Lemur aggregates
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the scores for all sequences assigned the same taxonomic label, retaining the score from the most likely
alignment, setting P(r|t) = maxse, P(r|s) (as there can be multiple genomes corresponding to the same
taxon). Although not explored in this study, Lemur implements two other approaches for estimating P(r|s),
including the CIGAR-based approach from Emu (Curry et al. [2022)) and a Markov chain model of sequence
alignment.

Additionally, Lemur can employ a uniform coverage (UC) filter before the EM-steps to eliminate taxa
from the taxonomic profile if the read-coverage pattern across the marker genes significantly deviates from
the expected value. The goal is to improve Lemur’s precision when sequencing depth is high, and coverage
is uniform (so taxa with non-uniform coverage may be false positives). Specifically, let G be the number of
marker genes. Let N be the number of reads that map to a particular taxon. Let X denote the random
variable corresponding to the number of distinct genes with at least one read aligned to them. Let X; be
the indicator variable for the event that a gene i is covered by a read. Then, the expected number of genes
hit is

EX)=E| Y Xi|= Y EX)

ie€{1,...,G} ie{1,...,G}

=GP(X;=1)=G <1— (GC;1>N>

The first equality is by linearity of expectation, and since the event of a gene being hit by at least one
read is complementary to all reads aligning to one of the other G—1 genes, it follows that the desired equality
holds (we treat individual read to gene alignments as independent events). Furthermore, we note that:

Var(X) = E(X?) — p?

= Y EXD)+) EXX)) -4

i€{l,..,G} i#]

N N 2
G<1 (Gc;l) >+(G2G)(1(12/G)N)G2 (1 (Gal> )
=G(1-1/)N +G*1-1/G)(1 -2/G)N —G*(1—-1/G)*N.

Again, the first expansion is due to the linearity of expectation. Then we note that the random variable
X? has the same expected value as X;, while P(X;X; = 1) is given by 1 — P(Vg; jXx = 1) which is simply
12 (G -2)/G)N.

Finally, the actual number of genes hit, denoted G}, is also computed directly from the data. If
p— Grit < 30% and Gy /p < 0.7, the tazon is removed (filtered) from further consideration.

As a post-processing step, the taxonomic profile, along with the original reads, can be provided to Magnet
as input for genome presence and absence evaluation. Magnet employs a competitive alignment strategy
designed to differentiate closely related genomes.

4.2 Competitive read alignment with Magnet

The goal of Magnet is to detect and remove potential false positives by performing competitive read alignment
leveraging all of the reads mapped against the entire reference genome (rather than just the marker gene
reads and marker genes used by Lemur). As input, Magnet requires reads as well as a taxonomic abundance
profile (estimated from the input reads e.g. using Lemur). For each candidate species identified in the
profile, Magnet downloads the highest ranking genome from NCBI RefSeq and Genbank databases, where
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the ranking is determined by (1) representative genomes in RefSeq, (2) complete genomes in RefSeq, (3)
other genomes sorted by assembly level (complete, chromosome, scaffold, contig).

Once the genomes are downloaded, Magnet constructs a dissimilarity matrix by calculating pairwise
average nucleotide identity (ANI) between all candidate sequences using FastANI (Jain et al.|2018). Magnet
then performs agglomerative clustering with scikit-learn (Pedregosa et al. |2011)) using a threshold of 0.05.
For each cluster, one representative genome is selected. The representative genome is picked to maximize
the sum of pairwise ANI to all other genomes in the cluster. If a cluster contains complete genomes, the
representative genome is required to be complete, otherwise it can be at any assembly level.

The reads from the input dataset are aligned to all cluster representative genomes at once using minimap2.
Magnet calculates the observed breadth and depth of coverage for the alignment with samtools coverage
for two cases: (1) including all alignments with MAPQ > 1 and (2) including only primary alignments with
MAPQ > 20. For both cases, Magnet calculates the expected breadth of coverage based on the abundance
and the coverage score, defined as the ratio of the observed breadth of coverage and expected breadth
of coverage (Balaji et al. 2023)). The coverage score is used to measure the uniformity of the alignment
distribution along the reference genome. Magnet generates the consensus genome for each cluster based on
alignments and then estimates ANI between it and the reference genome.

Lastly, Magnet marks species as present or absent. If the consensus versus reference ANI is greater than
0.97 and the breadth of coverage for high MAPQ primary alignments is greater than 0.2, the species is
determined to be present. The species is also marked as present if ANI is greater than 0.7 and the reduction
in coverage score and breadth of coverage between all alignments and high MAP(Q primary alignments is less
than or equal to 0.1. Otherwise, the species is marked as absent. The Magnet presence and absence calling
process is based on both the ANI between consensus and the aligned region reference, and coverage and
uniformity decrease after excluding low MAPQ alignment. For species that are truly present in the sample,
excluding low MAPQ alignments has a limited effect on the breadth of coverage or coverage score. On the
other hand, excluding low MAPQ alignments usually causes a significant breadth of coverage or coverage
score reduction for likely false positives, as alignments to the false positive species usually have a lower
average MAPQ. The implemented thresholds were chosen based on empirical evidence and simulation-based
testing.

4.3 Method Comparison

We compared the performance of Lemur (v1.0.1) to taxonomic classification tools Centrifuger (v1.0.0) (Song
and Langmead [2024), Kraken 2 (v2.1.3) (Wood et al. 2019), Melon (v0.1.0) (Chen et al. [2024), MetaMaps
(commit: 633d2e0; Oct 10, 2023) (Dilthey et al. [2019)), and Sourmash (v4.8.2) (Irber et al. 2022). Lemur
was evaluated both on its own and in combination with Magnet (Lemur + Magnet). Melon doesn’t include
any fungal references in its database and thus cannot classify fungi. Therefore, for two datasets that include
fungi in the ground truth, we report Melon and Lemur results on bacterial species only in addition to results
using complete ground truth. Exact commands used for running each tool are provided in Section of
Supplement.

4.4 Synthetic and simulated datasets
4.4.1 Simulated data from (Dilthey et al. |2019)

Our first dataset is a simulated dataset from (Dilthey et al.[2019), with 96 bacterial strains. After validating
the metadata, we confirmed that 94 out of the specified 96 strains have a corresponding species representative
in the RefSeq database. The dataset contains 200,114 reads with an average length of 4,997bps and has a
total size of 1.9 GB. Additional simulation details are provided in the original manuscript (Dilthey et al.
2019)).

4.4.2 Zymo EVEN & Zymo LOG

The Zymo EVEN data sets were constructed from the ZymoBIOMICS Microbial Community Standard
(D6300) sample, which consists of a DNA mixture of 8 bacterial species at an even total DNA abundance of
12% and 2 fungi at 2% DNA abundance. The Zymo LOG datasets were constructed from the ZymoBIOMICS
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Microbial Community Standard (D6310) sample, which consists of a DNA mixture of 8 bacterial species in
a 10-fold dilution series by total DNA abundance and 2 fungi. Species used in D6310 are identical to those
in D6300, although the abundances in the latter are intentionally given a heavily skewed distribution, with
several low-abundance taxa present.

Original sequencing data from a Nanopore GridION device with R9.4 chemistry produced by Loman
lab (Nicholls et al. [2019) was downloaded from GitHub. Experiments to understand the effect of coverage
level were conducted by sub-sampling the reads with the seqkit sample command (Shen et al. 2016) by
setting the proportion of sampled reads to 1% (Median # reads: 34.8k, avg. len.: 4006bp, avg. size:
272MB) and 75% (2.61m, 4012bp, 20GB) for Zymo EVEN and to 10% (367k, 4368bp, 3.1GB) and 75%
(2.75m, 4372bp, 23GB) for Zymo LOG. For each sampling threshold, this process was repeated five times
(setting the random seed parameter from 1 to 5) to create 5 replicate datasets.

4.4.3 Simulated metagenome

We simulated a challenging metagenome using 50 species with representative genomes deposited in RefSeq,
with metagenome assembled genomes (MAGs) available and having an assembly-quality of at least ‘scaffold’
were selected. 5 replicate datasets where then created by randomly sampling 20 genomes spanning 20 distinct
species, and 18-20 distinct genera. Reads were simulated from these genomes using pbsim3 (Ono et al.|2022)
with a quality-score based ONT HMM profile and a mean read-length of 4,050bps (S.D: 1,000bp). Reads
were then combined into simulated metagenomic samples (avg. size: 6GB). The exact pbsim3 command is
provided in Section [A-T.2] of the Supplement.

4.4.4 Zymo Fecal Reference with TruMatrix

Our final dataset is sequencing data generated on a Pacific Biosciences Sequel Ile device from the Zymo-
BIOMICS fecal reference samples. These data along with reference taxonomic abundance profiles were
downloaded from ZymoBIOMICS and were based on a separate, curated analysis based on multiple rounds
of Mllumina shotgun sequencing. A total of 6 samples were analyzed ranging in size from 54 to 105GB (avg.
read len.: 6973bps, avg. size: 75.8GB).

This dataset is challenging to evaluate because some community members are listed as unknown at the
species and, in several cases, at the genus level. Additionally, several species are listed as ‘uncultured (genus)’
which is problematic because this is also a possible species-label that the tools can output, although in that
case it would represent something less than a clear true positive. To avoid this ambiguity, for this dataset
all such taxa were excluded from evaluation. The filtered abundance profile containing 180 bacterial species
and 1 archaeal species spanning 78 genera was used as the ground truth.

4.5 Gut sample from healthy donor (SRR17687125)

For a real metagenomic dataset, a gut metagenomic sample obtained from a Korean donor reportedly in
good health and with an omnivorous diet was used (CY Kim et al. 2022). The sample was sequenced on
a Pacific Biosciences Sequel II device and contained 2.02M reads with an average read-length of 14,670bp.
While no ground truth is available for this sample, the set of the assembled genomes from the original
study (CY Kim et al. 2022) was used as a proxy for organisms present in the sample. False-positive calls
were not assessed, only the recovery of taxa from assembled genomes as well as the consensus among different
taxonomic profilers in the study. This experiment was partly intended as a sanity check for Lemur to see
that it produces a plausible gut community without any highly improbable microbes.

4.6 Chicken gut metagenome

Additionally, 6 chicken gut metagenome samples spanning different sections of the intestinal tract were
analyzed. The samples were sequenced on a Pacific Biosciences Sequel II device and contained 521,403—
4,282,198 reads (avg.: 2,615,037) with an average read-length of 15,989bp. Similarly to the human gut
metagenome no ground truth is available for this dataset, but a set of high quality MAGs is available from
the original study that produced the data (Y Zhang et al. |2022).
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4.7 Method evaluation

For all the tools and datasets with known ground truth, we report recall, precision, and F1 score. Precision
and recall are defined at the genus and species levels and, in each case, over the set of taxa that are known or
estimated to be present above a threshold of le-12 (with the exception of Zymo EVEN experiments, where
the threshold was set to le-3). This was applied to convert abundance profiles for presence and absence.

For tools that provide relative abundance estimates or can be used to derive relative abundance, we also
evaluate normalized L1-loss and Spearman’s rank correlation coefficient p. For datasets with < 20 ground
truth species and even abundance distribution we use normalized L1-loss defined as 3 >, |F(t) — E(t)],
where F is actual and F is estimated abundance. L1-loss is less informative for datasets with large numbers
of taxa or with an uneven distribution, so we use Spearman’s p as an alternative metric of correspondence
between F and F. In this case, it is defined over the set of species ¢ such that both F(t) > 0 and F(t) > 0
(so methods are not punished for false positives or false negatives in the Spearman’s p).

All methods except for MetaMaps were ran on a server running Red Hat Enterprise Linux (v8.9) with
an AMD EPYC 7742 64-core processor and 128 GB of RAM. All server runs were executed with 8 threads
to emulate a laptop-like environment. No additional restrictions were placed on the RAM available to the
tools. MetaMaps runs were performed utilizing 20 (for 1% and 10% subsamples) and 30 (for 75% subsamples)
threads on servers with 4 Intel Xeon Gold 6150 (18-core) and 4 Intel Xeon Gold 6240 (18-core) processors and
1.5 TB of RAM running CentOS 7.9.2009 Linux. Separate experiments on laptop hardware are described
later.

5 Data access

Simulated metagenomic sequencing reads and subsampled reads from Zymo EVEN and LOG microbial stan-
dards are available in Box. Prebuilt Lemur database is available on Zenodo [DOI:10.5281/zenodo.10802545].
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A Supplemental materials

A.1 Details of Experimental Study
A.1.1 Benchmarking commands

Lemur was run as:
python lemur.py -d path-to-db --tax-path path-to-taxonomy
-t 8 ——minimap2-AS -r species r
-i path-to-input.fastq --nof -o outdir
Magnet was run as:
python magnet.py -c lemur_report_file -i input_fastq file -o output_path -m ont
Kraken 2 was run as:
kraken2 --db kraken2-db/k2_fungistd --threads 8
--output path-to-out.txt --report path-to-out.report.txt
path-to-input.fastq
Melon was run as:
melon -d path-to-db -t 8 -o outdir path-to-input.fastq
Centrifuger was run as:
centrifuger -u path-to-input.fastq
-x centrifuger-db/cfr_hpv+gbsarscov2
-t 8 -o outdir

A.1.2 pbsim3 settings

The following command was used for generating reads with pbsim3:
pbsim3 --seed 42 --strategy wgs --depth 50.0 --method gshmm
--gshmm pbsim3/data/QSHMM-ONT.model --length-mean 4050
--length-sd 1000 --difference-ratio 39:24:36 —--accuracy-mean 0.95
--id-prefix {accession}
--prefix ../Data/Simulated/Base-reads-MAGs/{accession}/{accession}
--genome ../Data/Genomes/ncbi_datasets-MAGs/data/{accession}/*.fna

A.1.3 NCBI Taxonomy

To convert scientific names to NCBI taxonomy identifiers and backwards, the Environement for Tree Explo-
ration (ETE) toolkit was used (Huerta-Cepas et al.|2016). The corresponding taxa.sqlite NCBI taxdump
was obtained on 01/18/2024 and has been fixed for all evaluations.
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A.2 Details of Experimental Results
A.2.1 Additional Analysis of Human Gut Microbes

Table 4: 9 Genera predicted by Kraken2/Melon.

Genus Isolation Source Citation
Anaeropeptidivorans Biogas fermenter Koller et al. 2022
Caloranaerobacter Marine thermal vents Wery et al. [2001
Caminicella Marine thermal vents Alain et al. 2002
Vallitalea Marine sediment Lakhal et al. 2013
Caproiciproducens WW treatment plant BC Kim et al. |2015
Lachnoanaerobaculum Human/Gut feces Hedberg et al. 2012
Monoglobus Human/Gut feces CC Kim et al. [2017
Solibaculum Human/Gut feces Sakamoto et al. 2021
Vescimonas Human/Gut feces Kitahara et al. |2021
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