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Abstract 28 

Whether single-cell RNA-sequencing (scRNA-seq) captures the same biological information as single-29 

nucleus RNA-sequencing (snRNA-seq) remains uncertain and likely to be context-dependent. Herein, a 30 

head-to-head comparison was performed in matched normal-adenocarcinoma human lung samples to 31 

assess biological insights derived from scRNA-seq versus snRNA-seq and better understand the 32 

cellular transition that occurs from normal to tumoral tissue. Here, the transcriptome of 160,621 33 

cells/nuclei was obtained. In non-tumor lung, cell type proportions varied widely between scRNA-seq 34 

and snRNA-seq with a predominance of immune cells in the former (81.5%) and epithelial cells 35 

(69.9%) in the later. Similar results were observed in adenocarcinomas, in addition to an overall 36 

increase in cell type heterogeneity and a greater prevalence of copy number variants in cells of 37 

epithelial origin, which suggests malignant assignment. The cell type transition that occurs from 38 

normal lung tissue to adenocarcinoma was not always concordant whether cells or nuclei were 39 

examined. As expected, large differential expression of the whole-cell and nuclear transcriptome was 40 

observed, but cell-type specific changes of paired normal and tumor lung samples revealed a set of 41 

common genes in the cells and nuclei involved in cancer-related pathways. In addition, we showed that 42 

the ligand-receptor interactome landscape of lung adenocarcinoma was largely different whether cells 43 

or nuclei were evaluated. Immune cell depletion in fresh specimens partly mitigated the difference in 44 

cell type composition observed between cells and nuclei. However, the extra manipulations affected 45 

cell viability and amplified the transcriptional signatures associated with stress responses. In conclusion, 46 

research applications focussing on mapping the immune landscape of lung adenocarcinoma benefit 47 

from scRNA-seq in fresh samples, whereas snRNA-seq of frozen samples provide a low-cost 48 

alternative to profile more epithelial and cancer cells, and yield cell type proportions that more closely 49 

match tissue content. 50 

 51 
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Author Summary 54 

Single-cell transcriptomic datasets provide unprecedented opportunities to disentangle the 55 

complex tissue microenvironment and cellular origin of cancer. Data are scarce regarding the pros and 56 

cons of single-cell RNA sequencing (scRNA-seq) of freshly explanted human tissues over single-nuclei 57 

sequencing (snRNA-seq) from the same archived frozen tissues. Lung adenocarcinoma represents a 58 

medically valuable case study to compare the biological signal recovered through cells and nuclei 59 

sequencing. Here, we sequenced the transcriptome of 160,621 cells/nuclei in paired normal-60 

adenocarcinoma lung samples. Cell type proportions varied widely between scRNA-seq and snRNA-61 

seq with a predominance of immune cells in the former and epithelial cells in the later. 62 

Adenocarcinomas were characterized by an increase in cell type heterogeneity and a greater prevalence 63 

of malignant epithelial cells in both scRNA-seq and snRNA-seq. The cellular and gene expression 64 

transition that occur from normal lung to adenocarcinoma showed common and discordant biological 65 

insights whether cells or nuclei were examined. Research applications focussing on mapping the 66 

immune landscape of lung cancer benefit from scRNA-seq in fresh samples, whereas snRNA-seq of the 67 

same frozen samples provide a low-cost and more flexible alternative to profile more epithelial and 68 

cancer cells, and yield cell type proportions that more closely match tissue content. 69 

  70 
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Introduction 71 

Single-cell sequencing (scRNA-seq) has the ability to inspect the cellular heterogeneity of 72 

tissue and cancer with unprecedented details, and as such provides important insights into the cellular 73 

origin and cell-specific molecular defects that play a role in disease pathogenesis1–4. However, given 74 

the pace at which the field is evolving, uncertainties remain with respect to the design and analysis of 75 

single-cell transcriptomic datasets in order to gain the most from biological samples. Fresh 76 

biospecimens are generally prioritized for cell viability and greater yield of high-quality cells. For 77 

tissues, scRNA-seq requires disaggregating the tissue to release individual cells into a single-cell 78 

suspension. Differences in dissociation and sample preparation efficiency across cell types are known 79 

to affect RNA integrity and can skew cell type proportions. A well-known instance of dissociation bias 80 

is observed in human lung tissue, where dissociation of fresh tumor (biopsies or resected specimens) 81 

commonly results in a majority of immune cells being sequenced5–7. While the aforementioned cell-82 

type dissociation bias can be partly alleviated by enriching the epithelial cell fraction using EPCAM-83 

based cell sorting6, single cell preparation protocols may also affect cell viability and introduce 84 

transcriptional signatures associated with dissociation and stress responses6,8,9. 85 

Analyzing nuclei (single-nucleus sequencing or snRNA-seq) instead of cells has been proposed 86 

as an alternative for frozen samples and tissues that cannot be readily dissociated10,11. While cellular 87 

compositions recovered from scRNA-seq versus snRNA-seq can vary substantially12, the transition 88 

from cell to nucleus sequencing may help to reduce the dissociation bias and transcriptional stress 89 

responses, facilitate the study of difficult-to-dissociate tissues and cell types, and allow the assessment 90 

of large cells that cannot pass through microfluidics systems. At the same time, reference databases and 91 

cell type-specific gene markers, which are readily used to annotate unknown cell populations, have 92 

been largely built from scRNA-seq datasets4 and therefore may not be optimal for snRNA-seq. Cell 93 

types and gene expression differences between scRNA-seq and snRNA-seq have been observed in 94 
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mouse kidneys13,14 and brain15,16 as well as in human metastatic breast cancer and neuroblastoma12. 95 

Combining scRNA-seq and snRNA-seq technologies from matched samples has been shown to better 96 

capture cell heterogeneity and produce a more comprehensive cell map of healthy human liver17. 97 

However, head-to-head comparisons between scRNA-seq and snRNA-seq are still scarce and to the 98 

best of our knowledge, this direct comparison has never been evaluated in the context of patient-99 

matched normal lung and tumor tissues. 100 

Lung cancer is highly prevalent and the number one cause of cancer mortality. It thus represents 101 

a medically valuable case study to compare the biological signal recovered through cells and nuclei 102 

sequencing. A variety of experimental designs and samples have been evaluated by scRNA-seq in 103 

patients with lung cancer. This includes lung samples enriched (e.g. FACS-sorted) for immune cells18,19, 104 

lung tumor of mixed histological types2,7, and non-small cell lung cancer (NSCLC) samples before and 105 

after targeted therapy20 or immunotherapy21. More specifically in lung adenocarcinomas (LUAD), the 106 

most common histological subtype of lung cancer, which originates from epithelial cells that line the 107 

inside of the lungs, resected specimens or biopsies from two to eleven2,5–7,22 patients have been 108 

evaluated, but with a very limited number of paired normal-adenocarcinoma lung samples. Compared 109 

with normal lung samples, epithelial cells from lung adenocarcinomas were characterized by a 110 

depletion of alveolar cells (AT1 and AT2)2,6, lost cell identity and more cells annotated as mixed-111 

lineage5,23, higher transcriptome complexity and cell heterogeneity6,24, patient-specific cancer cell 112 

clusters20,25, transcriptional states associated with survival22,23, and AT2 cells dedifferentiated into a 113 

stem-like state24 or alveolar intermediary cells that could act as progenitors of KRAS-driven 114 

LUAD25.The shift in immune cells from normal to LUAD samples observed in previous studies were 115 

similarly informative. It unveiled an increase in B, plasma and T regulatory cells coupled with a decline 116 

in natural killer cells as well as reduced signatures of cytotoxicity in T cells, antigen presentation in 117 

macrophages, and inflammation in dendritic cells, which are all coherent features of an 118 
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immunosuppressive tumor microenvironment6,18. Finally, differentially enriched ligand-receptor 119 

interactions promoting tumorigenesis were also observed between LUADs and normal tissues6,22. 120 

Herein, specimens derived from the same patients were tested using both scRNA-seq in fresh 121 

tissues and snRNA-seq from flash frozen tissues using the 10x Genomics workflow. The biology 122 

captured by both methods was compared in the context of paired tumor-normal human lung samples 123 

explanted from patients that underwent surgery for lung adenocarcinoma. This study design revealed 124 

the cellular and molecular transitions that occur from normal lung to adenocarcinoma, and evaluated 125 

the commonality and discordance in the stemming biological insights gained from cells versus nuclei. 126 

In addition, we compared the same paired normal-adenocarcinoma human lung samples using an 127 

immune cell depletion protocol that alleviates the cell-type dissociation bias, with the aim of recovering 128 

a more representative biological signal. 129 

  130 
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Results 131 

Experimental Design 132 

Four patients, two tissue types (Normal/Tumor) and three experimental methods (scRNA-seq, 133 

snRNA-seq & immune-depleted scRNA-seq, hereafter labelled as Cell, Nucleus and Immune-depleted 134 

cell) were processed for a total of twenty-four samples. The experimental design is presented in Fig. 1. 135 

The four patients underwent lung cancer surgery with pathologically confirmed LUAD (Fig. 1A). The 136 

clinical characteristics of patients are detailed in Table S1. Both LUAD and normal lung specimens 137 

were obtained from each patient (Fig. 1B). Fresh tissues were immediately processed for scRNA-seq 138 

and adjacent samples were flashed frozen and stored at -80oC until further processing for snRNA-seq 139 

(Fig. 1C). The single cell suspensions dissociated from fresh tissues was also submitted to CD45+ 140 

immune depletion, leading to three cell suspensions per specimen and thus six per patient (Fig. 1D). 141 

The characteristics of samples and cell/nucleus suspensions are presented in Table S2. Single cell 142 

suspensions were converted to libraries using the 10x Genomics workflow (Fig. 1E) and sequenced on 143 

an Illumina NextSeq2000 aiming for ~10,000 cells or nuclei per sample (Fig. 1F). We partitioned the 144 

analysis by focusing on 1) normal lung tissues, 2) LUAD tissues, 3) paired normal-adenocarcinoma 145 

lung samples, and 4) immune-depleted samples (Fig. 1G). 146 

 147 

Overview of the dataset 148 

A total of 160,621 cells/nuclei passed quality control (53,286; 57,078 and 50,257 for Cell, 149 

Nucleus and Immune-depleted cell datasets respectively). Uniform manifold approximation and 150 

projections (UMAP) of all cells coloured by cell types, tissue types, experimental methods and patients 151 

are provided in Fig. S1. On average, we observed 6,692 cells per sample (6,661; 7,135 and 6,282 for 152 

Cell, Nucleus and Immune-depleted cell datasets respectively, Fig. 2A) and detected 2,216 genes per 153 
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cell (1,868; 2,309 and 2,473 genes for Cell, Nucleus and Immune-depleted-cell datasets respectively, 154 

Fig. 2B).  155 

From the 61 finest cell types annotations defined by Human Lung Cell Atlas (HLCA)4, 35 were 156 

present in the current dataset at a frequency of >100 cells and we were able to annotate confidently 157 

97.7% of cells at the coarsest level (immune, epithelial, endothelial, stroma, Fig. 2C, Table S3). This 158 

reference-based mapping and annotation approach is consistent with a marker-based approach for both 159 

the Cell and Nucleus datasets (Fig. S2). Nevertheless, cell type annotation scores were significantly 160 

lower (smaller fraction of annotated cells) in the Nucleus compared to the Cell dataset (two-way 161 

ANOVA, p-value < 2e-16), fine-level compared to high-level annotations (p-value < 2e-16) and Tumor 162 

compared to Normal tissue (p-value < 2e-16). 163 

 164 

Cell composition differs from Nucleus in Normal lung tissue. 165 

In Fig. 3, the UMAP visualisation showed that the Cell dataset from Normal lung tissue was 166 

largely dominated by immune cells, with 23,044 immune cells (81.5% of total, Fig. 3A). Conversely, 167 

the Nucleus dataset was dominated by epithelial cells, with 12,556 epithelial cells (69.9%, Fig. 3B). In 168 

addition, the Nucleus dataset contained a larger fraction of unclassified cells compared to the Cell 169 

dataset (7.3 % vs 0.1 %, Fisher Exact Test [FET], p-value < 2e-16). These results were consistent 170 

across individual patients (Fig. S3). 171 

As expected, on histologic evaluation, the proportions of epithelial and immune cells were 172 

consistent with the Nucleus, rather than the Cell dataset (Fig. S4A-B). 173 

To further refine the immune community of cells, we subsetted only the immune cells and 174 

labelled the plots with a finer level (level 3) annotation (Cell, Fig. 3C; Nucleus, Fig. 3D). We observed 175 

that the Cell dataset provided a better fine-grained classification as proportionally more cells could be 176 
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classified into specific cell types. To this effect, the Nucleus dataset contained a larger fraction of 177 

unclassified cells (41.7 % vs 0.7 %, FET, p-value < 2e-16).  178 

We repeated this subsetting approach for epithelial cells, given their primary role in the onset of 179 

lung adenocarcinoma. We observed that Cell samples form distinct clusters mainly composed of AT1, 180 

AT2 and multiciliated lineages (Fig. 3E). The Nucleus dataset, which had more than five times more 181 

epithelial cells than the Cell dataset (12,556 versus 2,264), contained similar cell types and mainly in 182 

similar proportions, except for a sizable fraction of unclassified cells that appeared largely scattered in 183 

the UMAPs (10.9 % unclassified in Nucleus versus 1.29 % in Cell, FET, p-value < 2e-16, Fig. 3F).  184 

In Fig. 4, we present, for each cell type (level 3 annotation), the fraction of cells originating 185 

from each patient (Fig. 4A), the number of cells (Fig. 4B) and the number of genes per cell (Fig. 4C). 186 

In Fig. 4D-F, we present the same information for the Nucleus dataset and this visualization confirmed 187 

that the Nucleus dataset has similar cellular composition, except for the over-representation of immune 188 

cells in the Cell dataset. Both in Cell and Nucleus datasets, epithelial cell types were dominated by AT1 189 

first and then AT2; endothelial cell types were dominated by capillary cells; and stromal cell types 190 

were dominated by fibroblasts. With respect to the number of genes (transcripts) per cell (Fig. 4 C, F), 191 

we observed many discordant patterns between Nucleus and Cell datasets, indicating that similar cell 192 

types presented different overall transcriptional signatures based on the experimental method. For 193 

example, in the Cell dataset, median numbers of genes per cell were low for monocytes (635), but high 194 

for T cells (1,709), and the pattern was in the opposite direction for the Nucleus dataset (Monocytes = 195 

2,729, T cells = 1,055). For their part, alveolar cells AT1 and AT2 contained 50% more genes 196 

expressed in the Cell dataset (AT1: 2,479 and AT2: 3,126) compared to the Nucleus (AT1: 1,639 and 197 

AT2: 2,004), and fibroblast two times as much (2,101 vs 1,061). 198 

 199 

scRNA and snRNA of LUAD 200 
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In Fig. 5A, the UMAPs showed that Cell sequencing samples from lung Tumor tissues were 201 

largely dominated by immune cell types (20,410 immune cells vs 5,764 in Nucleus dataset), while in 202 

Fig. 5B, the Nucleus dataset were dominated by epithelial cells (27,362 epithelial cells in Nucleus vs 203 

1,220 in Cell dataset). The predominance of immune cells in Cell and epithelial cells in Nucleus were 204 

observed across the four patients (Fig. S5). The Nucleus showing again a more accurate reflection of 205 

the real cellular composition of LUAD assessed by immunohistochemical staining (Fig. S4A-B).   206 

For both Cell and Nucleus datasets, cells appeared more scattered (i.e., more heterogeneous) in 207 

the Tumor compared to Normal lung (median silhouette index (Normal) = 0.69; median silhouette index 208 

(Tumor) = 0.53; two-way ANOVA, p-value < 2e-16, Fig. S6). This shows a suboptimal cell type 209 

assignment of Tumor samples to the described lung cell types from the HLCA reference. 210 

In Fig. 6, we present, for each level 3 annotation cell type, the fraction of cells from each 211 

patient (Fig. 6A), the number of cells (Fig. 6B), and the number of genes per cell (Fig. 6C). In Fig. 6D-212 

F, we present the same information for the Nucleus dataset. First, we observed, within a coarse level 213 

annotation, similar cell types and similar proportions in Cell and Nucleus datasets. For example, T cells 214 

largely dominated the immune cells, fibroblasts dominated the stroma cells and endothelial cell types 215 

were relatively rare. With respect to epithelial cells, these were mainly composed of unclassified and 216 

AT1 in both Cell and Nucleus datasets, and secretory epithelial cells appeared to be mainly segregated 217 

to patient 3. However, rare cell types were much more common in the Nucleus than the Cell datasets. 218 

 219 

The cellular transition to LUAD 220 

Given the known epithelial origin of lung adenocarcinoma and the role of the immune system in 221 

controlling the growth of carcinoma cells, we analysed the transition in the proportions of epithelial and 222 

immune cells from normal to adenocarcinoma tissue (Fig. 7A-B). AT1, AT2 decreased in relative 223 

abundance in adenocarcinomas, and this was consistent for the Cell and Nucleus datasets. On the 224 
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contrary, rare, secretory and unclassified epithelial cell types increased in abundance in 225 

adenocarcinoma tissue in a consistent manner between Cell and Nucleus datasets. For Immune cells, 226 

patterns were harder to interpret given the small number of immune cells in the Nucleus dataset. 227 

Nevertheless, an augmentation of B and T cell lineages in adenocarcinoma was typically found for both 228 

datasets, as well as a drop in natural killer cells in the Cell dataset, while a discordant pattern was 229 

observed in monocytes. For macrophages, no consistent pattern was found in the transition from 230 

Normal to Tumor. When analysing more specifically interstitial macrophages (level 4 annotation), we 231 

confirmed a consistent augmentation in Tumor samples in Cell and Nucleus that was corroborated by 232 

immunohistochemical staining (Fig. S4C). 233 

We defined a genome-wide summary CNV score that relies on gene expression levels to 234 

identify gene deletion and duplication and aneuploid epithelial cells26. This score was the highest for 235 

multiciliated lineage and rare epithelial cell types, and the lowest for AT2 cells in the Cell and Nucleus 236 

dataset (Fig. 7C). In addition, we also noted that annotation scores were negatively correlated with 237 

CNV scores for Cell (r2 = 0.11, p-value < 2e-16) and Nucleus (r2 = 0.05, p-value < 2e-16) datasets (Fig. 238 

S7). Finally, the inferred malignant classification of cells based on high CNV score and low annotation 239 

score demonstrated that the proportion of cancer cells in epithelial lineages was patient-specific and not 240 

always consistent between Cell and Nucleus (Fig. S8). 241 

 242 

Gene expression analyses 243 

Using a pseudobulk method, we showed that aggregated gene expression correlates well 244 

between methods within tissues (r = 0.84 and 0.86) and between tissues within methods (r = 0.90 and 245 

0.95, Fig. 8A). Then, we showed in a dendrogram based on nuclear and whole-cell transcriptome data 246 

that samples cluster first by method (Fig. 8B). The difference (DEGs) for epithelial cells between Cell 247 

vs. Nucleus in either Normal or Tumor (3,480 and 1,156 DEGs respectively, Fig. 8C) was greater than 248 
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between Normal vs. Tumor using the same method (321 and 947 DEGs respectively, Fig. 8C). For 249 

both comparisons (Cell vs. Nucleus & Normal vs. Tumor), there were more DEGs in common across 250 

methods and tissues than expected by chance (Fig. 8D, see Table S4-S7 for full list of DEGs). In 251 

addition, looking at the five most significant enriched Gene Ontology, we saw that between Cell and 252 

Nucleus, similar GO terms were found (Fig. 8E). These Biological Processes were related to mRNA 253 

translation, peptide biosynthesis and mitochondrial (aerobic) respiration. GO terms for the comparison 254 

Normal vs. Tumor were also partly concordant between Cell and Nucleus and all related to growth, 255 

development and migration (see Table S8 for other GO terms). DEGs for endothelial, immune and 256 

stromal cells are illustrated in Fig. S9. 257 

Then using a Principal Component Analysis on the 39 markers genes commonly used to 258 

distinguish between Immune, Epithelial, Endothelial and Stroma cell types (see Fig. S2 and Sikkema et 259 

al.4), we showed that these canonical markers genes used to distinguish cell types match well with the 260 

reference-based annotation of the samples (Fig. S10A). This confirms the validity of the reference-261 

based method we used to annotate our samples. In addition, we showed no bias in the clustering of the 262 

samples based on the patient identity (Fig. S10B). Instead, as we showed in Fig. S10B, samples cluster 263 

according to the method (Cell vs. Nucleus) first, and more subtlety based on the tissue effect (Normal 264 

vs. Tumor, Fig. S10C). Based on Principal Components 3 and 4, we can see that for Nucleus samples, 265 

there is a better separation of Normal and Tumor samples, compared to the Cell samples Fig. S10D), at 266 

least based on these 39 cell type markers genes. Finally, much like in the reference-based approach 267 

(Fig. 2), the markers genes were less efficient in distinguishing between cell types in the Nucleus 268 

samples (Fig. S10C). 269 

 270 

The ligand-receptor interactome differs between scRNA and snRNA 271 
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In Fig. 9A, we visualised the incoming and outcoming interactions among 319 ligand-receptor 272 

interactions (cell-cell contact) for the Cell-Normal dataset. The number of interactions between cell 273 

types varies first according to the Cell vs. Nucleus methods (two-way ANOVA, F = 90.7, p-value < 2e-274 

16) and then the Normal vs. Tumor tissue types (F = 68.2, p-value = 3.6e-16). In Fig. 9B, we show an 275 

example of a typical pathway common in Cell, rare in Nucleus (Major Histocompatibility Complex-I) 276 

and its interacting genes, which is more similar between Normal vs Tumor tissue of the same 277 

experimental method (Cell vs Nucleus). An example pathway, rare in Cell but common in Nucleus 278 

(Protein Tyrosine Phosphatase Receptor Type M) and its self interacting gene is presented in Fig. 9C. 279 

In this case, each network shows differences according to both the experimental method and tissue. 280 

 281 

The effect of immune depletion on Cell sequencing 282 

In order to diminish the impact of the enrichment in immune cells induced by the single-cell 283 

dissociation protocol, we performed immune depletion in Normal and Tumor single-cell suspensions. 284 

We confirmed that the Immune-depleted cell dataset was enriched in epithelial cells and depleted in 285 

immune cells (Fig. 10A-B). As such, both the Normal and Tumor tissues resemble the Nucleus dataset 286 

in the fact that they harbor a majority of epithelial cells (61.5% and 69.9% of total for the Immune-287 

depleted cell and Nucleus dataset, respectively), yet they differ given that Immune-depleted cell 288 

harbors proportionally more endothelial (17.8% vs 4%) and stromal (18.4% vs 7.9%) cell types, but 289 

less immune cells (1.3% vs 13.0%). In addition, Normal tissues were largely composed of epithelial 290 

AT1 and AT2, while Tumor tissues also harbored secretory, rare and unclassified cell types, much like 291 

the Nucleus dataset (Fig. 10C-D). Finally, as we observed for the non-depleted dataset, we saw an 292 

increase in the heterogeneity from Normal to Tumor datasets (median Silhouette index for each level 3 293 

cell type annotation: si (Normal) = 0.56, median si (Tumor) = 0.2, two-way ANOVA, p-value < 2e-16, Fig. 294 

S6). 295 
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Next, we conducted Principal Component Analyses for each cell type on a representative 296 

subsample (top 5% most variables) of genes (Normal tissue). Based on this, Immune-depleted-cell 297 

samples showed more variation between patients than Cell or Nucleus samples (Fig. S11A-D). In 298 

addition, especially for immune cells, their overall gene expression signal differed from Cell and 299 

Nucleus samples (Fig. S11A). Consequently, this implies that the remaining fraction of immune cells in 300 

Immune-depleted cell samples resemble the Nucleus samples. 301 

Finally, we downloaded a set of 512 heat shock and stress response genes that were previously 302 

identified as affected by the scRNA-seq method9. Ninety four percent (482 genes) of the genes in this 303 

core dataset were also present in our current dataset, with varying levels of expression. More 304 

specifically, the percentage of cells expressing these genes was dependent on the method (Fig. 10E, 305 

two-way ANOVA, p-value < 2e-16). The Immune-depleted cell dataset showed the highest expression 306 

of the stress response genes, whereas on average a cell from the Immune-depleted cell dataset 307 

expressed 21% of the 482 genes, compared to 11.0% and 6.9% for the Cell and Nucleus dataset, 308 

respectively. In addition, the proportions of cells expressing this core set of stress response genes were 309 

slightly, but significantly (p-value = 9.7e-8) higher in Tumor than in Normal tissues (12.4 % and 310 

11.5 %, respectively). In a similar manner, higher mitochondrial contamination is often considered a 311 

sign of lower cell quality or viability27 and we observed that the percentage of unique sequences 312 

(UMIs) assigned to mitochondrial genes in the raw data prior to any filtering was significantly higher 313 

(two-way ANOVA, p-value = 3.6e-5) in the Immune-depleted cell (mean = 15.2 %) and Cell (11.2 %) 314 

compared to the Nucleus (2.6 %) dataset, while the tissue type (p-value = 0.10) had no significant 315 

effect (Fig. 10F).  316 

 317 

 318 

  319 
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Discussion 320 

In this study we generated a dataset of 160,621 cells/nuclei showing commonalities and 321 

discordances in biological insights derived from single-cell and single-nucleus RNA-sequencing of 322 

paired normal-adenocarcinoma human lung specimens. A distinct portrait of cellular composition was 323 

observed per experimental methods that favors scRNA-seq of fresh samples to map the immune 324 

landscape of lung adenocarcinoma. On the other hand, snRNA-seq of frozen samples surpassed the 325 

relative merits of scRNA-seq to obtain a dataset with cell type proportion that match tissue content and 326 

to provide a more cost-effective approach for research applications necessitating a higher number of 327 

epithelial and cancer cells (see Table S9 for a summary of the benefits of each method). In these paired 328 

lung samples, we identified gene expression and cell type transitions from normal to tumoral tissue that 329 

were not always concordant whether cells or nuclei were examined. The most striking difference was 330 

the ligand-receptor interactions that varied more across methods (cells vs. nuclei) rather than tissue 331 

types (Normal vs. Tumor). Immune cell depletion partly alleviated some of the difference in cell type 332 

composition between cells and nuclei, but at the detriment of inducing a stress response and affecting 333 

the transcriptome biological signal. Finally, our analysis revealed that the recently proposed five-level 334 

hierarchical cell type annotation system by the Human Lung Cell Atlas4 will require customization for 335 

assigning cell types specifically for tumor and nuclei samples. 336 

Despite the fact that samples originated from the same patients’ specimens, scRNA-seq and 337 

snRNA-seq varied substantially in their recovered cellular compositions and transcriptional landscape, 338 

thus highlighting the considerable impact of methodology on biological inference. While it has been 339 

shown previously that cryopreservation of tissue sample (such as performed for snRNA-seq) results in 340 

a major loss of epithelial cell types and an underrepresentation of T, B, and NK lymphocytes in the 341 

single-nucleus libraries12,14, it is not necessarily apparent which experimental method is more 342 

biologically relevant. Slyper et al.12 have suggested to analyse both fresh and frozen tissue, but this is 343 
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often unrealistic in practice. For their part, Denisenko et al.14 indicated that the apparent discordance in 344 

the recovered cellular composition between scRNA and snRNA might be due to either an under-345 

representation of immune cells in snRNA, or an under-representation of other cell types in scRNA due 346 

to incomplete dissociation. Andrews et al.17 compared cells and nuclei of matched healthy human liver 347 

and concluded that cell-type frequencies were distorted in scRNA-seq. Early pioneering work in lung 348 

histology would suggest the latter, whereas cell staining and electron microscopy has revealed that the 349 

alveolar regions of normal human lungs are comprised mainly of epithelial, endothelial and interstitial 350 

cells, while immune cells (macrophages) comprised a small fraction (~5%) of all cells identified28. We 351 

corroborated this observation with H&E staining in our matched Normal and LUAD samples. We thus 352 

conclude that in the context of lung adenocarcinoma and patient-matched normal samples, snRNA-seq 353 

provides a dataset comprising cell populations more closely matching tissue content. 354 

We observed a decrease in cell viability in both depleted and non-depleted scRNA-seq, likely 355 

due to the longer sample preparation times at room temperature. While this could be partly alleviated 356 

by cold-activated proteases9, it favors snRNA-seq as a experimental protocol to preserve sample 357 

integrity. Although immune depletion works well for removing immune cells and therefore might draw 358 

a more accurate representation of the lung cellular composition that is closer to snRNA-seq, it requires 359 

extra laboratory manipulations and has the adverse effect of affecting both cell viability (Fig. 10F) and 360 

inducing a dissociation transcriptional stress response (Fig. 10E), as shown previously13. 361 

The reference-based annotation used here provides an attractive alternative to unsupervised 362 

analysis29. We annotated the large majority of cells/nuclei in all tissue types, methods and patients (Fig. 363 

2, Fig. S1) while showing that it performed as well as a marker-based approach, at least at the coarsest 364 

annotation level (Fig. S2, Fig S1A). In their recent work comparing patient-matched lung 365 

adenocarcinoma samples, Trinks and colleagues used a similar statistical approach to annotate their 366 

snRNA-seq samples30. Arguably, the confidence in this reference-based annotation approach depends 367 
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on several factors. Notably, the comprehensiveness of the reference, the quality and type of query data 368 

and the level of cellular granularity required to answer the biological question of interest will dictate 369 

the best approach to use. Nevertheless, an unsupervised-marker based approach also depends on 370 

several factors such as the clustering algorithm, the gene markers used, and almost always, the 371 

expertise and subjectivity of the person annotating the dataset31,32. Here, annotation and mapping were 372 

done using the same analytical framework for all samples and therefore provided an objective overview 373 

of the transcriptional cellular landscape. Fortunately, we were able to use a recently published 374 

comprehensive atlas of the lung (HLCA)4, although such thorough cell atlases might not exist for all 375 

tissue types, biological conditions and demographic states33. The lower annotation scores observed in 376 

Nucleus and Tumor samples and consequently the greater number of unclassified cells, especially at 377 

the finer annotation levels suggest that these cells or nuclei have a distinct signature from the current 378 

reference cell type, much like we saw when conducting Principal Component Analysis of gene 379 

expression markers. A comparable phenomenon was also observed in the HLCA for different disease 380 

states4 and the authors concluded that the HLCA must be viewed as a live resource that will require 381 

continuous updates in the future, including samples of diverse ethnic, clinical and experimental (e.g. 382 

snRNA-seq) backgrounds. 383 

During the transition from normal to tumoral tissue, we identified a drop in AT1, AT2 and NK 384 

cells, concurrently with a rise in immune B and T cells, as previously identified2,6,18. In addition, 385 

tumoral cells showed an increased transcriptomic heterogeneity and a greater prevalence of copy 386 

number variants in epithelial cells. Similarly, it has been described that NSCLC exhibit important 387 

interpatient histologic heterogeneity and inferred origin of tumor cells34. Here, we showed that 388 

epithelial multiciliated lineages and rare cell types had higher Copy Number Variants scores than other 389 

epithelial cell types, and the classification of cell malignancy confirmed patient-specific perturbations 390 

as previously reported22. Yet, the distinction between these epithelial cells is not always straightforward, 391 
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especially in a context of oncogenesis. Along those lines, we noted that annotation scores were 392 

negatively correlated with CNV scores which implies that cells with high CNV (likely carcinoma cells) 393 

loose their cellular identity and become harder to classify as distinct lung cell types. During the 394 

construction of the HLCA, Sikkema et al.4 also noted that a significant fraction of cells from 395 

adenocarcinomas did not cluster into the specific fine level cell types. Similarly, Wang et al.24 argued 396 

that cancer cells originate from ‘AT2-like’ cells, but also nuanced this fact and stated that these form a 397 

distinct cluster from regular AT2 cells and have a transcriptional profile closely resembling other 398 

epithelial cells. Again, a more refined and thorough reference database will help to solve these 399 

questions. 400 

Using a pseudobulk method, we showed better correlation of gene expression between cells and 401 

nuclei than previously reported RNA sequencing comparing isolated cells and nuclei (r between 0.53-402 

0.74 by Barthelson and colleagues35), potentially because of our matched experimental design and 403 

improvements in single cell/nucleus sequencing in recent years. While we saw a large number of DEGs 404 

between cells and nuclei, there is also a lot of concordance in the DEGs identified in Normal and 405 

Tumor tissues. Previous studies reported that genes related to essential cell processes, taking place 406 

outside of the nucleus, such as ribosome- and mitochondrial-related genes, differ in expression between 407 

Single-Cell and Single-Nucleus sequencing16,35. Interestingly, there is also concordance in GO terms 408 

when comparing Normal and Tumor samples in Cell or Nucleus sequencing, but these processes have 409 

to do more with cell motility, migration and development. 410 

This study has methodological implications as the literature and data comparing scRNA and 411 

snRNA are still scarce. Previous studies have compared scRNA and snRNA methods, but data from the 412 

same specimens were not necessarily available11–13. Head-to-head comparisons with the same 413 

specimens were performed using different platforms in mouse brain15,16 and with 10x Genomics in 414 

mouse kidney14. In humans, we are only aware of one 10x study comparing matched scRNA and 415 
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snRNA from human liver17. In the current study, we have both single-cell and single-nucleus on both 416 

normal lung and adenocarcinoma samples for all four patients and on the same platform (10x 417 

Genomics). Samples were resected in the same hospital and sequenced by the same laboratory. We thus 418 

have a unique and much-needed dataset to study the difference between single-cell and single-nucleus 419 

RNA-seq. By sharing our data with the scientific community, we aim to stimulate further comparisons 420 

between scRNA and snRNA, and allow others to build on our results. 421 

Ultimately, we hope to develop a comprehensive transcriptional resource for the identification 422 

of cell-targeted biomarkers and therapeutic targets to treat and prevent LUAD and other ailing aspects 423 

of the lung. Accordingly, this study may have clinical significance as immunotherapy is currently 424 

revolutionizing the treatment of lung cancer. Response to immune checkpoint inhibitors relies on the 425 

existing cell-cell interactions between tumor and T cells (e.g., commercial immunotherapy drugs 426 

targeting the interaction between PD-1 in tumor cells and PD-L1 in T cells)36 and identifying accurate 427 

biomarkers of response to immunotherapy is a major challenge in the field of lung cancer37. 428 

Consequently, this seems like a clinical problem where single-cell genomics can provide a solution. 429 

However, here we demonstrated that the ligand-receptor interactome landscape of lung 430 

adenocarcinoma is largely different whether cells or nuclei are evaluated. This may lead to conflicting 431 

prediction response to these novel immunotherapy agents. Accordingly, at least in the context of lung 432 

cancer, the choice between scRNA-seq and snRNA-seq has important implications. Our results favor 433 

scRNA-seq on fresh samples to provide a more comprehensive portray and granularity of the immune 434 

cells diversity. This is consistent with the recommendation of using scRNA-seq to investigate immune 435 

populations in the human liver17. On the other hand, scRNA-seq may not be representative of the true 436 

cellular community, and lead to fewer difficult-to-dissociate tumor cells to assess relevant tumor-437 

immune interactions. More studies will be needed to assess the best methods as well as to overcome 438 

other barriers to move single-cell genomics into the clinical setting38. 439 

440 
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Materials and methods 441 

Patients and samples  442 

Lung samples were collected from four patients that underwent curative intent primary lung 443 

cancer surgery at the Institut universitaire de cardiologie et de pneumologie de Québec – Université 444 

Laval (IUCPQ-UL) in 2021-2023, henceforth referred to patient 1, 2, 3 and 4. The four patients were 445 

self-reported white French Canadian (European ancestry) with no prior chemotherapy and/or radiation 446 

therapy, and all patients were between the age of 59 and 69, former smokers with adenocarcinomas 447 

(See Fig. 1 for overview of experimental design, and Table S1 for detailed clinical characteristics of 448 

patients). 449 

Following surgery, the explanted lobes were immediately transferred to the pathology 450 

department. For each patient, two �1 cm3 fresh Tumor samples and two �1 cm3 non-tumor (Normal) 451 

lung samples located distant from the tumor were harvested. The first set of tumor/non-tumor samples 452 

was transferred in dedicated tubes containing ice-cold RPMI (ThermoFisher, Cat. 11875093) for 453 

immediate cell dissociation and single-cell RNA sequencing (scRNA-seq) experiment. The second set 454 

of tumor/non-tumor samples was transferred in dedicated tubes, immediately snap-frozen in liquid 455 

nitrogen and stored at -80°C until the day of the single-nucleus RNA sequencing (snRNA-seq) 456 

experiment. Lung tissue samples were obtained in accordance with the Institutional Review Board 457 

guidelines. All patients provided written informed consent, and the ethics committee of the IUCPQ-UL 458 

approved the study. 459 

 460 

Histologic evaluation 461 

A thoracic pathologist (P.J.) reviewed each tumor and non-tumor hematoxylin and eosin (H&E) 462 

histology slides to confirm the presence/absence of tumor. Sections of 4.0 μm thick were cut from the 463 

selected blocks on a microtome and placed on charged slides. The following antibodies were used for 464 
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IHC experiments: cytokeratin (monoclonal, clone AE1/AE3; Dako Agilent Technologies, Santa Clara, 465 

CA, USA), CD45 (monoclonal, clone DB11; Dako Agilent Technologies) and CD68 (monoclonal, 466 

clone PG-M1; Dako Agilent Technologies). All slides underwent heat-induced epitope retrieval in a 467 

Dako PT-Link using EnVision FLEX Target Retrieval Solution, high pH (9) Tris/EDTA buffer (Dako, 468 

Agilent Technologies), followed by an automatized IHC protocol on Dako Autostainer Link 48, using 469 

the EnVision FLEX+ kit reagents. 470 

All H&E and IHC slides were digitized at 20X magnification with a slide scanner 471 

(NanoZoomer 2.0-HT; Hamamatsu, Bridgewater, NJ, USA). Slides visualization, cell segmentation and 472 

quantification were performed using QuPath (Version 0.5.1; The Queen's University of Belfast, 473 

Northern Ireland). Three different zones representing at least 50% of the whole surface area of the 474 

tissue were selected and analyzed. The numbers of positive cells were determined using the automated 475 

cell detection tool and then visually validated by a pathologist (P.J.) for each marker. 476 

 477 

Sample preparation for scRNA-seq 478 

Immediately after collection, the weight of each sample was recorded. Samples were transferred 479 

to 6-well cell culture plates, washed twice with 3 mL ice-cold PBS (Thermo Fisher, cat. 10010023) to 480 

remove excess blood and transferred to a 5 mL glass beaker. Using a 1 mL syringe and 25G needle, 481 

300 µL of Enzyme dissociation mix was injected in the tissue followed by mechanical mincing into 482 

small fragments (<1 mm³) using spring scissors for 2 minutes. Samples were then transferred to 50 mL 483 

Falcon tubes containing 5,7 mL of Enzyme dissociation mix and pipette mixed 5 times using wide bore 484 

1 mL tips. The enzymatic digestion was performed at 37°C, using a Vari-Mix test tube rocker at max 485 

speed for 35 minutes. Samples were pipette mixed 20 times after 15 and 30 minutes using wide bore 1 486 

mL tips. Enzyme dissociation mix contained: Pronase 1250 µg/mL (Sigma Aldrich, cat. 10165921001), 487 

Elastase 18.4 µg/ml (Worthington Biochemical, cat. LS006363), DNase I 100 µg/mL (Sigma Aldrich, 488 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2024. ; https://doi.org/10.1101/2024.02.20.581199doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.20.581199
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

cat. 11284932001), Dispase 100 µg/mL (Worthington Biochemical, cat. LS02100), Collagenase A 489 

1500 µg/mL (Sigma Aldrich, cat.10103578001) and Collagenase IV 100 µg/mL (Worthington 490 

Biochemical, cat. LS 004186) in HBSS (Thermo Fisher, cat. 14170112). Enzymatic digestion was 491 

stopped by adding 1.5 mL of fetal bovine serum (FBS, ThermoFisher, cat. A3840301) followed by 492 

pipette mix 5 times using wide bore 1 mL tips. Dissociated cells were filtered through a 70 µm strainer 493 

and washed with 7.5 mL ice-cold PBS. Cells were then pelleted at 400g, 4°C for five minutes and 494 

supernatant was removed. Three cycles of red blood cells removal were performed as follow: cell pellet 495 

resuspended by manual agitation in 500 µL of ACK Lysis Buffer (ThermoFisher, cat. A1049201) and 496 

incubated on ice one minute. One mL of ice-cold PBS was added and cells were centrifuged at 400g, 497 

4°C for two minutes and the supernatant was removed. The final pellet was resuspended in 500 µL ice-498 

cold-PBS containing 0.04% Bovine Serum Albumin (BSA, Sigma Aldrich Cat. A7284) and 10% FBS. 499 

Cell suspensions were successively passed through 100 µm, 70 µm and 40 µm strainer using quick spin 500 

to reach 400g to filtrate each sample. Samples were transferred to 2.0 mL low binding tubes and kept at 501 

4°C. Cell count and viability were performed using a 1:1 mix of cell suspension, Trypan blue 502 

(ThermoFisher, cat. 15250061), haemocytometer and conventional light microscopy. Cells suspensions 503 

meeting the following criteria were accepted for scRNA-seq library preparation: absence of aggregated 504 

cells, a viability >80%, and a total cell count between 400 and 1200 cells/µL. 1x105 cells were 505 

transferred to a low binding 2 mL tube and kept at 4°C (non-depleted fraction). The remaining cells 506 

(from 2 to 5 x106 cells) were submitted to CD45+ immune cell depletion protocol (single cells depleted 507 

fraction) as described below. The characteristics of the lung specimen and the single cell suspension for 508 

each sample are given in Table S2. 509 

 510 

CD45+ immune cell depletion 511 
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Cells (from 2 to 5 x106 cells) were centrifuged at 300g, 4°C, 10 minutes. The supernatant was 512 

removed and the cell pellet was resuspended in 80 µL MACS buffer (0.5% BSA, 2 mM EDTA pH 8.0 513 

in PBS) previously degassed for 1 hour at room temperature. Twenty µL of CD45 microbeads 514 

(Miltenyi Cat. 130-045-801) were added and sample was incubated 15 minutes at 4°C followed by 515 

addition of 1 mL MACS buffer and centrifugation 300g, 10 minutes at room temperature. Supernatant 516 

was removed and pellet resuspended in 2-steps 100 µL + 400 µL MACS buffer. The total volume (500 517 

µL) was applied to a LS Positive Selection Column (Miltenyi Cat. 130-042-401) previously rinsed with 518 

3 mL MACS buffer and installed on a MidiMACS magnetic Separator with a collection tube. Column 519 

was rinsed with 3 X 3 mL MACS buffer and all volumes (9.5 mL) were collected which contained the 520 

CD45-negative fraction. CD45-negative cells were centrifuged 300g, 10 minutes at room temperature 521 

followed by supernatant removal. Cells were washed twice with 1 mL PBS followed by centrifugation 522 

at 300g, 10 minutes after each wash. Cells were finally resuspended in 100 µL BSA 0.04%, 10% FBS 523 

in PBS and kept at 4°C. Cell count and viability were performed using a 1:1 mix of cell suspension, 524 

Trypan blue, haemocytometer and conventional light microscopy. Cells suspensions meeting the 525 

following criteria were accepted for scRNA-seq library preparation: absence of aggregated cells, a 526 

viability >80%, and a total cell count between 400 and 1200 cells/µL. 527 

 528 

Sample preparation for snRNA-seq 529 

Nuclei suspension was prepared from ~30 mg snap frozen tissue using Chromium Nuclei 530 

Isolation Kit as per manufacturer’s protocol (10x Genomics Cat. 1000494). Nuclei count and integrity 531 

were performed using a 1:1 mix of nuclei suspension and methylene blue 0.25% (Ricca Chemical, Cat. 532 

48504), haemocytometer and conventional light microscopy. Nuclei suspensions meeting the following 533 

criteria were accepted for snRNA-seq library preparation: absence of aggregated nuclei, nuclei with 534 

circular shape and intact membrane (without blebbing) >80%, and a total nucleus count between 400 535 
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and 1200 nuclei/µL. Nuclei suspensions were kept at 4°C until proceeding with 10x Genomics snRNA-536 

Seq library preparation protocol. 537 

 538 

10x Genomics sn/scRNA-seq library preparation 539 

For each sample, approximatively 15,000 nuclei or cells were loaded into each channel of a 540 

Chromium Next Gel Beads-in-emulsion (GEM) Chip G (10x Genomics Cat. 1000127) as per 541 

manufacturer’s instruction for GEM generation and barcoding. Given the cell capture efficiency of 542 

around 65%, 10,000 cells per library were therefore expected. The Chip was run on the Chromium 543 

Controller, GEMs were aspirated and transferred to a strip tube for cDNA synthesis, cDNA 544 

amplification and library construction using Chromium Next GEM single-cell 3’ Library Kit v3.1 (10x 545 

Genomics Cat. 1000128) and Single Index Kit T Set A (10x Genomics Cat. 2000240) as per 546 

manufacturer’s instruction. The library average fragment size and quantification was performed using 547 

Agilent Bioanalyzer High Sensitivity DNA kit (Agilent Cat. 5067-4626) and a final concentration 548 

determination was performed using NEBNext Library Quant Kit for Illumina (New England Biolabs 549 

Cat. E7630) prior to library sequencing. 550 

 551 

Next generation sequencing 552 

Libraries were individually diluted to 10 nM, pooled and sequenced on an Illumina 553 

NextSeq2000 system following manufacturer’s recommendations. Sequencing was realized on a P3 554 

(100 cycles) cartridge, aiming for 200 to 500 million reads per library (sample). Run parameters for 555 

paired-end sequencing were as follow: read 1, 28 nucleotides; read 2, 91 nucleotides; index 1, 8 556 

nucleotides; and index 2, 0 nucleotide. 557 

 558 

Single cell/nucleus data preparation 559 
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Demultiplexing, alignment and transcript counting was performed using the Cellranger 560 

software (v7.1.0, 10x Genomics) on our local server (Lenovo ThinkSystem SR650, 40 cores and 561 

384GB RAM). The BCL files from the Illumina sequencing run were first demultiplexed into FASTQ 562 

files using the cellranger mkfastq command. Read alignment and UMI counting were then executed 563 

with the cellranger count command (see alignment and cell statistics in Table S10). We used GRCh38 564 

as the reference transcriptome available on Gencode, release 43 (GRCh38.p13).  565 

 566 

Data quality control 567 

The most up-to-date bioinformatics procedure defined by the R (v4.3.3)40 library Seurat 568 

(v5.0.2)27 was used to create an object for each sample and calculate values for nCount (number of 569 

Unique Molecular Identifiers [UMI] per cell), nFeatures (number of genes expressed per cell) and 570 

percent.mt (fraction of UMIs aligning to mitochondrial genes) parameters. Using the R library scuttle 571 

(v1.10.1)41, we determined outlier values for nCount, nFeatures and percent.mt based on the median 572 

absolute deviation and sub-set each sample accordingly. Note that for the percent.mt parameter, if 573 

necessary, we further capped this outlier value at twenty-five percent per sample. 574 

For each sample, we then performed normalization and variance stabilization using the function 575 

SCTransform, which also has the benefit to regress out the percent.mt effect from the underlying count 576 

data. Then, using the R library DoubletFinder (v2.0.3)42, we identified and removed doublets 577 

(assuming a five percent doublet rate), which occur when multiple cells are captured into a single oil 578 

droplet during the GEM generation.  579 

 580 

Reference-based cell type annotation and mapping  581 

On each of these curated samples, cellular annotation was performed using the R library 582 

Azimuth (v0.4.6)29 and the most recent version of the Human Lung Cancer Atlas (HLCA v2)4. Note 583 
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that in the subsequent methodology, cell annotation refers to the annotation of a uniquely barcoded 584 

GEM sample stemming from either a scRNA-seq or a snRNA-seq dataset. 585 

The HLCA is a comprehensive and curated reference dataset constructed using a diverse set of 586 

107 healthy lung samples (584,444 cells) and which allows to identify the transcriptional signature of 587 

61 hierarchical cell types, from the coarsest possible annotations (level 1: Immune, Epithelial, 588 

Endothelial and Stroma), recursively broken down into finer levels (levels 2-5). In addition, this 589 

reference-based mapping approach allows to robustly and sensitively compare samples of broad 590 

cellular compositions, while also identifying specific and rare cell populations27,29,43 591 

Specifically, for each sample (query), the algorithmic approach first identifies anchors between 592 

the reference and query (that is, pairs of cells from each dataset that are contained within each other's 593 

neighborhoods) and uses these anchors to integrate the query dataset onto the reference. Then, the 594 

embeddings of the query data onto the reference Principal Components (50 PCs) are calculated and 595 

visualised directly onto the reference two-dimensional Uniform Manifold Approximation and 596 

Projection (UMAP). Finally, annotation scores [0:1], which reflect the confidence in the annotation, 597 

were used to label cell types, whereas cells with annotation scores < 0.5 were labelled as unclassified. 598 

 599 

Copy number variations analysis 600 

For each patient, we performed an analysis of Copy-Number Variants (CNVs) in order to 601 

identify epithelial aneuploid cells based on the premise that gene CNVs can be identified using the 602 

difference between the mean log expression level of non-cancerous reference cells (here epithelial cells 603 

in the Normal tissue, either in Cell or Nucleus sequencing) and the log gene expression level of an 604 

epithelial cell of interest in the Tumor tissue. This was performed using the R library infercnv 605 

(v1.17.0)26 and a general index (CNV score) for each cell was defined as the mean sum of square of 606 

scaled [-1;+1] standardized log fold-change values. Finally, we classified cells as malignant based on 607 
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the integration of several parameters, as typically performed22,25. Cells of epithelial origin, with a high 608 

CNV score (top quintile), and a cell type annotation score in the bottom quintile (malignant cells are 609 

typically more difficult to annotate due to the reprogramming of the lung adenocarcinoma 610 

transcriptome) were labelled as malignant. Consequently, this allowed an objective comparison of the 611 

malignant cells between methods and patients. 612 

 613 

Biological dataset comparisons 614 

We integrated twenty-four samples into six different datasets (Cell-Normal, Nucleus-Normal, 615 

Cell-Tumor, Nucleus-Tumor, Immune-depleted cell-Normal, Immune-depleted cell-Tumor), in order to 616 

quantify biological similarities and differences among datasets (see Fig. 1D-G for summary of 617 

comparisons and accompanying figures). Given that the same reference dimensionality reduction 618 

(PCA) and visualisation space (UMAP) was used for each sample, we could simply merge expression 619 

data, metadata and projections into objects that account for technical variation among sample in order 620 

to quantify patterns. For each individual cell, we also calculated a Silhouette index44 to evaluate the 621 

goodness of fit of the clustering, whereas the index is calculated from the UMAP embeddings and the 622 

clusters correspond to specific cell type (level 3) annotations. We then tested the effect of the 623 

experimental method and tissue type on the Silhouette index using a two-way Analysis of Variance 624 

(ANOVA). 625 

 626 

Gene expression analyses 627 

Differentially expressed genes (DEGs) were identified using a pseudobulk approach, which has 628 

been shown to outperform other single-cell differential expression methods 45. In this case, it first 629 

consists of aggregating (i.e. summing up) counts by cell type (epithelial, endothelial, immune and 630 
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stroma) and quantifying the expression levels per gene but with respect to cell type, patient, tissue and 631 

method.  632 

We then performed hierarchical clustering (Ward distance) on a subset of the top 5% most 633 

variable genes to illustrate the transcriptome wide effects of the methods and tissues. We quantified the 634 

total number of differently expressed genes (DEGs) per cell type, tissue and method using a negative 635 

binomial distribution (DESeq2 R Package, v 1.40.2)46. Specifically, we looked at the number of DEGs 636 

in common between methods of the same tissue and between tissues of the same method, to see how 637 

concordant they were compared to a null expectation (i.e. [number of DEGs in comparison A / number 638 

of genes in comparison A] * [number of DEGs in comparison B / number of genes in comparison B] X 639 

total number of genes). Finally, we performed enrichment analyses (Gene Ontology Biological 640 

Process) using the R package topGO47 (v 2.52.0) to look at concordance in functional terms among 641 

DEGs. 642 

In addition, we performed a principal component analyses (PCA) with the R library 643 

FactoMineR (v2.10)48 of the normalized summed counts using the 39 markers genes typically used to 644 

distinguish the four major cell types (endothelial, epithelial, immune, stroma, see also Fig. S2 for the 645 

list of markers genes from Sikkema et al. 20234). As such, each sample (four patients X two methods X 646 

two tissues) is represented by four data points based on its summed cell type specific component. 647 

 We also conducted PCA on the top 5% most variable genes in order to look at the clustering of 648 

Cell, Nucleus and Immune-depleted cells samples based on an overall gene expression signal for each 649 

coarse level 1 cell types. 650 

 651 

Ligand-receptor analysis 652 

In order to infer and visualise the intercellular communication among cell populations, we used 653 

the R library cellchat (v 1.6.1)49. We quantified the cell-cell interaction pathways in Normal and Tumor 654 
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tissues (Cell and Nucleus dataset) to describe the cellular transition during oncogenesis and quantify 655 

how the experimental method and tissue type affected the results. We limited this analysis to level 3 656 

annotation and excluded infrequent cell types (<500 cells in total) and cells that were unclassified at the 657 

level 3 annotation. We quantified the number of interactions from and to each cell type and tested the 658 

effect of the experimental method and tissue type using a two-way ANOVA. 659 

 660 

Stress-related genes  661 

To quantify the effect of our Cell, Nucleus and Immune depleted cell experimental methods on 662 

the overall stress responses of the cell populations, we analysed the expression pattern of a core set of 663 

512 heat shock and stress response genes that were previously identified to be affected by the scRNA-664 

seq sample preparation method9. We quantified the proportions of cells that expressed these genes for 665 

each sample and tested the effect of the experimental method, tissue type and patient using a two-way 666 

ANOVA. 667 

  668 
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 803 

Supporting Information Figures  804 

Supplementary Figure 1 | UMAP visualization of all 160,621 cells / nuclei that passed quality control 805 
per level 3 annotation (A), tissue type (B), experimental method (C) and patient (D). 806 
 807 
 808 
Supplementary Figure 2 | UMAPs for the Cell (A) and Nucleus (F) dataset with coarse level 809 
annotations and feature plots according to average expression level of the gene markers defined for 810 
each cell type by HLCA (see below), in Cell (B-E) and Nucleus (G-J).  811 
Immune-specific gene markers = 812 
'LCP1','CD53','PTPRC','COTL1','CXCR4','GMFG','FCER1G','LAPTM5','SRGN','CD52' 813 
Epithelial-specific gene markers = 814 
'KRT7','PIGR','ELF3','CYB5A','KRT8','KRT19','TACSTD2','MUC1','S100A14','CXCL17' 815 
Endothelial-specific gene markers = 816 
'PTRF','CLDN5','AQP1','PECAM1','NPDC1','VWF','GNG11','RAMP2','CLEC14A' 817 
Stroma-specific gene markers = 818 
'TPM2','DCN','MGP','SPARC','CALD1','LUM','TAGLN','IGFBP7','COL1A2','C1S' 819 
 820 
 821 
Supplementary Figure 3 | UMAP per patients for Normal samples. 822 
 823 
 824 
Supplementary Figure 4 | A. Hematoxylin and Eosin staining of Normal and Tumor lung parenchyma 825 
used for cell isolation. 100X magnification. B. Fraction of Epithelial (AE1/AE3) and Immune (CD45) 826 
cells identified through immunohistochemical staining compared to Epithelial and Immune cells (level 827 
1), obtained for the three experimental methods, i.e. Cell, Nucleus and Immune depleted cell. C. 828 
Number of macrophages (CD68) identified through immunohistochemical staining compared to the 829 
most relevant cell type (Interstitial macrophage, level 4) for the Cell and Nucleus datasets. The Immune 830 
depleted cell dataset was excluded because the number of macrophages was insufficient. 831 
 832 
 833 
Supplementary Figure 5 | UMAP per patients for Tumor samples 834 
 835 
 836 
Supplementary Figure 6 | Silhouette index to evaluate the goodness of fit of the clustering. For 837 
each cell / nucleus, Silhouette Indices are calculated from the UMAP embeddings and the clusters 838 
correspond to a specific cell type (level 3) annotations. Silhouette Index was significantly lower (less 839 
structured clusters) for Tumor rather than Normal samples. 840 
 841 
 842 
Supplementary Figure 7 | Annotation score (level 3) is negatively correlated with CNV score. 843 
Data points were binned (50 hexagonal bins in x-axis * 50 hexagonal bins in y-axis) to reduce 844 
overplotting. 845 
 846 
Supplementary Figure 8 | The percentage of epithelial cells classified as malignant for each patient in 847 
Cell and Nucleus samples. 848 
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 849 
 850 
Supplementary Figure 9 | DEGs (in turquoise) for Endothelial, Immune and Stroma cells with the 851 
number of up-regulated and down-regulated genes. 852 
 853 
 854 
Supplementary Figure 10 | Principal Component Analysis on the 39 marker genes used to 855 
distinguish between Immune, Epithelial, Endothelial and Stroma cell types (see Fig. S2 legend for a list 856 
of marker genes used). A. Marker genes loadings on the PCA (arrows colored by the cell type they are 857 
used to define) match well with the reference-based annotation of the samples (colored points). B. No 858 
bias in the clustering of the samples based on the patient identity. C. Samples cluster according to the 859 
method. Nucleus samples are closer to the center of the PCA, which implies that markers genes were 860 
less efficient in distinguishing between cell types in these samples. D. In Principal Components 3 and 4, 861 
Nucleus samples are separated by tissue type (Normal and Tumor). 862 
 863 
 864 
Supplementary Figure 11 | Principal Component Analysis on the top 5 % most variable genes 865 
(Normal tissue) for A. Immune cells B. Epithelial cells C. Endothelial cells and D. Stroma cells. 95 % 866 
confidence interval ellipses are drawn for each method based on all four patients.  867 
 868 
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Supporting Information Tables  870 

Supplementary Table 1 | Demographic and clinical characteristics of the four patients analysed. 871 
Continuous variables are presented as mean ± SD. Discrete variables are presented as n (%). 872 
 873 
 874 
Supplementary Table 2 | Characteristics of the lung specimens and single cell/nucleus suspensions. 875 
 876 
 877 
Supplementary Table 3 | Number of cells/nuclei identified at each hierarchical level (level 1-5. 61 cell 878 
types defined by at the finest level by the HLCA). Thirty-five finest level cell types were recovered 879 
with >100 cells (51 finest level cell types with at least one cell identified). Here unclassified refers to 880 
cells/nuclei which could not be assigned confidently to the specific annotation level (annotation score < 881 
0.5). 882 
 883 
 884 
Supplementary Table 4 | Differentially Expressed Genes (Normal Cell versus Normal Nucleus 885 
samples) 886 
 887 
 888 
Supplementary Table 5 | Differentially Expressed Genes (Normal Cell versus Tumor Cell samples) 889 
 890 
 891 
Supplementary Table 6 | Differentially Expressed Genes (Normal Nucleus versus Tumor Nucleus 892 
samples) 893 
 894 
 895 
Supplementary Table 7 | Differentially Expressed Genes (Tumor Cell versus Tumor Nucleus 896 
samples) 897 
 898 
 899 
Supplementary Table 8 | Differentially Expressed Genes (Normal Cell versus Normal Nucleus 900 
samples) 901 
 902 
 903 
Supplementary Table 9 | Benchmarking scRNA-seq and snRNA-seq methods in paired normal-904 
adenocarcinoma lung samples using the 10x Genomics® workflows 905 
 906 
 907 
Supplementary Table 10 | 10X Genomics Cell Ranger software - QC metrics 908 
  909 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2024. ; https://doi.org/10.1101/2024.02.20.581199doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.20.581199
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 910 
 911 
 912 

913 
 914 
 915 
Figure 1 | Overview of the experimental design. For each patient (A), a Tumor specimen and a 916 
Normal (non-malignant) lung specimen harvested from a site distant from the tumor were resected (B917 
The research specimens were immediately divided into smaller fragments. For both Normal and Tum918 
lung specimens, a fragment was frozen in liquid nitrogen and stored at -80oC until further processing919 
for snRNA-seq. For fresh specimens, the fragments proceeded directly to dissociation into single-cel920 
suspensions. A subsample of the dissociation mix underwent immune cell depletion (C). The final se921 
of samples (D) were then loaded in wells of the microfluidic chip (E) in order to generate the 922 
transcriptome of approximately 10,000 cells or nuclei per sample (F). Dataset comparisons performe923 
with accompanying figures (G). 924 
 925 
  926 
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 927 

 928 
 929 
Figure 2 | Overview of the 160,621 cells/nuclei that passed quality control obtained from lung 930 
Tumors and distal Normal lung samples. A. Number of cells retained after quality control for each931 
patient, each experimental method (Cell, Nucleus, Immune-depleted cell) and tissue type (Normal, 932 
Tumor). B. Mean number of genes per cell, per patient, method and tissue type. C. The fraction of 933 
annotated cells for each of the five-level HLCA hierarchical cell annotation reference framework, pe934 
method and tissue type. 935 
 936 
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 938 

939 
 940 
Figure 3 | UMAP representations and cell types annotations (Normal tissue) for Cell (A) and 941 
Nucleus (B) datasets with general cell types (level 1) annotation. Finer-grained annotation (level 3) fo942 
the subset of immune cells (C) or nuclei (D) and for the subset of epithelial cells (E) or nuclei (F). To943 
the right of each UMAP, stacked bar plots indicate the proportion of each cell type in the specific 944 
dataset. Cell types present at < 1% are labelled as others. 945 
 946 
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 948 

 949 
 950 
Figure 4 | Cell types characteristics (Normal tissue). For each of the four coarse (level 1) cell type951 
annotation (Immune, Epithelial, Endothelial, Stroma) further refined into finer categories (level 3), th952 
fraction of cells (A: Cell dataset, D: Nucleus) and the number of cells (B: Cell, E: Nucleus) originatin953 
from each patient. Box plots of the number of genes expressed per cell (C: Cell, F: Nucleus), with pl954 
center, box and whiskers corresponding to median, IQR and 1.5�×�IQR, respectively. Note that onl955 
cell types with > 20 cells were retained for clarity in this visual representation.  956 
 957 
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 959 

960 
 961 
Figure 5 | UMAP representations and cell types annotations (Tumor tissue) for Cell (A) and 962 
Nucleus (B) datasets with general cell types (level 1) annotation. Tumor samples are overlaid on top 963 
Normal samples (in gray). To the right of each UMAP, stacked bar plots indicate the proportion of ea964 
cell type in the specific dataset. 965 
 966 
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 968 

969 
 970 
Figure 6 | Cell types characteristics (Tumor tissue). For each of the four coarse (level 1) cell types971 
annotations (Immune, Epithelial, Endothelial, Stroma) and unclassified (unc), further refined into fin972 
categories (level 3 cell types), the fraction of cells (A: Cell samples, D: Nucleus samples) and the 973 
number of cells (B: Cell, E: Nucleus) originating from each patient. Box plots of the number of gene974 
expressed (C: Cell, F: Nucleus), with plot center, box and whiskers corresponding to median, IQR an975 
1.5�×�IQR, respectively. Note that only cell types with > 20 cells were retained for clarity in this 976 
visual representation. 977 
 978 
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 980 

981 
 982 
 983 
Figure 7 | Normal - tumor transition. A: For each specific (level 3) Epithelial or Immune cell type,984 
the fraction of cells they represent in the Tumor dataset divided by the fraction of cells they represent985 
the Normal dataset (ratios above 1 represent an increase in the Tumor dataset), with plot center, box 986 
and whiskers corresponding to median, IQR and 1.5�×�IQR, respectively B: The percentage of 987 
specific (level 3) Epithelial or Immune cell types in Tumor and Normal dataset. Each dot represents 988 
patient and the dashed lines show the transition from Normal to Tumor for each patient. Note that on989 
cell types with > 20 cells were retained for clarity in this visual representation. C: Box plots of the 990 
CNV score, with plot center, box and whiskers corresponding to median, IQR and 1.5�×�IQR, 991 
respectively.  992 
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 994 
 995 

996 
 997 
Figure 8 | Gene expression analyses per cell type. A: Correlation in pseudobulk (aggregated) gene 998 
expression among datasets. On X-axis is log2 (gene expression) of first term in title (e.g. Normal Cel999 
samples) compared to second term (e.g. Normal Nucleus samples) on y-axis B: Hierarchical clusterin1000 
of top 5% most variable genes for Cell and Nucleus samples. C: significant DEGs (adjusted p-value <1001 
0.05) for epithelial cells (in turquoise) in the four comparisons with the number of up-regulated and 1002 
down-regulated genes in the first term in the title (e.g. Normal Cell). D: DEGs in common for Cell vs1003 
Nucleus in Normal (A) and Tumor (B) and for Normal vs. Tumor in Cell (A) vs Nucleus (B) E: Top 1004 
five most significantly enriched gene ontology terms (Biological Process). 1005 
 1006 
 1007 
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 1009 

1010 
 1011 
Figure 9 | The ligand-receptor interactome. A: Scatter plots of ingoing and outgoing interactions p1012 
tissue type and method for common cell types (see methods) among all comparisons. To the right are1013 
the top 10 interacting pathways. B: An example of pathway common in Cell, rare in Nucleus (MHC-1014 
with the contribution of the top10 ligand-receptor interacting genes (bar plot to the right). C: An 1015 
example of pathway rare in Cell, common in Nucleus (PTPRM) with the ligand-receptor interacting 1016 
gene (bar plot to the right). 1017 
  1018 
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 1019 
 1020 
 1021 

1022 
 1023 
Figure 10 | UMAP representations and cell types annotations (Immune-depleted cell) for Normal1024 
(A) and Tumor (B) tissue samples with general cell types (level 1) annotation. To the right of each 1025 
UMAP, stacked bar plots indicate the proportion of each cell type in the specific dataset. Number of 1026 
cells in the Normal (C) and Tumor (D) tissues, per patient. E: The percentage of cells expressing a 1027 
stress-related gene signature as a function of the experimental method and tissue type. F: Percentage 1028 
sequencing reads (UMIs) assigned to mitochondrial genes as a function of tissue type and experimen1029 
method for unfiltered raw data. 1030 
 1031 
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