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Abstract

Whether single-cell RNA-sequencing (SCRNA-seq) captures the same biological information as single-
nucleus RNA-sequencing (snRNA-seq) remains uncertain and likely to be context-dependent. Herein, a
head-to-head comparison was performed in matched normal-adenocarcinoma human lung samplesto
assess biological insights derived from scRNA-seq versus snRNA-seq and better understand the
cellular transition that occurs from normal to tumoral tissue. Here, the transcriptome of 160,621
cellsg/nuclel was obtained. In non-tumor lung, cell type proportions varied widely between sScRNA-seq
and snRNA-seq with a predominance of immune cells in the former (81.5%) and epithelial cells
(69.9%) in the later. Similar results were observed in adenocarcinomas, in addition to an overall
increase in cell type heterogeneity and a greater prevalence of copy number variantsin cells of
epithelial origin, which suggests malignant assignment. The cell type transition that occurs from
normal lung tissue to adenocarcinoma was not always concordant whether cells or nuclei were
examined. As expected, large differential expression of the whole-cell and nuclear transcriptome was
observed, but cell-type specific changes of paired normal and tumor lung samples revealed a set of
common genesin the cells and nucle involved in cancer-related pathways. In addition, we showed that
the ligand-receptor interactome landscape of lung adenocarcinoma was largely different whether cells
or nuclei were evaluated. Immune cell depletion in fresh specimens partly mitigated the differencein
cell type composition observed between cells and nuclei. However, the extra manipulations affected
cell viability and amplified the transcriptional signatures associated with stress responses. In conclusion,
research applications focussing on mapping the immune landscape of lung adenocarcinoma benefit
from scRNA-seq in fresh samples, whereas snRNA-seq of frozen samples provide alow-cost
aternative to profile more epithelial and cancer cells, and yield cell type proportions that more closely

match tissue content.
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Author Summary

Single-cdll transcriptomic datasets provide unprecedented opportunities to disentangle the
complex tissue microenvironment and cellular origin of cancer. Data are scarce regarding the pros and
cons of single-cell RNA sequencing (ScRNA-seq) of freshly explanted human tissues over single-nuclel
sequencing (SNnRNA-seq) from the same archived frozen tissues. Lung adenocarcinoma represents a
medically valuable case study to compare the biological signal recovered through cells and nuclei
sequencing. Here, we sequenced the transcriptome of 160,621 cells/nuclei in paired normal-
adenocarcinoma lung samples. Cell type proportions varied widely between scRNA-seq and snRNA-
seg with a predominance of immune cellsin the former and epithelial cellsin the later.
Adenocarcinomas were characterized by an increase in cell type heterogeneity and a greater prevalence
of malignant epithelial cellsin both sScRNA-seq and snRNA-seq. The cellular and gene expression
trangition that occur from normal lung to adenocarcinoma showed common and discordant biological
insghts whether cells or nuclel were examined. Research applications focussing on mapping the
immune landscape of lung cancer benefit from scRNA-seq in fresh samples, whereas snRNA-seq of the
same frozen samples provide alow-cost and more flexible alternative to profile more epithelial and

cancer cdlls, and yield cell type proportions that more closely match tissue content.
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I ntroduction

Single-cell sequencing (scCRNA-seq) has the ability to inspect the cellular heterogeneity of
tissue and cancer with unprecedented details, and as such provides important insights into the cellular
origin and cell-specific molecular defects that play arole in disease pathogenesis™™. However, given
the pace at which the field is evolving, uncertainties remain with respect to the design and analysis of
single-cell transcriptomic datasets in order to gain the most from biological samples. Fresh
biospecimens are generally prioritized for cell viability and greater yield of high-quality cells. For
tissues, sScCRNA-seq requires disaggregating the tissue to release individual cellsinto a single-cell
suspension. Differences in dissociation and sample preparation efficiency across cell types are known
to affect RNA integrity and can skew cell type proportions. A well-known instance of dissociation bias
Is observed in human lung tissue, where dissociation of fresh tumor (biopsies or resected specimens)
commonly results in amajority of immune cells being sequenced® ™. While the aforementioned cell-
type dissociation bias can be partly alleviated by enriching the epithelial cell fraction usng EPCAM-
based cell sorting®, single cell preparation protocols may also affect cell viability and introduce
transcriptional signatures associated with dissociation and stress responses™®®.

Analyzing nuclei (single-nucleus sequencing or sSnRNA-seq) instead of cells has been proposed
as an alternative for frozen samples and tissues that cannot be readily dissociated’®**. While cellular
compositions recovered from scRNA-seq versus snRNA-seq can vary substantially™, the transition
from cell to nucleus sequencing may help to reduce the dissociation bias and transcriptional stress
responses, facilitate the study of difficult-to-dissociate tissues and cell types, and allow the assessment
of large cells that cannot pass through microfluidics systems. At the same time, reference databases and
cell type-specific gene markers, which are readily used to annotate unknown cell populations, have
been largely built from scRNA-seq datasets’ and therefore may not be optimal for sSnRNA-seq. Cell

types and gene expression differences between scRNA-seq and snRNA-seq have been observed in
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1516 aswell asin human metastatic breast cancer and neuroblastoma®?.

mouse kidneys"** and brain
Combining sScRNA-seq and snRNA-seq technologies from matched samples has been shown to better
capture cell heterogeneity and produce a more comprehensive cell map of healthy human liver'’.
However, head-to-head comparisons between scRNA-seq and shnRNA-seq are still scarce and to the
best of our knowledge, this direct comparison has never been evaluated in the context of patient-
matched normal lung and tumor tissues.

Lung cancer is highly prevalent and the number one cause of cancer mortality. It thus represents
amedically valuable case study to compare the biological signal recovered through cells and nuclel
sequencing. A variety of experimental designs and samples have been evaluated by scRNA-seq in
patients with lung cancer. Thisincludes lung samples enriched (e.g. FACS-sorted) for immune cells'*°,
lung tumor of mixed histological types”’, and non-small cell lung cancer (NSCLC) samples before and
after targeted therapy® or immunotherapy?'. More specifically in lung adenocarcinomas (LUAD), the
most common histological subtype of lung cancer, which originates from epithelial cells that linethe

inside of the lungs, resected specimens or biopsies from two to eleven®>™"%

patients have been
evaluated, but with a very limited number of paired normal-adenocarcinoma lung samples. Compared
with normal lung samples, epithedlial cells from lung adenocarcinomas were characterized by a
depletion of alveolar cells (AT1 and AT2)?°, lost cell identity and more cells annotated as mixed-

lineage®®, higher transcriptome complexity and cell heterogeneity®?

, patient-specific cancer cell
clusters®®, transcriptional states associated with survival®?®, and AT2 cells dedifferentiated into a
stem-like state®® or alveolar intermediary cells that could act as progenitors of KRAS-driven
LUAD?.The shift inimmune cells from normal to LUAD samples observed in previous studies were
similarly informative. It unveiled an increase in B, plasmaand T regulatory cells coupled with a decline

in natural killer cells as well as reduced signatures of cytotoxicity in T cells, antigen presentation in

macrophages, and inflammation in dendritic cells, which are all coherent features of an
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119  immunosuppressive tumor microenvironment®. Finally, differentially enriched ligand-receptor

120  interactions promoting tumorigenesis were aso observed between LUADs and normal tissues®?.

121 Herein, specimens derived from the same patients were tested using both sScRNA-seq in fresh
122  tissues and snRNA-seq from flash frozen tissues using the 10x Genomics workflow. The biology

123  captured by both methods was compared in the context of paired tumor-normal human lung samples
124  explanted from patients that underwent surgery for lung adenocarcinoma. This study design revealed
125 thecdlular and molecular transitions that occur from normal lung to adenocarcinoma, and evaluated
126  the commonality and discordance in the stemming biological insights gained from cells versus nuclel.
127  Inaddition, we compared the same paired normal-adenocarcinoma human lung samples using an

128 immune cell depletion protocol that alleviates the cell-type dissociation bias, with the aim of recovering
129  amore representative biological signal.

130
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Results

Experimental Design

Four patients, two tissue types (Normal/Tumor) and three experimental methods (SCRNA-seq,
SnRNA-seq & immune-depleted sScCRNA-seq, hereafter labelled as Cell, Nucleus and Immune-depl eted
cell) were processed for atotal of twenty-four samples. The experimental design is presented in Fig. 1.
The four patients underwent lung cancer surgery with pathologically confirmed LUAD (Fig. 1A). The
clinical characteristics of patients are detailed in Table S1. Both LUAD and normal lung specimens
were obtained from each patient (Fig. 1B). Fresh tissues were immediately processed for ScCRNA-seq
and adjacent samples were flashed frozen and stored at -80°C until further processing for snRNA-seq
(Fig. 1C). The single cell suspensions dissociated from fresh tissues was also submitted to CD45+
immune depletion, leading to three cell suspensions per specimen and thus six per patient (Fig. 1D).
The characteristics of samples and cell/nucleus suspensions are presented in Table S2. Single cell
suspensions were converted to libraries using the 10x Genomics workflow (Fig. 1E) and sequenced on
an lllumina NextSeq2000 aiming for ~10,000 cells or nuclei per sample (Fig. 1F). We partitioned the
analysis by focusing on 1) normal lung tissues, 2) LUAD tissues, 3) paired normal-adenocarcinoma

lung samples, and 4) immune-depleted samples (Fig. 1G).

Overview of the dataset

A total of 160,621 cells/nuclel passed quality control (53,286; 57,078 and 50,257 for Cell,
Nucleus and Immune-depleted cell datasets respectively). Uniform manifold approximation and
projections (UMAP) of all cells coloured by cell types, tissue types, experimental methods and patients
are provided in Fig. S1. On average, we observed 6,692 cells per sample (6,661; 7,135 and 6,282 for

Cell, Nucleus and Immune-depl eted cell datasets respectively, Fig. 2A) and detected 2,216 genes per


https://doi.org/10.1101/2024.02.20.581199
http://creativecommons.org/licenses/by-nc-nd/4.0/

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.20.581199; this version posted May 22, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

cell (1,868; 2,309 and 2,473 genes for Cell, Nucleus and Immune-depl eted-cell datasets respectively,
Fig. 2B).

From the 61 finest cell types annotations defined by Human Lung Cell Atlas (HLCA)*, 35 were
present in the current dataset at a frequency of >100 cells and we were able to annotate confidently
97.7% of cells at the coarsest level (immune, epithelial, endothelial, stroma, Fig. 2C, Table S3). This
reference-based mapping and annotation approach is consi stent with a marker-based approach for both
the Cell and Nucleus datasets (Fig. S2). Nevertheless, cell type annotation scores were significantly
lower (smaller fraction of annotated cells) in the Nucleus compared to the Cell dataset (two-way
ANOVA, p-value < 2e-16), fine-level compared to high-level annotations (p-value < 2e-16) and Tumor

compared to Normal tissue (p-value < 2e-16).

Cell composition differsfrom Nucleusin Normal lung tissue.

In Fig. 3, the UMAP visualisation showed that the Cell dataset from Normal lung tissue was
largely dominated by immune cdlls, with 23,044 immune cdlls (81.5% of total, Fig. 3A). Conversely,
the Nucleus dataset was dominated by epithelial cells, with 12,556 epithelial cells (69.9%, Fig. 3B). In
addition, the Nucleus dataset contained alarger fraction of unclassified cells compared to the Cell
dataset (7.3 % vs 0.1 %, Fisher Exact Test [FET], p-value < 2e-16). These results were consi stent
across individual patients (Fig. S3).

As expected, on histologic evaluation, the proportions of epithelial and immune cells were
consistent with the Nucleus, rather than the Cell dataset (Fig. S4A-B).

To further refine the immune community of cells, we subsetted only the immune cells and
labelled the plots with afiner level (level 3) annotation (Cell, Fig. 3C; Nucleus, Fig. 3D). We observed

that the Cell dataset provided a better fine-grained classification as proportionally more cells could be
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classified into specific cell types. To this effect, the Nucleus dataset contained a larger fraction of
unclassified cells (41.7 % vs 0.7 %, FET, p-value < 2e-16).

We repeated this subsetting approach for epithelial cells, given their primary rolein the onset of
lung adenocarcinoma. We observed that Cell samples form distinct clusters mainly composed of AT1,
AT2 and multiciliated lineages (Fig. 3E). The Nucleus dataset, which had more than five times more
epithelial cells than the Cell dataset (12,556 versus 2,264), contained similar cell types and mainly in
similar proportions, except for a sizable fraction of unclassified cells that appeared largely scattered in
the UMAPs (10.9 % unclassified in Nucleus versus 1.29 % in Cell, FET, p-value < 2e-16, Fig. 3F).

In Fig. 4, we present, for each cell type (level 3 annotation), the fraction of cells originating
from each patient (Fig. 4A), the number of cells (Fig. 4B) and the number of genes per cell (Fig. 4C).
In Fig. 4D-F, we present the same information for the Nucleus dataset and this visualization confirmed
that the Nucleus dataset has similar cellular composition, except for the over-representation of immune
cellsin the Cell dataset. Both in Cell and Nucleus datasets, epithelial cell types were dominated by AT1
first and then AT2; endothelial cell types were dominated by capillary cells; and stromal cell types
were dominated by fibroblasts. With respect to the number of genes (transcripts) per cell (Fig. 4 C, F),
we observed many discordant patterns between Nucleus and Cell datasets, indicating that similar cell
types presented different overall transcriptional signatures based on the experimental method. For
example, in the Cdll dataset, median numbers of genes per cell were low for monocytes (635), but high
for T cells (1,709), and the pattern was in the opposite direction for the Nucleus dataset (Monocytes =
2,729, T cells=1,055). For their part, alveolar cells AT1 and AT2 contained 50% more genes
expressed in the Cell dataset (AT1: 2,479 and AT2: 3,126) compared to the Nucleus (AT1: 1,639 and

AT2: 2,004), and fibroblast two times as much (2,101 vs 1,061).

scRNA and snRNA of LUAD

10
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In Fig. 5A, the UMAPs showed that Cell sequencing samples from lung Tumor tissues were
largely dominated by immune cdll types (20,410 immune cells vs 5,764 in Nucleus dataset), whilein
Fig. 5B, the Nucleus dataset were dominated by epithelial cells (27,362 epithelial cellsin Nucleus vs
1,220 in Cell dataset). The predominance of immune cellsin Cell and epithelial cellsin Nucleus were
observed across the four patients (Fig. S5). The Nucleus showing again a more accurate reflection of
the real cellular composition of LUAD assessed by immunohistochemical staining (Fig. S4A-B).

For both Cell and Nucleus datasets, cells appeared more scattered (i.e., more heterogeneous) in
the Tumor compared to Normal [ung (median silhouette index (vormay = 0.69; median silhouette index
(rumor) = 0.53; two-way ANOV A, p-value < 2e-16, Fig. S6). This shows a suboptimal cell type
assignment of Tumor samples to the described lung cell types from the HLCA reference.

In Fig. 6, we present, for each level 3 annotation cell type, the fraction of cells from each
patient (Fig. 6A), the number of cells (Fig. 6B), and the number of genes per cdl (Fig. 6C). In Fig. 6D-
F, we present the same information for the Nucleus dataset. First, we observed, within a coarse level
annotation, similar cell types and smilar proportionsin Cell and Nucleus datasets. For example, T cells
largely dominated the immune cells, fibroblasts dominated the stroma cells and endothelial cell types
were relatively rare. With respect to epithelial cells, these were mainly composed of unclassified and
AT1 in both Cell and Nucleus datasets, and secretory epithelial cells appeared to be mainly segregated

to patient 3. However, rare cell types were much more common in the Nucleus than the Cell datasets.

Thecdlular transition to LUAD

Given the known epithelial origin of lung adenocarcinoma and the role of the immune system in
controlling the growth of carcinoma cells, we analysed the transition in the proportions of epithelial and
immune cells from normal to adenocarcinomatissue (Fig. 7A-B). AT1, AT2 decreased in relative

abundance in adenocarcinomas, and this was consistent for the Cell and Nucleus datasets. On the

11
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contrary, rare, secretory and unclassified epithelial cell types increased in abundance in
adenocarcinomatissue in a consistent manner between Cell and Nucleus datasets. For Immune cells,
patterns were harder to interpret given the small number of immune cells in the Nucleus dataset.
Nevertheless, an augmentation of B and T cell lineages in adenocarcinomawas typically found for both
datasets, aswell asadrop in natural killer cellsin the Cell dataset, while a discordant pattern was
observed in monocytes. For macrophages, no consistent pattern was found in the transition from
Normal to Tumor. When analysing more specifically interstitial macrophages (level 4 annotation), we
confirmed a consistent augmentation in Tumor samplesin Cell and Nucleus that was corroborated by
immunohistochemical staining (Fig. $4C).

We defined a genome-wide summary CNV score that relies on gene expression levelsto
identify gene deletion and duplication and aneuploid epithelial cells?®. This score was the highest for
multiciliated lineage and rare epithelial cell types, and the lowest for AT2 cellsin the Cell and Nucleus
dataset (Fig. 7C). In addition, we also noted that annotation scores were negatively correlated with
CNV scores for Cell (r? = 0.11, p-value < 2e-16) and Nucleus (r* = 0.05, p-value < 2e-16) datasets (Fig.
S7). Finally, the inferred malignant classification of cells based on high CNV score and low annotation
score demonstrated that the proportion of cancer cellsin epithelial lineages was patient-specific and not

always consistent between Cell and Nucleus (Fig. S8).

Gene expresson analyses

Using a pseudobulk method, we showed that aggregated gene expression correlates well
between methods within tissues (r = 0.84 and 0.86) and between tissues within methods (r = 0.90 and
0.95, Fig. 8A). Then, we showed in adendrogram based on nuclear and whole-cell transcriptome data
that samples cluster first by method (Fig. 8B). The difference (DEGs) for epithelial cells between Cell

vs. Nucleusin either Normal or Tumor (3,480 and 1,156 DEGs respectively, Fig. 8C) was greater than

12
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between Normal vs. Tumor using the same method (321 and 947 DEGs respectively, Fig. 8C). For
both comparisons (Cell vs. Nucleus & Normal vs. Tumor), there were more DEGs in common across
methods and tissues than expected by chance (Fig. 8D, see Table $S4-S7 for full list of DEGS). In
addition, looking at the five most significant enriched Gene Ontology, we saw that between Cell and
Nucleus, similar GO terms were found (Fig. 8E). These Biological Processes were related to mRNA
trandation, peptide biosynthesis and mitochondrial (aerobic) respiration. GO terms for the comparison
Normal vs. Tumor were also partly concordant between Cell and Nucleus and al related to growth,
development and migration (see Table S8 for other GO terms). DEGs for endothelial, immune and
stromal cellsareillustrated in Fig. SO.

Then using a Principal Component Analysis on the 39 markers genes commonly used to
distinguish between Immune, Epithelial, Endothelial and Stroma cell types (see Fig. S2 and Sikkema et
a.?), we showed that these canonical markers genes used to distinguish cell types match well with the
reference-based annotation of the samples (Fig. S10A). This confirmsthe validity of the reference-
based method we used to annotate our samples. In addition, we showed no bias in the clustering of the
samples based on the patient identity (Fig. S10B). Instead, as we showed in Fig. S10B, samples cluster
according to the method (Cell vs. Nucleus) first, and more subtlety based on the tissue effect (Normal
vs. Tumor, Fig. S10C). Based on Principal Components 3 and 4, we can see that for Nucleus samples,
there is a better separation of Normal and Tumor samples, compared to the Cell samples Fig. S10D), at
least based on these 39 cell type markers genes. Finally, much like in the reference-based approach
(Fig. 2), the markers genes were less efficient in distinguishing between cell types in the Nucleus

samples (Fig. S10C).

The ligand-receptor interactome differs between sScRNA and shnRNA

13
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In Fig. 9A, we visualised the incoming and outcoming interactions among 319 ligand-receptor
interactions (cell-cell contact) for the Cell-Normal dataset. The number of interactions between cell
types varies first according to the Cell vs. Nucleus methods (two-way ANOVA, F = 90.7, p-value < 2e-
16) and then the Normal vs. Tumor tissue types (F = 68.2, p-value = 3.6e-16). In Fig. 9B, we show an
example of atypical pathway common in Cell, rare in Nucleus (Mgjor Histocompatibility Complex-1)
and itsinteracting genes, which is more similar between Normal vs Tumor tissue of the same
experimental method (Cell vs Nucleus). An example pathway, rare in Cell but common in Nucleus
(Protein Tyrosine Phosphatase Receptor Type M) and its self interacting geneis presented in Fig. 9C.

In this case, each network shows differences according to both the experimental method and tissue.

The effect of immune depletion on Cell sequencing

In order to diminish the impact of the enrichment in immune cells induced by the single-cell
dissociation protocol, we performed immune depletion in Normal and Tumor single-cell suspensions.
We confirmed that the Immune-depl eted cell dataset was enriched in epithelial cells and depleted in
immune cdls (Fig. 10A-B). As such, both the Normal and Tumor tissues resemble the Nucleus dataset
in the fact that they harbor a majority of epithelial cells (61.5% and 69.9% of total for the Immune-
depleted cell and Nucleus dataset, respectively), yet they differ given that Immune-depleted cell
harbors proportionally more endothelial (17.8% vs 4%) and stromal (18.4% vs 7.9%) cell types, but
less immune cdlls (1.3% vs 13.0%). In addition, Normal tissues were largely composed of epithelial
AT1 and AT2, while Tumor tissues also harbored secretory, rare and unclassified cell types, much like
the Nucleus dataset (Fig. 10C-D). Finally, as we observed for the non-depleted dataset, we saw an
increase in the heterogeneity from Normal to Tumor datasets (median Silhouette index for each level 3
cell type annotation: S (normaly = 0.56, median S (tumor) = 0.2, two-way ANOVA, p-value < 2e-16, Fig.

S6).
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296 Next, we conducted Principal Component Analyses for each cell type on arepresentative

297  subsample (top 5% most variables) of genes (Normal tissue). Based on this, |mmune-depl eted-cell
298  samples showed more variation between patients than Cell or Nucleus samples (Fig. S11A-D). In

299  addition, especialy for immune cells, their overall gene expression signal differed from Cell and

300 Nucleus samples (Fig. S11A). Consequently, thisimplies that the remaining fraction of immune cdllsin
301 Immune-depleted cell samples resemble the Nucleus samples.

302 Finally, we downloaded a set of 512 heat shock and stress response genes that were previously
303 identified as affected by the ScRNA-seq method®. Ninety four percent (482 genes) of the genesin this
304  core dataset were also present in our current dataset, with varying levels of expression. More

305 gpecifically, the percentage of cells expressing these genes was dependent on the method (Fig. 10E,
306 two-way ANOVA, p-value < 2e-16). The Immune-depleted cell dataset showed the highest expression
307  of the stress response genes, whereas on average a cell from the Immune-depleted cell dataset

308  expressed 21% of the 482 genes, compared to 11.0% and 6.9% for the Cell and Nucleus dataset,

309 respectively. In addition, the proportions of cells expressing this core set of stress response genes were
310 dlightly, but significantly (p-value = 9.7e-8) higher in Tumor than in Normal tissues (12.4 % and

311  11.5 %, respectively). In asimilar manner, higher mitochondrial contamination is often considered a
312  sign of lower cell quality or viability?” and we observed that the percentage of unique sequences

313 (UMIs) assigned to mitochondrial genesin the raw data prior to any filtering was significantly higher
314  (two-way ANOVA, p-value = 3.6e-5) in the Immune-depleted cell (mean = 15.2 %) and Cell (11.2 %)
315 compared to the Nucleus (2.6 %) dataset, while the tissue type (p-value = 0.10) had no significant

316  effect (Fig. 10F).

317

318

319

15


https://doi.org/10.1101/2024.02.20.581199
http://creativecommons.org/licenses/by-nc-nd/4.0/

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.20.581199; this version posted May 22, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Discussion

In this study we generated a dataset of 160,621 cells/nuclel showing commonalities and
discordances in biological insights derived from single-cell and single-nucleus RNA-sequencing of
paired normal-adenocarcinoma human lung specimens. A distinct portrait of cellular composition was
observed per experimental methods that favors sScRNA-seq of fresh samples to map theimmune
landscape of lung adenocarcinoma. On the other hand, snRNA-seq of frozen samples surpassed the
relative merits of SCRNA-seq to obtain a dataset with cell type proportion that match tissue content and
to provide a more cost-effective approach for research applications necessitating a higher number of
epithelial and cancer cells (see Table SO for a summary of the benefits of each method). In these paired
lung samples, we identified gene expression and cell type transitions from normal to tumoral tissue that
were not always concordant whether cells or nuclei were examined. The most striking difference was
the ligand-receptor interactions that varied more across methods (cells vs. nuclei) rather than tissue
types (Normal vs. Tumor). Immune cell depletion partly alleviated some of the differencein cell type
composition between cells and nuclei, but at the detriment of inducing a stress response and affecting
the transcriptome biological signal. Finaly, our analysis revealed that the recently proposed five-level
hierarchical cell type annotation system by the Human Lung Cell Atlas® will require customization for
assigning cell types specifically for tumor and nuclel samples.

Despite the fact that samples originated from the same patients’ specimens, sScRNA-seq and
snRNA-seq varied substantially in their recovered cellular compositions and transcriptional landscape,
thus highlighting the considerable impact of methodology on biological inference. While it has been
shown previously that cryopreservation of tissue sample (such as performed for snRNA-seq) resultsin
amagjor loss of epithelial cell types and an underrepresentation of T, B, and NK lymphocytesin the
single-nucleus libraries***, it is not necessarily apparent which experimental method is more
biologically relevant. Slyper et al.*? have suggested to analyse both fresh and frozen tissue, but thisis
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often unredlistic in practice. For their part, Denisenko et al.™* indicated that the apparent discordancein
the recovered cellular composition between scRNA and snRNA might be due to either an under-
representation of immune cellsin snRNA, or an under-representation of other cell typesin scRNA due
to incomplete dissociation. Andrews et al.*” compared cells and nuclei of matched healthy human liver
and concluded that cell-type frequencies were distorted in ScCRNA-seq. Early pioneering work in lung
histology would suggest the latter, whereas cell staining and electron microscopy has revealed that the
alveolar regions of normal human lungs are comprised mainly of epithelial, endothelial and interstitial
cells, while immune cells (macrophages) comprised a small fraction (~5%) of all cells identified®. We
corroborated this observation with H& E staining in our matched Normal and LUAD samples. We thus
conclude that in the context of lung adenocarcinoma and patient-matched normal samples, sSnRNA-seq
provides a dataset comprising cell populations more closely matching tissue content.

We observed a decrease in cell viability in both depleted and non-depleted sScRNA-seq, likely
due to the longer sample preparation times at room temperature. While this could be partly aleviated
by cold-activated proteases’, it favors snRNA-seq as a experimental protocol to preserve sample
integrity. Although immune depletion works well for removing immune cells and therefore might draw
amore accurate representation of the lung cellular composition that is closer to sSnARNA-seq, it requires
extra laboratory manipulations and has the adverse effect of affecting both cell viability (Fig. 10F) and
inducing a dissociation transcriptional stress response (Fig. 10E), as shown previously™,

The reference-based annotation used here provides an attractive alternative to unsupervised
analysis®. We annotated the large majority of cells/nuclei in all tissue types, methods and patients (Fig.
2, Fig. S1) while showing that it performed as well as a marker-based approach, at least at the coarsest
annotation level (Fig. S2, Fig S1A). In their recent work comparing patient-matched lung
adenocarcinoma samples, Trinks and colleagues used a similar statistical approach to annotate their

sNRNA-seq samples®. Arguably, the confidence in this reference-based annotation approach depends
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on severa factors. Notably, the comprehensiveness of the reference, the quality and type of query data
and the level of cellular granularity required to answer the biological question of interest will dictate
the best approach to use. Nevertheless, an unsupervised-marker based approach also depends on
several factors such asthe clustering agorithm, the gene markers used, and almost always, the
expertise and subjectivity of the person annotating the dataset™ . Here, annotation and mapping were
done using the same analytical framework for al samples and therefore provided an objective overview
of the transcriptional cellular landscape. Fortunately, we were able to use a recently published
comprehensive atlas of the lung (HLCA)*, although such thorough cell atlases might not exist for all
tissue types, biological conditions and demographic states™. The lower annotation scores observed in
Nucleus and Tumor samples and consequently the greater number of unclassified cells, especialy at
the finer annotation levels suggest that these cells or nuclel have a distinct signature from the current
reference cell type, much like we saw when conducting Principal Component Analysis of gene
expression markers. A comparable phenomenon was also observed in the HLCA for different disease
states’ and the authors concluded that the HLCA must be viewed as a live resource that will require
continuous updates in the future, including samples of diverse ethnic, clinical and experimental (e.g.
SnRNA-seq) backgrounds.

During the transition from normal to tumoral tissue, we identified adrop in AT1, AT2 and NK
cells, concurrently with ariseinimmune B and T cells, as previously identified®®*®. In addition,
tumoral cells showed an increased transcriptomic heterogeneity and a greater prevalence of copy
number variantsin epithelial cells. Similarly, it has been described that NSCLC exhibit important
interpatient histologic heterogeneity and inferred origin of tumor cells**. Here, we showed that
epithelial multiciliated lineages and rare cell types had higher Copy Number Variants scores than other
epithelial cell types, and the classification of cell malignancy confirmed patient-specific perturbations

as previously reported®. Y et, the distinction between these epithelial cellsis not always straightforward,
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especially in a context of oncogenesis. Along those lines, we noted that annotation scores were
negatively correlated with CNV scores which implies that cells with high CNV (likely carcinomacells)
loose their cellular identity and become harder to classify as distinct lung cell types. During the
construction of the HLCA, Sikkema et al.* also noted that a significant fraction of cells from
adenocarcinomas did not cluster into the specific fine level cell types. Similarly, Wang et al.** argued
that cancer cells originate from ‘AT2-like' cells, but also nuanced this fact and stated that these form a
distinct cluster from regular AT2 cells and have a transcriptional profile closely resembling other
epithelial cells. Again, amore refined and thorough reference database will help to solve these
guestions.

Using apseudobulk method, we showed better correlation of gene expression between cells and
nuclel than previously reported RNA sequencing comparing isolated cells and nuclel (r between 0.53-
0.74 by Barthelson and colleagues™), potentially because of our matched experimental design and
Improvements in single cell/nucleus sequencing in recent years. While we saw alarge number of DEGs
between cells and nuclei, thereis also alot of concordance in the DEGs identified in Normal and
Tumor tissues. Previous studies reported that genes related to essential cell processes, taking place
outside of the nucleus, such as ribosome- and mitochondrial-related genes, differ in expression between
Single-Cell and Single-Nucleus sequencing™®®. Interestingly, there is also concordancein GO terms
when comparing Normal and Tumor samplesin Cell or Nucleus sequencing, but these processes have
to do more with cell motility, migration and development.

This study has methodological implications as the literature and data comparing scRNA and
snRNA are still scarce. Previous studies have compared scRNA and snRNA methods, but data from the
same specimens were not necessarily available™ 3. Head-to-head comparisons with the same

15,16

specimens were performed using different platforms in mouse brain™ = and with 10x Genomicsin

mouse kidney™*. In humans, we are only aware of one 10x study comparing matched scRNA and
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416  snRNA from human liver'’. In the current study, we have both single-cell and single-nucleus on both
417  normal lung and adenocarcinoma samples for all four patients and on the same platform (10x

418  Genomics). Samples were resected in the same hospital and sequenced by the same laboratory. We thus
419 have aunique and much-needed dataset to study the difference between single-cell and single-nucleus
420 RNA-seg. By sharing our data with the scientific community, we aim to stimulate further comparisons
421  between scRNA and snRNA, and allow others to build on our results.

422 Ultimately, we hope to develop a comprehensive transcriptional resource for the identification
423  of cell-targeted biomarkers and therapeutic targets to treat and prevent LUAD and other ailing aspects
424 of the lung. Accordingly, this study may have clinical significance asimmunotherapy is currently

425  revolutionizing the treatment of lung cancer. Response to immune checkpoint inhibitors relies on the
426  existing cell-cell interactions between tumor and T cells (e.g., commercial immunotherapy drugs

427  targeting the interaction between PD-1 in tumor cells and PD-L1in T cells)® and identifying accurate
428  biomarkers of response to immunotherapy is amajor challengein the field of lung cancer®’.

429  Consequently, this seems like a clinical problem where single-cell genomics can provide a solution.
430 However, here we demonstrated that the ligand-receptor interactome landscape of lung

431 adenocarcinomais largely different whether cells or nuclel are evaluated. This may lead to conflicting
432  prediction response to these novel immunotherapy agents. Accordingly, at least in the context of lung
433  cancer, the choice between scRNA-seq and snRNA-seq has important implications. Our results favor
434  scRNA-seq on fresh samples to provide a more comprehensive portray and granularity of the immune
435 cdlsdiversity. Thisisconsstent with the recommendation of using sScCRNA-seq to investigate immune
436  populationsin the human liver”. On the other hand, sScRNA-seq may not be representative of the true
437  cdlular community, and lead to fewer difficult-to-dissociate tumor cells to assess relevant tumor-

438 immuneinteractions. More studies will be needed to assess the best methods as well as to overcome
439  other barriers to move single-cell genomicsinto the clinical setting®.

440
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M aterials and methods

Patients and samples

Lung samples were collected from four patients that underwent curative intent primary lung
cancer surgery at the Institut universitaire de cardiologie et de pneumol ogie de Québec — Université
Laval (IUCPQ-UL) in 2021-2023, henceforth referred to patient 1, 2, 3 and 4. The four patients were
self-reported white French Canadian (European ancestry) with no prior chemotherapy and/or radiation
therapy, and all patients were between the age of 59 and 69, former smokers with adenocarcinomas
(SeeFig. 1 for overview of experimental design, and Table Sl for detailed clinical characteristics of
patients).

Following surgery, the explanted |obes were immediately transferred to the pathology
department. For each patient, two [ 11 cm® fresh Tumor samples and two [ 11 cm® non-tumor (Normal)
lung samples located distant from the tumor were harvested. Thefirst set of tumor/non-tumor samples
was transferred in dedicated tubes containing ice-cold RPMI (ThermoFisher, Cat. 11875093) for
immediate cell dissociation and single-cell RNA sequencing (ScCRNA-seq) experiment. The second set
of tumor/non-tumor samples was transferred in dedicated tubes, immediately snap-frozen in liquid
nitrogen and stored at -80°C until the day of the single-nucleus RNA sequencing (SNRNA-seq)
experiment. Lung tissue samples were obtained in accordance with the Institutional Review Board
guidelines. All patients provided written informed consent, and the ethics committee of the IUCPQ-UL

approved the study.

Histologic evaluation

A thoracic pathologist (P.J.) reviewed each tumor and non-tumor hematoxylin and eosin (H&E)
histology slides to confirm the presence/absence of tumor. Sections of 4.0 um thick were cut from the
selected blocks on a microtome and placed on charged slides. The following antibodies were used for
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IHC experiments:. cytokeratin (monoclonal, clone AET/AES; Dako Agilent Technologies, Santa Clara,
CA, USA), CD45 (monoclonal, clone DB11; Dako Agilent Technologies) and CD68 (monoclonal,
clone PG-M1; Dako Agilent Technologies). All slides underwent heat-induced epitope retrieval in a
Dako PT-Link using EnVision FLEX Target Retrieval Solution, high pH (9) TriSEDTA buffer (Dako,
Agilent Technologies), followed by an automatized IHC protocol on Dako Autostainer Link 48, using
the EnVision FLEX+ kit reagents.

All H&E and IHC slides were digitized at 20X magnification with a slide scanner
(NanoZoomer 2.0-HT; Hamamatsu, Bridgewater, NJ, USA). Slides visualization, cell segmentation and
quantification were performed using QuPath (Version 0.5.1; The Queen's University of Belfast,
Northern Ireland). Three different zones representing at least 50% of the whole surface area of the
tissue were selected and analyzed. The numbers of positive cells were determined using the automated

cell detection tool and then visually validated by a pathologist (P.J.) for each marker.

Sample preparation for SSRNA-seq

Immediately after collection, the weight of each sample was recorded. Samples were transferred
to 6-well cell culture plates, washed twice with 3 mL ice-cold PBS (Thermo Fisher, cat. 10010023) to
remove excess blood and transferred to a5 mL glass beaker. Using a1 mL syringe and 25G needle,
300 pL of Enzyme dissociation mix was injected in the tissue followed by mechanical mincing into
small fragments (<1 mm?3) using spring scissors for 2 minutes. Samples were then transferred to 50 mL
Falcon tubes containing 5,7 mL of Enzyme dissociation mix and pipette mixed 5 times using wide bore
1 mL tips. The enzymatic digestion was performed at 37°C, using a Vari-Mix test tube rocker at max
speed for 35 minutes. Samples were pipette mixed 20 times after 15 and 30 minutes using wide bore 1
mL tips. Enzyme dissociation mix contained: Pronase 1250 pg/mL (Sigma Aldrich, cat. 10165921001),

Elastase 18.4 ug/ml (Worthington Biochemical, cat. LS006363), DNase | 100 pug/mL (Sigma Aldrich,
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cat. 11284932001), Dispase 100 pug/mL (Worthington Biochemical, cat. LS02100), Collagenase A
1500 pg/mL (Sigma Aldrich, cat.10103578001) and Collagenase IV 100 pg/mL (Worthington
Biochemical, cat. LS 004186) in HBSS (Thermo Fisher, cat. 14170112). Enzymatic digestion was
stopped by adding 1.5 mL of fetal bovine serum (FBS, ThermoFisher, cat. A3840301) followed by
pipette mix 5 times using wide bore 1 mL tips. Dissociated cells were filtered through a 70 um strainer
and washed with 7.5 mL ice-cold PBS. Cells were then pelleted at 400g, 4°C for five minutes and
supernatant was removed. Three cycles of red blood cells removal were performed as follow: cell pellet
resuspended by manual agitation in 500 pL of ACK Lysis Buffer (ThermoFisher, cat. A1049201) and
incubated on ice one minute. One mL of ice-cold PBS was added and cells were centrifuged at 400g,
4°C for two minutes and the supernatant was removed. The final pellet was resuspended in 500 pL ice-
cold-PBS containing 0.04% Bovine Serum Albumin (BSA, Sigma Aldrich Cat. A7284) and 10% FBS.
Cdll suspensions were successively passed through 100 pum, 70 um and 40 um strainer using quick spin
to reach 400g to filtrate each sample. Samples were transferred to 2.0 mL low binding tubes and kept at
4°C. Cdll count and viability were performed using a1:1 mix of cell suspension, Trypan blue
(ThermoFisher, cat. 15250061), haemocytometer and conventional light microscopy. Cells suspensions
meeting the following criteria were accepted for sSCRNA-seq library preparation: absence of aggregated
cells, aviability >80%, and atotal cell count between 400 and 1200 cells/pL. 1x10° cells were
transferred to alow binding 2 mL tube and kept at 4°C (non-depleted fraction). The remaining cells
(from 2 to 5 x10° cells) were submitted to CD45+ immune cell depletion protocol (single cells depleted
fraction) as described below. The characteristics of the lung specimen and the single cell suspension for

each sample are given in Table S2.

CD45+ immune cell depletion
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Cells (from 2 to 5 x10° cells) were centrifuged a 300g, 4°C, 10 minutes. The supernatant was
removed and the cell pellet was resuspended in 80 pL MACS buffer (0.5% BSA, 2 mM EDTA pH 8.0
in PBS) previously degassed for 1 hour a room temperature. Twenty pL of CD45 microbeads
(Miltenyi Cat. 130-045-801) were added and sample was incubated 15 minutes at 4°C followed by
addition of 1 mL MACS buffer and centrifugation 300g, 10 minutes at room temperature. Supernatant
was removed and pellet resuspended in 2-steps 100 pL + 400 pL MACS buffer. The total volume (500
pL) was applied to a LS Positive Selection Column (Miltenyi Cat. 130-042-401) previously rinsed with
3 mL MACS buffer and installed on a MidiMACS magnetic Separator with a collection tube. Column
was rinsed with 3 X 3 mL MACS buffer and all volumes (9.5 mL) were collected which contained the
CD45-negative fraction. CD45-negative cells were centrifuged 300g, 10 minutes at room temperature
followed by supernatant removal. Cells were washed twice with 1 mL PBS followed by centrifugation
at 300g, 10 minutes after each wash. Cells were finally resuspended in 100 uL BSA 0.04%, 10% FBS
in PBS and kept at 4°C. Cell count and viability were performed using a 1:1 mix of cell suspension,
Trypan blue, haemocytometer and conventional light microscopy. Cells suspensions meeting the
following criteriawere accepted for SCRNA-seq library preparation: absence of aggregated cells, a

viability >80%, and a total cell count between 400 and 1200 cells/pL.

Sample preparation for sSnDRNA-seq

Nuclel suspension was prepared from ~30 mg snap frozen tissue using Chromium Nuclei
Isolation Kit as per manufacturer’s protocol (10x Genomics Cat. 1000494). Nuclei count and integrity
were performed using a 1:1 mix of nuclel suspension and methylene blue 0.25% (Ricca Chemical, Cat.
438504), haemocytometer and conventional light microscopy. Nuclel suspensions meeting the following
criteriawere accepted for SnRNA-seq library preparation: absence of aggregated nuclei, nucle with

circular shape and intact membrane (without blebbing) >80%, and atotal nucleus count between 400
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and 1200 nuclei/pL. Nucle suspensions were kept at 4°C until proceeding with 10x Genomics snRNA-

Seq library preparation protocol.

10x Genomics sn/scRNA-seq library preparation

For each sample, approximatively 15,000 nuclei or cells were loaded into each channel of a
Chromium Next Gel Beads-in-emulsion (GEM) Chip G (10x Genomics Cat. 1000127) as per
manufacturer’ singtruction for GEM generation and barcoding. Given the cell capture efficiency of
around 65%, 10,000 cells per library were therefore expected. The Chip was run on the Chromium
Controller, GEMs were aspirated and transferred to a strip tube for cDNA synthesis, cDNA
amplification and library construction using Chromium Next GEM single-cell 3’ Library Kit v3.1 (10x
Genomics Cat. 1000128) and Single Index Kit T Set A (10x Genomics Cat. 2000240) as per
manufacturer’ sinstruction. The library average fragment size and quantification was performed using
Agilent Bioanalyzer High Sensitivity DNA kit (Agilent Cat. 5067-4626) and afinal concentration
determination was performed using NEBNext Library Quant Kit for [llumina (New England Biolabs

Cat. E7630) prior to library sequencing.

Next generation sequencing

Libraries were individually diluted to 10 nM, pooled and sequenced on an Illumina
NextSeq2000 system following manufacturer’ s recommendations. Sequencing was realized on a P3
(100 cycles) cartridge, aiming for 200 to 500 million reads per library (sample). Run parameters for
paired-end sequencing were as follow: read 1, 28 nucleotides; read 2, 91 nucleotides; index 1, 8

nucleotides; and index 2, 0 nucleotide.

Single cell/nucleus data preparation
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Demultiplexing, alignment and transcript counting was performed using the Cellranger
software (v7.1.0, 10x Genomics) on our local server (Lenovo ThinkSystem SR650, 40 cores and
384GB RAM). The BCL files from the [llumina sequencing run were first demultiplexed into FASTQ
files using the cellranger mkfastq command. Read alignment and UMI counting were then executed
with the cellranger count command (see alignment and cell statisticsin Table S10). We used GRCh38

as the reference transcriptome available on Gencode, release 43 (GRCh38.p13).

Data quality control

The most up-to-date bioinformatics procedure defined by the R (v4.3.3)* library Seurat
(v5.0.2)*" was used to create an object for each sample and calculate values for nCount (number of
Unique Molecular Identifiers[UMI] per cell), nFeatures (number of genes expressed per cell) and
percent.nmt (fraction of UMIs aligning to mitochondrial genes) parameters. Using the R library scuttle
(v1.10.1)**, we determined outlier values for nCount, nFeatures and percent.mt based on the median
absolute deviation and sub-set each sample accordingly. Note that for the percent.mt parameter, if
necessary, we further capped this outlier value at twenty-five percent per sample.

For each sample, we then performed normalization and variance stabilization using the function
CTransform, which also has the benefit to regress out the percent.mt effect from the underlying count
data. Then, using the R library DoubletFinder (v2.0.3)*, we identified and removed doublets
(assuming afive percent doublet rate), which occur when multiple cells are captured into asingle ail

droplet during the GEM generation.

Reference-based cell type annotation and mapping
On each of these curated samples, cellular annotation was performed using the R library

Azimuth (v0.4.6)*° and the most recent version of the Human Lung Cancer Atlas (HLCA v2)*. Note
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that in the subsequent methodology, cell annotation refers to the annotation of a uniquely barcoded
GEM sample stemming from either a ScRNA-seq or a SnRNA-seq dataset.

The HLCA is acomprehensive and curated reference dataset constructed using a diverse set of
107 hesalthy lung samples (584,444 cells) and which allows to identify the transcriptional signature of
61 hierarchical cell types, from the coarsest possible annotations (level 1. Immune, Epithelial,
Endothelial and Stroma), recursively broken down into finer levels (levels 2-5). In addition, this
reference-based mapping approach allows to robustly and sensitively compare samples of broad
cellular compositions, while also identifying specific and rare cell populations™ 2+

Specifically, for each sample (query), the algorithmic approach first identifies anchors between
the reference and query (that is, pairs of cells from each dataset that are contained within each other's
neighborhoods) and uses these anchors to integrate the query dataset onto the reference. Then, the
embeddings of the query data onto the reference Principal Components (50 PCs) are calculated and
visualised directly onto the reference two-dimensional Uniform Manifold Approximation and
Projection (UMAP). Finally, annotation scores [0:1], which reflect the confidence in the annotation,

were used to label cell types, whereas cells with annotation scores < 0.5 were labelled as unclassified.

Copy number variations analysis

For each patient, we performed an analysis of Copy-Number Variants (CNVs) in order to
identify epithelial aneuploid cells based on the premise that gene CNV's can be identified using the
difference between the mean log expression level of non-cancerous reference cells (here epithelial cells
in the Normal tissue, either in Cell or Nucleus sequencing) and the log gene expression level of an
epithelial cell of interest in the Tumor tissue. This was performed using the R library infercnv
(v1.17.0)%® and a general index (CNV score) for each cell was defined as the mean sum of square of

scaled [-1;+1] standardized log fold-change values. Finally, we classified cells as malignant based on
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the integration of several parameters, as typically performed®®. Cells of epithelial origin, with ahigh
CNV score (top quintile), and a cell type annotation score in the bottom quintile (malignant cells are
typically more difficult to annotate due to the reprogramming of the lung adenocarcinoma
transcriptome) were labelled as malignant. Consequently, this allowed an objective comparison of the

malignant cells between methods and patients.

Biological dataset comparisons

We integrated twenty-four samplesinto six different datasets (Cell-Normal, Nucleus-Normal,
Cell-Tumor, Nucleus-Tumor, Immune-depleted cell-Normal, Immune-depleted cell-Tumor), in order to
guantify biological smilarities and differences among datasets (see Fig. 1D-G for summary of
comparisons and accompanying figures). Given that the same reference dimensionality reduction
(PCA) and visualisation space (UMAP) was used for each sample, we could ssmply merge expression
data, metadata and projectionsinto objects that account for technical variation among samplein order
to quantify patterns. For each individual cell, we also calculated a Silhouette index™ to evaluate the
goodness of fit of the clustering, whereas the index is calculated from the UM AP embeddings and the
clusters correspond to specific cdll type (level 3) annotations. We then tested the effect of the
experimental method and tissue type on the Silhouette index using atwo-way Analysis of Variance

(ANOVA).

Gene expression analyses
Differentially expressed genes (DEGSs) were identified using a pseudobulk approach, which has
been shown to outperform other single-cell differential expression methods . In this case, it first

consists of aggregating (i.e. summing up) counts by cell type (epithelial, endothelial, immune and
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stroma) and quantifying the expression levels per gene but with respect to cell type, patient, tissue and
method.

We then performed hierarchical clustering (Ward distance) on a subset of the top 5% most
variable genesto illustrate the transcriptome wide effects of the methods and tissues. We quantified the
total number of differently expressed genes (DEGS) per cdll type, tissue and method using a negative
binomial distribution (DESeq2 R Package, v 1.40.2)*. Specifically, we looked at the number of DEGs
In common between methods of the same tissue and between tissues of the same method, to see how
concordant they were compared to a null expectation (i.e. [number of DEGs in comparison A / number
of genesin comparison A] * [number of DEGs in comparison B / number of genesin comparison B] X
total number of genes). Finally, we performed enrichment analyses (Gene Ontology Biological
Process) using the R package topGO*’ (v 2.52.0) to look at concordance in functional terms among
DEGs.

In addition, we performed a principal component analyses (PCA) with the R library
FactoMineR (v2.10)* of the normalized summed counts using the 39 markers genes typically used to
distinguish the four mgjor cell types (endothelial, epithelial, immune, stroma, see also Fig. S2 for the
list of markers genes from Sikkema et al. 2023%). As such, each sample (four patients X two methods X
two tissues) is represented by four data points based on its summed cell type specific component.

We also conducted PCA on the top 5% most variable genesin order to look at the clustering of
Cell, Nucleus and Immune-depl eted cells samples based on an overall gene expression signal for each

coarse level 1 cell types.

Ligand-receptor analyss
In order to infer and visualise the intercellular communication among cell populations, we used

the R library cellchat (v 1.6.1)*. We quantified the cell-cell interaction pathways in Normal and Tumor
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tissues (Cdll and Nucleus dataset) to describe the cellular transition during oncogenesis and quantify
how the experimental method and tissue type affected the results. We limited this analysisto level 3
annotation and excluded infrequent cell types (<500 cellsin total) and cells that were unclassified at the
level 3 annotation. We quantified the number of interactions from and to each cell type and tested the

effect of the experimental method and tissue type using atwo-way ANOVA.

Stress-related genes

To quantify the effect of our Cell, Nucleus and Immune depleted cell experimental methods on
the overall stress responses of the cell populations, we analysed the expression pattern of a core set of
512 heat shock and stress response genes that were previously identified to be affected by the sScCRNA-
seq sample preparation method®. We quantified the proportions of cells that expressed these genes for
each sample and tested the effect of the experimental method, tissue type and patient using a two-way

ANOVA.
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Supporting I nformation Figures

Supplementary Figure 1 | UMAP visualization of all 160,621 cells/ nuclel that passed quality control
per level 3 annotation (A), tissue type (B), experimental method (C) and patient (D).

Supplementary Figure2 | UMAPsfor the Cell (A) and Nucleus (F) dataset with coarse level
annotations and feature plots according to average expression level of the gene markers defined for
each cell type by HLCA (see below), in Cell (B-E) and Nucleus (G-J).

Immune-specific gene markers =
'LCP1,'CD53,'PTPRC','/COTL1',/CXCR4"'GMFG,'FCER1G,LAPTM5','SRGN','CD52'
Epithelial-specific gene markers =
'KRT7','PIGR','ELF3','CYB5A''KRT8','KRT19','TACSTD2''MUC1','S100A14','CXCL17"
Endothelial-specific gene markers =
'PTRF,'CLDN5'AQP1''PECAM1'NPDC1'VWF,GNG11,'RAMP2''CLEC14A'
Stroma-specific gene markers =

‘TPM2','DCN'MGP,'SPARC',CALD1'LUM" TAGLN','IGFBP7''COL1A2/'C1S

Supplementary Figure 3 | UMAP per patients for Normal samples.

Supplementary Figure 4 | A. Hematoxylin and Eosin staining of Normal and Tumor lung parenchyma
used for cell isolation. 100X magnification. B. Fraction of Epithelial (AEL/AE3) and Immune (CD45)
cellsidentified through immunohistochemical staining compared to Epithelial and Immune cells (level
1), obtained for the three experimental methods, i.e. Cell, Nucleus and Immune depleted cdll. C.
Number of macrophages (CD68) identified through immunohistochemical staining compared to the
most relevant cell type (Interstitial macrophage, level 4) for the Cell and Nucleus datasets. The Immune
depleted cell dataset was excluded because the number of macrophages was insufficient.

Supplementary Figure5 | UMAP per patients for Tumor samples

Supplementary Figure 6 | Silhouette index to evaluate the goodness of fit of the clustering. For
each cdl / nucleus, Silhouette Indices are calculated from the UM AP embeddings and the clusters
correspond to a specific cell type (level 3) annotations. Silhouette Index was significantly lower (less
structured clusters) for Tumor rather than Normal samples.

Supplementary Figure 7 | Annotation score (level 3) isnegatively correlated with CNV score.
Data points were binned (50 hexagonal binsin x-axis* 50 hexagonal binsin y-axis) to reduce
overplotting.

Supplementary Figure 8 | The percentage of epithelial cells classified as malignant for each patient in
Cell and Nucleus samples.
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849

850

851 Supplementary Figure 9 | DEGs (in turquoise) for Endothelial, Immune and Stroma cells with the
852  number of up-regulated and down-regulated genes.

853

854

855  Supplementary Figure 10 | Principal Component Analysis on the 39 marker genes used to

856  distinguish between Immune, Epithelial, Endothelial and Stroma cell types (see Fig. S2 legend for alist
857  of marker genesused). A. Marker genes loadings on the PCA (arrows colored by the cell type they are
858  used to define) match well with the reference-based annotation of the samples (colored points). B. No
859 biasinthe clustering of the samples based on the patient identity. C. Samples cluster according to the
860 method. Nucleus samples are closer to the center of the PCA, which implies that markers genes were
861 lessefficient in distinguishing between cell typesin these samples. D. In Principal Components 3 and 4,
862  Nucleus samples are separated by tissue type (Normal and Tumor).

863

864

865 Supplementary Figure 11 | Principal Component Analysison thetop 5 % most variable genes

866 (Normal tissue) for A. Immune cells B. Epithelial cells C. Endothelial cellsand D. Stroma cells. 95 %
867  confidence interval ellipses are drawn for each method based on all four patients.

868

869
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Supporting Information Tables

Supplementary Table 1 | Demographic and clinical characteristics of the four patients analysed.
Continuous variables are presented as mean + SD. Discrete variables are presented as n (%).

Supplementary Table 2 | Characteristics of the lung specimens and single cell/nucleus suspensions.

Supplementary Table 3 | Number of cells/nuclel identified at each hierarchical level (level 1-5. 61 cell
types defined by at the finest level by the HLCA). Thirty-five finest level cell types were recovered
with >100 cells (51 finest level cell typeswith at |east one cell identified). Here unclassified refers to
cellsg/nuclel which could not be assigned confidently to the specific annotation level (annotation score <
0.5).

Supplementary Table 4 | Differentially Expressed Genes (Normal Cell versus Normal Nucleus
samples)

Supplementary Table5 | Differentialy Expressed Genes (Normal Cell versus Tumor Cell samples)

Supplementary Table 6 | Differentially Expressed Genes (Normal Nucleus versus Tumor Nucleus
samples)

Supplementary Table 7 | Differentially Expressed Genes (Tumor Cell versus Tumor Nucleus
samples)

Supplementary Table 8 | Differentially Expressed Genes (Normal Cell versus Normal Nucleus
samples)

Supplementary Table 9 | Benchmarking sScRNA-seq and snRNA-seq methods in paired normal-
adenocarcinoma lung samples using the 10x Genomics® workflows

Supplementary Table 10 | 10X Genomics Cell Ranger software - QC metrics
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916 Figurel|Overview of the experimental design. For each patient (A), a Tumor specimen and a

917 Normal (non-malignant) lung specimen harvested from a site distant from the tumor were resected (B).
918 Theresearch specimens were immediately divided into smaller fragments. For both Normal and Tumor
919  lung specimens, afragment was frozen in liquid nitrogen and stored at -80°C until further processing
920 for snRNA-seq. For fresh specimens, the fragments proceeded directly to dissociation into single-cell
921  suspensions. A subsample of the dissociation mix underwent immune cell depletion (C). The final set
922  of samples (D) were then loaded in wells of the microfluidic chip (E) in order to generate the

923  transcriptome of approximately 10,000 cells or nuclei per sample (F). Dataset comparisons performed
924  with accompanying figures (G).
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Figure 2 | Overview of the 160,621 cellgnucle that passed quality control obtained from lung
Tumorsand distal Normal lung samples. A. Number of cells retained after quality control for each
patient, each experimental method (Cell, Nucleus, Immune-depleted cell) and tissue type (Normal,
Tumor). B. Mean number of genes per cell, per patient, method and tissue type. C. The fraction of
annotated cells for each of the five-level HLCA hierarchical cell annotation reference framework, per
method and tissue type.
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Figure 3| UMAP representationsand cell types annotations (Normal tissue) for Cell (A) and
Nucleus (B) datasets with general cell types (level 1) annotation. Finer-grained annotation (level 3) for
the subset of immune cells (C) or nuclel (D) and for the subset of epithelial cells (E) or nuclei (F). To
the right of each UMAP, stacked bar plots indicate the proportion of each cell typein the specific
dataset. Cell types present at < 1% are labelled as others.
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Figure4 | Cell types characteristics (Normal tissue). For each of the four coarse (level 1) cell types
annotation (Immune, Epithelial, Endothelial, Sroma) further refined into finer categories (level 3), the
fraction of cells (A: Cell dataset, D: Nucleus) and the number of cells (B: Cell, E: Nucleus) originating
from each patient. Box plots of the number of genes expressed per cell (C: Cell, F: Nucleus), with plot
center, box and whiskers corresponding to median, IQR and 1.5Cx JIQR, respectively. Note that only
cell types with > 20 cells were retained for clarity in this visual representation.
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Figure 6 | Cell types characteristics (Tumor tissue). For each of the four coarse (level 1) cell types
annotations (Immune, Epithelial, Endothelial, Sroma) and unclassified (unc), further refined into finer
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Figure 7 | Normal - tumor transition. A: For each specific (level 3) Epithelial or Immune cell type,
the fraction of cells they represent in the Tumor dataset divided by the fraction of cellsthey represent in
the Normal dataset (ratios above 1 represent an increase in the Tumor dataset), with plot center, box
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Figure 8 | Gene expression analyses per cell type. A: Correlation in pseudobulk (aggregated) gene
expression among datasets. On X-axisislog2 (gene expression) of first termintitle (e.g. Normal Cell
samples) compared to second term (e.g. Normal Nucleus samples) on y-axis B: Hierarchical clustering
of top 5% most variable genes for Cell and Nucleus samples. C: significant DEGs (adjusted p-value <
0.05) for epithelial cells (in turquoise) in the four comparisons with the number of up-regulated and
down-regulated genesin the first termin the title (e.g. Normal Cell). D: DEGs in common for Cell vs
Nucleusin Normal (A) and Tumor (B) and for Normal vs. Tumor in Cell (A) vs Nucleus (B) E: Top
five most significantly enriched gene ontology terms (Biological Process).
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Figure 9 | The ligand-receptor interactome. A: Scatter plots of ingoing and outgoing interactions per
tissue type and method for common cell types (see methods) among all comparisons. To the right are
the top 10 interacting pathways. B: An example of pathway common in Cell, rare in Nucleus (MHC-I)
with the contribution of the top10 ligand-receptor interacting genes (bar plot to theright). C: An
example of pathway rarein Cell, common in Nucleus (PTPRM) with the ligand-receptor interacting

gene (bar plot to the right).
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Figure 10 | UMAP representations and cell types annotations (Immune-depleted cell) for Normal
(A) and Tumor (B) tissue samples with general cell types (level 1) annotation. To the right of each
UMAP, stacked bar plotsindicate the proportion of each cell type in the specific dataset. Number of
cellsin the Normal (C) and Tumor (D) tissues, per patient. E: The percentage of cells expressing a
stress-related gene signature as a function of the experimental method and tissue type. F: Percentage of
sequencing reads (UMIs) assigned to mitochondrial genes as a function of tissue type and experimental
method for unfiltered raw data.
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