

1 **TMEM165 replenishes lysosomal Ca²⁺ stores, protects cells against**
2 **Ca²⁺ overload, and mediates Ca²⁺-induced lysosomal H⁺ leakage**

3 **Authors:**

4 Ran Chen,^{1*} Bin Liu,^{1*†‡} Dawid Jaślan,^{2*} Lucija Kucej,¹ Veronika Kudrina,² Belinda Warnke,² Yvonne
5 Klingl,² Arnas Petrauskas,² Kenji Maeda,¹ Christian Grimm,^{2,3†} Marja Jäättelä,^{1,4†}

6 **Affiliations:**

7 ¹Cell Death and Metabolism, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer
8 Institute, Copenhagen, Denmark

9 ²Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-
10 Maximilians-Universität, Munich, Germany

11 ³Immunology, Infection and Pandemic Research IIP, Fraunhofer Institute for Translational Medicine
12 and Pharmacology ITMP, Munich/Frankfurt, Germany

13 ⁴Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of
14 Copenhagen, Copenhagen, Denmark

15 *Equal contribution

16 †Correspondence: ubnl@novonordisk.com (B.L.), christian.grimm@med.uni-muenchen.de (C.G.)
17 and mj@cancer.dk (M.J.)

18 ‡Present address: Rare Disease, Novo Nordisk, Måløv, Denmark

19
20
21
22
23

24 **Abstract**

25 The proper function of lysosomes depends on their ability to store and release calcium. While
26 several lysosomal calcium release channels have been described, how mammalian lysosomes
27 replenish their calcium stores has not been determined. Using genetic depletion and
28 overexpression techniques combined with electrophysiology and visualization of subcellular ion
29 concentrations and their fluxes across the lysosomal membrane, we show here that TMEM165
30 imports calcium to the lysosomal lumen and mediates calcium-induced lysosomal proton leakage.
31 Accordingly, TMEM165 accelerates the recovery of cells from cytosolic calcium overload thereby
32 enhancing cell survival while causing a significant acidification of the per lysosomal area and the
33 entire cytosol. These data indicate that in addition to its essential role in the glycosylation in the
34 Golgi, a small but significant fraction of TMEM165 localizes on the lysosomal limiting membrane,
35 where it protects cells against cytosolic calcium overload, preserves lysosomal function by refilling
36 lysosomal calcium stores and regulates per lysosomal and lysosomal pH.

37

38 Key words: calcium; electrophysiology; lysosome; pH; TMEM165; TMEM175

39

40 **Introduction**

41 Calcium (Ca^{2+}) and proton (H^+) homeostasis are of crucial importance for virtually all aspects of
42 cellular life. In mammalian cells, the free Ca^{2+} concentration in the cytosol $[\text{Ca}^{2+}]_{\text{cyt}}$ is maintained
43 approximately four orders of magnitude lower than that in the extracellular space and the major
44 intracellular Ca^{2+} storage organelles^{1,2}. Similarly, the concentration of protons in the cytosol $[\text{H}^+]_{\text{cyt}}$
45 is up to three orders of magnitude lower than that in the lumen of lysosomes². Such steep ion
46 concentration gradients across cellular membranes are maintained by numerous pumps, and
47 exchangers that remove excess Ca^{2+} and H^+ from the cytosol to their storage organelles or the
48 extracellular space^{1,3,4}. Due to the effective cytosolic buffering systems for both ions, cells tolerate
49 transient fluctuations in their concentrations. In fact, such fluctuations are essential for a wide
50 range of physiological signaling cascades^{1,5}. Greater and more sustained changes in ion
51 homeostasis are, however, associated with pathological processes, and prolonged increases in
52 either $[\text{Ca}^{2+}]_{\text{cyt}}$ or $[\text{H}^+]_{\text{cyt}}$ eventually lead to cell death and organ dysfunction^{6,7}.

53 Late endosomes/lysosomes (hereafter referred to as lysosomes) are membrane-
54 surrounded intracellular organelles originally described as sites of degradation and recycling of
55 cellular organelles and macromolecules^{8,9}. In recent years, lysosomes have emerged as versatile
56 signaling organelles that regulate numerous cellular functions from metabolic pathways and cell
57 division to malignant transformation and cell death¹⁰⁻¹³. Most, if not all, lysosomal activities
58 depend on ion channels and transporters that establish electrolyte concentration gradients and
59 membrane potential across the lysosomal limiting membrane^{2,14}. Due to the low pH optimum of
60 most lysosomal hydrolases, the catabolic function of lysosomes depends on the vacuolar-type H^+ -
61 ATPase (V-ATPase), which continuously pumps protons from the cytosol to the lysosomal lumen¹⁵,
62¹⁶. On the other hand, TMEM175, a H^+ -activated and H^+ -permeable channel in the lysosomal
63 limiting membrane, protects lysosomes from overacidification by leaking H^+ in response to low
64 luminal pH^{17,18}. The significant alkalinization of TMEM175-depleted lysosomes observed upon V-
65 ATPase inhibition suggests that TMEM175 is not the only protein capable of releasing H^+ from the
66 lysosomal lumen¹⁷.

67 The endoplasmic reticulum (ER), Golgi, and lysosomes constitute major intracellular Ca^{2+}
68 stores that can release Ca^{2+} to the cytosol in response to various second messengers activated by
69 intra- and extracellular cues^{1,19,20}. While the sarco/endoplasmic reticulum Ca^{2+} ATPases (SERCAs)
70 constantly pump free cytosolic Ca^{2+} to the ER, and SERCA and secretory pathway Ca^{2+} ATPases
71 pump it to the Golgi, the mechanisms by which mammalian lysosomes replenish their Ca^{2+} stores
72 remain largely unknown. In plant and yeast cells, the Ca^{2+} filling of their lysosome-related
73 organelles, vacuoles, is mediated by $\text{Ca}^{2+}/\text{H}^+$ exchangers CAX and VCX1, respectively^{21,22}. Although

74 strong experimental evidence suggests that a similar $\text{Ca}^{2+}/\text{H}^+$ exchanger activity drives lysosomal
75 Ca^{2+} filling in mammalian cells, CAX and VCX1 have neither mammalian orthologs nor known
76 functional counterparts^{20, 21}. Given that the V-ATPase constitutively pumps cytosolic H^+ into the
77 lysosomal lumen, the resulting steep H^+ gradient across the lysosomal membrane could in theory
78 provide the driving force for a putative lysosomal $\text{Ca}^{2+}/\text{H}^+$ exchanger. Such an exchanger could also
79 explain the TMEM175-independent lysosomal H^+ leakage discussed above and the cytosolic
80 acidification observed in response to elevated $[\text{Ca}^{2+}]_{\text{cyt}}$ observed for example in glutamate-treated
81 rat sensory neurons²³, ionomycin-treated rabbit corneal epithelial cells²⁴, rat parotid and
82 pancreatic acinar cells treated with various Ca^{2+} mobilizing agents^{25, 26}, and human cancer cells
83 treated with cationic amphiphilic drugs (CADs) that trigger lysosomal Ca^{2+} release via the purinergic
84 receptor P2X4 (P2RX4) and subsequent lysosome-dependent cancer cell death²⁷.

85 In living cells, the lysosomal H^+ leakage has hitherto been demonstrated only indirectly by
86 measuring changes in the lysosomal and cytosolic pH. To detect the lysosomal H^+ leakage directly,
87 we created a spatially restricted pH sensor that allowed us to measure local pH changes in the
88 perilyosomal area. Using this tool, we confirmed the TMEM175-mediated basal lysosomal H^+
89 leakage in living cells and demonstrated that TMEM175-independent perilyosomal acidification
90 occurs in response to various Ca^{2+} mobilizing agents. The latter triggered a search for a lysosomal
91 $\text{Ca}^{2+}/\text{H}^+$ exchanger and the identification of TMEM165, which has been previously described as a
92 putative cation/ H^+ antiporter that exchanges Ca^{2+} and manganese (Mn^{2+}) for H^+ across the Golgi
93 membrane²⁸, as a mediator of Ca^{2+} -induced lysosomal H^+ leakage in mammalian cells. Taken
94 together, our data provide a molecular explanation for the long-sought Ca^{2+} influx pathway into
95 lysosomes.

96

97 **Results**

98 **Lysosomal proton leakage acidifies the perilyosomal area**

99 To visualize lysosomal H^+ efflux in living cells, we constructed a cDNA encoding for a perilyosomal
100 pH sensor consisting of 39 amino-terminal amino acids of late endosomal/lysosomal adaptor, MAPK
101 and MTOR activator 1 (LAMTOR1), which target the protein to the lysosomal surface²⁹, and a pH-
102 sensitive fluorescent protein, mKeima, whose fluorescence intensity negatively correlates with the
103 adjacent pH³⁰ (Fig. 1a,b). In stably transfected HeLa human cervix carcinoma cells, the obtained
104 Lyso-mKeima sensor colocalized mainly with established lysosomal markers, Lysotracker® green
105 (LTG) and monomeric green fluorescence (mGFP)-tagged lysosomal associated membrane protein 1
106 (LAMP1) but not with the Golgi apparatus visualized by enhanced GFP (EGFP)-tagged RAB6A³¹, ER
107 visualized by ER-tracker™ Green or mitochondria visualized by Mitotracker™ Green (Fig. 1a and

108 **Extended Data Fig. 1a-c**). Using Lyso-mKeima and either SypHer3s or pHrodoTM-Green-AM to
109 detect per lysosomal and cytosolic pH, respectively, we demonstrated that the H⁺ concentration on
110 the lysosomal surface of HeLa cells (pH 7.05 ± 0.01) was 2.9-fold higher than that in the cytosol (pH
111 7.52 ± 0.03) (Fig. 1c). Substantial acidification of the per lysosomal area was also observed in all the
112 other human cell lines tested, *i.e.* in MCF7 (2.2-fold), MDA-MB-231 (1.6-fold) and MDA-MB-468
113 (2.1-fold) breast carcinoma cells and in noncancerous MCF10A breast epithelial cells (1.6-fold) (Fig.
114 **1c and Extended Data Fig. 1d**). In further support of the lysosomal H⁺ leakage as the cause of the
115 per lysosomal acidification, siRNA-mediated partial depletion of the lysosomal H⁺-activated H⁺
116 channel TMEM175 in HeLa-Lyso-mKeima cells significantly increased the per lysosomal pH (Fig.
117 **1d,e**). Further supporting the existence of TMEM175-mediated basal lysosomal H⁺ leakage, Lyso-
118 mKeima fluorescence increased slightly but significantly upon concanamycin A-mediated inhibition
119 of the V-ATPase in control cells but not in TMEM175-depleted cells (Fig. 1f). Even stronger increases
120 in Lyso-mKeima fluorescence intensities were observed upon treatment of HeLa cells with
121 arachidonic acid (Fig. 1g), which has been shown to induce a TMEM175-dependent decrease in
122 cytosolic pH (pH_{cyt})¹⁷. In contrast to the reported complete inhibition in TMEM175 knockout (KO)
123 cells¹⁷, TMEM175 siRNAs only partially inhibited the lysosomal H⁺ efflux induced by arachidonic
124 acid (Fig. 1h).

125 Taken together, these data introduce Lyso-mKeima as a useful tool to detect per lysosomal
126 pH and lysosomal H⁺ leakage and demonstrate that TMEM175-mediated basal lysosomal H⁺ leakage
127 maintains the pH of the per lysosomal area significantly below the value of the average cytosolic
128 pH.

129

130 **An increase in [Ca²⁺]_{cyt} triggers lysosomal H⁺ leakage**

131 Commonly used cationic amphiphilic drugs (CADs) including antihistamines, antidepressants and
132 antipsychotics are emerging as potent anticancer drugs¹². As basic and membrane permeable
133 molecules, they accumulate in the lysosomal lumen, where they inhibit lysosomal function and
134 induce lysosomal membrane permeabilization specifically in cancer cells^{32,33}. We have previously
135 shown that treating cancer cells with CADs induces cytosolic acidification hours before any signs of
136 lysosomal membrane damage or cell death occur³⁴. Supporting lysosomal H⁺ efflux as the
137 mechanism of CAD-induced cytosolic acidification, the CAD antihistamines, ebastine and
138 terfenadine, triggered rapid and significant increases in the Lyso-mKeima fluorescence intensity
139 (Fig. 2a,b). Importantly, these increases originated from the entire cell population and from the
140 presence of dozens of Lyso-mKeima positive puncta *per* cell rather than from a few dying cells or

141 individual damaged lysosomes (Fig. 2a). Notably, CAD-induced lysosomal H⁺ flux was insensitive to
142 depletion of TMEM175 (Fig. 2c).

143 To determine the regulatory mechanism of CAD-induced, TMEM175-independent
144 lysosomal H⁺ leakage, we first examined the role of CAD-induced rapid Ca²⁺ release in this process.
145 Interestingly, siRNA-mediated depletion of P2RX4, a Ca²⁺ channel responsible for the CAD-induced
146 lysosomal Ca²⁺ release ²⁷, effectively blocked ebastine- and terfenadine-induced perilyosomal
147 acidification in HeLa-Lyo-mKeima cells (Fig. 2d and Extended Data Fig. 2a), while neither the
148 slightly acidic pH on the surface of lysosomes in control siRNA-treated cells (Extended Data Fig. 2b)
149 nor its further acidification by maximal inhibition of the V-ATPase depended on P2RX4 (Extended
150 Data Fig. 2c).

151 The reliance of CAD-induced lysosomal H⁺ leakage on the P2RX4 Ca²⁺ channel inspired us to further
152 explore the link between lysosomal Ca²⁺ release and perilyosomal acidification. Given that the
153 elevation in the [Ca²⁺]_{cyt} controls diverse cellular functions and that lysosomal Ca²⁺ uptake has been
154 reported to depend on acidic lysosomal pH ^{21, 35}, we investigated the possibility that lysosomes
155 export H⁺ in exchange for importing excessive cytosolic Ca²⁺. For this purpose, we treated the Lyso-
156 mKeima-expressing HeLa cells with three stimuli that increase the [Ca²⁺]_{cyt} via different means: (i)
157 thapsigargin, which inhibits the ER and Golgi resident SERCA Ca²⁺ pumps ³⁶, (ii) ATP, which
158 stimulates P2 purinoreceptors to generate inositol 1,4,5-triphosphate (IP₃), which in turn triggers
159 the release of Ca²⁺ from the ER through IP₃ receptor-regulated channels ³⁷, and (iii) ML-SA1, an
160 agonist of the lysosomal Ca²⁺ release channel, mucolipin TRP cation channel 1 (TRPML1) ³⁸.
161 Following rapid and transient increases in the [Ca²⁺]_{cyt} (Fig. 2e, top), all three treatments induced
162 significant increases in Lyso-mKeima fluorescence intensity, which was indicative of decreased
163 perilyosomal pH and lysosomal H⁺ leakage (Fig. 2e, bottom). In contrast to the transient [Ca²⁺]_{cyt}
164 peak induced by thapsigargin, ATP, and ML-SA1, the Ca²⁺ peak induced by CADs was weaker and
165 longer lasting (Fig. 2e, top) ²⁷, and was followed by a more substantial and persistent decrease in
166 perilyosomal pH (Fig. 2e, bottom and Extended Data Fig. 2d). Like CADs, thapsigargin and ML-SA1
167 induced TMEM175 independent lysosomal H⁺ effluxes (Fig. 2f). However, the lysosomal H⁺ efflux
168 triggered by thapsigargin was effectively inhibited by pretreatment of cells with the intracellular
169 Ca²⁺ chelator, BAPTA-AM (Fig. 2g).

170 The data presented above corroborate the ability of excess cytosolic Ca²⁺ to trigger
171 lysosomal H⁺ leakage.

172

173 **TMEM165 mediates Ca²⁺-induced lysosomal proton leakage**

174 In our search for a protein mediating Ca^{2+} influx into lysosomes, transmembrane protein 165
175 (TMEM165), a putative divalent cation/ H^+ exchanger with a well-described role in manganese
176 homeostasis and glycosylation of proteins and lipids in the Golgi network^{28, 39-41}, attracted our
177 attention. In addition to its presence in the Golgi apparatus, TMEM165 has been detected in the
178 lysosomal compartment of HeLa cells, where its depletion has been reported to increase the
179 volume of the acidic compartment^{28, 42}. Supporting the role of TMEM165 in CAD-induced,
180 lysosomal H^+ leakage, partial depletion of this gene by two independent siRNAs effectively reduced
181 ebastine- and terfenadine-induced lysosomal H^+ leakage and subsequent acidification of the cytosol
182 in HeLa cells (Fig. 3a-c). The strong TMEM165 dependences of CAD-induced lysosomal H^+ leakage
183 and cytosolic acidification were also observed in MDA-MB-468 and MCF7 cells, respectively
184 (Extended Data Fig. 3a-f). The depletion of TMEM165 in HeLa and MDA-MB-468 cells also inhibited
185 lysosomal H^+ leakage induced by other Ca^{2+} -mobilizing agents, ML-SA1 and thapsigargin (Fig. 3d and
186 Extended Data Fig. 3g), while TMEM165 was dispensable for the perilyosomal acidification induced
187 by arachidonic acid and concanamycin A (Extended Data Fig. 3h,j). Furthermore, siRNA-mediated
188 depletion of TMEM165 had no effect on the perilyosomal pH in untreated HeLa cells (Fig. 3e), and
189 even complete CRISPR-mediated depletion of TMEM165 in either HeLa or MDA-MB-468 cells
190 altered neither the lysosomal nor the cytosolic pH in unstimulated cells (Fig. 3f-h and Extended
191 Data Fig. 3e,f,j). However, the overexpression of either TMEM165-Flag or TMEM165-mCherry in
192 HeLa cells significantly altered the intracellular pH homeostasis by increasing the lysosomal pH and
193 acidifying not only the perilyosomal area but also the entire cytosol (Fig. 3e-i).

194 These data indicate that TMEM165 is required for the lysosomal H^+ leakage in response to
195 elevations in the free $[\text{Ca}^{2+}]_{\text{cyt}}$, and that its overexpression disturbs cellular pH homeostasis.
196

197 **TMEM165 replenishes lysosomal Ca^{2+} stores and protects cells against Ca^{2+} mobilizing agents**

198 Next, we investigated the effect of TMEM165 on the cellular Ca^{2+} homeostasis. To determine the
199 effect of TMEM165 on the capacity of lysosomes to store Ca^{2+} , we measured the fluorescence
200 intensity (FLI) of a cytosolic Ca^{2+} indicator Fluo4-AM following the mobilization of lysosomal Ca^{2+}
201 with glycyl-L-phenylalanine-beta-naphthylamide (GPN), a lysosomotrope that permeabilizes
202 lysosomal membranes in a cathepsin C-dependent manner^{43, 44}. The increase in the free $[\text{Ca}^{2+}]_{\text{cyt}}$
203 upon lysosomal membrane permeabilization was significantly reduced or increased in TMEM165-
204 depleted and TMEM165-Flag expressing HeLa cells, respectively (Fig. 4a,b). Similarly, GPN-mediated
205 lysosomal membrane permeabilization significantly increased the free $[\text{Ca}^{2+}]_{\text{cyt}}$ less in MDA-MB-468-
206 TMEM165-KO cells than in parental MDA-MB-468 cells (Fig. 4c). In further support of the ability of
207 TMEM165 to fill lysosomal Ca^{2+} stores, the transient expression of TMEM165-mCherry in HEK293

208 human kidney epithelial cells increased the release of lysosomal Ca^{2+} upon ML-SA1-mediated
209 activation of the lysosomal TRPML1 Ca^{2+} channel, as determined by the fluorescence intensity of
210 the coexpressed TRPML1-GCaMP6s Ca^{2+} sensor (Extended Data Fig. 4a,b). Notably, the TMEM165-
211 R126C mutant, which has been reported to increase the lysosomal localization of TMEM165
212 without affecting its activity (ref⁴²)⁴², increased the capacity of lysosomes to release Ca^{2+} in
213 response to ML-SA1 even more than the wild-type TMEM165 (Extended Data Fig. 4a,b). Both the
214 wild-type and the mutant TMEM165-mCherry colocalized with the lysosomal markers, Lysotracker
215 and LAMP1, and their localization on the lysosomal limiting membrane was visualized in lysosomes
216 enlarged by the PIKfyve inhibitor apilimod. (Extended Data Fig. 4c,d). Importantly, the transient
217 expression of neither TMEM165 construct altered the expression levels of the TRPML1-GCaMP6s
218 Ca^{2+} sensor (Extended Data Fig. 4e).

219 To study the per lysosomal free $[\text{Ca}^{2+}]$ without disturbing cellular Ca^{2+} homeostasis, we
220 constructed a novel Ca^{2+} sensor, Lyso-GCaMP8s, by fusing the lysosomal membrane-targeting
221 amino terminus of LAMTOR1 to the amino terminus of the GCaMP8s Ca^{2+} sensor. Supporting the
222 role of TMEM165 in lysosomal Ca^{2+} influx, siRNA-mediated depletion of TMEM165 increased and
223 TMEM165-mCherry expression reduced the per lysosomal free $[\text{Ca}^{2+}]$ in HeLa cells (Fig. 4d), and the
224 reintroduction of TMEM165 into MDA-MB-468-TMEM165-KO cells completely reverted the high
225 per lysosomal free $[\text{Ca}^{2+}]$ phenotype of the TMEM165-KO cells (Fig. 4e). Notably, TMEM165
226 depletion did not alter the free $[\text{Ca}^{2+}]_{\text{cyt}}$ in unstimulated MDA-MB-468 cells indicating that
227 TMEM165 controls cellular Ca^{2+} homeostasis locally at the lysosomal membrane (Fig. 4f).
228 Accordingly, TMEM165 deficiency delayed the clearance of cytosolic Ca^{2+} in MDA-MB-468 cells
229 following ML-SA1-mediated activation of lysosomal TRPML1 Ca^{2+} channels but did not significantly
230 affect the removal of cytosolic Ca^{2+} after ATP-induced activation of IP₃ receptor-regulated Ca^{2+}
231 channels in the ER (Fig. 4f,g). However, MDA-MB-468-TMEM165-KO cells failed to recover from the
232 thapsigargin-induced cytosolic Ca^{2+} overload thereby revealing the potential of TMEM165 to clear
233 cytosolic Ca^{2+} in the absence of the activity of ER Ca^{2+} pumps (Fig. 4h). Notably, the prolonged
234 thapsigargin-induced cytosolic Ca^{2+} overload in TMEM165-deficient cells was associated with
235 significantly increased cell death (Fig. 4i). Prompted by these results, we investigated the effect of
236 TMEM165 on CAD-induced cancer cell death, which depends on lysosomal Ca^{2+} release and
237 activation of Ca^{2+} -dependent cyclic AMP synthesis²⁷. Compared to the parental MDA-MB-468 cells,
238 TMEM165 deficiency significantly increased the ebastine-induced cytosolic Ca^{2+} overload, resulting
239 in almost 3-fold higher free $[\text{Ca}^{2+}]_{\text{cyt}}$ 1 h after the treatment, and increased the subsequent cell
240 death to a similar extent (Fig. 4j,k). TMEM165 deficient MDA-MB-468 cells displayed a similar
241 sensitization to terfenadine (Extended Data Fig. 4f). The crucial role of TMEM165 in protecting

242 cancer cells from CADs was confirmed in HeLa cells, where TMEM165 deficiency also increased the
243 CAD-induced cytosolic Ca^{2+} overload and cell death while the expression of TMEM165-mCherry
244 effectively inhibited both events (Fig. 4I-n). Notably, TMEM165-mCherry-mediated protection
245 against CAD-induced HeLa cell death was associated with a nearly complete inhibition of CAD-
246 induced formation of galectin 1 (LGALS1) puncta, indicative of the inhibition of lysosomal
247 membrane permeabilization (Fig. 4n)⁴⁵.

248 Taken together, these data reveal that TMEM165 is essential for maintaining lysosomal
249 Ca^{2+} stores and protecting against cytosolic Ca^{2+} overload and subsequent lysosomal membrane
250 permeabilization.

251

252 **A fraction of TMEM165 localizes to the lysosomal limiting membrane**

253 TMEM165 was originally characterized as a Golgi resident protein, whose mutations cause
254 congenital disorders of glycosylation³⁹. In line with the presence of the tyrosine-based, putative
255 lysosomal targeting signal¹²⁴YNRL¹²⁷ in the human TMEM165 protein, visualization of GFP- or RFP-
256 tagged TMEM165 has revealed that TMEM165 traffics to lysosomes via the plasma membrane⁴².
257 To ensure that the TMEM165-mCherry used in this study also localized to lysosomal membranes,
258 we analyzed its localization in HeLa and MDA-MBA-468 cells. In HeLa cells, the overexpressed
259 TMEM165-mCherry formed strongly fluorescent punctate structures colocalizing with the
260 lysosomal markers Lyso-GFP ($r = 0.93 \pm 0.05$) and LysotrackerTM Green ($r = 0.83 \pm 0.05$) and larger,
261 perinuclear sheet-like structures with weaker fluorescence intensity and colocalization with the
262 *trans*-Golgi marker EGFP-RAB6 ($r = 0.42 \pm 0.08$) (Fig. 5a and Extended Data Fig. 5a). Indicating that
263 the observed lysosomal localization was not caused by the overexpression, TMEM165-mCherry,
264 which was expressed in MDA-MB-468-TMEM165-KO cells at a level similar to that of the
265 endogenous TMEM165 protein, exhibited a similar distribution pattern with high intensity
266 punctate structures colocalizing with LysotrackerTM Green ($r = 0.85 \pm 0.02$) and sheet-like weaker
267 intensity structures colocalizing with EGFP-RAB6 ($r = 0.57 \pm 0.12$) (Extended Data Fig. 3e and 5b).
268 Importantly, the formation of larger lysosomes upon inhibition of PIKfyve by vacuolin-1 revealed
269 that also the stably expressed TMEM165-mCherry decorated lysosomal limiting membranes (Fig.
270 5a, bottom)⁴⁶, strongly suggesting that TMEM165-mCherry is a lysosomal membrane protein rather
271 than a lysosomal cargo. This was further supported by the similar lysosomal localization of
272 TMEM165-mCherry in cells in which autophagy was either pharmacologically (3-methyladenine) or
273 genetically (ATG7-KO) inhibited (Fig. 5b).

274 In line with previous reports^{39, 42}, immunostaining failed to reveal a significant
275 colocalization of either endogenous or overexpressed TMEM165 with lysosomal markers (Extended

276 **Data Fig. 5c,d).** To address this discrepancy, we realized that the localization of TMEM165-mCherry
277 in HeLa cells dramatically altered from punctuate and mainly lysosomal structures in live or fixed
278 cells to sheet-like and mainly Golgi-localized (colocalization with N-
279 acetylgalactosaminyltransferase-EGFP (Golgi-EGFP, *trans*-Golgi) structures following the
280 permeabilization of fixed cells (Fig. 5a and Extended Data Fig. 5a,b,e). Due to this phenomenon, we
281 were not able to demonstrate the lysosomal localization of the endogenous TMEM165 by
282 immunostaining. Instead, we purified iron-dextran (FeDex)-loaded lysosomes from HeLa cells by
283 magnetic capture and analyzed the proteins in the obtained eluates by immunoblotting. A small
284 fraction of the endogenous TMEM165 was detected in the purified LAMP2-rich lysosomes, which
285 did not contain detectable proteins from endosomes (early endosome antigen 1 (EEA1) and cation-
286 independent mannose 6 phosphate receptor (CI-M6PR)), the Golgi (receptor-binding cancer
287 antigen expressed on SiSo cells (RCAS1), Golgi reassembly stacking protein 1 (GORASP1), and CI-
288 M6PR), the ER (protein disulfide isomerase (PDI)) or the plasma membrane (Na^+/K^+ -ATPase) (Fig.
289 5c). However, the purified lysosomal fraction contained a small amount of mitochondrial import
290 receptor subunit TOM20 homolog (TOM20) possibly due to copurified mitochondria attached to
291 lysosomes or mitophagy (Fig. 6c). Notably, the inhibition of the V-ATPase by concanamycin A during
292 the lysosome purification procedure, which inhibits the degradation of cargo proteins in the
293 lysosomal lumen, did not significantly alter the level of TMEM165 in purified lysosomes, while the
294 putative cargo proteins Na^+/K^+ -ATPase and CI-M6PR became detectable after concanamycin A
295 treatment (Fig. 5c).

296 Because the TMEM165-mediated maintenance of the Golgi Mn^{2+} homeostasis is essential
297 for the proper N-glycosylation of several membrane proteins⁴⁰, we next asked whether the
298 lysosomal phenotype observed in TMEM165 depleted cells could be a result of the defective
299 glycosylation of the normally highly lysosomal membrane proteins. Treatment with 1 μM MnCl_2 for
300 48 h completely reversed the hypoglycosylation phenotype in MDA-MB-468-TMEM165-KO cells as
301 demonstrated by the MnCl_2 -induced reversal of the increased mobility of LAMP2 in sodium dodecyl
302 sulfate–polyacrylamide gel electrophoresis (Fig. 5d). However, the MnCl_2 supplementation rescued
303 neither the prolonged cytosolic Ca^{2+} peak nor the defective cytosolic acidification in CAD treated
304 MDA-MB-468-TMEM165-KO cells (Fig. 5e,f).

305 These data support the idea that a small fraction of TMEM165 localizes to the lysosomal
306 limiting membrane where it regulates lysosomal ion homeostasis.

307

308 **TMEM165 mediates H^+ and Ca^{2+} dependent currents**

309 The data presented above strongly suggest that TMEM165 plays a role in Ca^{2+} influx to the lysosome,
310 and H^+ efflux from the lysosome to the cytosol. To test this hypothesis, we performed patch-clamp
311 experiments using HEK293 cells transfected with wild-type TMEM165-mCherry, the R126C mutant,
312 or the mCherry vector as a control. We applied a step protocol from -100 mV to +60 mV with 20 mV
313 increments in the whole-cell mode with an asymmetrical pH (pipette 7.5/bath 4.6) and $[\text{Ca}^{2+}]$ (pipette
314 1 μM /bath 10 nM) across the membrane mimicking the conditions in the cytosol (pipette) and the
315 lysosomal lumen (bath) (Fig. 6a). In cells expressing wild-type TMEM165-mCherry, we detected
316 significant inward current activity (most likely the net current of H^+ inward and Ca^{2+} outward) in a
317 physiologically relevant voltage range that was absent in control cells (Fig. 6b,c). TMEM165-R126C
318 mutant currents were considerably weaker than wild-type currents (Fig. 6b,c), while in the lysosomal
319 Ca^{2+} imaging experiments, the mutant protein had stronger effect on Ca^{2+} release than the wild-type
320 protein (Extended Data Fig. 4a,b). This difference is presumably due to the increased lysosomal and
321 decreased plasma membrane localization of the mutant protein (Fig. 6d; Extended Data Fig. 4c,d) (ref
322 ⁴²). Thus, we focused on wild-type TMEM165-mCherry and increased the bath pH from 4.6 to 7.5 with
323 the result that the measured inward current was almost completely reduced to zero (Fig. 6e,f, left).
324 Additionally, we reduced the Ca^{2+} concentration in the pipette from 1 μM to 10 nM, resulting in a
325 similar, almost complete loss of the current (Fig. 6e,f, middle). However, when omitting only Ca^{2+} we
326 noticed a comparably small reduction in the current (Fig. 6e,f, right), letting us to speculate that this
327 may be the result of the presence of 1 mM Mg^{2+} . We therefore next omitted both Ca^{2+} and Mg^{2+} from
328 the bath, now resulting in a complete loss of the current (Fig. 6g, left). When only Mg^{2+} was omitted,
329 the current decreased less (Fig. 6g, right) and remained significant in the TMEM165-expressing cells
330 when compared to control cells (Fig. 6h). These data suggest that the omission of either Ca^{2+} (in the
331 absence of Mg^{2+}) or H^+ significantly affects the observed current.
332 Although PIKfyve inhibitors enlarged TMEM165-mCherry-positive lysosomes to some degree (Fig.
333 5g; Extended Data Fig. 4d), our efforts to detect TMEM165 currents across the lysosomal limiting
334 membrane were unfortunately hindered by the failure of PIKfyve inhibitors to trigger the formation
335 of large enough TMEM165-positive giant lysosomes for patch clamp, possibly due to TMEM165-
336 induced disturbances in the lysosomal Ca^{2+} homeostasis.
337 These data indicate that TMEM165 expression results in the voltage-dependent
338 development of H^+ and Ca^{2+} dependent currents, which are not present in controls. Thus, TMEM165

339 is indeed capable of transporting Ca^{2+} and Mg^{2+} ions into lysosomes and H^+ ions out of lysosomes in
340 an antiporter like manner.

341

342 Discussion

343 Lysosomal fitness depends on tightly regulated pH and Ca^{2+} concentration gradients across the
344 limiting membrane ^{2, 14}. While a low pH is essential for the activity of most lysosomal hydrolases,
345 the ligand-activated Ca^{2+} release through TRPML1, two pore channels, and P2RX4 governs
346 endolysosomal membrane trafficking and initiates numerous signaling cascades controlling for
347 example lysosomal biogenesis, cellular metabolism and lysosomal membrane stability ^{27, 47-49}.
348 Despite the crucial role of lysosomal Ca^{2+} stores in the maintenance of lysosomal and cellular
349 health, the identity of the protein(s) responsible for filling mammalian lysosomes with Ca^{2+} remains
350 unknown. The data presented above identifies TMEM165 not only as a protein responsible for
351 maintaining lysosomal Ca^{2+} stores but also as a mediator of Ca^{2+} -induced lysosomal H^+ leakage in
352 mammalian cells. The role of TMEM165 in maintaining lysosomal Ca^{2+} stores is supported by ample
353 data showing i) a significant reduction in the amount of Ca^{2+} released to the cytosol upon GPN-
354 mediated lysosomal membrane permeabilization in TMEM165-depleted HeLa and MDA-MB-468
355 cells; ii) increased capacity of lysosomes to release Ca^{2+} in TMEM165 overexpressing HeLa and
356 HEK293-TRPLM1 cells upon treatment with GPN and ML-SA1, respectively; iii) TMEM165-
357 dependent recovery from the cytosolic Ca^{2+} overload in thapsigargin-, ML-SA1- and ebastine-
358 treated MDA-MB-468 cells and ebastine-treated HeLa cells; and finally, iv) the development of
359 voltage-dependent Ca^{2+} currents observed when patch-clamping TMEM165 overexpressing HEK293
360 cells. Previous studies have demonstrated the dependence of lysosomal Ca^{2+} influx on ER Ca^{2+}
361 stores, ER-lysosome contact sites and acidic lysosomal pH ^{9, 50-52}. The reported delay in the
362 inhibition of lysosomal Ca^{2+} influx following the disruption of the lysosomal pH gradient has,
363 however, suggested that the pH dependence of lysosomal Ca^{2+} influx observed in living cells is
364 caused by the disruption of ER-lysosome contact sites rather than the loss of the lysosomal pH
365 gradient ⁵³. Based on our data, TMEM165-mediated Ca^{2+} influx is however highly dependent on the
366 pH gradient, whose removal in our patch-clamp experiments abolished the TMEM165-mediated
367 currents almost completely. This is further supported by a recent manuscript by Dr. Krishnan and
368 coworkers, which introduced TMEM165 as a proton-activated lysosomal Ca^{2+} importer ⁵⁴.

369 In addition to demonstrating the ability of TMEM165 to import Ca^{2+} from the cytosol to the
370 lysosome, our data also highlight the ability of TMEM165 to protect mammalian cells against Ca^{2+}
371 overload. This finding is in line with the reported sensitivity of the yeast strain depleted of the
372 TMEM165 ortholog Gdt1p (*gdt1Δ*) to high external Ca^{2+} concentrations, and the ability of the

373 amino-terminally truncated human TMEM165 to partially restore the growth of the *gdt1Δ* strain
374 under Ca^{2+} stress²⁸. While the mammalian TMEM165 may play only a moderate role in the
375 clearance of cytosolic Ca^{2+} in general, its role in removing Ca^{2+} locally from the per lysosomal area is
376 likely to be of greater importance. This is clearly demonstrated by the substantial sensitization to
377 and inhibition of CAD-induced lysosome-dependent cancer cell death upon TMEM165 depletion
378 and overexpression, respectively. These data emphasize the role of P2RX4-mediated lysosomal Ca^{2+}
379 release in CAD-induced cancer cell death and are in line with our previous identification of Ca^{2+} -
380 dependent adenylate cyclase 1 as a mediator of CAD-induced lysosomal membrane
381 permeabilization and cell death^{27,34}. Providing further support for a link between the lysosomal
382 P2RX4 Ca^{2+} channel and TMEM165-mediated lysosomal H^+ leakage, a recent report describes a
383 significant, P2RX4-dependent increase in the lysosomal pH in metastatic breast cancer cells⁵⁵, and
384 the expression of both P2RX4 and TMEM165 has been linked to the metastatic potential of breast
385 cancer cells^{55,56}.

386 To study the molecular basis of the lysosomal H^+ leakage conductance, we created a
387 fluorescent pH sensor, Lyso-mKeima, that detects the local pH on the surface of lysosomes. In the
388 meanwhile, Haoxing Xu and colleagues identified TMEM175 as the long-sought channel responsible
389 for the H^+ -activated lysosomal H^+ leakage, which maintains a lysosomal pH of approximately 4.5¹⁷.
390 Using cytosolic pH indicators and Lyso-mKeima to measure cytosolic and per lysosomal pH,
391 respectively, we demonstrated a substantial TMEM175-dependent acidification of the
392 per lysosomal area in unstimulated HeLa cells and a further, TMEM175-independent acidification in
393 response to Ca^{2+} -mobilizing agents. The latter was effectively inhibited by the chelation of cytosolic
394 free Ca^{2+} by BAPTA-AM and by depletion of TMEM165, strongly suggesting that the TMEM165-
395 mediated lysosomal Ca^{2+} uptake triggers a TMEM165-dependent lysosomal H^+ leakage. This
396 hypothesis is strongly supported by our electrophysiological experiments demonstrating the ability
397 of TMEM165 to mediate voltage-dependent H^+ and Ca^{2+} dependent currents. The observed low pH
398 on the lysosomal surface in unstimulated cells, and especially the further, TMEM165-dependent
399 long-lasting acidification induced by Ca^{2+} mobilizing agents is highly intriguing and argues against
400 the idea that variations in the cytosolic pH are insignificant, because cellular buffers quickly stabilize
401 them. Such drops in pH are known to alter the protonation status and function of several proteins,
402 for example phosphofructokinase, whose glycolytic activity regulates AMP-dependent protein
403 kinase (AMPK) on the lysosomal membrane^{57,58}, and the GTP-binding protein RHEB, which controls
404 the activity of mammalian target of rapamycin complex 1 (mTORC1) by recruiting it to the
405 lysosomal membrane⁵⁹. Thus, it is tempting to speculate that Ca^{2+} -induced acidification of the
406 per lysosomal area could contribute to the Ca^{2+} overload-induced shift from anabolic to catabolic

407 metabolism by altering the activity of AMPK, mTORC1 or other metabolic regulators residing on the
408 lysosomal membrane^{12, 58, 60}.

409 As discussed above, the maintenance of lysosomal H⁺ and Ca²⁺ homeostasis is essential for
410 cellular fitness. Accordingly, their disturbances are associated with a wide range of pathologies
411 ranging from degenerative disorders to cancer^{3, 4, 12, 16, 20, 61}. Thus, the identification of TMEM165 as
412 a regulator of lysosomal H⁺ efflux and Ca²⁺ influx opens new avenues for the development of
413 therapeutics for the treatment of these diseases. In particular, TMEM165 antagonists and their
414 combination with CADs or other Ca²⁺ mobilizing cancer drugs could prove highly effective in the
415 future cancer treatment by increasing and prolonging the cytosolic Ca²⁺ overload and promoting
416 the subsequent lysosomal membrane permeabilization, while TMEM165 agonists could reverse
417 defective lysosomal Ca²⁺ stores in lysosomal storage disorders and assist the recovery of neurons
418 from the cytosolic Ca²⁺ overload in Parkinson's disease.

419

420 Materials and Methods

421 **Cell lines.** HeLa cervical, human, female carcinoma cells were obtained from the European
422 Collection of Authenticated Cell Cultures (ECACC, 93021013). The TNF-sensitive S1 subclone of
423 human, MCF7 female breast cancer cells has been described previously⁶². MDA-MB-231 (HTB-26)
424 and MDA-MB-468 (HTB-132) human, female breast cancer cell lines, MCF10A (CRL-10317) human
425 female breast epithelial cells, and human kidney HEK-293 (CRL-1573) cells originating from a female
426 fetus were obtained from the American Type Culture Collection (ATCC). TMEM165-KO cell lines
427 were generated using CRISPR/Cas9-mediated gene editing by transfecting single-guide RNA
428 targeting TMEM165 (PXPR001TMEM165) into HeLa and MDA-MB-468 cells, and after 2 weeks
429 clones were picked up and validated by immunoblotting and sequencing. HeLa cells were cultured
430 in Dulbecco's modified Eagle medium (DMEM; Thermo Fisher Scientific, 31966021) supplemented
431 with 10% heat-inactivated fetal calf serum (Thermo Fisher Scientific, 10270-106) and penicillin/
432 streptomycin (Gibco, 15140122). MDA-MB-231 and MDA-MB-468 cells were cultured in DMEM
433 supplemented with 2mM Glutamine, 1x MEM nonessential amino acids solution (Thermo Fisher
434 Scientific, 11140035), 10% heat-inactivated fetal calf serum and penicillin/ streptomycin. MCF-7
435 cells were cultured in RPMI 1640 (Thermo Fisher Scientific, 61870010) supplemented with 10%
436 heat-inactivated fetal calf serum and penicillin/ streptomycin. MCF-10A cells were cultured in
437 DMEM/ F12 (Thermo Fisher Scientific, 31330038) supplemented with 5% horse serum (Thermo
438 Fisher Scientific, 16050-122), 20 ng/ ml epidermal growth factor (Sigma-Aldrich, e-4127), 0.5 µg/ ml
439 hydrocortisone (Sigma-Aldrich, 3867), 100 ng/ ml cholera toxin (Sigma-Aldrich, c-8052), 10 µg/ ml
440 insulin (Sigma-Aldrich, I9278) and penicillin/ streptomycin. HEK293 cells were cultured in DMEM

441 supplemented with penicillin/ streptomycin and 10% fetal bovine serum. All cells were cultured at
442 37°C in a humidified chamber with 95% air and 5% CO₂ and tested regularly for mycoplasma.
443 **Plasmids.** The Lyso-mKeima expression construct was generated by replacing Lyso-GFP in pLV-Lyso-
444 GFP-puro (kindly provided by Dr. Shawn M. Ferguson, Yale University, New Haven, CT) with the first
445 39 amino acids of LAMTOR1 and the GGSGGS linker (Lyso) using restriction sites EcoRI and BamHI.
446 Then the mKeima was inserted into pLV-Lyso-puro using the restriction sites BamHI and XbaI. The
447 TMEM165-mCherry expression construct was generated by inserting mCherry into pLentiCMVie-
448 IRES-BlastR (Addgene #119863) using the restriction sites Xhol and BamHI. Then, the TMEM165
449 cDNA was amplified from pCDNA3.1NEGFP-TMEM165 (Genscript) and inserted into pLentiCMVie-
450 mCherry-BlastR via NheI and Xhol sites. The Lyso-GCaMP8s expression construct was generated by
451 inserting Lyso into pLentiCMVie-IRES-BlastR (Addgene #119863) via the EcoRI and EcoRV sites.
452 Then, the GCaMP8s was amplified from pGP-CMV-jGCaMP8s (Addgene #162371) and inserted into
453 pLentiCMVie-lyso-BlastR using the restriction sites EcoRV and BamHI. The TMEM165-flag
454 expression construct was generated by inserting TMEM165-flag into pLentiCMVie-IRES-BlastR via
455 the NheI and Xhol sites. The TRPML1-GCampP6s expression construct was created by subcloning the
456 human TRPML1 insert from the human TRPML1-EYFP plasmid⁶³ into the pGP backbone harboring
457 GCaMP6s (Addgene #40753) using restriction sites BglII (N-terminal) and Sall (C-terminal).
458 PXPR001TMEM165 was generated by using the gRNA: GCAGC CGGGG CGCCG AUGCG. Golgi-EGFP
459 (#79809), EGFP-RAB6A (#49469) and LAMP1-mGFP (#34831) were purchased from Addgene.
460 pcDNA3.1+-mCherry was kindly provided by Dr. Christian Wahl-Schott (Biomedical Center, LMU,
461 Munich, Germany).

462 Table 1. Cloning primers

ATG7 sgRNA1S	CACCG CTTCTCACCAAGGTTTGCA
ATG7 sgRNA1AS	AAAC TGCAAAACCTGGTGAGAAAG C
ATG7 sgRNA2S	CACCG GCTGCCAGCTCGCTAACAT
ATG7 sgRNA2AS	AAAC ATGTTAACCGAGCTGGCAGC C
hTRPML1 KozakBglII	ATagatctCGCCGCCACCATGACAGCCCCGGCGG
hTRPML1 GSGSall	ATgtcgacGCCAGAGCCATTCAACAGCAGCGAATGCTC
GCamp8s NSRV	gc GATATC CGCAAGAAGACCTCAAGGAG
GCamp8s CASBamHI	gc GGATCC TTACTTCGCTGTACATTTG
Lyso NSkozakEcoRI	gc GAATTG GCCACC ATGGGGTGCTGCTACAGCAG
Lyso ASBamHI	gc GGATCC ACCAGAACCAACCGTTGGGC
Lyso ASEcoRV	gc GATATC ACCAGAACCAACCGTTGGGC
mCherry CASBamHI	gc GGATCC tca CTTGTACAGCTCGTCCATGC

mCherry NSXhol	gc CTCGAG ATGGTGAGCAAGGGCGAGGAG
mKeima NSBamHI	gc GGATCC atggtagcggtatcgccaag
mKeima CASXbal	gc TCTAGA TTAGCCCAGCAGGGAGTGGCGG
TMEM165 NSKozakNheI	gc GCTAGC gccacc ATGGCGGCCGCGGCTCCAGG
TMEM165 CASXhol	gc CTCGAG AAAACCAGAACATCAGGGCTTAT
TMEM165flag CASXhol	gc CTCGAG tca cttatcgctgtatccctttaatc AAAACCAGAACATCAGGGCTTAT
TMEM165 sgRNAs	CACCG GCAGC CGGGG CGCCG ATGCG
TMEM165 sgRNAAS	AAAC CGCATCGGCGCCCCGGCTGC C

463

464

siRNAs. P2X4: CAAGUCGUGCAUUUAUGAUtt/AUCAUAAAUGCACGACUUGtt,
GUCCUCUACUGCAUGAAGAtt/UCUUCAUGCAGUAGAGGACtt. TMEM165: GUAUCUGAAUUG
GGUGAUAtt/UAUCACCCAAUUCAGAUACaa,CAGGGUCUAUACAUACUAUtt/AUAGUAUGUAUAGACCC
UGaa. TMEM175: GCCUUACACGUUUUCGUUAtt/ UAACGAAAACGUGUAAGGCag, CUGCA UGAUG
ACCAU CACC aa/GGTG AUGGT CAUCA UGCAGag.

465

Antibodies. Anti- α -Tubulin (ab40742), anti- β -Actin (ab20272), anti-GFP (Ab290), anti-Lamin B1
(ab194109), anti-Galectin 1 (ab25138), anti-P4HB (ab137110), anti-EEA1 (ab2900), anti-sodium
potassium ATPase (ab76020), and anti-M6PR (ab124767) were purchased from Abcam; anti-GAPDH
(5174S), anti-RCAS1 (12290), and anti-VDAC (12454S) from Cell Signaling Technology; anti-LAMP2
(L0668-200UL) from Sigma Aldrich; anti-LAMP1 (sc20011) and anti-Tom20 (sc-11415) from Santa
Cruz; anti-TMEM175 (PA5-100355), anti-mouse IgG Alexa Fluor 488 (A-11001), anti-rabbit IgG Alexa
Fluor 594 (A-21207), and anti-rabbit IgG Alexa Fluor 488 (A-21206) from Thermo Fisher Scientific;
anti-TMEM165 (20485-1-AP) from Proteintech Europe; anti-P2RX4 (APR-002) from Labome; and
goat anti-rabbit IgG (PI-1000) from Vector Laboratories.

466

Chemicals and reagents. Ammonium hydroxide solution (28.0-30.0%) (221228), D-(+)-glucose
(G7021), Hoechst-33342 (B2261), iron (II) chloride (372870), iron (III) chloride (157740), NMDG
(66930), propidium iodide (P4864), terfenadine (T9652), and valinomycin (V0627) were purchased
from Sigma Aldrich. BAPTA-AM (B1205), CellMaskTM Green (C37608), ER-TrackerTM Green (E34251),
Fluo-4-AM (F14201), HEPES (BP310), LysoTrackerTM Deep Red (L12492), LysoTrackerTM Green DND-
26 (L7526), MitoTrackerTM Green (M7514), Nigericin (N1495), and SYTOXTM Green, Nucleic Acid Stain
(S7020) were obtained from Thermo Fisher Scientific. ML-SA1 (4746) and thapsigargin (1138) were
from Tocris, ebastine (15372) from Caymann, arachidonic acid (HY-109590) from MedchemExpress,
concanamycin A (sc-202111) from Santa Cruz, dextran 40 BioChemica (A2249) from PanReac

467

468

487 AppliChem, hydrochloric acid (VWR30024.290) from VWR, MES (02195309-CF) from MP
488 Biomedicals, and EGTA (324626) from Merck.

489 **Transfections.** Plasmid transfections were performed by using TurboFectin 8.0 (Origene, TF81001),
490 Lipofectamine 3000 transfection agent (Thermo Fisher Scientific, L3000008) or TurbofectTM
491 (Thermo Fisher, R0531) according to the manufacturer's instructions. siRNA transfections were
492 performed by using Lipofectamine RNAiMax (Thermo Fisher Scientific, 13778075) according to the
493 manufacturer's instructions.

494 **Western blot.** Cell lysates were prepared in Laemmli sample buffer (125 mM Tris, pH 6.7; 20%
495 glycerol; 140mM SDS) supplemented with complete protease inhibitor cocktail (Roche,
496 04693159001) and PhosSTOPTM (Roche, 04906837001), and 0.05 M dithiothreitol and then loaded
497 onto a 4%–20% gradient SDS-polyacrylamide gel for electrophoresis. Proteins were transferred
498 onto polyvinylidene difluoride membranes by using a Bio-Rad Trans-Blot Turbo system. The
499 membranes were blocked with PBS containing 5% milk and 0.1% Tween-20 and incubated with the
500 indicated primary antibodies and corresponding peroxidase-conjugated secondary antibodies. The
501 signal was detected with Clarity Western ECL Substrate and Luminescent Image Reader, and
502 quantified by densitometry with Image Studio Lite software.

503 **Immunostaining.** Cells were grown on coverslips and fixed in 4% paraformaldehyde in Dulbecco
504 phosphate-buffered saline (DPBS; Thermo Fisher Scientific, 14190094) for 20 min were
505 permeabilized with 0.1% saponin in DPBS for 10 min and blocked in 5% goat serum in DPBS for 10
506 min. Sequential incubation of the cells with the indicated primary antibodies and corresponding
507 Alexa Fluor 488- or Alexa Fluor 594-coupled secondary antibodies was performed to label the
508 protein of interest. Nuclei were labeled either with 5 mg/ml Hoechst-33342 or DAPI in the Prolong
509 Gold Antifade Mounting medium. Unless otherwise indicated, images were acquired with an
510 LSM700 microscope with a Plan-Apochromat 63 \times /1.40 Oil DIC M27 objective and Zen 2010
511 software (all equipment and software from Carl Zeiss, Jena, Germany) and analyzed with Image J
512 (Fiji) software.

513 For live imaging, cells were treated for 10 min with CellMaskTM Green dye (1:1000) at 37°C, then
514 treated with LysotrackerTM DeepRed for 30 min at 37°C, washed three times in PBS, treated with a
515 Hoechst-33342 and then processed for live imaging with an Opera Phenix High Content Confocal
516 Imaging System (Revvity).

517 **Ca²⁺ imaging.** For imaging with Fluo-4-AM, cells were stained with 3 mM Fluo-4-AM for 25 minutes in
518 DMEM (Thermo Fisher, 10567014). After two washes with DPBS, the cells were resuspended in
519 Dulbecco's PBS (Gibco, 14190-094) plus 20 mM HEPES. Further incubation with the indicated

520 treatments was performed at 37°C. Relative quantification and comparison of Fluo-4-AM
521 fluorescence were performed using a BD FACSVerse flow cytometer.

522 To measure the absolute $[Ca^{2+}]_{cyt}$, cells were grown in 96-well plates and stained with 3 mM
523 Fluo-4-AM in medium for 25 min. After the indicated treatments, we changed the medium to HBSS
524 (Thermo Fisher Scientific, 14025050) and imaged the cells on the ImageXpress Pico platform. The
525 absolute $[Ca^{2+}]_{cyt}$ was calculated according to

$$526 [Ca^{2+}]_{cyt} = K_d \{ (F - F_{min}) / (F_{max} - F) \} \quad (1)$$

527 F is the desired fluorescence intensity measured by the ImageXpress Pico platform; F_{max} is the
528 fluorescence intensity at saturating free Ca^{2+} concentration ($[Ca^{2+}]_{free}$); F_{min} is the fluorescence
529 intensity at zero $[Ca^{2+}]_{free}$; To determine K_d , we stained the cells with 3 mM Fluo-4-AM and then
530 incubated the cells with a series of Ca^{2+} calibration buffers ($[Ca^{2+}]_{free} = 0, 0.0717, 0.1613$, and 39.8
531 μM) supplemented with 10 μM valinomycin, 10 μM nigericin and 3 μM ionomycin for 5 min.
532 Thereafter, the images of the cells were taken with the ImageXpress Pico platform. The obtained
533 fluorescence intensities of Fluo4-AM were used to plot $\log \{ (F - F_{min}) / (F_{max} - F) \}$ vs. $\log [Ca^{2+}]$. The X-
534 intercept from the linear plot is the $\log K_d$. For the preparation of calcium calibration buffer, the
535 $[Ca^{2+}]_{free}$ was estimated using the equation:

$$536 [Ca^{2+}]_{free} = K_d^{EGTA} \times [CaEGTA / K_2EGTA] \quad (2)$$

537 where K_d^{EGTA} is the dissociation constant of CaEGTA at a given temperature, ionic strength and pH
538 and $[CaEGTA / K_2EGTA]$ is the molar ratio of CaEGTA to K_2EGTA in the particular solution. The table
539 listing K_d^{EGTA} values for CaEGTA in 0.1 M KCl at 37°C can be found through the link
540 (<https://biotium.com/wp-content/uploads/2013/07/PI-59100.pdf>).

541 HEK293 cells were seeded on 25 mm² glass coverslips in standard tissue culture plates (6-
542 well plate, 2 mL of total volume per well) at a density of 2×10^5 cells per well, i.e., 100,000 cells
543 per mL. After 48 h in culture, the cells were transfected. HEK293 cells were transfected with 1.5 μg
544 of TRPML1-GCaMP6s- or 1 μg of the respective control plasmid or TMEM165-mCherry-carrying
545 plasmid, 4 μL of TurbofectTM, and 200 μL of serum-free DMEM per well in a 6-well plate. The cells
546 were then incubated at 37°C for 24 h. Ca^{2+} imaging was performed using an inverted Leica DMi8
547 live cell microscope. First, transfected cells were washed with DMEM and Ca^{2+} -free buffer was used
548 to carefully rinse the wells before placing the glass coverslips into the imaging chamber. All
549 GCaMP6s experiments were conducted in Ca^{2+} -free buffer comprising 138 mM NaCl, 6 mM KCl, 1
550 mM MgCl₂, 10 mM HEPES, 5.5 mM D-glucose monohydrate and 2 mM EGTA (adjusted to pH = 7.4
551 with NaOH). Then, 450 μL Ca^{2+} -free buffer was slowly added to the chamber to prevent the cells
552 being washed away. The osmolarity of the Ca^{2+} -free buffer was adjusted to 300 mOsmol/L.
553 GCaMP6s was excited at 470 nm (GFP excitation wavelength) and the emitted fluorescence was

554 captured with a 515 nm longpass filter. mCherry was excited at 568 nm and the emitted
555 fluorescence was captured with a 590 nm filter. Images were obtained every 2.671 sec with a 63x
556 objective. Regions of interest were drawn around each cell coexpressing the GCaMP6s and
557 mCherry constructs. Background areas without cells were selected for manual background
558 subtraction. The fluorescence intensity was calculated using LAS X 5.1.0 software. Baseline values
559 were acquired by averaging fluorescence intensity values from a 30 s recording before the addition
560 of 10 μ M ML-SA1. The area under the curve was calculated using GraphPad Prism 9.0.1 software.
561 The mean values per experiment containing 4-12 cells were calculated and used for plotting.
562 **Perilysosomal pH measurement.** Lyso-mKeima expressing cells were grown in 96-well plate and
563 then treated as indicated. Finally, we changed the medium to Live Cell Imaging Solution (Thermo
564 Fisher Scientific, A14291DJ) and obtained images of the cells with the ImageXpress high-content
565 platform. Standard curves used to estimate perilysosomal pH were created by a similar analysis of
566 cells incubated with a series of pH calibration buffers (pH 6.0, 6.5, 7.0, and 7.5; 140 mM NaCl; 2.5
567 mM KCl; 1.8 mM CaCl₂; 1mM MgCl₂; and 20 mM HEPES) supplemented with 10 μ M valinomycin and
568 10 μ M nigericin for 5 min.
569 **Lysosomal pH measurement.** To calculate the absolute lysosomal pH, we plated cells in 96-well
570 plates. The next day, the cells were stained with 1 μ M LysoSensor Yellow /Blue DND-160 (Thermo
571 Fisher Scientific, L-7545) for 5 minutes, washed twice with DPBS. Then we changed the medium to
572 phenol-red-free DMEM supplemented with high glucose and HEPES (Thermo Fisher Scientific,
573 21063029) and measured the fluorescence of the cells in the SpectraMax iD3 at Ex 329 nm/ Em 440
574 nm and Ex 380 nm/ Em 540 nm. Standard curves used to estimate lysosomal pH were created by a
575 similar analysis of cells incubated with a series of pH calibration buffers (pH 4, 4.5, 5, and 5.5, 15
576 mM HEPES, 130 mM KCl, 1 mM MgCl₂) supplemented with 10 μ M valinomycin and 10 μ M nigericin
577 for 5 min.
578 **Cytosolic pH measurement.** Stably transfected HeLa SypHer3S cells were grown on 96-well plates.
579 After the indicated treatments, the medium was changes to Live Cell Imaging Solution and images
580 were taken with the ImageXpress high-content platform. Standard curves used to estimate
581 cytosolic pH were created by a similar analysis of cells incubated with a series of pH calibration
582 buffers (pH 6, 6.5, 7, and 7.5) supplemented with 10 μ M valinomycin and 10 μ M nigericin for 5 min.
583 Alternatively, the cells were incubated for 30 min at 37°C in the medium containing an 1:1:0.00
584 dilution of pHrodo™ Green AM Intracellular pH Indicator (Thermo Fisher Scientific, P-35373) and an
585 1:100 dilution of PowerLoad™ concentrate. The cells were subsequently washed with Live Cell
586 Imaging Solution and analyzed on an ImageXpress high-content platform.

587 **Whole-cell electrophysiology.** HEK293 cells were seeded on 12 mm² glass coverslips in standard 24-well tissue culture plates and were allowed to grow for 24-48 h before transfection. Transfection involved the use of 0.6 µg of total DNA, 2 µL of TurbofectTM, and 100 µL of serum-free DMEM per well. Manual patch-clamp recordings of transiently transfected HEK293 cells were carried out in whole-cell configuration. The extracellular/bath solution contained 140 mM NMDG, 10 mM HEPES, 10 mM MES, 5 mM EGTA, 5 mM glucose, and 10 nM free [Ca²⁺] CaCl₂ with or without 1 mM MgCl₂. The solution was adjusted to either pH 4.6 or 7.5 with MSA. The intracellular/pipette solution contained 140 mM NMDG, 10 mM HEPES, 5 mM EGTA with or without 1 mM MgCl₂, and variable concentrations of CaCl₂ to reach either 10 nM or 1 µM free [Ca²⁺]. The pH was adjusted to 7.5 with MSA. The total calcium concentration at each pH was calculated to maintain the indicated amount of free calcium using <https://somapp.ucdmc.ucdavis.edu/pharmacology/bers/maxchelator/CaMgATPEGTA-TS.htm>. Recording glass pipettes, with resistances in the range of 5-10 MΩ were pulled and polished. Electrophysiological recordings were performed using an EPC10 patch-clamp amplifier (HEKA, Lambrecht, Germany), controlled by PatchMaster software (HEKA Elektronik). The compensation circuit of the EPC-10 amplifier cancelled fast and slow capacitive transients. In all the experiments, a step protocol was used: 400 ms voltage steps from -100 to +60 mV in 20 mV increments were applied every 5 s for a total of 13 steps, and the holding potential was 0 mV. Digitized and filtered (40 kHz and low-pass filter frequency of 2.9 kHz) current amplitudes at the end (last 5%) of each step, recording from -100 to +60 mV were extracted and normalized to the cell size. All the experiments were conducted at room temperature (22-23°C) and the data were analyzed with GraphPad Prism 10.0.2.

608 **Cell death.** Cells (5000 cells/well) were plated on 96-well plates, and 24 h later, they were treated as indicated. After the indicated times, the cells were incubated with 0.2 µg/ml propidium iodide or 170 nM SYTOXTM Green Nucleic Acid Stain and 2.5 µg/ml Hoechst-33342 for 10 min at 37°C, and cell death was analyzed using a Celigo Imaging Cytometer (Nexcelom Bioscience) according to the manufacturer's instructions.

613 **Preparation of FeDEX solution.** FeCl₂ (0.38 g) and FeCl₃ (0.73 g) were dissolved in 2.5 ml H₂O each. After the two obtained solutions were mixed, 2.5 ml of 30% (v/v) NH₄OH and 25 ml of 5% (v/v) NH₄OH were added sequentially while a magnetic stirrer was used to stir the solution for 30 mins. After the iron particles had settled, the supernatant was discarded and the iron particles were washed twice with 25 ml H₂O and resuspended in 20 ml 0.3 M HCl with a magnetic stirrer for 30 min. Finally, we added 1 g of Dextran 40, stirred the mor for another 30 min and dialyzed the iron dextran solution with H₂O for 24 hours at 4°C.

620 **FeDEX purification.** Cells grown on 15 cm petri dishes were incubated in 20 ml medium containing
621 100 μ l of FeDEX solution. The next day, we changed the medium to normal medium. After 2-3
622 hours of chase, the cells were harvested in PBS and washed three times in SuMa buffer (10 mM
623 HEPES; 0.21 M mannitol; 0.07 M sucrose; pH 7.5). The cells were then resuspended in SuMa4 buffer
624 (SuMa 2, 1 μ l Benzonase, protease inhibitor) at a concentration of 30×10^6 cells/ml and
625 homogenized by a gentleMACS Dissociator machine or syringe with a 25G needle. The resulting
626 samples were pelleted by 2x10 min centrifugation at 1500 g. The supernatant was collected as the
627 light membrane fraction (LMF). To further enrich lysosomes containing iron dextran particle, the
628 LMF were passed through MS columns (Miltenyi Biotec, 130-042-201) and the columns were
629 washed three times (once with SuMa4 and twice with SuMa2 (SuMa, 0.5 mM DTT, 0.5% fatty acid-
630 free BSA in SuMa buffer)). Finally, the lysosomal fractions were eluted with 600 μ l of SuMa2 from
631 the columns, which were detached from the magnetic stand.

632 **Statistical analysis.** Unless otherwise indicated, the statistical analyses were performed using
633 GraphPad Prism 9 or GraphPad Prism 10 software. Data are shown as means \pm SD unless stated
634 otherwise. The specific statistical tests applied are given in the respective figure legends, where
635 statistical significance is given by * P < 0.05, ** P < 0.01, and *** P < 0.001; n.s., not significant.

636
637 **Acknowledgments**

638 We thank Shawn M. Ferguson for providing valuable reagents, and Dianna Skousborg Larsen, Louise
639 Vanderfox and Tiina Naumanen Dietrich for the technical assistance.

640 **Funding:** This work was supported by the Danish National Research Foundation grant DNRF125 to
641 M.J., the Danish Cancer Society grants R269-A15695 and R352-A20587 to M.J., the Novo Nordisk
642 Foundation grant NNF19OC0054296 to M.J., and DFG GR4315/2-2, DFG GR4315/7-1, SFB/TRR152
643 P04, and SFB1328 A21 to C.G.

644
645 **Author contributions:**

646 Conceptualization: BL, MJ
647 Methodology: BL, KM, MJ
648 Investigation: RC, BL, DJ, LK, VK, BW
649 Visualization: RC, BL, DJ, LK, VK, BW, YK, AP
650 Supervision: BL, KM, CG, MJ
651 Writing—original draft: BL, MJ
652 Writing—review & editing: RC, BL, DJ, LK, VK, KM, CG, MJ

653

654 **Competing interests:** The authors declare that they have no competing interests.
655
656 **Data and materials availability:** All the data needed to evaluate the conclusions in the paper are
657 present in the paper and the Supplementary Materials. Cell lines, plasmids and data sets generated
658 during the current study will be available from the corresponding authors upon reasonable request.
659
660

References

662 1. Berridge, M.J., Bootman, M.D. & Roderick, H.L. Calcium signalling: dynamics,
663 homeostasis and remodelling. *Nat Rev Mol Cell Biol* **4**, 517-529 (2003).

664 2. Li, P., Gu, M. & Xu, H. Lysosomal Ion Channels as Decoders of Cellular Signals.
665 *Trends Biochem Sci* **44**, 110-124 (2019).

666 3. White, K.A., Grillo-Hill, B.K. & Barber, D.L. Cancer cell behaviors mediated by
667 dysregulated pH dynamics at a glance. *J Cell Sci* **130**, 663-669 (2017).

668 4. Chen, R., Jäättelä, M. & Liu, B. Lysosome as a Central Hub for Rewiring PH
669 Homeostasis in Tumors. *Cancers (Basel)* **12** (2020).

670 5. Flinck, M., Kramer, S.H. & Pedersen, S.F. Roles of pH in control of cell proliferation.
671 *Acta Physiol (Oxf)* **223**, e13068 (2018).

672 6. Orrenius, S., Zhivotovsky, B. & Nicotera, P. Regulation of cell death: the calcium-
673 apoptosis link. *Nat Rev Mol Cell Biol* **4**, 552-565 (2003).

674 7. Lagadic-Gossmann, D., Huc, L. & Lecureur, V. Alterations of intracellular pH
675 homeostasis in apoptosis: origins and roles. *Cell Death Differ* **11**, 953-961 (2004).

676 8. de Duve, C., Pressman, B.C., Gianetto, R., Wattiaux, R. & Appelmans, F. Tissue
677 fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver
678 tissue. *Biochem J* **60**, 604-617 (1955).

679 9. Xu, H. & Ren, D. Lysosomal physiology. *Annu Rev Physiol* **77**, 57-80 (2015).

680 10. Holland, L.K.K., Nielsen, I.O., Maeda, K. & Jaattela, M. SnapShot: Lysosomal
681 Functions. *Cell* **181**, 748-748 e741 (2020).

682 11. Ballabio, A. & Bonifacino, J.S. Lysosomes as dynamic regulators of cell and
683 organismal homeostasis. *Nat Rev Mol Cell Biol* **21**, 101-118 (2020).

684 12. Ellegaard, A.-M., Bach, P. & Jäättelä, M. Targeting cancer lysosomes with good old
685 cationic amphiphilic drugs. *Rev Physiol Biochem Pharmacol* **185**, 107-152 (2023).

686 13. Stahl-Meyer, J., Stahl-Meyer, K. & Jaattela, M. Control of mitosis, inflammation, and
687 cell motility by limited leakage of lysosomes. *Curr Opin Cell Biol* **71**, 29-37 (2021).

688 14. Sterea, A.M., Almasi, S. & El Hiani, Y. The hidden potential of lysosomal ion
689 channels: A new era of oncogenes. *Cell Calcium* **72**, 91-103 (2018).

690 15. Maxson, M.E. & Grinstein, S. The vacuolar-type H⁽⁺⁾-ATPase at a glance - more
691 than a proton pump. *J Cell Sci* **127**, 4987-4993 (2014).

692 16. Stransky, L., Cotter, K. & Forgac, M. The Function of V-ATPases in Cancer. *Physiol
693 Rev* **96**, 1071-1091 (2016).

694 17. Hu, M. *et al.* Parkinson's disease-risk protein TMEM175 is a proton-activated proton
695 channel in lysosomes. *Cell* **185**, 2292-2308 e2220 (2022).

696 18. Zheng, W. *et al.* pH regulates potassium conductance and drives a constitutive proton
697 current in human TMEM175. *Sci Adv* **8**, eabm1568 (2022).

698 19. Dolman, N.J. & Tepikin, A.V. Calcium gradients and the Golgi. *Cell Calcium* **40**,
699 505-512 (2006).

700 20. Lloyd-Evans, E. & Waller-Evans, H. Lysosomal Ca(2+) Homeostasis and Signaling
701 in Health and Disease. *Cold Spring Harb Perspect Biol* **12** (2020).

702 21. Morgan, A.J., Platt, F.M., Lloyd-Evans, E. & Galione, A. Molecular mechanisms of
703 endolysosomal Ca2+ signalling in health and disease. *Biochem J* **439**, 349-374
704 (2011).

705 22. Pittman, J.K. Vacuolar Ca(2+) uptake. *Cell Calcium* **50**, 139-146 (2011).

706 23. Hwang, S.M. *et al.* Intracellular acidification is associated with changes in free
707 cytosolic calcium and inhibition of action potentials in rat trigeminal ganglion. *J Biol
708 Chem* **286**, 1719-1729 (2011).

709 24. Grant, R.L. & Acosta, D. Interactions of intracellular pH and intracellular calcium in
710 primary cultures of rabbit corneal epithelial cells. *In Vitro Cell Dev Biol Anim* **32**, 38-
711 45 (1996).

712 25. Tanimura, A., Tojyo, Y. & Matsumoto, Y. The cytosolic acidification in rat parotid
713 cells is associated with an increase in cytosolic Ca²⁺ concentration. *Jpn J Pharmacol*
714 **61**, 357-360 (1993).

715 26. Gonzalez, A., Camello, P.J., Pariente, J.A. & Salido, G.M. Free cytosolic calcium
716 levels modify intracellular pH in rat pancreatic acini. *Biochem Biophys Res Commun*
717 **230**, 652-656 (1997).

718 27. Anand, A. *et al.* Cell Death Induced by Cationic Amphiphilic Drugs Depends on
719 Lysosomal Ca(2+) Release and Cyclic AMP. *Mol Cancer Ther* **18**, 1602-1614 (2019).

720 28. Demaegd, D. *et al.* Newly characterized Golgi-localized family of proteins is involved
721 in calcium and pH homeostasis in yeast and human cells. *Proc Natl Acad Sci U S A*
722 **110**, 6859-6864 (2013).

723 29. Amick, J., Tharkeshwar, A.K., Talaia, G. & Ferguson, S.M. PQLC2 recruits the
724 C9orf72 complex to lysosomes in response to cationic amino acid starvation. *J Cell
725 Biol* **219** (2020).

726 30. Tantama, M., Hung, Y.P. & Yellen, G. Imaging intracellular pH in live cells with a
727 genetically encoded red fluorescent protein sensor. *J Am Chem Soc* **133**, 10034-10037
728 (2011).

729 31. Tie, H.C. *et al.* A novel imaging method for quantitative Golgi localization reveals
730 differential intra-Golgi trafficking of secretory cargoes. *Mol Biol Cell* **27**, 848-861
731 (2016).

732 32. Ellegaard, A.M. *et al.* Repurposing Cationic Amphiphilic Antihistamines for Cancer
733 Treatment. *EBioMedicine* **9**, 130-139 (2016).

734 33. Petersen, N.H. *et al.* Transformation-associated changes in sphingolipid metabolism
735 sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase.
736 *Cancer Cell* **24**, 379-393 (2013).

737 34. Liu, B. *et al.* Cationic amphiphilic antihistamines inhibit STAT3 via Ca²⁺-
738 dependent lysosomal H⁺ efflux. *Cell Rep* **42**, 112137 (2023).

739 35. Wu, Y., Huang, P. & Dong, X.P. Lysosomal Calcium Channels in Autophagy and
740 Cancer. *Cancers (Basel)* **13** (2021).

741 36. Lytton, J., Westlin, M. & Hanley, M.R. Thapsigargin inhibits the sarcoplasmic or
742 endoplasmic reticulum Ca-ATPase family of calcium pumps. *J Biol Chem* **266**,
743 17067-17071 (1991).

744 37. Dixon, C.J. *et al.* Extracellular nucleotides stimulate proliferation in MCF-7 breast
745 cancer cells via P2-purinoceptors. *Br J Cancer* **75**, 34-39 (1997).

746 38. Shen, D. *et al.* Lipid storage disorders block lysosomal trafficking by inhibiting a TRP
747 channel and lysosomal calcium release. *Nat Commun* **3**, 731 (2012).

748 39. Foulquier, F. *et al.* TMEM165 deficiency causes a congenital disorder of
749 glycosylation. *Am J Hum Genet* **91**, 15-26 (2012).

750 40. Potelle, S. *et al.* Glycosylation abnormalities in Gdt1p/TMEM165 deficient cells
751 result from a defect in Golgi manganese homeostasis. *Hum Mol Genet* **25**, 1489-1500
752 (2016).

753 41. Morelle, W. *et al.* Galactose Supplementation in Patients With TMEM165-CDG
754 Rescues the Glycosylation Defects. *J Clin Endocrinol Metab* **102**, 1375-1386 (2017).

755 42. Rosnoblet, C. *et al.* Impact of disease-causing mutations on TMEM165 subcellular
756 localization, a recently identified protein involved in CDG-II. *Hum Mol Genet* **22**,
757 2914-2928 (2013).

758 43. Haller, T., Dietl, P., Deetjen, P. & Volkl, H. The lysosomal compartment as
759 intracellular calcium store in MDCK cells: a possible involvement in InsP3-mediated
760 Ca²⁺ release. *Cell Calcium* **19**, 157-165 (1996).

761 44. Yuan, Y. *et al.* The lysosomotrope GPN mobilises Ca(2+) from acidic organelles. *J
762 Cell Sci* **134** (2021).

763 45. Aits, S. *et al.* Sensitive detection of lysosomal membrane permeabilization by
764 lysosomal galectin puncta assay. *Autophagy* **11**, 1408-1424 (2015).

765 46. Sano, O. *et al.* Vacuolin-1 inhibits autophagy by impairing lysosomal maturation via
766 PIKfyve inhibition. *FEBS Lett* **590**, 1576-1585 (2016).

767 47. Ruas, M. *et al.* Purified TPC isoforms form NAADP receptors with distinct roles for
768 Ca(2+) signaling and endolysosomal trafficking. *Curr Biol* **20**, 703-709 (2010).

769 48. Cao, Q. *et al.* Calcium release through P2X4 activates calmodulin to promote
770 endolysosomal membrane fusion. *J Cell Biol* **209**, 879-894 (2015).

771 49. Medina, D.L. *et al.* Lysosomal calcium signalling regulates autophagy through
772 calcineurin and TFEB. *Nat Cell Biol* **17**, 288-299 (2015).

773 50. Christensen, K.A., Myers, J.T. & Swanson, J.A. pH-dependent regulation of
774 lysosomal calcium in macrophages. *J Cell Sci* **115**, 599-607 (2002).

775 51. Lopez-Sanjurjo, C.I., Tovey, S.C., Prole, D.L. & Taylor, C.W. Lysosomes shape
776 Ins(1,4,5)P3-evoked Ca²⁺ signals by selectively sequestering Ca²⁺ released from the
777 endoplasmic reticulum. *J Cell Sci* **126**, 289-300 (2013).

778 52. Garrity, A.G. *et al.* The endoplasmic reticulum, not the pH gradient, drives calcium
779 refilling of lysosomes. *Elife* **5** (2016).

780 53. Atakpa, P., Thillaiappan, N.B., Mataragka, S., Prole, D.L. & Taylor, C.W. IP(3)
781 Receptors Preferentially Associate with ER-Lysosome Contact Sites and Selectively
782 Deliver Ca(2+) to Lysosomes. *Cell Rep* **25**, 3180-3193 e3187 (2018).

783 54. Zajac, M. *et al.* A mechanism of lysosomal calcium entry. *Sci Adv* **10**, eadk2317
784 (2024).

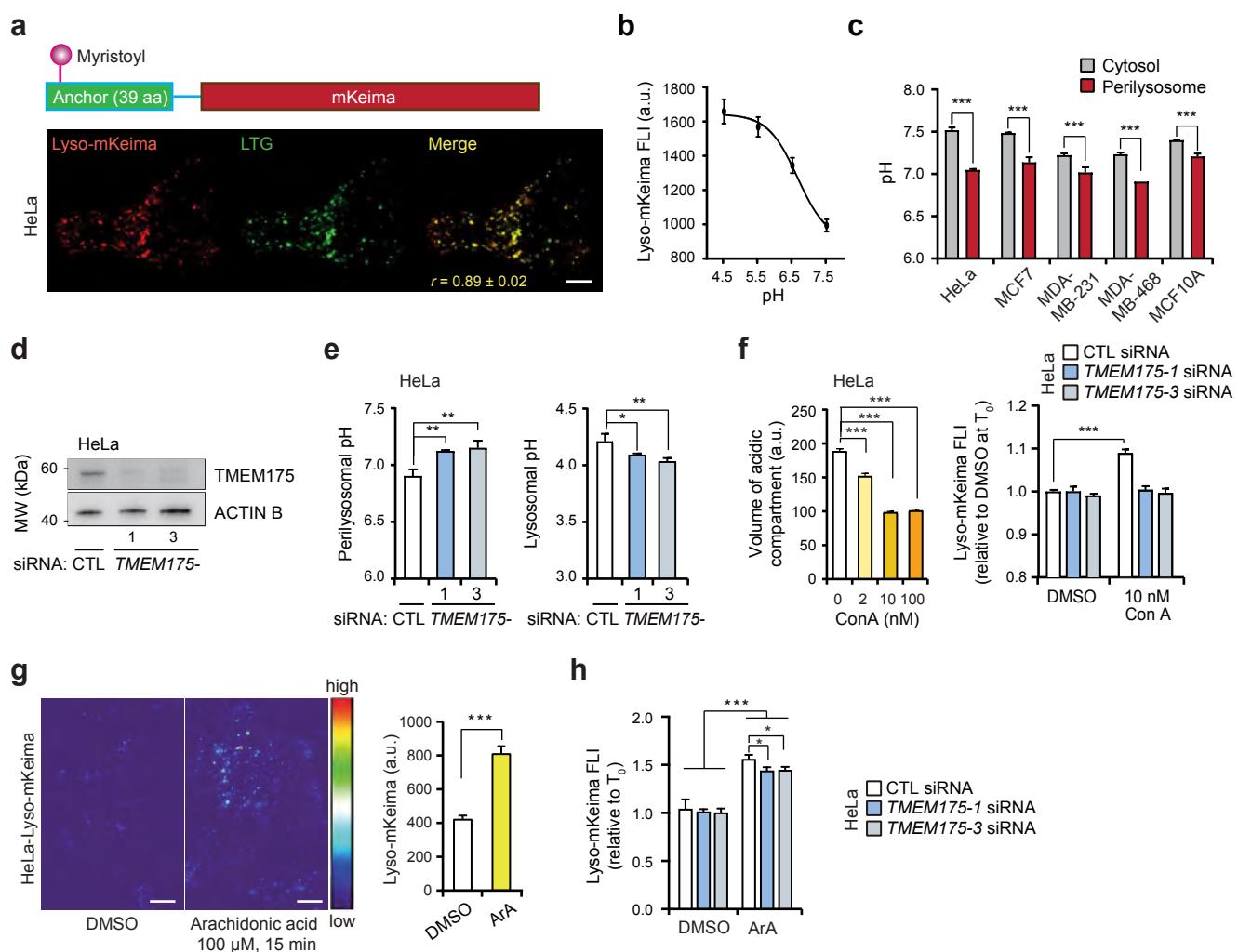
785 55. Chadet, S. *et al.* P2x4 receptor promotes mammary cancer progression by sustaining
786 autophagy and associated mesenchymal transition. *Oncogene* (2022).

787 56. Murali, P. *et al.* Novel role for the Golgi membrane protein TMEM165 in control of
788 migration and invasion for breast carcinoma. *Oncotarget* **11**, 2747-2762 (2020).

789 57. Srivastava, J., Barber, D.L. & Jacobson, M.P. Intracellular pH sensors: design
790 principles and functional significance. *Physiology (Bethesda)* **22**, 30-39 (2007).

791 58. Zhang, C.S. *et al.* Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by
792 AMPK. *Nature* **548**, 112-116 (2017).

793 59. Takahara, T., Amemiya, Y., Sugiyama, R., Maki, M. & Shibata, H. Amino acid-
794 dependent control of mTORC1 signaling: a variety of regulatory modes. *J Biomed Sci*
795 **27**, 87 (2020).


796 60. Lawrence, R.E. & Zoncu, R. The lysosome as a cellular centre for signalling,
797 metabolism and quality control. *Nat Cell Biol* **21**, 133-142 (2019).

798 61. Zaichick, S.V., McGrath, K.M. & Caraveo, G. The role of Ca(2+) signaling in
799 Parkinson's disease. *Dis Model Mech* **10**, 519-535 (2017).

800 62. Jaattela, M., Benedict, M., Tewari, M., Shayman, J.A. & Dixit, V.M. Bcl-x and Bcl-2
801 inhibit TNF and Fas-induced apoptosis and activation of phospholipase A2 in breast
802 carcinoma cells. *Oncogene* **10**, 2297-2305 (1995).

803 63. Grimm, C. *et al.* Small molecule activators of TRPML3. *Chem Biol* **17**, 135-148
804 (2010).

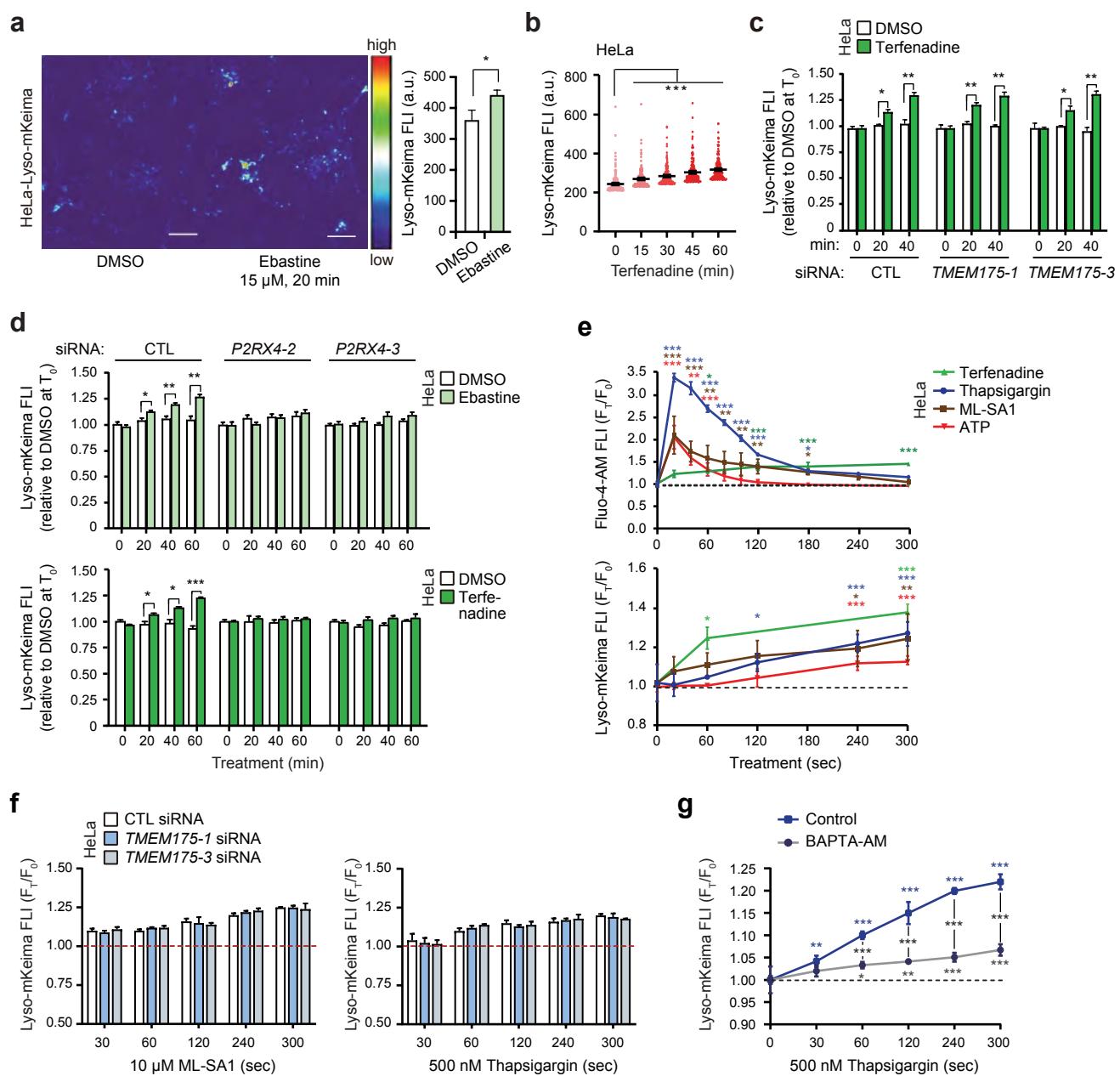

805

Figure 1. TMEM175 acidifies the perilysosomal area

- Construct of Lyso-mKeima (top). Representative (n=3) confocal images of live HeLa-Lyo-mKeima stained with Lysotracker® Green (bottom). r, Pearson's colocalization coefficient (n=20). Scale bars, 10 μm.
- The standard curve for fluorescence intensity (FLI) of mKeima at pH ranging from 4.5 to 7.5.
- Cytosolic and perilysosomal pH values of indicated cell lines.
- Representative (n=3) immunoblots of indicated proteins in HeLa cells treated with indicated siRNAs for 72 h.
- Perilysosomal pH analyzed by Lyso-mKeima (left) and lysosomal pH analyzed by LysoSensor™ Yellow/Blue FLI (right) in HeLa cells treated with indicated siRNAs for 72 h.
- Relative volumes of acidic compartments in HeLa cells treated with Con A for 1 h, stained with Lysotracker green, and analyzed by flow cytometry (left). mKeima FLI in HeLa-Lyo-mKeima cells treated for 72 h with indicated siRNAs and with either DMSO or 10 nM Con A for 1 h (right).
- Representative (n=3) images of live HeLa-Lyo-mKeima cells treated with 100 μM Arachidonic acid for 15 min (left). mKeima FLI of cells shown on left (right).
- mKeima FLI in HeLa-Lyo-mKeima cells treated for 72 h with indicated siRNAs and with either DMSO or 100 μM Arachidonic acid for 20 min.

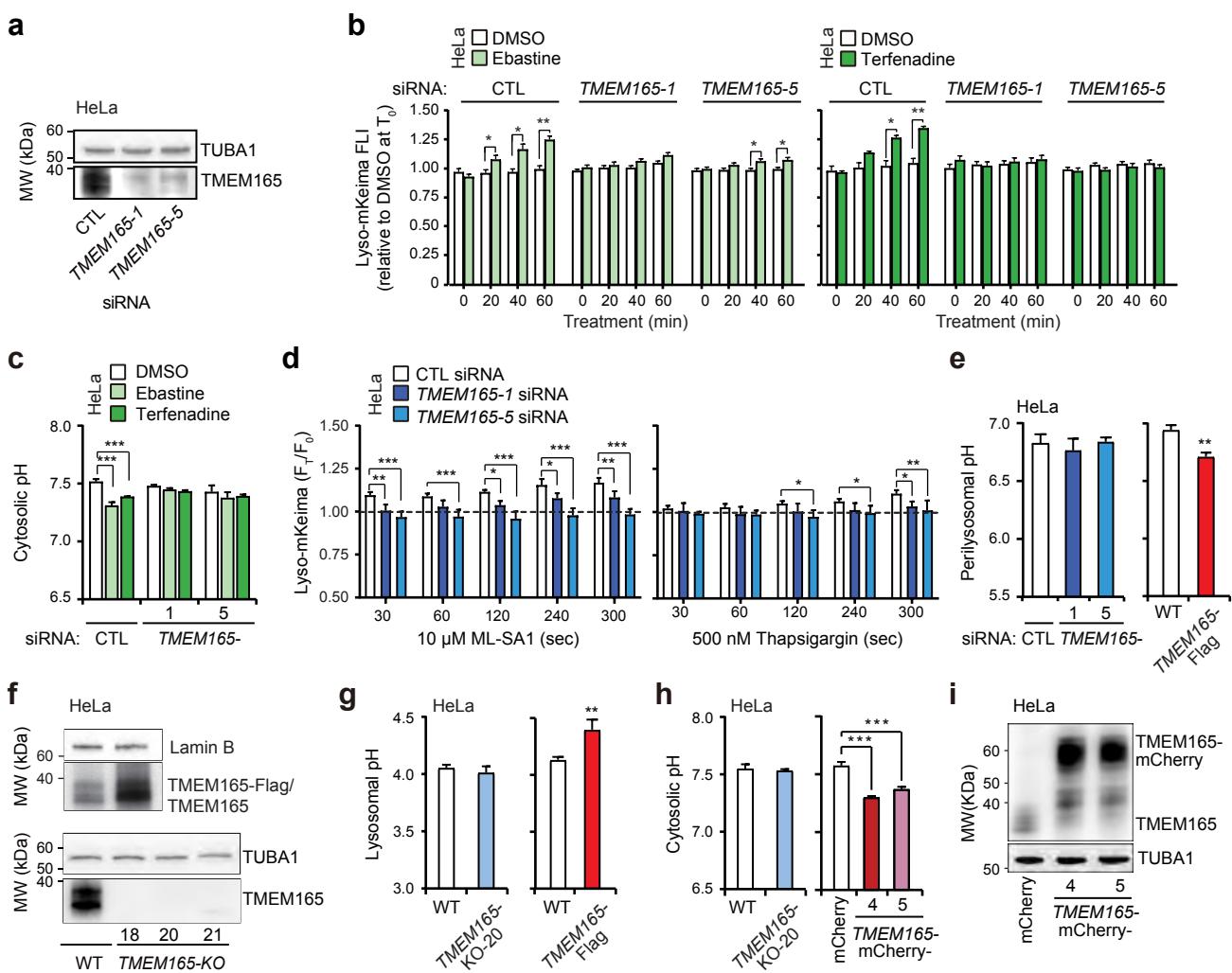

Error bars, SD of three independent experiments with ≥ 10 (a bottom, b, c, e, f right, g, h), or ≥ 10000 (f left) randomly chosen cells analyzed in each sample. *, P < 0.05; **, P < 0.01; ***, P < 0.001 as analyzed by one-way Anova (e, f left, g right) or two-way Anova (c, f right, h) with Tukey (e, f left, g right) or Dunnett (c, f right, h) multiple comparison.

Figure 2. Ca2+ mobilizing agents induce TMEM175-independent lysosomal H+ leak

- Representative ($n = 3$) images of live HeLa-Lyo-mKeima cells treated with 15 μ M ebastine for 20 min (left). mKeima FLI of cells shown on left (right).
- Kinetics of mKeima FLI in HeLa cells treated with 6 μ M terfenadine.
- mKeima FLI in HeLa-Lyo-mKeima cells treated for 72 h with indicated siRNAs and with either DMSO or 6 μ M terfenadine for the last 20 or 40 min.
- mKeima FLI in HeLa-Lyo-mKeima cells treated for 72 h with indicated siRNAs and with 15 μ M ebastine (top) or 6 μ M terfenadine (bottom) for the last 20, 40 or 60 min.
- Fluo-4-AM FLI (top) and mKeima FLI (bottom) in HeLa cells treated with 6 μ M terfenadine, 500 nM thapsigargin, 10 μ M ML-SA1 or 1 μ M ATP for the last 0 – 300 sec and analyzed by flow cytometry.
- mKeima FLI in HeLa-Lyo-mKeima cells treated for 72 h with indicated siRNAs and with 10 μ M ML-SA1 (left) or 500 nM thapsigargin (right) for the last 0 – 300 sec.
- mKeima FLI in HeLa-Lyo-mKeima cells pretreated for 30 min with 20 μ M BAPTA-AM and treated with 500 nM thapsigargin for the last 0 – 300 sec.

Error bars, SD of three independent experiments with ≥ 10 (a, b, c, d, f, g), or ≥ 10000 (e) randomly chosen cells analyzed in each sample. *, $P < 0.05$; **, $P < 0.01$; ***, $P < 0.001$ as analyzed by one-way Anova (a, b) or two-way Anova (c, d, e, f, g) with Tukey (a, b) or Dunnett (c, d, e, f, g) multiple comparison.

Figure 3. Ca2+-induced lysosomal H⁺ leak is mediated by TMEM165

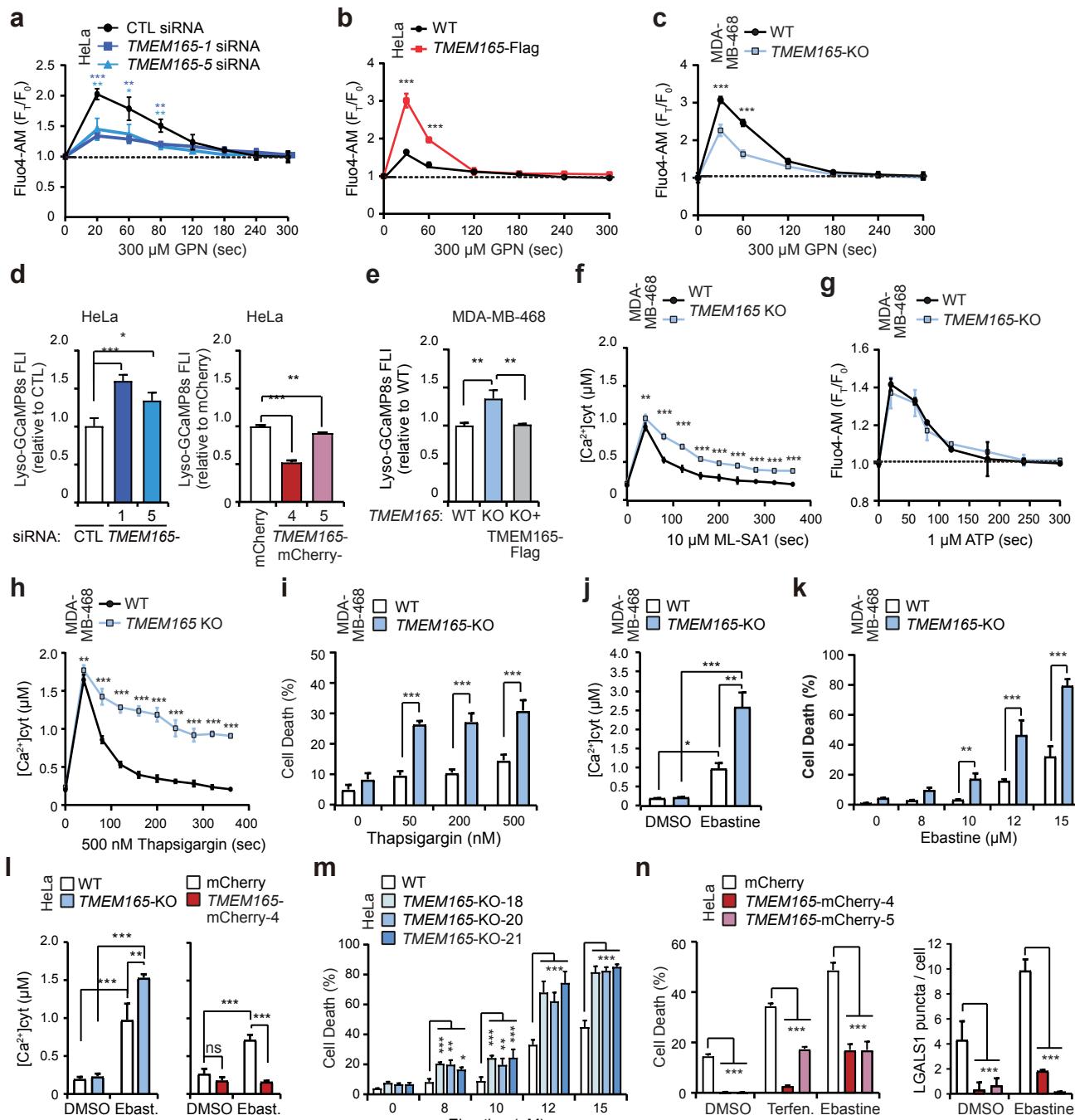
a. Representative (n=3) immunoblots of indicated proteins in HeLa cells treated with indicated siRNAs for 72 h.

b. mKeima FLI in HeLa-Lyo-mKeima cells treated for 72 h with indicated siRNAs and with 15 μ M ebastine (left) or 6 μ M terfenadine (right) for the last 20, 40 or 60 min.

c. Cytosolic pH analyzed by pHrodo-AM FLI in HeLa cells treated with indicated siRNAs for 72 h and with 15 μ M ebastine or 6 μ M terfenadine for 2 h.

d. mKeima FLI in HeLa-Lyo-mKeima cells treated for 72 h with indicated siRNAs and with 10 μ M ML-SA1 (left) or 500 nM thapsigargin (right) for the last 0 – 300 sec.

e. Perilysosomal pH analyzed by Lyso-mKeima FLI in HeLa cells treated with indicated siRNAs for 72 h (left) or in TMEM165 overexpressed cells (right).


f. Representative (n=3) immunoblots of indicated proteins in WT, TMEM165 overexpressed cell lines (top) and TMEM165-KO cell lines (bottom).

g. Lysosomal pH analyzed by LysoSensorTM Yellow/Blue FLI in HeLa TMEM165-KO cells (left) and TMEM165 overexpressed cells (right).

h. Cytosolic pH analyzed by pHrodo-AM FLI in HeLa TMEM165-KO cells (left) and TMEM165 overexpressed cells (right).

i. Representative (n=3) immunoblots of indicated proteins in mCherry- and TMEM165-mCherry-trasfected HeLa clones.

Error bars, SD of three independent experiments with ≥ 10 randomly chosen cells analyzed in each sample. *, P < 0.05; **, P < 0.01; ***, P < 0.001 as analyzed by one-way Anova (e left, h right) or two-way Anova (b, c, d) with Tukey (e left, h right) or Dunnett (b, c, d) multiple comparison. (e right, g, h left) were analyzed by unpaired t-test.

Figure 4. TMEM165 preserves lysosomal Ca²⁺ stores and protects against cytosolic Ca²⁺ overload

a-c. Fluo-4-AM FLI in HeLa cells treated with indicated siRNAs for 72 h (a), HeLa TMEM165 overexpressed cells (b) and MDA-MB-468 TMEM165-KO cells (c) treated with 300 μ M GPN for the last 0 – 300 sec.

d. Lyso-GCaMP8s FLI in HeLa cells treated for 72 h with CTL or TMEM165 siRNAs (left) or in HeLa TMEM165 overexpressed cells (right).

e. Lyso-GCaMP8s FLI in indicated cell lines.

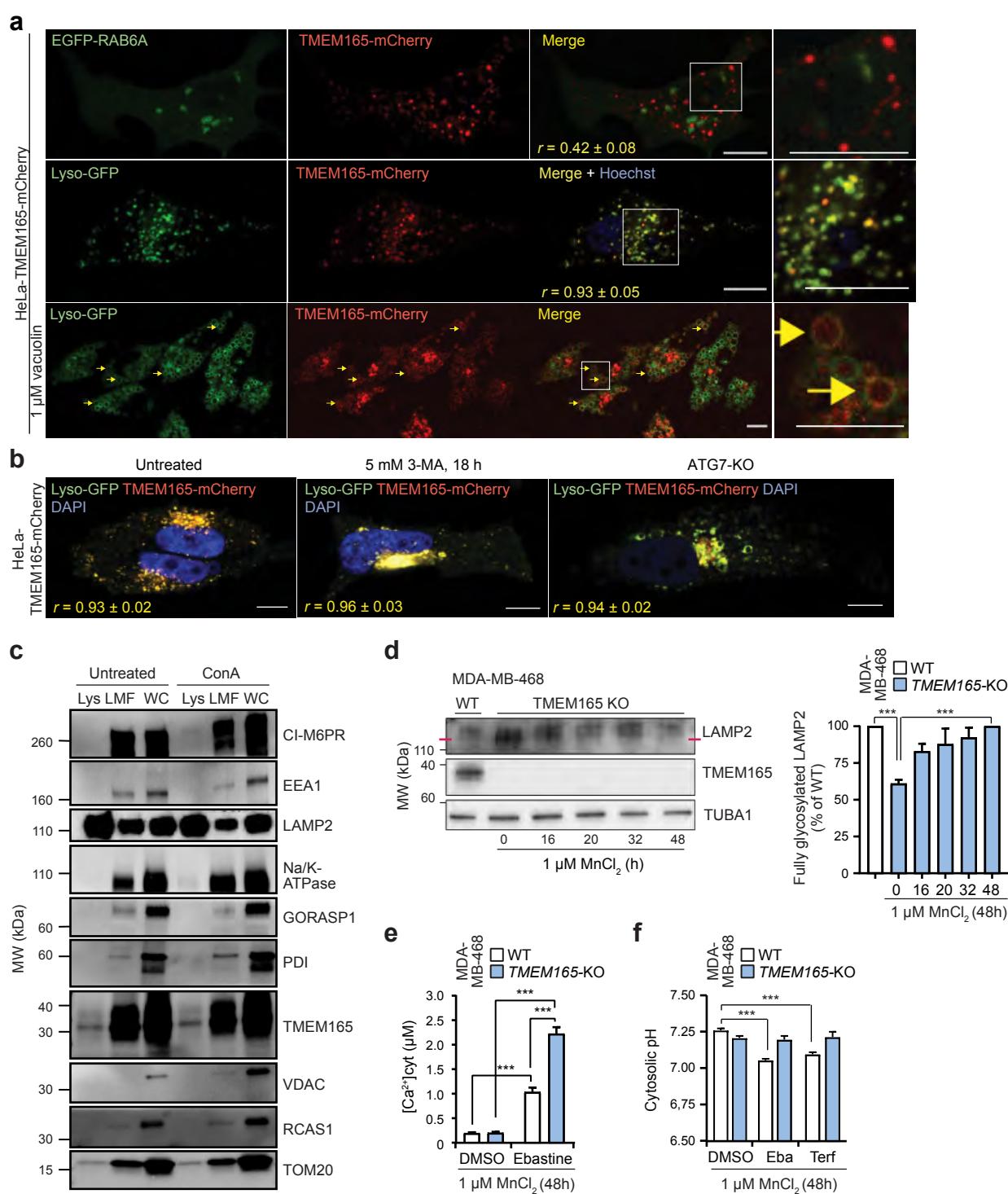
f. Cytosolic calcium concentration analyzed by Fluo-4-AM FLI in WT and TMEM165- KO MDA-MB-468 clones treated with 10 μ M MLSA1 for the last 0 – 300 sec.

g. Fluo-4-AM FLI in WT and TMEM165- KO MDA-MB-468 clones treated with 1 μ M ATP for the last 0 – 300 sec.

h. Cytosolic calcium concentration analyzed by Fluo-4-AM FLI in WT and TMEM165- KO MDA-MB-468 clones treated with 500 nM thapsigargin for the last 0 – 300 sec.

i. Death of indicated MDA-MB-468 cell clones treated with thapsigargin for 24 h. Cells were stained with propidium iodide (dead cells) and Hoechst-33342 (total cells) and cell death was analyzed by Celigo Imaging Cytometer.

j. Cytosolic calcium concentration analyzed by Fluo-4-AM FLI in WT and TMEM165- KO MDA-MB-468 clones with 15 μ M ebastine for 1 h.


k. Death of indicated MDA-MB-468 cell clones treated with ebastine for 24 h. Cells were stained with propidium iodide (dead cells) and Hoechst-33342 (total cells) and cell death was analyzed by Celigo Imaging Cytometer.

l. Cytosolic calcium concentration analyzed by Fluo-4-AM FLI in indicated WT and TMEM165- KO HeLa clones (left), mCherry- and TMEM165-mCherry-trasfected HeLa clones (right) with 15 μ M ebastine for 1 h.

m. Death of indicated HeLa cell clones treated with ebastine for 24 h. Cells were stained with propidium iodide (dead cells) and Hoechst-33342 (total cells) and cell death was analyzed by Celigo Imaging Cytometer.

n. Death of indicated HeLa cell clones treated with terfenadine or ebastine for 24 h. Cells were stained with SYTOX Green (dead cells) and Hoechst-33342 (total cells) and cell death was analyzed by Celigo Imaging Cytometer (left). Quantification of LGALS1/galectin 1 puncta (leaky lysosomes) in mCherry- and TMEM165-mCherry-trasfected HeLa clones treated with 15 μ M ebastine for the last 16 h (right).

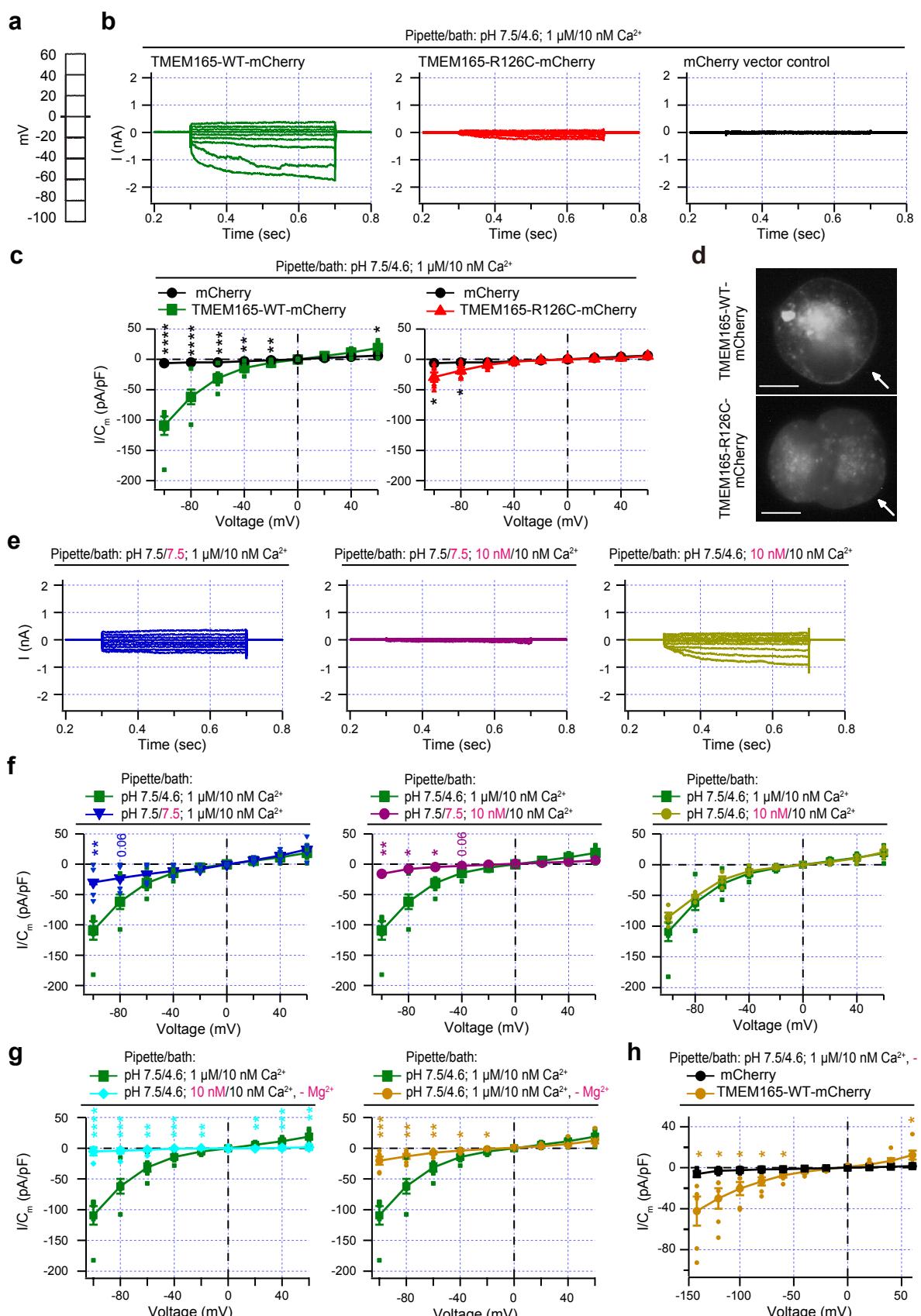

Error bars, SD of three independent experiments with ≥ 10 (f, h, i, l, n right), or ≥ 10000 (a, b, c, d, e, g, i, k, m, n left) randomly chosen cells analyzed in each sample. * $P < 0.05$; ** $P < 0.01$; *** $P < 0.001$ as analyzed by one-way Anova (d, e) or two-way Anova (a, b, c, f, g, h, i, j, k, l, m, n) with Tukey (d, e) or Dunnnett (a, b, c, f, g, h, i, j, k, l, m, n) multiple comparison.

Figure 5. TMEM165 is present on the lysosomal limiting membrane

- Representative ($n = 3$) confocal images of live HeLa-TMEM165-mCherry cells transfected with a Golgi marker EGFP-RAB6 (top), or stably expressing Lyso-GFP (middle and bottom). Yellow arrows point to vacuolin-enlarged lysosomes with both Lyso-GFP and TMEM165-mCherry on limiting membranes. DNA is visualized by Hoechst staining. White squares mark the area shown in enlarged images. r , Pearson's colocalization coefficient ($n=20$). Scale bar, 10 μ m.
- Representative ($n=3$) confocal images of live HeLa-TMEM165-mCherry-Lyo-EGFP cells with indicated treatments or genetic alteration. r , Pearson's colocalization coefficient ($n=20$). Scale bars, 10 μ m.
- Representative ($n \geq 3$) immunoblots of indicated proteins from purified lysosomes (Lys), light membrane fractions (LMF) and whole cell lysates (WC) of HeLa cells. When indicated, 10 nM concanamycin A (ConA) was added to all buffers used for the extraction.
- Representative ($n = 3$) immunoblots of indicated proteins in WT and TMEM165-KO MDA-MB-468 clones treated with 1 μ M MnCl₂ for indicated times (left), and relative quantification of fully glycosylated LAMP2 (right).
- Cytosolic Ca²⁺ concentration analyzed by Fluo-4-AM FLI in WT and TMEM165-KO MDA-MB-468 clones treated with DMSO or 15 μ M ebastine for the last 1 h of the 48 h treatment with 1 μ M MnCl₂.
- Cytosolic pH analyzed by pHrodo-AM FLI in WT and TMEM165-KO MDA-MB-468 clones treated with DMSO, 6 μ M terfenadine, or 15 μ M ebastine for the last 1 h of the 48 h treatment with 1 μ M MnCl₂.

Error bars, SD of three independent experiments with ≥ 10 randomly chosen cells analyzed in each sample. *, $P < 0.05$; **, $P < 0.01$; ***, $P < 0.001$ as analyzed by one-way Anova (d right) or two-way Anova (e, f) with Tukey (d right) or Dunnett (e, f) multiple comparison.

Figure 6. TMEM165 mediates H⁺ inward and Ca²⁺ outward currents

a. Voltage step protocol employed for current recordings. **b.** Examples of macroscopic current recordings conducted for TMEM165-WT-mCherry (green), TMEM165-R126C-mCherry mutant (R126C, red), and mCherry control (black) transiently expressed in HEK293 cells. Measurements were performed using indicated pH and Ca^{2+} concentrations in the pipette/bath. **c.** Current densities plotted against respective voltages for TMEM165-WT-mCherry (left, green squares, n=6) and TMEM165-R126C-mCherry (right, red triangles, n=6) and the control (black circles, n=12). **d.** Representative live images of HEK293 cells transiently transfected with TMEM165-WT-mCherry or TMEM165-R126C-mCherry. Arrows, plasma membrane; scale bars, 10 μ m. **e.** Examples of macroscopic current recordings for TMEM165-WT-mCherry using indicated pH and Ca^{2+} concentrations in the pipette/bath. **f.** Current densities plotted against respective voltages for TMEM165-WT-mCherry at indicated pH and Ca^{2+} concentrations in the pipette/bath solution with asymmetrical Ca^{2+} and pH (green squares, n=6) or asymmetrical Ca^{2+} and symmetrical pH (magenta circles, n=3), and symmetrical Ca^{2+} and asymmetrical pH (mustard circles, n=4), symmetrical Ca^{2+} and symmetrical pH (blue inverted triangles, n=4), symmetrical Ca^{2+} and asymmetrical pH (green squares, n=6) or asymmetrical Ca^{2+} and symmetrical pH (mustard circles, n=4). **g.** Current densities plotted against respective voltages for TMEM165-WT-mCherry at indicated pH and Ca^{2+} concentrations in the pipette/bath solution with asymmetrical Ca^{2+} and pH (green squares, n=6) and without Mg²⁺ (mustard circles, n=6, right) or symmetrical Ca^{2+} and asymmetrical pH without Mg²⁺ (cyan circles, n=7, left). **h.** Current densities plotted against respective voltages for TMEM165-WT-mCherry (orange circles, n=6) and mCherry control (black squares, n=6) at indicated pH and Ca^{2+} concentrations in the pipette/bath solution with asymmetrical Ca^{2+} and pH, and without Mg²⁺. Error bars, \pm SEM; *, P < 0.05; **, P < 0.01; ***, P < 0.001, ****, P < 0.0001, or as analyzed by unpaired t-test using GraphPad Prism 10.0.2.