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Abstract  

Multiplexed bimolecular profiling of tissue microenvironment, or spatial omics, can provide deep insight 

into cellular compositions and interactions in healthy and diseased tissues. Proteome-scale tissue 

mapping, which aims to unbiasedly visualize all the proteins in a whole tissue section or region of interest, 

has attracted significant interest because it holds great potential to directly reveal diagnostic biomarkers 

and therapeutic targets. While many approaches are available, however, proteome mapping still exhibits 

significant technical challenges in both protein coverage and analytical throughput. Since many of these 

existing challenges are associated with mass spectrometry-based protein identification and quantification, 

we performed a detailed benchmarking study of three protein quantification methods for spatial 

proteome mapping, including label-free, TMT-MS2, and TMT-MS3. Our study indicates label-free method 

provided the deepest coverages of ~3500 proteins at a spatial resolution of 50 µm and the highest 

quantification dynamic range, while TMT-MS2 method holds great benefit in mapping throughput at >125 

pixels per day. The evaluation also indicates both label-free and TMT-MS2 provide robust protein 

quantifications in identifying differentially abundant proteins and spatially co-variable clusters. In the 

study of pancreatic islet microenvironment, we demonstrated deep proteome mapping not only enables 

the identification of protein markers specific to different cell types, but more importantly, it also reveals 

unknown or hidden protein patterns by spatial co-expression analysis. 
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Introduction 

Spatial omics is a rapidly evolving field that seeks to provide a deep understanding of tissue 

microstructures and functions by simultaneously measuring many biomolecules at high spatial resolution 

1, 2, 3, 4. These multiplexing measurements not only reveal complex cellular and molecular compositions but 

also provide unique insights into cell-to-cell communications and interactions in both healthy and 

diseased tissues. Spatial omics has been largely fueled by various microscopic imaging and next-

generation sequencing methods such as Visium spatial transcriptomics1, MERFISH5, SeqFISH6, Slide-Seq7, 

8, and DBiT-seq9. Most of these methods were developed for the detection and quantification of 

transcripts with varying levels of resolution, throughput, and multiplexing capabilities. While spatial 

transcriptomics provide valuable insights into cellular heterogeneity, they do not directly infer the 

expression levels of proteins, which are the functional molecules in signaling pathways10, 11. Currently, the 

most commonly used methods for spatial proteomics are antibody-based techniques such as 

immunohistochemistry (IHC)12, 13, GeoMx 14, mass cytometry and MIBI-TOF, 15, 16, 17 and CODEX18. Although 

these immuno-affinity approaches can map protein abundances down to subcellular resolution, their 

multiplexity and specificity can be limited by the availability and quality of antibodies. Matrix-assisted 

laser desorption/ionization (MALDI) 19 or solvent desorption 20 coupled with mass spectrometry provides 

an alternative approach for spatial proteomics, but it is limited to detecting small molecular weight and 

abundant proteins due to the limitation of intact protein ionization and detection. 

 

Mass spectrometry (MS)-based proteomics, or bottom-up proteomics has been developed for profiling 

proteins in various tissues, offering the deepest coverage of over 10,000 proteins per tissue sample21. 

Recent advances in mass spectrometry and sample preparation have greatly increased proteomic 

sensitivity, making it possible to characterize the proteome at single-cell level22, 23, 24. Additionally, 

improvements in multiplexing protein/peptide labeling and fast liquid chromatography (LC) separations 
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further improve the throughput, allowing for large-scale proteomic analysis within reasonable instrument 

time25, 26, 27. Boosted by these advances, bottom-up proteomics has been applied to profile protein 

abundance on tissue sections with deep proteome coverages and high spatial resolution 28, 29, 30, 31, 32, 33. In 

most of spatial proteomics workflows, sample isolation was performed by laser microdissection (LMD or 

LCM). The excited tissue pixels were then digested with trypsin using a one-pot protocol for maximal 

recovery. For example, our group developed an LCM-nanoPOTS (nanodroplet processing in one-pot for 

trace samples) platform to achieve the quantitative profiling of >2000 proteins at 50-100 µm spatial 

resolution 30, 31, 32, 33. The LCM-nanoPOTS not only enables the study of cell-type or microstructure-specific 

proteome at single-cell level 32, 33, 34, 35, but also allows for unbiased spatial mapping of the whole region 

of interest with an imaging-like way 30. Deep Visual Proteomics (DVP) seamlessly integrated whole slide 

imaging, machine learning-based cell segmentation, laser microdissection, and TIMS-TOF mass 

spectrometry to perform spatial single-cell proteomics 28, 36.  Alternatively, many non-LCM approaches 

such as 3D-printed micro-scaffold29 and Expansion Proteomics (ProteomEx) 37 were also demonstrated for 

deep spatial proteomics analysis, greatly improving the accessibility of the evolving spatial technologies. 

 

Spatial proteome mapping or imaging of the whole tissue section or region of interest (ROI) has attracted 

increasing interest because of its ability to provide a comprehensive view of the tissue organization29, 30. 

In proteome mapping, the whole tissue region is pixelated by laser dissection or blade cutting, followed 

by sample preparation and LC-MS analysis. Typically, the protein abundances were obtained with label-

free quantification. While label-free approach provides great simplicity and robustness, the throughput is 

inherently limited, as each isolated tissue pixel requires a single LC-MS run (e.g., 30-min)38. A promising 

way to improve the throughput is to integrate multiplexed peptide labeling with tandem mass tags (TMT), 

which is well demonstrated in single-cell proteomics 22, 24. Theoretically, using the newly released TMTpro 

reagent, maximal 18 tissue pixels can be multiplexed and measured within a single LC-MS run, 
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corresponding to a throughput of >400 pixels per day if a 1-hour LC gradient is used. Despite the great 

potential, the use of multiplexed labeling in proteome mapping has not been evaluated. In this study, we 

performed a detailed benchmarking study of three protein quantification methods for spatial proteome 

mapping, including label-free, TMT-MS2, and TMT-MS3. To make direct comparisons, we employed serial 

human pancreatic sections from a healthy donor and focused on islet (endocrine) and the adjacent acinar 

(exocrine) regions. We compared the proteome coverages, throughput, quantification accuracy, and 

precision across the three methods. Our results suggest that the choice of quantification method has a 

great impact on the performance of proteome mapping. Each method has its own advantages and 

limitations, and thus project goals and experimental designs should be taken into consideration when 

choosing the most appropriate method. 
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Fig. 1 Deep proteome mapping using three different quantification approaches. (a). Schematic illustration of proteome mapping 

workflow from tissue imaging, selection of region of interest, pixelation and laser capture microdissection, sample collection to 

nanoPOTS chip, and proteomic sample preparation; (b). Workflow of TIFF-based label-free quantification (LFQ) for single pixels. 

High-amount pancreas tissue samples were analyzed to construct a peptide library containing LC retention time, m/z, and FAIMS 

CV. The peptide features in single-pixel runs were identified by matching to the peptide library based on three dimensional features; 

(c). TMT-based multiplexed analysis. TMT11 was used to label pixels in the same row together with a reference sample from a 

pooled tissue digest; (d). Tables of the total number of LC-MS runs and total run times required for 36 pixels using the three 

strategies. 
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Results 

Study design 

To benchmark the performance of label-free and multiplexed TMT labeling workflow for proteome 

mapping, we selected three commonly-used quantification strategies in low-input or near-single-cell 

samples, including label-free data-dependent acquisition with match-between-runs (LFQ-MBR, shorted as 

LFQ),39 TMT labeling with MS2 quantification (TMT-MS2),22, 40, 41  and TMT labeling with MS3 quantification 

(TMT-MS3). To minimize the biological variations from heterogeneous tissue samples, we collected 

pancreas tissue serial sections with a thickness of 10 µm from a healthy human donor and focused on the 

contrast of islet-acinar regions (Fig. 1a). A spatial resolution of 50 µm with each “pixel” containing 

approximate 10-20 cells, was used in considering both the collection success rates and tissue 

heterogeneity. Pancreatic tissue consists of two major cell populations, including endocrine cells (e.g., 

alpha, beta, delta cells) in the islet regions and exocrine cells (e.g., acinar cells) in the acinar regions. The 

well-defined tissue anatomy allows us to evaluate the performance differences among these MS methods. 

All the sample collection and proteomic processing were performed in nanoPOTS to improve overall 

sensitivity and reproducibility (Fig. 1a)31. 

For LFQ approach, we used a high field asymmetric waveform ion mobility spectrometry (FAIMS)-

enhanced data acquisition strategy (TIFF, transferring identification based on FAIMS filtering) to increase 

proteome depth and reduce data missingness (Fig. 1b)39. To construct a spectral library, a bulk amount of 

sample from a mix of acinar and islet regions were analyzed repeatedly on LC-FAIMS-MS with three 

different FAIMS CVs. To match the library size used in multiplexed TMT analysis, each library sample 

consisted 20 ng peptides, which is ~20 × of peptide from a single 50-µm pixel. In the previous TIFF study39, 

the samples were analyzed with a 60-min LC gradient, corresponding to a throughput of 15 samples per 

day. We first evaluated the impact of LC gradient times (15, 30, and 60 min) on the proteome coverage 

using 0.2 ng of peptides as a model sample. Reducing gradient times from 30 to 15 min significantly 
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reduces proteome coverages by 14.8%, while no significant differences were observed when reducing 

gradient times from 60 min to 30 min (Supplementary Figure 1). Therefore, a 30 min LC gradient time was 

selected in this study to maximize both coverages and throughput. One concern of TIFF method is that 

most peptides are identified by match-between-runs (MBR), which is prone to false discovery and poor 

quantification. To address this issue, we employed IonQuant42, a tool that can control the false discovery 

rate (FDR) of the MBR, to analyze the data. To assess the quantification performance of TIFF method, we 

performed an analysis of two-proteome mixtures with known input ratios (Supplementary Figure 2). The 

TIFF method allowed the detection of ~2348 proteins from 0.1 ng mouse sample and 630/863 proteins 

from 0.01/0.03 ng S. Oneidensis sample, by matching to a 10 ng library containing 3235 mouse proteins 

and 1079 S. Oneidensis proteins. Encouragingly, accurate and precise quantification was achieved with 

TIFF method, with median ratios of 0.84 and 2.55 for mouse and S. Oneidensis proteins, respectively. 

Together, these results indicated TIFF method can provide sensitive and accurate measurement of 

proteins for low-input samples. 

For multiplexed TMT approach, an 11-plex kit was employed for isobaric labeling with a carrier or booster 

channel, in which 20 ng mixture peptide was labeled with TMT-126 tag and 9 pixels from one row were 

labeled with other tags except TMT127C (Fig. 1c). Because the proteome coverage of multiplexed 

workflow is directly associated with the acquired and identified MS2 spectra, we employed a gradient 

time of 60 min to acquire sufficient MS2 spectra. The 60-min gradient time was chosen based on previous 

single-cell proteomics studies from various research groups41, 43, 44, 45, in which 60 min to 120 min gradient 

times were widely used. Although it is possible to obtain better proteome coverages with longer LC 

gradients, it should be noted that most of the additionally identified spectra were from the 20-ng carrier 

samples, instead of low-abundant sample channels. Thus, extended proteome coverage with long 

gradient times could lead to poor quantification and increased missing values. To alleviate the ratio 

compression problem in the isobaric labeling method, we incorporated FAIMS to pre-fractionate peptide 
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ions into multiple populations before MS acquisition. For TMT-MS2 approach, we employed an AGC 

(automatic gain control) enhanced method to acquire more ions from low-input samples.41, 46, 47 For TMT-

MS3 approach, the real-time search algorithm was enabled to improve data acquisition efficiency.  

Based on these experimental design, LFQ-MBR workflow required 36 hours to complete one proteome 

mapping experiment containing 36 pixels and 36 LC-MS runs, while multiplexed TMT workflows only 

required 4 LC-MS runs and 6.67 hours. The corresponding mapping throughputs for LFQ and TMT 

workflows were 24 and 129.6 pixels per day, respectively (Fig. 1d). Thus, TMT workflows exhibited 

significant benefit in throughput due to sample multiplexing. 
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Fig. 2 Pair-wise benchmarking of the three quantification methods. (a). Two pairs of pancreatic islet regions were selected from 

two adjacent sections. Proteome mapping of the four sections was performed with LFQ and TMT-MS2 for Pair 1, and LFQ and 

TMT-MS3 for Pair 2. Among a total of 36 pixels, three pixels from pure- islet (blue dots) or acinar area (pink dots) were selected 

for further analysis; (b). Average and total numbers of peptide and protein groups identified in each pixel with different 

quantification methods. The error bars indicate standard deviations (n = 36 for LFQ and TMT-MS2; n=35 for TMT-MS3); (c). Venn 

diagram showing the overlap between total protein identifications with different quantification methods; (d). Percentages and 

numbers of valid values across the collected pixels in the same sections at different data missing levels; (e). Violin plots showing 

the distributions of coefficient of variations (CVs) of all proteins quantified in three pure islet and acinar pixels; (f) Pearson 

correlation clustering matrix for the pure islet and acinar pixels. The color scale bar indicates the range of Pearson correlation 

coefficients; (g) Scatter plots of log2-transformed fold changes (FC) between pure islet vs acinar pixels measured in label-free and 

TMT-MS2 or MS3 methods. The linear regression analysis of log2FC results in regression coefficients (R2) and the slope value. 
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Benchmarking the quantification strategies for spatial proteomics 

To perform a pair-wise comparison between LFQ and TMT methods, we collected two pairs of islets and 

their surrounding regions from adjacent tissue sections (Fig. 2a). Pair 1 was analyzed with LFQ-MBR and 

TMT-MS2 method, and pair 2 was analyzed with LFQ-MBR and TMT-MS3 method. We first assessed the 

proteome coverages of these methods (Fig. 2b, Supplementary Figure 3, Supplementary Figure 4, and 

Supplementary Table 1-4). For the average numbers of detected peptides and proteins across single pixels, 

LFQ method provided highest numbers (npeptide = 19348 ± 637, nprotein = 2937 ± 71 for pair 1; and npeptide = 

17001 ± 511, nprotein = 2712 ± 76 for pair 2), followed by TMT-MS2 (npeptide = 6637 ± 342, nprotein = 1309 ± 26) 

and TMT-MS3 (npeptide = 4715 ± 157, nprotein = 1022 ± 18). Venn diagrams indicated 93.9% and 96.6% 

proteins detected by TMT methods were included in LFQ data for pair 1 and pair 2, respectively (Fig. 2c). 

When requiring valid values for all 36 pixels in each experiment, the protein numbers in LFQ method were 

dropped to 1935 (pair 1) and 1804 (pair 2), while the numbers in TMT methods were dropped to 977 (MS2) 

and 720 (MS3) (Fig. 2d). Together, these data demonstrate LFQ method affords deepest coverages for 

both detectable and quantifiable proteins. 

The use of a single database search tool (FragPipe) allows us to evaluate the identification scores and FDRs 

for peptides obtained from the three methods. We extracted the Probability value of each peptide, which 

reflects the confidence of peptide identification. As shown in Supplementary Figure 5, for the shared 

peptides among the three methods, we observed the highest scores in the TMT-MS2 methods, followed 

by the TMT-MS3 and LFQ methods. Such results are expected as both LFQ and TMT-MS3 spectra were 

collected from low-resolution ion trap, while TMT-MS2 spectra were from high-resolution Orbitrap. 

Additionally, in TMT methods, the ion population in each spectrum is summed from all TMT channels 

together with 20× carrier channels, which is ~28 × higher than LFQ spectrum (Supplementary Figure 5). 

The ion population difference also explains the better score of TMT-MS3 method in comparison to LFQ 

method. For unique peptides, the Probability scores are relatively lower than shared ones, mainly due to 
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the low abundances. Despite these differences, most of the Probability scores are > 0.99, indicating low 

FDRs for all these methods. We also evaluated if there are any biases in peptide identification with LFQ 

and TMT methods. We compared the physicochemical characteristics for peptides identified commonly 

and uniquely by each method, focusing on attributes such as hydrophobicity and size (Supplementary 

Figure 6). The data indicated no significant differences in molecular weight, hydrophobicity, gravy score, 

and peptide length across all the methods. 

Next, we compared the quantitative performance of these three methods. Because the collected tissue 

pixels are highly heterogeneous covering both the Langerhans islet and its surrounding acinar cells, the 

biological variations can affect technical evaluation results. To alleviate this, we picked out pixels from 

“pure-acinar” and “pure-islet” regions from the two adjacent sections based on morphological annotation 

(Fig. 2a). The two distinct regions allowed us to evaluate the quantification performance such as 

coefficient of variation (CV) and Pearson’s correlation for LFQ and TMT methods. As shown in Fig. 2e, 

similar CV distributions with median values from 14.5% to 17.9% were observed for pair 1 experiment, 

indicating robust quantification is achievable with both LFQ and TMT MS2 methods. In pair 2 experiment, 

we observed significantly higher CVs of 25.1% for TMT MS3 data compared to 14.7% for LFQ data. We 

attributed the reduced measurement precision to the low sensitivity of RTS-SPS-MS3, because ion loss 

could occur during multiple-level ion isolation and fragmentation process.48  We also assessed the 

relationship of CVs with precursor intensities (Supplementary Figure 7). As expected, relatively higher CVs 

are observed at low precursor intensities for all the three methods. The correlation is weaker with TMT 

methods as reporter-ion intensities are associated with both precursor intensities and the MS/MS 

sampling position on the elution peak. 

We performed pairwise correlation analysis across the 12 pixels in each pair using proteins with CV values 

higher than 15%. As expected, higher correlations were observed between the tissue pixels of the same 

cell types than different sample types. For LFQ method, the median correlation coefficients are from 0.91 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2024. ; https://doi.org/10.1101/2024.03.04.583367doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.04.583367
http://creativecommons.org/licenses/by/4.0/


to 0.97 for the same cell types, and from 0.24 to 0.40 for different cell types (Fig. 2f).  For TMT methods, 

similar correlation coefficients from 0.95 to 0.97 are observed for same cell types. However, the 

correlation between different cell types (0.69 for MS2 and 0.66 for MS3) are significantly higher than that 

in LFQ method. Such higher correlations indicate the measured protein profiles with TMT methods exhibit 

more similarity between islet and acinar cells, which we attribute to ratio compression.49 In addition, we 

also performed correlation analysis between the same cell types across different quantification methods 

and achieved decent results with correlation coefficients from 0.68 to 0.79 (Supplementary Figure 8).  

To evaluate the ratio compression of TMT methods, we plotted log2-transformed fold changes between 

islet and acinar cells using overlapped proteins in both methods. Total 1422 and 1191 proteins were 

included in pair 1 and pair 2 experiments (Fig. 2g). The slopes of linear regression between two different 

methods were 0.64 for pair 1 (LFQ versus TMT MS2) and 0.67 pair 2 (LFQ versus TMT MS3), respectively. 

Indeed, the slope values indicated that fold changes were compressed in both TMT measurements. 

Interestingly, although TMT-MS3 method is expected to significantly mitigate the ratio compression,50 our 

data shows its improvement is minimal in comparison to TMT-MS2 method.  The diminished improvement 

can be largely attributed to the use of FAIMS-based ion fractionation prior to data acquisition, as well as 

the lower sensitivity of MS3 method.  

Together, these evaluations demonstrated LFQ method is preferred for deep proteome coverage and 

accurate quantification, while TMT-MS2 method is a preferred method when high throughput is required. 
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Fig. 3 Unsupervised clustering of individual pixels. (a-b). UMAP pixel projection using LFQ (a) and TMT data (b) colored with 

Leiden clustering result (cluster 1 and cluster 2); (c-d) UMAP pixel projection colored with the morphological annotations (islet 

only, mixed, and acinar only). White dashed lines indicate the islet boundary in each section; (e). Scatter plots of log2-transformed 

fold changes for 562 differentially abundant proteins between cluster 1 vs cluster 2, which were measured in LFQ and TMT-MS2 

methods. The linear regression analysis of log2FC results in regression coefficients (R2) and slope value; (f). Protein abundance 

maps of well-known pancreatic islet and acinar markers measured with different quantification methods. 
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Unsupervised pixel clustering for characterizing tissue features 

After evaluating the quantification methods from a technical perspective, we examined their performance 

in tissue feature characterization by comparing tissue morphological features with proteome-based data-

driven classification. Unsupervised Leiden clustering identified two major clusters corresponding to 

acinar- and islet-dominant pixels in both LFQ and TMT methods (Fig. 3a-b and Supplementary Figure 9). 

When clustering results were annotated on LCM tissue pixels, cluster 1 corresponded to acinar areas and 

cluster 2 corresponded to islet areas. Uniform manifold approximation and projection (UMAP)-based 

dimensional reduction analysis largely recaptured the Leiden clustering results, where the two clusters 

were projected into two major domains. Of note, one acinar pixel was classified into islet-dominant 

clusters in Pair 2 experiment with TMT-MS3 quantification method. UMAP projection indicated this pixel 

was located at the boundary of the two main clusters (Supplementary Figure 9b). Overall, UMAP analysis 

showed that LFQ data have better classification power than TMT-based data, which we attributed to its 

better accuracy and relatively larger quantification dynamic range, as we observed in the above fold 

change analysis (Fig. 2g). Because LFQ data contained over twice the number of proteins compared to 

TMT methods, we next investigated if the improved classification power of LFQ data was simply due to its 

deeper proteome coverage. We generated UMAP plots using only overlapped proteins in LFQ and TMT 

methods (Supplementary Figure 10). As expected, the separation of islet and acinar samples was slightly 

reduced when only overlapped proteins were used for UMAP projection. Despite this, the LFQ method 

still exhibited better classification power than TMT.  

We also evaluated the effect of missing data imputation on TMT data. Two different data filtering 

approaches were evaluated, including (1) >70% valid values across all pixels and (2) >70% valid values 

across all pixels and at least 1 valid value in each TMT batch. As shown in Supplementary Figure 11A and 

B, the UMAP projections were similar between non-imputed and imputed data after filtering out proteins 

containing <70% valid values and totally missed in at least one batch. Although the largest number of 
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quantifiable proteins were retained when only filtering with 70% valid values, the UMAP projection 

appeared quite different from the other two approaches. Thus, to avoid imputation-associated artifacts, 

we performed imputation on proteins containing >70% valid value in all pixels and at least 1 valid value in 

each batch. 

Based on imaging-based morphological features, we manually annotated all pixels into three cell-type 

groups (islet, acinar, and mix) and labeled them with different colors on UMAP plot. (Fig. 3c-d and 

Supplementary Figure 9). Pixels uniformly comprised of one type of cell were clearly separated from each 

other on the UMAP plot, while the pixels comprised of islet and acinar cells together were closely 

distributed to each other at the intermediate region. This analysis demonstrated proteome data-driven 

pixel classification agreed well with morphology-based annotation.  

There were 562 proteins commonly identified as differentially abundant proteins (DAPs) between Cluster 

1 and 2 in both methods. We calculated log2-transformed protein-abundance ratios between two clusters 

and examined how these ratios correlated. As we observed in the similar analysis with selected pure islet 

and acinar pixels (Fig. 2g), the slope value of 0.45 again suggested larger fold changes was obtained with 

LFQ method (Fig. 3e). Encouragingly, great linear regression coefficient of 0.89 was observed, 

demonstrated the two methods agreed well in quantifying the DAPs.  To validate if these DAPs can explain 

cell populations, we used a previously reported pancreatic cell-type marker list from the human protein 

atlas (HPA) reference based on single-cell transcriptomics analysis 51. Among the 238 genes reported as 

acinar and islet markers in the HPA database, 62 genes were commonly identified in our proteome data 

set and 30 genes (11 islet markers and 19 acinar markers) showed a significant difference between Cluster 

1 and 2 (Supplementary Figure 12a). Correlation analysis of the 30 genes showed a clear high correlation 

between the same cell types across all tissue pixels analyzed in this study (Supplementary Figure 12b). 
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Finally, we manually generated proteome maps using well-known islet cell markers (pro-glucagon, GCG; 

insulin, INS; and transthyretin, TTR) and acinar cell markers (bile salt-activated lipase, CEL; 

carboxypeptidase A1, CPA1; and endoplasmic reticulum resident protein 27, ERP27) (Fig. 3f). For both LFQ 

and TMT methods, distinguishable heatmaps indicating different cell-type annotations were observed for 

these marker proteins (Fig. 3f); however, the LFQ method display better contrast between the endocrine 

and exocrine regions based on these markers, which we ascribed to the larger quantification dynamic 

ranges from LFQ method. 

Detection and clustering of spatial patterns and associated proteins 

One powerful capability of deep spatial omics analysis is to identify unique spatial patterns and tissue 

microenvironments that are invisible in morphological examination.  To evaluate the performance of LFQ 

and TMT datasets for spatial pattern analysis, we employed the Hidden Markov Random Field model 

(HMRF) 52 algorithm embedded in the Giotto package53, a spatial omics tool widely employed in spatial 

transcriptomics. Quantitative proteome data matrixes and the corresponding spatial coordinates (x-y) of 

each pixel were incorporated as input of the HMRF clustering analysis (Fig. 4a and 4b). For both 

experimental pairs, the spatial clustering algorithm revealed highly correlated protein clusters (Fig. 4c and 

4d), each of which exhibits a similar protein-abundant pattern (Fig. 4e and 4f).  
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Fig. 4 Identification of spatially co-variable proteins and clusters in pancreatic islet pairs. (a-b). Microscopic images of islet pairs 

used for each experiment. The coordinates of each pixel were determined based on the relative position from the left bottom 

corner. Dashed lines indicate annotated islet boundaries; (c-d). Correlation heatmaps showing the clustering of spatially co-

variable proteins across the 36 pixels in each experiment; (e-f). Z-scored protein abundance maps to represent protein pattern of 

each cluster. (h-i) Protein abundance maps selected from each spatial co-variable cluster. 

In Pair 1 experiment, three protein clusters emerged in LFQ workflow, while only two clusters observed 

in TMT-MS2 (Fig. 4c). Cluster 1 and 3 (and 1 and 2 in TMT) contains a list of proteins enriched in either 
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acinar cells (acinar-high) or islet cells (islet-high), which is consistent with morphological annotation (Fig. 

4e). For examples, MTHFD1 (Methylenetetrahydrofolate Dehydrogenase) and EEF1B2 (Eukaryotic 

Translation Elongation Factor 1 Beta 2) are highly enriched in acinar region, while HNRPDL 

(Heterogeneous nuclear ribonucleoprotein D-like) and KHSRP (KH-Type Splicing Regulatory Protein) have 

higher abundance in islet cells (Fig. 4h). Interestingly, cluster 2 in LFQ workflow revealed a list of proteins 

with both the islet-high pattern and relatively higher abundance in the bottom-right corner of the 4th row. 

However, this pattern is missed in TMT-MS2 data, which we attribute to differences in islet size between 

the consecutive sections. Because the islet is relatively larger in the TMT-MS2 experiment, the bottom-

right corner region of the 4th row is almost occupied by the islet cells (Fig. 4a).  

In Pair 2 experiment, both LFQ and TMT-MS3 datasets comprised three spatial patterns (Fig. 4d), one of 

which showed a unique pattern (cluster 2) other than islet-high and acinar-high patterns (Fig. 4f). In this 

cluster, proteins with the highest abundance were localized in the bottom right corner. Interestingly, 

these highlighted pixels could be exactly matched to a morphological feature containing a small duct with 

a diameter of ~10 µm (Fig. 4b). These differential abundant proteins consist extracellular matrix proteins 

and proteins with functions of cell adhesion and structural support. Indeed, we observed highly enriched 

KRT7 (keratin) and ANXA2 (annexinA2) proteins in these pixels, which are well-known markers for duct 

cells (Fig. 4i). In comparison with LFQ and TMT-MS2 methods, the TMT-MS3 exhibits many less correlated 

proteins (Fig. 4d), which we attributed to the low data quality of MS3-based quantification as we observed 

in previous section.  
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Fig. 5 Identification of hidden tissue features and spatial patterns with spatial covariation analysis. (a). Correlation heatmap of 

three clusters containing 500 spatial co-variable proteins. Color bar indicates the range of Pearson correlation coefficients; (b). Z-

scored protein abundance maps to represent protein pattern in each detected cluster. The dashed lines indicate islet boundaries. 

(c). Protein abundance maps selected from each spatial co-variable cluster; (d-e). Reactome pathway enrichment analysis (d) and 

cell-type enrichment analysis (e) using protein lists in the three clusters. Note that there is no significantly enriched cell type in 

cluster 2. 

Finally, we applied spatial network analysis to map another islet region (Fig. 5). Based on label-free 

quantitative mapping of 3558 proteins, we observed three distinct spatial patterns, including expected 

“islet high” (cluster 1), “acinar high” (cluster 3), and an unexpected “gradient expression” pattern (cluster 

2) (Fig. 5b). Proteins in cluster 2 showed a gradient expression from top left to bottom right, regardless of 

cell-type difference. Cluster 1 and 3 included not only canonical marker genes shown in Fig. 3f, but also 

included additional genes that were not reported as pancreatic markers previously. Proteins in the latter 

included genes UCHL1 (ubiquitin carboxyl-terminal hydrolase), TIMP1 (metalloproteinase inhibitor 1), and 
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CLU (clusterin) in cluster 1 and ZNF503 (Zinc finger protein 503), PHGDH (d-3-phophoglycerate 

dehydrogenase), and GSTA2 (glutathione S-transferase A2) in cluster 3 (Fig. 5c), indicating potential 

pancreatic islet or acinar markers. Total 113 proteins were included in the unexpected cluster 2, such as 

SRSF2 (serine/arginine-rich splicing factor 2), NCAPG (condensing complex subunit 3), and HAT1 (Histone 

acetyltransferase type B catalytic).  

To understand the functional difference of the proteins with different spatial patterns, we performed 

Reactome pathway analysis using the three protein clusters. As shown in Fig. 5d, we found significant 

enrichment of insulin signaling pathways, such as “Insulin receptor recycling” and “Insulin processing” in 

cluster 1. The digestion and lipid metabolism-related pathway, such as “Metabolism of amino acids and 

derivatives” and “Digestion of dietary lipid” were presented in cluster 3. These function categories agree 

well with the major cellular compositions in islet and acinar regions. Encouragingly, we also obtained 

significant pathway enrichment for proteins in cluster 2. These proteins were enriched in Reactome 

pathways associated with cell cycling, such as “mRNA splicing”, “RNA polymerase II transcription 

termination”, and “cell cycle”. The pathway analysis suggested the cells in the top-left corner region were 

more active in protein synthesis and cell dividing, likely due to nutrition or oxygen gradient across the 

tissue region. In addition to pathway analysis of spatially variable proteins, we also performed cell type 

enrichment analysis to evaluate if the algorithm can identify the major cell types.54 As shown in Fig. 5e, 

the predicted cell types with the highest scores for islet-high (cluster 1) and acinar-high (cluster 3) clusters 

were “islet endocrine cells” and “Acinar cells”, respectively. Meanwhile, there is no significant cell type 

enrichment for cluster 2 proteins. 

Together, we demonstrated the integration of spatial network analysis with deep proteome mapping can 

identify clusters of proteins with similar abundant patterns and reveal unique protein patterns that are 

invisible from morphological interpretation. The pathway and cell type enrichment analysis can further 
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provide insights into the physiological functions associated with tissue microenvironment, as well as the 

major cellular compositions.    

 

Discussion 

Although proteomic quantification methods have been extensively evaluated for global proteomics, 

phosphoproteomics, or bulk-scale tissue proteomics 55, 56, 57, there is a lack of study focusing on evaluating 

their performance on high-resolution spatial proteomics, where the samples are both low-input and 

highly heterogeneous in nature. For example, the total protein amount in each tissue pixel of 50 µm 

square is only ~2 ng, which is >100 × lower in bulk-scale benchmarking studies. Thus, highly sensitive MS 

parameters, including FAIMS pre-filtering and high injection time should be used to accommodate the 

detection of low ion populations. Also, in spatial proteomics, each sample/pixel is a single biological 

replicate and is analyzed by a single LC-MS analysis without technical replicates. Because of highly 

heterogeneous nature, a large number of spatial samples are usually required to detect rare events as 

well as to generate sufficient statistical power. High throughput analysis with short LC gradient and non-

fractionated multiplexed TMT sample preparation is critical. Due to these significant differences, previous 

bulk-scale benchmarking studies are not suitable to guide spatial proteomics experiments.  

In this study, we systematically evaluated high sensitivity and high throughput proteomics methods for 

proteome-scale spatial mapping of tissue sections, including the commonly-used label-free and isobaric 

labeling methods. Our study indicated label-free method provided the deepest coverages of ~3500 

proteins at a spatial resolution of 50 µm, corresponding to ~10-20 cells. Quantitative comparison also 

revealed label-free method exhibited high dynamic ranges with large fold changes between tissue regions 

containing two different cell populations. Despite these merits, label-free method has no multiplexing 

capabilities, limiting their application in large number of pixels when instrument time is limited. Such 
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limitation could be partially addressed by shortening gradient time58, 59 or employing a dual-trap or dual-

column system to improve the overall throughput.27, 60 One important consideration when analyzing a 

large number of spatial samples is injection-order randomization, where pixels from different spatial 

locations should be injected randomly to minimize the LC-MS-associated batch effect.    

On the other hand, TMT-based isobaric labeling methods offered the highest throughput of >125 pixels 

per day by multiplexed data acquisition of over 9 pixels, making it particularly useful for large-scale 

experiments. Although TMT method suffered from moderate proteome coverages and compromised 

protein quantification accuracy in comparison with label-free method, our analysis demonstrated it 

provided great agreement in term of detecting differentially abundant proteins and clustering pixels, as 

well as identifying spatially variable proteins. Our analysis also indicates that TMT MS3 method with RTS61, 

62 didn’t significantly improve the quantification accuracy, largely due to reduced measurement sensitivity. 

Thus, TMT labeling with FAIMS pre-fractionation and MS2-based quantification is recommended. We 

envision the throughput and coverage can be further improved by employing high-multiplicity TMT tags 

(e.g., 18plex or higher) and advanced mass spectrometer with faster scanning speed (e.g., Astral Orbitrap). 

However, due to inherent limitations of TMT-based isobaric labeling approach such as precursor co-

isolation and batch effect (Supplementary Figure 13), the approach may not be suitable for mapping 

subtle proteome alternations. Additional validation experiments should be performed to obtain solid 

biological conclusions derived from the spatial proteomics results. We employed Combat algorithm to 

correct the LC-MS-related batch effect. It should be noted that Combat assumes the overall sample 

compositions are the same across batches. In this study, we labeled each “row” with a TMT plex and 

incorporated both islet and acinar cells in each plex to ensure similar sample compositions. Such a design 

could mask the systematic difference in the “column” direction, as indicated in Figure 5. Therefore, both 

cell type and spatial randomization should be incorporated when applying the TMT method to map large-

sized tissue samples. Alternatively, recent studies demonstrated non-isobaric labeling coupled with data-
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independent acquisition (DIA) offered a promising solution to boost both throughput and quantification 

accuracy, albeit the practical multiplicity is only 3 at present 63, 64.  

Together, we summarized the technical characteristics of the LFQ and TMT methods in Supplementary 

Figure 14. We also provided our recommendation of the method of choice based on the project goals 

including coverages and pixel numbers. We suggest choosing LFQ method for low throughput applications 

with <200 pixels, as well as applications requiring deep proteome coverages. We also note LFQ method 

offers the simplest sample preparation procedures as no chemical labeling step is included. TMT-MS2-

based multiplexed method naturally fits in applications requiring mapping large tissue areas or multiple 

serial tissue sections containing a large number of pixels. 

Deep proteome mapping of human tissue holds significant potential in understanding tissue functions in 

health and disease states by combining traditional histological imaging with unbiased proteomic profiling. 

We demonstrated the LFQ approach allowed to create proteome maps of healthy human islet regions 

covering > 3000 proteins. We also demonstrated deep and spatially-resolved proteome mapping not only 

enabled to identify protein markers specific to different cell types, more importantly, it also revealed 

unknown or hidden protein patterns by spatial co-expression pattern analysis. As an example, we 

demonstrated vasculature-associated pixels and nutrition/oxygen-induced proteome gradient patterns 

could be discovered by a spatial clustering algorithm (e.g., HMRF). These capabilities allow us to study 

heterogeneity and unknown molecular patterns of human tissues, especially in diseased tissues such as 

type 1 diabetes and cancers. The direct access to the proteome of diseased tissues could also provide 

potential biomarkers or drug targets for precise diagnosis and therapeutic intervention.  
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Methods 

Preparation of human pancreas tissue. 

Human pancreas tissue was obtained from a 17-year-old male donor. The donor was selected based on 

the eligibility criteria established by the HuBMAP consortium, under IRB201600029 

(https://www.protocols.io/view/donor-eligibility-criteria-and-pancreas-recovery-f-b7nfrmbn), and 

following the ethical standards of the Declaration of Helsinki. Organ recovery and tissue processing were 

performed at the University of Florida following the standard protocol 

(https://www.protocols.io/view/human-pancreas-processing-b7gxrjxn). Tissue block embedded in CMC 

media was frozen with dry ice/isopentane bath and stored in -80 °C freezer.  

NanoPOTS chip fabrication. 

Nanowell chips were fabricated on glass slides as described previously32. Briefly, an array of 4 × 11 

nanowells with a diameter 1.2 mm and a center-to-center spacing of 4.5 mm were fabricated on glass 

slides with pre-coated chromium and photoresist (25 mm × 75 mm, Telic company, Valencia, USA) based 

on standard photolithography and wet etching. After wet etching, the remaining glass surfaces were 

treated with 2% (v/v) heptadecafluoro-1,1,2,2-tetrahydrodecyldimethylchlorosilane in 2,2,4-

trimethylpentane. After removing the remaining chromium layer, an array of spots with hydrophilic 

surface served as nanowells for tissue collection and proteomic sample processing.  

Laser capture microdissection and sample collection into nanoPOTS. 

First, 10-µm thickness tissue sections collected on PEN membrane slides (Carl Zeiss) were stained using 

Hematoxylin and Eosin staining kit (H&E staining kit, Abcam) following the manufacturer’s instruction. 

Before sample collection, 200-nL DMSO was pre-loaded onto each nanowell as sample capture liquid.31 

Laser capture microdissection (LCM) was performed on a PALM MicroBeam LCM system (Carl Zeiss 

MicroImaging, Munich, Germany). Pixelation of tissue section was performed by drawing a gridline around 

the region of interest on the tissue, followed by tissue cutting and catapulting. Pancreas tissue was cut at 
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an energy level of 40 using the “CenterRoboLPC” function of PalmRobo software. For sample collection, 

an energy level of delta 15 and a focus level of delta 5 were used to catapult tissue pixels into nanowells. 

The collected tissue sample in this study is a three-dimensional-form voxel, however, LCM is a technology 

for isolating two-dimensional tissue area from a thin layer, rather than a cube. Thus, we called each 

collected sample as a “pixel”. After collection, the nanowell chip was heated to 70 °C for 20 min to 

evaporate the DMSO droplet under hanging drop mode33. The dried chip was imaged with a microscope 

to confirm successful tissue collection and stored at -20 °C until use. 

Experimental Design and Statistical Rationale. 

Our overall experimental design is depicted in Figure 1 and Figure 2a. We generated a total of four spatial 

proteome maps, each consisting of a pancreatic islet and its surrounding acinar cells. These maps include 

36 pixels created by dissecting a 4 × 9 grid from the tissue and collecting the samples directly into 

corresponding wells in a nanoPOTS chip. These spatial maps were derived from two pairs of islets, with 

each pair being selected from consecutive tissue sections. For each pair of islets, one islet was analyzed 

using LFQ, while the other was analyzed using TMT (either TMT-MS2 or TMS-MS3). This resulted in a 

comprehensive analysis of four islets in total (2 islets per section × 2 sections = 4 islets), allowing us to 

examine and compare the spatial proteomic profiles in a consistent manner between consecutive tissue 

sections within the same biological context. To compare the proteome difference between islet and acinar 

regions, 9-23 islet pixels and 13-27 acinar pixels in each section were analyzed to generate sufficient 

statistical power. 

NanoPOTS-based proteomic sample processing. 

A home-built nanoliter robotic liquid-handling platform was employed to dispense reagents into 

nanowells.32, 65 First, 200 nL of cell lysis buffer containing 0.1% (v/v) n-dodecyl-ß D-maltoside (DDM), 1 

mM tris(2-carboxyethyl)phosphine (TCEP) and 0.1 M 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES, pH 8.0) was applied into each nanowell and incubated at 70 °C for 1 h. Next, 50 nL of 10 mM of 
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2-chloroacetamide (CAA) in 0.1 M HEPES (pH 8.0) was added to each nanowell and incubated for 30 min 

at room temperature. After alkylation, protein digestion was performed overnight by addition of 50 nL of 

0.01 ng nL-1 Lys-C (MS grade, Promega, Madison, USA) and 50 nL of 0.04 ng nL-1 trypsin (Promega) in 0.1 

M HEPES buffer and incubated at 37 °C for 10 h. During all incubation step, the chip was placed in an 

upside-down direction to increase the protein extraction and digestion efficiency33.  

For LFQ samples, the digestion was quenched by dispensing 50 nL of 5% formic acid (FA) into each well 

and incubated for 15 min. Samples in nanowell chip were dried out in a vacuum desiccator and stored in 

-20 °C until analysis. 

For multiplexed labeling samples, TMT reactions were processed without any desalting steps. TMT11 plex 

reagents were resuspended in DMSO at a concentration of 10 ng/nL and 100 nL of each TMT tag (1 µg) 

were applied into each nanowell following our experimental design and incubated at RT for 1h. Next, the 

labeling reaction was quenched by adding 50 nL of 2.5% (w/v) hydroxylamine and incubated at RT for 15 

min. All samples were then pooled together to microPOTS wells, acidified with 5% FA, dried out in a 

vacuum desiccator, and stored in -20 °C until analysis. 

LC-MS/MS analysis. 

A homebuilt nanoPOTS autosampler was employed to automatically perform sample collection, cleanup, 

and LC separation23. The LC separation system consisted of an in-house packed solid-phase extraction (SPE) 

column (100 µm i.d., 4 cm, packed with 5 µm, C18 packing material (300 Å pore size; Phenomenex, 

Torrance, CA, USA) and an in-house packed LC column (50 μm i.d., 25 cm-long, packed with 1.7 μm, C18 

packing material (BEH 130 Å C18 material, Waters) heated at 50 °C with a column heater (Analytical Sales 

and Services Inc., Flanders, NJ, USA).  

Dried peptide samples on chips were dissolved with Buffer A (0.1 % FA in water), then injected to the SPE 

column for 5 min with a loading buffer containing 2% acetonitrile. After washing, samples were eluted 
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and separated at 100 nL/min using gradient of Buffer B (0.1% FA in acetonitrile). All the samples were 

analyzed by an LC-MS system, which consisted of an UltiMate 3000 RSLCnano System (Thermo Fisher 

Scientific) and an Orbitrap Eclipse Tribrid MS (Thermo Fisher Scientific) with a FAIMSpro interface. 

For the LFQ analysis, a 30-minute and 100 nL/min linear gradient from 8% to 22% Buffer B (0.1% formic 

acid in acetronitrile) followed 9-minutes linear gradient from 22% to 35% mobile phase B was used. 

Peptides were ionized by applying a voltage 2400 V at the electrospray source.  

For construction of spectral library, the ionized peptides were fractionated by the FAIMSpro interface with 

each LC-MS run utilizing a discrete FAIMS compensation voltage (CV, -45, -60, or -75 V). Fractionated ions 

were collected into an ion transfer tube heated at 250 °C and ions with mass range 350-1600 m/z were 

scanned at 120,000 resolution with an ion injection time (IT) of 118 ms and an automatic gain control 

(AGC) target of 1E6. The selected precursor ions with +2 to +6 charges and >1E4 intensities were isolated 

with a window of 1.4 m/z and fragmented by a 30% level of high energy dissociation (HCD). Fragmented 

peptide ions were scanned in ion trap with maximum injection time of 86 ms and AGC target of 2E4. The 

cycle time was set to 2 sec. 

For LFQ single pixel analysis, the ionized peptides were fractionated by the FAIMSpro interface using three 

FAIMS CVs (-45, -60 and -75V) for each LC-MS analysis. Fractionated ions with mass range 350-1600 m/z 

were scanned at 120,000 resolution with an IT of 246 ms and an AGC target of 1E6. The selected precursor 

ions with +2 to +6 charges and >1E4 intensities were isolated with a window of 1.4 m/z and fragmented 

by a 30% level of HCD. Fragmented peptide ions were scanned in ion trap with maximum injection time 

of 86 ms and AGC target of 2E4. The cycle time in each CV experiment was set to 0.8 sec. 

For multiplexed labeling analysis, a 60-minutes linear gradient from 8% to 28% Buffer B, followed by 15-

min gradient to 45% at a flow rate of 100 nL/min were used. Peptides were ionized by applying voltage 
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2400 V at the electrospray source and ionized peptides were fractionated by the FAIMSpro interface using 

cycling two FAIMS CVs (-45 and -65 V).  

For TMT-MS2 analysis, fractionated ions with mass range 450-1800 m/z were scanned at 120,000 

resolution with an IT of 118 ms and an automatic gain control (AGC) target of 1E6. The selected precursor 

ions with +2 to +6 charges and >1E4 intensities were isolated with a window of 0.7 m/z and fragmented 

by a 35% level of HCD.  Fragmented peptide ions were scanned in an Orbitrap with a maximum injection 

time of 150 ms and AGC target of 5E5. The cycle time in each CV experiment was set to 1.5 sec. 

For TMT-MS3 analysis, fractionated ions with mass range 450-1800 m/z were scanned at 120,000 

resolution with an IT of 118 ms and an automatic gain control (AGC) target of 1E6. Selected precursor ions 

with +2 to +6 charges and >1E4 intensities were isolated with a window of 0.7 m/z and fragmented by a 

35% level of collision induced dissociation (CID). Fragmented peptide ions were scanned in ion trap with 

maximum injection time of 80 ms and AGC target of 1E4. For MS3 analyses, synchronized precursor 

selection (SPS) coupled with real-time search (RTS) strategy was applied. Real-time search was configured 

with a full enzyme specificity, a max variable modification of 2, a max missed cleavage of 1, and a max 

search time of 100 ms. Fixed modifications included TMT6plex on n-terminal and lysine residue (229.1629 

Da) and carbamidomethylation on cysteine residue (57.0215 Da). Oxidation on methionine (15.9949 Da) 

was set as dynamic modification. Scoring threshold was set to 1.4 Xcorr, 0.1 dCn, and 10 ppm precursor 

tolerance. After selection of 10 notches, fragmented ions were fragmented by a 45% level of HCD. The 

generated ions were scanned in Orbitrap with the range of 100-150 m/z at 60,000 resolution. The MS3 

maximum IT was 250 ms and AGC target was 1E5. The cycle time in each CV experiment was set to 1.5 

sec. 
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MS data analysis 

All spectrum raw files were processed using FragPipe (v 17.1) powered by MSFragger (v. 3.5) 66, 67 search 

engine, Philosopher (ver. 4.2.1)68  for FDR filtering and reporting, and IonQuant42 for label-free MBR and 

quantification, and TMT-Integrator for TMT-based quantification. All mass spectrum was searched against 

a UniProt human (Homo sapiens) data base (Apr2, 2022 released) containing 20,318 protein sequences, 

116 common contaminant sequences, and decoy protein sequences.  

For LFQ-MBR analysis, following search parameters were used for MS/MS spectrum search: full tryptic 

specificity up to two missed cleavage sites, carbamidomethylation (57.0214 Da) on cysteine as a fixed 

modification, and methionine oxidation (+15.9949) and protein N-terminal acetylation (42.0105 Da) as 

variable modifications. The initial precursor and fragment mass tolerances were set to 20 ppm. After mass 

calibration, MSFragger adjusted the tolerances automatically. The identification results were filtered with 

1% PSM- and protein-level FDR. For quantification, match between runs algorithm in IonQuant was 

activated with a matching RT tolerance of 0.4 min, m/z tolerance of 10 ppm, and an ion-level FDR 

threshold of 5%. The normalization was enabled, and the MaxLFQ algorithm was used to generate the 

protein-level intensities from the ion-level intensities. 

For multiplexed labeling data, following search parameters were used for MS/MS spectrum search: full 

tryptic specificity up to two missed cleavage sites, TMT6plex (229.1629 Da) on lysine residue and 

carbamidomethylation (57.0214 Da) on cysteine as fixed modifications. Methionine oxidation (15.9949 

Da), protein N-terminal acetylation (42.0105 Da), and TMT6plex (229.1629 Da) on peptide N-terminal as 

variable modifications. Other settings are the same as the above LFQ-MBR analysis. For quantification, 

TMT-Integrator was used to normalize and generate the results. The mass tolerance for TMT reporter ion 

was set to 20 ppm. The abundances were grouped at protein level and reference samples in TMT-126 

channel were used for normalization between different batches.  
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We followed general approaches in single-cell or low-input proteomics studies and kept proteins 

identified from a single unique peptides for downstream analysis41, 43, 44, 45. We provided a table 

(Supplementary Table 5-7) containing these single-peptide protein lists for each experiment and 

associated them with FragPipe output table available through MassIVE repository (MSV000091531). 

FragPipe PDV could be used to view the annotated spectra from single-peptide proteins.  

Spatial proteomics data analysis. 

Statistical analyses were performed using R (v 4.2.1) and Perseus (v 1.6.15.0)69. For the label-free outputs, 

the columns of protein intensities were extracted from the report files “combined_protein.tsv” and log2 

transformed. For the TMT outputs, protein intensities were extracted from the report files 

“abundance_protein_GN.tsv”, which contain log2 transformed and globally-normalized protein 

abundance obtained from sample/reference ratios and reference channel intensities. All the results 

shown in Figure 2 utilized log2 transformed values from the output table without any missing value 

imputation or batch effect correction. For proteome mapping and visualization in Figure 3-5, proteins 

containing >70% valid values in each tissue section (36 pixels) were considered quantifiable and kept for 

downstream analysis. For TMT data, proteins missing in at least one TMT batch were also filtered out. 

Missing values imputation based on the standard distribution of the valid values (width:0.3 and downshift: 

1.8) was performed in Perseus. For TMT datasets where each map contains four TMT plexes, we 

performed additional batch correction based on the SVA Combat algorithm70..  

All spatial omics analysis using Giotto package with default embedded parameters 53. The raw protein 

expression matrix from Fragpipe together with the corresponding spatial location were used to create a 

Giotto object. After normalization, we performed Leiden clustering and overlaid on UMAP plot. Spatially 

variable genes were detected using the “detectSpatialCorgenes” function and clustered using 

“clusterSpatialCorgenes” function in Giotto package.  
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The Reactome pathway analysis and cell-type enrichment analysis were conducted on the Enrichr tool 

(https://maayanlab.cloud/Enrichr/)71, 72. Briefly, the proteins included in each cluster were submitted to 

the Enrichr and the results of Reactome pathways and cell types were exported.  

Data availability 

The mass spectrometry raw data can be accessed on the ProteomXchange Consortium via the MassIVE 

partner repository with the data set identifier MSV000091531 and are available at 

ftp://MSV000091531@massive.ucsd.edu. (User name: MSV000091531, password: Nano4441)  
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