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71  Abstract (150/150)

72 Neural dynamics assumes to reflect computations that relay and transform information in
73  the brain. Previous studies have identified the neural population dynamics in many
74  individual brain regions as a trajectory geometry, preserving a manifest of computational
75  motifs. However, whether these populations share particular geometric patterns across
76  brain-wide neural populations remains unclear. Here, by mapping neural dynamics widely
77  across temporal/frontal/limbic regions in the cortical and subcortical structures of monkeys,
78 we show that 10 neural populations, including 2,500 neurons, propagate visual item
79 information in a stochastic manner. We found that visual inputs predominantly evoked
80 rotational dynamics in the higher-order visual area, TE and its downstream striatum tail,
81 while curvy/straight dynamics appeared frequently downstream in the
82  orbitofrontal/hippocampal network. These geometric changes were not deterministic but
83 rather stochastic according to their respective emergence rates. Our meta-analysis results
84  indicated that visual information propagates as a heterogeneous mixture of stochastic
85  neural population signals in the brain.
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87 Introduction
88  Visual inputs activate a large number of neurons in the brain that construct numerous
89  neural networks to process information in an environment (7-3). This brain-wide activity
90 change reflects the information processing embedded in each individual neural circuit;
91 however, limitations of spatial and temporal resolution in the measurements of circuitry
92  activity disrupt our understanding of brain-wide visual information processing (4-9). Under
93 this limitation, considerable attempts have been made toward understanding how the brain
94  processes information using a variety of developing theoretical frameworks (70-15).
95 One of the analytic frameworks developed within the last decade is state-space
96 analysis (16) that provides a mechanistic structure of information processed in the lower-
97 dimensional space of a neural population (77-19). This analytical tool identified dynamic
98 neural population structures that reflect information processing for general biological
99 features (20, 21) and allowed us to describe those features as a neural geometry in a fine
100 time resolution (73-15) in the sub-second order. A large number of unidentifiable neural
101  circuits may process information moment-by-moment (6), and they may form a population
102  geometry, such as rotational (78), curvy (19, 22), or straight geometries (23), as the typical
103  and basic features of dynamics. A recent finding suggests that the combination of neural
104  population geometries may be the key to processing information to transform sensory
105 inputs into memory (24). Recent studies have extended these analytical frameworks (25-
106  29); however, because of poor comparisons among brain-wide neural populations, how
107  the brain processes information in the form of geometry remains elusive.
108 To examine how brain-wide neural dynamics are formed to process visual information,
109 we accumulated the neural population data of monkeys from four laboratories that
110  contained 10 neural populations, including 2,500 neurons across temporal/frontal/limbic

111 networks (i.e., meta-analysis). We applied targeted dimensional reduction, with a
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112 bootstrap resampling technique that detects and replicates neural modulation dynamics
113  in a low-dimensional neural space. Following a parametric bootstrap analysis using the
114  Lissajous curve function, our cross-study comparison revealed that a gradual shift in
115  stochastic neural population signals occurred throughout the temporal-to-frontal brain
116  regions.

117

118 Results

119  We compared the trajectory geometries across many neural populations widely distributed
120  in the brain from the output brain regions in the ventral visual pathway (30-33) and its
121 downstream brain regions that may access memories associated with a visual stimulus.
122 These included ten brain regions that were accumulated from nine monkeys examined in
123 the four laboratories (Table. S1), from the higher-order visual area TE and their
124  downstream brain regions in cortical, subcortical, and limbic structures, such as the
125  temporal/orbitofrontal cortices, striatum, and hippocampus (HPC) (Fig. 1A, No. 1 to 10). A
126  total of 2,500 neurons were accumulated across the four behavioral tasks (Fig. S1), in
127  which visual items provided monkeys with position and/or reward information during the
128  active (Exps. 1 and 3), and passive (Exps. 2 and 4) behavioral responses. Using state-
129  space analysis, we characterized structures of neural population geometry that appeared
130 inthe lower dimensional neural space, which describes how neural modulation by the task
131 parameters of interest processes information at the population level (23, 29).

132 We found all three types of geometric patterns, rotational, curvy, and straight
133  geometries, in the top two dimensions (Fig. 1B-D, see Fig. S2 for performance as the
134  percentage of variance explained), including unclear structures based on visual inspection
135  (Fig. 1E). All the 10 neural populations showed a significant structure at the principal

136  component (PC)1-2 plane based on shuffle controls (Fig. S3, P < 0.05 for all PC1 and
6
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137 PC2). PC3 did not show statistical significe in some neuronal populations (Fig. S3, Exps.
138 2 and 4; compare the black and gray dots for each PC). These identified geometric
139  structures appeared to be distributed from complex to simple, reflecting the circuit distance
140  to the visual input (Fig. 1). For example, TE (Fig. 1B, No. 1, A11 plane in A) and its
141  downstream region striatum tail (STRt) (Fig. 1B, No. 2, A11 plane in A), showed rotational
142  geometries during visual item recognition. In more detail, at the beginning of information
143  processing after the visual item presentation (Fig. 1B left, see green s at time = 0), the
144  neural state was positioned at around the center of the PC1-2 plane, and then rotated at
145  approximately 0.2 s and started to move the second quadrant with the counterclockwise
146  rotation going back close to the initial point (see green e 0.6 s after visual item onset). An
147  opposite rotation was observed for the worst visual item, with a smaller change (orange).
148  These rotational structures were also observed at the STRt on a similar timescale (Fig.
149 1B, right).

150 In the downstream brain regions, such as the perirhinal cortex (PRC) and caudate
151  body (CDb), rotational or curvy dynamics were observed (Fig. 1C, No. 3, PRC, A11 plane
152 in Aand No. 4, CDb, A23 plane in A), which were characterized by a half rotation ending
153  at the opposite neural space and end points deviating from the initial point, although it was
154  unclear whether they showed rotational or curvy dynamics. In contrast, straight dynamics
155  were observed in brain regions far away from the visual inputs in the HPC (Fig. 1A, No. 5
156  in the A11 plane, Fig. 1D) and central part of the orbitofrontal cortex (cOFC) (Fig. 1A, No.
157 7 in the A32 plane, Fig. 1D). In addition, the ventral striatum (VS) showed straight
158  dynamics (Fig. 1A, No. 6 in the A23 plane, Fig. 1D), although some structures could not
159  be clearly determined (Fig. 1E, parahippocampal cortex, PHC, medial orbitofrontal cortex,
160 mOFC). The straight dynamics also showed a geometric change back and forth along the

161  straight trajectory (Fig. 1D). These qualitative observations based on visual inspection
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162  suggest that neural population structures may change dynamically through visual
163  recognition process, and the shift of neural population geometries might occur throughout
164  the cortical and sub-cortical structures across the temporal/frontal/limbic network.

165

166  Evaluation of geometric patterns based on their selected features

167 To quantify these geometric patterns occurring at approximately half a second, we
168  estimated indices for the characteristics of dynamic neural changes in the low-dimensional
169 neural state (Fig. 2A). They were as follows: accumulated angle difference weighted by
170  deviance, 2d 6, which reflects a measure similar to the centrifugal force (see Materials
171  and Methods for details, Fig. 2A, top); mean distance of vectors (d, Fig. 2A, top); rotational
172  speed (©/0.1 s, Fig. 2A, bottom); and distance between start and end of trajectory (ds-,
173 Fig. 2A, bottom). Following the replication of the neural population geometries based on
174  the bootstrap resampling technique (see Materials and Methods), we calculated these
175  parameter values for each replicated neural population.

176 We found that across the 10 neural populations, these indices captured geometric
177  features to some extent, similar to the rotational geometries observed in the TE and STRt
178  (Fig. 2B-E). For instance, identified clusters based on the dendrogram and principal
179 component analysis (PCA) (Fig. 2B-C) showed that they possess a rotational
180  characteristic with high rotational speed (Fig. 2D, right, red), large Zd 6 (Fig. 2D, middle,
181  red), large d (Fig. 2D, middle, red), and small ds.e (Fig. 2D, left, red), which occupy more
182  than 90% of the STRt population in the best item condition (Fig. 2E, see also Fig. 1B, right
183  green trajectory). A smaller rotational structure characterized by smaller values of ¥d 6
184  was also captured by another cluster (Fig. 2D and E, shallow red), which occupied
185  approximately 90% of the STRt population in the worst item condition (Fig. 2E, see also

186  Fig. 1B right, orange trajectory). These rotational features were observed in other temporal
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187  brain regions (Fig. 2E, see reddish, more than 50% in TE, 20-40% in PRC and PHC), but
188  merely observed at the frontal/limbic brain regions, such as HPC (less than 10% in all
189  remaining brain regions). In contrast, curvy/straight dynamics were observed in other
190 clusters in the downstream brain regions (Fig. 2E, green and blue).

191 Collectively, in each of the 10 brain regions, a cluster with high rotational speed
192  occupied the STRt and half of the TE populations (Fig. 2D, reddish), while the
193  curvy/straight dynamics occupied most of the replicates in the remaining cortical and
194  subcortical regions (Fig. 2D and E, blue and green).

195

196 Parameterization of geometric patterns using Lissajous curve function

197 To parameterize these geometric features in more detail, we fitted the Lissajous curve
198 function (34) to the replicated data, which can mathematically capture all rotational, curvy,
199 and straight dynamics by this single functinon. In the Lissajous function, any two-
200 dimensional geometric features represented by F(x, y) are captured using the following
201  equations:

202 x = Ax cos (wx t(i) + ®x) + bx (1)

203 y = Ay cos (wy t(i) + ®y) + by (2)

204  where w and @ represent cycle of the rotation and their deviance as a function of time, {(i).
205  {(i) takes the values from 0 to 0.6 s in all the four experiments, and thus, one cycle of the
206  trajectory is represented as 0 to 3.33 1 for w. For the horizontal and vertical axes, Ax and
207 Ay define the amplitude of the trajectory, respectively, whereas bx and by determine its
208 location. In this function, rotational dynamics is represented by the same w among x and
209 y formulas, and 0.5 1 cycle differences in @ values between x and y formulas (Fig. 3A,
210 left, see also Fig. S4A for more details). We note that this rotational example represents

211  less than one cycle due to wx = 3.0 1. In contrast, straight dynamics are represented with

9
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212 the same w and also same @ values between the two formulas (Fig. 3A, right, see also
213 Fig. S4C). Curvy dynamics are represented with some difference of w and same @® values
214  (Fig. 3A, middle, see also Fig. S4B). We fitted this Lissajous curve function to each of the
215 20,000 bootstrap replicates derived from the 10 neural populations (see Materials and
216  Methods, 1000 replicates times 10 populations times two conditions). For instance, three
217  replicated examples obtained from the HPC population were well captured by the
218 Lissagous curve function, as rotational-to-straight trajectories (Fig. 3B). We obtained all
219 the estimates for these parameters (Fig. 3C), and thereafter, applied clustering to these
220 data (Fig. 3D-F) to identify geometry types as a function of the Lissajous curve parameters.
221 We found that the rotational dynamics (Fig. 3G-H, clusters C1-C5, reddish) appeared
222  at the TE and STRt, which occupied high percentages of these neural populations (Fig.
223 3H, approximately 70%), and they were also observed in more than 50% of temporal brain
224  regions. Cluster 5 seemed to have the intermediate characteristics between rotational and
225  curvy structures; if we define this cluster 5 as the curvy one, the rotational percentage
226 becomes low in the PRC, PHC, and HPC (30-40%), but not in the STRt (50-70%). Curvy
227  structures were predominantly observed in the CDb population in more than 40% (Fig. 3G
228 and H, Clusters 6 and 7, greenish). These clusters were note observed deterministically
229  but rather stochastically, as also seen in the predominant percentages of intermediate
230 features between curvy and straight dynamics (Fig. 3G and H, Cluster 8). Straight
231  dynamics were predominant at the frontal brain regions, while they were also observed at
232 the temporal cortices (Fig. 3G and H, Clusters 8-10, bluish). Even with the STRt, the neural
233 population contained curvy or straight dynamics in more than 20%. These heterogeneous
234  mixtures of replicated signals in each population suggested that neural dynamics emerged
235 in a stochastic manner with a functional gradient in the temporal/frontal/limbic networks of

236  cortical and subcortical structures. The brain-wide neural population may propagate item
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237  information as a heterogeneous mixture at approximately half a second.

238

239  Discussion

240  Collectively, our results revealed that parts of the orbitofrontal cortex (cOFC and mOFC)
241  and their target subcortical brain region VS predominantly showed curvy, straight, and
242 intermediate dynamics (Fig. 3G-H). These dynamics exhibited maximum modulation at
243  approximately 0.3 sec after visual onset, except in the slowest VS dynamics (Fig. 1D).
244  Rotational dynamics were observed at the temporal cortices and their connected striatal
245  regions, at the relatively shorter latency around 0.2 s when rotation started (Fig. 1B).
246 Remarkably, the rotational dynamics were observed at different neural proportions of
247  replicated population in a stochastic manner (Fig. 3H), whereas different monkeys
248  performed active (Exps. 1 and 3), and passive (Exps. 2 and 4) behavioral tasks. In contrast,
249  straight dynamics started its geometric change approximately after 0.2 s of the visual onset
250 (Fig. 1D, see the distance between initial point S and 0.2 s location), indicating that they
251  follow the rotational dynamics. Taken together, these three dynamics were distinctive in
252  terms of geometric patterns and their dynamic changes over time (Fig. 4B for summary),
253 in which a rotational/curvy change was followed by a change in straight dynamics.

254 A previous study showed that rotational dynamics have been uncovered broadly in
255  the primary sensory (24, 35) and motor (36) cortices, which are closer to the inputs and
256  outputs of the brain, such as motor unit activity (37). Other studies have shown that the
257  prefrontal cortex (38, 39) and parietal cortex (22, 35) exhibit curvy dynamics. We found
258  curvy dynamics in the CDb, where action information was transferred from the cortices
259  (40). These characteristic differences in the individual previous studies were not
260 deterministic, similar to the stochastic differences among the populations observed in the

261  present study, which may reflect the neural computations processed in the brain.
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262 In the present study, we specifically focused on neural dynamics in two core areas: i)
263  low-dimensional geometries and ii) neural modulation dynamics. First, although these data
264  were obtained from four different laboratories using distinctive behavioral tasks during the
265 passive and active responses of monkeys, the low-dimensional features of neural
266  dynamics are thought to be preserved across mammals in the brain-wide network (41, 42).
267 A recent study provides clear evidence that different animal species share and preserve
268  their neural geometries during behavioral tasks (417). It is suggested that a low-dimensional
269 manifold in the neural state space might be one of the representational states of
270  biologically relevant information, similar to many combinations of physical properties in the
271 world (43). Second, the dynamics in neural modulations examined here are comparable
272 with those using the standard analytic frameworks in the rate coding model, which has
273 provided a huge amount of knowledge corresponding to low-dimensional neural activity
274  modulation in the literature, such as the Gabor function in the visual cortices (44, 45),
275 movement direction and muscle force in the motor cortex (46, 47), reward value in the
276  parietal cortex (48), and comprehension of the location of animals during navigation in the
277  HPC (49). Thus, in our analysis, the dynamics of these well-known brain region features
278 were compared as the geometric patterns across neural populations during visual
279  recognition (29).

280 One concern with our approach is that there may be limitations in data interpretation
281 in terms of data sharing and comparisons across different behavioral tasks and different
282  individual animals. Is it possible to compare the neural population trajectory using
283 accumulated data across animals and tasks with a certain analytical tool? In previous
284  literature, when we analyzed neural modulation using a linear regression model,
285 comparisons of firing rate modulations were accepted by most neurophysiologists for

286 different animals as well as different behavioral tasks. In one study, a challenge was made
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287  to compare the neural modulation dynamics as the trajectory geometry between different
288 laboratories’ data (50). Thus, the neural trajectory would be comparable among our shared
289  data with greater deliberation.

290 Our findings would add to the emerging literature describing how visual inputs alter
291 the brain-wide neural dynamics associated with visual memories by connecting neural
292  geometry types and their alignments across many brain regions. Previous studies have
293  shown the existence of different types of neural population dynamics in each individual
294  study (22, 24, 35, 36, 38, 39). Although some of these dynamics may reflect task demand,
295 as observed in the dorsolateral prefrontal cortex (38, 57), they are difficult to disentangle
296 from changes in behavior and neural activity levels and may involve some transformation
297  of information for behavioral responses (52). Itis possible that the dorsal and motor-related
298  brain regions have this type of flexibility in their dynamics, as partly observed in this study
299 in the CDb, where curvy dynamics were predominantly observed (Fig. 4B).

300 Our results raise the possibility that geometric features determine the important neural
301 mechanisms widely observed in the brain. For instance, the stochastic gradient relative
302 distance to the visual input may reflect the dynamics of the neural circuitry in half a second
303 (Fig. 4B). The unidimensional straight dynamics in the hippocampal-frontal circuitry may
304 reflect memory access during visual recognition, such as location and reward. The
305 rotational dynamics might reflect the visual recognition process, during which recurrent
306 feedback signals change the circuit dynamics. Future studies should test the underlying
307 mechanisms and define whether engagement is best considered a change in behavior
308 and/or task context for whole-brain neural population activity. Regardless of the
309 mechanism, the shift of modulation structures in the lower-dimensional neural space could
310 play a fundamental role in brain-wide information processing, such as transforming visual

311 feature recognition to memory access.
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312

313  Materials and Methods

314  Subjects and experimental procedures

315 Nine rhesus monkeys were used in the present study (Exp. 1: Macaca mulatta, A, 9.3 kg,
316 male; Macaca mulatta, D, 9.5 kg, male; Exp 2: Macaca mulatta, WK, 12.0 kg, male;
317 Macaca mulatta, SP, 7.0 kg, male; Exp 3: Macaca mulatta, Bl, 8.2 kg, male; Macaca
318  mulatta, FG, 11.0 kg, male; Macaca mulatta, ST, 5.2 kg, male; Exp 4: Macaca mulatta,
319  SUN, 7.1 kg, male; Macaca fuscata, FU, 6.7 kg, female). All experimental procedures were
320 approved by the Institutional Animal Care and Use Committee of Laboratory Animals
321  approved by Peking University (Exp. 1, project number Psych-YujiNaya-1), and Animal
322  Care and Use Committee of the National Eye Institute, and complied with the Public Health
323  Service Policy on the Humane Care and Use of Laboratory Animals (Exp. 2, protocol
324 number NEI-622), the Animal Ethics Committee of the National Institutes for Quantum
325  Science and Technology (Exp. 3, protocol no. 11-1038-11), and the Animal Care and Use
326  Committee of the University of Tsukuba (Exp. 4, protocol no H30.336). All procedures
327  were performed in compliance with the US Public Health Service Guide for the Care and
328  Use of Laboratory Animals.

329

330 Behavioral task

331  Exp. 1. Item-location-retention (ILR) task. The animals performed the task under dim light
332  conditions in an electromagnetically shielded room. The task started with an encoding
333 phase, which was initiated by the animal pulling a lever and fixating on a white square
334  (0.6°) presented within one of four quadrants at 12.5° (monkey A) or 10° (monkey D) from
335 the center of the touchscreen (3M™ MicroTouch™ Display M1700SS, 17 in), situated

336  approximately 28 cm from the subjects. The eye position was monitored using an infrared
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337 digital camera with a sampling frequency of 120 Hz (ETL-200, ISCAN). After fixation for
338 0.6 s, one of six items (3.0° for monkey A and 2.5° for monkey D, radius) was presented
339 in the same quadrant as a sample stimulus for 0.3 s, followed by another 0.7 s fixation on
340 the white square. If the fixation was successfully maintained (typically < 2.5°), the encoding
341 phase ended with the presentation of a single drop of water.

342 The encoding phase was followed by a blank interphase delay interval of 0.7-1.4 s
343  during which no fixation was required. The response phase was initiated using a fixation
344  dot presented at the center of the screen. One of the six items was then presented at the
345 center for 0.3 s, as a cue stimulus. After another 0.5 s delay period, five disks were
346  presented as choices, including a blue disk in each quadrant and a green disk in the center.
347  When the cue stimulus was the same as the sample stimulus, the animal was required to
348 make a choice by touching the blue disk in the same quadrant as the sample (i.e., the
349  match condition). Otherwise, the subject was required to choose the green disk (i.e., non-
350 match condition). If the animal made the correct choice, four—eight drops of water were
351 provided as a reward; otherwise, an additional 4 s was added to the standard inter-trial
352 interval (1.5-3 s). The number of reward drops was increased to encourage the animal to
353  maintain good performance in the latter phase of a daily recording session, which was
354  typically conducted in blocks (e.g., a minimal set of 60 trials with equal numbers of visual
355 items presented in a match/nonmatch condition). During the trial, a large gray square (48°
356  on each side) was presented at the center of the display as a background. At the end of
357 the trial, all stimuli disappeared, and the entire screen displayed a light red color during
358 the inter-trial interval. The start of a new trial was indicated by the reappearance of a large
359 gray square on the display, at which point the monkey could pull the lever, triggering the

360 appearance of a white fixation dot.
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361 In the match condition, sample stimuli were chosen pseudo-randomly from six well-
362 learned visual items, and each item was presented pseudo-randomly within four quadrants,
363  resulting in 24 (6 x 4) configuration patterns. In the non-match condition, the location of
364 the sample stimulus was randomly chosen from the four quadrants, and the cue stimulus
365 was randomly chosen from the remaining five items that differed from the sample. The
366  match and non-match conditions were randomly presented in a ratio of 4:1, resulting in 30
367 (24 + 6) configuration patterns. The same six stimuli were used during all the recording
368  sessions.

369  Exp. 2. Scene-based object-value task. Animals learned the scene-object associations.
370  After the monkeys fixated on the red-square fixation point on the scene image for 0.6—1 s,
371  the fixation cue disappeared, and two visual items (objects of different values) appeared
372  simultaneously in a different hemifield (for training and neuronal testing) or the same
373  hemifield (for pharmacological experiments). A reward was given after the monkeys made
374  asaccade to the stimulus and maintained fixation for 0.2 s. Half of the fractal visual items
375  were associated with a large reward (0.3 mL), and the other half were associated with a
376  small reward (0.1 mL). This reward association changed depending on the scene (Fig. S1
377 D). Passive Viewing Task. One of the two scene images was presented for 0.8 s randomly.
378 If the monkey fixated on a central red square, two to four fractals were presented
379  sequentially on the scene image within the neuron’s receptive field (presentation time, 0.4
380 s;interstimulus interval, 0.4 s; Fig. S1C). A liquid reward (0.2 mL) was delivered 0.3 s after
381 the last object was presented. Thus, reward occurrence was not associated with any of
382 the visual items. Each item was presented at least seven times per session.

383  Exp. 3. Delayed reward tasks. The monkeys were seated on a primate chair inside a dark,
384  sound-attenuated, electrically shielded room. A touch-sensitive bar was mounted on the

385 chair. The visual stimuli were displayed on a computer video monitor placed in front of the
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386 animals. Each of the six cues was associated with a combination of reward size (1 drop;
387 3 or 4 drops) and reward delay (0, 3.3, and 6.9 s). The trials began when the monkey
388 touched the bar. A visual cue appeared, and the monkey released a bar when a red spot
389  (waiting signal) turned green (go signal) after a variable interval. If the monkey released
390 the bar 0.2-1 s after this go signal, the trial was considered correct and the spot turned
391  blue (correct signal). A liquid reward of a small (1 drop, approximately 0.1 mL) or large
392 amount (3 drops, except for monkey Bl, 4 drops) was delivered immediately (0.3 £ 0.1 s)
393  or with an additional delay of either 3.3 + 0.6 s or 6.9 + 1.2 s after correct release of the
394  bar. The cues were chosen with equal probability and were independent of the preceding
395 reward condition. Anticipatory bar releases (before or no later than 0.2 s after the
396 appearance of the go signal) and failure to release the bar within 1 s of the appearance of
397 the go signal were counted as errors. In the error trials, the trial was terminated
398 immediately, all visual stimuli disappeared, and following inter trial interval (1 s), the trial
399  was repeated; that is, the reward size/delay combination remained the same as that in the
400 error trial. Behavioral control and data acquisition were performed using a real-time
401  experimentation system (REX) (63). The Neurobehavioral Systems Presentation software
402  was used to display the visual stimuli (Neurobehavioral Systems).

403  Exp. 4. Cued lottery tasks. The animals performed one of two visually cued lottery tasks:
404  a single-cue or a choice task. Neuronal activity was only recorded during the single-cue
405  task.

406 Animals performed the task under dim lighting conditions in an electromagnetically
407  shielded room. Eye movements were measured using a video camera system at 120 Hz
408  (EyeLink, SR Research). Visual stimuli were generated using a liquid-crystal display at 60
409  Hz, placed 38 cm from the monkey’s face when seated. At the beginning of the single-cue

410 task trials, the monkeys had 2 s to align their gaze within 3° of a 1°-diameter gray central
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411 fixation target. After a fixation for 1 s, a pie chart was presented for 2.5 s, to provide
412  information regarding the probability and magnitude of rewards in the same location as
413  the central fixation target. The probability and magnitude of the rewards were associated
414  with the number of blue and green 8° pie chart segments, ranging from 0.1 to 1.0 mL in
415 0.1 mL increments for magnitude, and 0.1 to 1.0 in 0.1 increments for probability. Following
416  a 0.2 s interval from the removal of the pie chart, a 1 kHz or 0.1 kHz tone of 0.15 s duration
417  was provided to indicate reward or no-reward outcomes, respectively. After a 0.2 s interval
418  following the high tone, a fluid reward was delivered, whereas no rewards were delivered
419  following the low tone. An inter-trial interval of 4—6 s was used. During the choice task,
420 animals were instructed to choose one of two peripheral pie charts, each of which
421 indicated either the probability or magnitude of an upcoming reward. The two target
422  options were presented for 2.5 s at 8 to the left or right of the central fixation location. The
423  animals received a fluid reward as indicated by the green pie chart of the chosen target,
424 with the probability indicated by the blue pie chart. Otherwise, no reward was delivered.
425 A total of 100 pie charts composed of 10 levels of probability and magnitude of
426  rewards were used in the experiments. In the single-cue task, 100 pie charts were
427  presented once in random order. In the choice task, two pie charts were randomly
428 assigned to the two options. During one electrophysiological recording session,
429  approximately 30-60 trial blocks of the choice task were interleaved with 100-120 trial
430  blocks of the single-cue task.

431

432  Electrophysiological recordings and data preprocessing

433  Exp. 1. To record the single-unit activity, we used a 16-channel vector array microprobe
434 (V1 X 16-Edge, NeuroNexus), 16-channel U-Probe (Plexon), tungsten tetrode probe

435 (Thomas RECORDING), or single-wire tungsten microelectrode (Alpha Omega).
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436  Electrophysiological signals were amplified, bandpass-filtered (200-6000 Hz), and
437  monitored. Single-neuron activity was isolated based on spike waveforms, either online or
438  offline. For both clustering and offline sorting, the activities of all single neurons were
439  sampled when the activity of an isolated neuron demonstrated a good signal-to-noise ratio
440 (>2.5). The signal-to-noise ratio was visually checked by calculating the range of
441  background noise against the spike amplitude, which was monitored online using the
442  OmniPlex Neural Data Acquisition System, or offline using the sorter software Plexon. The
443  recorded neurons were not blinded. The sample sizes required to detect the effect sizes
444  (numbers of recorded neurons, recorded trials in a single neuron, and monkeys) were
445  estimated based on previous studies (37, 54). Neural activity was recorded during 60—240
446  trials of the ILR task. We recorded 590 hippocampal neurons, among which the recording
447  sites appeared to cover all subdivisions (i.e., the dentate gyrus, CA3, CA1, and subicular
448  complex).

449  Exp. 2. We used conventional techniques to record the single-neuron activity in the STRt,
450 including the caudate and putamen tails. A tungsten microelectrode (1-3 MQ Frederic
451  hair; 0.5-1.5 MQ Alpha Omega Engineering) was used to record single-neuron activity.
452  The recording site was determined using a grid system that allowed electrode penetration
453  at 1 mm intervals. We amplified and filtered (0.3 to 10 kHz; Model 1800, A-M Systems;
454  Model MDA-41, BAK) signals obtained from the electrodes and collected at 1 kHz. Single
455  neurons were isolated online using custom voltage—time window discriminator software
456  (Blip; available at http://www.robilis.com/blip/). The presumed medium spiny neurons were
457  identified based on their low baseline activity (<3 spikes/s) and broad action potentials
458  (65). The recorded neurons were not blinded. The sample sizes required to detect the
459  effect sizes (numbers of recorded neurons, recorded trials in a single neuron, and

460 monkeys) were estimated based on previous studies (56, 57). Neural activity was recorded
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461  during 10-30 trials of the passive viewing task. We recorded 115 medium spiny neurons
462  inthe STRt. In Exp. 2, only a single-neuron recording was performed online. We note that
463  we termed the scene and object for two visual stimuli in our previous study (58), but here
464  we termed them scene and item.

465  Exp. 3. Conventional techniques were used to record single-neuron activity in the dorsal
466  part of the head of the caudate nucleus (CD). A tungsten microelectrode (1.1-1.5 MQ,
467  Microprobes for Life Science; 1.0 MQ, Alpha Omega Engineering Ltd.) was used to record
468  single-neuron activity. The electrophysiological signals were amplified and monitored
469 using a TDT recording system (RZ2, Tucker-Davis Technologies, TDT). Single-neuron
470  activity was manually isolated based on the online spike waveforms. The activity of all
471  single neurons was sampled from the activity of presumed projection neurons, which are
472  characterized as having a low spontaneous discharge rate (<2 spikes/s) outside the task
473  context and exhibiting phasic discharges in relation to one or more behavioral task events
474  (Yamada et al, 2016). Neural activity was recorded during 100—-120 trials per block in the
475  delayed-reward task. We recorded the CD of the left or right hemisphere in each of the
476  three monkeys in the experiment, with 150 CD neurons (51, 31, and 68 from the BI, FG,
477  and ST, respectively).

478 Exp. 4. Conventional techniques were used to record single-neuron activity in the DS, VS,
479  cOFC (area 13M), and mOFC (area 140). A tungsten microelectrode (1-3 MQ, FHC) was
480  used to record single-neuron activity. Electrophysiological signals were amplified, band-
481  pass filtered (50-3,000 Hz), and monitored using a TDT recording system (RZ5D, Tucker-
482  Davis Technologies, TDT). Single-neuron activity was manually isolated based on the
483  online spike waveforms. The activity of all single neurons was sampled when the activity
484  of anisolated neuron demonstrated a good signal-to-noise ratio (>2.5). The signal-to-noise

485  ratio was calculated online as the ratio of the spike amplitude to the baseline voltage range
20
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486  on the oscilloscope. The recorded neurons were not blinded. The sample sizes required
487  to detect the effect sizes (humbers of recorded neurons, recorded trials in a single neuron,
488 and monkeys) were estimated based on previous studies (59-67). Neural activity was
489  recorded during 100-120 trials of the single-cue task. Neural activity was not recorded
490 during selection trials. We recorded the neurons of a single right hemisphere in each of
491  the two monkeys: 194 DS neurons (98 and 96 from monkeys SUN and FU, respectively),
492 144 VS neurons (89 SUN and 55 FU), 190 cOFC neurons (98 SUN and 92 FU), and 158
493 mOFC neurons (64 SUN and 94 FU). In Exp. 1, only a single-neuron recording was
494  performed online.

495

496  Statistical analysis

497  For statistical analysis, we used the statistical software package MATLAB (MathWorks,
498 Exps. 1and 2), and R (Exps. 3 and 4) for conventional analyses such as linear regression
499 and ANOVA. To analyze the regression matrix using PCA, we used R software. All
500 statistical tests for the neural analyses were two-tailed.

501

502 Behavioral analysis

503 No new behavioral results were included; however, the procedure for the behavioral
504 analysis was as follows:

505 Exp. 1. We previously reported that two monkeys learned to retain the item and location
506 information of a sample stimulus (62). Here, we describe the analysis steps used to check
507  whether the monkey used both item and location information to perform the task.

508 To examine this, we compared the animals' actual correct rates during the recording
509 to random correct rates (chi-square test). The ILR response phase had five options,

510 resulting in a 20% random correct rate. If the animal used an incorrect strategy, such as
21
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511 only retaining the location information of the sample stimulus and ignoring the item
512  information, the correct rate for the match condition would be 100% and that for the
513 nonmatch condition would be 0. Based on the above considerations, we examined the
514  correct rates of the two animals in the match and nonmatch conditions, respectively. In
515 general, the average correct rates for both animals in the match and nonmatch conditions
516  were well above chance levels after training.

517  Exp. 2. We previously reported that two monkeys switched their behavior depending on
518 the value of the item based on the scene (58). Here, we describe how to check whether
519 the monkey learned both the scene and item information. We calculated the correct rate
520 for the scene-based object-value task. Because the two scenes appear in random
521 sequences, the monkey must switch object choice if the scene has changed. After
522  performing more than 160 trials, the correct rate reached a plateau above chance. The
523  monkey was able to switch object choices immediately after the scene changed. Once the
524  monkeys learned this extensively, their choice behavior became automatic, as the choice
525 tended to occur even when the reward was not delivered after saccades to high-valued
526  items according to the scene.

527  Exp. 3. We previously reported that the three monkeys behaved based on temporally
528 discounted values that integrated both delay and reward size information provided by
529  visual stimuli (63). Here, we describe an analysis to check how monkeys discount reward
530 values for delay and reward information. Error rates in task performance were calculated
531 by dividing the total number of errors by the total number of trials for each reward condition
532  and then averaged across all sessions. The average error rates were fitted to the inverse
533  function of reward size with hyperbolic temporal discounting: E = 1+kD/ aR (E: average
534  error rates, D: delay, R: reward size, k: discounting factor, a: incentive impact), and

535  exponential temporal discounting: E = e*¥/aR. We used the ‘optim’ function in R, evaluated

22


https://doi.org/10.1101/2024.08.05.604527
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.05.604527; this version posted August 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

536 the goodness of fit of the two models by least-squares minimization, and compared the
537 models by leave-one-out cross-validation as described previously (Minamimoto et al.,
538  2009).

539 Exp. 4. We previously reported that monkey behavior depends on expected values,
540 defined as the probability time magnitude (23). We described the analysis steps to check
541  whether the monkey’s behavior reflected task parameters, such as reward probability and
542  magnitude. Importantly, we showed that the monkey’s choice behavior reflected the
543  expected values of the rewards, that is, the probability multiplied by the magnitude. For
544  this purpose, the percentage choosing the right-side option was analyzed in the pooled
545  data using a general linear model with a binomial distribution:

546 Pchoosesg = 1/(1 + %) (3)

547  where the relationship between Pchoosesr and Z is given by the logistic function in each
548  of the following three models: number of pie segments (M1), probability and magnitude
549  (M2), and expected values (M3).

550 M1: Z = bo + biNpie. + baNpier 4)

551  where by is the intercept, and Npie. and Npier are the number of pie segments contained
552 inthe left and right pie chart stimuli, respectively. The values of by to b, are free parameters
553  and estimated by maximizing the log likelihood.

554 M2: Z = bo+ b1P. + baPr+ bsM. + bsaMr (5)

555  where by is the intercept; P, and Pr are the probabilities of rewards for the left and right
556  pie chart stimuli, respectively; and M, and Mg are the magnitudes of rewards for the left
557 and right pie chart stimuli, respectively. The values of by to bs are free parameters and
558 estimated by maximizing the log likelihood.

559 M3: Z=bo+ b1EV_ + boEVRr (6)
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560 where by is the intercept and EV, and EVr are the expected values of rewards as
561  probability multiplied by magnitude for the left and right pie chart stimuli, respectively. The
562  values of by to b, are free parameters and estimated by maximizing the log likelihood. We
563 identified the best model to describe monkey behavior by comparing goodness-of-fit
564  based on Akaike’s information criterion and Bayesian information criterion (64).

565

566  Neural analysis

567  Peri-stimulus time histograms were constructed for each single-neuron activity aligned at
568 the onset of the visual stimulus. Average activity curves were smoothed for visual
569 inspection using a Gaussian kernel (o = 20, 15, 10, and 50 ms in Exps. 1-4, respectively),
570  whereas the Gaussian kernel was not used for statistical tests.

571 To ensure that the four different datasets were as fair as possible, we used the same
572  criteria to analyze the neural activity. For the neural analyses, we used the following four
573  criteria: 1) the same analysis window size, 2) visual response within a short time (0.6 s),
574  3) neural modulations detected at the same significance level (P < 0.05), and 4) a general
575 linear model (ANOVA in Exps. 1 and 2 and the linear regression in Exp. 3 and 4). The
576  details of these analytical procedures for the rate coding and dynamic models are shown
577  below.

578

579 Rate-coding model: Conventional analyses to detect neural modulations in each
580 neuron

581  Exp. 1. For neural responses during the encoding phase after the sample presentation,
582  we evaluated the effects of “item” and “location” for each neuron using two-way ANOVA

583 (P < 0.05 for each). We analyzed neurons that were tested in at least 60 trials (10 trials

24


https://doi.org/10.1101/2024.08.05.604527
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.05.604527; this version posted August 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

584  for each stimulus and 15 trials for each location). On average, we tested 100 trials for each
585  neuron. These results have been previously reported (62).

586  Exp. 2. For neural responses during the appearance of the visual item, we evaluated the
587 effects of “item” and “scene” for each neuron using paired t-test (P < 0.05 with Bonferroni
588  correction). These results have been previously reported (58).

589 Exp. 3. The neural discharge rates (F) were fitted using a linear combination of the
590 following variables:

591 F = bo + bgDelay + b, Magnitude (7)

592  where Delay and Magnitude are the delay and magnitude of the reward, respectively, as
593 indicated by the visual stimulus. b is the intercept. If by and b, were not zero at P < 0.05,
594  the discharge rates were regarded as being significantly modulated by that variable. These
595 results have been previously reported (63).

596 Exp. 4. The neural discharge rates (F) were fitted using a linear combination of the
597 following variables:

598 F = bo + b, Probability + b, Magnitude (8)

599  where Probability and Magnitude are the probability and magnitude of the rewards,
600 respectively, as indicated by the pie chart. by is the intercept. If b, and b, were not zero at
601 P < 0.05, the discharge rates were regarded as being significantly modulated by that
602  variable. These results have been previously reported (23).

603

604  Population dynamics using principal component analysis

605  We analyzed neural activity during an identical 0.6 s duration from the sample onset (Exp.
606 1), itemonset (Exp. 2), CUE onset (Exp. 3), and cue onset (Exp. 4). To obtain a time series

607  of neural firing rates within this time period, we estimated the firing rates of each neuron

25


https://doi.org/10.1101/2024.08.05.604527
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.05.604527; this version posted August 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

608  for every 0.05 s time bin (without overlap) during the analysis periods. A Gaussian kernel
609  was not used.

610

611  Regression subspace. We used a general linear model to determine how items and
612 locations (Exp. 1), items and scenes (Exp. 2), delay and magnitude of rewards (Exp. 3),
613  and the probability and magnitude of the rewards (Exp. 4) affect the activity of each neuron
614 in the neural populations. Each neural population was composed of all the recorded
615  neurons in each brain region.

616  Exp. 1. First, we set six visual items and four locations as categorical variables. We then
617  described the average firing rate of neuron i at time t as a linear combination of the item
618  and the location in each neural population:

619 Fitr = boiy + brggltemy + baggyLlocation (9)

620  where Ftx is the average firing rate of neuron i at time t in trial k, ltem is the types of
621 items cued to the monkey in trial k, and Location is the types of locations cued to the
622  monkey in trial k. The regression coefficients bogy, b1y, and bz describe the degree to
623  which the firing rates of neuron i depend on the mean firing rates (hence, firing rates
624  independent of task variables, item, and location), the degree of firing rate in each item
625 relative to the mean firing rates, and the degree of firing in each location relative to the
626  mean firing rates, respectively, at a given time t during the trials. The interaction term is
627 notincluded in the model.

628 In the analysis, we performed preference ordering for item and location in each neuron.
629  ltemy) and Locationy were rank-ordered items and locations, respectively, cued to the
630 monkey in trial k. tems 1-6 and locations 1-4 were rank-ordered from the most preferred

631 to least preferred, respectively, defined as the mean firing rate during the entire analysis
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632 time window from 0.08 to 0.6 s. This preference ordering did not change over time t for
633  each neuron n.

634  Exp. 2. We first set eight items and two scenes as the categorical variables. We then
635 described the average firing rate of neuron i at time t as a linear combination of the item
636  and scene in each neural population:

637 Fitk = boiy + brigltemuy + bogpScene (10)

638  where Ftx is the average firing rate of neuron i at time t in trial k, ltem is the types of
639 items cued to the monkey in trial k, and Sceney is the types of scene stimuli cued to the
640 monkey in trial k. The regression coefficients by, b1iy and by describe the degree to
641  which the firing rates of neuron i depend on the mean firing rates (hence, firing rates
642 independent of task variables, item and scene), the degree of firing rate in each item
643  relative to the mean firing rates, and the degree of firing in each scene relative to the mean
644  firing rates, respectively, at a given time t during the trials. The interaction term was not
645 included in the model.

646 In the analysis, ltemy and Sceneyx were the rank-ordered item and scene,
647  respectively, cued to the monkey in trial k. Items 1 to 8 and Scenes 1 and 2 were rank-
648  ordered from the most preferred to least preferred, respectively, defined as the mean firing
649  rate during the whole analysis 0.6 s window after the item onset. This preference ordering
650  did not change over time t for each neuron n.

651  Exp. 3. We first set the delay and magnitude as 0, 3.3, and 6.9 s and one and three drops
652  of rewards, respectively, during the behavioral task. In the analysis, we normalized these
653  values from O to 1 divided by the maximum values in each: 0, 0.48, and 1 for delay, and
654 0.33, 0.66, and 1 for magnitude. This is because these values affect the extent of the

655  regression subspace between two continuous variables. We then described the average
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656 firing rate of neuron j at time t as a linear combination of the delay and magnitude in each
657  neural population:

658 Fiitr = boay + brigDelayy + bagyMagnitude 11)

659  where F(xis the average firing rate of neuron i at time t in trial k, Delay) is the normalized
660  delay to obtain a reward cued to the monkey in trial k, and Magnitude () is the normalized
661  number of reward drops cued to the monkey in trial k. The regression coefficients by to
662 by describe the degree to which the firing rates of neuron i depend on the mean firing
663  rates (hence, firing rates independent of task variables), delay in rewards, and magnitude
664  of rewards, respectively, at a given time f during the trials.

665 Exp. 4. We first set the probability and magnitude as 0.1 to 1.0 and 0.1 to 1.0 mL,
666  respectively. We did not normalize these values because they were originally prepared
667  from O to 1 originally. We then describe the average firing rate of neuron j at time t as a
668 linear combination of probability and magnitude in each neural population:

669 Fiitk = boiy + b1iyProbabilityg + bzisMagnitude (12)

670  where Fix is the average firing rate of neuron j at time t in trial k, Probability) is the
671  probability of the reward cued to the monkey in trial k, and Magnitude) is the magnitude
672  ofthe reward cued to the monkey in trial k. The regression coefficients by to bz describe
673  the degree to which the firing rates of neuron i depend on the mean firing rates (i.e., firing
674 rates independent of task variables), probability of rewards, and magnitude of rewards,
675  respectively, at a given time t during the trials.

676 We used the regression coefficients (i.e., the regression table in the case of ANOVA)
677  described in Eq. 9-12 to identify how the dimensions of the neural population signals were
678 composed of information related to the item and location (Exp. 1), item and scene (Exp.
679  2), delay and magnitude (Exp. 3), and probability and magnitude (Exp. 4) as aggregated

680  properties of individual neural activity. In this step, an encoding model is constructed in
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681  which the regression coefficients are explained by a temporal structure in the neural
682  modulation of two categorical variables (Exps. 1 and 2), or two continuous variables (Exps.
683 3 and 4) at the population level. Our procedures involve targeted dimensionality reduction
684  using the regression subspace and are aimed at describing neural modulation dynamics
685  (29).

686

687  Principal component analysis. We used PCA to identify the dimensions of the neural
688  population signal in orthogonal spaces composed of two variables in each neural
689  population of the four experiments. For each neural population, we first prepared a two-
690 dimensional data matrix X of size Nym*xM c«x7). The regression coefficient vectors by and
691  bzigyin Eq. 9-12, whose rows correspond to the total number of neurons (n) in each neural
692  population and columns correspond to C, the total number of conditions (that is, 10: six
693  items and four locations in Exp. 1, 10: eight items and two scenes in Exp. 2, 2: delay and
694  magnitude in Exp. 3, and 2: probability and magnitude in Exp. 4), and T is the total number
695  of analysis windows (i.e., 0.6 s divided by the window size bin, 0.05 s, 12 bin). A series of
696  eigenvectors was obtained by applying PCA once to the data matrix X in each neural
697  population. The PCs of this data matrix are vectors v of length N/, and the total number
698  of recorded neurons if M cx7) > Ny); otherwise, the length is M cx7). PCs were indexed from
699  the principal components and explained the most to least variance. The eigenvectors were
700  obtained using the prcomp () function in R software. We did not include the intercept term
701  bogyto focus on the neural modulation by the variables of interest.

702

703  Eigenvectors. When we applied PCA to data matrix X, we decomposed the matrix into
704  eigenvectors and eigenvalues. Each eigenvector had a corresponding eigenvalue. In our

705 analysis, the eigenvectors at time t represented a vector, for example, in the space of
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706  delay and magnitude in Exp. 3. The eigenvalues at time t for the delay and magnitude
707  were scalars, indicating the extent of variance in the data in that vector. Thus, the first PC
708  was the eigenvector with the highest eigenvalue. We analyzed the eigenvectors for the
709 toptwo PCs (PC1 and PC2)in the following analyses to describe the geometry in the most
710  predominant dimension. PCA was applied once to each neural population; thus, the total
711  variance contained in the data differed among the neural populations.

712

713 Shuffle control for PCA. To examine the significance of the population structures described
714 by PCA, we performed three shuffle controls. The two-dimensional data matrix X was
715  randomized by shuffling in three ways. In shuffled control 1, matrix X was shuffled by
716  permutating the allocation of neuron n at time i. This shuffle provided a data matrix X of
717  size NypxM cx7), eliminating the temporal structure of neural modulation by condition C in
718  each neuron but retaining the neural modulations at time t at the population level. In
719  shuffled control 2, matrix X was shuffled by permutating the allocation of time j in each
720 neuron n. This shuffle provided a data matrix X of size Npewon*M cx7), €liminating the
721  neural modulation structure under condition C maintained in each neuron but retaining the
722  neural modulation in each neuron at the population level. In shuffled control 3, matrix X
723  was shuffled by permutating the allocation of both time i and neuron n. In these three
724  shuffle controls, matrix X was estimated to be 1,000 times. PCA performance was
725  evaluated by constructing the distributions of the explained variances for PC1 to PC12.
726  The statistical significance of the variances explained by PC1 and PC2 was estimated
727  based on the 95th percentile of the reconstructed distributions of the explained variance
728  or bootstrap standard errors (i.e., standard deviation of the reconstructed distribution). We

729  note that because the significant dimensions of neural populations dynamics differed the
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730 10 neural populations, we analyzed the neural dynamics at the top two dimension, PC1
731 and 2.

732

733 Analysis of eigenvectors. We evaluated the characteristics of the eigenvectors for PC1
734 and PC2 in each neural population in terms of vector angle, size, and deviation. The
735  eigenvectors were evaluated for each of the task parameters described above: item and
736  location in Exp. 1, item and scene in Exp. 2, delay and magnitude in Exp. 3, and probability
737  and magnitude in Exp. 4. The angle is the vector angle from the horizontal axis from 0° to
738  360° against the main PCs. The size is the length of the eigenvector. The deviation is the
739  difference between the vectors. The deviation from the mean vector for each neural
740  population was estimated. These three eigenvector characteristics were compared among
741  the populations at P < 0.05, using the Kruskal-Wallis test and Wilcoxon rank-sum test with
742  Bonferroni correction for multiple comparisons. The vector during the first 0.1 s was
743  extracted from these basic analyses.

744 To evaluate the neural population geometry using their selected feature, we estimated
745  the accumulated angle difference weighted by the deviance:

746 (=sd 6 (13)

747  where the d is deviation between the vectors at times t and t+1, 6 is the angle difference
748 between vectors at times tand t+1, Sis zero, and E is the time period to stop the estimation,
749 i.e., 0.6 s. This index is analogous to the rotational force accumulated over time. If the
750  value of the accumulated angle difference was close to zero, the population geometry was
751  stable, such as a straight or non-dynamic structure, that is, it remained at some point in
752  the PC1-2 plane.

753 To quantitatively evaluate the trajectory geometry, we used the Lissajous curve

754  function, which describes any geometric pattern in a plane using F(x,y):
31
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755 x = Ax cos (wx t(i) + @x) + bx (14)

756 y = Ay cos (wy t(i) + @y) + by (15)

757  where w and ® represent cycle of the rotation and their deviance as a function of time, t(i).
758 Ax and Ay represent the amplitudes of the trajectory, whereas bx and by represent the
759 location of the trajectory. For w, 3.33 1 indicates that one cycle since the analysis window
760 is0.6s. @ is 0to 2 1 for one cycle. We estimated wx, ®x, bx, wy, and @y, by parameters
761 by estimating maximum loglikelihood of the model. Nonlinear least squares in the nls()
762  function in the R program was used. A time series of eigenvectors for PC1 and PC2 in a
763  0.05 s analysis windows (12 data points) were used with a sliding average between three
764  time points (hence, 0.15 s time resolution).

765

766  Bootstrap resampling and clustering using feature-based parameters. We estimated 2d 6,
767 mean d, rotational speed Z6/0.1s, and ds., such as start to end distance using a
768  parametric bootstrap resampling method (65). In each neural population, the neurons
769  were randomly resampled in duplicate, and a data matrix X of size Neurony*M (cx1) Was
770  obtained. PCA was applied to the data matrix X. The time series of eigenvectors was
771  obtained, and these four features were estimated from the neural trajectory. This
772 resampling was conducted 1,000 times in each neural population, and the distributions of
773  these four parameters were obtained.

774 Following bootstrap resampling, we applied clustering of these parameters based on
775 PCA and a dendrogram across the replicates in the 10 brain regions, such as 20,000
776  replicates (10 brain regions times two conditions times 1,000 replicates). Based on this
777  clustering, proportion of the identified clusters in each brain region was estimated.

778
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779  Bootstrap resampling and clustering based on Lissajous curve parameters. The Lissajous
780 curve parameters for the replicated trajectory were estimated using a bootstrap
781  resampling method (65). In each neural population, the neurons were randomly resampled
782  in duplicate, and a data matrix X of size Neuron*M cx7) Wwas obtained. PCA was applied to
783  the data matrix X. The time series of eigenvectors was obtained for PC1 and PC2, which
784  describe the trajectory, and the fitted parameters using the Lissajous curve function were
785  estimated using the nls() function in R program. This resampling was conducted 1,000
786  times in each neural population, and the distributions of the Lissajous parameters were
787  obtained.

788 Following bootstrap resampling, we applied clustering of these parameters based on
789 PCA and a dendrogram across the replicates in the 10 brain regions, such as 20,000
790 replicates (10 brain regions times two conditions times 1,000 replicates). In this process,
791  the omega ratio (wx/wy) and phi difference (®x-®y) were also used, in addition to the wx,
792  wy, ®x, and Py. Based on this clustering, proportion of the identified clusters in each brain
793  region was estimated. We used the median of the estimated parameter in a cluster to
794  describe the trajectory geometries.

795

796

797 References

798 1. D. J. Felleman, D. C. Van Essen, Distributed hierarchical processing in the
799 primate cerebral cortex. Cereb Cortex 1, 1-47 (1991).

800 2. H. Chen, Y. Naya, Reunification of Object and View-Center Background
801 Information in the Primate Medial Temporal Lobe. Front Behav Neurosci
802 15, 756801 (2021).

803 3. G. Buzsaki, S. McKenzie, L. Davachi, Neurophysiology of Remembering.
804 Annu Rev Psychol 73, 187-215 (2022).

33


https://doi.org/10.1101/2024.08.05.604527
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.05.604527; this version posted August 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

805 4. J. B. Goense, N. K. Logothetis, Neurophysiology of the BOLD fMRI signal

806 in awake monkeys. Curr Biol 18, 631-640 (2008).

807 5. S. Hu et al., Real-Time Readout of Large-Scale Unsorted Neural

808 Ensemble Place Codes. Cell Rep 25, 2635-2642 2635 (2018).

809 6. N. A. Steinmetz, P. Zatka-Haas, M. Carandini, K. D. Harris, Distributed
810 coding of choice, action and engagement across the mouse brain. Nature
811 576, 266-273 (2019).

812 7. J. R. Climer, D. A. Dombeck, Information Theoretic Approaches to

813 Deciphering the Neural Code with Functional Fluorescence Imaging.

814 eNeuro 8, (2021).

815 8. A. C. Paulk et al., Large-scale neural recordings with single neuron

816 resolution using Neuropixels probes in human cortex. Nat Neurosci 25,
817 252-263 (2022).

818 9. J. Manley et al., Simultaneous, cortex-wide dynamics of up to 1 million
819 neurons reveal unbounded scaling of dimensionality with neuron number.
820 Neuron 112, 1694-1709 1695 (2024).

821 10. P. Dayan, L. Abbott, Theoretical neuroscience: computational and
822 mathematical modeling of neural systems. (2001).
823 11. P. Sanz-Leon, S. A. Knock, A. Spiegler, V. K. Jirsa, Mathematical

824 framework for large-scale brain network modeling in The Virtual Brain.
825 Neuroimage 111, 385-430 (2015).

826 12. R. Yuste, From the neuron doctrine to neural networks. Nat Rev Neurosci
827 16, 487-497 (2015).

828 13. S. Vyas, M. D. Golub, D. Sussillo, K. V. Shenoy, Computation Through
829 Neural Population Dynamics. Annu Rev Neurosci 43, 249-275 (2020).

830 14. M. D. Humphries, Strong and weak principles of neural dimension
831 reduction. Neurons, Behavior, Data analysis, and Theory 5, (2021).
832 15. K. V. Shenoy, J. C. Kao, Measurement, manipulation and modeling of

833 brain-wide neural population dynamics. Nat Commun 12, 633 (2021).

34


https://doi.org/10.1101/2024.08.05.604527
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.05.604527; this version posted August 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

made available under aCC-BY-NC-ND 4.0 International license.

L. M. K. Timothy, B. E. Bona, State Space Analysis: An Introduction.
(McGraw-Hill, 1968).

W. Brendel, R. Romo, C. K. Machens, Demixed Principal Component
Analysis. Advances in Neural Information Processing Systems 24, 2654-
2622 (2011).

M. M. Churchland et al., Neural population dynamics during reaching.
Nature 487, 51-56 (2012).

V. Mante, D. Sussillo, K. V. Shenoy, W. T. Newsome, Context-dependent
computation by recurrent dynamics in prefrontal cortex. Nature 503, 78-84
(2013).

P. Gao, S. Ganguli, On simplicity and complexity in the brave new world of
large-scale neuroscience. Curr Opin Neurobiol 32, 148-155 (2015).

R. Rossi-Pool, R. Romo, Low Dimensionality, High Robustness in Neural
Population Dynamics. Neuron 103, 177-179 (2019).

G. Okazawa, C. E. Hatch, A. Mancoo, C. K. Machens, R. Kiani,
Representational geometry of perceptual decisions in the monkey parietal
cortex. Cell 184, 3748-3761 e3718 (2021).

H. Yamada, Y. Imaizumi, M. Matsumoto, Neural Population Dynamics
Underlying Expected Value Computation. J Neurosci 41, 1684-1698
(2021).

A. Libby, T. J. Buschman, Rotational dynamics reduce interference
between sensory and memory representations. Nat Neurosci 24, 715-726
(2021).

A. Pellegrino, H. Stein, N. A. Cayco-Gajic, Dimensionality reduction
beyond neural subspaces with slice tensor component analysis. Nat
Neurosci, (2024).

S. Mukherjee, B. Babadi, Adaptive modeling and inference of higher-order
coordination in neuronal assemblies: A dynamic greedy estimation
approach. PLoS Comput Biol 20, €1011605 (2024).

35


https://doi.org/10.1101/2024.08.05.604527
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.05.604527; this version posted August 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

made available under aCC-BY-NC-ND 4.0 International license.

Y.J. Chang, Y. I. Chen, H. C. Yeh, S. R. Santacruz, Neurobiologically
realistic neural network enables cross-scale modeling of neural dynamics.
Sci Rep 14, 5145 (2024).

P. Vahidi, O. G. Sani, M. M. Shanechi, Modeling and dissociation of
intrinsic and input-driven neural population dynamics underlying behavior.
Proc Natl Acad Sci U S A 121, e2212887121 (2024).

H. Chen et al., Stable Neural Population Dynamics in the Regression
Subspace for Continuous and Categorical Task Parameters in Monkeys.
eNeuro 10, (2023).

K. S. Saleem, K. Tanaka, Divergent projections from the anterior
inferotemporal area TE to the perirhinal and entorhinal cortices in the
macaque monkey. J Neurosci 16, 4757-4775 (1996).

Y. Naya, M. Yoshida, Y. Miyashita, Forward processing of long-term
associative memory in monkey inferotemporal cortex. J Neurosci 23,
2861-2871 (2003).

W. A. Suzuki, Y. Naya, The perirhinal cortex. Annu Rev Neurosci 37, 39-
53 (2014).

D. Sasikumar, E. Emeric, V. Stuphorn, C. E. Connor, First-Pass
Processing of Value Cues in the Ventral Visual Pathway. Curr Biol 28,
538-548 €533 (2018).

K. Palmer, T. Ridgway, O. Al-Rawi, I. Johnson, M. Poullis, Lissajous
figures: an engineering tool for root cause analysis of individual cases--a
preliminary concept. J Extra Corpor Technol 43, 153-156 (2011).

Y. Osako et al., Contribution of non-sensory neurons in visual cortical
areas to visually guided decisions in the rat. Curr Biol 31, 2757-2769
e2756 (2021).

K. C. Ames, S. |. Ryu, K. V. Shenoy, Neural dynamics of reaching
following incorrect or absent motor preparation. Neuron 81, 438-451
(2014).

36


https://doi.org/10.1101/2024.08.05.604527
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.05.604527; this version posted August 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

892  37. N. J. Marshall et al., Flexible neural control of motor units. Nat Neurosci

893 25, 1492-1504 (2022).

894  38. M. C. Aoi, V. Mante, J. W. Pillow, Prefrontal cortex exhibits

895 multidimensional dynamic encoding during decision-making. Nat Neurosci
896 23, 1410-1420 (2020).

897 39. M. C. Aoi, J. W. Pillow, Model-based targeted dimensionality reduction for
898 neuronal population data. Adv Neural Inf Process Syst 31, 6690-6699

899 (2018).

900 40. Y. Fan,J.l. Gold, L. Ding, Frontal eye field and caudate neurons make
901 different contributions to reward-biased perceptual decisions. Elife 9,

902 (2020).

903 41. M. Safaie et al., Preserved neural dynamics across animals performing
904 similar behaviour. Nature 623, 765-771 (2023).

905 42. S. Melbaum et al., Conserved structures of neural activity in sensorimotor
906 cortex of freely moving rats allow cross-subject decoding. Nat Commun
907 13, 7420 (2022).

908 43. C. E. Allen, P. Beldade, B. J. Zwaan, P. M. Brakefield, Differences in the
909 selection response of serially repeated color pattern characters: standing
910 variation, development, and evolution. BMC Evol Biol 8, 94 (2008).

911 44. D. J. Tolhurst, J. A. Movshon, Spatial and temporal contrast sensitivity of
912 striate cortical neurones. Nature 257, 674-675 (1975).

913 45, J. P. Jones, L. A. Palmer, An evaluation of the two-dimensional Gabor

914 filter model of simple receptive fields in cat striate cortex. J Neurophysiol
915 58, 1233-1258 (1987).

916 46. A.P. Georgopoulos, J. F. Kalaska, R. Caminiti, J. T. Massey, On the
917 relations between the direction of two-dimensional arm movements and
918 cell discharge in primate motor cortex. J Neurosci 2, 1527-1537 (1982).

919 47. E. E. Fetz, P. D. Cheney, Postspike facilitation of forelimb muscle activity
920 by primate corticomotoneuronal cells. J Neurophysiol 44, 751-772 (1980).

37


https://doi.org/10.1101/2024.08.05.604527
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.05.604527; this version posted August 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

made available under aCC-BY-NC-ND 4.0 International license.

M. L. Platt, P. W. Glimcher, Neural correlates of decision variables in
parietal cortex. Nature 400, 233-238 (1999).

J. O'Keefe, J. Dostrovsky, The hippocampus as a spatial map. Preliminary
evidence from unit activity in the freely-moving rat. Brain Res 34, 171-175
(1971).

D. Kobak et al., Demixed principal component analysis of neural
population data. Elife 5, (2016).

J. D. Murray et al., Stable population coding for working memory coexists
with heterogeneous neural dynamics in prefrontal cortex. Proc Natl Acad
Sci U S A 114, 394-399 (2017).

R. Rossi-Pool, A. Zainos, M. Alvarez, G. Diaz-deLeon, R. Romo, A
continuum of invariant sensory and behavioral-context perceptual coding
in secondary somatosensory cortex. Nat Commun 12, 2000 (2021).

A. Hays, B. Richmond, L. Optican, Unix-based multiple process system for
real-time data aquisition and control. WESCON 2, 1-10 (1982).

Y. Naya, W. A. Suzuki, Integrating what and when across the primate
medial temporal lobe. Science 333, 773-776 (2011).

H. Yamada et al., Characteristics of fast-spiking neurons in the striatum of
behaving monkeys. Neurosci Res 105, 2-18 (2016).

S. Yamamoto, I. E. Monosov, M. Yasuda, O. Hikosaka, What and where
information in the caudate tail guides saccades to visual objects. J
Neurosci 32, 11005-11016 (2012).

J. Kunimatsu, K. Maeda, O. Hikosaka, The Caudal Part of Putamen
Represents the Historical Object Value Information. J Neurosci 39, 1709-
1719 (2019).

J. Kunimatsu, S. Yamamoto, K. Maeda, O. Hikosaka, Environment-based
object values learned by local network in the striatum tail. Proc Natl Acad
SciU S A118, (2021).

H. Yamada et al., Coding of the long-term value of multiple future rewards
in the primate striatum. J Neurophysiol 109, 1140-1151 (2013).

38


https://doi.org/10.1101/2024.08.05.604527
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.05.604527; this version posted August 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966

60.

61.

62.

63.

64.

65.

made available under aCC-BY-NC-ND 4.0 International license.

H. Yamada, K. Louie, A. Tymula, P. W. Glimcher, Free choice shapes
normalized value signals in medial orbitofrontal cortex. Nat Commun 9,
162 (2018).

X. Chen, V. Stuphorn, Sequential selection of economic good and action
in medial frontal cortex of macaques during value-based decisions. Elife 4,
(2015).

H. Chen, Y. Naya, Forward Processing of Object-Location Association
from the Ventral Stream to Medial Temporal Lobe in Nonhuman Primates.
Cereb Cortex 30, 1260-1271 (2020).

Y. Hori et al., Single caudate neurons encode temporally discounted value
for formulating motivation for action. Elife 10, (2021).

K. Burnham, D. Anderson, Multimodel inference: understanding AIC and
BIC in model selection. Sociol. Method Res. 33, 261-304 (2004).

B. Efron, R. J. Tibshirani, An Introduction to the Bootstrap. (Chapman &
Hall/CRC, 1993).

39


https://doi.org/10.1101/2024.08.05.604527
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.05.604527; this version posted August 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

967

968

969

970

971

972

973

974

975

made available under aCC-BY-NC-ND 4.0 International license.

A [N A2 -
fa— - D N=407 - @
| Straight|[ Curvy | s[@Pre 1 Active < <
~ch 14 [ : I
B14d A,
‘gd o ™
{ d {88 ]
A A F So o
] oAk L 3
[Stralght 2] [ " OFC o |
)| ; (12 15115, 1 f L i L - g PR SRR
£ 0.4 PC1 04 -08 PC1 0.6 -08 PC1 0.8
© 2 18 <p BT os00 o BXP-4 notsd wr B4 notgo o EXp.4 1 oq0a
a S[@HPC | Active S[@VS | Passive o|(@)cOFC : ive ©[@conab| Passive
3 ! P : : N
g L
=0 8l 3
& o ¥ i
[~} - |
x !
e I | @
= M ST =1

Fig. 1. Neural population geometries in the visual memory pathway

A, Anatomical depiction of neural populations obtained from the 10 brain regions in eight
macaques during the four different behavioral tasks in Exps. 1 to 4. B-E, Rotational (B),
curvy (C), straight (D), and unclear dynamics (E) detected by visual inspection. In A-E, the
10 brain regions are numbered as follows: 1. TE, 2. STRt, 3. PRC, 4. CDb, 5. HPC, 6. VS,
7. cOFC, 8. CDh&b, 9. PHC, and 10. mOFC. The 0.05 s time bin was used for the

dynamics analysis.
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976

977  Fig. 2. Quantitative evaluation of geometric structures according to the rotational features.
978 A, Schematic depictions of the estimation of accumulated angle difference weighted by
979 the deviance, Zd 6. The accumulated angle difference indicates the degree of geometric
980 change in terms of the rotational force across time. Vector distance (d), rotational speed
981 (6/0.1s), and start to endpoint distance (dse) were also estimated. B, Dendrogram
982  estimated from these four parameter values based on bootstrap resampling across 10
983  neural populations. C, Percentage of variance explained by PCA of bootstrap resampling
984  data across 10 neural populations. D, Clusters detected among the four parameters based
985 on the PCA. E, Percentage of the identified clusters in each of the 10 brain regions. Each
986  neural population contained two components of neural information: the best and worst
987  conditions (BW) in Exps. 1 and 3, magnitude and delay of the rewards (MD) in Exp. 2, and
988  magnitude and probability of rewards (MP) in Exp. 4.

989
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991  Fig. 3. Quantitative evaluation of geometric structures using the Lissajous curve function.
992 A, Schematic depictions of trajectory geometries using Lissajous function parameters. For
993  all figures, wx and wy are 3 1. B, Three examples of bootstrap replicates for the HPC
994  population fitted by the Lissajous function. L indicates the maximum loglikelihood.
995 Estimated parameters were as follows: left, wx, 2.78 11, ®x, -0.11, L, 34.6, wy, 2.96 1, Py,

996 0.10, L, 31.6; middle, wx, 2.51 m, ®x, -0.03, L, 24.2, wy, 3.82 7, @y, -0.08, L, 32.7; right,
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997  wx, 2.21 m, ®x, -0.16, L, 26.9, wy, 2.78 m, Py, 0.58, L, 29.1. C, Probability density
998 estimated for Lissajous parameters obtained from bootstrap replicates across 10 neural
999  populations times two conditions. D, Dendrogram estimated from Lissajous parameter
1000 values based on bootstrap resampling across 10 neural populations times two conditions.
1001 E, Percentage of variance explained by PCA of bootstrap resampling data across 10
1002  neural populations times two conditions. F, Clusters determined using PCA. Data are
1003  shown for PC1 to 3. G, Reconstructed trajectory in each cluster based on bootstrap
1004 resampling. The trajectories in clusters 1-10 were drawn using the median values of the
1005 Lissajous parameters in each cluster. H, Percentage of clusters in each of the 10 brain
1006  regions times two conditions. BW: best and worst conditions. MD: magnitude and delay

1007  conditions. MP: magnitude and probability conditions.
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1009 Fig. 4. Summary of the observed dynamics and anatomical connections in the visual
1010  memory pathway.

1011 A, Geometries depicted in the same arbitrary scales on the PC1-2 plane for the eight
1012  neural populations shown in Fig. 1B-D. The start of the trajectory (S) is aligned to describe
1013  each trajectory. e indicates the end of the trajectory at 0.6 s. B, Proportion of the clusters
1014  defined in each of the 10 brain regions are described with the anatomical connection.
1015 Reddish: rotational, greenish: curvy, bluish: straight dynamics. Data from CDh&b and CDb
1016  are merged (CD).

1017
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1019 Fig. S1. Behavioral tasks

1020 A, Sequence of events during the ILR task in Exp. 1. The cue stimulus during the response
1021 phase was the same as the sample stimulus during the encoding phase of the match trial,
1022  whereas the two stimuli differed in the nonmatch trial. Neural activity was analyzed during
1023 0.6 s after sample onset (gray bar). During the task, the monkeys actively responded or
1024  did not respond by making a choice and performing the following action. B, Six visual
1025  stimuli and spatial composition of the sample stimulus. C, Sequence of events during the
1026  passive viewing task in Exp. 2. During fixation, the visual items were presented
1027  sequentially within two to four times. These visual items were associated with reward or
1028  no-reward outcomes in other behavioral contexts during the learning trials. During the task,

1029 the monkeys were not required to respond, except for fixation to the center (passive).
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1030  Neural activity was analyzed during 0.6 s after object onset (gray bars). D, Eight visual
1031 items were divided into two groups (items 1-4 and 5-8). In each scene (e.g., scene X),
1032 one group was associated with a large reward and the other with a small reward. This
1033  reward association was reversed in the other scene (e.g., scene Y). In each trial, two items
1034  appeared as shown in C, one in items 1-4 and the other in items 5-8 as a random
1035 combination. E, Sequence of events during the delayed reward task in Exp. 3. During the
1036  task, the monkeys actively responded to the GO signal by releasing the lever (active).
1037  Neural activity was analyzed during 0.6 s after cue onset (gray bar). F, During the task,
1038  six visual items indicated the forthcoming reward size and delay duration to the reward
1039  after the bar release. G, Sequence of events during the single-cue task in Exp. 4. A single
1040 visual pie chart with green and blue segments was presented to the monkeys. During the
1041  task, the monkeys were not required to respond, except for fixation to the center during
1042  the start (passive). Neural activity was analyzed during 0.6 s after cue onset. H, Payoff
1043  matrix: Each of the magnitudes was fully crossed with each of the probabilities, resulting

1044  in a pool of 100 lotteries.

46


https://doi.org/10.1101/2024.08.05.604527
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.05.604527; this version posted August 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

Categorical

Exp. 1 Exp. 1 Exp. 1 Exp. 1 Exp. 2
(1 TE N= 295 Active U PRC N =407 Active 5 PHC N = 214 Active » HPC N = 580 Active 7 STRt N =116 Passive
2 0 e =
F il 1l ) _
2
g
@
| - - - :
‘: g o
¥ | £ H £ =
O a 1e 1e a4
i : H H
H o o I .
w - a &l
e« o s Joe J
@ i@ o 5
o
] o i o i
r T T T T T 1 r T T T T T 1 r T T T T T 1 r T T T T T 1 r T T T T T 1
@ 2 40 €0 A0 120 O 20 40 60 B0 120 0 X 40 60 B0 120 O 20 40 40 &0 20 0O 20 40 &0 &0 120
PCSs
Continuous
Exp. 3 Exp. 4 Exp. 4 Exp. 4 Exp. 4
4 GOb N = 180 Active n mOFGC N = 152 Passive 7 e0FG N =190 Passive %' VE N =144 Passive /% Cd hith M = 184 Passive
g ] . ncad,apl fﬂd.n“‘ fw j‘ﬂpﬂ”
o
o & o & °l’.P
o - o a @ o
] L a
5 5 o o L ot
g o @ o o
a o
8 J- ou | o = .
'= ]
~ e L] @
8 o
g ] i o i i
; B i
g |
- _D - - -

S B e s e |
0 5 10 15 20 25 0
FCs

|
5 i 15 20

T
5 1o 15 20

1045

1046  Fig. S2. Variances explained by PCA in each neural population.

1047  Cumulative variance explained by PCA in each neural population in Exp. 1 to 4. The 0.05
1048 s time bin was used for the analysis. In Exp. 1 and Exp. 2, categorical task parameters
1049 were used. In Exp. 3 and Exp. 4, continuous task parameters were used. Triangle
1050 indicates the variance explained by the first two PCs.
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1051

1052  Fig. S3. Variances explained by PCA under shuffle control.

1053  Boxplot of variances explained by PCA under the three shuffled conditions (see Methods
1054  section for details). The plot was not cumulative. A boxplot was made with 1,000 repeats
1055  of the shuffle for each condition. Gray plots indicate the percentage of variance explained

1056 by PCA. Results using 0.05 s bin data are shown.
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1058 Fig. S4. Examples of Lissajous curve represented with the parameter combination.
1059  Rotational, curvy, and straight dynamics are shown against w ratio and @ difference. In
1060 this study one cycle is defined with 3.33 1 for w during 0.6 s analysis period (3.33 1 x 0.6
1061 =2 min the Lissajous function, A cos(w (i) + @) + b). @ from 0 to 2 11 defines the phase.
1062 A and b denote the size and location of the curve, respectively. Combination of w ratio and
1063 @ difference between x and y determines the shape of trajectory. For example, straight
1064 geometry is defined as the same w and the same @®. Rotational dynamics is defined as
1065 the same w and not identical @. Curvy dynamics is defined as the different w and the
1066 same @.
1067
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Supplementary Table S1. Summary of the data set and standard analysis methods.

Number of

E i | iginal Ri i N f . .
NO| Brain region recorded | XPerimenta Origina ecording umber o Behavioral task and standard analysis
number report methods monkeys used
neurons
1 TE 295
2 Pemh(':slc;: ortex 407 Single neuron * Item-location-retention task
...................................................... chen and recording . . . .
3 Parahippocampal 214 Exp. 1. Naya, 2020 /Multi neuron 2 Active behavior: match-nonmatch choice
.............. cortex(PHC) | " . recording + ANOVA (6 visual stimuli, 4 locations)
Hippocampus
4 (HPC) 590
* Scene-based object-value task
Striatum tail Kunimatsu [Single neuron . P .
5 STRt 116 Exp. 2. etal, 2021 recording 2 Passive behavior: no required response
* ANOVA (8 visual stimuli, 2 rewards)
* Delayed reward tasks
Caudate body Hori et al., |Single neuron . . i
6 (CDb) 150 Exp. 3. 2021 recording 3 Active behavior: lever release response
* Linear regression (delay, magnitude)
Medial
7 orbitofrontal 158
.............. cortex(mOFC) | ..
Central * Cued lottery tasks
8 orbitofrontal 190 Yamada et |Single neuron . . I .
_____________ cortex (COFC) EXP' 4. al., 2021 recording 2 Passive behavior: no requ"ed response
Ventral striatum * Linear regression (probability, magnitude)
9 144
............. (vs)
Caudate head and
10 body (CDh&b) 194

For the standard analysis, we analyzed visual response within a short time (0.6 s). Neural

modulations were detected at the same significance level (P < 0.05) using a general linear

model (ANOVA in Exps. 1 and 2 and the linear regression in Exp. 3 and 4). See each

reference for the results based on the standard analysis using general linear model.
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