

1 **Mitohormesis during advanced stages of Duchenne muscular dystrophy reveals a redox-
2 sensitive creatine pathway that can be enhanced by the mitochondrial-targeting peptide
3 SBT-20**

5 Authors: Meghan C Hughes^{1*}, Sofhia V Ramos^{1*}, Aditya Brahmbhatt¹, Patrick C Turnbull¹,
6 Nazari N Polidovitch², Madison C Garibotti¹, Uwe Schlattner³, Thomas J Hawke⁴, Jeremy A
7 Simpson^{5,6}, Peter H Backx², Christopher GR Perry¹.

8 *These authors contributed equally

9 ¹School of Kinesiology and Health Science and the Muscle Health Research Centre, York
10 University, Toronto, ON, Canada.

11 ²Department of Biology and the Muscle Health Research Centre, York University, Toronto, ON,
12 Canada.

13 ³University Grenoble Alpes, Inserm U1055, Laboratory of Fundamental and Applied
14 Bioenergetics (LBFA), and Institut Universitaire de France, Grenoble, France.

15 ⁴Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON,
16 Canada.

17 ⁵Department of Human Health and Nutritional Sciences and Cardiovascular Research Group,
18 University of Guelph, Guelph, ON, Canada.

19 ⁶IMPART Team Canada Investigator Network, Saint John, New Brunswick, Canada

20 Present address for Sofhia Ramos: Translational Research Institute, AdventHealth, Orlando, FL,
21 USA.

22 **Current email addresses to be used for correspondence:**

23 hughesmeghanc@gmail.com; sofhia.ramos@adventhealth.com; anbrahm4@yorku.ca;
24 patrick.c.turnbull@gmail.com; n.polidovitch@gmail.com; mgarib@yorku.ca;
25 uwe.schlattner@univ-grenoble-alpes.fr; hawke@mcmaster.ca; jeremys@uoguelph.ca;
26 pbackx@yorku.ca; cperry@yorku.ca

27 Corresponding Author:

28 Christopher Perry, PhD
29 School of Kinesiology and Health Science
30 Muscle Health Research Centre
31 341 Norman Bethune College
32 York University
33 4700 Keele Street
34 Toronto, Ontario M3J 1P3
35 (P) 416 736 2100 ext. 33232
36 Email: cperry@yorku.ca

37 **Abbreviations**

38

39 ADP: adenosine diphosphate

40 ATP: adenosine triphosphate

41 ANT: adenine nucleotide translocase

42 cCK: cytosolic creatine kinase

43 mH₂O₂: mitochondrial H₂O₂ emission

44 mtCK: mitochondrial creatine kinase

45 PCr: phosphocreatine

46 PDC: pyruvate dehydrogenase complex

47 VDAC: voltage dependent anion carrier

48 **Abstract**

49 Mitochondrial creatine kinase (mtCK) regulates the “fast” export of phosphocreatine to support
50 cytoplasmic phosphorylation of ADP to ATP which is more rapid than direct ATP export. Such
51 “creatine-dependent” phosphate shuttling is attenuated in several muscles, including the heart, of
52 the D2.*mdx* mouse model of Duchenne muscular dystrophy at only 4 weeks of age. However, the
53 degree to which creatine-dependent and -independent systems of phosphate shuttling
54 progressively worsen or potentially adapt in a hormetic manner throughout disease progression
55 remains unknown. Here, we performed a series of proof-of-principle investigations designed to
56 determine how phosphate shuttling pathways worsen or adapt in later disease stages in D2.*mdx*
57 (12 months of age). We also determined whether changes in creatine-dependent phosphate
58 shuttling are linked to alterations in mtCK thiol redox state. In permeabilized muscle fibres
59 prepared from cardiac left ventricles, we found that 12-month-old male D2.*mdx* mice have
60 reduced creatine-dependent pyruvate oxidation and elevated complex I-supported H₂O₂ emission
61 (mH₂O₂). Surprisingly, creatine-independent ADP-stimulated respiration was increased and
62 mH₂O₂ was lowered suggesting that impairments in the faster mtCK-mediated phosphocreatine
63 export system resulted in compensation of the alternative slower pathway of ATP export. The
64 apparent impairments in mtCK-dependent bioenergetics occurred independent of mtCK protein
65 content but were related to greater thiol oxidation of mtCK and a more oxidized cellular
66 environment (lower GSH:GSSG). Next, we performed a proof-of-principle study to determine
67 whether creatine-dependent bioenergetics could be enhanced through chronic administration of
68 the mitochondrial-targeting, ROS-lowering tetrapeptide, SBT-20. We found that 12 weeks of
69 daily treatment with SBT-20 (from day 4 to ~12 weeks of age) increased respiration and lowered
70 mH₂O₂ only in the presence of creatine in D2.*mdx* mice without affecting calcium-induced
71 mitochondrial permeability transition activity. In summary, creatine-dependent mitochondrial
72 bioenergetics are attenuated in older D2.*mdx* mice in relation to mtCK thiol oxidation that seem
73 to be countered by increased creatine-independent phosphate shuttling as a unique form of
74 mitohormesis. Separate results demonstrate that creatine-dependent bioenergetics can also be
75 enhanced with a ROS-lowering mitochondrial-targeting peptide. These results demonstrate a
76 specific relationship between redox stress and mitochondrial hormetic reprogramming during
77 dystrophin deficiency with proof-of-principle evidence that creatine-dependent bioenergetics
78 could be modified with mitochondrial-targeting small peptide therapeutics.

79 **Keywords:** mitochondria, muscle, antioxidant, respiration, creatine, small molecule therapy

80 **Introduction**

81 Duchenne muscular dystrophy (DMD) is a rare neuromuscular disease affecting 1 in 5,000 boys
82 [1]. DMD is caused by X-linked recessive mutation in the dystrophin gene that almost exclusively
83 affects males, and the loss of this structural protein triggers many cellular dysfunctions including
84 cell membrane fragility, impaired calcium homeostasis and redox and metabolic stress [2].
85 Conventional glucocorticoid therapy targeting inflammation partially delays the progression of
86 cardiac, respiratory and locomotor muscle dysfunction. However, there is no cure which
87 underscores the need for new therapies [3]. Furthermore, recent exon-skipping therapies, for
88 example, have limited effects in skeletal muscle with no appreciable benefits being identified in
89 the heart [4]. Identifying specific relationships between redox stress and metabolic dysfunction
90 could provide foundational knowledge for pursuing new paradigms of therapy development.

91 A variety of mitochondrial stress responses have been reported in humans and mouse models,
92 including elevated mitochondrial-induction of apoptosis through permeability transition pore
93 activity, reduced oxidative phosphorylation, and elevated hydrogen peroxide emission (mH₂O₂)
94 (reviewed in [5]). In cardiac left ventricle and skeletal muscle from young (4 weeks) D2.*mdx*
95 dystrophin-deficient mice, we previously reported ADP-stimulated mitochondrial respiration was
96 attenuated and mH₂O₂ was higher due specifically to a reduced ability of ADP to attenuate mH₂O₂
97 particularly when creatine was included in the experimental media compared with when creatine
98 was absent [6, 7]. These comparisons were designed to test phosphate shuttling from mitochondrial
99 to cytoplasmic compartments through two theoretical systems comprised of ATP export/ADP
100 import (slow diffusion) and a faster phosphocreatine export/creatinine import (faster diffusion)
101 regulated in part by mitochondrial creatine kinase (mtCK) in the intermembrane space (reviewed
102 in [8, 9]). Matrix ADP/ATP turnover is accelerated with creatine as mtCK activity reduces the
103 diffusion distance for the slower diffusing ADP/ATP to the matrix-intermembrane space interface.
104 This creatine-dependent enhancement of ADP-stimulated ATP synthesis also causes greater ADP-
105 suppression of mH₂O₂ [10] by lowering membrane potential [11]. Therefore, the greater
106 attenuations in creatine-dependent bioenergetics in 4-week-old D2.*mdx* mice suggests dystrophin
107 deficiency impairs the more effective method of phosphate shuttling at an early stage of the
108 disease.

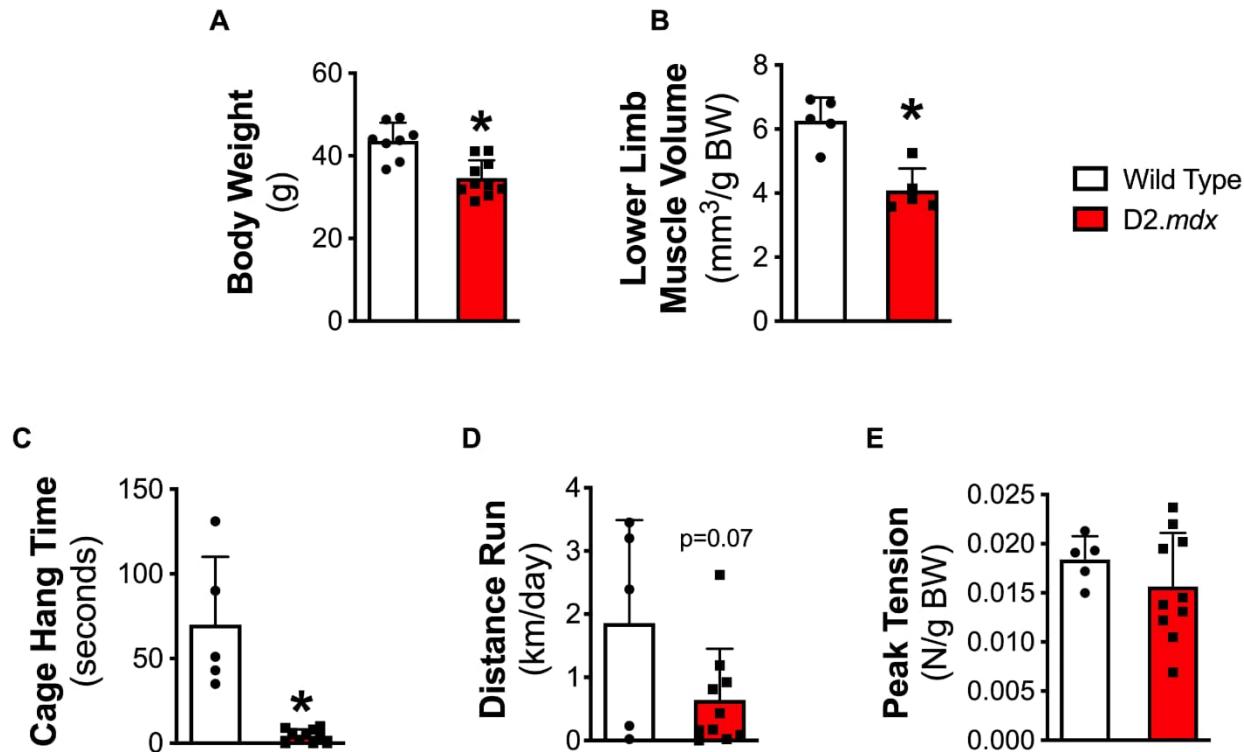
109 These findings in 4-week-old dystrophin deficient mice provide insight into unique mitochondrial
110 remodeling events that occur in the early stages of disease. However, the extent to which
111 mitochondria respond in much later stages of the disease is unpredictable. While indices of
112 mitochondrial dysfunction are to be expected, there remains the possibility of a hormetic response
113 over time whereby mitochondria may adapt to chronic dysfunction in specific mitochondrial
114 pathways whilst others continue to fail. Indeed, the concept of mitochondrial hormesis predicts
115 that chronic stress can stimulate mitochondrial adaptations that lead to improved functioning [12].
116 Our previous findings that creatine-dependent bioenergetics are attenuated moreso than creatine
117 independent system at 4 weeks of age in D2.*mdx* mice raises an intriguing uncertainty over whether
118 both systems eventually fail, or one can compensate for the other. Furthermore, the findings in
119 D2.*mdx* mice that the faster creatine-dependent system is attenuated to a greater degree than the
120 creatine-independent system implicates mtCK – a protein known to be inhibited by reactive
121 oxygen species (ROS) [9] - as being particularly sensitive to the redox stress of dystrophin

122 deficiency in the disease process. However, it remains unknown if mtCK oxidation occurs during
123 dystrophin deficiency to explain this specific remodeling of mitochondrial creatine-dependent
124 bioenergetics at any stage of disease. In this study, we sought to determine whether both
125 mitochondrial creatine-dependent and -independent bioenergetics are attenuated in advanced states
126 of disease in 12-month-old D2.*mdx* mice or if either system adapts through a form of mitohormesis
127 [12]. Our findings highlight considerable metabolic plasticity in these systems, particularly in the
128 left ventricle, whereby severe reductions in creatine-dependent respiration and elevations in
129 creatine-dependent mH₂O₂ are seemingly countered by higher respiration and lower mH₂O₂ in the
130 creatine-independent system of phosphate shuttling. This observation led us to hypothesize that
131 elevated creatine-dependent mH₂O₂ oxidized mtCK to explain the apparent reduction in
132 mitochondrial sensitivity to creatine which proved to be the case. This finding of greater cysteine
133 oxidation of mtCK linked to a unique impairment in creatine-dependent bioenergetics led us to
134 perform a separate investigation demonstrating proof-of-principle that cardiac creatine-dependent
135 bioenergetics are enhanced with 12 weeks of treatment with the ROS-lowering mitochondrial-
136 targeting tetrapeptide SBT-20 [13].

137 **Methods**

138 Male D2.*mdx* mice originated from breeding colonies maintained at York University (Toronto,
139 Canada) and sourced from The Jackson Laboratory (Bar Harbor, United States). DBA/2J wild type
140 were purchased from The Jackson Laboratory at 4-5 weeks of age and aged in-house.

141 In the first part of this study, D2.*mdx* and wild type mice were aged to 52 weeks (12 months). Two
142 to three days prior to tissue removal, mice were assessed for 24-hour voluntary wheel running,
143 hang time using an inverted cage lid and forelimb grip strength. Mice also received a single micro
144 computed tomography scan for measurement of lower limb muscle volume. In the second part of
145 the study, beginning at 4-days of age, D2.*mdx* mice received subcutaneous injections of 5mg/kg
146 SBT-20 (Stealth Biotherapeutics; Newton, MA, USA) 7 days/week continuously for 12 weeks.
147 Thereafter, ultrasound assessments of cardiac function were performed, and muscles were
148 removed.


149 Detailed methodology, including information on permeabilized muscle fibre bundles, high
150 resolution respirometry, mitochondrial H₂O₂ emission, calcium retention capacity assessments,
151 glutathione, western blots, redox assessments of mtCK, and statistical methods, are described in
152 detail in the *Supplemental Information (Appendix A)*.

153 **Results**

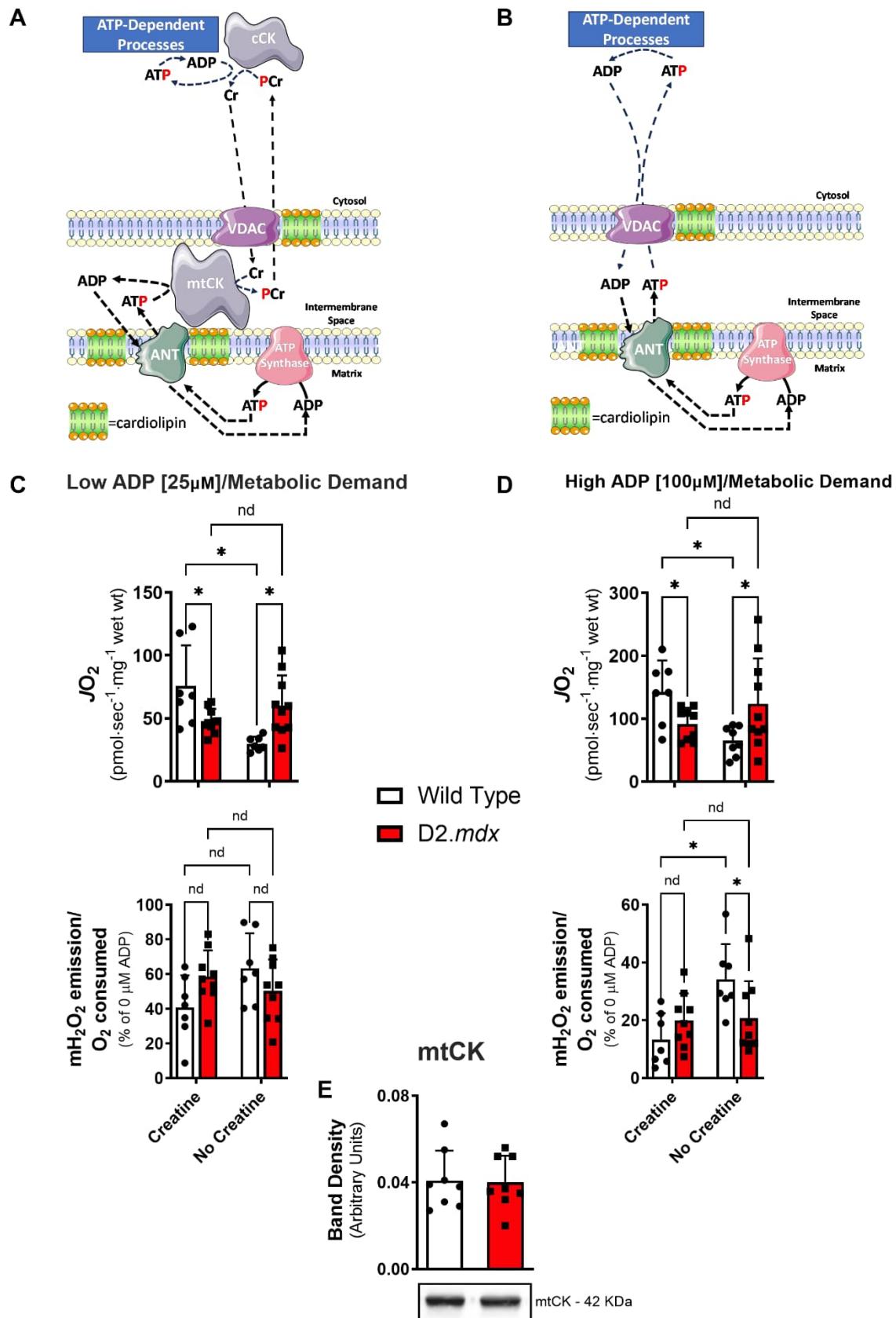
154 **Mitochondrial respiration and mH_2O_2 : modeling metabolic demand and phosphate shuttling**

155 At 12 months of age, D2.*mdx* mice showed reduced body weight, lower limb muscle volume and
156 cage hang time compared with age matched DBA/2J wild type mice (**Figure 1A-E**) as expected
157 with this model [7]

158

159

160 **Figure 1.** Anthropometrics and functional testing in 12-month-old D2.*mdx* mice. Body weight (A,
161 n=8-10), lower limb muscle volume assessed by microCT (B, n=5), cage hang time (C, n=5-10),
162 voluntary wheel running in 24 hours (D, n=5-9) and grip strength (E, n=5-10). Data were
163 analyzed by unpaired t-tests. Results represent mean +/- SD; *p<0.05 compared with wild type.


164

165 Creatine-dependent versus creatine-independent regulation of ADP-stimulated respiration were
166 assessed by placing separate permeabilized left ventricle fibre bundles in experimental media with
167 20mM creatine to saturate mtCK [14, 15] or in media without creatine to model both theoretical
168 models of phosphate shuttling (**Figure 2A and B**). We found that left ventricles from 12-month-
169 old D2.*mdx* mice have lower creatine-dependent Complex I-supported respiration compared to
170 wildtype when stimulated by both low and high [ADP] modeling a range of metabolic demands
171 for mitochondrial ATP synthesis (**Figure 2C and D**). D2.*mdx* surprisingly showed increased
172 respiration compared to wildtype when assessed in the absence of creatine at both low and high
173 [ADP] suggesting the slower but direct ADP/ATP cycling system was upregulated despite
174 reductions in the faster creatine-dependent system. Furthermore, the higher respiration seen in the

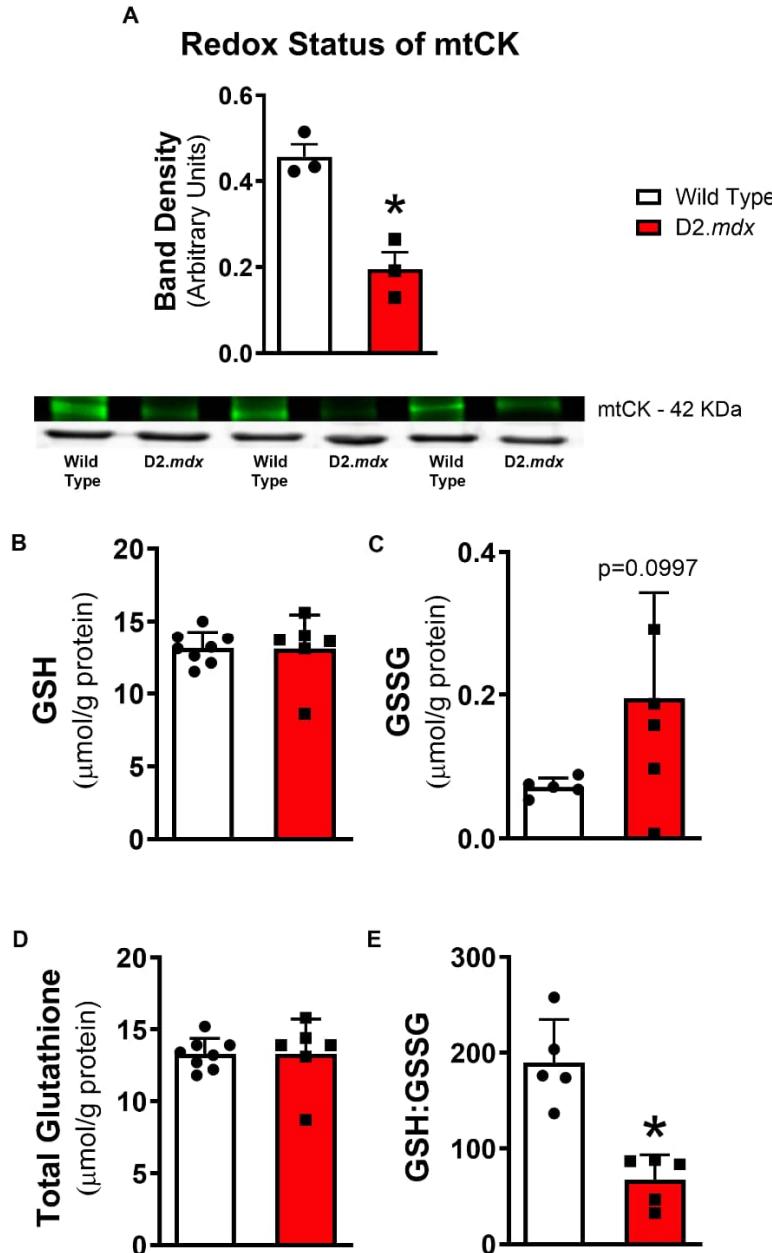
175 condition with creatine compared to the absence of creatine in wildtype (**Figure 2C and D**) is
176 consistent with the known stimulatory effects of creatine on enhancing ADP-stimulated respiration
177 reflective of faster adenylate cycling (**Figure 2A**). In this regard, a critical observation is that this
178 stimulatory effect of creatine was lost in the 12-month D2.*mdx* mice as shown by similar
179 respiration rates when creatine was either present or absent (**Figure 2C and D**) at both low or high
180 [ADP]. Collectively, these results demonstrate a loss of mitochondrial creatine sensitivity in 12-
181 month-old D2.*mdx* mice as well as an apparent compensation in the slower creatine-independent
182 model of adenylate cycling.

183 In the presence of creatine, mH₂O₂ driven by Complex I-supported mH₂O₂ (NADH) through
184 forward electron transfer was not different between wildtype and D2.*mdx* at low and high [ADP]
185 (**Figure 2C and D**) but was higher in D2.*mdx* with reverse electron transfer with high [ADP]
186 (**Supplemental Figure S1A and B**). This was noted when expressing mH₂O₂ relative to oxygen
187 consumption at the same ADP concentration made in parallel fibre bundles to gain insight into
188 how mH₂O₂ is regulated during the process of oxidative phosphorylation. Separate post-hoc
189 analyses examining the ability of creatine to attenuate mH₂O₂ [16] revealed that wildtype hearts
190 showed the expected effect whereby mH₂O₂ was lower when creatine was present compared to its
191 absence when stimulated with both forward electron transfer during high [ADP] (**Figure 2C and**
192 **D**) and reverse electron transfer during both low and high [ADP] (**Supplemental Figure S1A and**
193 **B**), but this effect was lost in the D2.*mdx* whereby mH₂O₂ was similar in the presence and absence
194 of creatine (**Figure 2C and D, Supplemental Figure S1A and B**). Given creatine is known to
195 accelerate ADP/ATP cycling which enhances the well-established effect of ADP in lowering
196 membrane potential-dependent mH₂O₂ ([6, 16-18]; see discussion), these findings suggest that
197 creatine is less capable of stimulating respiration, as described above, and attenuating mH₂O₂ in
198 the left ventricles of 12-month-old D2.*mdx* mice. Furthermore, similar to the findings with
199 respiration, there was an apparent compensation in the creatine-independent system whereby
200 mH₂O₂ in the absence of creatine was lower in D2.*mdx* than wildtype with high [ADP] when driven
201 by forward electron transfer (**Figure 2D**) or with both low and high [ADP] when driven by reverse
202 electron transfer (**Supplemental Figure S1A and B**).

203 There were no changes in mtCK protein content of the left ventricles (**Figure 2E**) indicating that
204 factors independent of mtCK content may mediate the loss of creatine sensitivity in D2.*mdx* hearts.
205 Collectively, these results demonstrate divergent remodeling of left ventricular mitochondrial-
206 cytoplasmic ADP/ATP cycling in 12-month-old D2.*mdx* mice whereby impairments in the faster
207 creatine-dependent regulation of ADP-stimulated respiration and suppression of mH₂O₂ are
208 countered by apparent compensations in the slower creatine-independent system.

210 **Figure 2. Complex I-supported mitochondrial respiration and mitochondrial H₂O₂ emission**
211 (mH_2O_2) in left ventricles from 12-month-old D2.mdx mice. Creatine-dependent (**A**) and -
212 independent (**B**) ADP-stimulated respiration (JO_2) and ADP-suppression of mH_2O_2 during the
213 process of oxidative phosphorylation (mH_2O_2/O_2) with low [ADP] (25 μ M; **C**) and high [ADP]
214 (500 μ M; **D**) were assessed in cardiac left ventricle permeabilized muscle fibre bundles by
215 stimulation with pyruvate (5mM respiration, 10mM mH_2O_2) and malate (2mM) to stimulate
216 Complex I with NADH. Mitochondrial creatine kinase (mtCK) total lysate protein content were
217 assessed in heart samples remaining after removal of left ventricles (**E**). mH_2O_2 represents
218 forward electron transfer that was achieved with NADH generated by pyruvate and malate to
219 stimulate complex I with and without creatine in the experimental media. mH_2O_2 arising from
220 electron slip in the electron transport chain during the process of oxidative phosphorylation is
221 positively associated with membrane potential is therefore suppressed by [ADP] [11]. For A and
222 B, several decades of research has contributed to this theoretical model whereby the matrix-
223 derived ATP is transported through the inner membrane transporter ANT (adenine nucleotide
224 translocase) to the intermembrane space (see [19] for review). In the presence of creatine, a
225 phosphate is transferred from ATP to creatine by mtCK to produce phosphocreatine (PCr). The
226 ADP product cycles back to the matrix while PCr is exported to the cytoplasm (theorized through
227 VDAC; voltage dependent anion carrier) where it is used by cytoplasmic creatine kinase (cCK)
228 to re-phosphorylate ADP to ATP to support ATP-dependent proteins with creatine returning to
229 the mitochondria. This PCr/creatinine system cycles faster than ATP/ADP due to faster diffusion
230 kinetics of both PCr and creatine relative to ADP and ATP, and is estimated to represent up to
231 80% of phosphate exchange between mitochondria and cytoplasmic compartments vs 20% for
232 the direct ATP/ADP shuttle. mtCK, ANT and VDAC are thought to be bound to cardiolipin (see
233 [9] for review). Both systems are thought to be active in vitro in the presence of creatine.
234 Diffusion distances are not to scale. Data were analyzed by Two-way ANOVA for data in panels
235 C and D, and unpaired t-test for panel E. Results represent means +/- SD; n=7-10. *p<0.05; nd
236 means 'no difference'.

237
238 We also questioned whether the reductions in creatine-dependent ADP governance of respiration
239 and mH_2O_2 were unique to the heart or if it occurred in other muscles in D2.mdx at 12 months of
240 age.. Unlike the dystrophic heart (**Figure 2C, D**), creatine stimulated increases in respiration in
241 the diaphragm of 12-month-old D2.mdx but, similar to the heart, did not attenuate mH_2O_2
242 (**Supplemental Figure S2B, C, E, and F**). In the diaphragm, creatine-stimulated respiration
243 appeared to be greater during low and high [ADP] in 12-month-old -matched wildtype vs D2.mdx
244 suggesting a partial impairment in creatine sensitivity nonetheless occurs in dystrophic diaphragm.
245 However, unlike the left ventricle, there were no apparent compensatory increases in respiration
246 in the absence of creatine but lower mH_2O_2 in this condition, similar to the heart, were observed
247 (**Supplemental Figure S2B, C, E, and F**). Also, no effect of creatine was seen in quadriceps or
248 white gastrocnemius in 12-month-old wildtype, in contrast to the effects seen in our previous work
249 at 4 weeks ([17, 18] see discussion), or in 12-month-old D2.mdx (**Figure 2C, D**).


250 We next explored whether changes in bioenergetics in each muscle type were related to altered
251 contents of electron transport chain and phosphate shuttling components that are stimulated in

252 most of the bioenergetic protocols employed in this study. In the heart, no changes in specific
253 subunits of the electron transport chain, ANT1 or VDAC2 occurred, similar to mtCK (**Figure 2E**),
254 suggesting changes in respiration and mH₂O₂ might be linked to altered intrinsic activities, but this
255 would require further investigation. Pyruvate dehydrogenase contents or activities, which regulates
256 NADH production by pyruvate in these protocols, were not assessed. In the diaphragm of 12-
257 month-old D2.*mdx* mice, certain components of the electron transport chain as well as ANT1 and
258 VDAC2 were lower (**Supplemental Figure S3B, C**) which could explain the lower respiration. In
259 the white gastrocnemius, increased subunits of Complex I and IV as well as VDAC2 were observed
260 (**Supplemental Figure S3B, C**). The lack of differences in respiration in the white gastrocnemius
261 suggests the higher contents of these proteins (all of which are involved in these ADP-stimulated
262 respiration protocols) may have offset reductions in their specific activities in order to 'maintain'
263 normal respiration rates expressed per mg tissue (**Supplemental Figure S2B, C, E, and F**).
264 Increases in complex II in the quadriceps would not be expected to influence the Complex I-
265 stimulated respiration or mH₂O₂ protocols used in this study. Collectively, there are heterogeneous
266 mitochondrial alterations across muscle type in 12-month-old D2.*mdx* but the loss of creatine
267 sensitivity seems to be predominant in the cardiac left ventricles despite no changes in contents of
268 many proteins stimulated in the bioenergetic protocols used in this study.

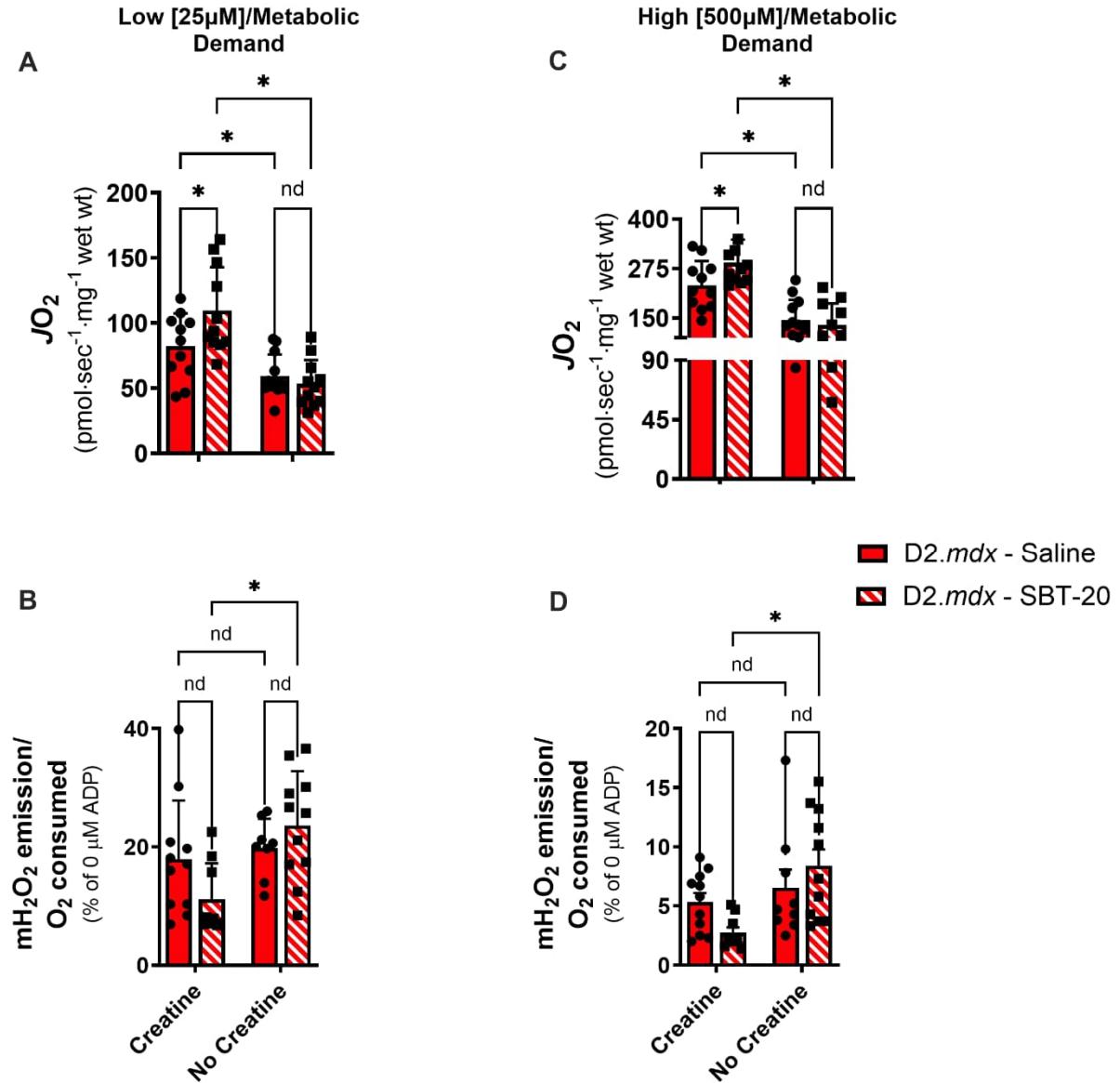
269 In an effort to explain why mitochondrial creatine sensitivity was uniquely impaired in the
270 dystrophic heart and considering there were no changes in mtCK protein content of the left
271 ventricles (see **Figure 2E**), we next questioned whether mtCK was modified through redox-linked
272 post-translational modifications given mH₂O₂ was elevated.

273 ***Cellular redox state and mtCK thiol oxidation***

274 The increased creatine-dependent mH₂O₂ during the process of oxidative phosphorylation in 12-
275 month-old D2.*mdx* mice guided us to hypothesize that mtCK thiols would be more oxidized than
276 in wild type given mtCK is a redox-sensitive protein (reviewed in [9]). We next
277 immunoprecipitated mtCK from left ventricles (**Supplemental Figure S3D**) and incubated the
278 extract in a maleimide-tagged fluorophore that binds irreversibly to reduced cysteine thiols, with
279 no affinity to oxidized thiols, as previously described ([17, 20, 21], **Supplemental Figure S3**).
280 This experiment demonstrated that mtCK is more oxidized in the left ventricle of 12-month-old
281 D2.*mdx* mice (**Figure 3A**). This was related to a more oxidized glutathione (H₂O₂ scavenger) redox
282 state as reflected by a lower GSH:GSSG (reduced to oxidized glutathione redox buffer) in lysate
283 from left ventricles due apparently to high variability in GSSG (**Figure 3B-E**). This oxidized
284 environment in the left ventricle (**Figure 3B-E**) was more pronounced than other specific muscles,
285 although the diaphragm also showed a lower GSH:GSSG despite increases in both GSH and GSSG
286 (**Supplemental Figure S3A**). No changes were observed in quadriceps and white gastrocnemius
287 (**Supplemental Figure S3A**).

288

289


290 **Figure 3.** Mitochondrial creatine kinase (mtCK) cysteine redox state and cellular glutathione
291 redox state in the heart from 12-month-old D2.mdx mice. Measurements were made in frozen heart
292 following the removal of left ventricles. Greater cysteine oxidation on immunoprecipitated mtCK
293 IR-dye 800 CW probe compared to wild type (A). Glutathione was measured in left ventricle lysates
294 using HPLC-UV for the detection of GSH (B) and HPLC-fluorescence for GSSG (C). The
295 GSH:GSSG ratio (D) and total glutathione (GSH + 2x GSSG; E) were calculated from GSH and
296 GSSG. Data were analyzed by unpaired t-tests between wild type and D2.mdx. Results represent
297 mean +/- SD; $n=4-8$. * $p<0.05$ compared to wild type.

299 There were no differences in ANT1, VDAC2 protein contents or subunits of the electron transport
300 chain in the left ventricle (**Supplemental Figure S3B and SC**). While we did not assess their post-
301 translational modifications, these collective observations guided us to examine mtCK-linked
302 creatine-dependent bioenergetics in the heart in more detail.

303 ***In vivo treatment with the mitochondrial ROS-lowering peptide SBT-20***

304 Given we observed attenuated creatine-sensitive control of bioenergetics by ADP in the left
305 ventricle, as the second part of the study we performed a pilot study with *in vivo* injections of the
306 mitochondrial targeting ROS-lowering peptide SBT-20 in D2.*mdx* mice from 4 days of age to
307 ~12.5 weeks of age. Treatment at an earlier age was chosen given a 12-month protocol was not
308 possible. This 12-week treatment protocol increased pyruvate-supported ADP-stimulated
309 respiration in the presence of creatine compared to saline-treated D2.*mdx* mice and had no effect
310 on creatine-independent respiration at low or high [ADP] (**Figure 4A and C**). Unlike 12-month-
311 old D2.*mdx* where creatine did not increase cardiac mitochondrial respiration compared to the
312 absence of creatine (**Figure 2C and D**), left ventricles from 12-week-old mice appeared to retain
313 some creatine sensitivity given respiration was higher in D2.*mdx* saline in the presence of creatine
314 vs in the absence of creatine (**Figure 4A and C**). Nonetheless, the results demonstrate that SBT-
315 20 has a specific action of enhancing creatine-dependent respiration in D2.*mdx* mice given no
316 effect was seen in the creatine-independent condition.

317 mH₂O₂ in the presence of creatine was not different than in the absence of creatine in D2.*mdx*
318 saline treated mice (**Figure 4B and D**). Unlike the respiration data, this suggests that creatine
319 insensitivity developed in D2.*mdx* at least in regard to regulating mH₂O₂. While a wildtype 12-
320 week-old group was not included to verify this observation, it is well-established that creatine
321 enhances the effect of ADP on attenuating mH₂O₂ (see discussion) as was seen in older 12-month
322 wildtype mice (**Figure 2C and D**). This impaired ability of creatine to attenuate mH₂O₂ was not
323 seen in SBT-20 treated mice given mH₂O₂ was lower with creatine compared to in its absence in
324 both low and high [ADP] conditions (**Figure 4B and D**) thereby demonstrating that SBT-20
325 enhances creatine-dependent suppression of mH₂O₂ in line with the greater creatine-dependent
326 respiration. Lastly, while it is not possible to determine if the compensatory increase in creatine-
327 independent bioenergetics seen in 12-month D2.*mdx* mice (**Figure 2C, D**) occurred in these 12-
328 week-old mice (**Figure 4A-D**) without a 12-week-old wildtype control group, the enhanced action
329 of creatine on respiration and mH₂O₂ with SBT-20 nonetheless demonstrates its ability to improve
330 mitochondrial creatine sensitivity, particularly given D2.*mdx* mice that did not receive SBT-20
331 were clearly insensitive to creatine.

332

333 **Figure 4.** The effects of SBT-20 on complex I-supported mitochondrial respiration and
334 mitochondrial H₂O₂ emission (mH₂O₂) in left ventricles from D2.mdx mice. Mice received daily
335 subcutaneous injections of SBT-20 from day 4 to ~12.5 weeks of age. Creatine-dependent and -
336 independent ADP-stimulated respiration (JO₂) and ADP-suppression of mH₂O₂ during the process
337 of oxidative phosphorylation (mH₂O₂/O₂) with low [ADP] (25 μM, A, B) and high [ADP] (500 μM;
338 C, D) were assessed in cardiac left ventricle permeabilized muscle fibre bundles by stimulation
339 with pyruvate (5 mM respiration, 10 mM mH₂O₂) and malate (2 mM) to stimulate Complex I with
340 NADH. Data were analyzed Two-way ANOVA for data in panels C and D. Results represent mean
341 +/- SD; n=8-12. *p<0.05; nd means 'no difference'.

342

343 Increased susceptibility to calcium-induced mitochondrial permeability transition pore activity
344 was observed given calcium retention capacity was reduced in 12-month-old D2.*mdx* mouse left
345 ventricles (**Supplemental Figure S1C**). There was no effect of SBT-20 on this measure compared
346 to saline-treated D2.*mdx* mice at ~12.5 weeks of age (**Supplemental Figure S1D**).
347 Select cardiac functional parameters were not altered by SBT-20 compared to saline-treated
348 D2.*mdx* mice (**Supplemental Figure S4A-D**).
349 Lastly, to determine if higher mH₂O₂ in the presence of creatine was unique to the ADP-sensitive
350 regulation of ROS production, we also assessed Complex III- and pyruvate dehydrogenase
351 complex (PDC)-supported mH₂O₂ in the absence of ADP. In 12-month-old D2.*mdx*, Complex III-
352 supported mH₂O₂ was lower in white gastrocnemius whereas PDC-supported mH₂O₂ was lower
353 in the left ventricle, diaphragm, and quadriceps (**Supplemental Figure S1E**). SBT-20 had no effect
354 on these pathways. While this lower mH₂O₂ in 12-month-old D2.*mdx* mice warrant further
355 investigation into how the contents or post-translational regulation of these pathways are altered
356 during dystrophin deficiency, these data suggest the loss of creatine-dependent bioenergetics
357 during pyruvate oxidation (**Figure 2**) is a unique mechanism contributing to higher mH₂O₂ during
358 attenuated oxidative phosphorylation in DMD.

359 **Discussion**

360 Creatine enhances the ability of ADP to stimulate oxidative phosphorylation and attenuate H₂O₂
361 emission in mitochondria. Here, we show 12-month-old D2.*mdx* mice have lower creatine-
362 dependent bioenergetics that are related to greater cysteine oxidation of mtCK. In contrast,
363 creatine-independent bioenergetics were apparently enhanced which may represent a form of
364 mitohormesis in response to chronic disease in dystrophin deficient mice. Moreover, 12 weeks of
365 treatment with the ROS-lowering mitochondrial-targeting peptide SBT-20 (up to ~12.5 weeks of
366 age) increased creatine-dependent respiration and lowered mH₂O₂, particularly under states of high
367 metabolic demand in the left ventricle. These results demonstrate a specific mechanism linking
368 redox and metabolic stress in mitochondria arising from dystrophin mutations and serve as a
369 direction for continued development of mitochondrial-targeted therapies designed to restore
370 metabolic and redox balance in DMD.

371 At 12 months of age, the left ventricle of D2.*mdx* mice also demonstrated a surprising increase in
372 creatine-independent respiration, which contrasts the decreases we previously reported in this
373 pathway in 4-week-old mice [6, 7]. This observation suggests the slower mitochondrial ADP-ATP
374 system may compensate for impairments in the faster creatine-dependent phosphate shuttling
375 mechanism [9]. The greater abundance of cysteine oxidation on mtCK was consistent with higher
376 rates of creatine-sensitive mH₂O₂ during the process of oxidative phosphorylation and the more
377 oxidized cellular environment (lower GSH:GSSG). mtCK oxidation may be unique to advanced
378 stages of this disease, given we previously reported no differences in 4-week D2.*mdx* mice, at least
379 in skeletal muscle [17]. Further studies could examine the precise form of thiol modification that
380 occurs in 12-month-old D2.*mdx* mice, such as glutathionylation, considering its emerging role in
381 linking redox signaling to metabolic control [22, 23] and considering the shift in GSH:GSSG noted
382 in the present study. Likewise, the degree to which mtCK thiol redox state was preserved by SBT-
383 20 could be considered given the positive effects noted in this part of the study that was otherwise
384 limited by tissue availability. Further studies could assess the specific cystines that were oxidized
385 given cysteine 278, which regulates mtCK activity, and C358, which may regulate mtCK tethering
386 to the inner mitochondrial membrane, were previously shown to be redox sensitive [24]. ANT and
387 VDAC thiol oxidation could also be assessed to explain the apparent compensatory increases in
388 creatine-independent bioenergetics at late stages of disease given their protein contents did not
389 change, although reconciling these measures with the divergent response of creatine-dependent
390 and -independent systems may be challenging given both proteins are thought to be primary
391 regulators in either system.

392 We were unable to assess cardiac function in 12-month-old D2.*mdx* mice due to their qualitatively
393 frail nature. Furthermore, while we did not see robust differences in grip strength compared to age-
394 matched wild type mice, we did note that the absolute values of grip strength in the 12 month old
395 wild type mice are ~50% of the values we have reported previously in this strain at 4 weeks of age
396 [7, 17] suggesting an aging effect occurred in the control group. Nonetheless, the other parameters
397 demonstrate a severe myopathy in the 12-month-old D2.*mdx* mice. Also, the effect of age on
398 mitochondrial reprogramming in locomotor and respiratory muscle pathology compared to muscle
399 dysfunction could also be considered, particularly in relation to the earlier remodeling seen in 4-
400 week-old D2.*mdx* [6, 7, 17, 18].

401 SBT-20 is a small tetrapeptide with high cell-penetrating potential that accumulates on cardiolipin
402 in the inner mitochondrial membrane similar to the mitochondrial-targeting peptide elamipretide
403 (formerly SS-31) [25-27] that prevents cytochrome *c* peroxidase activity, preserves oxidative
404 phosphorylation, and prevents increases in superoxide production in response to stressors [28, 29].
405 SBT-20 also preserved mitochondrial respiration in H₂O₂-treated cells and partially prevents
406 cardiac infarct size in response to ischaemia reperfusion injury [13]. To our knowledge, this is the
407 first study to report a unique creatine-specific preservation of bioenergetics by cardiolipin-
408 targeting peptides. As mtCK is thought to be bound to cardiolipin [9], future studies could consider
409 whether the age-related impairment in creatine-dependent reductions in respiration seen in the
410 present study was due to altered cardiolipin tethering to mtCK, and whether the preserved creatine-
411 dependent bioenergetics by SBT-20 preserved such interactions. As ANT and VDAC are also
412 thought to be bound to cardiolipin, the potential for SBT-20 to regulate the system as a whole could
413 be considered.

414 As an aged-match wild type control group (~12 weeks of age) was not included for the SBT-20-
415 treated D2.*mdx* experiments, we are not able to prove if the creatine-stimulated increases in
416 respiration seen in D2.*mdx* vehicle treated animals were blunted compared to wildtype. We have
417 previously demonstrated that creatine-dependent respiration is lower in 4-week-old D2.*mdx* mouse
418 left ventricles [6]. Therefore, as creatine-dependent respiration is lower at both 4 weeks and 12
419 months as seen in **Figure 2**, it is possible that similar reductions would exist at ~12 weeks as well,
420 but this would require the inclusion of an age-matched wildtype control group to be certain.
421 However, the results clearly demonstrate that creatine does not lower cardiac mH₂O₂ in 12-week-
422 old D2.*mdx* vehicle-treated mice which is consistent with the creatine insensitivity seen in 4-week-
423 old [6, 17] and 12-month-old D2.*mdx* hearts (**Figure 2C, D**) depending on the [ADP]. SBT-20
424 treatment lowered mH₂O₂ only in the presence of creatine which demonstrates a remarkable
425 ability to convert mitochondria from a creatine-insensitive to creatine-sensitive phenotype in
426 D2.*mdx* mice. Likewise, SBT-20 increased creatine-dependent respiration in D2.*mdx* mice to
427 levels higher than what was seen in vehicle treated mice. As such, this study provides first-time
428 proof-of-principle evidence that mitochondrial creatine-dependent bioenergetics can be enhanced
429 by this class of mitochondrial-targeted therapeutics.

430 Although select cardiac functional parameters were not altered by SBT-20 compared to saline-
431 treated D2.*mdx* mice, we cannot determine if a dysfunction existed at this age in comparison to
432 wild type. In fact, prior work at younger ages in the D2.*mdx* mouse have reported no overt
433 cardiomyopathy [6] while much older ages are known to have a moderate left ventricular
434 cardiomyopathy in this model [19], at least as assessed with non-invasive approaches.

435 SBT-20 did not alter calcium retention capacity suggesting that it did not have an effect on
436 mitochondrial permeability transition – an event that links mitochondrial calcium overload to
437 apoptosis [30]. This is in contrast to previous reports showing SBT-20 prevents cytochrome *c*
438 release, a key trigger of mitochondrial-induced apoptosis, in response to ischaemic stress [29] that
439 is known to trigger mitochondrial permeability transition [30]. As our pilot study did not include
440 a wild type control group, we are unable to determine whether calcium retention capacity was
441 reduced in the D2.*mdx* saline control group at this age in contrast to the clear reductions seen at 12
442 months of age (**Supplemental Figure S1**).

443 Collectively, these findings suggest that a time-course design could be employed to determine
444 whether SBT-20 prevents the unique time-dependent signatures of mitochondrial stress and delays
445 the eventual onset of cardiomyopathy. To this end, we did not see an effect of SBT-20 on cardiac
446 function assessed with echocardiography on ~12.5-week-old mice. However, previous reports
447 have shown an absence of overt cardiac dysfunction in D2.*mdx* mice at 4 weeks [6] or 7 weeks
448 [19] of age but is apparent at 28 weeks and 52 weeks [19], with the latter age corresponding to our
449 observation of oxidized mtCK. More in-depth analyses with invasive hemodynamics is also
450 warranted given this approach could identify dysfunctions that are not detected with
451 echocardiography.

452 *Additional Perspectives and Limitations*

453 This investigation was designed to determine whether creatine-dependent and -independent
454 mechanisms of phosphate shuttling remodel in positive or negative manners during advanced
455 stages of disease in dystrophin deficient mice. The elevated mH₂O₂ was linked to a greater degree
456 of oxidized cysteines in mtCK in 12-month-old D2.*mdx* mice. The use of a thiol labeling technique
457 in immunoprecipitated mtCK provides a unique insight into a potential target of mitochondrial
458 ROS during dystrophin deficiency that is linked to a specific impairment in creatine-dependent
459 respiration. Thiol labeling of enriched protein fractions enabled this discovery that would not be
460 possible if the study relied solely on broader measures of redox conditions in the cell. Rather, the
461 change in glutathione redox state provides insight into how changes in mH₂O₂ impacted this
462 primary H₂O₂ scavenger of the cell. Additional measures of lipid peroxidation or broader protein
463 redox states in the cell could be considered in future investigations but are tangential to the question
464 of this investigation pertaining to creatine-dependent and -independent bioenergetics. In the 2nd
465 investigation examining the effects of SBT-20, no redox measurements were performed to
466 determine the impact of altered mH₂O₂ on cellular glutathione or other redox conditions or mtCK
467 redox state. Such measurements should be considered in future investigations developing
468 mitochondrial therapeutics for DMD in relation to measures of muscle function in order to more
469 fully appreciate the impact of altered mitochondrial bioenergetics on redox-dependent processes
470 regulating muscle contraction. Also, measurements of creatine, phosphocreatine, ADP and ATP (as
471 examples) would add further insight into the degree to which the mitochondrial-cytoplasmic
472 phosphate shuttling was altered in the cell. The extremely small muscle samples available from
473 these 12-month-old frail dystrophin deficient mice were used in the most efficient way possible to
474 obtain the dataset reported in this investigation such that future studies could consider adding these
475 broader insights where possible.

476

477 **Conclusions**

478 These findings demonstrate that left ventricle mitochondrial creatine metabolism is attenuated in
479 relation to oxidized mitochondrial creatine kinase in late stages of disease in 12-month-old D2.*mdx*
480 mice. This impairment was linked to increases in creatine-independent bioenergetics which may
481 represent a form of mitohormeses in response to chronic disease progression in dystrophin
482 deficient mice. The ability of the ROS-lowering mitochondrial peptide SBT-20 to increase
483 creatine-dependent pyruvate oxidation and lower creatine-dependent mitochondrial H₂O₂ emission

484 demonstrates the potential for a mitochondrial-targeted therapeutic to enhance coupled respiration
485 during dystrophin deficiency, particularly in regard to the regulation of mitochondrial creatine
486 metabolism. This finding supports continued development of a new paradigm of mitochondrial-
487 targeted redox and metabolic enhancing therapeutics that do not exist in the current standard of
488 care of anti-inflammatory and other emerging treatments.

489 **Declaration of competing interests.**

490 Stealth Biotherapeutics provided SBT-20 through a material transfer agreement but did not provide
491 funding for this study.

492

493 **Acknowledgements**

494 We thank Trevor Teich for providing technical assistance with certain experiments, and Dr Robert
495 Tsushima for kindly providing access to the Vevo 2100 ultrasound imaging system for
496 echocardiography.

497

498 **Supplemental Information.**

499 Supplemental methods (Appendix A) and data (Appendix B) can be found in the separate file
500 *Supplemental Information.*

501

502 **Funding**

503 Funding was provided to C.G.R.P. and T.J.H. by the National Science and Engineering Research
504 Council (no. 436138-2013 and no. 2018-06324, respectively) and an Ontario Early Researcher
505 Award (C.G.R.P., no. 2017-0351) with infrastructure supported by Canada Foundation for
506 Innovation, the James H. Cummings Foundation, and the Ontario Research Fund. J.A.S was
507 supported by the Heart and Stroke Foundation of Canada (HSFC; S13 SI 0592) and a new
508 investigator award with the Heart and Stroke Foundation of Canada. P.B. was supported by
509 Canadian Institutes of Health Research, Project Grant (PJT 153159) and a Canada Research Chair
510 in Cardiovascular Biology. M.C.H. and P.C.T. were supported by a NSERC CGS-PhD scholarship.
511 S.V.R. was supported by an Ontario Graduate Scholarship

512

513 **Author Contributions**

514 M.H., S.V.R., P.B., J.S. and C.G.R.P. contributed to the conception or design of the work. M.H.,
515 S.V.R., A.B., P.C.T., N.P., U.S., T.H., P.B., J.S. and C.G.R.P. contributed to acquisition, analysis
516 and/or interpretation of data. All authors contributed to drafting the manuscript and approved the
517 final version of the manuscript.

518 **References**

519

- 520 1. Bladen CL, Salgado D, Monges S, Foncuberta ME, Kekou K, Kosma K, et al. The TREAT-
521 NMD DMD Global Database: analysis of more than 7,000 Duchenne muscular dystrophy
522 mutations. *Hum Mutat.* 2015;36:395-402. doi:10.1002/humu.22758
- 523 2. Allen DG, Whitehead NP, Froehner SC. Absence of Dystrophin Disrupts Skeletal Muscle
524 Signaling: Roles of Ca²⁺, Reactive Oxygen Species, and Nitric Oxide in the Development of
525 Muscular Dystrophy. *Physiol Rev.* 2016;96:253-305. doi:10.1152/physrev.00007.2015
- 526 3. Kourakis S, Timpani CA, Campelj DG, Hafner P, Gueven N, Fischer D, et al. Standard of
527 care versus new-wave corticosteroids in the treatment of Duchenne muscular dystrophy: Can we
528 do better? *Orphanet J Rare Dis.* 2021;16:117. doi:10.1186/s13023-021-01758-9
- 529 4. Shah MNA, Yokota T. Cardiac therapies for Duchenne muscular dystrophy. *Ther Adv
530 Neurol Disord.* 2023;16:17562864231182934. doi:10.1177/17562864231182934
- 531 5. Bellissimo CA, Garibotti MC, Perry CGR. Mitochondrial stress responses in Duchenne
532 muscular dystrophy: metabolic dysfunction or adaptive reprogramming? *Am J Physiol Cell
533 Physiol.* 2022;323:C718-C30. doi:10.1152/ajpcell.00249.2022
- 534 6. Hughes MC, Ramos SV, Turnbull PC, Edgett BA, Huber JS, Polidovitch N, et al.
535 Impairments in left ventricular mitochondrial bioenergetics precede overt cardiac dysfunction and
536 remodelling in Duchenne muscular dystrophy. *J Physiol.* 2020;598:1377-92.
537 doi:10.1113/JP277306
- 538 7. Hughes MC, Ramos SV, Turnbull PC, Rebalka IA, Cao A, Monaco CMF, et al. Early
539 myopathy in Duchenne muscular dystrophy is associated with elevated mitochondrial H₂O₂
540 emission during impaired oxidative phosphorylation. *J Cachexia Sarcopenia Muscle.*
541 2019;10:643-61. doi:10.1002/jesm.12405
- 542 8. Wallimann T, Tokarska-Schlattner M, Schlattner U. The creatine kinase system and
543 pleiotropic effects of creatine. *Amino Acids.* 2011;40:1271-96. doi:10.1007/s00726-011-0877-3
- 544 9. Schlattner U, Kay L, Tokarska-Schlattner M. Mitochondrial Proteolipid Complexes of
545 Creatine Kinase. *Subcell Biochem.* 2018;87:365-408. doi:10.1007/978-981-10-7757-9_13
- 546 10. Meyer LE, Machado LB, Santiago APSA, Da-Silva WS, De Felice FG, Holub O, et al.
547 Mitochondrial Creatine Kinase Activity Prevents Reactive Oxygen Species Generation:
548 ANTIOXIDANT ROLE OF MITOCHONDRIAL KINASE-DEPENDENT ADP RE-CYCLING
549 ACTIVITY*. *J Biol Chem.* 2006;281:37361-71. doi:10.1074/jbc.M604123200
- 550 11. Nicholls DG, Ferguson SJ. *Bioenergetics* 4. Elsevier; 2013.
- 551 12. Ristow M, Zarse K. How increased oxidative stress promotes longevity and metabolic
552 health: The concept of mitochondrial hormesis (mitohormesis). *Exp Gerontol.* 2010;45:410-8.
553 doi:10.1016/j.exger.2010.03.014
- 554 13. Dai W, Cheung E, Alleman RJ, Perry JB, Allen ME, Brown DA, et al. Cardioprotective
555 Effects of Mitochondria-Targeted Peptide SBT-20 in two Different Models of Rat
556 Ischemia/Reperfusion. *Cardiovasc Drugs Ther.* 2016;30:559-66. doi:10.1007/s10557-016-6695-9
- 557 14. Walsh B, Tonkonogi M, Söderlund K, Hultman E, Saks V, Sahlin K. The role of
558 phosphorylcreatine and creatine in the regulation of mitochondrial respiration in human skeletal
559 muscle. *The Journal of Physiology.* 2001;537:971-8. doi:10.1111/j.1469-7793.2001.00971.x
- 560 15. Perry CG, Kane DA, Lin CT, Kozy R, Cathey BL, Lark DS, et al. Inhibiting myosin-
561 ATPase reveals a dynamic range of mitochondrial respiratory control in skeletal muscle. *Biochem
562 J.* 2011;437:215-22. doi:10.1042/BJ20110366

563 16. Meyer LE, Machado LB, Santiago AP, da-Silva WS, De Felice FG, Holub O, et al.
564 Mitochondrial creatine kinase activity prevents reactive oxygen species generation: antioxidant
565 role of mitochondrial kinase-dependent ADP re-cycling activity. *J Biol Chem.* 2006;281:37361-
566 71. doi:10.1074/jbc.M604123200

567 17. Bellissimo CA, Delfinis LJ, Hughes MC, Turnbull PC, Gandhi S, DiBenedetto SN, et al.
568 Mitochondrial creatine sensitivity is lost in the D2.mdx model of Duchenne muscular dystrophy
569 and rescued by the mitochondrial-enhancing compound Olesoxime. *Am J Physiol Cell Physiol.*
570 2023;324:C1141-C57. doi:10.1152/ajpcell.00377.2022

571 18. Ramos SV, Hughes MC, Delfinis LJ, Bellissimo CA, Perry CGR. Mitochondrial
572 bioenergetic dysfunction in the D2.mdx model of Duchenne muscular dystrophy is associated with
573 microtubule disorganization in skeletal muscle. *PLoS One.* 2020;15:e0237138.
574 doi:10.1371/journal.pone.0237138

575 19. Coley WD, Bogdanik L, Vila MC, Yu Q, Van Der Meulen JH, Rayavarapu S, et al. Effect
576 of genetic background on the dystrophic phenotype in mdx mice. *Hum Mol Genet.* 2016;25:130-
577 45. doi:10.1093/hmg/ddv460

578 20. Frasier CR, Moukdar F, Patel HD, Sloan RC, Stewart LM, Alleman RJ, et al. Redox-
579 dependent increases in glutathione reductase and exercise preconditioning: role of NADPH
580 oxidase and mitochondria. *Cardiovasc Res.* 2013;98:47-55. doi:10.1093/cvr/cvt009

581 21. Sloan RC, Moukdar F, Frasier CR, Patel HD, Bostian PA, Lust RM, et al. Mitochondrial
582 permeability transition in the diabetic heart: contributions of thiol redox state and mitochondrial
583 calcium to augmented reperfusion injury. *J Mol Cell Cardiol.* 2012;52:1009-18.
584 doi:10.1016/j.yjmcc.2012.02.009

585 22. Young A, Gill R, Mailloux RJ. Protein S-glutathionylation: The linchpin for the
586 transmission of regulatory information on redox buffering capacity in mitochondria. *Chem-Biol*
587 *Interact.* 2019;299:151-162.:doi:10.1016/j.cbi.2018.12.003

588 23. Mailloux RJ. Protein S-glutathionylation reactions as a global inhibitor of cell metabolism
589 for the desensitization of hydrogen peroxide signals. *Redox Biol.*
590 2020;32:101472.:doi:10.1016/j.redox.2020.101472

591 24. Wendt S, Schlattner U, Wallimann T. Differential effects of peroxynitrite on human
592 mitochondrial creatine kinase isoenzymes. Inactivation, octamer destabilization, and identification
593 of involved residues. *J Biol Chem.* 2003;278:1125-30. doi:10.1074/jbc.M208572200

594 25. Szeto HH, Birk AV. Serendipity and the discovery of novel compounds that restore
595 mitochondrial plasticity. *Clin Pharmacol Ther.* 2014;96:672-83. doi:10.1038/clpt.2014.174

596 26. Zhao K, Luo G, Zhao G-M, Schiller PW, Szeto HH. Transcellular transport of a highly
597 polar 3+ net charge opioid tetrapeptide. *J Pharmacol Exp Ther.* 2003;304:425-32.
598 doi:10.1124/jpet.102.040147

599 27. Birk AV, Liu S, Soong Y, Mills W, Singh P, Warren JD, et al. The mitochondrial-targeted
600 compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. *J Am Soc*
601 *Nephrol.* 2013;24:1250-61. doi:10.1681/asn.2012121216

602 28. Szeto HH. Mitochondria-targeted cytoprotective peptides for ischemia-reperfusion injury.
603 *Antioxid Redox Signal.* 2008;10:601-19. doi:10.1089/ars.2007.1892

604 29. Birk AV, Chao WM, Liu S, Soong Y, Szeto HH. Disruption of cytochrome c heme
605 coordination is responsible for mitochondrial injury during ischemia. *Biochim Biophys Acta.*
606 2015;1847:1075-84. doi:10.1016/j.bbabi.2015.06.006

607 30. Bernardi P, Gerle C, Halestrap AP, Jonas EA, Karch J, Mnatsakanyan N, et al. Identity,
608 structure, and function of the mitochondrial permeability transition pore: controversies, consensus,

609 recent advances, and future directions. *Cell Death Differ.* 2023;30:1869–85. doi:10.1038/s41418-
610 023-01187-0

611