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Abstract – Multi-omics data, i.e., genomics, epigenomics, transcriptomics, proteomics, 

characterize cellular complex signaling systems from multi-level and multi-view and provide a 

holistic view of complex cellular signaling pathways. However, it remains challenging to integrate 

and interpret multi-omics data for mining key disease targets and signaling pathways. Graph AI 

models have been widely used to analyze graph-structure datasets, and are ideal for integrative 

multi-omics data analysis because they can naturally integrate and represent multi-omics data as 

a biologically meaningful multi-level signaling graph and interpret multi-omics data via graph node 

and edge ranking analysis. However, it is non-trivial for graph-AI model developers to pre-analyze 

multi-omics data and convert the data into biologically meaningful graphs, which can be directly 

fed into graph-AI models. To resolve this challenge, we developed mosGraphGen (multi-omics 

signaling graph generator), generating Multi-omics Signaling graphs (mos-graph) of individual 

samples by mapping multi-omics data onto a biologically meaningful multi-level background 

signaling network with data normalization by aggregating measurements and aligning to the 

reference genome. With mosGraphGen, AI model developers can directly apply and evaluate 

their models using these mos-graphs. In the results, mosGraphGen was used and illustrated 

using two widely used multi-omics datasets of TCGA and Alzheimer’s disease (AD) samples. The 

code of mosGraphGen is open-source and publicly available via GitHub:  

https://github.com/FuhaiLiAiLab/mosGraphGen 
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Introduction 

Along with the advancements of next-generation sequencing (NGS) and high-throughput 

technologies, multi-omics datasets including genomics, epigenomics, transcriptomics, proteomics, 

and metabolomics, have been abundantly generated. The multi-omics datasets characterize the 

dysfunctional molecular mechanisms of complex diseases from different aspects. The integrative 

analysis of multi-omics data can provide a holistic view of the mysterious and complex signaling 

systems of cells from complex diseases. Multi-omics data-driven studies are at the forefront of 

precision medicine and healthcare, which are critical for uncovering novel therapeutic targets and 

discovering novel and effective drugs and cocktail treatments. Recently, a new Multi-omics for 

Health and Disease Consortium was established by the National Institutes of Health (NIH), aiming 

to advance multi-omics data generation and integrative analysis for human disease and health 

research. 

 

Large-scale multi-omics datasets of different diseases have been generated and publicly 

accessible. For example, multi-omics data of >40,000 cancer samples from ~69 primary sites 

were generated in The Cancer Genome Atlas (TCGA)1,2 project, which is a comprehensive 

initiative launched by the National Cancer Institute (NCI) and the National Human Genome 

Research Institute (NHGRI). The datasets were generated and publicly accessible1,3 to 

characterize and understand the genomic alterations and molecular profiles of >30 cancer 

types/subtypes. In addition, to increase the range of characterizing the cancer cell lines, the 

Cancer Cell Line Encyclopedia (CCLE)4 study provides multi-omics datasets of ~1000 cell lines 

for 36 tumor types. The datasets have been widely used to study genetic biomarkers and 

associations with drug and cocktail responses. Also, the multi-omics datasets of Alzheimer’s 

disease (AD) multi-center cohorts e.g., Mayo Clinic5,6, Mount Sinai/JJ Peters VA Medical Center 

Brain Bank (MSBB-AD)7, and ROSMAP8, have been generated and publicly accessible via the 

synapse website of AD-AMP9,10. Moreover, large-scale multi-omics data, like genetics, 
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epigenetics, transcriptomics, proteomics, and metabolomics11–13 are being generated by ongoing 

NIA-supported exceptional longevity (EL) studies, including the Long-Life Family Study (LLFS), 

the Longevity Consortium (LC), the longevity genomics (LG), and the Integrative Longevity Omics 

(ILO), to understand and identify protective factors/targets, biological processes, and signaling 

pathways that promote health and life span in exceptionally long-lived individuals. These datasets 

are valuable for studying the complex molecular mechanisms of complex diseases. Moreover, 

single-level multi-omics datasets are generated. The advance in single cell (sc) omics has made 

it a powerful technology to investigate the genetic and functional heterogeneity of diverse cell 

types within disease microenvironment/niche14,15. Compared with the tissue-level, single cell (sc) 

omics datasets provide a finer view of the complex signaling system within diverse cell types such 

as disease and immune cell types, subtypes, and different cell states14,15.   

 

Multi-omics data integration and interpretation remain an open problem, and network-based 

models are ideal for multi-omics data analysis. Analyzing and interpreting multi-omics data is 

complex and computationally challenging. It requires novel and sophisticated bioinformatics and 

data integration techniques to uncover meaningful insights. The following section summarizes 

related works of multi-omics data analysis and provides a comprehensive review of existing multi-

omics data integration analysis models16. Specifically, these models were divided into a few 

categories: similarity, correlation, Bayesian, multivariate, fusion, and network-based models16. 

Network-based models, such as PARADIGM17 (PAthway Representation and Analysis by Direct 

Inference on Graphical Models), are some of the most widely used methods; Visible Neural 

Network (VNN18) models (e.g., DCell19 and DrugCell20) were proposed using large hierarchical 

deep learning architecture to model the hierarchical organization of biological processes and to 

predict drug response with important biomarkers. However, the signaling cascade level activity 

has not been specifically investigated in DCell19 and DrugCell20 models. The recently developed 

graph neural network (GNN)21 model is ideal for graph-structure data analysis tasks and multi-
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omics data analysis with its ability to 1) integrate multi-omics data as features of nodes and 2) 

model the signaling interactions or signaling cascades among the proteins using protein-protein 

interactions22,23 or signaling pathways24,25; 3) the key signaling target identification and pathway 

analysis can be achieved via node and edge ranking in GNN26–30. Here are a few recent studies 

that made use of the network-/graph-based analysis for multi-omics data analysis. MOGONET31 

used the omics-specific similarity graphs among samples and used the GCN14 to learn patients’ 

labels from each omics data independently. The MoGCN32 employed a similar design using the 

patient similarity. GCN-SC33 employed GCN to combine single-cell multi-omics data. MOGCL34 

explored the graph contrastive learning to pretrain the GCN on the multi-omics dataset. However, 

these models have yet to incorporate signaling pathways. 

 

Computational tools that can generate graph-structure data for individual samples, i.e., mapping 

multi-omics data onto a biologically meaningful background signaling graph, are urgently needed 

and critical for developing graph-AI models. As introduced above, we found the top two challenges 

in graph-AI for multi-omics data analysis are: building a large-scale biologically meaningful 

background signaling graph to integrate multi-omics data and developing effective approaches to 

rank key signaling targets and pathways from the large-scale background signaling graph. For 

many graph-AI developers, particularly those without training in multi-omics data pre-analysis and 

integrative analysis, it is a challenging task to map the multi-omics data of individual samples onto 

a meaningful network and generate graphs as inputs ready for graph-AI models. This is because 

omics-specific pre-analyses are needed to convert the raw data into the standard annotation, like 

multi-level gene-protein-promoter-enhancer-associations, for multi-omics data integration; and it 

is essential to link these annotations via biologically meaningful interactomes, including protein-

protein interactions, signaling pathways, and transcription factor (TF)-target interactions. To 

address these challenges, we developed mosGraphGen, a multi-omics signaling graph generator 

that converts multi-omics datasets into graph-structured data, which can then be used as inputs 
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for graph-AI models. This facilitates integrative and interpretable multi-omics data analysis, such 

as target and edge ranking analysis within graph-AI models.  

 

Open-source: The code of mosGraphGen is open-source and publicly available via GitHub: 

https://github.com/FuhaiLiAiLab/mosGraphGen. The following sections provide the details of the 

methodology and results. 

 

Methodology and Materials 

 

 
Figure 1. Flowchart multi-omics data processing. ❶Collect various kind of multi-omics data like (Epigenomics, Genomics, 
Transcriptomics, Proteomics, etc.).  ❷Integrating the multi-omics data with clinical data and getting the identical samples across 
the datasets.  ❸Converting the rows (probes, gene symbols, gene ids, etc.) into gene-level by aggregating the same 
measurements for one gene or by dropping the duplicates for gene synonym.  ❹Aligning genes by reference genome so that 
the final annotation for each gene in multi-omics data will be generated.  ❺Unifying the number of genes across multi-omics 
datasets and make the data imputation by filling zero values in empty spaces.  ❻Integrating the gene regulatory network with 
multi-omics datasets and generating the final multi-omics data with identical number of samples and genes 
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Multi-omics data pre-processing 

Figure 1 presents a detailed schematic of the pipeline designed to transform extensive multi-

omics datasets into graph-based models. This pipeline encapsulates the sequential and 

methodical approach employed to preprocess, integrate, and ultimately represent data from 

multi-omics datasets, clinical dataset, reference genome dataset and regulatory network dataset 

as coherent networks. This pipeline ensures the systematic standardization with aggregating 

and resolving duplicates across multi-level and integration necessary for generating multi-omics 

datasets that are critical for advancing our understanding of complex biological systems by 

referring to the genome dataset. The specific procedures within the pipeline are outlined in the 

following description. 

 

Multi-omics datasets  

The multi-omics data can be downloaded from multiple public available datasets. For example, 

multi-omics data and their related datasets for TCGA dataset and ROSMAP dataset can be 

downloaded from public available dataset. After downloading the multi-omics (epigenomics, 

genomics, transcriptomics, proteomics, etc.) datasets from resources, the multi-omics datasets 

will be converted into 2-dimensional spaces data frames with columns (sample IDs, sample 

names, etc.) of 𝑀' , 𝑀(, 𝑀) , 𝑀*, … and rows (probes, gene symbols, gene IDs, etc.) of 

𝑛'
(,), 𝑛(

(,), 𝑛)
(,), 𝑛*

(,), …   For example, the methylation data in UCSC dataset have row type of CpG 

probes target IDs and 𝑛'
(,) is the number of rows in this methylation dataset. And column type 

will be sample IDs and 𝑀' is the number of columns in UCSC methylation dataset.  

 

Align multi-omics data with clinical information. 

By selecting the multi-omics datasets from the data downloaded, the clinical dataset with 𝑀. 

samples and 𝐾 features will be integrated into the multi-omics data. In these clinical datasets, 
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information of each sample (like OS (overall survival), PFI (progression-free interval), DSS 

(disease-specific survival), DFI (disease-free interval), vital status in UCSC dataset or sex, 

age_at_visit, ceradsc, cogdx in ROSMAP), will be used as the labels of each sample for 

different tasks. Since different omics data might use different sample information (for example, 

OS binary classification value will be used as the label to indicate the survival status for samples 

in UCSC dataset and ceradsc types will be used as the label to indicate the AD level for each 

patient in ROSMAP study), the step will associate each omics data to the unique sample ID, 

which associate with clinical information. Nevertheless, the multi-omics datasets in ROSMAP 

have the sample ID recognition problem. Hence, the sample ID mapping (e.g. PT-M5AF to 

R1822146 in ROSMAP dataset) system across multi-omics datasets should be constructed to 

align identical samples across datasets (check Table 1 for details). 

Table 1. Mapping relations example for samples in ROSMAP 

individualID mirna_id mwas_id mrna_id cnvdata_id projid Study 

R1822146 b01.127N PT-M5AF 575_120521_2 SM-CTDQQ 20271359 ROS 

R3143439 b01.128N PT-BZBT 502_120515_1 SM-CTEMJ 38967303 MAP 

R6879714 b01.130C PT-3PTN 660_120530_1 SM-CTEEU 65736039 MAP 

R8963331 b01.130N PT-M5GT 607_120523_2 SM-CJEKL 20197364 ROS 

… … .. … … … … 

 

However, only a part of sample IDs in different omics data are overlapped, which will reduce the 

𝑀. samples to identical number of samples with 𝑀 in the selected datasets (e.g., epigenomics, 

transcriptomics proteomics, etc.), depending on the omics data selection strategies. Also, after 

the intersection with the clinical datasets, the number of rows in selected datasets (e.g., 

epigenomics, transcriptomics proteomics, etc.) will be 𝑛'
(,), 𝑛)

(,), 𝑛*
(,),etc. 

 

Mapping data to gene-level  
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Given that the rows of each multi-omics dataset vary, the methods used for mapping the rows to 

gene level are unique for each dataset. In details, each omics data have their special mapping 

steps described as follows: 

 

(1) Epigenomics/methylation data pre-analysis 

The methylation data will be retrieved from the UCSC XENA DNA methylation (450k) for UCSC 

dataset and ROSMAP_arrayMethylation_imputed for ROSMAP dataset. However, the rows in 

above methylation datasets are probes to detect the methylation condition in each individual 

CpG site. To convert the CpG site level methylation to TSS level, the GEO GPL16304 Platform 

will be considered for both datasets, which provides annotations, such as 

Distance_closest_TSS and Closest_TSS_gene_name, for each probe in the methylation (450k) 

dataset, mapping probe IDs to their corresponding gene names (e.g., cg00001583 to NR5A2). 

Furthermore, the gene name from the GPL16304 file was replaced with the probe ID in the 

methylation data by merging with the probe ID file. Hence, the nearest TSS gene name was 

incorporated into the new data frame.  

 

In the next step, a preliminary analysis is essential to convert the TSS level methylation to gene 

level, focusing specifically on the -6 kb to +3 kb range around transcription start sites (TSS). 

This range will be subdivided into five distinct regions and probes located outside this specified 

range will be excluded from the analysis, which will convert rows from the CpG site level to 

gene-level35–39. In detail, promoter regions were delineated into three categories: the core 

promoter region (0-50bp upstream of TSS), the proximal promoter region (50-250bp upstream 

of TSS), and the distal promoter region (250-3000bp upstream of TSS). Additionally, the area 

3000 to 6000 bp upstream of the distal promoter region was defined as the upstream region, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 28, 2024. ; https://doi.org/10.1101/2024.05.15.594360doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.15.594360
http://creativecommons.org/licenses/by-nc-nd/4.0/


while the downstream region encompassed the area from the TSS extending to 3000 bp 

downstream (check Figure 2 for division of promotor and whole methylation data regions).  

 

According to the defined regions of interest for methylation values, the TSS level methylation 

will be transformed into the gene level by using mean aggregation and rows with TSS closest 

distances outside above regions will be omitted. This resulted in five CSV files, each containing 

the average methylation levels for genes in distinct 5 regions as mentioned before. To keep the 

dimensions of methylation data in each regions in same format, the unique genes in all the 

regions should be integrated and padding the empty value with zero and the number of rows in 

methylation data will be 𝑛'
(/) for UCSC or ROSMAP dataset. 

 

(2) Genetic variations pre-analysis  

For UCSC genome variant datasets, the preprocessed genomic dataset is provided in gene-

level mutation with binary value (0 wild-type for and 1 for non-silent mutation). To remove the 

duplicated rows named with same gene, mean values was applied to aggregate the mutations. 

With respect to Copy Number Variations data in ROSMAP dataset, we employed the pyensembl 

package to assign gene names based on the chromosomal start and end positions (e.g., Start-

End 830676-834492 to gene LINC01128). Given multiple types of variation are defined as 

deletions (DEL), duplications (DUP), and multiple copy number variations (mCNV), genome 

variants data were summed based on multiple genetic variation by variation types to capture the 

cumulative effect of variations of the same gene. In contrast to other multi-omics data, to keep 

 
Figure 2. Dividing methylation regions into 5 regions 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 28, 2024. ; https://doi.org/10.1101/2024.05.15.594360doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.15.594360
http://creativecommons.org/licenses/by-nc-nd/4.0/


the dimensions of genetic variation data in each type of variation in same format, the unique 

genes in all the variation types should be integrated and padding the empty value with -1 to 

maintain the integrity of the variation dataset. In the end, the output dataset after this processing 

steps will have the number of rows as 𝑛(
(/) for UCSC or ROSMAP dataset. 

 

(3) Transcriptomics data pre-analysis 

For UCSC RNA sequencing datasets, gene names were directly converted using ID mapping table 

associated with the gene expression dataset from UCSC website. With regard to ROSMAP RNA 

sequencing data, we removed the version suffix from gene IDs in the RNA sequencing data (e.g., 

transforming ENSG00000167578.11 to ENSG00000167578) to adapt version updates in 

annotations. Using the official Ensembl dataset as the reference, our sequencing data was refined 

by replacing gene IDs with their respective gene names based on the established correspondence 

between gene IDs and names within the Ensembl resource. Mean values were calculated for 

duplicate gene symbols to ensure a single, representative value for each gene for both UCSC and 

ROSMAP transcriptomics dataset, resulting the number of rows as 𝑛)
(/). 

 

(4) Proteomic data pre-analysis 

Regarding proteomics data in ROSMAP dataset, we first discarded protein accession numbers, 

focusing solely on gene/protein names (e.g., VAMP1|P23763 to VAMP1) to ensure consistency 

with the gene-centric analysis framework of mosGraphGen. In contrast to other omics datasets, 

proteomics data in both UCSC and ROSMAP datasets did not require a specific pre-analysis 

and mapping phase due to its direct association with gene/protein names. Mean values were 

calculated for duplicated genes to ensure a single, representative value for each gene, ending 

with the number of rows as 𝑛*
(/). 
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Gene annotations, alignment and padding  

After getting the gene-level data for selected multi-omics datasets, the reference genome 

dataset (e.g. Ensembl dataset, containing 𝑛0'1 genes) will be chosen as the standard for 

annotating the genes across multi-omics datasets. Therefore, a comprehensive comparison was 

conducted with the Ensembl dataset to ensure the coherence and accuracy of our genome 

variant dataset. Genes identified in pre-processed multi-omics datasets that were not present in 

the Ensembl dataset were excluded from further analysis to ensure that only genes with 

recognized genomic annotations were included. Therefore, the selected multi-omics datasets 

will contain 𝑀 identical samples and rows with 𝑛'
(2), 𝑛)

(2), 𝑛*
(2), … To unify the number of genes 

across multi-omics datasets, padding methods will be applied here with integrating unique 

genes in all datasets. Hence, zero values will be filled in the empty spaces to complete this data 

imputation method. Specifically, genomics data will be filled with -1 for empty spaces to 

distinguish the empty values with the non-mutation conditions. After this padding step, the 

number of genes will be identical across all multi-omics datasets with 𝑛(3) rows. 

 

Mapping data to gene regulatory network  

To integrate the gene regulatory network for multi-omics data, the selected gene regulatory 

network (e.g. KEGG24,40, BioGRID23,41 or STRING42) with 𝑛0'( genes and 𝐸0'( protein-protein 

interactions will be intersected with the multi-omics datasets. Filtering out the genes not 

overlapped with the gene regulatory network, the multi-omics datasets will contain the identical 

number of samples 𝑀 and genes 𝑛.  

 

Results 

Overview of mosGraphGen 
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From a computational perspective, integrating multi-omics data into the graph model involved 

several steps. First, multi-omics data from each patient were collected. In the meanwhile, the 

related datasets such as clinical datasets as sample labels, reference genome dataset as gene 

annotation and gene regulatory network as organizing the gene knowledge graph will also 

downloaded and integrated into multi-omics dataset as mentioned in the method part of multi-

omics data pre-processing. However, most of the networks ignored the details of biological 

processes such as methylation and transcription. Hence, the detailed version was depicted in 

Figure 3 with organizing the promoter regions and transcription activity. Therefore, the re-

organized network could be leveraged as the universal knowledge graph for each patient as the 

graph model. The input features for each individual patient were generated by integrating the 

Figure 3. Overview of mosGraphGen. ❶Multi-omics dataset (Epigenomics, Transcriptomics, Genomics and Proteomics) for each 
individual patient will be collected.  ❷The gene regulatory network from KEGG, BioGRID or STRING will be downloaded and 
integrate the protein-protein interactions with the promoters and transcriptions process. Hence, the re-organized regulatory network 
will incorporate more details and be formalized as the input matrix for graph model. ❸The collected multi-omics dataset will be 
processed and integrate into the matrices format for each individual patient. ❹The well-formatted matrices (features and regulatory 
network) will be used as the input for various graph neural network models to make the prediction for each individual patient. 
❺Downstream analysis will be made by extracting the edge weights from the attention trained from the selected graph neural 
network. Hence, the patient-specific analysis of discovering the critical biomarkers will be generated. 
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matrices from each omics feature. Utilizing the network and feature inputs, graph neural network 

models were trained to predict patient outcomes and identify patient-specific critical biomarkers. 

This was achieved by extracting attention scores or edge weights from the trained models. The 

complete processes, including data loading, model training, and downstream analysis, is 

publicly accessible on GitHub documents: 

https://github.com/FuhaiLiAiLab/mosGraphGen/blob/main/README.md 

 

Graphical overview of mosGraphGen 

Figure 3 shows the architecture of the graph neural network model. The model has input 𝒳 =

)𝑋(/), 	𝑋(2), … , 𝑋(4), … , 𝑋(5),𝐴.	, /𝑋(4) ∈ ℝ6×8 , 𝐴 ∈ ℝ6×62, where 𝑀 denotes the number of 

samples/patients in each input dataset, and 𝑛 denotes the number of nodes/genes used in the 

graph AI model; 𝐴 is adjacency matrix for number of 𝑛 nodes for the generated multi-omics 

signaling graph; and 𝑑 is the number of multi-omics features organized in the initial embeddings 

in each node. To predict the outcome of all samples  𝒴	(𝒴 ∈ ℝ5×.), where 𝐶 is the number of 

 
Figure 4. Loading processed data into graph-AI format 
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classes and 𝒴 = {𝑦(/), 𝑦(2), … , 𝑦(4), … , 𝑦(5)}, we build a machine learning model 𝑓(⋅) with 

𝑓(𝒳, 𝐴) = 𝒴, where 𝒳 denotes all of the data points in the dataset. 

 

Graph-AI ready data format  For both UCSC and ROSMAP datasets, the processed datasets 

were saved in the special folder in CSV format firstly. Afterwards, the clinical datasets were 

considered as the graph prediction labels, i.e., the 𝒴	(𝒴 ∈ ℝ5×.)  in the methodology part. 

Another task was to combine the multi-omics features in each individual CSV file by concatenating 

those features into a 3D NumPy array, i.e., 𝒳 in the math part, which contained information about 

each multi-omics feature in all genes for every sample/patient. Since the torch-geometric package 

was used here to enhance the computing speed and save more spaces in GPU, the adjacency 

matrix was transformed into the edge index format with the dimension of (𝐸, 2), where 𝐸 was the 

number of edges in the proposed graph model or the number of edges/links in the gene regulatory 

network. In addition, to validate the proposed model, a 5-fold cross-validation was used. In total, 

there were 3592 model input data points for the UCSC dataset and 138 model input data points 

for the ROSMAP dataset if all multi-omics datasets are selected. In each fold model, 4 folds of 

the data points were used as the training dataset, and the rest 1 fold was used as the testing 

dataset. Finally, the processed data with NumPy format (𝒳,𝒴, 𝐸) were loaded with DataLoader 

class in torch-geometric to transform them into the machine readable CUDA tensor (check Figure 

4 for details). 

 

Multi-omics datasets of TCGA cancer samples 

Table 2 presents download links for multi-omics datasets of TCGA cancer samples, 

encompassing analyses of DNA methylation patterns, somatic mutations—including Single 

Nucleotide Polymorphisms (SNPs) and Insertions/Deletions (INDELs) — as well as gene 

expression profiles obtained through RNA sequencing. As to methylation data, the conversion 
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from CpG site-level data to gene-level data will be conducted based on the aforementioned 

method. The detailed data processing results are described as follows.  

 

Table 2. UCSC Database resources 

Database Description Link 

UCSC Xena DNA 

methylation (450k) 

 

DNA methylation dataset generated 

using the Illumina Infinium 

HumanMethylation450 BeadChip 

array. 

https://xenabrowser.net/datapages/?dataset=jhu- 

usc.edu_PANCAN_HumanMethylation450.betaValue_

whitelisted.tsv.synapse_download_5096262.xena&host

=https%3A%2F%2Fpancanatlas.xenahubs.net&remove

Hub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3

A443 

protein expression - RPPA Quantifying protein expression https://xenabrowser.net/datapages/?dataset=TCGA-

RPPA-pancan-

clean.xena&host=https%3A%2F%2Fpancanatlas.xena

hubs.net&removeHub=https%3A%2F%2Fxena.treehou

se.gi.ucsc.edu%3A443 

somatic mutation (SNP 

and INDEL) - Gene level 

non-silent mutation 

 

The TCGA Unified Ensemble "MC3" 

gene-level mutation dataset identifies 

somatic mutations in various cancers, 

marking non-silent mutations (1) that 

alter protein sequences and wild type 

(0) for no mutations. 

https://xenabrowser.net/datapages/?dataset=mc3.v0.2.

8.PUBLIC.nonsilentGene.xena&host=https%3A%2F%2

Fpancanatlas.xenahubs.net&removeHub=https%3A%2

F%2Fxena.treehouse.gi.ucsc.edu%3A443 

Gene expression RNAseq 

- TOIL RSEM fpkm 

 

 

gene expression data derived from 

RNAseq, processed using the TOIL 

pipeline, with expression levels 

estimated using RSEM and 

normalized as FPKM values. 

https://xenabrowser.net/datapages/?dataset=tcga_RSE

M_gene_fpkm&host=https%3A%2F%2Ftoil.xenahubs.n

et&removeHub=https%3A%2F%2Fxena.treehouse.gi.u

csc.edu%3A443 

GEO GPL16304 Platform 

 

Illumina HumanMethylation450 

BeadChip [UBC enhanced annotation 

v1.0] 

 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=G

PL16304 
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Curated clinical data 

 

Contains patient clinical features, 

achieved from paper "An Integrated 

TCGA Pan-Cancer Clinical Data 

Resource (TCGA-CDR) to drive high 

quality survival outcome analytics". 

https://xenabrowser.net/datapages/?dataset=Survival_

SupplementalTable_S1_20171025_xena_sp&host=http

s%3A%2F%2Fpancanatlas.xenahubs.net&removeHub

=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A44

3 

Immune subtype Model based immune subtype https://xenabrowser.net/datapages/?dataset=Subtype_I

mmune_Model_Based.txt&host=https%3A%2F%2Fpan

canatlas.xenahubs.net&removeHub=https%3A%2F%2

Fxena.treehouse.gi.ucsc.edu%3A443 

Molecular subtype Phenotype data https://xenabrowser.net/datapages/?dataset=TCGASub

type.20170308.tsv&host=https%3A%2F%2Fpancanatla

s.xenahubs.net&removeHub=https%3A%2F%2Fxena.tr

eehouse.gi.ucsc.edu%3A443 

sample type and primary 

disease 

sample type and primary disease 

information combined from all 

individual TCGA cohorts 

https://xenabrowser.net/datapages/?dataset=TCGA_ph

enotype_denseDataOnlyDownload.tsv&host=https%3A

%2F%2Fpancanatlas.xenahubs.net&removeHub=https

%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443 

 

As detailed in method above, raw multi-omics datasets in UCSC are collected and loaded into 

pandas dataframe (check Table 3 for rows and columns information). The methylation dataset 

encompasses 396065 probes, targeting the CpG sites of genes across. Since the regions of 

interest around TSS were predefined as mentioned in Figure 2, rows with TSS distances that 

fell outside these areas were excluded and each CpG probe was assigned with corresponding 

TSS closest gene name, reducing the number of rows from 396065 to 242313. By splitting the 

methylation files into 5 files according to predefined promoter regions, the number of rows 

(genes) will be 5638, 17797, 16169, 10139, and 21757 for the upstream region, distal promoter 

region, proximal promoter region, core promoter region, and downstream promoter region. After 

the unique genes in all the regions were integrated and padded, the final number of rows were 

24396 for all 5 files.  
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For UCSC genome variant datasets, values of duplicated genes were averaged as described in 

method part to represent the effect of variations of the same gene which reducing the number of 

rows from 40543 to 40490. With respect to UCSC RNA sequencing datasets, mean values were 

calculated for duplicate genes to ensure a single, representative value for each gene, resulting 

number of rows from 60498 to 49432. The UCSC protein expression was also checked with 

duplicated gene names problem and found no duplication. Therefore, the number of rows 

(proteins) remains as initial number as 258 (check Figure 5 for details). 

 

Furthermore, the reference datasets (clinical features, Ensembl dataset, gene regulatory network) 

were collected and integrated with processed multi-omics dataset for providing labels, gene 

annotation and knowledge graph construction). Firstly, an examination of four clinical feature 

datasets sourced from the UCSC databases was conducted. The concatenation of these datasets 

yielded a composite dataset encompassing 6,385 samples and 22 features, following the 

exclusion of any features exhibiting greater than 30% missing values. In multi-omics dataset, the 

number of samples are 9664, 9104, 10535 and 258 in methylation, mutation, RNASeq and protein 

expression dataset. Afterwards, the common samples/patients across multi-omics datasets and 

concatenated clinical dataset were intersected, leaving 𝑀 common samples, where 𝑀 = 3592 if 

all of the multi-omics datasets were utilized (see Figure 6A and Table 3). 

What’s more, Ensembl dataset was leveraged to annotate gene in multi-omics data, resulting the 

dimensions for these files were methylation dataset (18520 genes, 𝑀  samples), protein 

expression dataset (87 genes, 𝑀 samples), RNASeq dataset (33248 genes, 𝑀 samples), and 

mutation dataset (30275 genes, 𝑀 samples). To obtain the union of genes from multi-omics data, 

all unique genes were collected across the datasets, resulting in a total of 34,366 genes. Then, 

the genes used to construct the knowledge graph were collected by intersecting genes in multi-

omics datasets and gene regulatory network (KEGG24,40 (2241 genes, 21041 edges), 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 28, 2024. ; https://doi.org/10.1101/2024.05.15.594360doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.15.594360
http://creativecommons.org/licenses/by-nc-nd/4.0/


BioGRID23,41 (19349 genes, 472643 edges) and STRING42 (17179 genes, 841068 edges)), 

ending with the number of gene entities as 2117, 16359 and 15923 (see Figure 6B). 

Table 3. Dimensions of the UCSC multi-omics data before and after the data processing 

Database Before process After 

Methylation dataset (396065 probes, 9664 samples) (2117 genes in KEGG, 

16539 genes in BioGRID, 

15923 genes in STRING, 

𝑀 samples) 

Mutation dataset (40543 genes, 9104 samples) 

RNASeq dataset (60498 gene IDs, 10535 samples) 

Protein expression dataset (258 genes, 7754 samples) 

Processed clinical dataset (6385 samples, 44 features) (22 features, 𝑀 samples) 
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Figure 5. Flowchart of TCGA cancer multi-omics data analysis. (a) The Methylation Dataset undergoes probe-to-gene mapping, 
with a focus on the -6 kb to +3 kb range around the TSS, followed by division into five genomic regions. (b) The Protein 
Expression Dataset includes 258 genes. (c) The RNAseq Dataset consists of 60498 probes. (d) The Mutation Dataset is unified 
by gene identifiers across 40543 genes. These datasets are then integrated to form a unified gene set. (e) Duplicate genes in 
each dataset are unified by taking mean values (f) All the datasets are filtered using Ensembl Dataset. (g)Missing values are 
imputed with zeros or negative ones, as appropriate. (h) Integration with the KEGG database refines the data to 2117 common 
genes. (i) Clinical dataset preprocessing involves dropping or imputing missing values, leading to 𝑀 common samples for multi-
omic analysis. 
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Multi-omics datasets of Alzheimer’s Disease (AD) 

Table 3 presents the multi-omics datasets and the corresponding dataset's download links. The 

mutation data, derived from “Whole genome sequencing–-based copy number variations reveal 

novel pathways and targets in Alzheimer's disease”, were categorized into three distinct mutation 

types. For the RNA-seq data, null values will be replaced with 0 to ensure the data is meaningful 

and suitable for modeling purposes. A crucial step in the preprocessing stage was the unification 

 
Figure 6. Details for intersection for samples gene regulatory network. (a)The intersection of omics data with clinical 
samples, finally 𝑀 samples across all omics data. (b) The intersection of the multi-omic data with different options of 
gene regulatory network 
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of genes across each dataset. Once all processes were completed, all datasets were collectively 

processed. The detailed pre-analysis pipeline is described as follows. 

Table 3. ROSMAP Database resources 
Database Description Link 

ROSMAP_arrayMethylatio

n_imputed 

 

Methylation data was generated on 

prefrontal cortex samples collected 

from 708 individuals using the Illumina 

HumanMethylation450 BeadChip 

https://www.synapse.org/#!Synapse:syn3168763     

 

C2.median_polish_correct

ed_log2(Proteomics) 

Data generated from isobaric TMT 

peptide labeling of ROSMAP brain 

tissues were submitted to the AD 

Knowledge Portal in two rounds. 

Round 1 (submitted in 2018) provides 

data from 400 individuals. Round 2 

(submitted in 2022) provides data from 

an additional 210 individuals. 

https://www.synapse.org/#!Synapse:syn21266454 

ROSMAP_RNAseq_FPK

M_gene 

 

 

Samples were extracted using 

Qiagen's miRNeasy mini kit (cat. no. 

217004) and the RNase free DNase 

Set (cat. no. 79254), and quantified by 

Nanodrop and quality was evaluated 

by Agilent Bioanalyzer. 

https://www.synapse.org/#!Synapse:syn3505720 

ROSMAP.CNV.Matrix(Mut

ation) 

 

The TCGA Unified Ensemble "MC3" 

gene-level mutation dataset identifies 

somatic mutations in various cancers, 

marking non-silent mutations (1) that 

alter protein sequences and wild type 

(0) for no mutations. 

https://www.synapse.org/#!Synapse:syn26263118 

 

GEO GPL16304 Platform 

 

Illumina HumanMethylation450 

BeadChip [UBC enhanced annotation 

v1.0] 

 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=G

PL16304 

 

ROSMAP_clinical Contains patient clinical features. A 

large amount of clinical and 

pathological data have been collected 

from individuals in the ROSMAP 

studies. The remainder of the clinical 

and pathological data may be 

accessed directly from the Rush 

Alzheimer's Disease Center. 

https://www.synapse.org/#!Synapse:syn3191087 
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Described in method aforementioned, raw multi-omics datasets in ROSMAP are collected and 

loaded into pandas dataframe (check Table 4 for rows and columns information). The 

methylation dataset encompasses 420132 probes, targeting the CpG sites of genes. Since the 

regions of interest around TSS were predefined as mentioned in Figure 2, rows with TSS 

distances that fell outside these areas were excluded and each CpG probe was assigned with 

corresponding TSS closest gene name reducing the number of rows from 420132 to 249506. By 

splitting the methylation files into 5 files according to predefined promoter regions, the number 

of rows (genes) will be 15812, 20577, 18238, 9871, and 7128 for the upstream region, distal 

promoter region, proximal promoter region, core promoter region, and downstream promoter 

region. After the unique genes in all the regions were integrated and padded, the final number of 

rows were 23280 for all 5 files.  

 

With respect to Copy Number Variations dataset, data were aggregated with summation for 

duplicate genes to capture the effect of variations across multiple instances of the same gene. 

To split and unify data, genome variants data were categorized based on the nature of the 

variation—deletions (DEL), duplications (DUP), and multiple copy number variations (mCNV). 

And there were three final aggregated files for ‘DEL’, ‘DUP’, and ‘mCNV’ with number of rows 

with 2483, 1096 and 3726. By identifying and adding all unique gene names to each file, the 

three files had the same format, generating 6423 unique genes for all 3 types of variation. For 

any duplicate genes in ROSMAP RNA sequencing data, mean values were calculated to ensure 

a single, representative value for each gene, resulting number of rows from 55889 to 37898. 

The proteomics in the ROSMAP dataset was also examined for the problem of duplicated gene 

names, and gene uniqueness was ensured by merging duplicates, reducing the gene count 

from 8817 to 8252 (check Figure 7 for details). 
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Furthermore, the reference datasets (clinical features, Ensembl dataset, gene regulatory network) 

were collected and integrated with processed multi-omics dataset for providing labels, gene 

annotation and knowledge graph construction). The common samples/patients across multi-

omics datasets and concatenated clinical dataset were intersected, leaving 𝑀 common samples, 

where 𝑀 = 138 if all of the multi-omics datasets were utilized (see Figure 8A and Table 5). 

 

Additionally, the Ensembl dataset was utilized to annotate genes in multi-omics data, which led 

to the following dimensions: methylation dataset (17606 genes, 𝑀  samples), Copy Number 

Variations dataset (6419 genes, 𝑀 samples), RNASeq dataset (37898 genes, 𝑀 samples), and 

proteomics dataset (7817 genes, 𝑀 samples). The union of genes from the multi-omics datasets 

was achieved by aggregating all unique genes across the datasets, yielding a total of 38,686 

genes. Subsequently, genes for constructing the knowledge graph were selected through the 

intersection of multi-omics datasets with gene regulatory networks—specifically, (KEGG24,40 

(2241 genes, 21041 edges), BioGRID23,41 (19349 genes, 472643 edges) and STRING42 (17179 

genes, 841068 edges)), resulting the number of gene entities as 2144, 16237 and 15861 (see 

Figure 8B). 
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  Figure 7. Flowchart of AD multi-omic data processing. (a) The Methylation Dataset undergoes probe-to-gene mapping, with a 
focus on the -6 kb to +3 kb range around the TSS, followed by division into five genomic regions. (b) The Proteomics Dataset 
includes 8817 genes. (c) The RNAseq Dataset consists of 55889 probes (d) The Copy Number Variations Dataset undergoes 
chromosome position-to-gene mapping, followed by division into three types. These datasets are then integrated to form a 
unified gene set. (e) Duplicate genes in each dataset are unified by taking mean values (f) All the datasets are filtered using 
Ensembl Dataset. (g) Missing values are imputed with zeros or negative ones, as appropriate. (h) Integration with the KEGG 
database refines the data to 2144 common genes. (i) Clinical dataset preprocessing involves dropping or imputing missing 
values, leading to 𝑀 common samples for multi-omic analysis. 
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Table 4. Dimensions of the ROSMAP multi-omics data before and after the data processing 

Database Before process After 

Methylation dataset (420132 probes, 740 samples) (2144 genes in KEGG, 

16237 genes in BioGRID, 

15861 genes in STRING, 

𝑀 samples) 

Copy number variations dataset (9902 chroms, 1127 samples) 

RNAseq dataset (55889 gene IDs, 640 samples) 

Proteomics dataset (8817 genes, 400 samples) 

Clinical dataset (16 features, 3584 samples) (14 features, 𝑀 samples) 

 

 
Figure 8. Details for intersection for samples gene regulatory network. (a)The intersection of omics data with clinical 
samples, finally 𝑀 samples across all omics data. (b) The intersection of the multi-omic data with different options of 
gene regulatory network 
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Discussion 

Our study introduced mosGraphGen, a novel computational tool that enables the generation of 

multi-omics signaling graphs for each sample by mapping the multi-omics data onto a biologically 

relevant multi-level signaling network. With mosGraphGen, AI model developers can seamlessly 

apply and assess their models using these multi-omics signaling graphs. We conducted 

evaluations of mosGraphGen using multi-omics datasets from both cancer and Alzheimer's 

disease (AD) samples. Furthermore, we have made the code, examples, and tutorials for 

mosGraphGen open-source and publicly accessible for the research community via GitHub: 

https://github.com/FuhaiLiAiLab/mosGraphGen. The following sections provide the details of the 

methodology and results. Users can build the mosGraphs using the two widely used multi-omics 

datasets following the instructions for their own down-stream analysis. 

 

Given the exploratory nature of this study, it is important to acknowledge the inherent limitations 

that present opportunities for in-depth exploration in subsequent research endeavors. For 

instance, there is potential for enhancing the biological significance of the background signaling 

network to improve the biological relevance of multi-omics data integration. It is also important to 

biologically or experimentally validate these mosGraphs in specific studies, which can further 

indicate the reliability and utility, and further improve the model. Furthermore, we aspire to develop 

an interactive tool that allows users to generate mosGraphs without the need for coding, 

particularly tailored for well-known and widely used multi-omics datasets and data platforms. 

There are a few potential future improvements and extensions of mosGraphGen model. For 

example, the nucleic acid sequence can be included to indicate the specific and fine-level genetic 

mutations and epigenetic changes. It will increase the computational cost dramatically. Also, the 

metabolomic data is critical to understand disease pathogenesis. Thus, it is also important to 

integrate metabolomic data using the known-protein metabolites interactions or their co-

expressions to identify the synergistic effects of the multi-omic and metabolomic features. 
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Moreover, the single cell omic datasets have been generated to understand disease molecular 

mechanisms at single cell level and potential cell-cell interactions. Thus, it is interesting and 

important to expand the mosGraphs for single-cell omics data. However, it's important to note that 

dealing with a substantially larger number of mosGraphs for single-cell multi-omics data, given 

the presence of tens of thousands of single cells in individual studies, poses a challenge in terms 

of data storage and analysis. In addition to the numeric multi-omic data, the known knowledge or 

descriptive/text information of individual proteins, like the annotation and description of the 

functions of individual proteins, can be added. The large language models (LLMs) can be used to 

convert the description/text information into numeric feature to be combined with the numeric omic 

features for the target and signaling pathway inference/mining from the mosGraphs. Therefore, 

novel graph AI models that can analyze the large-scale mosGraphs and identify the essential 

disease associated targets and signaling pathways are needed. 
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