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Abstract

Gene-gene interactions are crucial to the control of sub-
cellular processes but our understanding of their stochastic
dynamics is hindered by the lack of simulation methods that can
accurately and efficiently predict how the distributions of gene
product numbers for each gene vary across parameter space. To
overcome these difficulties, here we present Holimap (high-order
linear-mapping approximation), an approach that approximates
the protein or mRNA number distributions of a complex gene
regulatory network by the distributions of a much simpler
reaction system. We demonstrate Holimap’s computational
advantages over conventional methods by applying it to
predict the stochastic time-dependent dynamics of various
gene networks, including transcriptional networks ranging from
simple autoregulatory loops to complex randomly connected
networks, post-transcriptional networks, and post-translational
networks. Holimap is ideally suited to study how the intricate
network of gene-gene interactions results in precise coordination
and control of gene expression.

Introduction

Genetic regulation occurs through intricate interactions
between a number of genes [1-4]. A gene “X” may express
a protein which acts as a transcription factor (TF), promoting
or inhibiting the RNA polymerase assembly on another target
gene “Y” (or on itself) and thus regulating the extent that the
latter is expressed [5]. These gene-gene interactions can be
simply visualised as a directed graph with the genes being the
nodes (vertices) and the directed edges (links) representing the
interactions [6, 7]. Networks inferred from gene expression
data, commonly called gene regulatory networks [8], have
been reconstructed by several methods [9—13]. The complex
connectivity of these networks makes intuitive understanding
of their dynamics challenging. Consequently, the construction,
mathematical analysis, and simulation of models of gene
regulatory networks are indispensable tools in a quantitative
biologist’s arsenal.

Several formalisms have been employed to predict gene
regulatory network dynamics, including Boolean networks,
ordinary differential equations (ODEs), and chemical master
equations (CMEs) — for reviews covering these approaches
and more, please see Refs. [14, 15]. These approaches have

various advantages and disadvantages. In Boolean networks, the
expression of each gene is tracked by a binary variable and hence
large networks can be examined in a computationally efficient
way. A more refined description is provided by the use of ODEs,
where the time-dependent concentrations of RNAs, proteins, and
other molecules are predicted as a function of the rate constants
of the reactions in the network [16, 17]. An even more realistic
description makes use of the CME approach where one predicts
not only the mean expression levels of various genes, but also the
distributions of the discrete numbers of mRNAs and/or proteins
measured across a population of cells [18]. This stochasticity
has various sources (biological intrinsic and extrinsic noise, and
technical noise introduced by experimental protocols), all of
which lead to the large differences in gene expression observed
from one cell to another [19-21].

Unfortunately, with an increasing level of sophistication
and predictive power, simulations also rapidly become
computationally expensive. Unravelling the stochastic dynamics
of gene networks requires solving a set of coupled CMEs for
the probability of the system being in each possible state. Since
the number of states of a gene network is typically infinite,
direct solution of these equations is impossible. The finite-state
projection algorithm (FSP) [22] truncates the infinite state space
to a finite one; this renders numerical solutions possible because
we only need to solve a finite-dimensional CME. However, the
immense number of states limits their applications to very small
networks with one or two interacting genes. For larger networks
with multiple interacting genes, Monte Carlo simulations based
on the stochastic simulation algorithm (SSA) [23] become more
practical. Specifically, given the current state of the system, the
SSA generates two random numbers to predict the time when
the next reaction event occurs and which particular reaction
event will occur. The output is a number of statistically correct
trajectories (molecule number versus time data), one for each
cell, from which the copy number distributions of all biochemical
species can be calculated. However, the issue remains that a large
sampling size is typically required to obtain smooth distributions
and hence the computational time can still be very considerable.
For an introduction to simulation methods in stochastic biology,
we refer the reader to Refs. [24-26].

In this paper, we overcome the difficulties of conventional
stochastic simulation methods for gene networks by devising
a new efficient approach — the high-order linear-mapping
approximation (Holimap). The basic idea is to map the
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Fig. 1. Illustration of Holimap and its advantages over the SSA. Holimap decouples gene-gene interactions in a nonlinear regulatory network
and transforms it into a linear network with multiple effective parameters, some of which may be time-dependent. The time evolution of protein
number distributions (for all genes) of the nonlinear network can be approximately predicted by solving the dynamics of the effective linear
network using, e.g., FSP (the lattices in the lower row indicate that FSP truncates an infinite state space into a finite one and then solves the
finite-dimensional CME). Compared with the conventional Monte Carlo approach (the SSA, whose two main stochastic steps are illustrated by
dice), Holimap not only significantly reduces the CPU time, but it also yields an accurate, noise-free prediction of the protein number distributions.

dynamics of a complex gene network with second or higher-order
interactions (a system with nonlinear propensities and hence a
nonlinear network) to the dynamics of a much simpler system
where all reactions are first-order (a linear network). The reaction
rates of this system are generally time-dependent and complex
functions of the reaction rates of the original gene network and
they are found by conditional moment-matching. The linear
network has a much smaller state space than the nonlinear
network which means that now simulation using FSP becomes
feasible, leading to smooth distributions of protein numbers in a
fraction of the time taken by SSA simulations. For an illustration
of Holimap see Fig. 1.

The paper is structured as follows. The Holimap method is
introduced by means of a simple autoregulatory feedback loop
example where we show step-by-step how the approximation is
constructed when second or higher-order interactions are only
between a protein and a gene. The method is then extended to
show the application to more complex networks with multiple
protein-gene interactions and also to networks with gene product
interactions such as those with RNA-RNA, RNA-protein, and
protein-protein high-order reactions. By comparison with the
SSA or FSP, we show that independent of the type of interactions
in a gene network, Holimap provides highly accurate time-
dependent distributions of protein or mRNA numbers over large
swathes of parameter space including those regions where the
system displays oscillatory or multistable dynamics. Finally we
show that the computation time of Holimap can be significantly
reduced while maintaining its accuracy by devising a hybrid
method which combines both Holimap and the SSA.

Results

Fundamental principles of Holimap illustrated by an
autoregulation example

Consider a simple autoregulatory feedback loop [27, 28],
whereby protein expressed from a gene regulates its own
transcription (Fig. 2(a)). Feedback is mediated by cooperative
binding of h protein copies to the gene [29-32]. In agreement
with experiments [33], protein synthesis is assumed to occur in
bursts of random size k£ sampled from a geometric distribution
with parameter p, i.e. P(k = n) = p"(1 — p). Here oy, is the
binding rate of protein to the gene; o, is the unbinding rate; p;
and p,, are the burst frequencies of protein, i.e. the frequencies
with which bursts are produced, when gene is in the bound and
unbound states, respectively; d is the rate of protein degradation
and dilution (due to cell division). The reaction system describes
a positive feedback loop when p;, > p,, (since in the case, binding
of a protein increases its own expression) and describes a negative
feedback loop when p, < p, (binding of a protein decreases its
own expression).

Let p; , denote the probability of having n protein copies
in an individual cell when the gene is in state ¢+ with ¢ = 0,1
corresponding to the unbound and bound states, respectively. To
proceed, let g; = >~ pi.n be the probability of observing the
genein state i and let jt, ; = > oo g n(n—1)-- (n—m+1)p; ,,
be the mth factorial moment of protein numbers when the gene
is in this state. For simplicity, we first focus on the case of non-
cooperative binding (h = 1). From the CME, it is straightforward
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Fig. 2. Holimaps for autoregulatory gene networks in steady-state conditions. (a) Stochastic model of an autoregulatory feedback loop, which
includes bursty protein synthesis, protein decay, cooperative binding of protein to the gene, and unbinding of protein. (b) The LMA maps the
nonlinear network to a linear one with effective parameter 63. The high-order reactions G + hP = G™ in the former are replaced by the first-order
reactions G = G™ in the latter. (¢) The 2-HM maps the nonlinear network to a linear one with effective parameters &,, and &3. (d) The 4-HM
maps the nonlinear network to a linear one with effective parameters &, s, pu, and pp. (€) Heat plot of the HD for the LMA as a function of the
protein burst frequencies p,, and p,. Here the HD for the LMA represents the Hellinger distance between the real steady-state protein distribution
computed using FSP applied to the nonlinear system and the approximate protein distribution computed using the LMA. (f) Heat plots of the HDs
for the LMA and Holimaps as functions of the unbinding rate o, and binding rate o;, (normalized by the decay rate d) when p > p,,. The red
curves enclose the true bimodal region, i.e. the parameter region in which the protein number has a bimodal distribution, as predicted by FSP;
the orange curves enclose the bimodal region predicted by the approximation method. The vertical white dashed line demarcates the region of
oy > d, where the linear network given by the LMA can never exhibit bimodality, from the region of o, < d where it can. (g) Comparison of the
steady-state protein distributions computed using FSP, LMA, 2-HM, and 4-HM in different regimes of gene state switching. (h) The maximum HD
as a function of the cooperativity h for the LMA and Holimaps. Here the maximum HD is computed when o, and o, vary over large ranges, while
other parameters remain fixed. See Supplementary Note 1 for the technical details of this figure.

to obtain the following time evolution equations for the moments: where g1 = 1 — go and B = (k) = p/(1 — p) is the mean
. protein burst size, i.e. the mean number of protein molecules
go = 0yg91 — Opl1,0, . . .
i produced in a single burst. For clarity, we have suppressed the
f,0 = puBgo —dpio +ou(pn +91) = ob(p2,0 + Ha,0), explicit time-dependence of all moments. Note that this system of
fi1,1 = ppBg1 — dpi1 — ouptr,n + oppi2.0, (1) equations is not closed, i.e. the equation for a moment of a certain
f12.0 = 2puB(p1.0 + Bgo) — 2dpa.o order depends on moments of higher orders, and hence an exact

solution is generally impossible. This difficulty stems from the

o 2 — 0 2 ,
oz +2im ) (13,0 + 2412,0) nonlinear dependence on molecule numbers of the bimolecular

fio1 = 2ppB(p1,1 + Bg1) — 2dpe 1 — oupie1 + obiiso-
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propensity modelling protein-gene interactions [34].

In contrast, a linear gene network (one composed of only
first-order reactions, i.e. the propensity of each reaction has
a linear dependence on molecule numbers) is much easier to
solve both analytically and numerically than a gene network with
nonlinear propensities; for example, the moment equations are
closed and thus can be solved exactly in this case. A basic idea of
the linear-mapping approximation (LMA) developed in Ref. [35]
is to transform a complex nonlinear network into a linear one by
replacing all second or higher-order reactions between proteins
and genes by effective first-order reactions. Specifically, for the
network in Fig. 2(a), we replace the reactions G + hP = G*
by G = G*. The LMA maps the nonlinear network to the linear
one shown in Fig. 2(b), where the binding rate o, for the former
is replaced by the effective gene switching rate &, for the latter,
while the other parameters remain unchanged. In the LMA, &,
is chosen to be o, multiplied by the conditional mean of protein
numbers in the unbound gene state, i.e.

&y = ay(nfi = 0) = ZELO, @)
90

where go and (11 o can be calculated by a natural moment-closure
method (Methods) [35]. There are two approximations involved
in the LMA: (i) in reality, the effective parameter 6} should be
stochastic rather than deterministic since it is proportional to
the instantaneous protein number in the unbound state; (ii) any
moment-closure method inevitably leads to some errors [36].

Next we propose a new method — Holimap, which we will
show to perform much better than the LMA. There are two types
of Holimaps. The first type is the 2-parameter Holimap (2-HM)
which transforms the nonlinear gene network into the linear one
illustrated in Fig. 2(c), where both the binding and unbinding
rates o}, and o, for the former are replaced by the effective gene
switching rates 73 and G, for the latter. The remaining question
is how to determine &, and &, so that the solution of the linear
network accurately approximates that of the nonlinear one. For
the linear network, the evolution of moments is governed by

9o = 0ug1 — b9o,

fi1,0 = puBgo — dp10 + Gupir,1 — Gppi1,0,

1 = ppBgr —dpi 1 — Ouptr,1 + G0, (3)
fi2,0 = 2puB(p1,0 + Bgo) — 2dpa,o + Gupta,1 — Gbhi2,0,
fro1 =2ppB (11 + Bg1) — 2dpa — Guptan + Gplinp-

The effective rates 0 and 7, are chosen so that the two systems
have the same zeroth and first-order moment equations (for the
latter, we mean the first-order moment when the gene is in the
bound state). Matching the first and third identities in Eqgs. (1)
and (3), we find that 6 and &,, should satisfy

Oug1l — 0pG0 = Oy g1 — Obfh1,05

Oulhl,1 — Opli1,0 = Oyufb1,1 — ObM2,0-

“

The remaining question is how to use these equations to obtain
formulae for the effective rates. This can be done as follows: we
first solve for 6, and o, using Eq. (4) and then substitute these
into Eq. (3) to obtain a set of closed moment equations. These
equations can be solved for the values of all zeroth, first, and

second-order moments, i.e. g;, 1,4, and o ;. Finally substituting
these into Eq. (4) gives the values of the effective parameters oy
and &, for the linear network. See Supplementary Note 2 for a
more detailed explanation of the Holimap algorithm.

In steady state, the values of &, and &, are constants
independent of time, and hence we can use the steady-state
protein distribution of the linear network to approximate that of
the nonlinear one — this can be computed analytically [37] or
using FSP. When the system has not reached steady state, the
values of 73, and &, depend on time ¢. In this case, we can use the
time evolution of the linear network with time-dependent rates
to predict that of the nonlinear one — while analytical solutions
are not generally available in this case, the distributions can be
efficiently computed using FSP.

In some regions of parameter space, the 2-HM may still not
be accurate enough. To solve this problem, we devise a second
type of Holimap — the 4-parameter Holimap (4-HM), which
transforms the nonlinear network into the linear one illustrated
in Fig. 2(d). Here the binding rate o}, unbinding rate o,,, and the
protein burst frequencies p, and p,, for the former are replaced by
four effective parameters oy, 04, Pb, and p,, for the latter, which
can be determined by matching the moment equations for the two
networks (Methods). Note that while for the 2-HM, we matched
only the zeroth and first-order moments, for the 4-HM, we match
these and also the second-order moments. The 2-HM and 4-HM
will be collectively referred to as Holimaps in what follows.

Thus far, we have only considered the case of h = 1. For the
case of cooperative binding (h > 2), the Holimap approximation
procedure can be similarly performed, except that higher-order
moment equations need to be solved (Supplementary Note 2) —
the algorithm for finding the effective parameters requires the
solution of (h + 1)-order moment equations. For example, when
h = 2, third-order moment equations need to be solved and the
effective parameters depend on the values of zeroth, first, second,
and third-order moments. We emphasize that the computational
cost of Holimap is mainly determined by the number of moment
equations, L, to be solved. For autoregulatory loops, L = 1+ 2h
for the LMA and L = 3 + 2h for Holimap. Note that the 2-HM
and 4-HM have the same L.

The principles used to construct Holimaps for autoregulated
networks can be used to obtain Holimaps for an arbitrarily
complex network consisting of a system of interacting genes that
regulate each other via positive or negative feedback. A flow
chart of the Holimap algorithm for a general regulatory network
can be found in Supplementary Fig. 1. The computational time
of Holimap depends on the complexity of the network — an
increased number of nodes (genes) or edges (regulatory reactions)
results in an increased number of moment equations L to be
solved. In Supplementary Note 3, we prove that for a general
network, L scales polynomially with the cooperativity A and
scales exponentially with respect to the network size M (number
of genes).

Applications to one-node (autoregulatory) networks

We now assess the performance of Holimap based on
the Hellinger distance (HD) between the steady-state protein
distribution obtained by applying FSP to the nonlinear network
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and the approximate distribution computed using the LMA and
the two types of Holimaps. Note that while the direct application
of FSP also leads to an approximate distribution, in effect it can
be considered exact since the error is very small provided the
state space is truncated to a large enough value [22]. Here we
choose the HD because it is bounded between 0 and 1; a visually
accurate approximation is obtained when the HD < 0.1.

Fig. 2(e) illustrates the HD for the LMA as a function of
pu and py. Clearly, the LMA performs well when p,, and p;, are
not very different from each other. However, it results in larger
deviations from FSP when the protein burst frequency in one
gene state is significantly larger than that in the other. We also
find that the LMA is much more accurate for negative feedback
loops (p,, > pp) than for positive feedback loops (p, > py,). In
the LMA, the effective stochastic parameter &} is approximated
by o, multiplied by the conditional mean of protein numbers
in the unbound state. Hence it must give rise to inaccurate
approximations when protein noise in the unbound gene state is
large. This is exactly what happens in the positive feedback case
where the low synthesis rate in the unbound state results in a small
conditional mean and thus large protein noise.

We next examine whether Holimap outperforms the LMA
when it is applied to positive feedback loops. Fig. 2(f) shows
the HD against o, /d and o,/d for the LMA, 2-HM, and 4-HM
when pp > p,,. Itis clear that the LMA (Fig. 2(f), left) performs
well when o, and o}, are both small, but it becomes highly
inaccurate when o, and o} are larger. The protein distribution
can be unimodal or bimodal. The bimodal one is of particular
interest because it indicates the separation of isogenic cells into
two different phenotypes. In particular, we find that the LMA
results in poor approximations when o, > d and when the
distribution is bimodal. This can be explained as follows. Recall
that the LMA transforms a nonlinear network into a linear one
with unchanged o,,, which is commonly known as the telegraph
model of stochastic gene expression [38]. In Ref. [39], it has been
proved that the telegraph model can produce a bimodal steady-
state distribution only when both gene switching rates are smaller
than the protein decay rate (0,6, < d). When o, > d, the
linear network can never exhibit bimodality, while the bimodality
in the nonlinear network can be apparent.

We emphasize that o,, > d is biologically relevant since in
naturally occurring systems, protein is usually very stable [40]
and hence its decay rate is often smaller than the rates of gene
state switching. For example, in mouse fibroblasts, it has been
measured [41] that the median protein half-life is 46 h and the
mean cell cycle duration is 27.5 h; hence the mean decay rate of
protein is estimated to be d = (log 2)/46 + (log2)/27.5h~! =
6.7 x 10~* min~!. In the same cell type, the mean activation
and inactivation rates for thousand of genes are estimated to be
0.002 min—! and 0.24 min—! [42]. In another study, the mean
activation and inactivation rates are estimated to be 0.014 min—!
and 0.17 min—! [43]. Hence o,, > d is indeed satisfied for most
genes.

In contrast to the LMA, both the 2-HM and 4-HM markedly
reduce the HD values (Fig. 2(f), center and right). The LMA
has a maximum HD of 0.7, while for the two types of Holimaps,
the maximum HDs are only 0.2 and 0.16. The 4-HM performs
marginally better than the 2-HM in capturing steady-state protein

distributions. We also compare the region of parameter space
where bimodality is predicted to exist (region enclosed by the
orange curves) with the actual region where bimodality manifests
according to FSP (region enclosed by the red curves). We note
that while the LMA fails to capture the bimodal region of the
protein distribution, especially when o, > d, both the 2-HM
and 4-HM capture the vast majority of the bimodal region. In
summary, the deficiencies of the LMA for positive feedback
loops are remedied by the use of Holimaps (Fig. 2(g)).

Finally, we examine how the cooperativity in protein binding
affects the accuracy of various approximation methods. Fig. 2(h)
shows the maximum HD as a function of A for the LMA, 2-HM,
and 4-HM, where the maximum HD is computed when o, and oy,
vary over large ranges and other parameters remain fixed. Clearly,
for the LMA, the maximum HD increases approximately linearly
with respect to h when h < 4; for Holimaps, the maximum HD
is insensitive to h. Since transcription factor cooperativity is the
norm rather than the exception [5], our results suggest Holimap’s
accuracy remains high over the physiologically meaningful range
of parameter values.

The results that we have presented assume steady-state
conditions. However, the 2-HM can also accurately reproduce
the time evolution of the protein distribution for nonlinear gene
networks (Supplementary Fig. 2). The 4-HM is also accurate;
however depending on parameter values, it may lead to numerical
instability at short times, which usually occurs when o, and oy
are large for negative feedback loops (Supplementary Fig. 3). We
did not observe numerical instability for the 2-HM. As a result,
the 2-HM might be the preferable choice when dynamics is of
major interest. In steady state, while the improvement in accuracy
of the 4-HM may be marginal, nevertheless since the two types
of Holimaps require the solution of the same number of moment
equations, the 4-HM is more advantageous when dynamics is not
of interest.

Applications to two-node networks with deterministic
mono- and bistability

We next evaluate the performance of Holimaps when applied
to study the steady-state behavior of two-node gene networks,
where two genes regulate each other (Fig. 3(a), left). Feedback
is mediated by cooperative binding of h; copies of protein P;
to gene G2 and cooperative binding of hg copies of protein P
to gene (G1. Here oy; and o, are the binding and unbinding
rates for gene G, respectively; pp; and p,; are the synthesis
rates of protein P; when the gene is in the bound and unbound
states, respectively; d; is the degradation rate of protein P;. For
simplicity, we do not take protein bursting into account, although
it can be included easily. Depending on whether p,; < pp; or
Pui > pei for i = 1,2, there are four different types of effective
system dynamics that constitute either a positive feedback or
a negative feedback loop (Fig. 3(b)). For example, a toggle
switch (two negative regulations) [44] corresponds to the case
of pu1 > pp1 and py2 > pp2. For two-node networks, Holimaps
can be obtained in a similar way as we have previously shown for
autoregulatory loops, i.e. by replacing all protein-gene binding
reactions by effective first-order reactions with new parameters
and also allowing some of the other reactions to have different
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Fig. 3. Holimaps for two-node gene networks in steady-state conditions. (a) Illustration of the 2-HM and 4-HM for a two-node gene network,
where two genes G1 and G regulate each other. Feedback is mediated by cooperative binding of hi copies of protein P; to gene G2 and
cooperative binding of h2 copies of protein P» to gene GG1. (b) The two-node network can describe four different feedback loops, according
to whether pu; > ppi OF pui < pui for i = 1,2. (¢) A negative feedback loop with non-cooperative binding (h1 = ha = 1). (d) Heat plots of
the HDs for the LMA and 4-HM as functions of the binding rates o1 and op2. Here the HD represents the Hellinger distance between the real
and approximate steady-state distribution of the number of molecules of protein P;. The red curve encloses the true bimodal parameter region
computed using FSP, and the orange curve encloses the bimodal region predicted by Holimap. (e) Comparison of the steady-state distributions of
protein P, computed using FSP, LMA, 2-HM, and 4-HM. (f) A toggle switch with cooperative binding (h1 = h2 = 2). (g) Same as (d) but for the
toggle switch. The yellow curve encloses the parameter region of deterministic bistability, i.e. the region in which the deterministic rate equations
have two stable fixed points and one unstable fixed point. (h) Same as (e) but for the toggle switch. Here the parameters are chosen so that the
system displays deterministic bistability. While we only focus on the distribution of protein P; in (d),(e),(g),(h), the distribution of the second
protein P is also accurately predicted by Holimap (Supplementary Fig. 3). See Supplementary Note 1 for the technical details of this figure.

rate constants than those in the original network (Fig. 3(a), center

and right).

We first focus on a negative feedback loop without
cooperative binding (Fig. 3(c)). Since the LMA performs well
when the unbinding rate o,,; is much smaller than the degradation

rate d;, here we consider the case of o,; > d;. We use the HD
between the actual and approximate steady-state distributions of
protein P; to test the accuracy of Holimap. Fig. 3(d) illustrates
the HDs for the LMA and 4-HM as functions of o1 and o,2. We
find that the network displays bimodality when o, is large and
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op2 1s small. This is surprising because in the literature there are
two well-accepted origins for bimodality: (i) a positive feedback
loop with ultra-sensitivity (type-1) [44] and (ii) slow switching
between gene states (type-1I), independent of the type of feedback
loop [37]. Here the network is a negative feedback loop without
cooperative binding, and thus there is neither a positive feedback
loop nor ultra-sensitivity. Moreover, since both ¢, and o} are
large, gene (G switches rapidly between the two states. Hence
the bimodality observed is neither type-I nor type-II, and in the
following we refer to it as type-III bimodality.

From Fig. 3(d), it is clear that the LMA performs poorly
in this bimodal region. Again, the LMA cannot capture type-II1
bimodality since it transforms the nonlinear network into a linear
one with unchanged o,,;, which is unable to produce a bimodal
distribution when o,; > d; [39]. On the other hand, the 4-HM
significantly reduces the HD values and performs exceptionally
well in capturing the bimodal region (Fig. 3(e)). Here we do not
show the 2-HM because it leads to similar results as the 4-HM
except for a slightly larger HD value.

We next consider a toggle switch with cooperative binding,
where two genes repress each other (Fig. 3(f)). Note that this
is a positive feedback loop with ultra-sensitivity and hence it
can produce deterministic bistability (type-I bimodality), which
means that the corresponding system of deterministic rate
equations (Supplementary Note 4) is capable of having two stable
fixed points and one unstable point. Again, we only focus on the
situation of o,; > d;. Fig. 3(g) illustrates the HDs for the LMA
and 4-HM against 031 and op2. The yellow curve encloses the
region of deterministic bistability, which is markedly smaller than
the true bimodal region enclosed by the red curve. According to
simulations, bimodality can be observed when both o1 and ope
are large. The LMA fails to reproduce the bimodal distribution
since o,; > d;, as expected. The 4-HM not only successfully
captures the bimodal region (enclosed by the orange curve), but
also yields small HD values. The maximum HD for the LMA is
as large as 0.7, while it is only 0.13 for the 4-HM. In particular,
in the deterministically bistable region, both the 2-HM and 4-HM
accurately predict the protein distribution while the LMA
completely fails (Fig. 3(h)).

Applications to three-node networks with deterministic
oscillations

We now focus on three-node networks, where three genes
regulate each other in a cyclic manner (Fig. 4(a), left). Feedback
is mediated by cooperative binding of h; copies of protein P; to
gene G, 11 fori = 1,2, 3, where G4 = 1. Again, depending on
whether p,; < ppi OF pui > ppi for i = 1,2, 3, the network can
be a repressilator (three negative regulations) [45], a Goodwin
model (one negative regulation and two positive regulations) [46],
or a positive feedback loop [47].

As for previous examples, Holimap transforms the nonlinear
network into a linear one (Fig. 4(a), right). We now focus on the
repressilator illustrated in Fig. 4(b), where the cooperativities are
chosen as h; = hgo = hg = 3. Here high cooperativities are
chosen since we require the corresponding deterministic system
of rate equations (Supplementary Note 4) to produce sustained
oscillations. According to simulations, deterministic oscillations

are not observed when h; < 2. Fig. 4(c) illustrates the oscillatory
time evolution of the mean and Fano factor (the variance divided
by the mean) of fluctuations in the number of protein P;
computed using the SSA, LMA, and 2-HM. Note that here we
do not consider the 4-HM because, as previously mentioned, it
may cause numerical instability when computing time-dependent
distributions. The LMA fails to reproduce damped oscillations in
the time evolution of the mean and Fano factor, while Holimap
excellently captures these oscillations. Note also that the LMA
significantly underestimates the variance of fluctuations and
hence leads to a much smaller Fano factor in the limit of long
times.

Fig. 4(d) compares the time-dependent protein distributions
computed using the SSA, LMA, and 2-HM. Interestingly, both
the LMA and 2-HM accurately reproduce the protein distribution
at small times (¢ < 3). However, the LMA fails to reproduce
bimodality at intermediate and large times since it underestimates
noise. In contrast, Holimap performs remarkably well in
predicting the complete time evolution of the protein distribution.

Thus far, we have considered regulatory networks where
each gene is regulated by one TF; however, many genes are
regulated by a multitude of TFs which are often shared between
multiple genes [48]. In Supplementary Note 5, we investigate
gene networks with two TF binding sites. We show that Holimap
performs excellently in capturing the protein distributions as
well as the bimodal region, independent of the type of network
topology and the type of TF binding (independent, positive
cooperative, and negative cooperative binding [49]).

A hybrid combination of SSA and Holimap provides highly
efficient computation of complex gene network dynamics

The FSP and SSA are two widely used methods for solving
the dynamics of stochastic chemical reaction systems. While FSP
yields an accurate distribution, from a practical point of view,
it is only applicable to small networks where protein numbers
are not very large; for large networks, the size of the state space
leads to an enormous computational cost [22]. The SSA can also
be computationally expensive, particularly when the network has
multiple reaction time scales [23]. When fluctuations are large, it
can yield a non-smooth distribution, from which it is sometimes
even difficult to determine the number of modes. To overcome
this, a huge number of stochastic trajectories may be needed to
obtain statistically accurate results. Holimap provides an accurate
and smooth approximation of the protein distributions; however,
it becomes computationally slow when the network is complex
or the cooperativity is large since in these case we have to solve
a large number of moment equations. This raises an important
question: is it possible to develop a highly efficient and accurate
computation method of stochastic gene network dynamics that
yields a smooth distribution?

To address this question, we propose a hybrid method that
combines the SSA and Holimap. This method consists of
three steps (Fig. 5(a)). First we use the SSA to generate a
small number of trajectories (usually a few thousand trajectories
are enough) from which we compute the steady-state or time-
dependent sample moments of protein numbers. We then use
the latter to compute the approximate effective parameters of
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Fig. 4. Holimaps for three-node gene networks. (a) Illustration of the 2-HM and 4-HM for a three-node gene network, where three genes
regulate each other along the counterclockwise direction. Feedback is mediated by cooperative binding of h; copies of protein P; to gene Gi41,

where G4 is understood to be G1. (b) A repressilator with cooperative binding. Here the cooperativities are chosen as h; = 3 for ¢ = 1,2, 3 such
that the deterministic system of rate equations produces sustained oscillations. (¢) Time evolution of the mean and Fano factor of fluctuations in the
number of molecules of protein P; computed using the SSA (with 10° trajectories), LMA, and 2-HM. (d) Comparison of the time-dependent
distributions of protein P; at 15 time points computed using the SSA (with 10° trajectories), LMA, 2-HM, and hybrid SSA+2-HM (with 2000
trajectories). See Supplementary Note 1 for the technical details of this figure.

the linear network. Finally we use FSP to compute the protein
distribution of the linear network with effective parameters to
approximate that of the nonlinear one. For example, for the
autoregulatory circuit illustrated in Fig. 2(a), we substitute
the sample moments obtained from the SSA into Eq. (4)
to compute the approximate values of &, and &3, and then

use the marginal protein distribution of the linear network to
construct the 2-HM of the nonlinear network. In other words,
for Holimap, the determination of the effective parameters can
be done independent of other computational methods while the
hybrid method requires the running of the SSA.

This hybrid SSA+Holimap method is computationally much
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Fig. 5. A hybrid method combining the SSA and Holimap. (a) SSA+Holimap serves as a highly efficient strategy to approximately solve the
dynamics of complex stochastic gene networks. First, the SSA is used to generate a relatively small number of trajectories of the nonlinear network
from which the steady-state or time-dependent sample moments are estimated. The low-order sample moments are then used to approximately
compute the effective parameters of the linear network. Finally, the protein distributions follow directly by solving the dynamics of the linear
network using FSP. (b) Comparison of the CPU times and the accuracy (measured by HDs at ¢ = 30) for different methods. All methods were
used to simulate the time-dependent protein distributions shown in Fig. 4(d). The HD represents the Hellinger distance between the actual and
approximate protein distributions. Here a proxy for the ground truth distribution is computed using the SSA with 10° trajectories rather than FSP
since the latter is computationally infeasible (see Supplementary Note 6 for the estimation procedure for the CPU time required by FSP). (¢) An
illustration of a random M -node gene network, where each pair of nodes has a probability of 2/M to be connected. There are on average 2M
directed edges for the network, each having an equal probability to be positive or negative regulation. (d) Comparison of the CPU times and the
accuracy (measured by HDs averaged over ten time points and over all proteins) against the number of nodes M for SSA+2HM and the SSA with
the same number of trajectories. Here the number of trajectories needed for both SSA+2HM and SSA is chosen as N = 2000. Both methods were
used to simulate the time-dependent distributions for a random network. The error bar shows the standard deviation for five different random
networks. See Methods for the technical details. In (b) and (d), all simulations were performed on an Intel Core 19-9900K processor (3.60GHz).

faster than the SSA because the number of trajectories needed
to obtain good approximations to low-order moments is much
less than that needed to obtain smooth protein distributions. It is
also computationally less expensive than Holimap since there is
no need to solve a large number of moment equations. To test
this hybrid method, we compare the time-dependent distributions
for the repressilator calculated using the SSA, LMA, 2-HM,
and SSA+2-HM (Fig. 4(d)). In Fig. 5(b), we also compare
the CPU times and accuracy of these methods. The number
of SSA trajectories N needed for SSA+2-HM is chosen such
that the distributions obtained from N trajectories and those
obtained from 3V trajectories have an HD (averaged over all time
points) less than 0.02, i.e. increasing the sample size will not
substantially improve the approximation accuracy — a sample
size of N = 2000 is sufficient to satisfy this criterion. Notably
with almost the same CPU time, SSA+2-HM yields distributions
that are significantly more accurate than those obtained from only
the SSA with the same number of trajectories — the HD for the
former is only 0.04 — 0.06, while for the latter it is 0.11 — 0.13;
here the distributions obtained from the SSA with 10° trajectories
are used as a proxy of ground truth when computing the HDs. We
also note that SSA+2-HM yields distributions that are practically
as accurate as the 2-HM but is over 16 times faster (28s vs 7 min
39s).

To further test the accuracy of SSA+Holimap, we apply it to
a random M -node gene network (Fig. 5(c)), where any pair of
nodes has a probability of 2/M to be connected. This guarantees
that each gene on average regulates two genes. When connected,
each direct edge has an equal probability to be positive or
negative regulation; autoregulation is also allowed. The details
of the stochastic model are described in Methods. We then apply
the 2-HM to transform the nonlinear random network into a linear
one and then use 2000 SSA trajectories to estimate the effective
parameters of the linear network. Fig. 5(d) illustrates the CPU
times and HDs against the number of nodes M for SSA+2-HM
and the SSA with the same number of trajectories. Again an SSA
with 10° trajectories is used to generate a proxy of the ground
truth distribution when computing the HDs. Clearly, the two
methods yield almost the same CPU times that approximately
linearly scale with M. This is because for SSA+2-HM, almost
all time is spent on simulating the SSA trajectories, while solving
the linear network consumes very little time. However, compared
with an SSA with 2000 trajectories, SSA+2-HM gives rise to
markedly lower HD values, which are insensitive to M.
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Generalization to networks with post-translational or
post-transcriptional regulation

Thus far, we have showcased Holimap in transcriptional
networks with protein-gene interactions. A crucial question
is whether Holimap can also be applied to solve the
dynamics of post-translational and post-transcriptional networks
with complex protein-protein, protein-RNA, and RNA-RNA
interactions. To see this, we first focus on two post-translational
networks (Fig. 6(a),(b)).

Fig. 6(a) shows a two-node synthetic network with
autoregulation and protein sequestration [50]. Here protein P;
produced from gene G; regulates its own expression; the two
proteins P} and P» can bind to each other and form an inactive
complex C'. We then devise a three-parameter Holimap which
transforms the nonlinear gene network into the linear one shown
in Fig. 6(c). In principle, Holimap replaces all high-order
interactions between genes, proteins, and RNAs by effective
first-order reactions. We first replace the protein-gene binding
reactions G; + P, = G by G; = G} with effective
parameters 7.,,; and dp;, and then we replace the protein-protein
binding reaction P, + P, — C by P, — & with effective
parameter d;. Again, using moment matching, the three effective
parameters G.;, Op;, and cii can be represented by low-order
moments of the nonlinear network (Supplementary Note 7) and
hence can be computed approximately using SSA with a small
number of trajectories. In this way, the hybrid SSA+Holimap can
be applied to predict the dynamics of the nonlinear network.

Note that since Holimap replaces the binding reaction P; +
Py, — Cby P, — @ with a new parameter d, intuitively, one
may deduce that this approximation is only valid when protein
P, is very abundant compared to protein P; so that noise in
protein P> number can be ignored. However, unexpectedly,
we find that Holimap makes accurate predictions not only in
this special case, but also in scenarios where the two proteins
interact at comparable concentrations and where Ps is very scarce
compared to P; (Supplementary Fig. 5). This again confirms the
high accuracy of Holimap over large regions of parameter space.

As another example of post-translational regulation, we
consider a gene network with autoregulation and protein
phosphorylation (Fig. 6(b)), which has been used to account
for circadian oscillations in Drosophila and Neurospora [51].
Here the free protein P can be reversibly phosphorylated into
the forms P; and P, successively. The latter form P» can bind
to the gene and regulates its expression. Both phosphorylation
and dephosphorylation are enzyme-catalyzed and are described
using Michaelis-Menten kinetics. Holimap can also be applied to
this network, where protein-gene interactions are replaced by the
switching reactions G = G* with effective parameters &, and
0p, and the complex post-translational regulation is replaced by
the degradation reaction P — @ with effective parameter d (Fig.
6(c) and Supplementary Note 7).

Furthermore, we apply Holimap to two post-transcriptional
networks (Fig. 6(d),(e)). Fig. 6(d) illustrates a gene network with
autoregulation and mRNA degradation control [52]. Here the
enzyme can convert between an inactive form E and an active
form E*. The degradation of the mRNA of interest can occur
spontaneously with rate d and can be catalyzed by the active form
of the enzyme with rate «. Holimap transforms the nonlinear
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network into the linear one shown in Fig. 6(f) by removing
all high-order interactions between molecules. In particular,
the enzyme-catalyzed degradation reaction M + E* — E* is
replaced by the effective degradation reaction M — & with new
parameter d (Supplementary Note 7).

Fig. 6(e) illustrates another network with microRNA-mRNA
interactions, which has been shown to be capable of producing
complex emergent behaviors such as bistability and sustained
oscillations [53]. Here the mRNA of interest, expressed from
gene (G1, has two microRNA binding sites. The microRNA,
produced from gene G5, can bind to its mRNA target and form
two inactive complexes C; (only one binding site is occupied)
and C'y (both binding sites are occupied). The free mRNA and
microRNA are degraded with rates d; and ds, respectively. Once
the complex C (C5) is formed, the mRNA and microRNA are
degraded with rates aq (b1) and as (b2), respectively. The mRNA
dynamics for this network can also be predicted by Holimap,
which replaces the complex post-transcriptional regulation by the
effective reaction M — & with new parameter d (Fig. 6(f) and
Supplementary Note 7).

Note that for transcriptional networks, Holimap does not
change the degradation rate; however, for post-transcriptional and
post-translational networks, both the binding/unbinding rate and
degradation rate need to be modified. To test the accuracy of
the three-parameter Holimap, we compare the time-dependent
distributions for the above four gene networks computed using
the SSA with 10° trajectories, SSA with 2000 trajectories, and
hybrid SSA+Holimap with 2000 trajectories (Fig. 6(g)). Clearly,
SSA+Holimap is accurate for all networks. In particular, the
distributions predicted by SSA+Holimap with a small number of
trajectories have almost the same accuracy as those predicted by
the SSA with a huge number of trajectories (HD < 0.03) while
the CPU time is reduced by over 60 fold (Fig. 6(h)).

Discussion

In this paper, we have constructed a novel computational
method, Holimap, for the accurate and efficient prediction
of the protein/mRNA number distributions of a general gene
regulatory network. We have showcased the method by applying
it to a variety of networks including transcriptional networks
with protein-gene interactions, post-translational networks with
protein-protein interactions, and post-transcriptional networks
with protein-RNA or RNA-RNA interactions. For transcriptional
networks, we have tested Holimap in simple autoregulatory
loops where a gene influences its own expression, two-gene
systems such as the toggle switch, three-gene systems such as the
repressilator, and complex randomly connected networks with
numerous interacting genes. Notably, we have demonstrated that
a hybrid method that uses both Holimap and the SSA leads to
much more accurate distributions than solely using the SSA, with
practically no increase in the CPU time and an accuracy that is
independent of the number of interacting genes in the network.

We devised three types of Holimaps — the 2-HM, 3-HM,
and 4-HM — all of them decoupling gene-gene interactions in a
nonlinear regulatory network and transforming it into a linear one
with multiple effective parameters. The 2-HM and 4-HM apply
to transcriptional networks, while the 3-HM is only applicable to
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Fig. 6. Holimap for post-translational and post-transcriptional networks. (a),(b) Post-translational networks. (a) Network with autoregulation
and protein sequestration [50]. (b) Network with autoregulation and protein phosphorylation [S1]. (¢) Three-parameter Holimap for post-
translational networks. (d),(e) Post-transcriptional networks. (d) Network with autoregulation and mRNA degradation control [52]. (e) Network
with microRNA-mRNA interactions [53]. Here « is the binding rate of microRNA to its mRNA target and S is the unbinding rate. (f) Three-
parameter Holimap for post-transcriptional networks. All high-order interactions between genes, proteins, and RNAs are replaced by effective
first-order switching and degradation reactions. (g) Comparison of the protein distributions for the four networks at two time points computed
using the SSA with 10° trajectories, SSA with 2000 trajectories, and SSA+Holimap (with 2000 trajectories). (h) Comparison of the CPU times
and the accuracy (measured by HDs averaged over ten time points) of the SSA and SSA+Holimap for the four networks. The distributions obtained
from the SSA with 10 trajectories are used as a proxy of ground truth when computing the HDs. See Supplementary Note 1 for the technical

details of this figure.

post-translational and post-transcriptional networks. The 4-HM
is more accurate than the 2-HM, although the improvement in
accuracy is marginal. Depending on parameters, the 4-HM may
lead to numerical instability at short times. Hence the 4-HM is
preferred if our aim is to compute the steady-state distribution,
and the 2-HM is a preferable choice if our aim is to compute the
time-dependent distribution. The two types of Holimaps require
the solution of the same number of moment equations and hence
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give rise to similar CPU times. Since the number of equations
to be solved increases exponentially with the network size, the
standard Holimap is only recommended when the scale of the
network is not too large. For medium and large-scale networks,
the hybrid SSA+Holimap approach is more advantageous since
it significantly reduces the CPU time while maintaining high
accuracy.

Some of the advantages of our method over other common
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approximations in the literature are as follows: (i) Holimap does
not sacrifice the discrete nature of molecular reactions since
the approximate distributions are solutions of the CME of the
effective linear network. This is unlike many common methods
that achieve a speed increase by making use of a continuum
approximation of the CME such as the Fokker-Planck / Langevin
equations [54, 55] or partial integro-differential equations [56,
57]; (ii) Holimap does not assume the protein number distribution
to be of a simple type such as the Gaussian, Poisson, Lognormal
or Gamma distributions, as commonly assumed by conventional
moment-closure methods [58, 59] — the solution of the linear
network that Holimap utilizes is very flexible and spans a very
large number of possible distribution shapes including those with
multiple modes and significant skewness. For example, if each
gene in a complex regulatory network switches between a number
of states for which only one is active, then Holimap approximates
the protein distribution for each gene by that of a multi-state gene
expression model with no regulatory interactions (Supplementary
Note 5) for which the analytical steady-state solution is known
to be a generalised hypergeometric function [60, 61], which
includes a large number of special functions as special cases.

Our hybrid SSA+Holimap method shares some similarities
with neural network-based approaches [62], which can also
be used to predict complex gene network dynamics. The
former uses the SSA to generate the sample moments which
are then used to compute the values of effective parameters,
while the latter uses the SSA to train the surrogate neural
network model. While both methods can accurately capture
the protein/mRNA distribution, our method outperforms the
neural network-based ones in three aspects: (i) while neural
network models perform well in the parameter ranges which are
used to train the surrogate model, their extrapolation ability is
usually weak. Our method is mechanism-based and provides
accurate results over wide parameter ranges; (ii) neural network-
based methods require a very long time to train the surrogate
model. When the network is complex, the training time may
take tens of hours to several days and may also require multiple
rounds of hyperparameter tuning. In contrast, Holimap avoids
the long training time; (iii) neural network models have good
predictive ability but their learnt approximation does not typically
have a clear biophysical interpretation. Holimap transforms the
complex nonlinear network into a linear one which not only
has a clear physical meaning but also allows an approximative
analytical solution. In addition, SSA+Holimap can be combined
with neural network-based methods to increase the speed and
accuracy of the latter. Since SSA+Holimap can be used to
generate distributions comparable in accuracy to those from
the SSA with a much larger number of trajectories, it follows
that SSA+Holimap can reduce the time to generate an accurate
training dataset as input to the neural network.

The main limitation of the present method is that there are no
analytical guarantees that the effective parameters of the linear
network are positive definite for all times. Nevertheless for all
examples using the 2-HM and 3-HM in this paper, we have
numerically found this to be the case and hence we are confident
that the linear network obtained by the 2-HM or 3-HM procedure
is generally physically interpretable. In contrast, we observed
that the 4-HM procedure can occasionally give rise to negative
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parameter values (typically when the binding and unbinding rates
are large) and hence should be used more cautiously. Ongoing
work aims to extend the method to predict both mRNA and
protein dynamics, including their joint distribution for pairs of
genes.

Concluding, we have devised a method that overcomes many
of the known difficulties encountered when simulating complex
stochastic gene network dynamics. We anticipate that Holimap
will be useful for investigating noisy dynamical phenomena in
complex regulatory networks where intuitive understanding is
challenging to attain and simulations using the SSA become
computationally prohibitive.

Methods

Determining the effective parameter for the LMA

For the linear network in Fig. 2(b), the evolution of moments
is governed by
9o = 0ug1 — Gb90,
f11,0 = puBgo — dp1,0 + oupt1,1 — Gpp,0,
f11 = ppBg1 — dpin — oupir,1 + Gppin0-

&)

Inserting Eq. (2) into Eq. (5) gives a closed set of moment
equations, from which the values of gg, p1,1 and p can
be computed approximately. Finally, using these values, the
effective parameter 6;, can be obtained from Eq. (2). The
remaining steps for the LMA are the same as for the 2-HM.

Determining the effective parameters for the 4-HM
For the autoregulatory circuit, it follows from Eq. (1) that
fi1,0 + fi1,1 = puBgo + ppBgr — d(p1,0 + p11,1)
+ 0ug1 — Oblt1,0,

f12,0 + f12,1 = 2puB(p1,0 + Bgo) + 206 B(p1,1 + Bgr)
— 2d(p2,0 + p12,1) + 204111 — 20p02,0-

(6)

For the linear network in Fig. 2(d), the evolution of moments is
governed by
9o = 0ug1 — Tb90,
f11,0 = puBgo — dp1,0 + Oupt1,1 — Tppi1 0,
fl1,1 = ppBgr — dpin — Guptr,1 + Ot 0,
fi2,0 = 2puB(p1,0 + Bgo) — 2dpa,0 + Guptz,1 — Tbhi2,0,
fio1 =2ppB(p11 + Bg1) — 2dpa 1 — Gupta + Gbiia,0-

)

From these equations, it is easy to show that

f11,0 + f1,1 = puBgo + ppBgr — d(p1,0 + p11,1),

L2.0 + ft21 = 2puB(pa,0 + Bgo) + 2psB(u11 + Bgr) (8)

— 2d(p2,0 + p12,1)-
Matching Egs. (6) and (8), we find that p; and p,, should satisfy
the following system of linear equations:
puBgo + ppBgr = puBgo + ppBg1 + ougr — obpi,0,
puB(p1,0 + Bgo) + ppB(p11 + Bg1) = ©)
puB(p10+ Bgo) + ppB(p1,1 + Bg1) + oupia,1 — plia,0-
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Matching the first and third identities in Eqs. (1) and (7), it is
clear that 0}, and &, should satisfy the following system of linear
equations:

Oyud1 — 0b90 = O0yug1 — Opli1,0,

_ _ _ (10)
Tulb1,1 — Oplh1,0 = Oufl1,1 — Oppi2,0 + (Pb — pu)Boa,

where pp has been determined by solving Eq. (9). Compared
with Eq. (4), Eq. (10) has an additional term (p, — pp)Bg1. This
is because p, remains unchanged for the 2-HM but is changed for
the 4-HM.

Finally, inserting Egs. (9) and (10) into Eq. (7) gives a
system of closed moment equations and hence the values of all
zeroth, first, and second-order moments can be approximately
calculated. Substituting these moments into Eqs. (9) and (10),
one can finally solve for the four effective parameters p,, pp,
0y, and oy, of the linear network. The 4-HM predicts the protein
distribution of the nonlinear network by solving the CME of the
linear one in Fig. 2(d) with the values of the effective parameters
found above.

Stochastic model for complex gene networks

Here we consider the stochastic model of an arbitrary
gene regulatory network involving protein synthesis, protein
degradation, gene state switching, and complex gene regulation
mechanisms [63]. Specifically, we assume that the network
involves M distinct genes, each of which can be in two states: an
inactive state G; and an active state G;k-. The protein associated
with gene G; is denoted by P;. The network can be described by
the following reactions:

a? Q;
* *
G —Gj, G —Gj

¥ ol
Gj + hjiPi 2 G;, G;c + hjiPi 2 Gj
0
o0

1
GG+ P, G a4 P,

d;
P o ij=1,2,... M,

where the reactions in the first row describe spontaneous gene
state switching, the reactions in the second row describe gene
regulation, the reactions in the third row describe protein
synthesis in the two gene states, and the last reaction describes
protein degradation or dilution. Since G is the inactive state and
G7 is the active state, we have pjl. > p?. Due to complex gene
regulation, each gene GG; may be regulated by all genes. If gene
G| activates gene G, then 09; > 0 and o}; = 0 since the binding
of protein P; induces the switching from G; to G7; on the
contrary, if gene G; inhibits gene G, then a?i = (0 and ajl-i >0
since the binding of protein P; induces the switching from G;’f
to G;. When performing simulations (SSA and SSA+Holimap),
the parameters are chosen as d; = 1,hj; = 1,p]1- = 81,pg =
5.4,04(; a; = 0.5, O'?i = O.OI,U}i = 0 when G, activates
G, and O’;-)Z- =0, U}i = 0.01 when Gj inhibits G ;. The presence
or absence of a gene-gene interaction and its type are determined
randomly. Here we assume that protein-gene interactions are non-
cooperative (h;; = 1). The spontaneous switching rates between

G and G are chosen to be 0§ = o} = 0.5. Since each gene
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is on average regulated by two genes (one positive regulation
and one negative regulation), the switching rates due to gene
regulation are roughly equal to 0; = oj; = 0.01 multiplied by
the number of regulator P;, which is approximately 50. Hence
the total switching rates due to spontaneous contributions and
gene regulation are roughly 0.5 4 0.01 x 50 = 1, i.e. they are
comparable with the degradation rate d; = 1.

Data Availability

All data needed to evaluate the conclusions are present in the
paper.

Code availability
The MATLAB codes for Holimap and
SSA+Holimap can be found on GitHub via the link

https://github.com/chenjiacsrc/Holimap.
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