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Abstract 10 

Red algae and the secondary symbiotic algae that engulfed a red alga as an 11 

endosymbiont are called red-lineage algae. They comprise key marine taxa including diatoms, 12 

Haptophyta, and Cryptophyta. Several photosystem (PS) I–light-harvesting complex I 13 

(LHCI) structures have been reported from red-lineage algae —two red algae 14 

Cyanidioschyzon merolae (Cyanidiophyceae), Porphyridium purpureum (Rhodophytina), a 15 

diatom Chaetoceros gracilis and a Cryptophyte Chroomonas placoidea. Here, we clarified 16 

the orthologous relation of LHCIs in red-lineage algae by combining a detailed phylogenetic 17 

analysis of LHCIs and the structural information of PSI–LHCI. We found that the seven Lhcr 18 

groups in LHCI are conserved in Rhodophytina; Furthermore, during both genome reduction 19 

in Cyanidioschyzonales of red algae and endosymbiosis leading to Cryptophyta, some LHCIs 20 

were lost and replaced by existing or differentiated LHCIs. Especially in Cryptophyta, 21 

uniquely diversified Lhcrs form three sets of heterotrimers contributed to the expansion of 22 

the antenna size of PSI, supporting the modern ecological success of this taxon. We 23 

denominated “neolocalization” to these examples of flexible reorganization of LHCIs. This 24 

study provides new insights into the evolutionary process of LHCIs associated with PSI in 25 

the red-lineage algae and clarifies the need for both molecular phylogeny and structural 26 

information to elucidate the plausible evolutionary history of LHCI.  27 
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Introduction 28 

Oxygenic photosynthetic organisms, such as cyanobacteria, algae, and terrestrial 29 

plants, play an essential role in capturing sunlight, producing organic matter, and maintaining 30 

life on Earth both underwater and on land. Among the various eukaryotic photosynthetic 31 

organisms, algae and terrestrial plants acquired chloroplasts through endosymbiosis with 32 

cyanobacteria (Delwiche, 1999). These photosynthetic organisms possessing primary 33 

plastids form Archaeplastida, and are divided into three groups, Rhodophyta (red algae), 34 

Viridiplantae (green algae and terrestrial plants), and Glaucophyta. Several secondary or 35 

tertial endosymbiotic events led to diversified eukaryotic algae. For instance, red-lineage 36 

secondary endosymbiotic algae acquired plastids derived from red algae and include key 37 

marine taxa including diatoms and Haptophytes, which dominate in modern oceans (Pierella 38 

Karlusich et al., 2020).  39 

To enable more efficient light capture, photosynthetic organisms possess peripheral 40 

light-harvesting antennas around the two photosystems. In eukaryotic photosynthetic 41 

organisms, these antennas are protein complexes holding light-harvesting pigments, which 42 

transfer the excitation energy acquired from the light to the photosystems through excitation 43 

energy transfer (Croce and van Amerongen, 2020). Red algae have a phycobilisome, a 44 

superficial light-harvesting antenna complex on the stromal side of photosystem (PS) II, and 45 

two-dimensionally coordinated transmembrane light-harvesting pigment-protein complexes 46 

(LHCs) associated with PSI (Pi et al., 2018; You et al., 2023; Wolfe et al., 1994; Marquardt 47 

and Rhiel, 1997). LHCs bind various types of chlorophylls and carotenoids as light-48 

harvesting pigments and serve as light-harvesting antennas in red and green algae, land plants, 49 
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red-lineage secondary endosymbiotic algae, green lineage secondary endosymbiotic algae, 50 

and dinoflagellates (Koziol et al., 2007; Büchel, 2015).  51 

Red algal LHCs contain chlorophyll a and zeaxanthin as a carotenoid, while most 52 

LHCs of red-lineage secondary endosymbiotic algae include chlorophyll a and c; carotenoids 53 

depend on the taxonomic group. In fact, LHCs are named after their binding carotenoids 54 

(Büchel, 2015). For example, diatoms and Haptophytes contain fucoxanthin or 19’-55 

hexanoyloxy fucoxanthin as major carotenoid in their LHCs, thus their LHCs are called 56 

fucoxanthin chlorophyll a/c-binding proteins (FCPs). Among red-lineage secondary 57 

endosymbiotic algae, diatoms utilize FCPs as peripheral antennas for both PS I and II (Nagao 58 

et al., 2020; Nagao et al., 2019; Nagao et al., 2022; Xu et al., 2020; Wang et al., 2019). 59 

Similar light-harvesting systems probably exist in other Stramenopiles and Haptophytes. At 60 

least, Eustigmatophyceae, belonging to Stramenopiles, utilize LHCs for light-harvesting for 61 

both PS (Umetani et al., 2018).  62 

Based on molecular phylogeny, the LHCs of red-lineage algae are divided into six 63 

subfamilies: Lhcr, Lhcz, Lhcq, Lhcf, Lhcx, and CgLhcr9 homologs (Kumazawa et al., 2022). 64 

Some Stramenopiles, including Eustigmatophyceae and Phaeophyceae, as well as Chromera 65 

from Alveolate have another LHC subfamily called red-shifted Chromera light-harvesting 66 

proteins (Red-CLH) (Bína et al., 2014; Umetani et al., 2018). Red algae only have the Lhcr 67 

subfamily, Stramenopiles and Haptophytes possess all six subfamilies of the red-lineage 68 

LHCs, while Cryptophytes only have Lhcr and Lhcz subfamilies. 69 

Recently, the advancement of cryoelectron microscopy structural analysis allowed 70 

discerning the structures of the PS–peripheral light-harvesting antenna supercomplexes of 71 
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red-lineage algae. In red algae, the Cyanidioschyzon merolae PSI–LHCI supercomplex (Pi et 72 

al., 2018) and the Porphyridium purpureum phycobilisome–PSII–PSI–LHCI megacomplex 73 

(You et al., 2023) have been reported. In red-lineage secondary endosymbiotic algae, 74 

molecular-level structural PS models have been reported in diatoms and a Cryptophyte. For 75 

instance, the diatom Chaetoceros gracilis PSI–FCPI supercomplexes (Nagao et al., 2020; Xu 76 

et al., 2020) and C. gracilis PSII–FCPII supercomplexes (Nagao et al., 2019; Wang et al., 77 

2019; Nagao et al., 2022) have been reported. In addition, PSII–FCPII structures from centric 78 

diatoms Thalassiosira pseudonana and Cyclotella meneghiniana were recently reported (S., 79 

Zhao et al., 2023; Feng et al., 2023). The LHCs of Cryptophytes are called alloxanthin-80 

chlorophyll a/c-binding proteins (ACPs); the structure of the Chroomonas placoidea PSI–81 

ACPI has been recently reported (Zhao et al., 2023).  82 

With the identification of LHCs in the PSI–LHCI structural models recently reported, 83 

it is now possible to evaluate the evolutionary process of the molecular assembly of LHCI 84 

associated with PSI. The molecular assembly model of the red-lineage PSI–LHCI has been 85 

discussed only based on spatial arrangements of the subunits present in the structures (Bai et 86 

al., 2021; L.,-S., Zhao et al., 2023). However, an evolutionary model of the photosynthetic 87 

supercomplex should comprise both molecular phylogeny and structural information. Such 88 

an integrative understanding of the complex structures and molecular phylogenies of 89 

primitive species has been attempted in the green lineage (Neilson and Durnford, 2010). Loss 90 

and gain of LHC subfamilies during the evolutionary history of the red-lineage algae were 91 

investigated through phylogenetic analysis of diatom LHCs (Kumazawa et al. 2022). A red-92 

lineage chlorophyll a/b-binding-like protein (RedCAP), a distinctive family of the LHC 93 
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superfamily, is conserved in PSI–LHCI of Rhodophytina red algae, Cryptophytes, and 94 

diatoms (Engelken et al., 2010; Sturm et al., 2013; Xu et al., 2020; You et al., 2023; L.,-S., 95 

Zhao et al., 2023). However, the evolutionary model of the red algal LHCI and RedCAP 96 

remains incomplete because of the limited structural information, insufficient genome and 97 

transcriptome information (until recently), and lack of detailed molecular phylogeny at the 98 

ortholog level (Hoffman et al., 2011; Dittami et al., 2010).  99 

In this study, we performed a molecular phylogenetic analysis to clarify the orthology 100 

of LHCIs in red-lineage algae using recently reported genomes and transcriptomic data. The 101 

detailed molecular phylogeny of the red-lineage LHCI, specifically Lhcrs, is combined with 102 

new PSI–LHCI structural models from red and red-lineage algae. This has uncovered 103 

conservation, diversification, and differentiation of the molecular assembly of LHCIs, 104 

especially in red algae and Cryptophytes. Based on our analyses, we propose a new 105 

evolutionary trajectory of LHCI proteins associated with PSI in red-lineage algae.  106 
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Results  107 

Molecular Phylogeny of Red Algal LHCI 108 

Red algae possess two types of membrane-spanning light-harvesting pigment-protein 109 

complexes in PSI; LHCs that belong to the Lhcr subfamily and a RedCAP, part of the LHC 110 

superfamily (Engelken et al., 2010; Sturm et al., 2013; You et al., 2023). In contrast, in PSII 111 

they have a large membrane-peripheral light-harvesting protein supercomplex, known as 112 

phycobilisome. To elucidate the molecular phylogeny of the LHC family in PSI, Lhcr 113 

sequences from a broad lineage of red algae were collected minimizing as much as possible 114 

any taxonomic biases.  115 

Ancient Rhodophytina is the original endosymbiont of red-lineage secondary 116 

endosymbiotic algae (Fig. 1) (Yoon et al., 2002; Kim et al., 2017). After secondary 117 

endosymbiosis, the earliest divergent event divided red algae into two major groups: 118 

Rhodophytina and Cyanidiophyceae (or Cyanidiophytina) (Yang et al., 2016; Park et al., 119 

2023): The former includes classes such as Porphyridiophyceae, Stylonematophyceae, and 120 

Compsopogonophyceae with the subclades of Rhodellophyceae, Bangiophyceae, and 121 

Florideophyceae (Yang et al., 2016; Borg et al., 2023). The latter group, Cyanidiophyceae, 122 

contains the orders Galdieriales, Cavernulicolales, Cyanidiales, and Cyanidioschyzonales 123 

(Park et al., 2023). Among them, Galdieriales is considered as the earliest diverged order. 124 

Genomes or transcriptomes are available for all orders except Cavernulicolales; further, LHC 125 

sequences could be obtained through homology searches. Additionally, we obtained the 126 

sequences of putative LHCI (Lhca) associated with PSI in Prasinoderma coloniale—a 127 

member of the Prasinodermophyta class representing the earliest divergence within the 128 
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primary green lineage— (Li et al., 2020). 129 

Next, a molecular phylogenetic tree was constructed using the obtained Lhcr 130 

sequences from red algae and Lhca sequences from the green alga P. coloniale (Fig. 2). There 131 

are seven groups of Lhcrs (group I–VII) from red algae belonging to Rhodophytina, including 132 

Porphyridium purpureum. Each group contains one P. purpureum Lhcr; Group VII, III, and 133 

VI containing PpLhcr3, PpLhcr4, and PpLhcr6 show monophyly, and Group III and VI are 134 

sister groups to group VII. However, the distribution of Cyanidiophyceae Lhcrs is different: 135 

Galdieriales, belonging to Cyanidiophyceae, has Lhcrs classified into six including group I 136 

and IV–VII in addition to the Galdieriales-specific clade. This unique clade is a sister clade 137 

to group I. Galdieriales lacks group II and -III LHCs. Cyanidiales and Cyanidioschyzonales 138 

have only three orthologs to those of Rhodophytina, and these Lhcrs –Cyanidioschyzon 139 

merolae Lhcr1 (hereafter CmLhcr1), CmLhcr2, and CmLhcr3– which belong to group V, VI 140 

and VII, respectively.  141 

 142 

PSI–LHCI in “Primitive Red Algae” Cyanidioschyzonales  143 

In a previous structural model of PSI–LHCI for Cyanidioschyzon merolae belonging to 144 

Cyanidioschyzonales (Pi et al., 2018), there were five LHCs attached to PSI, including two 145 

copies of CmLhcr1 (r1 and r1*) and CmLhcr2 (r2 and r2*) in addition to one CmLhcr3 (r3) 146 

(Fig. 3). The structure of the phycobilisome–PSII–PSI–LHCI megacomplex (Fig. 3) has been 147 

reported in another red alga, P. purpureum belonging to Porphyridiophyceae (You et al., 148 

2023); it has eight LHCIs (PpLhcr1–7 and RedCAP) around PSI. 149 

From the stromal side, in the P. purpureum PSI–LHCI part, positions of eight molecular 150 
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LHCI species (r1–r7, and RedCAP) are labeled counterclockwise as positions 0–7 (p0–p7) 151 

(Fig. 3). Accordingly, the positions of LHCI in C. merolae is labeled as p0, p1, and p5–p7 for 152 

two CmLhcr1 (r1 and r1*), two CmLhcr2 (r2 and r2*), and CmLhcr3 (r3) (Pi et al., 2018). 153 

C. merolae PSI–LHCI does not have an LHC at positions p2–p4. The loss of Psa28 (also 154 

called PsaR) in the genome of C. merolae implies that Psa28 would be crucial for LHCI 155 

binding at p2–p4 (You et al., 2023).  156 

The Lhcrs at p5–p7 of both species seem to be conserved from their common ancestor. 157 

Our phylogenetic analysis suggests that CmLhcr1–3 at p5–p7 in C. merolae PSI–LHCI 158 

belong to groups V, VI, and VII, respectively, and that PpLhcr5, PpLhcr4, and PpLhcr3 at 159 

p5–p7 in P. purpureum PSI–LHCI belong to group V, VI and VII, which are orthologs to 160 

CmLhcr1–3 (Fig. 2 and 3). In contrast, significant changes are observed between the two 161 

species in Lhcrs at p0 and p1 (Fig. 3): P. purpureum PSI binds RedCAP at p0, while that of 162 

C. merolae binds CmLhcr1 at p0 in addition to p5; P. purpureum binds PpLhcr2 (group I 163 

Lhcr) at p1, while C. merolae binds CmLhcr2 (group VI Lhcr) at p1 as well as p6. Importantly, 164 

PpLhcr2 and CmLhcr2 are not orthologs in the phylogenetic tree, although they bind at the 165 

same position; instead, CmLhcr2 and PpLhcr4 at p6 belong to group VI and they show an 166 

orthologous relationship in the tree. Given that RedCAP is conserved in Galdieriales which 167 

is an early diverged taxa of Cyanidiophyceae, RedCAP is lost in C. merolae (Engelken et al., 168 

2010; Sturm et al., 2013). C. merolae lost RedCAP, group I–IV LHCIs, and a related PSI 169 

subunit, and complemented positions p0 and p1 with group V and VI LHCIs to, at least 170 

partially, maintain the antenna size for PSI. 171 
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 172 

Molecular Phylogeny of Lhcrs in Red-Lineage Algae 173 

Cryptophytes do not possess the Lhcf subfamily or phycobilisome, but they do 174 

contain phycobiliproteins in the thylakoid lumen and LHCs in the thylakoid membrane 175 

(Spear-Bernstein and Miller, 1989). Cryptophyte LHC is called chlorophyll a/c (CAC) 176 

proteins or alloxanthin-chlorophyll a/c proteins (ACPs) named after their pigments and 177 

bound to both PSI and PSII (Kereïche et al., 2008; Kaňa et al., 2012; L.,-S., Zhao et al., 178 

2023). The PSI–LHCI and PSII–LHCII of diatoms and Haptophytes are called PSI–FCPI and 179 

PSII–FCPII, respectively, because of the bound pigments in LHCs. The classification of 180 

LHCs in red-lineage secondary endosymbiotic algae was described in our previous research 181 

(Kumazawa et al., 2022). The diatom FCPI comprises Lhcrs as well as the Lhcqs, CgLhcr9, 182 

which is distinct from the Lhcr subfamily, presumably some Lhcfs, and a RedCAP (Nagao 183 

et al., 2020; Xu et al., 2020; Kumazawa et al., 2022; Calvaruso et al., 2020). Unlike red algal 184 

PSII with phycobilisome, diatoms predominantly have the Lhcfs located around PSII, and 185 

one unique Lhcr (CgLhcr17 homolog) closely associated with the PSII core (Nagao et al., 186 

2019; Nagao et al., 2022; Wang et al., 2019; Kumazawa et al., 2022; Calvaruso et al., 2020). 187 

Molecular phylogenetic analysis suggests that Haptophytes also possess LHC subfamily 188 

compositions similar to diatoms, implying that they may have analogous PSI–FCPI and 189 

PSII–FCPII (Kumazawa et al., 2022). To elucidate how the Lhcrs in these algae were 190 

generated from red algae during secondary endosymbiosis, LHC sequences were obtained 191 

from a wide variety of Cryptophytes, Stramenopiles, and Haptophytes, and we performed 192 
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molecular phylogenetic analysis on the obtained Lhcr sequences using Prasinoderma Lhcas 193 

as root of the tree (Fig. 4).  194 

LHCIs of Cryptophytes and Stramenopiles show different conservation patterns in 195 

the phylogenetic tree, suggesting different evolutionary processes of LHCIs (Fig. 4). The 196 

phylogenetic tree of red-lineage LHCIs includes group I–VII in addition to one Cryptophyte-197 

specific clade and two Stramenopiles/Haptophyta-specific clades. Cryptophytes, including 198 

Chroomonas placoidea, have ACPIs in groups IV–VI in addition to the Cryptophyte-specific 199 

clade. Group IV and VI contain CpACPI-4 and CpACPI-2, respectively. Group V contains 200 

not only CpACPI-3 but also CpACPI-7, 11, and 14. Groups I–III and VII are absent in 201 

Cryptophytes. The Cryptophyte-specific clade contains CpACPI-1, 5, 6, 9, 10/13, and 12; 202 

ACPI-6 and ACPI-10/13 are closely related and form one group, whereas CpACPI-1, 5, 9 203 

forms the other.  204 

Stramenopiles, including the diatom Chaetoceros gracilis, have CgLhcr1 in group I 205 

and CgLhcr5 in group V in addition to LHCIs in two Stramenopiles/Haptophyta-specific 206 

groups. The clade including CgLhcr1 is a sister clade of the group I clade of red algae, 207 

suggesting that this clade can be included in group I. One Stramenopiles/Haptophyta-specific 208 

group contains CgLhcr2, r3, r6, r8, and r10, while the other includes CgLhcr7 and r17. 209 

CgLhcr17 is a monomeric FCPII directly associated with PSII (Kumazawa et al., 2022; 210 

Nagao et al., 2022). The Lhcrs of other Stramenopiles showed the same distribution pattern 211 

in the groups as that of diatom Lhcrs. Group I includes Pavlovales Lhcrs from Haptophytes, 212 

whereas Stramenopiles/Haptophyta-specific groups possess Lhcrs from other taxa of 213 
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Haptophyta. Altogether, Lhcrs of red-lineage secondary endosymbiotic algae are present not 214 

only in red algal Lhcr groups but also in unique clades in the phylogenetic tree. 215 

 216 

Cryptophyte PSI–ACPI and diatom PSI–FCPI showing LHCI rearrangement  217 

Conservation and replacement of LHCIs (ACPIs) from ancestral red algae can be 218 

estimated when we combined the structure of Cryptophyte Chroomonas placoidea PSI–219 

ACPI with the phylogenetic analysis. C. placoidea PSI–ACPI contains one RedCAP 220 

molecule and 13 Lhcrs (Fig. 5) (Zhao et al., 2023). It also has an unknown subunit and ACPI-221 

S, which appears to interconnect ACPIs and is not found in red algal PSI–LHCI and diatom 222 

PSI–FCPI. From the stromal side, the binding positions of LHCI (ACPIs) can be assigned as 223 

p0–p8 similar to the red algal PSI–LHCI (Fig. 3). RedCAP locates at p0 as observed in P. 224 

purpureum. ACPI-4, 3, and 2 at p4, p5, and p6 belong to groups IV, V, and VI, respectively, 225 

as did LHCIs in P. purpureum PSI–LHCI. In contrast, ACPI-7 at p1 belongs to group V in C. 226 

placoidea, while p1 is occupied by group I PpLhcr2 in P. purpureum PSI–LHCI. Furthermore, 227 

p2, p3, and p7 are occupied by ACPI-6, -5, and -1 belonging to the Cryptophyte-specific 228 

clade.  229 

Interestingly, Chroomonas placoidea PSI–ACPI has three sets of adjacent three 230 

ACPIs (heterotrimer): ACPI-7–6–5, ACPI-11–10/13–9, and 14–10/13–12 (Fig. 5). ACPI-7, 231 

11, and 14 in each heterotrimer belong to group V. ACPI-3 belonging to group-V ACPIs 232 

would be rather ancestral LHCI because it binds at p3, meaning a true ortholog of group-V 233 

LHCI in red algae (ex. PpLhcr5). ACPI-7, 11, and 14 belonging to group V should be 234 

derivatives of ancestral ACPI-3. Other two ACPIs in each heterotrimer belong to the unique 235 
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Cryptophyte-specific clade, wherein C. placoidea ACPIs can be divided into two groups by 236 

focusing on monophyly: ACPI-6, 10/13, and ACPI-5, 9, 12 (Fig. 4). Thus, three sets of 237 

heterotrimers comprise three ACPIs from the respective groups, which would result from 238 

gene duplication. 239 

According to the above analyses, the following model can be proposed for the 240 

establishment of Cryptophyte PSI–ACPI (Fig. 6): After losing many Lhcr genes during 241 

secondary endosymbiosis of red algae, Cryptophytes only preserved three molecular species 242 

of Lhcr (ACPI-2, ACPI-3, and ACPI-4) and a RedCAP; at this point, the group V LHCI—an 243 

ancestral ACPI-3 at p5—diversified forming a Cryptophyte-specific clade in the Lhcr 244 

subfamily: one Cryptophyte-specific Lhcrs binds at p7 as ACPI-1; three sets of heterotrimers 245 

of ACPIs, including one group V Lhcr and two Cryptophyte-specific Lhcrs, bind to restore 246 

the antenna size of PSI. This molecular evolutionary model of C. placoidea PSI–ACPI (Fig. 247 

6) contradicts the current model of PSI–LHCI complex evolution in the red-lineage, solely 248 

based on LHCI compositions (Zhao et al., 2023). That is, Cryptophyte PSI–ACPI is not an 249 

evolutional intermediate between red algal PSI–LHCI and diatom PSI–FCPI.  250 

Not all Lhcrs in a diatom PSI–FCPI directly descend from red algal LHCI. The diatom 251 

Chaetoceros gracilis PSI–FCPI possesses either none or one RedCAP molecule and 16 or 23 252 

FCPs including eight Lhcrs (Nagao et al., 2020; Xu et al., 2020). In the structure of C. gracilis 253 

PSI–FCPI, positions p0–p7 are occupied by CgRedCAP, and CgLhcr1–r7. CgRedCAP at p0 254 

is homologous to PpRedCAP at p0 of P. purpureum PSI–LHCI. CgLhcr1 and CgLhcr5, 255 

belonging to groups I and V, respectively, are positioned in p1 and p5, consistent with LHCIs 256 

belonging to groups I and V at p1 and p5 in red algal PSI–LHCI. However, all other positions 257 
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except for p4 are occupied by Lhcrs belonging to Stramenopiles/Haptophyta-specific groups. 258 

Furthermore, CgLhcr8 and CgLhcr10, belonging to the Stramenopiles/Haptophyta-specific 259 

group I, are positioned counterclockwise adjacent to CgLhcr7 (positions p8 and p9, 260 

respectively). The FCPI assigned at p4 in C. gracilis PSI–FCPI is CgLhcr4, belonging to the 261 

Lhcq subfamily (Nagao et al., 2020; Kumazawa et al., 2022). Altogether, the diatom PSI–262 

FCPI shares orthologous LHCIs only at p0, p1, and p5 with the red algal PSI–LHCI. This 263 

suggests that diatoms have lost many LHCIs from red algae and replaced them with 264 

diversified FCPIs during endosymbiosis of red algae. 265 

 266 
 267 
Discussion 268 

The molecular assembly model of the red-lineage PSI–LHCI has been discussed only 269 

based on spatial arrangements of the subunits in the structures (Bai et al., 2021; Zhao et al., 270 

2023). However, this study made it clear that it is necessary to consider an evolutionary model 271 

of the photosynthetic supercomplex using both molecular phylogeny and structural 272 

information. Here, we would like to propose new evolutionary trajectory of LHCI proteins 273 

associated with PSI in red-lineage algae. 274 

 275 

Putative composition of LHCIs in the common ancestor of primitive red algae  276 

The smaller number of LHCI in C. merolae PSI can be due to genome reduction in 277 

Cyanidioschyzonales, including C. merolae, and Cyanidiales, resulting in small genome sizes 278 

and numerous gene deletions (Cho et al., 2023). Rhodophytina and Cyanidiophyceae 279 

diverged from the common ancestor of red algae. Rhodophytina had a conserved set of Lhcrs: 280 
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groups I–VII. However, Cyanidiophyceae, Cyanidioschyzonales, and Cyanidiales, have only 281 

three LHCIs which belong to groups V–VII. Galdieriales have six Lhcr molecular species 282 

belonging to groups I, IV–VII, and the Galdieriales-specific clade. Furthermore, 283 

Rhodophytina and Galdieriales possess RedCAP in their genomes, whereas 284 

Cyanidioschyzonales and Cyanidiales do not (Engelken et al., 2010; Sturm et al., 2013). This 285 

suggests that only a few Lhcr genes remained after genome reduction in Cyanidioschyzonales 286 

and Cyanidiales, and that they would ensure PSI antenna size by repurposing the same 287 

genetic products, CmLhcr1 and CmLhcr2, to different position around PSI.  288 

Considering that Galdieriales is the earliest order diverged from others in 289 

Cyanidiophyceae, it is reasonable to deduce the LHCI composition of the last common 290 

ancestor of red algae from those of Rhodophytina and Galdieriales. Since both Rhodophytina 291 

and Galdieriales possess RedCAP, the ancestral Rhodophyta likely had RedCAP at p0. 292 

Galdieriales has Lhcrs of group I, IV–VII, which are orthologous Lhcrs in P. purpureum PSI–293 

LHCI bound at p1, p4–p7, while it lacks group II and III Lhcrs. Galdieriales conserves the 294 

Psa28 (XP_005707993.1, called PsaR, synonymously) subunit, which was suggested to 295 

stabilize LHCIs at p2–p4 in P. purpureum PSI–LHCI (You et al., 2023). In Galdieriales, 296 

Psa28 may help the association of at least LHCI at p4. Thus, the ancestral Rhodophyta should 297 

have a conserved fundamental Lhcrs–RedCAP composition with RedCAP at p0 and Lhcrs at 298 

least at p1, and p4–p7. This also suggests that C. merolae PSI–LHCI is not a “primitive” PSI–299 

LHCI.  300 

 301 

Evolutionary path of LHCI from red algae to Stramenopiles/Haptophyte through 302 
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Cryptophyta 303 

The evolutionary model of Cryptophyta PSI–ACPI introduced in Figure 6 suggest its 304 

progression from the ancestral red algae PSI–LHCI. Cryptophyta acquired a plastid from red 305 

algae, having its endosymbiotic nucleus, the nucleomorph, derived from red algae (Van Der 306 

Auwera et al., 1998; Archibald et al., 2001). This supports the direct descendance of 307 

Cryptophyte PSI–ACPI from red algae PSI–LHCI, without additional endosymbiosis. The 308 

ancestral red algae PSI–LHCI, featuring LHCI at p0, 1, and p4–p7, shares positions p0, p4–309 

p5 with Cryptophyte PSI–ACPI. Despite losing group I Lhcr, Cryptophyta has diversified its 310 

Lhcrs not only to fill position p7 but also to expand its antenna size by creating three 311 

heterotrimers. This research meticulously details the evolution of LHCI from primitive red 312 

algae to Cryptophytes, presenting Cryptophytes as a prime example of extensive LHCI 313 

rearrangement and antenna enlargement of PSI through endosymbiosis.  314 

In contrast, the evolutionary trajectory of Stramenopiles and Haptophyte LHCI is not 315 

as straightforward as that of Cryptophyte ACPIs. When considering the evolutionary model 316 

of PSI–LHCI based on molecular phylogeny, Stramenopiles, including diatoms and 317 

Haptophytes, acquired the Lhcq subfamily in addition to the Lhcr subfamily (Kumazawa et 318 

al., 2022). In diatom FCPI, only group I and V Lhcrs (CgLhcr1 and CgLhcr5) at p1 and p5, 319 

respectively, have conserved positions from red algae. Other Stramenopiles and at least 320 

Pavlovales in Haptophyta share group-I and -V Lhcrs. In diatom PSI–FCPI, Lhcrs at p2, p3, 321 

p6–p9 belong to the Stramenopiles/Haptophyta-specific groups(Nagao et al., 2020; 322 

Kumazawa et al., 2022). CgLhcr4, which does not belong to the Lhcr subfamily but to the 323 

Lhcq subfamily, is assigned to p4 in diatom PSI–FCPI. Moreover, the Lhcq subfamily in 324 
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PSI–FCPI not only binds directly to the PSI core but also forms the outer layer of LHCs in 325 

PSI–FCPI, contributing to a larger antenna size of the diatom PSI (Nagao et al., 2020; Xu et 326 

al., 2020; Kumazawa et al., 2022). This indicates that Stramenopiles has experienced a 327 

distinct process of LHCI re-acquisition around PSI, which would be largely different from 328 

that of Cryptophytes. 329 

The evolutionary history from red algae to red-lineage algae has been previously 330 

described (Stiller et al., 2014). Linear regression analysis on nuclear genomes suggested 331 

serial endosymbiosis in red-lineage algae: Cryptophyta engulfed a red alga as secondary 332 

(2nd) endosymbiosis; the photosynthetic Stramenopiles incorporated Cryptophyta as tertiary 333 

(3rd) endosymbiosis; Haptophyta acquired many genes from Stramenopiles as quaternary 334 

(4th) endosymbiosis. However, the plastid-encoded genes of Haptophyta and Cryptophyta 335 

strongly support monophyly in the phylogenetic tree (Kim et al., 2017). Haptophyta may 336 

have acquired the ancestral Cryptophyta plastid before or after massive gene transfer from 337 

Stramenopiles, reconciling the two seemingly contradictory phylogenetic trees of different 338 

genomes (Dorrell et al., 2017; Dorrell et al., 2021; Penot et al., 2022). LHC genes are 339 

nuclear-encoded and should follow the history of nuclear-encoded genes derived from the 340 

quaternary endosymbiosis (Stiller et al., 2014; Dorrell et al., 2017). Consistently, the 341 

composition of LHC subfamilies of Haptophyta is similar to that of Stramenopiles 342 

(Kumazawa et al., 2022). In contrast, most genes coding for the PS core are encoded in the 343 

plastid genome originated from Cryptophyta. Based on these facts, we hypothesize that the 344 

origin of the genes coding for the Haptophyte PS core complex and that for light-harvesting 345 

antennas can be chimeric. Further genetic and structural analysis of the PSI–LHCI in 346 
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Haptophytes is required to confirm/dismiss this hypothesis.  347 

 348 

Molecular Evolution of PS supercomplexes through “neolocalization” 349 

Gene duplication and functional diversification, for instance in biosynthetic enzyme 350 

families, are typically referred to as “neofunctionalization” (e.g. Hansen et al. 2021). 351 

However, even after intensive diversification, the primary function of the LHC family and 352 

RedCAP remains light-harvesting. Therefore, their diversification can be best considered as 353 

that of structural relocalization rather than function. In our study on the red alga Cyanidiales 354 

Cyanidium caldarium PSI–LHCI (Kato et al., 2024), we proposed the term “neolocalization” 355 

(Kato et al., 2024). It was defined as a phenomenon where a structural defect caused by gene 356 

loss is complemented or modified by the product of another existing gene. In this study, we 357 

expand the definition of neolocalization to include modifications by the product of a gene 358 

differentiated after duplication from an existing one. Phenomena matching neolocalization 359 

are also observed in the green lineage. In green algae Chlamydomonas reinhardtii, green 360 

algal Lhca7 and terrestrial plant Lhca2 do not share orthology, yet they bind at the same 361 

position in green-lineage PSI–LHCIs (Neilson and Durnford, 2010; Suga et al., 2019; Ben-362 

Shem et al., 2003).  363 

For the PS supercomplex, which has a long evolutionary timeframe, drastic events like 364 

genome evolution and secondary endosymbiosis may primarily trigger neolocalization, 365 

driving the molecular evolution of LHCs. To understand this process, a general model of 366 

molecular evolution must consider both molecular phylogeny and structure. At present, the 367 

complete evolutionary paths of LHC diversification and differentiation from Rhodophytina 368 
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red algae to Stramenopiles and Haptophyta through Cryptophyta remain to be elucidated. As 369 

more genomic information and more structural models become available, the relationship 370 

between these taxa will become clearer, allowing the construction of an entire evolutionary 371 

model of PS supercomplexes. 372 

 373 

Methods 374 

LHC Protein Sequence Acquisition 375 

LHC protein sequences were collected from genomes or transcriptomes of diverse 376 

red-lineage species, including 37 Rhodophyta comprising 33 species, five diatoms, two 377 

Eustigmatophyceae, four Haptophytes including one Pavlovophyceae, three Phaeophyceae 378 

(Brown algae) and three Cryptophytes. Thirty-three species of red algae include one 379 

Cyanidiales, two Cyanidioschyzonales, six Galdieriales, two Rhodellophyceae, two 380 

Compsopogonophyceae, two Stylonematophyceae, two Porphyridiophyceae, two 381 

Bangiophyceae, and 18 Florideophyceae. These genomic and transcriptomic datasets were 382 

accessed from databases such as ChaetoBase v1.1, NCBI RefSeq, NCBI GenBank, NCBI 383 

SRA, PDB, JGI Phycocosm and 1KP (https://db.cngb.org/onekp/, 384 

https://ftp.cngb.org/pub/gigadb/pub/10.5524/100001_101000/100627/assemblies/). Specific 385 

details of species and corresponding references are provided in Supplemental Table I. For 386 

most diatoms, LHCs had been previously annotated, except for Fistulifera solaris JPCC 387 

DA0580 (Kumazawa et al., 2022). The protein sequence of Thalassiosira pseudonana 388 

Lhcr18 was modified as the amino-acid sequence of g8189.t1 in the updated T. pseudonana 389 

genome (https://doi.org/10.5683/SP2/ZDZQFE) (Filloramo et al., 2021). A BLAST 390 
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similarity search was used to procure LHCs from various lineages, adapting techniques from 391 

Kumazawa et al. (2022). Then, the reference sequences used in the BLASTP search were 392 

replaced with the Lhcrs in Porphyridium purpureum. The transcriptomes of 1KP included 28 393 

species of red algae, among which 23 species were selected for the next analyses based on 394 

the quality of the LHC alignment (Leebens-Mack et al., 2019). Contaminated sequences in 395 

the 1KP dataset were identified and eliminated using molecular phylogenetic analysis and 396 

BLASTP searches against the NCBI nr database. The IsoSeq transcriptomes of 397 

Cyanidiococcus yangmingshanensis 8.1.23 F7 and Cyanidium caldarium DBV 063 E5 were 398 

obtained from NCBI SRA and translated using TransDecoder 399 

(https://github.com/TransDecoder/TransDecoder) and LHC proteins were identified using 400 

BLASTP and clustered manually based on MAFFT alignment (Cho et al., 2023; Katoh and 401 

Standley, 2013). LHCs belonging to the Lhcr subfamily of secondary endosymbiotic algae 402 

were obtained by preliminary phylogenetic analysis using muscle5 with super5 mode for 403 

alignment, ClipKit v1.4.1 with kpic-smart-gap mode for trimming, and IQ-TREE v2.2.2.7 to 404 

infer a phylogenetic tree (Edgar, 2022; Steenwyk, Buida, Li, X.,-X., Shen, et al., 2020; Minh 405 

et al., 2020). All sequences for the following analyses were carefully curated for LHC 406 

conserved domain; some were modified at their N-terminal region and C-terminal region. All 407 

modified sequences are explicitly indicated in the figure 2 and 4. 408 

Lhca sequences of Prasinoderma coloniale belonging to the earliest divergent taxa 409 

of green algae were obtained for the root in the phylogenetic tree 410 

(https://ftp.cngb.org/pub/CNSA/data2/CNP0000924/CNS0223647/CNA0013964/) (Li et al., 411 

2020). 412 
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 413 

Phylogenetic Analysis of LHC 414 

LHC sequences were aligned using MAFFT E-INS-I v7.490 (Katoh and Standley, 415 

2013), which is optimized for multi-domain proteins. Sequence alignments were then refined 416 

using ClipKit v1.4.1 (Steenwyk, Buida, Li, X., X., Shen, et al., 2020) with kpic-smart-gap 417 

mode for the following tree inference. The molecular phylogenetic trees were inferred using 418 

IQ-TREE v2.2.2.7 with extended model selection (-m MFP option) (Minh et al., 2020; 419 

Kalyaanamoorthy et al., 2017). For exhaustive tree topological search, 500 initial parsimony 420 

trees were constructed, the number of tree search iterations was extended to 1,000, and 421 

perturbation strength was specified to 0.7 as IQ-TREE parameters. The inferred trees were 422 

visualized using iTOL v6 (Letunic and Bork, 2021). 423 

 424 

Visualization of PSI–LHCI structure 425 

All models of PSI ‒ LHCI structures were obtained from RCSB PDB 426 

(https://www.rcsb.org/). The following models were acquired: a Cyanidioschyzon merolae 427 

PSI–LHCI (ID: 5ZGB), a diatom Chaetoceros gracilis PSI–FCPI (ID: 6LY5), a red alga 428 

Porphyridium purpureum single-PBS-PSII-PSI-LHCs megacomplex (ID: 7Y5E), and a 429 

Cryptophyte Chroomonas placoidea PSI–ACPI (ID: 7Y7B). The models of the complexes 430 

were visualized using Open-Source PyMOL v2.5.0 (Schrodinger LLC, 2015). 431 
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Figure 1 Simplified phylogeny of Rhodophyta (red algae) and classification of red-
linage secondary endosymbiotic algae.
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The phylogeny of Rhodophyta is based on Yang et al. (2016) and Park et al. (2023). 	
The secondary endosymbiosis node in the tree is based on Yoon et al. (2002) and 	
Kim et al. (2017). The root of the tree is the ancestor of Archaeplastida. “Ancestral 	
Rhodophyta” in the figure represents the last common ancestor of extant Rhodophyta.
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The phylogenetic tree was constructed using IQ-TREE2 and rooted at the outgroup 	
of Lhcas of an early diverging green alga, Prasinoderma coloniale. A total of 261 	
sequences with 341 amino-acid sites were used, and the Q.pfam+F+I+R7 model 	
was selected according to Bayesian information criterion scores. Circles on the 	
node indicate ultrafast bootstrap support (≥95%). Numbers in parentheses are 	
SH-aLRT support (%) / aBayes support / ultrafast bootstrap support (%). LHC 	
colors correspond to the taxonomy in Figure 1. Short names of molecular species 	
are described in Supplemental Table 1. For example, C. gracilis Lhcr1 is shown 	
as CgLhcr1.
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Psa28
No Psa28

Orthologous

Rhodophyta Cyanidioschyzonales
Cyanidioschyzon merolae

PNAS, 2016
PDB ID: 5ZGB
LHCI: 5 LHCs

Rhodophyta Porphyridiophyceae
Porphyridium purpureum

Xin You, Xing Zhang, Jing Cheng,
Yanan Xiao et al., Nature, 2023

PDB ID: 7Y5E
LHCI: 7 LHCs and 1RedCAP

Figure 3 Estimated scheme of PSI-LHCI evolution in Cyanidioschyzon.
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The left PSI–LHCI structure corresponds to the Cyanidioschyzonales Cyanidioschyzon 	
merolae and the right PSI–LHCI to the Porphyridiophyceae Porphyridium purpureum. 	
The names of LHCIs are adapted from the original papers (Xiong Pi and Lirong Tian 	
et al., 2016; Xin You, Xing Zhang, Jing Cheng, Yanan Xiao et al., 2023) and colored 	
according to Figure 2.
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Figure 4 Molecular phylogenetic tree of Lhcr of red-lineage algae.
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The phylogenetic tree was inferred using IQ-TREE2 and rooted at the outgroup of 	
Lhcas from an early diverging green alga, Prasinoderma coloniale. A total of 418 	
sequences with 489 amino-acid sites were used, and the Q.pfam+F+R7 model was 	
selected according to Bayesian information criterion scores. Circles on the node 	
indicate ultrafast bootstrap support (≥95%). Numbers in parentheses are SH-aLRT 	
support (%) / aBayes support / ultrafast bootstrap support (%). LHC colors correspond 	
to the taxonomy in Figure 1. Short names of molecular species are described in 	
Supplemental Table 1.
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Figure 5 PSI–LHCI structures of Cryptophyte Chroomonas placoidea PSI–ACPI
supercomplex.
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Top view of the supercomplex from the stromal side. The number on the structure 	
corresponds to that of CpACPI proteins. The colors of ACPI numbers correspond 	
to the groups in Figure 4. PSI core subunits except Psa28 (alternatively known as 	
PsaR) are shown in green and Psa28 is cyan, respectively. RedCAP protein is 	
shown in red and Lhcr proteins in LHCI orthologous/homologous to the red algal 	
Lhcrs are colored orange. Lhcrs belonging to the Cryptophyte-specific clade are 	
shown in brown. 
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The PSI–ACPI of Cryptophytes Chroomonas placoidea has one RedCAP and 	
13 LHCs, including five Lhcrs homologous to red algal Lhcrs and eight 	
Cryptophyte-specific Lhcrs. Color code is the same as in Figure 5. The 	
cryptophyte PSI–ACPI conserved the PSI core including Psa28 with RedCAP 	
and ACP-4, 3, and 2 at positions p0, p4–p6, respectively, as the putative 	
PSI–LHCI in ancestral red alga. ACP-2–4 are orthologous to PpLhcr1, r5, 	

× 3
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Figure 6 Estimated trajectory of PSI–LHCI evolution of Cryptophytes after 
endosymbiosis with red alga based on the molecular phylogeny of LHCI.
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