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Abstract

Protein language models (PLMs) have shown remarkable capabilities in various
protein function prediction tasks. However, while protein function is intricately tied
to structure, most existing PLMs do not incorporate protein structure information.
To address this issue, we introduce ProSST, a Transformer-based protein language
model that seamlessly integrates both protein sequences and structures. ProSST
incorporates a structure quantization module and a Transformer architecture with
disentangled attention. The structure quantization module translates a 3D protein
structure into a sequence of discrete tokens by first serializing the protein structure
into residue-level local structures and then embeds them into dense vector space.
These vectors are then quantized into discrete structure tokens by a pre-trained
clustering model. These tokens serve as an effective protein structure representation.
Furthermore, ProSST explicitly learns the relationship between protein residue
token sequences and structure token sequences through the sequence-structure
disentangled attention. We pre-train ProSST on millions of protein structures using
a masked language model objective, enabling it to learn comprehensive contextual
representations of proteins. To evaluate the proposed ProSST, we conduct extensive
experiments on the zero-shot mutation effect prediction and several supervised
downstream tasks, where ProSST achieves the state-of-the-art performance among
all baselines. Our code and pretrained models are publicly available ﬂ

1 Introduction

Predicting the functions of proteins is one of the most critical areas in life sciences [[1]. In recent
decades, protein sequence databases have experienced exponential growth [2], making it possible to
learn the fundamental representations of protein sequences with large-scale models in a data-driven
manner. Inspired pre-trained language models in natural language processing [3\ 4], many pre-trained
Protein Language Models (PLMs) have emerged [3} 16} [7, 18, [9]. Benefiting from remarkable protein
representation capabilities, they have become fundamental tools for bioinformatics in protein-related
tasks.

According to the central dogma [[10], the function of a protein is determined by its structure. However,
most PLMs mainly focus on modeling protein sequences, neglecting the importance of structural
information, and one significant reason for this phenomenon is the lack of structural data. Fortunately,
some excellent works, such as AlphaFold [11] and RoseTTAFold [12], are proposed, which can
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accurately predict protein structures. These works significantly expand the protein structure dataset
[L3] to millions and enable the pre-training of large-scale structure-aware PLMs. After that, the
major challenge is how to effectively integrate protein structure information into PLMs. Specifically,
existing structure-aware PLMs [14} [15] first use Foldseek [[16] to convert protein structures into
discrete structure tokens and then integrate these structural data into the Transformer architecture.
However, despite achieving promising performance on several tasks, this approach still faces two
main issues. First, Foldseek encodes the structure of a residue within a protein by considering only
the features of its previous and next residues. This representation is insufficient and may overlook
subtle differences in the local structure of proteins, such as catalytic sites or binding pockets, which
are crucial for protein function [17]]. Second, the naive Transformer architecture lacks the ability to
explicitly model the relationship between protein sequences and structure token sequences, making it
challenging to effectively leverage structural cues.

In this paper, we develop ProSST (Protein Sequence-Structure Transformer), a structure-aware
pre-trained protein language model. Specifically, ProSST mainly consists of two modules: a structure
quantization module and a Transformer with sequence-structure disentangled attention. The structure
quantization module is based on a GVP (Geometric Vector Perceptron) [18]] encoder, which can
encode a residue along with its neighborhoods in its local environment and quantize the encoding
vectors into discrete tokens. Compared to Foldseek, which only considers individual residues, this
encoder can take into account more information from the micro-environment of residue. The sequence-
structure disentangled attention module replaces the self-attention module in the Transformer model.
This can make Transformer model explicitly model the relationship between protein sequence tokens
and structure tokens, enabling it to capture more complex features of protein sequences and structures.
To enable ProSST to learn the contextual representation comprehensively, we pre-train our model
with the Masked Language Modeling (MLM) objective on a large dataset containing 18.8 million
protein structures. To summarize, our main contributions are as follows:

* We propose a protein structure quantizer, which can convert a protein structure into a
sequence of discrete tokens. These token sequences effectively represent the local structure
information of residues within a protein.

* We propose a disentangled attention mechanism to explicitly learn the relationship between
protein structure and residue, facilitating more efficient integration of structural token
sequences and amino acid sequences.

To evaluate the proposed ProSST, we conduct extensive experiments on zero-shot mutation effect
prediction and multiple supervised downstream tasks, where the proposed model achieves state-of-
the-art results among all baselines. Besides, we also provide detailed ablations to demonstrate the
effectiveness of each design in ProSST.

2 Related Work

2.1 Protein Representation Models

Based on the input modality, protein representation models can be divided into three categories:
sequence-based models, structure-based models, and structure-sequence hybrid models.

Sequence-based models. Sequence-based models treat proteins as a sequence of residue tokens,
using the Transformer model [19]] for unsupervised pre-training on extensive datasets of sequence.
According to the pre-training objective, current models can be further divided into BERT-based
models [4]], GPT-based models [3]], and span-mask based models. Specifically, BERT-style models,
including ESM-series models [5, 16} [7]], ProteinBert[9], and TAPE [20], aim to recover the masked
tokens in the training phase. The GPT-style models, such as Tranception [21]], ProGen2 [22]], and
ProtGPT?2 [23]], progressively generate the token sequences in an auto-regressive manner. Lastly,
models that use span-mask as the training objective include Ankh [24]], ProtT5 [8], and xTrimo [25].

Structure-based models. Protein structures play a dominant role in protein functionality. Therefore,
models leveraging structure information generally get more accurate predictions. Recently, various
techniques have been applied in learning protein structure representation, including CNN-based
models [26]] and GNN-based models [18 27,28 29], and the GNN-based ones have demonstrated
significant versatility in integrating protein-specific features through node or edge attributes. More-
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over, the recent advancements in protein folding models [11} 7} 30] enable the structure-based models
access to extensive datasets of protein structures. This led to a growing interest in developing PLMs
that leverage protein structure cues [[15} 14} 28].

Structure-sequence hybrid models. Hybrid models, which incorporate both sequence and structure
information of proteins, offer more effective representations of proteins. For example, the LM-
GVP[31] model employs ProtBERT-BFD [9]] embeddings as input features for the GVP [18] model,
while ESM-GearNet [32] investigates various methods of integrating ESM-1b [3]] representations
with GearNet [28]. Similarly, the recent ProtSSN [33]] model leverages ESM-2 [7] embeddings
as input for the EGNN [34]] model, resulting in notable advancements. Both ESM-IF1 [35]] and
MIF-ST [36] target inverse folding, utilizing the structure to predict corresponding protein residues,
whereas ProstT5 [[15] focuses on the transformation between residue sequences and their structure
token sequences [16] as a pre-training objective. SaProt [[14] constructs a structure-aware vocabulary
using structure tokens generated by foldseek [16]. Both SaProt and ProstT5 extensively utilize large
structure databases [[13] for their pre-training datasets. ProSST is also a hybrid structure-sequence
model. Compared to previous work, ProSST develops an advanced structure quantization method
and a better attention formulation to leverage the structure cues.

2.2 Protein Structure Quantization

The most intuitive way to represent a protein structure is using continuous features, such as coordi-
nates, dihedral angles and distance map. However, directly using these continuous features in the
pre-training may lead to overfitting [[14]. This issue arises from the mismatched representations of
the structure between the training set (derived from model predictions) and the test set (measured by
wet-lab experiments). As the bridge to eliminate this gap, structure quantization has been investigated
by a few works. These methods can be divided into two groups based on the way to generate the
discrete secondary structure, including the methods based on physical computing, such as DSSP
[37], and the methods based on deep learning, such as Foldseek [16]], which have been successfully
applied to structure-aware PLMs [14,[15]]. The structure quantization module of ProSST also relies
on learning-based approaches but provides a more detailed residue structure representation, compared
to Foldseek.

3 Method

In this section, we introduce the architecture of ProSST. ProSST mainly contains two modules:
structure quantization (Section [3.1)) module and a-transformer-based model with sequence-structure
disentangled attention. (Section [3.2).

3.1 Structure Quantization Module

The structure quantization module aims to transform a residue’s local structure in a protein into a
discrete token. Initially, the local structure is encoded into a dense vector using a pre-trained structure
encoder. Subsequently, a pre-trained k-means clustering model assigns a category label to the local
structure based on the encoded vector. Finally, the category label is assigned to the residue as the
structure token. The pipeline of structure quantization is shown in Figure T}

Structure representation. We categorize protein structures into two distinct levels: protein structure
and local structure. Protein structure denotes the complete architecture of a protein, encompassing
all its residues. The local structure focuses on specific individual residues. It describes the local
environment of a residue by centering on a specific residue and including it along with the nearest
40 residues surrounding it in three-dimensional space [[18]]. Compared to protein structure, local
structures are in finer granularity, which allows for a more accurate description of the structure of
residue. Therefore, a protein containing L residues has one protein structure and L local structures.
Despite the different levels of structure, we can use graphs to represent it. Formally, we represent
a structure using graph G = (V, E), where V and E denote the residue-level nodes and edges,
respectively. For any given node v € V/, it contains only the coordinate information of the residue,
without any type information of the residue itself. This ensures that the structure encoder is solely
focused on the structure cues. The edge set E = {e;;} includes all 4, j for which v; is one of the
forty nearest neighbors of v;, determined by the distance between their C'o atoms.
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Figure 1: The pipeline of structure quantization. (A) Training of the structure encoder. (B) Local
structure clustering and labeling. (C) Converting a protein structure to structure token sequence.

Structure encoder. Based on the above-mentioned definition of structure, we use geometric vector
perceptrons (GVP) [18] as the (local) structure encoder. In particular, the GVP can be represented
as a structure feature extraction function 7y(G) € R"*?, where [ is the number of nodes, d is the
embedding dimension, and 6 is trainable parameters. We integrate GVP with a decoder that includes
a position-wise multi-layer perceptron (MLP) to form an auto-encoder model. The entire model
is trained using a de-noising pre-training objective. In this process, we perturb C'« coordinates
with 3D Gaussian noise (Figure |I|A) and use Brownian motion on the manifold of rotation matrices,
according to RF-Diffusion [38]]. The model is then tasked with recovering the structure to its original,
noise-free state. After being trained on the C.A.T.H dataset [39] (see Appendix [A.2), we exclude
the decoder and utilize solely the mean pooled output of the encoder as the final representation of
structures. Although the structure encoder is trained on protein structures, it can effectively be applied
to local structures. Therefore, for a specified graph G, the encoding process can be described by:

r= % 22:1 mo(g;), where g, represents the features of the local structure associated with the i-th

node in the graph G, and 7y (g;) € R? is the output of the encoder for the i-th node. Here, r € R is
the mean pooled output of the encoder and the vectorized representation of the local structure.

Local structure codebook. The structure code book quantizes dense vectors representing protein
structure into discrete tokens (Figure[T]B). To build this, we employ a structure encoder to embed the
local structures of all residues from the C.A.T.H dataset (See in Appendix [A.2)) into a continuous
latent space. Then we apply the k-means algorithm to identify K centroids within this latent space,
denoted as {e}X ;. These centroids constitute the structure codebook, as shown in Figure. For any
local-structure embedding, it is quantized by the nearest vector e; within the codebook and j serving
as the structure token. In this paper, the clustering number K is also referred to as the structure
vocabulary size.

Protein serialization and quantization. In general, for a residue at position ¢ in a protein sequence,
we first build a graph G; only based on its local structure, and then use the structure encoder to embed
it into a continuous vector ;. Then we use the codebook to assign a structure token s; € {1,2, ..., K'}
to this vector as the structure token of the residue. Overall, the entire protein structure can be serialized
and quantized into a sequence of structure tokens (Figure [T[C).
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Figure 2: Model architecture of ProSST. ProSST is a Transformer-style model and the difference is
that ProSST uses disentangled attention instead of self-attention [19]].

3.2 Sequence-Structure Disentangled Attention

Inspired by DeBerta [40], we use an expanded form of disentangled attention to combine the attention
of residual sequences and structure sequences as well as relative positions. Specifically, for a residue
at position ¢ in a protein sequence, it can be represented by three items: R; denotes its residue token
hidden state, S; represents the embedding of residue-level local structure, and P;; is the embedding
of relative position with the token at position j. The calculation of the cross attention A, ; between
residue ¢ and residue j can be decomposed into nine components by:

Ai,j = {Ri;Si7Pi|j} X {Rj,Sj,Pj”}T
=RR/ + R;S] + R;P)|

jli
(1)
+ SR} +8;S] +8,P),
T T T
+Pi|jRj +Pj‘i5'j +Pj|in\i-

As formulated in Equation [T} the attention weight of a residue pair can be calculated by separate
matrices, including residue tokens, structure tokens, and relative positions. These matrices are
utilized for various interactions such as residue-to-residue, residue-to-structure, residue-to-position,
structure-to-residue, structure-to-structure, structure-to-position, position-to-residue, position-to-
structure, and position-to-position. Since our model concentrates on learning contextual embeddings

for residues, the terms structure-to-structure (SiSjT), structure-to-position (SinT‘i), position-to-
structure (Pj|iSjT), and position-to-position (Pj‘inT‘i) do not provide relevant information about
residues and thus do not contribute significantly. Consequently, these terms are removed from our
implementation of the attention weight calculation. As shown in Figure[2] our sequence-structure

disentangled attention mechanism includes 5 types of attention.
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In the following part, we use single-head attention as an example to demonstrate the operation of
sequence-structure disentangled attention. To begin, we define the relative position of the ¢-th to the
j-th residue, denoted as 6(i, j):

0 ifi —j < —Lnax
6(i,7) =4 2k —1 ifi—j > Lyas 2)
1 —J+ Limar otherwise

where, L,,q, represents the maximum relative distance we consider, which is set to 1024 in the
implementation. Similar to standard self-attention operation [19]], the computation of query, key for
structure, residue and relative position, and the value for residue is as follows:

Q" =RWY! K'=RWF V'=RW?

Q' =SW! K°=8SwWk 3)
k

Q" =PW! K’=SWF;

and the the attention score A;, 4 from residue i to residue j can be calculated as follows:

- r T r s\ T T P T s T D AT T
Ai; = Qi(Kj) + Qi(Kj) + QKj,;, + Kj;Q)) + KjQj;, “4)
N——r N——r N——r N———
(a) residue-to-residue (b) residue-to-structure (c) residue-to-position (d) structure-to-residue (e) position-to-residue

where @ represents the i-th row of the matrix Q", and K denotes the j-th row of K". Q; and
K are the i-th and j-th rows of Q* and K*, respectively. The term K (i, Tefers to the row in K P
indexed by the relative distance 6(z, j), and Q’g i) refers to the row in QP indexed by the relative

distance 6(7,4). To normalize the attention scores, a scaling factor of \/% is applied to A. This
scaling is crucial for ensuring the stability of model training [40], particularly when dealing with

large-scale language models. All the Aij form the attention matrix, and the final output residue
hidden state is R,: .
A

R, = softmax( W, 5)

2

which is used as the input for the hidden state of the next layer (see Appendix [I] for the algorithm of
disentangled attention).

3.3 Pre-Training Objective

ProSST is pre-trained with the structure-conditioned masked language modeling. In this approach,
each input sequence « is noised by substituting a fraction of the residues with a special mask token
or other residues. The objective of ProSST is to predict the original tokens that have been noise in the
input sequence, utilizing both the corrupted sequence and its structure token sequence s as context:

Larpy = BaoxEpr Y —10g p(ai |2 /m, 5). Q)
ieM

We randomly select 15% indices from the set M for nosing and computing loss for back-propagation.
At each selected index ¢, there is an 80% chance of substituting the residue with a mask token, a 10%
chance of replacing it with a random residue token, and the remaining residues are unchanged. The
training objective is to minimize the negative log-likelihood for each noised residue x;, based on
the partially noised sequence @ /M and the un-noised structure tokens, serving as contextual cues.
Therefore, to accurately predict the noised tokens, this objective enables the model not only to learn
the dependencies between residues but also the relationship between residues and structures. The
details of pre-training dataset and hyper-parameter configuration can be found in Appendix [A.2}

4 Experiments

In this section, we comprehensively evaluate the representation ability of ProSST in several bench-
marks, covering zero-shot mutant effective prediction tasks (Section and various supervised
function prediction tasks (Section[4.2). Additionally, we also provide ablation studies and discussions
to further show the effectiveness of the detailed designs in our model (Section[4.3).
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ProteinGYM ProteinG YM-Stability
Model Model Type psT NDCG1T Top-recallT ps1 NDCGT Top-recall T
EVE [44] 0.439 0.781 0.230 0.491 0.838 0.283
GEMME [42] Evolution-based  0.457 0.777 0.211 0.519 0.828 0.240
MSA-Transformer [43] 0.434 0.779 0.217 0.421 0.835 0.279
Tranception [21] 0.434 0.779 0.220 0.476 0.824 0.279
ESM-1v [6] Sequence-based 0.374 0.732 0.211 0.437 0.791 0.265
ESM-2 [7] q 0.414 0.747 0.217 0.523 0.834 0.300
ProSST (-structure) 0.392 0.741 0.184 0.430 0.750 0.191
ESM-TF [35] Tnverse-foldin 0.422 0.748 0.223 0.624 0.864 0.344
MIF-ST [36] € 0401 0.765 0.226 0.485 0.839 0.300
Trancepiton-EVE [45] Ensemble models 0.457 0.786 0.230 0.501 0.839 0.279
ESM-1v* [6] ) ° 0407 0.749 0.211 0.477 0.811 0.245
SaProt-650M [14] Sequence-Structure models 0.458 0.768 0.233 0.592 0.861 0.331
ProSST °0.504 0.777 0.239 0.663 0.850 0.348

Table 1: Comparison of zero-shot mutation prediction performance between ProSST and other
models. p; is the Spearman rank correlation.

DeepLoc Metal Ion Binding Thermostability GO-MF GO-BP GO-CC

Model #Params Acc% 1 Acc% 1 ps T F1-Max 1T FIl-Max 1 FI-Max 1
ESM-2 650M 91.96 71.56 0.680 0.668 0.345 0411
ESM-1b 650M 92.83 73.57 0.708 0.661 0.320 0.392
MIF-ST 643M 91.76 75.08 0.694 0.627 0.239 0.248
GearNet 42M 89.18 71.26 0.571 0.650 0.354 0.404
SaProt-35M 35M 91.96 71.56 0.680 0.668 0.345 0411
SaProt-650M 650M 93.55 75.75 0.724 0.678 0.356 0414
ProSST 110M 94.68 76.67 0.724 0.672 0.387 0.501

Table 2: Comparison of supervised fine-tuning on downstream tasks. ps denotes the Spearman
correlation coefficient.

4.1 Zero-Shot Mutant Effect Prediction

Datasets. To evaluate the effectiveness of ProSST in zero-shot mutant effect prediction, we conduct
experiments on ProteinGym [41] and utilize AlphaFold2 [11] to generate the structures of wild-type
sequences. We also evaluate ProSST on ProteinGym-Stablility, a subset of ProteinGym to assess the
thermostability of proteins. See Appendix for the details of the dataset.

Baselines. We compare ProSST with the current state-of-the-art models, including sequence-based
models [6, [7, 21]], structure-sequence model [14], inverse folding models [35| [36]], evolutionary
models [42, 43]44], and ensemble models [6, |45]].

Results. Table|[T]shows the performance of zero-shot mutant effect prediction on ProteinGYM. Based
on the results, we draw several noteworthy conclusions:

* ProSST outperforms all baselines on zero-shot mutant effect predictions of ProteinGYM.
Besides, it achieves the best performance in predicting stability, aligning with the previous
findings that models incorporating structure information typically perform better in stability
predictions [41].

* The degraded version of ProSST (without structure) gets results similar to other sequence-
based models. This demonstrates that the performance improvement of our model stems

from the efficient modeling of structure information, rather than other factors such as more
powerful backbones.

4.2 Supervised Fine-Tuning Tasks

Downstream tasks. For supervised learning, we choose four protein downstream tasks, including
thermostability prediction, Metal Ion Binding prediction, protein localization prediction (DeepLoc)
and GO annotations prediction (three settings including MF, BO, and CC). More details of the tasks,
datasets, and metrics can be found in Appendix[A.2]

Baselines. We compared ProSST with other PLMs including ESM-2[7l], ESM-1b [5]], and the
sequence-structure model SaProt [14] (two parameter versions, 35M, 650M), MIF-ST [36], as well
as the protein structure representation model GearNet [28].
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DeepLoc ProteinGYM Pretraining

Acc% 1 psT NDCG?T Top-Recall T Perplexity |
ProSST (K=4096) 94.16 0.498 0.773 0.233 8.880
ProSST(K=2048) 94.68 0.504 0.777 0.239 9.033
ProSST (K=1024) 93.41 0.485 0.760 0.231 9.333
ProSST (K=512) 93.71 0.471 0.759 0.223 9.577
ProSST (K=128) 93.18 0.469 0.753 0.228 10.021
ProSST (K=20) 93.18 0.438 0.744 0.210 10.719
ProSST (K=0) 89.65 0.392 0.741 0.184 12.190
ProSST (Foldseek) 93.24 0.468 0.759 0.228 10.049
ProSST (DSSP) 93.21 0.439 0.760 0.204 10.009

Table 3: Ablation studies on quantized structure. We first show the performance of our models with
K centroids of local structures. ProSST (K=0) refers to the model without structure token sequence.
We also replace the proposed quantization method with existing Foldseek and DSSP, and show the
results of these variants.

DeepLoc ProteinGYM Pretraining

Acc% T psT NDCGT Top-Recall{ Perplexity |
ProSST 94.68 0.502 0.793 0.252 9.033
ProSST (- P2R) 91.46 0.478 0.778 0.227 9.173
ProSST (- R2P) 92.46 0.466 0.772 0.216 9.410
ProSST (- R2S) 92.19 0.438 0.766 0.208 12.142
ProSST (- S2R) 91.38 0.475 0.779 0.226 9.355
ProSST (- PE) 86.06 0.095 0.634 0.126 13.885
ProSST (self-attention) 90.42 0.401 0.728 0.189 12.346

Table 4: Ablation studies on disentangled attention. The term "-S2R" denotes the removal of structure-
to-residue in our attention formulation, similar to other terms, and "- PE" denotes the removal of
positional encoding. ProSST (self-attention) refers to the model trained with standard attention (with
structure cues).

Results. The results of the supervised fine-tuning tasks are shown in Table[d.2] and we can get the
following conclusions:

* ProSST gets the best results among all models with 5 firsts and 1 second in all 6 settings. For
the tasks (settings) of DeepLoc, Metal Ion Binding, GO-BP, and GO-CC, ProSST largely
surpasses other methods, and SaProt-650M gets comparable (or slightly better) results for
thermostability and GO-MF with ProSST, at the price of about 6 x model size.

* The sequence-structure models, SaProt and ProSST, show better results than other counter-
parts, which suggests the importance of the structure cues in protein modeling. Furthermore,
ProSST is more capable of integrating sequence and structure information of proteins than
SaProt, which confirms the effectiveness of our designs.

Combined with the results in Section 4.1} ProSST exhibits powerful ability in multiple settings.

4.3 Ablation Study

In this section, we provide additional ablation studies and discussions to show the necessity and effec-
tiveness of the detailed designs in ProSST. Specifically, we use zero-shot mutant effect prediction on
ProteinGYM, supervised downstream task DeepLoc, and the perplexity in the pre-training validation
set to conduct corresponding experiments.

Ablations on quantized structure. The ablation results of quantized structure are shown in Table [3]
and Figure[3(a)] and we can get the following findings:

* We can find, as the increases of K (the size of local structure vocabulary), the performance
of ProSST shows an upward trend on all metrics, and most metrics achieve the best results
with K = 2048. Based on that, we set K = 2048 as our default setting.
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Figure 3: Perplexity curves of ProSST under different settings. We ablate the components of quantized
structure and disentangled attention, and show their perplexity curves on the validation set.

* As the increase of K, the convergence of ProSST improves progressively (Figure 3(a)),
which suggests incorporating structure cues can improve the representation capabilities of
models.

* Based on the same network architecture, the proposed structure quantization method (with
an appropriate hyper-parameter K) performs better than Foldseek [16] and DSSP [37],
which shows the effectiveness of our design.

* ProSST (Foldseek), ProSST (DSSP), and all ProSST (K>0) models significantly surpass
ProSST (K=0) in all metrics, which confirms the importance of the structure cues again.

Ablations on disentangled attention. Here we show detailed ablations and comparisons of disentan-
gled attention in Table[d] and Figure[3(b)] and we can get the following observations:

* All items in Equation [ are necessary to our attention formulation. Also note that ‘P2R’
attention has the least impact on model capacity, with the Perplexity slightly increasing
from 9.033 to 9.173, suggesting that positional attention to amino acids is relatively less
critical than other items. Conversely, removing ‘R2S’ item results in a significant increase
in Perplexity from 9.033 to 12.142, underscoring the important role of structure information
in enhancing the model’s representation capability.

» Compared with standard self-attention, our attention formulation gets better results for all
metrics, indicating that explicitly modeling structure cues is crucial for integrating such
information. Besides, positional encoding is also necessary in our design.

5 Conclusion and Limitations

This paper introduces ProSST, a protein sequence-structure transformer for PLM. ProSST includes
two key techniques, protein structure quantization module and sequence-structure disentangled
attention. The structure quantization module contains an encoder and a k-means clustering model.
The encoder is trained with a denoising objective and is utilized for encoding protein structures.
Leveraging this encoder, we embed the local structures of each residue within every protein in the
C.A.T.H dataset into a continuous latent space. Then we utilize k-means clustering algorithm to
obtain K (default setting is 2048) centroids. These centroids are then utilized to discretize the local
structures of residues based on the index of the nearest centroid of its structure embedding vectors.
A protein structure can be transformed into a sequence of discrete numbers (or referred to tokens)
and each token representing the corresponding local structure of residue. The sequence-structure
attention enhances standard self-attention by not only considering self-attention residues but also
incorporating attention between residues and structures, and vice versa. This enables the model
to learn the relationships between residues and structures, thereby acquiring improved adequate
contextual representations of residues. Furthermore, we pre-train ProSST with 18.8 million protein
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structures using a MLM objective. Experimental results show that ProSST can outperform existing
models in ProteinGYM benchmark and other supervised learning tasks. Despite of this, there are
some limitations of ProSST. For example, the local structure construction and encoding requires
heavy computations. In the future work, we aim to speed up the protein structure quantization process.
Additionally, we plan to enhance ProSST by training it with larger structure datasets and expanding
its parameter, which may further improve its performance.
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A Appendix

A.1 Zero-Shot Scoring

Previous studies have demonstrated that PLMs, when trained on extensive and varied protein sequence
databases, are capable of predicting experimental measurements of protein mutants function without
further supervision. For those PLMs that are trained with masked language modeling objective, the
calculation of mutation scores can be formalized as follows:

ZlogP(:ci = f;lx) —logP(x; = w;|x) )
ieF
Here F' is a mutant with multi-point the mutation, and F' = {(i, F';,w;)|i = 1,2, ..., |F|} is a set

of triplets, where ¢ € N represents the position of a point mutation, F'; is the residue after the point
mutation, and w; is the original residue of the point mutation. z is the sequence of amino acids of the
wild type. We slightly modify the formula above to adapt to ProSST, where the structure sequence is
an additional condition to score mutants:

Y logP(x; = Fi|w, s) — logP(z; = w;|z, s) ®)
1€F

Here, s is the structure token sequence of the wild type.

A.2 Details of the Datasets and Metrics

Dataset for pre-training. The pre-training data is collected from AlphaFoldDB [13]], which contains
more than 214 million structures predicted by AlphaFold [11]. We downloaded the 90% reduced
version, containing 18.8 million structures)’l From this collection, we randomly select 100,000
structures for validation, enabling us to monitor the perplexity in the training phase.

Dataset for training structure encoder. The dataset used for training the structure encoder originates
from CATH43-S40[*| This dataset is manually annotated and comprises protein crystal structural
domains that have been deduplicated for sequence similarity by 40%. The original dataset contains
31,885 structures. After removing structural domains missing atoms such as C'« and N, the dataset
is reduced to 31,270 entries. From this, 200 structures were randomly selected to serve as a validation
set. The auto-encoder model was then trained using the configuration that yielded the lowest loss on
this validation set.

Dataset for training structure codebook. The dataset for training the structure codebook consists
of local structures extracted from CATH43-S40. Given a protein structure, slide along the residue
sequence to select a segment with a chosen residue as the anchor. Connect up to 40 residues within 10
A to form a star-shaped graph. For pairwise amino acid pairs in this graph, if the Euclidean distance
is less than 10 A, a link will be assigned to them. This process yields a number of protein local
structures equal to the length of the protein multiplied by the total number of proteins, resulting in
4,735,677 local structures from the protein structures in CATH43-S40. These sub-structures are fed
into a structural encoder to obtain embeddings. By setting various quantities for K, different structure
codebooks are obtained using the k-means clustering algorithm.

Dataset and metrics for zero-shot mutant effect prediction.

We utilize the ProteinGYM benchmark [41]] to assess the zero-shot mutant effect prediction capabili-
ties of ProSST. ProteinGYM offers a comprehensive benchmarks specifically collected for predicting
protein fitness. It contains a wide range of deep mutational scanning assays with millions of mutated
sequences. ProSST is evaluated using the most extensively utilized datasets for substitution mutations,
which include 217 experimental assays. Each assay incorporates both the sequence and structure of
the protein, with a particular emphasis on 66 datasets that focus on thermo-stability. The evaluation

3https://cluster.foldseek.com/
4http://download,cathdb.info/cath/releases/all-releases/v4_3_O/non-redundant-data-sets/
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metrics employed are the Spearman coefficient, Top-recall, and NDCG, where higher values signify
superior model performance. These metrics are computed using scriptsE]provided by ProteinGYM.

Datasets and metrics for downstream tasks.

* Thermostability. The task is to predict the thermostability values of proteins using the
"Human-cell" divisions from the Thermostability task in FLIP [46]. For this regression
task, the Spearman correlation coefficient is utilized as the evaluation metric to evaluate the
prediction results.

* DeepLoc (Protein Sub-cellular Localization). The task is to output a probability distribution
across two sub-cellular localization categories for a protein. This is a binary classification
task, and we utilize accuracy as the metric to evaluate the predictions. This dataset was
introduced by DeepLoc [47] and we use the original data split.

* Metal Ion Binding. The task is to predict whether there exist metal ion-binding sites within
a protein. This is also a binary classification task, and we utilize accuracy as the metric to
evaluate the predictions. This dataset was introduced by TAPE [20], and we use the original
data split.

* GO annotations prediction. This task is to predict Gene Ontology terms to evaluate the
model’s ability to predict protein functions. This task was introduced by DeepFRI [26],
and we use three types of GO labels: Molecular Function (MF), Biological Process (BP),
and Cellular Component (CC). This is a multi-label classification task, and we evaluate the
model using the Max F1-Score.

A.3 Details of Implementations

Structure encoder. We describe a structure with the graph G = (V', E), adopting the characteriza-
tions of V' and FE as outlined in the GVP framework [18]], excluding the one-hot representation of
residue. The dimensions for node and edge representations are set at 256 and 64, respectively, with
the encoder comprising six layers. For optimization, we employ the Adam optimizer in a mini-batch
gradient descent approach. To manage computational load, batches are formed by grouping structures
of similar sizes, with each batch containing no more than 3000 nodes. The learning rate is set to
10~*. The dropout probability is set to 10~*. And The number of graph layers is set at 6.

Pre-training. All ProSST models is trained on a DGX-A800 GPU (8x80G) server in BF16 precision
for about a month. The model has 12 transformer layers, 12 attention heads, and 768 embedding
dims with 3172 feed-forward embedding dimensions with the GELU activation function. We train
with 4096 tokens per mini-batch for 500,000 steps. We use AdamW [48]] as our optimizer with 3y
and f9 set to 0.9 and 0.999, and a weight decay value of 0.001. We warm up the learning rate from
0 to 0.0002 over the first 2000 steps, then decay it by a cosine schedule to the 0. We use a dropout
rate of 0.1 and clip gradients using a clipping value of 1.0. For the tokenization of the protein data,
we use the residue-level tokenizer which is adopted in several PLMs [, (7, 16]]. To make the structure
sequence the same length as the amino acid sequence, we also added special [SOS], [EOS], and
[PAD] token for the structure sequences.

Fine-tuning. To ensure fair comparisons, we fine-tuned ProSST using a fixed set of hyper-parameters.
We use for the Adam optimizer with 3; set to 0.9, 82 to 0.98, and applied an L2 weight decay of
0.001. The batch size was maintained at 64 (If 64 causes the GPU memory to explode, we will reduce
the batch size and then use gradient accumulation to achieve the same batch size.) and the learning
rate was set at 0.00003, except for Go annotation prediction, where it was adjusted to 0.00001.
We fine-tuned all model parameters for 200 epochs, and we choose the best checkpoints based on
validation set performance. Following SaProt [14ﬂ we downloaded all protein structures identified
by Uniprot IDs from AFDB [13]], and any proteins not found in AFDB were excluded.

A.4 Sequence-Structure Disentangled Attention Algorithm

Here we detail the algorithm for structure-sequence disentangled attention in Algorithm [I]

Shttps://github.com/OATML-Markslab/ProteinGym/blob/main/scripts/
Shttps://github.com/westlake-repl/SaProt
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Algorithm 1 Sequence-Structure Disentangled Attention Algorithm

Require: : Residue hidden state R, Local structure embedding S, relative distance embedding P,
hidden state dimension d
I Q"= RW{ K" = RW} V' = RW! Q° = SW! K* = SW: Q" = PW! K’ =

Nai=0

Apr=Q, K Ny Nj+1

Apos =Q, K] Ny Ny+1
ASQR:QSKI,NA(*NAﬁLl
Apop=Q,K, ,Na+ Ny+1
Apop=Q,K, Ns+ Ns+1

A = Apror + Apas + Asor + Arap + Apar
R, = softmax(¢)vr

i v N AX d .
return Hidden state of residues R,

R A A A S o

_
e
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