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Abstract — Multi-omics data, i.e., genomics, epigenomics, transcriptomics, proteomics,
characterize cellular complex signaling systems from multi-level and multi-view and provide a
holistic view of complex cellular signaling pathways. However, it remains challenging to integrate
and interpret multi-omics data for mining key disease targets and signaling pathways. Graph Al
models have been widely used to analyze graph-structure datasets, and are ideal for integrative
multi-omics data analysis because they can naturally integrate and represent multi-omics data as
a biologically meaningful multi-level signaling graph and interpret multi-omics data via graph node
and edge ranking analysis. However, it is non-trivial for graph-Al model developers to pre-analyze
multi-omics data and convert the data into biologically meaningful graphs, which can be directly
fed into graph-Al models. To resolve this challenge, we developed mosGraphGen (multi-omics
signaling graph generator), generating Multi-omics Signaling graphs (mos-graph) of individual
samples by mapping multi-omics data onto a biologically meaningful multi-level background
signaling network with data normalization by aggregating measurements and aligning to the
reference genome. With mosGraphGen, Al model developers can directly apply and evaluate
their models using these mos-graphs. In the results, mosGraphGen was used and illustrated
using two widely used multi-omics datasets of TCGA and Alzheimer’s disease (AD) samples. The
code of mosGraphGen is open-source and publicly available via GitHub:
https://github.com/FuhailLiAiLab/mosGraphGen
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Introduction

Along with the advancements of next-generation sequencing (NGS) and high-throughput
technologies, multi-omics datasets including genomics, epigenomics, transcriptomics, proteomics,
and metabolomics, have been abundantly generated. The multi-omics datasets characterize the
dysfunctional molecular mechanisms of complex diseases from different aspects. The integrative
analysis of multi-omics data can provide a holistic view of the mysterious and complex signaling
systems of cells from complex diseases. Multi-omics data-driven studies are at the forefront of
precision medicine and healthcare, which are critical for uncovering novel therapeutic targets and
discovering novel and effective drugs and cocktail treatments. Recently, a new Multi-omics for
Health and Disease Consortium was established by the National Institutes of Health (NIH), aiming
to advance multi-omics data generation and integrative analysis for human disease and health

research.

Large-scale multi-omics datasets of different diseases have been generated and publicly
accessible. For example, multi-omics data of >40,000 cancer samples from ~69 primary sites
were generated in The Cancer Genome Atlas (TCGA)"? project, which is a comprehensive
initiative launched by the National Cancer Institute (NCI) and the National Human Genome
Research Institute (NHGRI). The datasets were generated and publicly accessible™® to
characterize and understand the genomic alterations and molecular profiles of >30 cancer
types/subtypes. In addition, to increase the range of characterizing the cancer cell lines, the
Cancer Cell Line Encyclopedia (CCLE)* study provides multi-omics datasets of ~1000 cell lines
for 36 tumor types. The datasets have been widely used to study genetic biomarkers and
associations with drug and cocktail responses. Also, the multi-omics datasets of Alzheimer’s
disease (AD) multi-center cohorts e.g., Mayo Clinic>®, Mount Sinai/JJ Peters VA Medical Center
Brain Bank (MSBB-AD)’, and ROSMAP?, have been generated and publicly accessible via the

synapse website of AD-AMP®'°. Moreover, large-scale multi-omics data, like genetics,
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epigenetics, transcriptomics, proteomics, and metabolomics''="

are being generated by ongoing
NIA-supported exceptional longevity (EL) studies, including the Long-Life Family Study (LLFS),
the Longevity Consortium (LC), the longevity genomics (LG), and the Integrative Longevity Omics
(ILO), to understand and identify protective factors/targets, biological processes, and signaling
pathways that promote health and life span in exceptionally long-lived individuals. These datasets
are valuable for studying the complex molecular mechanisms of complex diseases. Moreover,
single-level multi-omics datasets are generated. The advance in single cell (sc) omics has made
it a powerful technology to investigate the genetic and functional heterogeneity of diverse cell
types within disease microenvironment/niche'*'®. Compared with the tissue-level, single cell (sc)
omics datasets provide a finer view of the complex signaling system within diverse cell types such

as disease and immune cell types, subtypes, and different cell states'°.

Multi-omics data integration and interpretation remain an open problem, and network-based
models are ideal for multi-omics data analysis. Analyzing and interpreting multi-omics data is
complex and computationally challenging. It requires novel and sophisticated bioinformatics and
data integration techniques to uncover meaningful insights. The following section summarizes
related works of multi-omics data analysis and provides a comprehensive review of existing multi-
omics data integration analysis models'®. Specifically, these models were divided into a few
categories: similarity, correlation, Bayesian, multivariate, fusion, and network-based models’®.
Network-based models, such as PARADIGM'" (PAthway Representation and Analysis by Direct
Inference on Graphical Models), are some of the most widely used methods; Visible Neural
Network (VNN'®) models (e.g., DCell" and DrugCell?°) were proposed using large hierarchical
deep learning architecture to model the hierarchical organization of biological processes and to

predict drug response with important biomarkers. However, the signaling cascade level activity

has not been specifically investigated in DCell'® and DrugCell?® models. The recently developed

graph neural network (GNN)?' model is ideal for graph-structure data analysis tasks and multi-
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omics data analysis with its ability to 1) integrate multi-omics data as features of nodes and 2)
model the signaling interactions or signaling cascades among the proteins using protein-protein

2223 or signaling pathways®*?°; 3) the key signaling target identification and pathway

interactions
analysis can be achieved via node and edge ranking in GNN*-*. Here are a few recent studies
that made use of the network-/graph-based analysis for multi-omics data analysis. MOGONET*'
used the omics-specific similarity graphs among samples and used the GCN' to learn patients’
labels from each omics data independently. The MoGCN?>? employed a similar design using the
patient similarity. GCN-SC*® employed GCN to combine single-cell multi-omics data. MOGCL3*

explored the graph contrastive learning to pretrain the GCN on the multi-omics dataset. However,

these models have yet to incorporate signaling pathways.

Computational tools that can generate graph-structure data for individual samples, i.e., mapping
multi-omics data onto a biologically meaningful background signaling graph, are urgently needed
and critical for developing graph-Al models. As introduced above, we found the top two challenges
in graph-Al for multi-omics data analysis are: building a large-scale biologically meaningful
background signaling graph to integrate multi-omics data and developing effective approaches to
rank key signaling targets and pathways from the large-scale background signaling graph. For
many graph-Al developers, particularly those without training in multi-omics data pre-analysis and
integrative analysis, it is a challenging task to map the multi-omics data of individual samples onto
a meaningful network and generate graphs as inputs ready for graph-Al models. This is because
omics-specific pre-analyses are needed to convert the raw data into the standard annotation, like
multi-level gene-protein-promoter-enhancer-associations, for multi-omics data integration; and it
is essential to link these annotations via biologically meaningful interactomes, including protein-
protein interactions, signaling pathways, and transcription factor (TF)-target interactions. To
address these challenges, we developed mosGraphGen, a multi-omics signaling graph generator

that converts multi-omics datasets into graph-structured data, which can then be used as inputs
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for graph-Al models. This facilitates integrative and interpretable multi-omics data analysis, such

as target and edge ranking analysis within graph-Al models.

Open-source: The code of mosGraphGen is open-source and publicly available via GitHub:

https://github.com/FuhaiLiAiLab/mosGraphGen. The following sections provide the details of the

methodology and results.

Methodology and Materials
o Collect the Multi-
omics Data
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Figure 1. Flowchart multi-omics data processing. € Collect various kind of multi-omics data like (Epigenomics, Genomics,
Transcriptomics, Proteomics, etc.). @lntegrating the multi-omics data with clinical data and getting the identical samples across
the datasets. @Converting the rows (probes, gene symbols, gene ids, etc.) into gene-level by aggregating the same
measurements for one gene or by dropping the duplicates for gene synonym. @Aligning genes by reference genome so that
the final annotation for each gene in multi-omics data will be generated. @Unifying the number of genes across multi-omics
datasets and make the data imputation by filling zero values in empty spaces. @Integrating the gene regulatory network with
multi-omics datasets and generating the final multi-omics data with identical number of samples and genes
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Multi-omics data pre-processing

Figure 1 presents a detailed schematic of the pipeline designed to transform extensive multi-
omics datasets into graph-based models. This pipeline encapsulates the sequential and
methodical approach employed to preprocess, integrate, and ultimately represent data from
multi-omics datasets, clinical dataset, reference genome dataset and regulatory network dataset
as coherent networks. This pipeline ensures the systematic standardization with aggregating
and resolving duplicates across multi-level and integration necessary for generating multi-omics
datasets that are critical for advancing our understanding of complex biological systems by
referring to the genome dataset. The specific procedures within the pipeline are outlined in the

following description.

Multi-omics datasets

The multi-omics data can be downloaded from multiple public available datasets. For example,
multi-omics data and their related datasets for TCGA dataset and ROSMAP dataset can be
downloaded from public available dataset. After downloading the multi-omics (epigenomics,
genomics, transcriptomics, proteomics, etc.) datasets from resources, the multi-omics datasets
will be converted into 2-dimensional spaces data frames with columns (sample IDs, sample

names, etc.) of M,, My, M, M,, ... and rows (probes, gene symbols, gene IDs, etc.) of

n®, 1, 0@, n”, .. For example, the methylation data in UCSC dataset have row type of CpG

probes target IDs and ngo) is the number of rows in this methylation dataset. And column type

will be sample IDs and M, is the number of columns in UCSC methylation dataset.

Align multi-omics data with clinical information.
By selecting the multi-omics datasets from the data downloaded, the clinical dataset with M,

samples and K features will be integrated into the multi-omics data. In these clinical datasets,
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information of each sample (like OS (overall survival), PFI (progression-free interval), DSS
(disease-specific survival), DFI (disease-free interval), vital status in UCSC dataset or sex,
age_at_visit, ceradsc, cogdx in ROSMAP), will be used as the labels of each sample for
different tasks. Since different omics data might use different sample information (for example,
OS binary classification value will be used as the label to indicate the survival status for samples
in UCSC dataset and ceradsc types will be used as the label to indicate the AD level for each
patient in ROSMAP study), the step will associate each omics data to the unique sample ID,
which associate with clinical information. Nevertheless, the multi-omics datasets in ROSMAP
have the sample ID recognition problem. Hence, the sample ID mapping (e.g. PT-M5AF to
R1822146 in ROSMAP dataset) system across multi-omics datasets should be constructed to

align identical samples across datasets (check Table 1 for details).

Table 1. Mapping relations example for samples in ROSMAP

individuallD mirna_id mwas_id mrna_id cnvdata_id projid Study
R1822146 b01.127N PT-M5AF 575_120521_2 SM-CTDQQ 20271359 ROS
R3143439 b01.128N PT-BZBT 502_120515_1 SM-CTEMJ 38967303 MAP
R6879714 b01.130C PT-3PTN 660_120530_1 SM-CTEEU 65736039 MAP
R8963331 b01.130N PT-M5GT 607_120523_2 SM-CJEKL 20197364 ROS

However, only a part of sample IDs in different omics data are overlapped, which will reduce the
M. samples to identical number of samples with M in the selected datasets (e.g., epigenomics,
transcriptomics proteomics, etc.), depending on the omics data selection strategies. Also, after
the intersection with the clinical datasets, the number of rows in selected datasets (e.g.,

epigenomics, transcriptomics proteomics, etc.) will be ngo),ngo),nz(,o),etc.

Mapping data to gene-level
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Given that the rows of each multi-omics dataset vary, the methods used for mapping the rows to
gene level are unique for each dataset. In details, each omics data have their special mapping

steps described as follows:

(1) Epigenomics/methylation data pre-analysis

The methylation data will be retrieved from the UCSC XENA DNA methylation (450k) for UCSC
dataset and ROSMAP_arrayMethylation_imputed for ROSMAP dataset. However, the rows in
above methylation datasets are probes to detect the methylation condition in each individual
CpG site. To convert the CpG site level methylation to TSS level, the GEO GPL16304 Platform
will be considered for both datasets, which provides annotations, such as
Distance_closest_TSS and Closest_ TSS_gene_name, for each probe in the methylation (450k)
dataset, mapping probe IDs to their corresponding gene names (e.g., cg00001583 to NR5A2).
Furthermore, the gene name from the GPL16304 file was replaced with the probe ID in the
methylation data by merging with the probe ID file. Hence, the nearest TSS gene name was

incorporated into the new data frame.

In the next step, a preliminary analysis is essential to convert the TSS level methylation to gene
level, focusing specifically on the -6 kb to +3 kb range around transcription start sites (TSS).
This range will be subdivided into five distinct regions and probes located outside this specified
range will be excluded from the analysis, which will convert rows from the CpG site level to

1*5-%%, In detail, promoter regions were delineated into three categories: the core

gene-leve
promoter region (0-50bp upstream of TSS), the proximal promoter region (50-250bp upstream
of TSS), and the distal promoter region (250-3000bp upstream of TSS). Additionally, the area

3000 to 6000 bp upstream of the distal promoter region was defined as the upstream region,
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while the downstream region encompassed the area from the TSS extending to 3000 bp

downstream (check Figure 2 for division of promotor and whole methylation data regions).

According to the defined regions of interest for methylation values, the TSS level methylation

will be transformed into the gene level by using mean aggregation and rows with TSS closest

Promoter region Transcription starting site

® © ® p'ﬁ%wmm
W\&F o ' b ©

-6kbp~-3kbp  -3kbp~-250bp  -250bp~-50bp k—50bp~0bp) \0bp~+3kbp)

upstream  distal promoter proximal region core promoter downstream

Figure 2. Dividing methylation regions into 5 regions

distances outside above regions will be omitted. This resulted in five CSV files, each containing
the average methylation levels for genes in distinct 5 regions as mentioned before. To keep the
dimensions of methylation data in each regions in same format, the unique genes in all the

regions should be integrated and padding the empty value with zero and the number of rows in

methylation data will be n{" for UCSC or ROSMAP dataset.

(2) Genetic variations pre-analysis

For UCSC genome variant datasets, the preprocessed genomic dataset is provided in gene-
level mutation with binary value (0 wild-type for and 1 for non-silent mutation). To remove the
duplicated rows named with same gene, mean values was applied to aggregate the mutations.
With respect to Copy Number Variations data in ROSMAP dataset, we employed the pyensembl
package to assign gene names based on the chromosomal start and end positions (e.g., Start-
End 830676-834492 to gene LINC01128). Given multiple types of variation are defined as
deletions (DEL), duplications (DUP), and multiple copy number variations (MCNV), genome
variants data were summed based on multiple genetic variation by variation types to capture the

cumulative effect of variations of the same gene. In contrast to other multi-omics data, to keep
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the dimensions of genetic variation data in each type of variation in same format, the unique
genes in all the variation types should be integrated and padding the empty value with -1 to

maintain the integrity of the variation dataset. In the end, the output dataset after this processing

steps will have the number of rows as nél) for UCSC or ROSMAP dataset.

(3) Transcriptomics data pre-analysis

For UCSC RNA sequencing datasets, gene names were directly converted using ID mapping table
associated with the gene expression dataset from UCSC website. With regard to ROSMAP RNA
sequencing data, we removed the version suffix from gene IDs in the RNA sequencing data (e.g.,
transforming ENSG00000167578.11 to ENSG00000167578) to adapt version updates in
annotations. Using the official Ensembl dataset as the reference, our sequencing data was refined
by replacing gene IDs with their respective gene names based on the established correspondence
between gene IDs and names within the Ensembl resource. Mean values were calculated for

duplicate gene symbols to ensure a single, representative value for each gene for both UCSC and

®
b

ROSMAP transcriptomics dataset, resulting the number of rows as n
(4) Proteomic data pre-analysis

Regarding proteomics data in ROSMAP dataset, we first discarded protein accession numbers,
focusing solely on gene/protein names (e.g., VAMP1|P23763 to VAMP1) to ensure consistency
with the gene-centric analysis framework of mosGraphGen. In contrast to other omics datasets,
proteomics data in both UCSC and ROSMAP datasets did not require a specific pre-analysis
and mapping phase due to its direct association with gene/protein names. Mean values were

calculated for duplicated genes to ensure a single, representative value for each gene, ending

®

with the number of rows as n, .
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Gene annotations, alignment and padding

After getting the gene-level data for selected multi-omics datasets, the reference genome
dataset (e.g. Ensembl dataset, containing n,.r genes) will be chosen as the standard for
annotating the genes across multi-omics datasets. Therefore, a comprehensive comparison was
conducted with the Ensembl dataset to ensure the coherence and accuracy of our genome
variant dataset. Genes identified in pre-processed multi-omics datasets that were not present in
the Ensembl dataset were excluded from further analysis to ensure that only genes with
recognized genomic annotations were included. Therefore, the selected multi-omics datasets
will contain M identical samples and rows with ngz),ngz) nz(f), ... To unify the number of genes
across multi-omics datasets, padding methods will be applied here with integrating unique
genes in all datasets. Hence, zero values will be filled in the empty spaces to complete this data
imputation method. Specifically, genomics data will be filled with -1 for empty spaces to

distinguish the empty values with the non-mutation conditions. After this padding step, the

number of genes will be identical across all multi-omics datasets with n®) rows.

Mapping data to gene regulatory network

To integrate the gene regulatory network for multi-omics data, the selected gene regulatory
network (e.g. KEGG***°, BioGRID***" or STRING*?) with n,., genes and E,.., protein-protein
interactions will be intersected with the multi-omics datasets. Filtering out the genes not
overlapped with the gene regulatory network, the multi-omics datasets will contain the identical

number of samples M and genes n.

Results

Overview of mosGraphGen
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From a computational perspective, integrating multi-omics data into the graph model involved
several steps. First, multi-omics data from each patient were collected. In the meanwhile, the
related datasets such as clinical datasets as sample labels, reference genome dataset as gene
annotation and gene regulatory network as organizing the gene knowledge graph will also
downloaded and integrated into multi-omics dataset as mentioned in the method part of multi-
omics data pre-processing. However, most of the networks ignored the details of biological
processes such as methylation and transcription. Hence, the detailed version was depicted in
Figure 3 with organizing the promoter regions and transcription activity. Therefore, the re-
organized network could be leveraged as the universal knowledge graph for each patient as the

graph model. The input features for each individual patient were generated by integrating the

Collect the multi-omics data for each patient o Collect and Organize the Gene Regulatory Network

Epigenomics Transcriptomics

=== pobos
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Figure 3. Overview of mosGraphGen. @Multi-omics dataset (Epigenomics, Transcriptomics, Genomics and Proteomics) for each
individual patient will be collected. @The gene regulatory network from KEGG, BioGRID or STRING will be downloaded and
integrate the protein-protein interactions with the promoters and transcriptions process. Hence, the re-organized regulatory network
will incorporate more details and be formalized as the input matrix for graph model. @The collected multi-omics dataset will be
processed and integrate into the matrices format for each individual patient. @ The well-formatted matrices (features and regulatory
network) will be used as the input for various graph neural network models to make the prediction for each individual patient.

@ Downstream analysis will be made by extracting the edge weights from the attention trained from the selected graph neural
network. Hence, the patient-specific analysis of discovering the critical biomarkers will be generated.
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matrices from each omics feature. Utilizing the network and feature inputs, graph neural network
models were trained to predict patient outcomes and identify patient-specific critical biomarkers.
This was achieved by extracting attention scores or edge weights from the trained models. The
complete processes, including data loading, model training, and downstream analysis, is
publicly accessible on GitHub documents:

https://qgithub.com/FuhaiLiAiLab/mosGraphGen/blob/main/README.md

‘B processed-data B npy-data
0 h
read_batch()

th geo_datalist
me y-cor}e-plromotercw XTH{1-5].npy
-distal-promoter.csv xTe[1-5].npy
-downstream.csv
-proximal.csv
-upstream.csv geographloader()
mutation.csv
gene-expression.csv
proteomics.csv graph-data
5-fold Split
dataset_loader
clinical.csv random-label.csv yTr[1-5].npy + datax
split-random-label[1-5].csv yTe[1-5].npy, data.label
Knowledge graph * data.edge_index
D construction ﬁ i
gene-listcsv map-all-gene.csv edge_index.npy
gene-edge.csv all-gene-edge-num.csv

Figure 4. Loading processed data into graph-Al format

Graphical overview of mosGraphGen

Figure 3 shows the architecture of the graph neural network model. The model has input X’ =
(X, x@, xm) . xM|4}, (x(™ e R™*4, 4 € R™"), where M denotes the number of
samples/patients in each input dataset, and n denotes the number of nodes/genes used in the
graph Al model; A is adjacency matrix for number of n nodes for the generated multi-omics
signaling graph; and d is the number of multi-omics features organized in the initial embeddings

in each node. To predict the outcome of all samples Y (Y € RM*%), where C is the number of
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classesand Y = {y®,y@ .,y y@™3 we build a machine learning model f(-) with

f(X,A) =Y, where X denotes all of the data points in the dataset.

Graph-Al ready data format For both UCSC and ROSMAP datasets, the processed datasets
were saved in the special folder in CSV format firstly. Afterwards, the clinical datasets were
considered as the graph prediction labels, i.e., the Y (Y € R®*%) in the methodology part.
Another task was to combine the multi-omics features in each individual CSV file by concatenating
those features into a 3D NumPy array, i.e., X in the math part, which contained information about
each multi-omics feature in all genes for every sample/patient. Since the torch-geometric package
was used here to enhance the computing speed and save more spaces in GPU, the adjacency
matrix was transformed into the edge index format with the dimension of (E, 2), where E was the
number of edges in the proposed graph model or the number of edges/links in the gene regulatory
network. In addition, to validate the proposed model, a 5-fold cross-validation was used. In total,
there were 3592 model input data points for the UCSC dataset and 138 model input data points
for the ROSMAP dataset if all multi-omics datasets are selected. In each fold model, 4 folds of
the data points were used as the training dataset, and the rest 1 fold was used as the testing
dataset. Finally, the processed data with NumPy format (X, Y, E) were loaded with DataLoader
class in torch-geometric to transform them into the machine readable CUDA tensor (check Figure

4 for details).

Multi-omics datasets of TCGA cancer samples

Table 2 presents download links for multi-omics datasets of TCGA cancer samples,
encompassing analyses of DNA methylation patterns, somatic mutations—including Single
Nucleotide Polymorphisms (SNPs) and Insertions/Deletions (INDELs) — as well as gene

expression profiles obtained through RNA sequencing. As to methylation data, the conversion
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from CpG site-level data to gene-level data will be conducted based on the aforementioned

method. The detailed data processing results are described as follows.

Table 2. UCSC Database resources

Database

Description

Link

UCSC Xena DNA

methylation (450k)

DNA methylation dataset generated
using the lllumina Infinium
HumanMethylation450 BeadChip

array.

https://xenabrowser.net/datapages/?dataset=jhu-
usc.edu_PANCAN_HumanMethylation450.betaValue_
whitelisted.tsv.synapse_download_5096262.xena&host
=https%3A%2F %2Fpancanatlas.xenahubs.net&remove
Hub=https%3A%2F %2Fxena.treehouse.gi.ucsc.edu%?3

A443

protein expression - RPPA

Quantifying protein expression

https://xenabrowser.net/datapages/?dataset=TCGA-
RPPA-pancan-

clean.xena&host=https%3A%2F %2Fpancanatlas.xena
hubs.net&removeHub=https%3A%2F %2Fxena.treehou

se.gi.ucsc.edu%3A443

somatic mutation (SNP
and INDEL) - Gene level

non-silent mutation

The TCGA Unified Ensemble "MC3"

gene-level mutation dataset identifies
somatic mutations in various cancers,
marking non-silent mutations (1) that
alter protein sequences and wild type

(0) for no mutations.

https://xenabrowser.net/datapages/?dataset=mc3.v0.2.
8.PUBLIC.nonsilentGene.xena&host=https%3A%2F %2
Fpancanatlas.xenahubs.net&removeHub=https%3A%2

F%2Fxena.treehouse.gi.ucsc.edu%3A443

Gene expression RNAseq

- TOIL RSEM fpkm

gene expression data derived from
RNAseq, processed using the TOIL
pipeline, with expression levels
estimated using RSEM and

normalized as FPKM values.

https://xenabrowser.net/datapages/?dataset=tcga_ RSE
M_gene_fpkm&host=https%3A%2F %2Ftoil.xenahubs.n
et&removeHub=https%3A%2F %2Fxena.treehouse.gi.u

csc.edu%3A443

GEO GPL16304 Platform

lllumina HumanMethylation450
BeadChip [UBC enhanced annotation

v1.0]

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=G

PL16304
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Contains patient clinical features, https://xenabrowser.net/datapages/?dataset=Survival_
Curated clinical data achieved from paper "An Integrated SupplementalTable_S1_20171025_xena_sp&host=http
TCGA Pan-Cancer Clinical Data $%3A%2F %2Fpancanatlas.xenahubs.net&removeHub
Resource (TCGA-CDR) to drive high =https%3A%2F %2Fxena.treehouse.gi.ucsc.edu%3A44
quality survival outcome analytics". 3
Immune subtype Model based immune subtype https://xenabrowser.net/datapages/?dataset=Subtype_|

mmune_Model_Based.txt&host=https%3A%2F %2Fpan
canatlas.xenahubs.net&removeHub=https%3A%2F %2

Fxena.treehouse.gi.ucsc.edu%3A443

Molecular subtype Phenotype data https://xenabrowser.net/datapages/?dataset=TCGASub
type.20170308.tsv&host=https%3A%2F %2Fpancanatla
s.xenahubs.net&removeHub=https%3A%2F %2Fxena.tr

eehouse.gi.ucsc.edu%3A443

sample type and primary sample type and primary disease https://xenabrowser.net/datapages/?dataset=TCGA_ph
disease information combined from all enotype_denseDataOnlyDownload.tsv&host=https%3A
individual TCGA cohorts %2F%2Fpancanatlas.xenahubs.net&removeHub=https

%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443

As detailed in method above, raw multi-omics datasets in UCSC are collected and loaded into
pandas dataframe (check Table 3 for rows and columns information). The methylation dataset
encompasses 396065 probes, targeting the CpG sites of genes across. Since the regions of
interest around TSS were predefined as mentioned in Figure 2, rows with TSS distances that
fell outside these areas were excluded and each CpG probe was assigned with corresponding
TSS closest gene name, reducing the number of rows from 396065 to 242313. By splitting the
methylation files into 5 files according to predefined promoter regions, the number of rows
(genes) will be 5638, 17797, 16169, 10139, and 21757 for the upstream region, distal promoter
region, proximal promoter region, core promoter region, and downstream promoter region. After
the unique genes in all the regions were integrated and padded, the final number of rows were

24396 for all 5 files.
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For UCSC genome variant datasets, values of duplicated genes were averaged as described in
method part to represent the effect of variations of the same gene which reducing the number of
rows from 40543 to 40490. With respect to UCSC RNA sequencing datasets, mean values were
calculated for duplicate genes to ensure a single, representative value for each gene, resulting
number of rows from 60498 to 49432. The UCSC protein expression was also checked with
duplicated gene names problem and found no duplication. Therefore, the number of rows

(proteins) remains as initial number as 258 (check Figure 5 for details).

Furthermore, the reference datasets (clinical features, Ensembl dataset, gene regulatory network)
were collected and integrated with processed multi-omics dataset for providing labels, gene
annotation and knowledge graph construction). Firstly, an examination of four clinical feature
datasets sourced from the UCSC databases was conducted. The concatenation of these datasets
yielded a composite dataset encompassing 6,385 samples and 22 features, following the
exclusion of any features exhibiting greater than 30% missing values. In multi-omics dataset, the
number of samples are 9664, 9104, 10535 and 258 in methylation, mutation, RNASeq and protein
expression dataset. Afterwards, the common samples/patients across multi-omics datasets and
concatenated clinical dataset were intersected, leaving M common samples, where M = 3592 if
all of the multi-omics datasets were utilized (see Figure 6A and Table 3).

What’s more, Ensembl dataset was leveraged to annotate gene in multi-omics data, resulting the
dimensions for these files were methylation dataset (18520 genes, M samples), protein
expression dataset (87 genes, M samples), RNASeq dataset (33248 genes, M samples), and
mutation dataset (30275 genes, M samples). To obtain the union of genes from multi-omics data,
all unique genes were collected across the datasets, resulting in a total of 34,366 genes. Then,
the genes used to construct the knowledge graph were collected by intersecting genes in multi-

omics datasets and gene regulatory network (KEGG?*4° (2241 genes, 21041 edges),
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BioGRID®#! (19349 genes, 472643 edges) and STRING*? (17179 genes, 841068 edges)),

ending with the number of gene entities as 2117, 16359 and 15923 (see Figure 6B).

Table 3. Dimensions of the UCSC multi-omics data before and after the data processing

Database Before process After
Methylation dataset (396065 probes, 9664 samples) (2117 genes in KEGG,
Mutation dataset (40543 genes, 9104 samples) 16539 genes in BioGRID,
RNASeq dataset (60498 gene IDs, 10535 samples) 15923 genes in STRING,
Protein expression dataset (258 genes, 7754 samples) M samples)
Processed clinical dataset (6385 samples, 44 features) (22 features, M samples)
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Figure 5. Flowchart of TCGA cancer multi-omics data analysis. (a) The Methylation Dataset undergoes probe-to-gene mapping,
with a focus on the -6 kb to +3 kb range around the TSS, followed by division into five genomic regions. (b) The Protein
Expression Dataset includes 258 genes. (c) The RNAseq Dataset consists of 60498 probes. (d) The Mutation Dataset is unified
by gene identifiers across 40543 genes. These datasets are then integrated to form a unified gene set. (e) Duplicate genes in
each dataset are unified by taking mean values (f) All the datasets are filtered using Ensembl Dataset. (g)Missing values are
imputed with zeros or negative ones, as appropriate. (h) Integration with the KEGG database refines the data to 2117 common
genes. (i) Clinical dataset preprocessing involves dropping or imputing missing values, leading to M common samples for multi-
omic analysis.
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gene regulatory network

Multi-omics datasets of Alzheimer’s Disease (AD)

Table 3 presents the multi-omics datasets and the corresponding dataset's download links. The
mutation data, derived from “Whole genome sequencing—based copy number variations reveal
novel pathways and targets in Alzheimer's disease”, were categorized into three distinct mutation
types. For the RNA-seq data, null values will be replaced with 0 to ensure the data is meaningful

and suitable for modeling purposes. A crucial step in the preprocessing stage was the unification
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of genes across each dataset. Once all processes were completed, all datasets were collectively

processed. The detailed pre-analysis pipeline is described as follows.

Table 3. ROSMAP Database resources

Database Description Link
ROSMAP_arrayMethylatio | Methylation data was generated on https://www.synapse.org/#!Synapse:syn3168763
n_imputed prefrontal cortex samples collected

from 708 individuals using the lllumina
HumanMethylation450 BeadChip

C2.median_polish_correct | Data generated from isobaric TMT https://www.synapse.org/#!Synapse:syn21266454
ed_log2(Proteomics) peptide labeling of ROSMAP brain
tissues were submitted to the AD
Knowledge Portal in two rounds.
Round 1 (submitted in 2018) provides
data from 400 individuals. Round 2
(submitted in 2022) provides data from

an additional 210 individuals.

ROSMAP_RNAseq_FPK Samples were extracted using https://www.synapse.org/#!Synapse:syn3505720
M_gene Qiagen's miRNeasy mini kit (cat. no.
217004) and the RNase free DNase
Set (cat. no. 79254), and quantified by
Nanodrop and quality was evaluated
by Agilent Bioanalyzer.
ROSMAP.CNV.Matrix(Mut | The TCGA Unified Ensemble "MC3" https://lwww.synapse.org/#!Synapse:syn26263118

ation) gene-level mutation dataset identifies

somatic mutations in various cancers,
marking non-silent mutations (1) that
alter protein sequences and wild type

(0) for no mutations.

GEO GPL16304 Platform lllumina HumanMethylation450 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=G
BeadChip [UBC enhanced annotation PL16304
v1.0]

ROSMAP_clinical Contains patient clinical features. A https://www.synapse.org/#!Synapse:syn3191087

large amount of clinical and
pathological data have been collected
from individuals in the ROSMAP
studies. The remainder of the clinical
and pathological data may be
accessed directly from the Rush

Alzheimer's Disease Center.
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Described in method aforementioned, raw multi-omics datasets in ROSMAP are collected and
loaded into pandas dataframe (check Table 4 for rows and columns information). The
methylation dataset encompasses 420132 probes, targeting the CpG sites of genes. Since the
regions of interest around TSS were predefined as mentioned in Figure 2, rows with TSS
distances that fell outside these areas were excluded and each CpG probe was assigned with
corresponding TSS closest gene name reducing the number of rows from 420132 to 249506. By
splitting the methylation files into 5 files according to predefined promoter regions, the number
of rows (genes) will be 15812, 20577, 18238, 9871, and 7128 for the upstream region, distal
promoter region, proximal promoter region, core promoter region, and downstream promoter
region. After the unique genes in all the regions were integrated and padded, the final number of

rows were 23280 for all 5 files.

With respect to Copy Number Variations dataset, data were aggregated with summation for
duplicate genes to capture the effect of variations across multiple instances of the same gene.
To split and unify data, genome variants data were categorized based on the nature of the
variation—deletions (DEL), duplications (DUP), and multiple copy number variations (mMCNV).
And there were three final aggregated files for ‘DEL’, ‘DUP’, and ‘mCNV’ with number of rows
with 2483, 1096 and 3726. By identifying and adding all unique gene names to each file, the
three files had the same format, generating 6423 unique genes for all 3 types of variation. For
any duplicate genes in ROSMAP RNA sequencing data, mean values were calculated to ensure
a single, representative value for each gene, resulting number of rows from 55889 to 37898.
The proteomics in the ROSMAP dataset was also examined for the problem of duplicated gene
names, and gene uniqueness was ensured by merging duplicates, reducing the gene count

from 8817 to 8252 (check Figure 7 for details).
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Furthermore, the reference datasets (clinical features, Ensembl dataset, gene regulatory network)
were collected and integrated with processed multi-omics dataset for providing labels, gene
annotation and knowledge graph construction). The common samples/patients across multi-
omics datasets and concatenated clinical dataset were intersected, leaving M common samples,

where M = 138 if all of the multi-omics datasets were utilized (see Figure 8A and Table 5).

Additionally, the Ensembl dataset was utilized to annotate genes in multi-omics data, which led
to the following dimensions: methylation dataset (17606 genes, M samples), Copy Number
Variations dataset (6419 genes, M samples), RNASeq dataset (37898 genes, M samples), and
proteomics dataset (7817 genes, M samples). The union of genes from the multi-omics datasets
was achieved by aggregating all unique genes across the datasets, yielding a total of 38,686
genes. Subsequently, genes for constructing the knowledge graph were selected through the
intersection of multi-omics datasets with gene regulatory networks—specifically, (KEGG?**4°
(2241 genes, 21041 edges), BioGRID*#! (19349 genes, 472643 edges) and STRING*? (17179
genes, 841068 edges)), resulting the number of gene entities as 2144, 16237 and 15861 (see

Figure 8B).
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Figure 7. Flowchart of AD multi-omic data processing. (a) The Methylation Dataset undergoes probe-to-gene mapping, with a
focus on the -6 kb to +3 kb range around the TSS, followed by division into five genomic regions. (b) The Proteomics Dataset
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database refines the data to 2144 common genes. (i) Clinical dataset preprocessing involves dropping or imputing missing
values, leading to M common samples for multi-omic analysis.
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Table 4. Dimensions of the ROSMAP multi-omics data before and after the data processing

Database Before process After

Methylation dataset (420132 probes, 740 samples) (2144 genes in KEGG,
Copy number variations dataset (9902 chroms, 1127 samples) 16237 genes in BioGRID,
RNAseq dataset (55889 gene IDs, 640 samples) 15861 genes in STRING,

Proteomics dataset (8817 genes, 400 samples) M samples)

Clinical dataset (16 features, 3584 samples) (14 features, M samples)
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Discussion

Our study introduced mosGraphGen, a novel computational tool that enables the generation of
multi-omics signaling graphs for each sample by mapping the multi-omics data onto a biologically
relevant multi-level signaling network. With mosGraphGen, Al model developers can seamlessly
apply and assess their models using these multi-omics signaling graphs. We conducted
evaluations of mosGraphGen using multi-omics datasets from both cancer and Alzheimer's
disease (AD) samples. Furthermore, we have made the code, examples, and tutorials for
mosGraphGen open-source and publicly accessible for the research community via GitHub:
https://github.com/FuhaiLiAiLab/mosGraphGen. The following sections provide the details of the
methodology and results. Users can build the mosGraphs using the two widely used multi-omics

datasets following the instructions for their own down-stream analysis.

Given the exploratory nature of this study, it is important to acknowledge the inherent limitations
that present opportunities for in-depth exploration in subsequent research endeavors. For
instance, there is potential for enhancing the biological significance of the background signaling
network to improve the biological relevance of multi-omics data integration. It is also important to
biologically or experimentally validate these mosGraphs in specific studies, which can further
indicate the reliability and utility, and further improve the model. Furthermore, we aspire to develop
an interactive tool that allows users to generate mosGraphs without the need for coding,
particularly tailored for well-known and widely used multi-omics datasets and data platforms.
There are a few potential future improvements and extensions of mosGraphGen model. For
example, the nucleic acid sequence can be included to indicate the specific and fine-level genetic
mutations and epigenetic changes. It will increase the computational cost dramatically. Also, the
metabolomic data is critical to understand disease pathogenesis. Thus, it is also important to
integrate metabolomic data using the known-protein metabolites interactions or their co-

expressions to identify the synergistic effects of the multi-omic and metabolomic features.
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Moreover, the single cell omic datasets have been generated to understand disease molecular
mechanisms at single cell level and potential cell-cell interactions. Thus, it is interesting and
important to expand the mosGraphs for single-cell omics data. However, it's important to note that
dealing with a substantially larger number of mosGraphs for single-cell multi-omics data, given
the presence of tens of thousands of single cells in individual studies, poses a challenge in terms
of data storage and analysis. In addition to the numeric multi-omic data, the known knowledge or
descriptive/text information of individual proteins, like the annotation and description of the
functions of individual proteins, can be added. The large language models (LLMs) can be used to
convert the description/text information into numeric feature to be combined with the numeric omic
features for the target and signaling pathway inference/mining from the mosGraphs. Therefore,
novel graph Al models that can analyze the large-scale mosGraphs and identify the essential

disease associated targets and signaling pathways are needed.
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