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Abstract

Drug-induced liver injury (DILI) continues to be the leading cause of drug attrition
during clinical trials as well as the number one cause of post-market drug withdrawal
due to the limited predictive accuracy of preclinical animal and conventional in vitro
models. In this study, the NANOSTACKS™ platform was introduced as a novel in vitro
tool to build in vivo-relevant organ models for predicting drug responses. In particular,
hepatic models including monocultures of primary human hepatocytes (PHH),
tricultures of PHH, human stellate cells (HSC) and human liver endothelial cells
(LECs), and tetracultures of PHH, HSC, LECs and human Kupffer cells (KC) were
developed under static and fluid flow-inclusive conditions. All hepatic models were
characterised by assessing albumin, urea, CYP3A4 and ATP production. In addition,
the preclinical DILI screening potential of the fluid flow-inclusive monoculture and
triculture models were assessed by testing the hepatotoxicity of Zileuton, Buspirone
and Cyclophosphamide. NANOSTACKS™ represents a promising tool for the

development of complex in vitro models.
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Introduction

Drug-induced liver injury (DILI) represents a relatively rare yet significant source of
acute and chronic liver disease (1). It is one of the most common causes of post-
market drug withdrawal (2). The detection of hepatotoxicity usually occurs during
clinical trials or after a product has been released to the market, leading to elevated
hazards for clinical trial participants and imposing huge financial strains on drug
development research (3). One of the reasons underlying failures in drug development
arises from the limited predictive accuracy of preclinical models (4), which involve

animal models and conventional in vitro models.

Animal models are used for assessing DILI and evaluating pharmacokinetics despite
their inter-species differences with humans with regards to physiology, genetics and
drug metabolism (5). A comprehensive large-scale study comparing the effectiveness
of animal models in detecting DILI in humans indicated poor predictive performance
(6). Among the 150 hepatotoxins studied, both rodent and non-rodent models were
only able to detect 50% of the human hepatotoxic events associated with these drugs
(6). To address this issue, in vitro models replicating aspects of human hepatic biology

could be utilised.

Most liver in vitro models adopted to screen DILI toxicity are typically based on 2D
liver monoculture cell models. Nevertheless, these models are primarily constrained
by their lack of crosstalk between different cell types, inconsistent findings with regards
to the prediction of hepatotoxicity, and lack of tissue-like organization; such factors are
essential for establishing a liver model that accurately mimics physiological conditions
(7). Recently, the U.S. Food and Drug Administration (FDA) Modernization Act 2.0 has
highlighted the need for alternatives to animal testing and to traditional in vitro models,
such as 3D in vitro models based on the use of organoids and microphysiological
systems (8). In the context of hepatotoxicity assessment, alternatives to traditional in
vitro models include sandwich-cultured hepatic cells, whole organ explants, precision-
cut tissue slices, tumour tissue explants, hepatic spheroids, organoids, and liver
models developed using microfluidic systems (9-13). In comparison to traditional in
vitro models, these advanced models can simulate and predict cellular behaviour and
therapeutic responses with higher reliability (14-15).
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The type of cells included in the in vitro model also plays a key role in determining its
capability to predict hepatotoxicity. The human liver consists of two main types of cells:
hepatocytes and non-parenchymal cells (NPC). NPCs include liver endothelial cells,
stellate cells and Kupffer cells (16). Primary human hepatocytes (PHH) are considered
the gold standard for studying liver function, liver diseases, drug targets and long-term
DILI (17-18).

In the context of preclinical in vitro screening models, preserving the metabolic function
of PHH over an extended period of cell culture is a significant focus. One approach to
enhance the metabolic activity of PHH is to place them in coculture with NPC (16).
Hepatocytes cocultured with stellate cells display improved physiological and
metabolic functions, and their hepatic function is better maintained (19). For instance,
PHH co-cultured with stellate cells exhibit a more stable liver phenotype compared to
monocultures (20-22). Similarly, the coculture of hepatocytes with liver endothelial
cells in a microfabricated perfusion reactor resulted in the formation of endothelial
network structures and high retention of hepatocellular function compared to
monocultures (23). Various other cellular combinations involving PHH have been
investigated, including the use of NIH/3T3 (24, 25), endothelial cells (26, 27), and
Kupffer cells (28, 29).

In order to setup a coculture model, a common approach is based on mixing different
cell types in a single well (30, 31). The mixture approach offers the advantage of
facilitating direct cell-cell contact, allowing the evaluation of interactions mediated by
cell adhesion. However, variability in growth rates can result in randomly distributed
cell populations, which can significantly differ between each replicate, thus decreasing
the reproducibility of the model. Furthermore, this method does not replicate the
layered microarchitecture of hepatic lobules. Another approach is constituted by the
sandwich culture, based on the culture of hepatic cells in different layers (32, 33). This
method models the natural layering of liver cells whilst maintaining constant the ratios
between the cell number of different cell types included in the model. However, the
sandwich method is time-consuming, challenging to reproduce, and labour-intensive
(34). Human liver microphysiological systems (MPS) have the potential to address the
limitations of current coculture models by utilizing engineering and design principles

that more accurately replicate human liver physiology in miniatured systems. These
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advanced models may incorporate various sophisticated features such as a
multicellular environment, 3D architecture and exposure to fluid flow. However, MPS-
based models can be complicated to develop and use, therefore reducing their

applicability in the context of DILI screening.

To address issues associated with currently used models, in this this work
NANOSTACKS™ (NS), a novel user-friendly, imaging- and fluid flow-compatible
platform, was used for the assembly of complex hepatic cocultures in a 24-well plate
format. In particular, hepatic models based on monocultures of PHH, tricultures of
PHH, human stellate cells (HSC) and human liver endothelial cells (LECs), and
tetracultures of PHH, HSC, LECs, and human Kupffer cells (KC) on NS were
developed. The models were characterised with regards to parameters associated
with hepatic function, in absence or presence of fluid flow. Finally, three different
compounds (Zileuton, Buspirone and Cyclophosphamide) were tested on the fluid
flow-inclusive triculture and monoculture hepatic models to assess their reliability for

preclinical DILI screening.
Methods

Cell culture

Cryopreserved primary human hepatocytes (PHH) (Lot 2211419-01), primary human
liver endothelial cells (LECs) (Lot 2211419p0), primary human stellate cells (HSC) (Lot
2216631p0) and primary human Kupffer cells (KC) (Lot 2211419) were purchased
from LifeNet Health LifeSciences. All primary cells were cultured in accordance with
the protocols specified by the vendor. Before seeding on NS, both LECs and HSC
were expanded on rat collagen type | (Gibco™)-coated T-25 flasks (Fisher Scientific).
LECs were expanded using LECs complete medium, composed of Lonza EBM-2 and
Lonza EGM-2, whilst HSC were expanded using HSC complete medium, composed
of DMEM (Gibco™), 10% Fetal Bovine Serum (FBS) (Sigma) and 1% Pen/Strep
(Sigma). PHH and KC were thawed according to the vendor’s protocols on the day of
seeding on NS. PHH thawing medium, plating medium and maintenance medium were
provided by LifeNet Health LifeSciences. KC complete medium, which was used to
culture KC on NS before initiating the tetraculture, was composed of RPMI 1640
(Gibco™), 10% Fetal Bovine Serum (FBS) (Sigma) and 1% Pen/Strep (Sigma).
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NANOSTACKS™ (NS) design

NS enable 3D cell culture through their stackable design within a standard SBS 24-
well plate format (Figure 1). In particular, up to four NS can be stacked in a single well,
and therefore up to four different cell types can be cocultured within the same in vitro
model. Cell culture medium can diffuse across the gaps between each NS.
Additionally, each NS includes a porous membrane, with a pore size of 0.4 um,
increasing nutrients diffusion towards cells. Additionally, the porous membrane of NS
is transparent, thus allowing live imaging without disrupting the multilayered structure.
To avoid material absorption of pharmaceutical compounds, the body of NS are
composed of polycarbonate whilst the membrane is composed of polyester. In order
to induce fluid flow on the NS, the 24-well plates including the devices can be placed

on an orbital shaker.

Technology : NANOSTACKS™

Transparent
porous
membranes

Figure 1. Graphic representation of the NS platform. Up to four cell-seeded NS can be stacked on top of each
other (top), forming a complex coculture (centre) that can be housed into wells of a SBS-standard 24-well plate
(bottom-left). Each NS is made of a polycarbonate body and a transparent porous PET membrane with a pore size
of 0.4 ym (bottom right). Fluid flow can be induced by placing the 24-well plate including the NS on an orbital

shaker.
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Human liver modelling on the NANOSTACKS ™ (NS) platform

Three types of human liver models were developed using NS. In particular, the models
were a monoculture model (PHH), a triculture model (PHH + LECs + HSC) and a
tetraculture model (PHH + LECs + HSC + KC). All the models were developed with
and without the inclusion of fluid flow. Throughout the experiment, NS were kept in
wells of 24-well plates. All NS were coated with 10 pug/cm? rat collagen type | at RT
and then washed thrice using phosphate buffered saline (PBS). PHH, LECs, HSC and
KC were seeded at a 3:1:1:1 proportion respectively to the seeding density of the
individual cell type. In particular, a cell seeding suspension volume of 70 yL was
decanted on the top surface of the cell culture-treated membrane on each NS, and
cells were incubated at 37°C and at 5% CO: in a humidified incubator for 2 h to allow
cell attachment. PBS was added to empty wells of the well-plate to prevent
evaporation of the cell suspension droplets. Then, 1430 pL of medium was added to
the seeded NS to reach the working volume of 1.5 mL and subsequently the plates
were left in a cell culture incubator for 24 h. Each cell type was seeded using its
respective complete medium. On Day -1, each NPC (LECs, HSC, and KC) was
seeded at a seeding density of 16.6 x 103 cells/mL whereas on Day 0 PHH were
seeded at a seeding density of 50 x 102 cells/mL. On Day 1, the in vitro models were
assembled by stacking the cell-seeded NS in order to combine the different cell types
into monoculture, triculture and tetraculture models (Fig. 2A). In particular, in the
monoculture model one PHH-seeded NS was placed in each well. In the triculture
model, one PHH-seeded NS was placed in the bottom of each well, and one HSC-
seeded, one LECs-seeded were placed on top. In the tetraculture model, one PHH-
seeded NS was placed in the bottom of each well, and one HSC-seeded, one LECs-
seeded, and one KC-seeded NS were placed on top of the PHH-seeded NS.
Additionally, for monoculture models, three membrane-free, cell-free NS were added
on top of the cell-seeded NS, whilst for triculture models, one membrane-free, cell-
free NS was added on top of the three cell-seeded NS, in order to maintain the same
height of cell culture medium in the wells of all hepatic models. Once the models were
assembled, PHH culture medium was used to maintain the cultures, with medium
changes occurring every 2 days. On day 1, each model was assigned either to a static
condition or to a fluid flow condition, the latter entailing the inclusion of fluid flow by
placing the 24-well plate including the NS on an orbital shaker (TOS-3530C0O2; Munro


https://doi.org/10.1101/2024.08.12.607396
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.12.607396; this version posted August 20, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Scientific) set at 90 RPM. Monocultures and tricultures were maintained in culture for
31 days, whilst tetracultures were maintained for 26 days. All models underwent
characterization based on cell viability, albumin, urea, and CYP3A4 metabolic activity
measurements. DILI toxicity screening was conducted exclusively on the monoculture
and triculture models. Each assay was performed on n = 3 wells per timepoint in both
static and fluid flow conditions.
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Figure 2. A: Schematic representation of the experimental setup. B: Representative widefield image of primary
human hepatocytes (PHH), primary human stellate cells (HSC), primary human liver endothelial cells (LECs), and

primary human Kupffer cells (KC) on NS, acquired on day 2. Magnification: 10X. Scale bar: 250 pm

Cell viability

The CellTiter-GLO assay (CellTiter-Glo® Luminescent Cell Viability Assay G7571,
Promega), which measures intracellular ATP content as a biomarker of cell viability,
was performed according to the protocol provided by the vendor, with the following
modifications: cell-seeded NS were moved to wells of a 24-well plate including 350 uL
of medium, and then 350 pL CellTiter-GLO reagent was added onto each well to obtain
a 1 : 1 dilution. The luminescence of each well was read by a Synergy H1 Microplate
reader (Fisher Scientific) and analysed with the GEN5 software (BioTek; version 2.05).
The CellTiter-GLO assay was performed on n = 3 wells per timepoint on days 2, 4, 7,
11, 14, 20, 26 and 31.

Cytochrome P450 assay

CYP3A4 expression in PHH was measured with a P450-GLO assay (V9001 Luciferin-
IPA, Promega). The P450-Glo™ assay technology provides a rapid, high-throughput
method for assessing cytochrome P450 (CYP) activity by measuring the conversion
of inactive D-luciferin derivatives to an active form. The emitted light intensity is directly
proportional to the CYP enzyme activity. The assay was performed on day 2, 4, 7, 11,
14, 20, 26 and 31 according to the protocol provided by the vendor, on the same NS

used for viability analysis. The assay was performed on n = 3 wells per timepoint.
Albumin Assay

The albumin produced by cells within the liver models was quantified on days 2, 4, 7,
11, 14, and 26 using sandwich ELISA kits (Albumin ab179887, Abcam). In particular,
the supernatant obtained from each well was preserved at -80 °C, then thawed
overnight at 4 °C. Subsequently, the supernatant samples were diluted 50-fold with the
buffer provided by the vendor and the assay was performed following vendor’s
instructions. In the last step of the assay, absorbance at 450 nm was measured using
the Synergy H1 Microplate reader and analysed with the GEN5 software. The assay
was performed on n = 3 wells per timepoint.
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Urea Assay

Urea produced by PHH in the liver models was quantified using a urea assay kit
(MAKO0O06, Sigma-Aldrich) on days 2, 4, 7, 11, 14, and 26. The supernatant obtained
from each well was preserved at —80 °C, and thawed overnight at 4 °C. Subsequently,
the supernatant samples were diluted 50-fold with the buffer provided by the vendor.
The assay was then performed according to the instructions of the vendor. Finally,
absorbance at 570 nm was measured using the Synergy H1 Microplate reader and
analysed with the GEN5 software. The assay was performed on n = 3 wells per

timepoint.
Toxicity screening

The dose-response effects of Zileuton, Buspirone hydrochloride and
Cyclophosphamide were assessed at concentrations ranging from 1 to 600 times the
human Cmax on monoculture and triculture models. The experiments were conducted
on day 4 on monocultures and on day 7 on tricultures models. The compounds were
dissolved in DMSO, which was used at concentration of 0.1 % V/V in cell culture
medium and was also included as vehicle control. The models were treated with the
compounds every day for 7 days. Total cytotoxicity of the compounds was then
measured using the CellTiter-Glo® Luminescent Cell Viability Assay (G7571,
Promega), as previously described. Drug treatments were performed in n = 3 wells per

compound and concentration.

Fluid dynamics modelling on NANOSTACKS™

A computational fluid dynamics (CFD) model was developed using the software
ANSYS-CFX (ANSYS Inc.) to model the shear stress exerted on NS placed into wells
of a 24-well plate in an orbital shaker set at 90 RPM. In particular, CFD modelling was
performed on a well including one NS inclusive of membrane (bottom of the well) and
three NS without membranes, on three NS inclusive of membranes (bottom of the well)
and one NS without membrane, on four NS including membranes, and on an NS-free
well. The orbital diameter of the orbital shaker was 19 mm and the volume of cell
culture medium was 1.5 mL in all configurations. The medium was modelled as an
incompressible and Newtonian fluid with a dynamic viscosity (u) of 0.7 mPa-s at 37 °C
and medium density p = 1000 kg/m?® as described by Driessen et al. (35).
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Statistical analysis

For each timepoint associated with ATP, CYP3A4, albumin and urea production,
unpaired Student T-tests were performed using the software Prism (GraphPad;
version 10.2.3) to analyse the differences between the static and fluid flow conditions.
A p-value < 0.05 was assumed

to indicate a statistically significant difference, indicated by asterisks in the graphs (*:
p<0.5; *:p<0.01; **: p<0.001; ***: p <0.0001). Values are reported in the graphs
as mean * SEM.

Results

In this work, NS-based monocultures (PHH), tricultures (PHH-HSC-LECs) and
tetracultures (PHH-HSC-LECs-KC) liver models were developed under static and fluid
flow conditions, the latter induced by placing the 24-well plate including the NS onto a
orbital shaker. To quantify the shear stress exerted on the cell culture surface of the
inserts in monoculture and coculture configurations, a computational fluid dynamics
(CFD) analysis was performed (Fig. 3). The shear stress was highest on the
membrane included in NS occupying the position closest to the air-liquid interface in
cocultures (Fig. 3.C-D), comparatively to other NS membranes positioned closer to
the bottom of the well (Fig. 3B-D). Additionally, the shear stress profile of the NS
membrane associated with the monoculture condition (Fig. 3B) was found to be more
spatially uniform than the shear stress profile related to the bottom surface of an empty
well (Fig. 3A).

10
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Figure 3. CFD modelling of shear stress (Pa) induced by an orbital shaker set at 90 rpm, acting on an empty well
of a 24-well plate and on NS membranes included in the well. A: Bottom surface of NS-free well. B: Membrane of
NS placed on bottom of the well, under three membrane-free NS. C: Membranes of three NS placed on the bottom

of the well, under one membrane-free NS. D: Membranes of four NS placed inside the well.
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The NS-based liver models were also characterised in both static and fluid flow
conditions by quantifying ATP and CYP3A4 production by PHH, in addition to albumin
and urea synthesis. With regards to the monoculture models, the characterisation data
is summarised in Figure 4. In particular, ATP production was maintained for 31 days
(Fig. 4A), indicating cell viability throughout the entire experiment, with no statistically
significant difference between the static and fluid flow conditions. CYP3A4 production
was also maintained throughout 31 days (Fig. 4B), peaking on day 7 in all conditions,
when the CYP3A4 production was higher in the fluid flow condition relatively to the
static condition. Albumin production (Fig.4C) was maintained for 26 days in all
conditions, peaking on day 7, reaching 40.1 ug/day/10° PHH in the flow condition. With
regards to urea production (Fig. 4D), human-relevant levels of urea (>56
pg/million/PHH/day) (39) were maintained for 7 days in the static condition, decreasing
to 24.25 pg by day 14. Conversely, when fluid flow was introduced into the model, urea

production was above the human level threshold until day 14.
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Figure 4. ATP, CYP3A4, albumin and urea production from PHH in monocultures in static (black) and fluid flow
(blue) conditions. A: ATP synthesis, expressed in relative light units (RLU; y axis) on day 2, 4, 7, 11, 14, 20, 26, 31
(x axis). B: CYP3A4 production, expressed in RLU (y axis), on day 2, 4, 7, 11, 14, 20, 26, 31 (x axis). C: Albumin
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production, expressed in pg/108 cells/day (y axis), on day 2, 4, 7, 11, 14, 26 (x axis). D: Urea production, expressed
in ug/108 cells/day (y axis) on day 2, 7, 14, 26 (x axis). Each datapoint was obtained from n = 3 wells. Data are

reported as mean + SEM.
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Figure 5. ATP, CYP3A4, albumin and urea production from PHH in tricultures in static (black) and fluid flow (blue)
conditions. A: ATP synthesis, expressed in RLU (y axis) on day 2, 4, 7, 11, 14, 20, 26, 31 (x axis). B: CYP3A4
production, expressed in RLU (y axis), on day 2, 4, 7, 11, 14, 20, 26, 31 (x axis). C: Albumin production, expressed
in ug/108 cells/day (y axis), on day 2, 4, 7, 11, 14, 26 (x axis). D: Urea production, expressed in ug/108 cells/day (y
axis) on day 2, 7, 14, 26 (x axis). Each datapoint was obtained from n = 3 wells. Data are reported as mean + SEM.
PHH in triculture with liver endothelial cells (LECs) and stellate cells grown on NS were
viable throughout the entire experiment in both static and fluid flow conditions, as
evident from the ATP production sustained for 31 days (Fig. 5A). However, in the fluid
flow condition, ATP production was elevated compared to the static condition from day
4. Similarly, CYP3A4 production (Fig. 5B) was also sustained for 31 days. In particular,
on day 20 the CYP3A4 production associated with the fluid flow condition was more
than seven times higher than the levels reached in the static condition. Albumin
production (Fig. 5C) was maintained throughout the entire experiment, and between
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day 7 and day 26, albumin levels in the fluid flow condition were markedly higher
relatively to the static condition. In particular, between day 11 and day 26, albumin
production in the fluid flow condition exceeded the human liver in vivo output threshold
of 43 ug/day/108 PHH (39). With regards to urea production (Fig. 5D), values obtained
from both conditions were superior to human threshold levels (>56
pg/million/PHH/day) from day 2 to 14. Additionally, on day 2 in the flow condition, urea
production was markedly higher than the production associated with the static

condition.
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Figure 6. ATP, CYP3A4, albumin and urea production from PHH, and ATP synthesis by Kuppfer cells in
tetracultures, in static (black) and fluid flow (blue) conditions. A: ATP synthesis by PHH, expressed in RLU (y axis)
onday 2, 4,7, 11, 14, 20, 26 (x axis). B: CYP3A4 production, expressed in RLU (y axis), on day 2, 4, 7, 11, 14, 20,
26 (x axis). C: Albumin production, expressed in ug/10° cells/day (y axis), on day 2, 4, 7, 11, 14, 26 (x axis). D:
Urea production, expressed in pg/108 cells/day (y axis) on day 2, 7, 14, 26 (x axis). E: ATP synthesis by Kuppfer
cells, expressed in RLU (y axis) on day 11, 20 and 26 (x axis). Each datapoint was obtained from n = 3 wells. Data
are reported as mean + SEM.

PHH in tetracultures maintained viability for the entire experiment in both fluid flow and
static conditions, as evident from their ATP production (Fig. 6A), which was sustained
for 26 days. On day 11, the ATP production associated with the fluid flow condition was
markedly higher than the value associated with the static condition. PHH in
tetracultures also maintained CYP3A4 production at all timepoints (Fig. 6B). In
particular, on day 11 and day 14, CYP3A4 levels associated with the fluid flow
condition were higher relatively to the static condition. Additionally, on day 11 albumin
production was higher in the fluid flow condition relatively to the static condition (Fig.
6C). Albumin production was maintained in both conditions throughout the entire
experiment. Urea production in tetraculture displayed a descending trend in both
conditions (Fig. 6D) and was consistently above the human level threshold (>56
pg/million/hepatocytes) for 14 days in both conditions (39). With regards to Kuppfer
cells, ATP production was markedly increased in the fluid flow condition relatively to
the static condition (Fig. 6E).
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Dose-response curve and IC50/Cmax of Zileuton, Buspirone and Cyclophosphamide
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Figure 7. Toxicity evaluation of Zileuton, Buspirone, and Cyclophosphamide on monoculture and triculture models.
Cell viability, reported on the y-axis in all graphs, is expressed as the percentage of ATP production of the vehicle
control. Concentrations of the compounds, reported on the x-axis in all graphs, are expressed as multipliers of the
human Cnax. The graphs show data points and dose-response curves obtained by applying a nonlinear regression.
A: PHH viability associated with monoculture (blue) and triculture (black) models inclusive of fluid flow were treated
with Zileuton at concentrations ranging between 0.0001 human Cpax and 100 human Cnax. B: PHH viability
associated with monoculture (blue) and triculture (black) models inclusive of fluid flow were treated with Busporine
at concentrations ranging between 0.1 human Cpmax and 100000 human Cmax C: PHH viability associated with
monoculture (blue) and triculture (black) models inclusive of fluid flow were treated with Cyclophosphamide at
concentrations ranging 0.3 human Cmax and 300 human Crmax (x axis). Cell viability (y axis) of PHH (D), HSC (E)
and LECs (F) under static conditions in triculture, treated with Zileuton at concentrations ranging between 0.0001
human Cmax and 100 human Cmax (x axis) Each data point was obtained from n = 3 wells. Data are reported as

mean + SEM.

Overall, the addition of KC to the model did not markedly improve ATP, urea, albumin
and CYP3A4 production relatively to the triculture model, whilst the same parameters
were increased by the introduction of fluid flow in all models and across different
timepoints. Therefore, triculture and monoculture models inclusive of fluid flow were
used for toxicity screening experiments. In particular, the compounds tested were
Zileuton (Fig. 7A), Buspirone (Fig. 7B) and Cyclophosphamide (Fig. 7C), respectively
considered to be most-DILI-concern, ambiguous-DILI-concern and less-DILI-concern
drugs by the U.S. FDA (58). Compounds testing was initiated at timepoints that were
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found to be associated with ascending trends in CYP3A4 production according to the
results obtained from the characterisation experiment. In particular, the drug dosing
protocol began on day 2 and day 4 for monocultures and tricultures respectively. Each
dose of the drug was given every 24 h and the viability of PHH was analysed after a 7
days period. The IC50/Cmax of Zileuton associated to the triculture was 66.18 mM,
which was 1311.3% higher than the monoculture value of 5.047 mM, indicating that
NPCs might exert a protective effect on PHH. A similar effect was observed with
regards to Buspirone, as the IC50/Cmax associated with tricultures was 31807 mM,
220.9% higher than the value associated to monocultures (14402 mM), and with
regards to Cyclophosphamide, as the IC50/Cmax associated with tricultures was 367.8
mM, 335.9% higher than the value obtained from monocultures (109.5 mM).

NS-based models can be disassembled and data can be acquired in relation to each
individual NS, as shown in Figure 7, which depicts the viability of PHH (Fig. 7D), HSC
(Fig. 7E) and LECs (Fig. 7F) in the triculture model upon treatment with Zileuton, in
the static condition. In particular, LECs (IC50/Cmax = 13.83) were more vulnerable to
the toxic effects of Zileuton compared to PHH (IC50/Cmax = 57.1) and HSC (IC50/Cnax
= 99.6).

Discussion

Animal studies encounter significant limitations due to substantial differences in drug
metabolism and pharmacokinetics between animals and humans (36, 37). A recent
survey conducted in the pharmaceutical industry shed light on the limited concordance
between preclinical liver toxicity findings and clinical outcomes (6). This finding is
consistent with prior studies demonstrating the limited predictive capability of
preclinical models for human liver toxicity (4). These studies underscore the limitations
of current preclinical testing paradigms in predicting DILI in humans, particularly for
compounds with poorly characterized dose-response relationships or unique
mechanisms of toxicity. After the U.S. FDA released the Modernization Act 2.0, which
allows the use of alternatives to animal testing to investigate the safety and
effectiveness of a drug, a need for realistic human in vitro models of the liver for DILI
screening has emerged (38). The main advantages of this approach will be the
reduction of both time and costs of drug development, whilst following the principles
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of the “3 Rs” in relation to the replacement, reduction, and refinement of animal studies

in the context of safety and efficacy assessments (39).

In this work, a novel platform called NANOSTACKS™ (NS) was utilized for the
assembly of complex hepatic coculture models in a high-throughput 24-well plate
format inclusive of fluid flow. The models included monocultures of PHH, tricultures of
PHH, HSC and LECs, as well as tetracultures comprising PHH, HSC, LECs and KC.
The models were characterized based on parameters associated with hepatic
function, both in the absence and presence of fluid flow. The tricultures and
monocultures incorporating fluid flow were further evaluated for their reliability in the
context of DILI screening. This evaluation was conducted using three different

compounds to assess the models' effectiveness in predicting hepatic responses.

NS utilized for the development the complex models used in this work include a
polycarbonate body and a transparent porous PET membrane, thus using materials
that do not absorb tested drugs. On the other hand, a considerable number of devices
used for the development of complex coculture models are fabricated using
polydimethylsiloxane (PDMS), which absorb a wide spectrum of biochemical
compounds, thus altering experimental outcomes of DILI screening (40-42).
Additionally, both drug delivery challenges and the presence of a necrotic core are
associated with the use of spheroids, due to their tightly assembled cellular geometry
hampering the diffusion of nutrients and compounds to the innermost cellular layers.
Conversely, in vitro models based on NS allow the unobstructed diffusion of
compounds and nutrients towards all cellular layers (43). Moreover, whilst variability
can be associated with the geometry of spheroids and organoids (43), NS-based
models have high reproducibility due to the standardised dimensions of the individual
NS. Other features of NS also include optical transparency and the possibility to
include fluid flow in the model. Additionally, NS are compatible with SBS-standard 24-
well plates and plate-reader-based assays, in addition to biochemical assays relying
on the use of supernatant, thus making NS a user-friendly platform.

In the tricultures and tetracultures models, the ratios of PHH, LECs, HSCs, and KCs
are congruent with those associated to native liver tissue (44). In particular, whilst most
coculture models include a NPC:PHH ratio of 1:2 to 1:6 (16,45-46 ), in this study a 1:3
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ratio was used, to increase the production of any paracrine signalling molecules

associated to NPC.

Cytochrome P450 enzymes (CYPs), including CYP3A4, are crucial for the first-pass
metabolism of xenobiotics. The inclusion of fluid flow increased CYP3A4 production
relatively to the static condition at multiple timepoints. The CYP3A4 production
observed in all NS-based human liver models was maintained throughout the entire
duration of the study, as observed in MPS-based PHH models (47). Similarly to the
results associated to CYP3A4 production, fluid flow also increased ATP production on

multiple timepoints relatively to the static condition.

Albumin production was detectable across all three models, and was increased by the
inclusion of fluid flow in most timepoints. In particular, in fluid flow-inclusive models,
albumin secretion was found to be within the range associated with the in vivo human
production rate (37-105 pg per day per 1 million hepatocytes) (39,48) on day 7 in
monocultures, on day 11, 14 and 26 in tricultures, and on day 11 in tetracultures,
indicating that these models effectively support hepatocyte functionality. Comparisons
can be drawn with regards to other studies. In the work conducted by Tasnim et al.,
collagen sandwich cultures and spheroids including rat hepatocytes have shown
relatively higher albumin levels compared to NS-based human-relevant models (49).
However, in the same study, it was noted that rat hepatocytes-derived spheroids had
higher albumin production compared to human-derived hepatic spheroids (49), and
therefore the higher production rate associated to rat-derived models as compared to
NS-based human models might be due to the hepatocytes origin rather than to the
substrate onto which cells are cultured. Nonetheless, despite their albumin production,
rat-derived hepatocytes cannot be considered to be as human-relevant as PHH (39).
With regards to studies conducted on human cells, in the study by Rodriguez-
Fernandez et al., PHH cultures on a 2D surface did not reach the human in vivo
albumin production threshold (50) therefore indicating that PHH cultured on NS might
adopt a more human-relevant phenotype as opposed to culture on standard well-
plates. However, comparisons with more advanced culture systems including PHH
spheroids lead to mixed conclusions. In the study conducted by Messner et al.,
spheroids developed using PHH and liver-derived NPC had higher albumin production
rates than NS-based models, over a 5-week period (51). However, in the study
conducted by Esch et al., long-term human liver organoid cultures over 14 days had a
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lower rate of albumin production compared to NS-based, fluid-flow inclusive models
(51). Mixed results can be obtained with regards to comparisons with MPS-based
models, with albumin production being relatively higher or lower than NS-based
models depending on factors such as the timepoint, platform and PHH donor
(14,47,53).

Urea production in all three NS-based, fluid flow-inclusive models was above the
threshold of in vivo human urea production (56-159 pg per day per 1 million
hepatocytes) value up to day 7 (39,54). Urea production in NS hepatic models in this
study was higher compared to models based on rat-derived hepatocytes included in
2D monolayers (54), collagen sandwich cultures (48,55), spheroid models grown for
7 days (48,56) and micropatterned coculture of iPSC-derived human hepatocytes
cultured for 28 days (31), demonstrating the importance of including human-derived
primary cells in realistic in vitro models (52). As discussed in relation to albumin
production, comparisons with studies analysing the urea production in MPS-based
model hold mixed results depending on donor, platform and timepoint (14, 57). In
summary, similarly to MPS platforms, NS-based PHH models inclusive of fluid flow
can replicate human-relevant hepatic markers, such as in vivo albumin production,

whilst being user-friendly and fitting into a 24-well plate format.

To evaluate the capacity of fluid flow-inclusive, NS-based monoculture and triculture
models to be used as a screening platform for DILI, we examined the hepatotoxic
effects of Zileuton, Buspirone and Cyclophosphamide. The PHH included in the
triculture model consistently demonstrated greater resistance to cytotoxicity compared
to the PHH in monoculture models, particularly in response to Zileuton and
Cyclophosphamide. The enhanced PHH resistance to toxicity effects can be
considered an advantageous feature in a DILI screening platform, as it could reduce
the incidence of false positives and allow for more accurate estimations of human toxic
dosages. Additionally, an advantageous feature of NS-based models is the possibility
to analyse separately each NS upon drug testing, in order to assess the cell-specific
cytotoxicity of a compound. In this work, this was demonstrated using the drug
Zileuton. This differential toxicity analysis can be technically challenging in other types
of coculture models, such as 2D mixed cocultures and spheroids.
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In conclusion, NS can be used for the development of in vitro liver models that are
compatible with plate-reader based assays. Multicellular human liver models
developed using NS have shown fluid flow-dependent increases in the production of
ATP, CYP3A4, albumin and urea. NS-based models can be used as DILI screening
platforms, with PHH in triculture models exhibiting greater resistance to toxicity
relatively to monocultures. Therefore, NS represents a promising tool for developing
complex hepatic in vitro models with a view to reduce the high attrition rate associated
with the drug development process. Future work will address the limitations of this
research by expanding the donor pool, increasing the number of drugs tested, and
evaluating their effects on liver functionality. Additionally, NS could also be used for the
development of hepatic disease models, such as nonalcoholic steatohepatitis.
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