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Abstract (150/150) 71 

Neural dynamics assumes to reflect computations that relay and transform information in 72 

the brain. Previous studies have identified the neural population dynamics in many 73 

individual brain regions as a trajectory geometry, preserving a manifest of computational 74 

motifs. However, whether these populations share particular geometric patterns across 75 

brain-wide neural populations remains unclear. Here, by mapping neural dynamics widely 76 

across temporal/frontal/limbic regions in the cortical and subcortical structures of monkeys, 77 

we show that 10 neural populations, including 2,500 neurons, propagate visual item 78 

information in a stochastic manner. We found that visual inputs predominantly evoked 79 

rotational dynamics in the higher-order visual area, TE and its downstream striatum tail, 80 

while curvy/straight dynamics appeared frequently downstream in the 81 

orbitofrontal/hippocampal network. These geometric changes were not deterministic but 82 

rather stochastic according to their respective emergence rates. Our meta-analysis results 83 

indicated that visual information propagates as a heterogeneous mixture of stochastic 84 

neural population signals in the brain. 85 

  86 
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Introduction 87 

Visual inputs activate a large number of neurons in the brain that construct numerous 88 

neural networks to process information in an environment (1-3). This brain-wide activity 89 

change reflects the information processing embedded in each individual neural circuit; 90 

however, limitations of spatial and temporal resolution in the measurements of circuitry 91 

activity disrupt our understanding of brain-wide visual information processing (4-9). Under 92 

this limitation, considerable attempts have been made toward understanding how the brain 93 

processes information using a variety of developing theoretical frameworks (10-15). 94 

One of the analytic frameworks developed within the last decade is state-space 95 

analysis (16) that provides a mechanistic structure of information processed in the lower-96 

dimensional space of a neural population (17-19). This analytical tool identified dynamic 97 

neural population structures that reflect information processing for general biological 98 

features (20, 21) and allowed us to describe those features as a neural geometry in a fine 99 

time resolution (13-15) in the sub-second order. A large number of unidentifiable neural 100 

circuits may process information moment-by-moment (6), and they may form a population 101 

geometry, such as rotational (18), curvy (19, 22), or straight geometries (23), as the typical 102 

and basic features of dynamics. A recent finding suggests that the combination of neural 103 

population geometries may be the key to processing information to transform sensory 104 

inputs into memory (24). Recent studies have extended these analytical frameworks (25-105 

29); however, because of poor comparisons among brain-wide neural populations, how 106 

the brain processes information in the form of geometry remains elusive. 107 

To examine how brain-wide neural dynamics are formed to process visual information, 108 

we accumulated the neural population data of monkeys from four laboratories that 109 

contained 10 neural populations, including 2,500 neurons across temporal/frontal/limbic 110 

networks (i.e., meta-analysis). We applied targeted dimensional reduction, with a 111 
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bootstrap resampling technique that detects and replicates neural modulation dynamics 112 

in a low-dimensional neural space. Following a parametric bootstrap analysis using the 113 

Lissajous curve function, our cross-study comparison revealed that a gradual shift in 114 

stochastic neural population signals occurred throughout the temporal-to-frontal brain 115 

regions. 116 

 117 

Results 118 

We compared the trajectory geometries across many neural populations widely distributed 119 

in the brain from the output brain regions in the ventral visual pathway (30-33) and its 120 

downstream brain regions that may access memories associated with a visual stimulus. 121 

These included ten brain regions that were accumulated from nine monkeys examined in 122 

the four laboratories (Table. S1), from the higher-order visual area TE and their 123 

downstream brain regions in cortical, subcortical, and limbic structures, such as the 124 

temporal/orbitofrontal cortices, striatum, and hippocampus (HPC) (Fig. 1A, No. 1 to 10). A 125 

total of 2,500 neurons were accumulated across the four behavioral tasks (Fig. S1), in 126 

which visual items provided monkeys with position and/or reward information during the 127 

active (Exps. 1 and 3), and passive (Exps. 2 and 4) behavioral responses. Using state-128 

space analysis, we characterized structures of neural population geometry that appeared 129 

in the lower dimensional neural space, which describes how neural modulation by the task 130 

parameters of interest processes information at the population level (23, 29). 131 

We found all three types of geometric patterns, rotational, curvy, and straight 132 

geometries, in the top two dimensions (Fig. 1B-D, see Fig. S2 for performance as the 133 

percentage of variance explained), including unclear structures based on visual inspection 134 

(Fig. 1E). All the 10 neural populations showed a significant structure at the principal 135 

component (PC)1-2 plane based on shuffle controls (Fig. S3, P < 0.05 for all PC1 and 136 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 11, 2024. ; https://doi.org/10.1101/2024.08.05.604527doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.604527
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

7 

 

PC2). PC3 did not show statistical significe in some neuronal populations (Fig. S3, Exps. 137 

2 and 4; compare the black and gray dots for each PC). These identified geometric 138 

structures appeared to be distributed from complex to simple, reflecting the circuit distance 139 

to the visual input (Fig. 1). For example, TE (Fig. 1B, No. 1, A11 plane in A) and its 140 

downstream region striatum tail (STRt) (Fig. 1B, No. 2, A11 plane in A), showed rotational 141 

geometries during visual item recognition. In more detail, at the beginning of information 142 

processing after the visual item presentation (Fig. 1B left, see green s at time = 0), the 143 

neural state was positioned at around the center of the PC1-2 plane, and then rotated at 144 

approximately 0.2 s and started to move the second quadrant with the counterclockwise 145 

rotation going back close to the initial point (see green e 0.6 s after visual item onset). An 146 

opposite rotation was observed for the worst visual item, with a smaller change (orange). 147 

These rotational structures were also observed at the STRt on a similar timescale (Fig. 148 

1B, right). 149 

In the downstream brain regions, such as the perirhinal cortex (PRC) and caudate 150 

body (CDb), rotational or curvy dynamics were observed (Fig. 1C, No. 3, PRC, A11 plane 151 

in A and No. 4, CDb, A23 plane in A), which were characterized by a half rotation ending 152 

at the opposite neural space and end points deviating from the initial point, although it was 153 

unclear whether they showed rotational or curvy dynamics. In contrast, straight dynamics 154 

were observed in brain regions far away from the visual inputs in the HPC (Fig. 1A, No. 5 155 

in the A11 plane, Fig. 1D) and central part of the orbitofrontal cortex (cOFC) (Fig. 1A, No. 156 

7 in the A32 plane, Fig. 1D). In addition, the ventral striatum (VS) showed straight 157 

dynamics (Fig. 1A, No. 6 in the A23 plane, Fig. 1D), although some structures could not 158 

be clearly determined (Fig. 1E, parahippocampal cortex, PHC, medial orbitofrontal cortex, 159 

mOFC). The straight dynamics also showed a geometric change back and forth along the 160 

straight trajectory (Fig. 1D). These qualitative observations based on visual inspection 161 
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suggest that neural population structures may change dynamically through visual 162 

recognition process, and the shift of neural population geometries might occur throughout 163 

the cortical and sub-cortical structures across the temporal/frontal/limbic network. 164 

 165 

Evaluation of geometric patterns based on their selected features 166 

To quantify these geometric patterns occurring at approximately half a second, we 167 

estimated indices for the characteristics of dynamic neural changes in the low-dimensional 168 

neural state (Fig. 2A). They were as follows: accumulated angle difference weighted by 169 

deviance, Σd θ, which reflects a measure similar to the centrifugal force (see Materials 170 

and Methods for details, Fig. 2A, top); mean distance of vectors (d, Fig. 2A, top); rotational 171 

speed (Θ/0.1 s, Fig. 2A, bottom); and distance between start and end of trajectory (dS-E, 172 

Fig. 2A, bottom). Following the replication of the neural population geometries based on 173 

the bootstrap resampling technique (see Materials and Methods), we calculated these 174 

parameter values for each replicated neural population. 175 

We found that across the 10 neural populations, these indices captured geometric 176 

features to some extent, similar to the rotational geometries observed in the TE and STRt 177 

(Fig. 2B-E). For instance, identified clusters based on the dendrogram and principal 178 

component analysis (PCA) (Fig. 2B-C) showed that they possess a rotational 179 

characteristic with high rotational speed (Fig. 2D, right, red), large Σd θ (Fig. 2D, middle, 180 

red), large d (Fig. 2D, middle, red), and small dS-E (Fig. 2D, left, red), which occupy more 181 

than 90% of the STRt population in the best item condition (Fig. 2E, see also Fig. 1B, right 182 

green trajectory). A smaller rotational structure characterized by smaller values of Σd θ 183 

was also captured by another cluster (Fig. 2D and E, shallow red), which occupied 184 

approximately 90% of the STRt population in the worst item condition (Fig. 2E, see also 185 

Fig. 1B right, orange trajectory). These rotational features were observed in other temporal 186 
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brain regions (Fig. 2E, see reddish, more than 50% in TE, 20-40% in PRC and PHC), but 187 

merely observed at the frontal/limbic brain regions, such as HPC (less than 10% in all 188 

remaining brain regions). In contrast, curvy/straight dynamics were observed in other 189 

clusters in the downstream brain regions (Fig. 2E, green and blue).  190 

Collectively, in each of the 10 brain regions, a cluster with high rotational speed 191 

occupied the STRt and half of the TE populations (Fig. 2D, reddish), while the 192 

curvy/straight dynamics occupied most of the replicates in the remaining cortical and 193 

subcortical regions (Fig. 2D and E, blue and green). 194 

 195 

Parameterization of geometric patterns using Lissajous curve function 196 

To parameterize these geometric features in more detail, we fitted the Lissajous curve 197 

function (34) to the replicated data, which can mathematically capture all rotational, curvy, 198 

and straight dynamics by this single functinon. In the Lissajous function, any two-199 

dimensional geometric features represented by F(x, y) are captured using the following 200 

equations: 201 

x = Ax cos (ωx t(i) + Φx) + bx   (1) 202 

y = Ay cos (ωy t(i) + Φy) + by   (2) 203 

where ω and Φ represent cycle of the rotation and their deviance as a function of time, t(i). 204 

t(i) takes the values from 0 to 0.6 s in all the four experiments, and thus, one cycle of the 205 

trajectory is represented as 0 to 3.33 π for ω. For the horizontal and vertical axes, Ax and 206 

Ay define the amplitude of the trajectory, respectively, whereas bx and by determine its 207 

location. In this function, rotational dynamics is represented by the same ω among x and 208 

y formulas, and 0.5 π cycle differences in Φ values between x and y formulas (Fig. 3A, 209 

left, see also Fig. S4A for more details). We note that this rotational example represents 210 

less than one cycle due to ωx = 3.0 π. In contrast, straight dynamics are represented with 211 
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the same ω and also same Φ values between the two formulas (Fig. 3A, right, see also 212 

Fig. S4C). Curvy dynamics are represented with some difference of ω and same Φ values 213 

(Fig. 3A, middle, see also Fig. S4B). We fitted this Lissajous curve function to each of the 214 

20,000 bootstrap replicates derived from the 10 neural populations (see Materials and 215 

Methods, 1000 replicates times 10 populations times two conditions). For instance, three 216 

replicated examples obtained from the HPC population were well captured by the 217 

Lissagous curve function, as rotational-to-straight trajectories (Fig. 3B). We obtained all 218 

the estimates for these parameters (Fig. 3C), and thereafter, applied clustering to these 219 

data (Fig. 3D-F) to identify geometry types as a function of the Lissajous curve parameters. 220 

We found that the rotational dynamics (Fig. 3G-H, clusters C1-C5, reddish) appeared 221 

at the TE and STRt, which occupied high percentages of these neural populations (Fig. 222 

3H, approximately 70%), and they were also observed in more than 50% of temporal brain 223 

regions. Cluster 5 seemed to have the intermediate characteristics between rotational and 224 

curvy structures; if we define this cluster 5 as the curvy one, the rotational percentage 225 

becomes low in the PRC, PHC, and HPC (30-40%), but not in the STRt (50-70%). Curvy 226 

structures were predominantly observed in the CDb population in more than 40% (Fig. 3G 227 

and H, Clusters 6 and 7, greenish). These clusters were note observed deterministically 228 

but rather stochastically, as also seen in the predominant percentages of intermediate 229 

features between curvy and straight dynamics (Fig. 3G and H, Cluster 8). Straight 230 

dynamics were predominant at the frontal brain regions, while they were also observed at 231 

the temporal cortices (Fig. 3G and H, Clusters 8-10, bluish). Even with the STRt, the neural 232 

population contained curvy or straight dynamics in more than 20%. These heterogeneous 233 

mixtures of replicated signals in each population suggested that neural dynamics emerged 234 

in a stochastic manner with a functional gradient in the temporal/frontal/limbic networks of 235 

cortical and subcortical structures. The brain-wide neural population may propagate item 236 
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information as a heterogeneous mixture at approximately half a second. 237 

 238 

Discussion 239 

Collectively, our results revealed that parts of the orbitofrontal cortex (cOFC and mOFC) 240 

and their target subcortical brain region VS predominantly showed curvy, straight, and 241 

intermediate dynamics (Fig. 3G-H). These dynamics exhibited maximum modulation at 242 

approximately 0.3 sec after visual onset, except in the slowest VS dynamics (Fig. 1D). 243 

Rotational dynamics were observed at the temporal cortices and their connected striatal 244 

regions, at the relatively shorter latency around 0.2 s when rotation started (Fig. 1B). 245 

Remarkably, the rotational dynamics were observed at different neural proportions of 246 

replicated population in a stochastic manner (Fig. 3H), whereas different monkeys 247 

performed active (Exps. 1 and 3), and passive (Exps. 2 and 4) behavioral tasks. In contrast, 248 

straight dynamics started its geometric change approximately after 0.2 s of the visual onset 249 

(Fig. 1D, see the distance between initial point S and 0.2 s location), indicating that they 250 

follow the rotational dynamics. Taken together, these three dynamics were distinctive in 251 

terms of geometric patterns and their dynamic changes over time (Fig. 4B for summary), 252 

in which a rotational/curvy change was followed by a change in straight dynamics. 253 

A previous study showed that rotational dynamics have been uncovered broadly in 254 

the primary sensory (24, 35) and motor (36) cortices, which are closer to the inputs and 255 

outputs of the brain, such as motor unit activity (37). Other studies have shown that the 256 

prefrontal cortex (38, 39) and parietal cortex (22, 35) exhibit curvy dynamics. We found 257 

curvy dynamics in the CDb, where action information was transferred from the cortices 258 

(40). These characteristic differences in the individual previous studies were not 259 

deterministic, similar to the stochastic differences among the populations observed in the 260 

present study, which may reflect the neural computations processed in the brain. 261 
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In the present study, we specifically focused on neural dynamics in two core areas: i) 262 

low-dimensional geometries and ii) neural modulation dynamics. First, although these data 263 

were obtained from four different laboratories using distinctive behavioral tasks during the 264 

passive and active responses of monkeys, the low-dimensional features of neural 265 

dynamics are thought to be preserved across mammals in the brain-wide network (41, 42). 266 

A recent study provides clear evidence that different animal species share and preserve 267 

their neural geometries during behavioral tasks (41). It is suggested that a low-dimensional 268 

manifold in the neural state space might be one of the representational states of 269 

biologically relevant information, similar to many combinations of physical properties in the 270 

world (43). Second, the dynamics in neural modulations examined here are comparable 271 

with those using the standard analytic frameworks in the rate coding model, which has 272 

provided a huge amount of knowledge corresponding to low-dimensional neural activity 273 

modulation in the literature, such as the Gabor function in the visual cortices (44, 45), 274 

movement direction and muscle force in the motor cortex (46, 47), reward value in the 275 

parietal cortex (48), and comprehension of the location of animals during navigation in the 276 

HPC (49). Thus, in our analysis, the dynamics of these well-known brain region features 277 

were compared as the geometric patterns across neural populations during visual 278 

recognition (29). 279 

One concern with our approach is that there may be limitations in data interpretation 280 

in terms of data sharing and comparisons across different behavioral tasks and different 281 

individual animals. Is it possible to compare the neural population trajectory using 282 

accumulated data across animals and tasks with a certain analytical tool? In previous 283 

literature, when we analyzed neural modulation using a linear regression model, 284 

comparisons of firing rate modulations were accepted by most neurophysiologists for 285 

different animals as well as different behavioral tasks. In one study, a challenge was made 286 
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to compare the neural modulation dynamics as the trajectory geometry between different 287 

laboratories’ data (50). Thus, the neural trajectory would be comparable among our shared 288 

data with greater deliberation. 289 

Our findings would add to the emerging literature describing how visual inputs alter 290 

the brain-wide neural dynamics associated with visual memories by connecting neural 291 

geometry types and their alignments across many brain regions. Previous studies have 292 

shown the existence of different types of neural population dynamics in each individual 293 

study (22, 24, 35, 36, 38, 39). Although some of these dynamics may reflect task demand, 294 

as observed in the dorsolateral prefrontal cortex (38, 51), they are difficult to disentangle 295 

from changes in behavior and neural activity levels and may involve some transformation 296 

of information for behavioral responses (52). It is possible that the dorsal and motor-related 297 

brain regions have this type of flexibility in their dynamics, as partly observed in this study 298 

in the CDb, where curvy dynamics were predominantly observed (Fig. 4B). 299 

Our results raise the possibility that geometric features determine the important neural 300 

mechanisms widely observed in the brain. For instance, the stochastic gradient relative 301 

distance to the visual input may reflect the dynamics of the neural circuitry in half a second 302 

(Fig. 4B). The unidimensional straight dynamics in the hippocampal-frontal circuitry may 303 

reflect memory access during visual recognition, such as location and reward. The 304 

rotational dynamics might reflect the visual recognition process, during which recurrent 305 

feedback signals change the circuit dynamics. Future studies should test the underlying 306 

mechanisms and define whether engagement is best considered a change in behavior 307 

and/or task context for whole-brain neural population activity. Regardless of the 308 

mechanism, the shift of modulation structures in the lower-dimensional neural space could 309 

play a fundamental role in brain-wide information processing, such as transforming visual 310 

feature recognition to memory access. 311 
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 312 

Materials and Methods 313 

Subjects and experimental procedures 314 

Nine rhesus monkeys were used in the present study (Exp. 1: Macaca mulatta, A, 9.3 kg, 315 

male; Macaca mulatta, D, 9.5 kg, male; Exp 2: Macaca mulatta, WK, 12.0 kg, male;  316 

Macaca mulatta, SP, 7.0 kg, male; Exp 3: Macaca mulatta, BI, 8.2 kg, male; Macaca 317 

mulatta, FG, 11.0 kg, male; Macaca mulatta, ST, 5.2 kg, male; Exp 4: Macaca mulatta, 318 

SUN, 7.1 kg, male; Macaca fuscata, FU, 6.7 kg, female). All experimental procedures were 319 

approved by the Institutional Animal Care and Use Committee of Laboratory Animals 320 

approved by Peking University (Exp. 1, project number Psych-YujiNaya-1), and Animal 321 

Care and Use Committee of the National Eye Institute, and complied with the Public Health 322 

Service Policy on the Humane Care and Use of Laboratory Animals (Exp. 2, protocol 323 

number NEI-622), the Animal Ethics Committee of the National Institutes for Quantum 324 

Science and Technology (Exp. 3, protocol no. 11-1038-11), and the Animal Care and Use 325 

Committee of the University of Tsukuba (Exp. 4, protocol no H30.336). All procedures 326 

were performed in compliance with the US Public Health Service Guide for the Care and 327 

Use of Laboratory Animals.  328 

 329 

Behavioral task 330 

Exp. 1. Item-location-retention (ILR) task. The animals performed the task under dim light 331 

conditions in an electromagnetically shielded room. The task started with an encoding 332 

phase, which was initiated by the animal pulling a lever and fixating on a white square 333 

(0.6°) presented within one of four quadrants at 12.5° (monkey A) or 10° (monkey D) from 334 

the center of the touchscreen (3MTM MicroTouchTM Display M1700SS, 17 in), situated 335 

approximately 28 cm from the subjects. The eye position was monitored using an infrared 336 
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digital camera with a sampling frequency of 120 Hz (ETL-200, ISCAN). After fixation for 337 

0.6 s, one of six items (3.0° for monkey A and 2.5° for monkey D, radius) was presented 338 

in the same quadrant as a sample stimulus for 0.3 s, followed by another 0.7 s fixation on 339 

the white square. If the fixation was successfully maintained (typically < 2.5°), the encoding 340 

phase ended with the presentation of a single drop of water. 341 

The encoding phase was followed by a blank interphase delay interval of 0.7–1.4 s 342 

during which no fixation was required. The response phase was initiated using a fixation 343 

dot presented at the center of the screen. One of the six items was then presented at the 344 

center for 0.3 s, as a cue stimulus. After another 0.5 s delay period, five disks were 345 

presented as choices, including a blue disk in each quadrant and a green disk in the center. 346 

When the cue stimulus was the same as the sample stimulus, the animal was required to 347 

make a choice by touching the blue disk in the same quadrant as the sample (i.e., the 348 

match condition). Otherwise, the subject was required to choose the green disk (i.e., non-349 

match condition). If the animal made the correct choice, four–eight drops of water were 350 

provided as a reward; otherwise, an additional 4 s was added to the standard inter-trial 351 

interval (1.5–3 s). The number of reward drops was increased to encourage the animal to 352 

maintain good performance in the latter phase of a daily recording session, which was 353 

typically conducted in blocks (e.g., a minimal set of 60 trials with equal numbers of visual 354 

items presented in a match/nonmatch condition). During the trial, a large gray square (48° 355 

on each side) was presented at the center of the display as a background. At the end of 356 

the trial, all stimuli disappeared, and the entire screen displayed a light red color during 357 

the inter-trial interval. The start of a new trial was indicated by the reappearance of a large 358 

gray square on the display, at which point the monkey could pull the lever, triggering the 359 

appearance of a white fixation dot. 360 
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In the match condition, sample stimuli were chosen pseudo-randomly from six well-361 

learned visual items, and each item was presented pseudo-randomly within four quadrants, 362 

resulting in 24 (6 × 4) configuration patterns. In the non-match condition, the location of 363 

the sample stimulus was randomly chosen from the four quadrants, and the cue stimulus 364 

was randomly chosen from the remaining five items that differed from the sample. The 365 

match and non-match conditions were randomly presented in a ratio of 4:1, resulting in 30 366 

(24 + 6) configuration patterns. The same six stimuli were used during all the recording 367 

sessions. 368 

Exp. 2. Scene-based object-value task. Animals learned the scene-object associations. 369 

After the monkeys fixated on the red-square fixation point on the scene image for 0.6–1 s, 370 

the fixation cue disappeared, and two visual items (objects of different values) appeared 371 

simultaneously in a different hemifield (for training and neuronal testing) or the same 372 

hemifield (for pharmacological experiments). A reward was given after the monkeys made 373 

a saccade to the stimulus and maintained fixation for 0.2 s. Half of the fractal visual items 374 

were associated with a large reward (0.3 mL), and the other half were associated with a 375 

small reward (0.1 mL). This reward association changed depending on the scene (Fig. S1 376 

D). Passive Viewing Task. One of the two scene images was presented for 0.8 s randomly. 377 

If the monkey fixated on a central red square, two to four fractals were presented 378 

sequentially on the scene image within the neuron’s receptive field (presentation time, 0.4 379 

s; interstimulus interval, 0.4 s; Fig. S1C). A liquid reward (0.2 mL) was delivered 0.3 s after 380 

the last object was presented. Thus, reward occurrence was not associated with any of 381 

the visual items. Each item was presented at least seven times per session. 382 

Exp. 3. Delayed reward tasks. The monkeys were seated on a primate chair inside a dark, 383 

sound-attenuated, electrically shielded room. A touch-sensitive bar was mounted on the 384 

chair. The visual stimuli were displayed on a computer video monitor placed in front of the 385 
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animals. Each of the six cues was associated with a combination of reward size (1 drop; 386 

3 or 4 drops) and reward delay (0, 3.3, and 6.9 s). The trials began when the monkey 387 

touched the bar. A visual cue appeared, and the monkey released a bar when a red spot 388 

(waiting signal) turned green (go signal) after a variable interval. If the monkey released 389 

the bar 0.2–1 s after this go signal, the trial was considered correct and the spot turned 390 

blue (correct signal). A liquid reward of a small (1 drop, approximately 0.1 mL) or large 391 

amount (3 drops, except for monkey BI, 4 drops) was delivered immediately (0.3 ± 0.1 s) 392 

or with an additional delay of either 3.3 ± 0.6 s or 6.9 ± 1.2 s after correct release of the 393 

bar. The cues were chosen with equal probability and were independent of the preceding 394 

reward condition. Anticipatory bar releases (before or no later than 0.2 s after the 395 

appearance of the go signal) and failure to release the bar within 1 s of the appearance of 396 

the go signal were counted as errors. In the error trials, the trial was terminated 397 

immediately, all visual stimuli disappeared, and following inter trial interval (1 s), the trial 398 

was repeated; that is, the reward size/delay combination remained the same as that in the 399 

error trial. Behavioral control and data acquisition were performed using a real-time 400 

experimentation system (REX) (53). The Neurobehavioral Systems Presentation software 401 

was used to display the visual stimuli (Neurobehavioral Systems). 402 

Exp. 4. Cued lottery tasks. The animals performed one of two visually cued lottery tasks: 403 

a single-cue or a choice task. Neuronal activity was only recorded during the single-cue 404 

task. 405 

Animals performed the task under dim lighting conditions in an electromagnetically 406 

shielded room. Eye movements were measured using a video camera system at 120 Hz 407 

(EyeLink, SR Research). Visual stimuli were generated using a liquid-crystal display at 60 408 

Hz, placed 38 cm from the monkey’s face when seated. At the beginning of the single-cue 409 

task trials, the monkeys had 2 s to align their gaze within 3º of a 1º-diameter gray central 410 
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fixation target. After a fixation for 1 s, a pie chart was presented for 2.5 s, to provide 411 

information regarding the probability and magnitude of rewards in the same location as 412 

the central fixation target. The probability and magnitude of the rewards were associated 413 

with the number of blue and green 8º pie chart segments, ranging from 0.1 to 1.0 mL in 414 

0.1 mL increments for magnitude, and 0.1 to 1.0 in 0.1 increments for probability. Following 415 

a 0.2 s interval from the removal of the pie chart, a 1 kHz or 0.1 kHz tone of 0.15 s duration 416 

was provided to indicate reward or no-reward outcomes, respectively. After a 0.2 s interval 417 

following the high tone, a fluid reward was delivered, whereas no rewards were delivered 418 

following the low tone. An inter-trial interval of 4–6 s was used. During the choice task, 419 

animals were instructed to choose one of two peripheral pie charts, each of which 420 

indicated either the probability or magnitude of an upcoming reward. The two target 421 

options were presented for 2.5 s at 8º to the left or right of the central fixation location. The 422 

animals received a fluid reward as indicated by the green pie chart of the chosen target, 423 

with the probability indicated by the blue pie chart. Otherwise, no reward was delivered.  424 

A total of 100 pie charts composed of 10 levels of probability and magnitude of 425 

rewards were used in the experiments. In the single-cue task, 100 pie charts were 426 

presented once in random order. In the choice task, two pie charts were randomly 427 

assigned to the two options. During one electrophysiological recording session, 428 

approximately 30–60 trial blocks of the choice task were interleaved with 100–120 trial 429 

blocks of the single-cue task.  430 

 431 

Electrophysiological recordings and data preprocessing 432 

Exp. 1. To record the single-unit activity, we used a 16-channel vector array microprobe 433 

(V1 X 16-Edge, NeuroNexus), 16-channel U-Probe (Plexon), tungsten tetrode probe 434 

(Thomas RECORDING), or single-wire tungsten microelectrode (Alpha Omega). 435 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 11, 2024. ; https://doi.org/10.1101/2024.08.05.604527doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.604527
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

19 

 

Electrophysiological signals were amplified, bandpass-filtered (200–6000 Hz), and 436 

monitored. Single-neuron activity was isolated based on spike waveforms, either online or 437 

offline. For both clustering and offline sorting, the activities of all single neurons were 438 

sampled when the activity of an isolated neuron demonstrated a good signal-to-noise ratio 439 

(>2.5). The signal-to-noise ratio was visually checked by calculating the range of 440 

background noise against the spike amplitude, which was monitored online using the 441 

OmniPlex Neural Data Acquisition System, or offline using the sorter software Plexon. The 442 

recorded neurons were not blinded. The sample sizes required to detect the effect sizes 443 

(numbers of recorded neurons, recorded trials in a single neuron, and monkeys) were 444 

estimated based on previous studies (31, 54). Neural activity was recorded during 60–240 445 

trials of the ILR task. We recorded 590 hippocampal neurons, among which the recording 446 

sites appeared to cover all subdivisions (i.e., the dentate gyrus, CA3, CA1, and subicular 447 

complex). 448 

Exp. 2. We used conventional techniques to record the single-neuron activity in the STRt, 449 

including the caudate and putamen tails. A tungsten microelectrode (1–3 M Frederic 450 

hair; 0.5-1.5 M Alpha Omega Engineering) was used to record single-neuron activity. 451 

The recording site was determined using a grid system that allowed electrode penetration 452 

at 1 mm intervals. We amplified and filtered (0.3 to 10 kHz; Model 1800, A-M Systems; 453 

Model MDA-4I, BAK) signals obtained from the electrodes and collected at 1 kHz. Single 454 

neurons were isolated online using custom voltage–time window discriminator software 455 

(Blip; available at http://www.robilis.com/blip/). The presumed medium spiny neurons were 456 

identified based on their low baseline activity (<3 spikes/s) and broad action potentials 457 

(55). The recorded neurons were not blinded. The sample sizes required to detect the 458 

effect sizes (numbers of recorded neurons, recorded trials in a single neuron, and 459 

monkeys) were estimated based on previous studies (56, 57). Neural activity was recorded 460 
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during 10–30 trials of the passive viewing task. We recorded 115 medium spiny neurons 461 

in the STRt. In Exp. 2, only a single-neuron recording was performed online. We note that 462 

we termed the scene and object for two visual stimuli in our previous study (58), but here 463 

we termed them scene and item. 464 

Exp. 3. Conventional techniques were used to record single-neuron activity in the  dorsal 465 

part of the head of the caudate nucleus (CD). A tungsten microelectrode (1.1–1.5 M, 466 

Microprobes for Life Science; 1.0 M, Alpha Omega Engineering Ltd.) was used to record 467 

single-neuron activity. The electrophysiological signals were amplified and monitored 468 

using a TDT recording system (RZ2, Tucker-Davis Technologies, TDT). Single-neuron 469 

activity was manually isolated based on the online spike waveforms. The activity of all 470 

single neurons was sampled from the activity of presumed projection neurons, which are 471 

characterized as having a low spontaneous discharge rate (<2 spikes/s) outside the task 472 

context and exhibiting phasic discharges in relation to one or more behavioral task events 473 

(Yamada et al, 2016). Neural activity was recorded during 100–120 trials per block in the 474 

delayed-reward task. We recorded the CD of the left or right hemisphere in each of the 475 

three monkeys in the experiment, with 150 CD neurons (51, 31, and 68 from the BI, FG, 476 

and ST, respectively). 477 

Exp. 4. Conventional techniques were used to record single-neuron activity in the DS, VS, 478 

cOFC (area 13M), and mOFC (area 14o). A tungsten microelectrode (1–3 M, FHC) was 479 

used to record single-neuron activity. Electrophysiological signals were amplified, band-480 

pass filtered (50–3,000 Hz), and monitored using a TDT recording system (RZ5D, Tucker-481 

Davis Technologies, TDT). Single-neuron activity was manually isolated based on the 482 

online spike waveforms. The activity of all single neurons was sampled when the activity 483 

of an isolated neuron demonstrated a good signal-to-noise ratio (>2.5). The signal-to-noise 484 

ratio was calculated online as the ratio of the spike amplitude to the baseline voltage range 485 
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on the oscilloscope. The recorded neurons were not blinded. The sample sizes required 486 

to detect the effect sizes (numbers of recorded neurons, recorded trials in a single neuron, 487 

and monkeys) were estimated based on previous studies (59-61). Neural activity was 488 

recorded during 100–120 trials of the single-cue task. Neural activity was not recorded 489 

during selection trials. We recorded the neurons of a single right hemisphere in each of 490 

the two monkeys: 194 DS neurons (98 and 96 from monkeys SUN and FU, respectively), 491 

144 VS neurons (89 SUN and 55 FU), 190 cOFC neurons (98 SUN and 92 FU), and 158 492 

mOFC neurons (64 SUN and 94 FU). In Exp. 1, only a single-neuron recording was 493 

performed online. 494 

 495 

Statistical analysis 496 

For statistical analysis, we used the statistical software package MATLAB (MathWorks, 497 

Exps. 1 and 2), and R (Exps. 3 and 4) for conventional analyses such as linear regression 498 

and ANOVA. To analyze the regression matrix using PCA, we used R software. All 499 

statistical tests for the neural analyses were two-tailed. 500 

 501 

Behavioral analysis 502 

No new behavioral results were included; however, the procedure for the behavioral 503 

analysis was as follows: 504 

Exp. 1. We previously reported that two monkeys learned to retain the item and location 505 

information of a sample stimulus (62). Here, we describe the analysis steps used to check 506 

whether the monkey used both item and location information to perform the task. 507 

To examine this, we compared the animals' actual correct rates during the recording 508 

to random correct rates (chi-square test). The ILR response phase had five options, 509 

resulting in a 20% random correct rate. If the animal used an incorrect strategy, such as 510 
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only retaining the location information of the sample stimulus and ignoring the item 511 

information, the correct rate for the match condition would be 100% and that for the 512 

nonmatch condition would be 0. Based on the above considerations, we examined the 513 

correct rates of the two animals in the match and nonmatch conditions, respectively. In 514 

general, the average correct rates for both animals in the match and nonmatch conditions 515 

were well above chance levels after training. 516 

Exp. 2. We previously reported that two monkeys switched their behavior depending on 517 

the value of the item based on the scene (58). Here, we describe how to check whether 518 

the monkey learned both the scene and item information. We calculated the correct rate 519 

for the scene-based object-value task. Because the two scenes appear in random 520 

sequences, the monkey must switch object choice if the scene has changed. After 521 

performing more than 160 trials, the correct rate reached a plateau above chance. The 522 

monkey was able to switch object choices immediately after the scene changed. Once the 523 

monkeys learned this extensively, their choice behavior became automatic, as the choice 524 

tended to occur even when the reward was not delivered after saccades to high-valued 525 

items according to the scene. 526 

Exp. 3. We previously reported that the three monkeys behaved based on temporally 527 

discounted values that integrated both delay and reward size information provided by 528 

visual stimuli (63). Here, we describe an analysis to check how monkeys discount reward 529 

values for delay and reward information. Error rates in task performance were calculated 530 

by dividing the total number of errors by the total number of trials for each reward condition 531 

and then averaged across all sessions. The average error rates were fitted to the inverse 532 

function of reward size with hyperbolic temporal discounting: E = 1+kD/ aR (E: average 533 

error rates, D: delay, R: reward size, k: discounting factor, a: incentive impact), and 534 

exponential temporal discounting: E = e-kd/aR. We used the ‘optim’ function in R, evaluated 535 
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the goodness of fit of the two models by least-squares minimization, and compared the 536 

models by leave-one-out cross-validation as described previously (Minamimoto et al., 537 

2009).  538 

Exp. 4. We previously reported that monkey behavior depends on expected values, 539 

defined as the probability time magnitude (23). We described the analysis steps to check 540 

whether the monkey’s behavior reflected task parameters, such as reward probability and 541 

magnitude. Importantly, we showed that the monkey’s choice behavior reflected the 542 

expected values of the rewards, that is, the probability multiplied by the magnitude. For 543 

this purpose, the percentage choosing the right-side option was analyzed in the pooled 544 

data using a general linear model with a binomial distribution: 545 

PchoosesR = 1/(1 + e-z)   (3) 546 

where the relationship between PchoosesR and Z is given by the logistic function in each 547 

of the following three models: number of pie segments (M1), probability and magnitude 548 

(M2), and expected values (M3).  549 

M1: Z = b0 + b1NpieL + b2NpieR  (4) 550 

where b0 is the intercept, and NpieL and NpieR are the number of pie segments contained 551 

in the left and right pie chart stimuli, respectively. The values of b0 to b2 are free parameters 552 

and estimated by maximizing the log likelihood. 553 

M2: Z = b0 + b1PL + b2PR + b3ML + b4MR (5) 554 

where b0 is the intercept; PL and PR are the probabilities of rewards for the left and right 555 

pie chart stimuli, respectively; and ML and MR are the magnitudes of rewards for the left 556 

and right pie chart stimuli, respectively. The values of b0 to b4 are free parameters and 557 

estimated by maximizing the log likelihood. 558 

M3: Z = b0 + b1EVL + b2EVR   (6) 559 
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where b0 is the intercept and EVL and EVR are the expected values of rewards as 560 

probability multiplied by magnitude for the left and right pie chart stimuli, respectively. The 561 

values of b0 to b2 are free parameters and estimated by maximizing the log likelihood. We 562 

identified the best model to describe monkey behavior by comparing goodness-of-fit 563 

based on Akaike’s information criterion and Bayesian information criterion (64). 564 

 565 

Neural analysis  566 

Peri-stimulus time histograms were constructed for each single-neuron activity aligned at 567 

the onset of the visual stimulus. Average activity curves were smoothed for visual 568 

inspection using a Gaussian kernel (σ = 20, 15, 10, and 50 ms in Exps. 1–4, respectively), 569 

whereas the Gaussian kernel was not used for statistical tests. 570 

To ensure that the four different datasets were as fair as possible, we used the same 571 

criteria to analyze the neural activity. For the neural analyses, we used the following four 572 

criteria: 1) the same analysis window size, 2) visual response within a short time (0.6 s), 573 

3) neural modulations detected at the same significance level (P < 0.05), and 4) a general 574 

linear model (ANOVA in Exps. 1 and 2 and the linear regression in Exp. 3 and 4). The 575 

details of these analytical procedures for the rate coding and dynamic models are shown 576 

below. 577 

 578 

Rate-coding model: Conventional analyses to detect neural modulations in each 579 

neuron 580 

Exp. 1. For neural responses during the encoding phase after the sample presentation, 581 

we evaluated the effects of “item” and “location” for each neuron using two-way ANOVA 582 

(P < 0.05 for each). We analyzed neurons that were tested in at least 60 trials (10 trials 583 
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for each stimulus and 15 trials for each location). On average, we tested 100 trials for each 584 

neuron. These results have been previously reported (62). 585 

Exp. 2. For neural responses during the appearance of the visual item, we evaluated the 586 

effects of “item” and “scene” for each neuron using paired t-test (P < 0.05 with Bonferroni 587 

correction). These results have been previously reported (58). 588 

Exp. 3. The neural discharge rates (F) were fitted using a linear combination of the 589 

following variables: 590 

F = b0 + bd Delay + bm Magnitude   (7) 591 

where Delay and Magnitude are the delay and magnitude of the reward, respectively, as 592 

indicated by the visual stimulus. b0 is the intercept. If bd and bm were not zero at P < 0.05, 593 

the discharge rates were regarded as being significantly modulated by that variable. These 594 

results have been previously reported (63). 595 

Exp. 4. The neural discharge rates (F) were fitted using a linear combination of the 596 

following variables: 597 

F = b0 + bp Probability + bm Magnitude   (8) 598 

where Probability and Magnitude are the probability and magnitude of the rewards, 599 

respectively, as indicated by the pie chart. b0 is the intercept. If bp and bm were not zero at 600 

P < 0.05, the discharge rates were regarded as being significantly modulated by that 601 

variable. These results have been previously reported (23). 602 

 603 

Population dynamics using principal component analysis 604 

We analyzed neural activity during an identical 0.6 s duration from the sample onset (Exp. 605 

1), item onset (Exp. 2), CUE onset (Exp. 3), and cue onset (Exp. 4). To obtain a time series 606 

of neural firing rates within this time period, we estimated the firing rates of each neuron 607 
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for every 0.05 s time bin (without overlap) during the analysis periods. A Gaussian kernel 608 

was not used. 609 

 610 

Regression subspace. We used a general linear model to determine how items and 611 

locations (Exp. 1), items and scenes (Exp. 2), delay and magnitude of rewards (Exp. 3), 612 

and the probability and magnitude of the rewards (Exp. 4) affect the activity of each neuron 613 

in the neural populations. Each neural population was composed of all the recorded 614 

neurons in each brain region. 615 

Exp. 1. First, we set six visual items and four locations as categorical variables. We then 616 

described the average firing rate of neuron i at time t as a linear combination of the item 617 

and the location in each neural population: 618 

 F(i,t,k) = b0(i,t) + b1(i,t)Item(k) + b2(i,t)Location(k)  (9) 619 

where F(i,t,k) is the average firing rate of neuron i at time t in trial k, Item(k) is the types of 620 

items cued to the monkey in trial k, and Location(k) is the types of locations cued to the 621 

monkey in trial k. The regression coefficients b0(i,t), b1(i,t), and b2(i,t) describe the degree to 622 

which the firing rates of neuron i depend on the mean firing rates (hence, firing rates 623 

independent of task variables, item, and location), the degree of firing rate in each item 624 

relative to the mean firing rates, and the degree of firing in each location relative to the 625 

mean firing rates, respectively, at a given time t during the trials. The interaction term is 626 

not included in the model. 627 

In the analysis, we performed preference ordering for item and location in each neuron. 628 

Item(k) and Location(k) were rank-ordered items and locations, respectively, cued to the 629 

monkey in trial k. Items 1–6 and locations 1–4 were rank-ordered from the most preferred 630 

to least preferred, respectively, defined as the mean firing rate during the entire analysis 631 
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time window from 0.08 to 0.6 s. This preference ordering did not change over time t for 632 

each neuron n. 633 

Exp. 2. We first set eight items and two scenes as the categorical variables. We then 634 

described the average firing rate of neuron i at time t as a linear combination of the item 635 

and scene in each neural population: 636 

 F(i,t,k) = b0(i,t) + b1(i,t)Item(k) + b2(i,t)Scene(k)  (10) 637 

where F(i,t,k) is the average firing rate of neuron i at time t in trial k, Item(k) is the types of 638 

items cued to the monkey in trial k, and Scene(k) is the types of scene stimuli cued to the 639 

monkey in trial k. The regression coefficients b0(i,t), b1(i,t) and b2(i,t) describe the degree to 640 

which the firing rates of neuron i depend on the mean firing rates (hence, firing rates 641 

independent of task variables, item and scene), the degree of firing rate in each item 642 

relative to the mean firing rates, and the degree of firing in each scene relative to the mean 643 

firing rates, respectively, at a given time t during the trials. The interaction term was not 644 

included in the model.  645 

In the analysis, Item(k) and Scene(k) were the rank-ordered item and scene, 646 

respectively, cued to the monkey in trial k. Items 1 to 8 and Scenes 1 and 2 were rank-647 

ordered from the most preferred to least preferred, respectively, defined as the mean firing 648 

rate during the whole analysis 0.6 s window after the item onset. This preference ordering 649 

did not change over time t for each neuron n. 650 

Exp. 3. We first set the delay and magnitude as 0, 3.3, and 6.9 s and one and three drops 651 

of rewards, respectively, during the behavioral task. In the analysis, we normalized these 652 

values from 0 to 1 divided by the maximum values in each: 0, 0.48, and 1 for delay, and 653 

0.33, 0.66, and 1 for magnitude. This is because these values affect the extent of the 654 

regression subspace between two continuous variables. We then described the average 655 
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firing rate of neuron i at time t as a linear combination of the delay and magnitude in each 656 

neural population: 657 

 F(i,t,k) = b0(i,t) + b1(i,t)Delay(k) + b2(i,t)Magnitude(k)  (11) 658 

where F(i,t,k) is the average firing rate of neuron i at time t in trial k, Delay(k) is the normalized 659 

delay to obtain a reward cued to the monkey in trial k, and Magnitude (k) is the normalized 660 

number of reward drops cued to the monkey in trial k. The regression coefficients b0(i,t) to 661 

b2(i,t) describe the degree to which the firing rates of neuron i depend on the mean firing 662 

rates (hence, firing rates independent of task variables), delay in rewards, and magnitude 663 

of rewards, respectively, at a given time t during the trials. 664 

Exp. 4. We first set the probability and magnitude as 0.1 to 1.0 and 0.1 to 1.0 mL, 665 

respectively. We did not normalize these values because they were originally prepared 666 

from 0 to 1 originally. We then describe the average firing rate of neuron i at time t as a 667 

linear combination of probability and magnitude in each neural population: 668 

 F(i,t,k) = b0(i,t) + b1(i,t)Probability(k) + b2(i,t)Magnitude(k)  (12) 669 

where F(i,t,k) is the average firing rate of neuron i at time t in trial k, Probability(k) is the 670 

probability of the reward cued to the monkey in trial k, and Magnitude(k) is the magnitude 671 

of the reward cued to the monkey in trial k. The regression coefficients b0(i,t) to b2(i,t) describe 672 

the degree to which the firing rates of neuron i depend on the mean firing rates (i.e., firing 673 

rates independent of task variables), probability of rewards, and magnitude of rewards, 674 

respectively, at a given time t during the trials. 675 

We used the regression coefficients (i.e., the regression table in the case of ANOVA) 676 

described in Eq. 9–12 to identify how the dimensions of the neural population signals were 677 

composed of information related to the item and location (Exp. 1), item and scene (Exp. 678 

2), delay and magnitude (Exp. 3), and probability and magnitude (Exp. 4) as aggregated 679 

properties of individual neural activity. In this step, an encoding model is constructed in 680 
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which the regression coefficients are explained by a temporal structure in the neural 681 

modulation of two categorical variables (Exps. 1 and 2), or two continuous variables (Exps. 682 

3 and 4) at the population level. Our procedures involve targeted dimensionality reduction 683 

using the regression subspace and are aimed at describing neural modulation dynamics 684 

(29). 685 

 686 

Principal component analysis. We used PCA to identify the dimensions of the neural 687 

population signal in orthogonal spaces composed of two variables in each neural 688 

population of the four experiments. For each neural population, we first prepared a two-689 

dimensional data matrix X of size N(n)×M (C×T). The regression coefficient vectors b1(i,t) and 690 

b2(i,t) in Eq. 9–12, whose rows correspond to the total number of neurons (n) in each neural 691 

population and columns correspond to C, the total number of conditions (that is, 10: six 692 

items and four locations in Exp. 1, 10: eight items and two scenes in Exp. 2, 2: delay and 693 

magnitude in Exp. 3, and 2: probability and magnitude in Exp. 4), and T is the total number 694 

of analysis windows (i.e., 0.6 s divided by the window size bin, 0.05 s, 12 bin). A series of 695 

eigenvectors was obtained by applying PCA once to the data matrix X in each neural 696 

population. The PCs of this data matrix are vectors v(a) of length N(n) and the total number 697 

of recorded neurons if M (C×T) > N(n); otherwise, the length is M (C×T). PCs were indexed from 698 

the principal components and explained the most to least variance. The eigenvectors were 699 

obtained using the prcomp () function in R software. We did not include the intercept term 700 

b0(i,t) to focus on the neural modulation by the variables of interest. 701 

 702 

Eigenvectors. When we applied PCA to data matrix X, we decomposed the matrix into 703 

eigenvectors and eigenvalues. Each eigenvector had a corresponding eigenvalue. In our 704 

analysis, the eigenvectors at time t represented a vector, for example, in the space of 705 
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delay and magnitude in Exp. 3. The eigenvalues at time t for the delay and magnitude 706 

were scalars, indicating the extent of variance in the data in that vector. Thus, the first PC 707 

was the eigenvector with the highest eigenvalue. We analyzed the eigenvectors for the 708 

top two PCs (PC1 and PC2) in the following analyses to describe the geometry in the most 709 

predominant dimension. PCA was applied once to each neural population; thus, the total 710 

variance contained in the data differed among the neural populations. 711 

 712 

Shuffle control for PCA. To examine the significance of the population structures described 713 

by PCA, we performed three shuffle controls. The two-dimensional data matrix X was 714 

randomized by shuffling in three ways. In shuffled control 1, matrix X was shuffled by 715 

permutating the allocation of neuron n at time i. This shuffle provided a data matrix X of 716 

size N(n)×M (C×T), eliminating the temporal structure of neural modulation by condition C in 717 

each neuron but retaining the neural modulations at time t at the population level. In 718 

shuffled control 2, matrix X was shuffled by permutating the allocation of time i in each 719 

neuron n. This shuffle provided a data matrix X of size N(neuron)×M (C×T), eliminating the 720 

neural modulation structure under condition C maintained in each neuron but retaining the 721 

neural modulation in each neuron at the population level. In shuffled control 3, matrix X 722 

was shuffled by permutating the allocation of both time i and neuron n. In these three 723 

shuffle controls, matrix X was estimated to be 1,000 times. PCA performance was 724 

evaluated by constructing the distributions of the explained variances for PC1 to PC12. 725 

The statistical significance of the variances explained by PC1 and PC2 was estimated 726 

based on the 95th percentile of the reconstructed distributions of the explained variance 727 

or bootstrap standard errors (i.e., standard deviation of the reconstructed distribution). We 728 

note that because the significant dimensions of neural populations dynamics differed the 729 
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10 neural populations, we analyzed the neural dynamics at the top two dimension, PC1 730 

and 2.  731 

 732 

Analysis of eigenvectors. We evaluated the characteristics of the eigenvectors for PC1 733 

and PC2 in each neural population in terms of vector angle, size, and deviation. The 734 

eigenvectors were evaluated for each of the task parameters described above: item and 735 

location in Exp. 1, item and scene in Exp. 2, delay and magnitude in Exp. 3, and probability 736 

and magnitude in Exp. 4. The angle is the vector angle from the horizontal axis from 0º to 737 

360º against the main PCs. The size is the length of the eigenvector. The deviation is the 738 

difference between the vectors. The deviation from the mean vector for each neural 739 

population was estimated. These three eigenvector characteristics were compared among 740 

the populations at P < 0.05, using the Kruskal–Wallis test and Wilcoxon rank-sum test with 741 

Bonferroni correction for multiple comparisons. The vector during the first 0.1 s was 742 

extracted from these basic analyses. 743 

To evaluate the neural population geometry using their selected feature, we estimated 744 

the accumulated angle difference weighted by the deviance: 745 

∑ 𝑑 𝜃௧ୀா
௧ୀௌ    (13) 746 

where the d is deviation between the vectors at times t and t+1, θ is the angle difference 747 

between vectors at times t and t+1, S is zero, and E is the time period to stop the estimation, 748 

i.e., 0.6 s. This index is analogous to the rotational force accumulated over time. If the 749 

value of the accumulated angle difference was close to zero, the population geometry was 750 

stable, such as a straight or non-dynamic structure, that is, it remained at some point in 751 

the PC1-2 plane. 752 

To quantitatively evaluate the trajectory geometry, we used the Lissajous curve 753 

function, which describes any geometric pattern in a plane using F(x,y): 754 
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x = Ax cos (ωx t(i) + Φx) + bx    (14) 755 

y = Ay cos (ωy t(i) + Φy) + by    (15) 756 

where ω and Φ represent cycle of the rotation and their deviance as a function of time, t(i). 757 

Ax and Ay represent the amplitudes of the trajectory, whereas bx and by represent the 758 

location of the trajectory. For ω, 3.33 π indicates that one cycle since the analysis window 759 

is 0.6 s. Φ is 0 to 2 π for one cycle. We estimated ωx, Φx, bx, ωy, and Φy, by parameters 760 

by estimating maximum loglikelihood of the model. Nonlinear least squares in the nls() 761 

function in the R program was used. A time series of eigenvectors for PC1 and PC2 in a 762 

0.05 s analysis windows (12 data points) were used with a sliding average between three 763 

time points (hence, 0.15 s time resolution). 764 

 765 

Bootstrap resampling and clustering using feature-based parameters. We estimated Σd θ, 766 

mean d, rotational speed Σθ/0.1s, and ds-e, such as start to end distance using a 767 

parametric bootstrap resampling method (65). In each neural population, the neurons 768 

were randomly resampled in duplicate, and a data matrix X of size N(neuron)×M (C×T) was 769 

obtained. PCA was applied to the data matrix X. The time series of eigenvectors was 770 

obtained, and these four features were estimated from the neural trajectory. This 771 

resampling was conducted 1,000 times in each neural population, and the distributions of 772 

these four parameters were obtained. 773 

Following bootstrap resampling, we applied clustering of these parameters based on 774 

PCA and a dendrogram across the replicates in the 10 brain regions, such as 20,000 775 

replicates (10 brain regions times two conditions times 1,000 replicates). Based on this 776 

clustering, proportion of the identified clusters in each brain region was estimated. 777 

 778 
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Bootstrap resampling and clustering based on Lissajous curve parameters. The Lissajous 779 

curve parameters for the replicated trajectory were estimated using a bootstrap 780 

resampling method (65). In each neural population, the neurons were randomly resampled 781 

in duplicate, and a data matrix X of size N(neuron)×M (C×T) was obtained. PCA was applied to 782 

the data matrix X. The time series of eigenvectors was obtained for PC1 and PC2, which 783 

describe the trajectory, and the fitted parameters using the Lissajous curve function were 784 

estimated using  the nls() function in R program. This resampling was conducted 1,000 785 

times in each neural population, and the distributions of the Lissajous parameters were 786 

obtained. 787 

Following bootstrap resampling, we applied clustering of these parameters based on 788 

PCA and a dendrogram across the replicates in the 10 brain regions, such as 20,000 789 

replicates (10 brain regions times two conditions times 1,000 replicates). In this process, 790 

the omega ratio (ωx/ωy) and phi difference (Φx-Φy) were also used, in addition to the ωx, 791 

ωy, Φx, and Φy. Based on this clustering, proportion of the identified clusters in each brain 792 

region was estimated. We used the median of the estimated parameter in a cluster to 793 

describe the trajectory geometries. 794 

 795 

 796 
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 967 

Fig. 1. Neural population geometries in the visual memory pathway 968 

A, Anatomical depiction of neural populations obtained from the 10 brain regions in eight 969 

macaques during the four different behavioral tasks in Exps. 1 to 4. B-E, Rotational (B), 970 

curvy (C), straight (D), and unclear dynamics (E) detected by visual inspection. In A-E, the 971 

10 brain regions are numbered as follows: 1. TE, 2. STRt, 3. PRC, 4. CDb, 5. HPC, 6. VS, 972 

7. cOFC, 8. CDh&b, 9. PHC, and 10. mOFC. The 0.05 s time bin was used for the 973 

dynamics analysis. 974 
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 976 

Fig. 2. Quantitative evaluation of geometric structures according to the rotational features. 977 

A, Schematic depictions of the estimation of accumulated angle difference weighted by 978 

the deviance, Σd θ. The accumulated angle difference indicates the degree of geometric 979 

change in terms of the rotational force across time. Vector distance (d), rotational speed 980 

(θ/0.1s), and start to endpoint distance (dS-E) were also estimated. B, Dendrogram 981 

estimated from these four parameter values based on bootstrap resampling across 10 982 

neural populations. C, Percentage of variance explained by PCA of bootstrap resampling 983 

data across 10 neural populations. D, Clusters detected among the four parameters based 984 

on the PCA. E, Percentage of the identified clusters in each of the 10 brain regions. Each 985 

neural population contained two components of neural information: the best and worst 986 

conditions (BW) in Exps. 1 and 3, magnitude and delay of the rewards (MD) in Exp. 2, and 987 

magnitude and probability of rewards (MP) in Exp. 4. 988 
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 990 

Fig. 3. Quantitative evaluation of geometric structures using the Lissajous curve function. 991 

A, Schematic depictions of trajectory geometries using Lissajous function parameters. For 992 

all figures, ωx and ωy are 3 π. B, Three examples of bootstrap replicates for the HPC 993 

population fitted by the Lissajous function. L indicates the maximum loglikelihood. 994 

Estimated parameters were as follows: left, ωx, 2.78 π, Φx, -0.11, L, 34.6, ωy, 2.96 π, Φy, 995 

0.10, L, 31.6; middle, ωx, 2.51 π, Φx, -0.03, L, 24.2, ωy, 3.82 π, Φy, -0.08, L, 32.7; right, 996 
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ωx, 2.21 π, Φx, -0.16, L, 26.9, ωy, 2.78 π, Φy, 0.58, L, 29.1. C, Probability density 997 

estimated for Lissajous parameters obtained from bootstrap replicates across 10 neural 998 

populations times two conditions. D, Dendrogram estimated from Lissajous parameter 999 

values based on bootstrap resampling across 10 neural populations times two conditions. 1000 

E, Percentage of variance explained by PCA of bootstrap resampling data across 10 1001 

neural populations times two conditions. F, Clusters determined using PCA. Data are 1002 

shown for PC1 to 3. G, Reconstructed trajectory in each cluster based on bootstrap 1003 

resampling. The trajectories in clusters 1–10 were drawn using the median values of the 1004 

Lissajous parameters in each cluster. H, Percentage of clusters in each of the 10 brain 1005 

regions times two conditions. BW: best and worst conditions. MD: magnitude and delay 1006 

conditions. MP: magnitude and probability conditions.  1007 
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 1008 

Fig. 4. Summary of the observed dynamics and anatomical connections in the visual 1009 

memory pathway. 1010 

A, Geometries depicted in the same arbitrary scales on the PC1-2 plane for the eight 1011 

neural populations shown in Fig. 1B-D. The start of the trajectory (S) is aligned to describe 1012 

each trajectory. e indicates the end of the trajectory at 0.6 s. B, Proportion of the clusters 1013 

defined in each of the 10 brain regions are described with the anatomical connection. 1014 

Reddish: rotational, greenish: curvy, bluish: straight dynamics. Data from CDh&b and CDb 1015 

are merged (CD). 1016 
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 1018 

Fig. S1. Behavioral tasks 1019 

A, Sequence of events during the ILR task in Exp. 1. The cue stimulus during the response 1020 

phase was the same as the sample stimulus during the encoding phase of the match trial, 1021 

whereas the two stimuli differed in the nonmatch trial. Neural activity was analyzed during 1022 

0.6 s after sample onset (gray bar). During the task, the monkeys actively responded or 1023 

did not respond by making a choice and performing the following action. B, Six visual 1024 

stimuli and spatial composition of the sample stimulus. C, Sequence of events during the 1025 

passive viewing task in Exp. 2. During fixation, the visual items were presented 1026 

sequentially within two to four times. These visual items were associated with reward or 1027 

no-reward outcomes in other behavioral contexts during the learning trials. During the task, 1028 

the monkeys were not required to respond, except for fixation to the center (passive). 1029 
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Neural activity was analyzed during 0.6 s after object onset (gray bars). D, Eight visual 1030 

items were divided into two groups (items 1–4 and 5–8). In each scene (e.g., scene X), 1031 

one group was associated with a large reward and the other with a small reward. This 1032 

reward association was reversed in the other scene (e.g., scene Y). In each trial, two items 1033 

appeared as shown in C, one in items 1–4 and the other in items 5–8 as a random 1034 

combination. E, Sequence of events during the delayed reward task in Exp. 3. During the 1035 

task, the monkeys actively responded to the GO signal by releasing the lever (active). 1036 

Neural activity was analyzed during 0.6 s after cue onset (gray bar). F, During the task, 1037 

six visual items indicated the forthcoming reward size and delay duration to the reward 1038 

after the bar release. G, Sequence of events during the single-cue task in Exp. 4. A single 1039 

visual pie chart with green and blue segments was presented to the monkeys. During the 1040 

task, the monkeys were not required to respond, except for fixation to the center during 1041 

the start (passive). Neural activity was analyzed during 0.6 s after cue onset. H, Payoff 1042 

matrix: Each of the magnitudes was fully crossed with each of the probabilities, resulting 1043 

in a pool of 100 lotteries.  1044 
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  1045 

Fig. S2. Variances explained by PCA in each neural population.  1046 

Cumulative variance explained by PCA in each neural population in Exp. 1 to 4. The 0.05 1047 

s time bin was used for the analysis. In Exp. 1 and Exp. 2, categorical task parameters 1048 

were used. In Exp. 3 and Exp. 4, continuous task parameters were used. Triangle 1049 

indicates the variance explained by the first two PCs.  1050 
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  1051 

Fig. S3. Variances explained by PCA under shuffle control. 1052 

Boxplot of variances explained by PCA under the three shuffled conditions (see Methods 1053 

section for details). The plot was not cumulative. A boxplot was made with 1,000 repeats 1054 

of the shuffle for each condition. Gray plots indicate the percentage of variance explained 1055 

by PCA. Results using 0.05 s bin data are shown.  1056 
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 1057 

Fig. S4. Examples of Lissajous curve represented with the parameter combination. 1058 

Rotational, curvy, and straight dynamics are shown against ω ratio and Φ difference. In 1059 

this study one cycle is defined with 3.33 π for ω during 0.6 s analysis period (3.33 π × 0.6 1060 

= 2 π in the Lissajous function, A cos(ω t(i) + Φ) + b). Φ from 0 to 2 π defines the phase. 1061 

A and b denote the size and location of the curve, respectively. Combination of ω ratio and 1062 

Φ difference between x and y determines the shape of trajectory. For example, straight 1063 

geometry is defined as the same ω and the same Φ. Rotational dynamics is defined as 1064 

the same ω and not identical Φ. Curvy dynamics is defined as the different ω and the 1065 

same Φ. 1066 
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Supplementary Table S1. Summary of the data set and standard analysis methods. 1068 

 1069 

For the standard analysis, we analyzed visual response within a short time (0.6 s). Neural 1070 

modulations were detected at the same significance level (P < 0.05) using a general linear 1071 

model (ANOVA in Exps. 1 and 2 and the linear regression in Exp. 3 and 4). See each 1072 

reference for the results based on the standard analysis using general linear model. 1073 

NO  Brain region 
Number of 
recorded 
neurons 

Experimental 
number 

Original 
report 

Recording 
methods 

Number of 
monkeys used

Behavioral task and standard analysis 

1  TE  295 

Exp. 1. 
Chen and 
Naya, 2020

Single neuron 
recording 

/Multi neuron 
recording 

2 

・Item‐location‐retention task 

・Active behavior: match‐nonmatch choice 

・ANOVA (6 visual stimuli, 4 locations) 

2 
Perirhinal cortex  

(PRC) 
407 

3 
Parahippocampal 

cortex (PHC) 
214 

4 
Hippocampus 

(HPC) 
590 

5 
Striatum tail 

STRt 
116  Exp. 2. 

Kunimatsu 
et al., 2021

Single neuron 
recording 

2 

・Scene‐based object‐value task 

・Passive behavior: no required response 

・ANOVA (8 visual stimuli, 2 rewards) 

6 
Caudate body 

(CDb) 
150  Exp. 3. 

Hori et al., 
2021 

Single neuron 
recording 

3 

・Delayed reward tasks 

・Active behavior: lever release response  

・Linear regression (delay, magnitude)  

7 
Medial 

orbitofrontal 
cortex (mOFC) 

158 

Exp. 4. 
Yamada et 
al., 2021

Single neuron 
recording 

2 

・Cued lottery tasks 

・Passive behavior: no required response 

・Linear regression (probability, magnitude) 

8 
Central 

orbitofrontal 
cortex (cOFC) 

190 

9 
Ventral striatum 

(VS) 
144 

10 
Caudate head and 
body (CDh&b) 

194 
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