

1 **POSTERIOR-SUPERIOR INSULA REPETITIVE TRANSCRANIAL MAGNETIC**
2 **STIMULATION REDUCES EXPERIMENTAL TONIC PAIN AND PAIN-RELATED**
3 **CORTICAL INHIBITION IN HUMANS**

4

5 Nahian S Chowdhury^{1,2,3}, Samantha K Millard¹, Enrico de Martino¹, Dennis Boye Larsen¹, David A
6 Seminowicz⁴, Siobhan M Schabrun^{5,6}, Daniel Ciampi de Andrade¹, Thomas Graven-Nielsen¹

7

8 ¹ Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology,
9 Aalborg University, Aalborg, Denmark

10 ² Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia

11 ³ University of New South Wales, Sydney, New South Wales, Australia

12 ⁴ Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of
13 Western Ontario, London, Canada

14 ⁵ The Gray Centre for Mobility and Activity, Parkwood Institute, London, Canada

15 ⁶ School of Physical Therapy, University of Western Ontario, London, Canada

16

17

18

19 **Running title:** Brain Stimulation, Experimental Pain and Cortical Inhibition

20 **Keywords:** rTMS, Posterior Insular Cortex, Transcranial-Magnetic Stimulation,
21 Electroencephalography, Combined TMS-EEG, Experimental Pain

22 **Number of Text Pages:** 20

23 **Number of Figures:** 8

24 **Number of Tables:** 1

25

26 **Corresponding author:**

27 Professor Thomas Graven-Nielsen, DMSc, Ph.D.

28 Center for Neuroplasticity and Pain (CNAP),

29 Department of Health Science and Technology,

30 Faculty of Medicine, Aalborg University.

31 Selma Lagerløfs Vej 249, 9260 Gistrup, Denmark.

32 Tel.: +45 9940 9832.

33 E-mail: tgn@hst.aau.dk

34

35 **ABSTRACT**

36 High frequency repetitive transcranial magnetic stimulation (rTMS) to the posterosuperior insula
37 (PSI) may produce analgesic effects. However, the neuroplastic changes behind PSI-rTMS
38 analgesia remain poorly understood. The present study aimed to determine whether tonic capsaicin-
39 induced pain and cortical inhibition (indexed using TMS-electroencephalography) are modulated by
40 PSI-rTMS. Twenty healthy volunteers (10 females) attended two sessions randomized to active or
41 sham rTMS. Experimental pain was induced by capsaicin administered to the forearm for 90
42 minutes, with pain ratings collected every 5 minutes. Left PSI-rTMS was delivered (10Hz, 100
43 pulses per train, 15 trains) ~50 minutes post-capsaicin administration. TMS-evoked potentials
44 (TEPs) and thermal sensitivity were assessed at baseline, during capsaicin pain prior to rTMS and
45 after rTMS. Bayesian evidence of reduced pain scores and increased heat pain thresholds were
46 found following active rTMS, with no changes occurring after sham rTMS. Pain (prior to active
47 rTMS) led to an increase in the frontal negative peak ~45 ms (N45) TEP relative to baseline.
48 Following active rTMS, there was a decrease in the N45 peak back to baseline levels. In contrast,
49 following sham rTMS, the N45 peak was increased relative to baseline. We also found that the
50 reduction in pain NRS scores following active vs. sham rTMS was partially mediated by decreases
51 in the N45 peak. These findings provide evidence of the analgesic effects of PSI-rTMS and suggest
52 that the TEP N45 peak is a potential marker and mediator of both pain and analgesia.

53

54

55 INTRODUCTION

56 High frequency repetitive transcranial magnetic stimulation (rTMS) involves the delivery of
57 magnetic pulses over the brain and has been shown to be a promising, safe, and non-invasive
58 treatment for pain [38; 68; 71]. A common target in rTMS treatments for pain is the primary motor
59 cortex (M1) [38]. However, M1 rTMS shows a 25-50% reduction in pain intensity in only ~50% of
60 chronic pain patients [5; 46; 47]. Moreover, the effects of M1 rTMS on pain are believed to be
61 mediated by functional alterations in extra motor areas [2; 40; 42]. As such, one strategy to improve
62 the effects of rTMS on pain has been to explore non-M1 rTMS targets, with one of these being the
63 posterior insular cortex (PSI) [17; 21; 27; 30; 37; 49], which plays a critical role in pain processing
64 [39; 53]. In 10 healthy individuals, the effect of a single session of cTBS of the operculo-insular
65 cortex demonstrated a decrease in heat pain sensitivity [49]. Likewise, another study reported
66 decreased heat pain sensitivity and reduced clinical pain intensities after 5 repeated sessions of 10
67 Hz rTMS to PSI in 31 patients with chronic neuropathic pain [30]. This suggests PSI-rTMS can
68 reduce pain severity and decrease heat pain sensitivity. While this is encouraging, the neuroplastic
69 changes that occur during PSI-rTMS analgesia remain unknown.

70 One method of assessing pain and analgesia-related neuroplasticity has been to use single
71 pulse TMS to measure changes in corticomotor excitability (CME) in response to painful stimuli
72 and following rTMS [11; 12; 15; 24; 51]. However, this methodology limits the investigation of
73 neuroplasticity to the motor system and is an indirect measure of cortical plasticity given it is
74 confounded by activity of spinal and subcortical processes [13]. A novel method combining TMS
75 with electroencephalography (EEG) allows for neuroplastic changes to be directly measured from
76 multiple cortical regions [33] with excellent temporal resolution. When TMS is applied to M1
77 during concurrent EEG, several commonly observed peaks are detected in the TMS-evoked
78 potential (TEP), with larger peaks occurring at 45 ms (N45) and 100 ms (N100) linked to stronger
79 inhibitory (GABAergic) neurotransmission [9; 19; 20; 60; 61].

80 Recent studies using TMS-EEG suggest cortical inhibitory processes may be implicated in
81 rTMS-induced analgesia [13; 23]. One study showed the amplitude of the frontocentral N45 and
82 N100 TEP peak was increased in response to acute heat pain, with a larger increase in the
83 frontocentral N45 associated with higher pain ratings [13]. Furthermore, 10Hz rTMS over
84 dorsolateral prefrontal cortex (dlPFC) led to a decrease in TEP indices of GABAergic activity (N45
85 and N100) in people with major depression [74], while another study in healthy individuals showed
86 a decrease in the amplitude of the frontocentral TEP negative peak indexing GABA (N100)
87 following 10Hz dlPFC rTMS, with this decrease associated with an increase in pain thresholds [77].
88 Thus, it is possible that changes in pain perception following PSI-rTMS are mediated by changes in
89 TEP peaks that index GABAergic activity.

90 The present study aimed to determine whether tonic experimental pain and cortical
91 inhibition are modulated by PSI-rTMS. The study was conducted on healthy human participants,
92 with active or sham PSI-rTMS applied during tonic capsaicin-induced pain, and TEPs and thermal
93 pain sensitivity measures assessed before pain, during pain before rTMS, and during pain after
94 rTMS. It was hypothesized that active PSI-rTMS would induce i) a reduction in capsaicin-induced
95 pain intensity, ii) a decrease in pain sensitivity, and iii) a reduction in TEPs that index GABAergic
96 activity (N45 and N100).

97

98 METHODS

99 *Participants*

100 This study was conducted at the Center for Neuroplasticity and Pain (CNAP), Aalborg University,
101 Aalborg, Denmark. All procedures adhered to the Declaration of Helsinki, with written, informed
102 consent obtained prior to study commencement. The study was approved by the local ethics
103 committee (Videnskabsetiske Komite for Region Nordjylland: N-20210047). A sample size
104 calculation was conducted (G*Power 3.1.9.7) based on available means/SDs reported in a previous
105 study exploring the effects of 10 Hz rTMS on frontal TEPs that index GABA [74] and another study
106 exploring the effects of PSI-rTMS on pain thresholds/pain intensity in healthy individuals [49]. We
107 also used our previous work which reported correlation values between repeated measurements of
108 TEP peaks before and after pain [13]. For the effect of rTMS on pain intensity ($\alpha = 0.05$, $\beta = 0.8$, $d = 1.82$), a sample size of at least 5 individuals was required, while for TEPs ($\alpha = 0.05$, $\beta = 0.8$, $r = .9$, $d = 0.92$ for N45 and $d = 0.97$ for N100) a sample size of at least 12 individuals was required.
109 We opted for a higher sample size of 20 participants to improve statistical power.

110 Twenty healthy participants (10 females; aged 26.5 ± 4.6 years (mean \pm SD) were recruited
111 through online advertisement. Participants were excluded if they presented with any acute pain, had
112 a history or presence of chronic pain, neurological, musculoskeletal, psychiatric or other major
113 medical condition, were pregnant and/or lactating, or were contraindicated for TMS (e.g., metal
114 implants in the head) as assessed using the Transcranial Magnetic Stimulation Adult Safety Screen
115 questionnaire [64]. To further characterize the mental health profile and degree of catastrophic
116 thinking related to pain, participants completed the following questionnaires: Beck-Depression
117 Inventory [8], State-Trait Anxiety Inventory Pain Catastrophizing Scale [70] and Positive and
118 Negative Affective Schedule [76].

119

120 *Experimental Protocol*

121 This study used a cross-over, randomised, sham-controlled design. Participants attended two
122 sessions (spaced ~2-3 weeks apart) of either active or sham PSI-rTMS in a randomized sequence.

125 Each session involved the administration of tonic pain induced by capsaicin applied to the right
126 volar forearm for 90 minutes (Fig. 1). Left PSI-rTMS was delivered ~50 minutes after capsaicin
127 administration for 7.5 minutes. TEPs using combined TMS-EEG to M1 followed by thermal pain
128 sensitivity were assessed three times: at baseline (pre-pain), during capsaicin pain prior to rTMS
129 (pain pre-rTMS: between ~30-45 minutes after capsaicin administration), and after rTMS (pain
130 post-rTMS: between ~65-80 minutes after capsaicin administration).

131

132 *Transcranial Magnetic Stimulation Evoked Electroencephalography*

133 Participants sat in a comfortable chair with their eyes fixated on a cross placed on the wall in front
134 of them. Single, biphasic transcranial magnetic stimuli were delivered using a Magstim unit
135 (Magstim Ltd., UK) and 70 mm figure-of-eight flat coil. EEG was recorded using a TMS-
136 compatible amplifier (g.HIamp EEG amplifier, g.tec-medical engineering GmbH, Schiedlberg,
137 Austria) at a sampling rate of 4800 Hz. Signals were recorded from 63 passive electrodes,
138 embedded in an elastic cap (EASYCAP GmbH, Etterschlag, Germany), in line with the 10-5
139 system. Recordings were referenced online to 'right mastoid' and the ground electrode placed on
140 right cheekbone. This was to reduce artifacts produced by the TMS, which was applied on the left
141 side of the head. Electrolyte gel was used to reduce electrode impedances below ~5 kΩ. To
142 maintain low impedances throughout the experiment, we used two net caps (GVB-geliMED GmbH,
143 Ginsterweg Bad Segeberg, Germany) and a plastic stretch wrap handle film over the EEG cap [23].
144 In order to minimize the effect of the auditory response generated by the TMS coil click sound, a
145 masking toolbox [66] was used with the participants wearing noise-cancelling headphones (Shure
146 SE215-CL-E Sound Isolating, Shure Incorporated, United States).

147 Neuronavigation (Brainsight TMS Neuronavigation, Rogue Research Inc., Montréal,
148 Canada) was used with a template MRI (MNI ICBM 152 average brain) from Brainsight software
149 to track and calibrate each participant's head position and TMS coil position in 3D space. Surface
150 disposable silver/silver chloride adhesive electrodes (Ambu Neuroline 720, Ballerup, Denmark)
151 were applied over the right first dorsal interosseous (FDI) muscle parallel to muscle fibres, with the
152 ground electrode placed on the right ulnar styloid process. The coil was oriented at 45° to the
153 midline, inducing a current in the posterior-anterior direction. To identify the left M1 target, the
154 scalp site ('hotspot') that evoked the largest motor evoked potential (MEP) measured at the FDI
155 was determined and marked. The rest motor threshold (RMT) was determined using the ML-PEST
156 (maximum likelihood strategy using parametric estimation by sequential testing) algorithm to
157 estimate the TMS intensity required to induce an MEP of 50 microvolts with a 50% probability [3].
158 This method has been shown to achieve the accuracy of methods such as the Rossini-Rothwell

159 method [65] but with fewer pulses [69]. The test stimulus intensity was set at 90% RMT to
160 minimize contamination of EEG signal from re-afferent muscle activation [13].

161 The real-time TEP visualization tool was used [10] to confirm that artefacts (muscle,
162 auditory) in the signal were minimal, and that, given the coil orientation and 90% RMT stimulus
163 intensity, that the early peaks (<100ms) at the stimulation site were evident (P30-N100) [10; 23;
164 43]. The neuronavigation system and real-time TEP visualization tool were used throughout each
165 session to monitor coil positioning and TEP data quality across measurements within and between
166 sessions. For each TEP measurement (baseline, pain pre-rTMS, pain post-rTMS), ~150 TMS pulses
167 (~7 minutes total) were delivered with a jitter of 2.6-3.4 s [23; 43].

168

169 *Thermal Pain Sensitivity Assessment*

170 Cold and heat pain thresholds were assessed at each timepoint (immediately after TEP
171 measurement), in line with a previous study [13]. A 27 mm diameter thermode (Medoc Pathway
172 ATS device; Medoc Advanced Medical Systems Ltd) was applied over the right thenar eminence.
173 With the baseline temperature set at a neutral skin temperature of 32°C, participants completed two
174 threshold tests in the following order: to report when a decreasing temperature first became painful
175 (cold pain threshold, CPT) and to report when an increasing temperature first became painful (heat
176 pain threshold, HPT). A total of three trials were conducted for each test to obtain an average, with
177 an interstimulus interval of six seconds. Participants provided their threshold for each trial by
178 pressing a button (with their left hand) on a hand-held device connected to the Medoc Pathway.
179 Temperatures were applied with a rise/decrease rate of 1°C/s and return rate of 2°C/s (initiated by
180 the button click).

181

182 *Heat-Evoked Pain*

183 At each of the three timepoints, an additional test for heat-evoked pain was conducted. The heat
184 thermode (Medoc Pathway ATS device; Medoc Advanced Medical Systems Ltd) was applied at the
185 capsaicin administration site, and the temperature was increased towards a target temperature for 5 s
186 (increase rate of 1°C/s, return rate of 2°C/s). The target temperature was determined at the baseline
187 timepoint prior to capsaicin administration, by measuring the HPT (across 3 trials) over the
188 capsaicin administration site, and then adding 2 degrees above this pain threshold. Participants
189 provided a pain NRS rating to each 5 s stimulus, with this process repeated 3 times.

190

191 *Capsaicin-induced Tonic Pain*

192 After the baseline TEP, heat-evoked pain and thermal sensitivity assessment, an 8% topical
193 capsaicin patch (Transdermal patch, 'Qutenza', Astellas, 4× 4 cm) was applied to induce cutaneous

194 pain over the volar part of the right forearm (5 cm from the wrist) [1]. A numerical rating scale
195 (NRS) scale between 0 (no pain) to 10 (worst imaginable pain) was used to assess pain intensity
196 every 5 minutes following patch application.

197

198 *Repetitive Transcranial Magnetic Stimulation*

199 Active or sham rTMS over the orthogonal projection of the PSI was delivered with a double cone
200 coil (D110, Magstim Ltd., UK). The location and intensity of stimulation was determined in
201 between capsaicin administration and the first TEP measurement (i.e., within the first 30 minutes
202 after capsaicin administration). The stimulation intensity was determined by delivering single pulse
203 TMS using the double cone coil over the left motor representation of the tibialis anterior (TA)
204 muscle, which has a similar depth within the cortex as the PSI [21]. The TA hotspot and RMT were
205 determined by visually inspecting responses in the leg to the TMS pulse, with the RMT determined
206 using the ML-PEST procedure [3].

207 The fast PSI method was used to identify the PSI target without the need for MRI-guided
208 neuronavigation [18]. A recommended rTMS protocol for inducing analgesic effects was used:
209 1500 pulses (10 Hz, 15 trains of 10 s each, inter-train interval of 20 s, 7.5 minutes total) [16], with
210 the intensity of stimulation set to 80% of the TA RMT [30], and the coil oriented so that the main
211 phase of the biphasic waveform induced a current in the posterior-anterior direction [48]. In both
212 active and sham conditions, an D70 figure-of-eight TMS coil (Magstim Ltd., UK) was placed in
213 contact with the double cone coil but faced orthogonally using an adjustable mechanical arm.
214 During active rTMS, the double cone coil was activated, whereas during sham rTMS, the second
215 coil was activated [30].

216

217 *Data Processing*

218 Pre-processing of the TEPs was completed using EEGLAB [25] and TESA [63] in MATLAB
219 (R2021b, The Math works, USA), and based on previously described methods [13; 14; 55; 56; 63].
220 First, the data was epoched 1000 ms before and after the TMS pulse, and baseline corrected
221 between -1000 ms and -5 ms before the TMS pulse. Bad channels which showed large decay
222 artefacts from the TMS pulse were removed. The period between -5 ms and 12 ms after the TMS
223 pulse was removed and interpolated by fitting a cubic function. Noisy epochs were identified via the
224 EEGLAB auto-trial rejection function [26] and then visually confirmed. The fastICA algorithm
225 with auto-component rejection was used to remove eyeblink and muscle artefacts [63]. The source-
226 estimation noise-discarding (SOUND) algorithm was applied [55; 56], which estimates and
227 suppresses noise at each channel based on the most likely cortical current distribution given the
228 recording of other channels. This signal was then re-referenced (to average). A band-pass (1-100

229 Hz) and band-stop (48-52 Hz) Butterworth filter was then applied. Any previously removed bad
230 channels were then interpolated.

231 The grand-averaged TEPs (across participants) for the baseline, pain pre-rTMS, and pain
232 post-rTMS were obtained. In line with previous studies investigating the effects of pain on TEPs
233 [13], and rTMS on TEPs during pain [77], the mean TEP was extracted from a frontocentral region
234 of interest (F1, F2, F3, F4, Fz, FC1, FC2, FC3, FC4, FCz). Peaks of the TEP from this ROI (e.g.
235 N15, P30, N45, P60, N100, P180) were identified for each participant using the TESA peak
236 function [63], with predetermined windows of interest (N15: 12-20 ms, P30: 25-40 ms, N45: 40-60
237 ms, P60: 55-70 ms, N100: 70-110 ms, P180: 150-200 ms) chosen to account for variation between
238 participants in the latency of the peaks.

239

240 *Statistical Analysis*

241 For CPT and HPTs, evoked pain NRS scores and TEP peak amplitudes, we computed the change
242 (Δ) scores by subtracting the pain pre-rTMS timepoint and the pain post-rTMS timepoint from the
243 baseline value of each respective session. Data are presented as mean \pm standard deviations unless
244 otherwise stated. Where relevant, Cohen's d was reported to quantify effect sizes. Where violations
245 of normality occurred according to Shapiro-Wilk tests, log-transformations of the data were
246 conducted.

247 Bayesian inference was used to analyse the data, which considers the strength of the
248 evidence for the alternative vs. null hypothesis, using JASP software (Version 0.12.2.0, JASP
249 Team, 2020). Bayes factors were expressed as BF_{10} values, where BF_{10} 's of 1–3, 3–10, 10–30, 30–
250 100 and >100 indicated 'weak', 'moderate', 'strong', 'very strong' and 'extreme' evidence for the
251 alternative hypothesis, while BF_{10} 's of 1/3–1, 1/10–1/3, 1/30–1/10 and 1/100–1/30 indicated
252 'anecdotal', 'moderate', 'strong', 'very strong' and 'extreme' evidence in favour of the null
253 hypothesis [73]. Given the novelty of the study (no prior studies on PSI rTMS on TEPs), default
254 priors in JASP were used to provide a balance between informed and non-informed hypotheses.

255 We first ran Bayesian paired t-tests to determine evidence for a difference between active
256 and sham sessions in pain thresholds, evoked pain NRS scores and TEP peak amplitudes at the
257 baseline timepoint. For capsaicin pain NRS Ratings, a 2 (session: active vs. sham) \times 10 (timepoint:
258 0–45 minutes) Bayesian repeated measures ANOVA was conducted to determine the evidence for a
259 difference in pain ratings between active and sham rTMS sessions prior to stimulation. Then, a 2
260 (session: active vs. sham) \times 9 (timepoint: 50–90 minutes) Bayesian repeated measures ANOVA was
261 conducted to assess pain NRS ratings following rTMS. The main effect of stimulation determined
262 evidence for a difference in pain ratings between active and sham rTMS, while the interaction effect
263 determined evidence for whether this difference changed across time. Follow-up Bayesian paired t-

264 tests were conducted to compare pain ratings between the end of the session (90 minutes) and onset
265 of rTMS (50 minutes) for each group separately.

266 For Δ HPT, Δ CPT, Δ evoked pain NRS scores and Δ TEP peak amplitudes, A 2 (session:
267 active vs. sham) x 2 (timepoint: pain pre-RTMS, pain post-rTMS) Bayesian repeated measures
268 ANOVA was conducted. The interaction between session and timepoint determined evidence of
269 modulation of the outcomes as a result of active vs. sham rTMS. Follow-up Bayesian paired t-tests
270 were conducted to determine evidence for a change in Δ scores between pain pre and pain post-
271 rTMS for active and sham sessions separately. Note that the difference in the baseline-normalized Δ
272 scores between pain pre and pain post-rTMS was identical to the difference in the non-normalized Δ
273 raw scores. Thus, increases and decreases in the Δ scores were directly interpreted as increases and
274 decreases in the raw outcomes. Finally, a follow-up Bayesian one sample t-test was also conducted
275 at each timepoint and session separately to determine overall change in outcomes relative to
276 baseline.

277 For any TEP peaks and pain outcomes that demonstrated at least moderate evidence of a
278 change between pre and post active rTMS, we further explored the link between these peak changes
279 and both pain and analgesia. We conducted a Bayesian correlation analysis to determine whether,
280 across the whole sample, Δ TEP peak amplitudes were associated with Δ pain outcomes following
281 capsaicin administration (pain pre-rTMS – baseline) or following rTMS (pain post-rTMS – pain
282 pre-rTMS). We also determined whether Δ pain outcomes following rTMS were mediated by Δ TEP
283 peak amplitudes. We used the bmlm package in R [75] to conduct a mediation analysis for repeated
284 measures designs. This package uses a Bayesian framework to compute the mean and 95%
285 credibility interval of plausible posterior parameter values for the total effect of the mediation
286 model, direct effects between each variable, and the indirect effect (i.e. mediation effect). For each
287 model, the outcome variable was Δ pain outcome following rTMS (pain post-rTMS – pain pre-
288 rTMS), the predictor variable was PSI-rTMS session (active vs sham) and the mediating variable
289 was Δ TEP peak amplitude (pain post-rTMS – pain pre-rTMS).

290

291 **RESULTS**

292 All participants completed the active and sham sessions, with no missing data. The mean interval
293 between sessions was 21.5 ± 11.4 days. Eight out of 20 participants were able to correctly identify
294 the sequence of the active and sham sessions, suggesting blinding was successful. All participants
295 tolerated the rTMS without side effects. The mean scores on the questionnaires were 5.5 ± 8.1 for
296 the Pain Catastrophizing Scale, 9.0 ± 6.2 for the Beck-Depression Inventory II, 25.4 ± 10.9 for the
297 State-Trait Anxiety State Scale, 27.6 ± 9.4 the State-Trait Anxiety Trait Scale and 21.3 ± 6.0 and 7.1

298 ± 5.1 for the Positive and Negative Affect scales respectively. These mean scores do not indicate
299 clinical levels of pain catastrophizing, depressive or anxiety symptoms [7; 45; 70].

300 The FDI RMT was $60.5 \pm 8.6\%$ for the active session and $60.0 \pm 7.9\%$ for the sham session,
301 with moderate evidence for no difference between sessions ($BF_{10} = 0.23$). Similar to TA RMT
302 values from previous studies using the double cone coil [28; 67], the TA RMT in the present study
303 was $42.7 \pm 6.0\%$ for the active session and $43.0 \pm 6.6\%$ for the sham session, with moderate
304 evidence for no difference between sessions ($BF_{10} = 0.24$).

305

306 *Capsaicin Pain NRS Ratings*

307 Prior to rTMS (0-45 min post-capsaicin), there was extreme Bayesian evidence for an increase in
308 pain NRS ratings following capsaicin administration (main effect of timepoint: $BF_{10} = 6.4 \times 10^{32}$,
309 Fig. 2A), anecdotal evidence that pain NRS ratings did not differ between the active and sham
310 rTMS sessions (main effect of session: $BF_{10} = 0.57$), and moderate evidence that this difference did
311 not change across timepoints (session x timepoint interaction: $BF_{10} = 0.15$). After rTMS (50-90 min
312 post-capsaicin), there was strong evidence for lower pain NRS ratings in the active versus sham
313 rTMS session (main effect of session: $BF_{10} = 25.4$), and extreme evidence of this difference
314 becoming larger over time (sessions x timepoint interaction: $BF_{10} = 2.1 \times 10^8$). Follow-up t-tests
315 showed that, when comparing pain NRS ratings at 90 with 50 minutes, there was strong evidence
316 that pain NRS reduced in the active rTMS session ($BF_{10} = 14.30, d = -.76$), and anecdotal evidence
317 that pain NRS increased in the sham rTMS session ($BF_{10} = 1.70, d = 0.50$).

318

319 *Thermal Pain Sensitivity Distant to Capsaicin Application Site*

320 Table 1 shows CPT, HPT and evoked pain scores at each timepoint before being normalized to
321 baseline. There was anecdotal evidence for no difference in HPT ($BF_{10} = 0.81$) or CPT ($BF_{10} =$
322 0.45) between active and sham rTMS sessions at baseline. There was extreme Bayesian evidence
323 that active rTMS modulated Δ HPT relative to sham (session x timepoint interaction: $BF_{10} =$
324 6419.72 , Fig. 2B). Follow-up Bayesian paired t-tests showed that for the active rTMS session, there
325 was extreme evidence that Δ HPT increased from the pain pre rTMS to pain post-rTMS timepoints
326 ($BF_{10} = 145080.16, d = 1.8$). For the sham rTMS session, there was anecdotal evidence that Δ HPT
327 decreased from pain pre-rTMS to pain post-rTMS timepoints ($BF_{10} = 1.60, d = -.40$). Follow-up
328 Bayesian one sample t-tests showed that, at the pain pre-rTMS timepoint, there was moderate
329 evidence that Δ HPT = 0 in the active session ($BF_{10} = 0.25, d = .09$) and moderate evidence that
330 Δ HPT > 0 in the sham session ($BF_{10} = 3.15, d = .58$). At the pain post-rTMS timepoint, there was
331 strong evidence that Δ HPT > 0 for the active session ($BF_{10} = 40.28, d = 0.87$), and moderate
332 evidence that Δ HPT = 0 for the sham session ($BF_{10} = 0.26, d = -.11$). There was anecdotal evidence

333 for no alteration in Δ CPT following active relative to sham rTMS (session x timepoint interaction:
334 $BF_{10} = 0.96$, Fig. 2C).

335

336

337 *Evoked Pain NRS Scores*

338 Prior to capsaicin administration, the HPT at the target site was 44.1 ± 2.8 °C for the active session
339 and 45.1 ± 3.3 °C for the sham session, with moderate evidence of no difference between sessions
340 ($BF_{10} = 0.24$). There was moderate evidence of no difference in heat-evoked pain NRS scores
341 between active and sham rTMS sessions at the baseline timepoint ($BF_{10} = 0.23$). There was
342 anecdotal evidence that active rTMS did not modulate Δ evoked pain relative to sham (session x
343 timepoint interaction: $BF_{10} = 0.93$, Fig. 2D).

344

345 *Transcranial Magnetic Stimulation Evoked Electroencephalography*

346 Figures 3 and 4 show the grand-average TEPs and scalp topographies at each timepoint for the
347 active and sham sessions respectively. Figure 5 shows the grand-average TEPs for the frontocentral
348 ROI at each timepoint for the active and sham sessions. When comparing active and sham sessions
349 at baseline, there was moderate evidence for no difference in the N15 ($BF_{10} = 0.24$), P30 ($BF_{10} =$
350 0.27), N45 ($BF_{10} = 0.24$), and P60 ($BF_{10} = 0.31$) peaks, anecdotal evidence for no difference in the
351 P180 peak ($BF_{10} = 0.45$), and anecdotal evidence for a difference in the N100 peak ($BF_{10} = 1.3$).

352 Figure 6 shows the Δ TEP peak amplitudes (relative to baseline) at each timepoint for the
353 active and sham sessions. There was strong evidence that active rTMS modulated Δ N45 relative to
354 sham (session x timepoint interaction: $BF_{10} = 18.65$). Follow-up Bayesian t-tests showed moderate
355 evidence that Δ N45 decreased from pain pre rTMS to pain post-rTMS timepoints following active
356 rTMS ($BF_{10} = 3.80$, $d = -0.60$) and anecdotal evidence of no change in Δ N45 from the pain pre-
357 rTMS to pain post-rTMS timepoints following sham rTMS ($BF_{10} = 0.85$, $d = 0.39$). A one sample t-
358 test showed that at the pain pre-rTMS timepoint, there was moderate evidence Δ N45 < 0 in the
359 active session ($BF_{10} = 3.03$, $d = -0.57$), and moderate evidence that the Δ N45 = 0 in the sham
360 session ($BF_{10} = 0.26$, $d = -0.11$). At the pain post rTMS timepoint, there was moderate evidence
361 that Δ N45 = 0 for the active session ($BF_{10} = 0.24$, $d = -0.07$), and moderate evidence that Δ N45 < 0
362 for the sham session ($BF_{10} = 3.02$, $d = 0.57$). For all other peaks, there was no moderate evidence
363 for any modulation by active rTMS relative to sham (BF_{10} 's for all session x timepoint interactions
364 < 3).

365

366

367

368 *Relationship between N45 peak changes and pain parameters following capsaicin administration*
369 To further explore the link between $\Delta N45$ and pain, we plotted the capsaicin pain NRS score at 45
370 minutes and ΔHPT at the pain pre-rTMS timepoint against $\Delta N45$ at the pain pre-rTMS timepoint,
371 pooled across both sessions (Figure 7A and 7B). There was moderate evidence for no correlation
372 between $\Delta N45$ and both capsaicin pain NRS score at 45 minutes ($r_{38} = 0.03$, $BF_{10} = 0.20$) and
373 ΔHPT from baseline at the pain pre-rTMS timepoint ($r_{38} = 0.11$, $BF_{10} = 0.24$).

374

375 *Relationship between N45 peak changes and pain parameters following rTMS*
376 To explore the link between $\Delta N45$ and reductions or increases in pain following rTMS, we plotted
377 changes in pain NRS ratings (90 - 50 min) and changes in HPT (pain post-rTMS – pain pre-rTMS)
378 against the change in the N45 peak (pain post rTMS – pain pre rTMS), pooled across sessions
379 (Figure 7C and 7D). Across both sessions, we found extreme evidence that a larger reduction in
380 capsaicin pain NRS scores were associated with a larger decrease in the N45 peak ($r_{38} = 0.54$, $BF_{10} = 110.61$), and moderate evidence that a larger increase in HPTs was associated with a larger
381 decrease in the N45 peak ($r_{38} = .38$, $BF_{10} = 3.4$).

382

383 *Mediation Analysis*

384 We determined whether the reductions in pain/increases in HPT following active vs. sham
385 PSI-rTMS were mediated by decreases in the N45 peak. Two models were investigated (Fig. 8),
386 where the outcome variable was Δ pain-NRS (90 - 50 mins) or Δ HPT (pain post-rTMS – pain pre-
387 rTMS), the predictor variable was PSI-rTMS session (active vs sham) and the mediating variable
388 was $\Delta N45$ (pain post-rTMS – pain pre-rTMS). When determining the total effect of PSI-rTMS on
389 Δ pain-NRS scores, the mean and credibility interval was 2.65 [1.59, 3.76] (i.e. a 2.65 stronger
390 decrease in Δ pain-NRS scores for the active vs. sham condition). The mean direct effect of rTMS
391 on Δ pain-NRS was 2.0 [0.9, 3.1] and the mean effect of rTMS on $\Delta N45$ was -1.0 [0.9, 3.1] (i.e. a 1
392 μ V stronger decrease in the $\Delta N45$ in the active vs. sham condition). The mean indirect effect via
393 $\Delta N45$ was 0.65 [0.01, 1.61], suggesting 95% of plausible values of the indirect effect was above 0.
394 This provides evidence that the reductions in pain by active vs. sham PSI-rTMS were partially
395 mediated by decreases in the N45 peak. There was no evidence of mediation when analysing
396 changes in HPT following rTMS.

397

398

399 **DISCUSSION**

400 The present study aimed to determine whether tonic experimental pain and cortical inhibition
401 assessed by TMS-EEG are modulated by PSI-rTMS. Active PSI-rTMS led to a decrease in

403 capsaicin-induced pain intensity and increase in heat pain thresholds in body areas away from the
404 site of experimental pain compared to sham. For the active rTMS session, pain prior to rTMS led to
405 an increase in the frontal negative peak ~45 ms (N45) TEP relative to baseline. Following active
406 rTMS, there was a decrease in the N45 peak back to baseline levels. In contrast, the N45 was
407 increased relative to baseline following sham PSI-rTMS. Lastly, decreases in pain intensity
408 following active vs. sham rTMS were partially mediated by reductions in the N45 peak. Taken
409 together, our findings suggest that 10Hz PSI-rTMS for ~7.5 minutes has analgesic effects on
410 experimental tonic pain. Furthermore, active PSI-rTMS not only leads to a decrease in cortical
411 inhibition as indexed by the TEP N45 response, but these decreases partially mediate the effects of
412 rTMS on pain intensity. Overall, these findings provide further insight into the role of cortical
413 inhibitory processes during both pain and analgesia.

414

415 *Analgesic Effects of PSI-rTMS*

416 The insular cortex is a key region involved in pain perception. The PSI receives sensory input from
417 the spinal cord and thalamus [31], is activated during acute and chronic pain [6; 36], triggers painful
418 sensations in response to direct electrical stimulation, and reduces painful sensations when lesioned
419 [29]. The PSI is also believed to project descending inputs to GABAergic neurons within the brain
420 stem. When PSI activity is increased, this triggers a loss of descending inhibition to the spinal cord
421 leading to increased nociception [37]. rTMS is hypothesised to have a “blocking” effect on the PSI,
422 which produces an antinociceptive/analgesic effect due to disinhibition of brain stem GABAergic
423 neurons [37]. To determine whether PSI-rTMS does indeed have an antinociceptive/analgesic
424 effect, we and others have determined the effects of PSI-rTMS using experimental pain models in
425 healthy individuals and patients with neuropathic pain or epilepsy [17; 21; 27; 30; 37; 49]. The
426 findings of the present study are largely consistent with previous studies, with a decrease in tonic
427 pain intensity following active rTMS relative to sham and an increase in heat pain thresholds
428 following active rTMS, although contrasted with no effects on cold pain thresholds or evoked heat
429 pain NRS scores. In addition, this is the first study to demonstrate the effects of PSI-rTMS using a
430 prolonged tonic experimental pain model (capsaicin), with previous experimental research using
431 transient painful stimuli [49]. Furthermore, we demonstrate these analgesic effects for the first time
432 using the fast PSI method [17], which precludes MRI-guided neuronavigation. New rTMS targets
433 such as the PSI are actively being investigated as an alternative to M1 stimulation to increase the
434 number of people with chronic pain responding to rTMS. However, targeting the PSI has
435 traditionally required MRI guided neuronavigation, which can be time consuming and cost
436 inefficient. The fast PSI method [18] was developed recently to reduce target identification time,
437 and was shown to produce similar estimates of the PSI target compared to methods requiring

438 neuronavigation, with high intra and inter-rater reliability. The finding that PSI-rTMS produced
439 analgesia using the fast PSI method is promising for clinical application of the fast PSI method as
440 this would greatly reduce time and costs required for targeted brain stimulation.

441

442 *Cortical Plasticity during PSI-rTMS analgesia*

443 For the first time, we used TMS-EEG to investigate the potential neuroplastic changes during PSI-
444 rTMS analgesia. In the active rTMS session, the TEP N45 peak was increased relative to baseline
445 following capsaicin administration, which is consistent with previous work showing that tonic heat
446 pain results in an increase in the N45 peak [13]. Following PSI-rTMS, the N45 peak was then
447 decreased to baseline levels. This pattern of change in the N45 peak is consistent with previous
448 work showing that larger increases in the N45 peak during tonic heat pain were associated with
449 higher pain intensity [13]. In the sham session, we did not replicate an increase in the N45 peak at
450 the pain pre rTMS point. The inconsistency might relate to the overall lower pain intensities at the
451 pre-rTMS timepoint, with Figure 7A showing the majority of ratings were 3/10 or below which can
452 be considered mild pain [72]. Indeed, in the sham rTMS condition, where pain gradually increased
453 from the pre to post rTMS timepoint, the N45 peak was increased relative to baseline. Taken
454 together, we argue that the natural response of the N45 peak is to increase in response to ongoing
455 pain. When active rTMS is delivered, this tendency is reverted, with the N45 peak being brought
456 back to baseline levels. These findings suggest that increased pain is associated with increases in the
457 N45 peak, and analgesia is associated with decreases in the N45 peak.

458 To further unpack the association between the N45 peak and pain intensity, we determined
459 whether individual changes in the N45 peak following active and sham rTMS were associated with
460 increases or decreases in pain perception. As anticipated, across both sessions, increases in HPT and
461 decreases in pain following rTMS were both associated with decreases in the N45 peak, suggesting
462 that regardless of stimulation, the trajectory of pain correlates with the expected trajectory of the
463 N45 peak. Further supporting the link between these measures, we found evidence that the
464 reductions in pain NRS following active vs. sham rTMS were partially mediated by decreases in the
465 N45 peak. This, for the first time, shows evidence for a potential causal role of the TEP N45 peak in
466 the analgesic effects of rTMS. Currently, the mechanisms that mediate the analgesic effects of
467 rTMS remain poorly understood [50]. While evidence suggests that PSI-rTMS leads to increased
468 connectivity between cortical and subcortical structures directly involved in descending pain
469 modulation [44; 52; 58], whether or not these alterations at the cortical or subcortical level, in turn,
470 mediate the reductions in pain intensity is seldom investigated [50]. As such, our study provides
471 crucial knowledge regarding these mediating mechanisms. This can inform targeted pain

472 interventions, such that treatments that specifically reduce the TEP N45 peak may bring about
473 larger pain reduction effect sizes.

474 Exactly how the analgesic effect of PSI-rTMS is mediated by the TEP N45 peak remains
475 unclear. Source reconstruction showed that the TEP N45 peak might reflect activity within the
476 sensorimotor cortex, despite its frontocentral topography in electrode space [13; 32]. Furthermore,
477 pharmacological studies show that the TEP N45 peak reflects GABA_A receptor activity [60]. This
478 suggests that the TEP N45 peak might reflect GABAergic activity within the sensorimotor cortex.
479 Increased GABAergic activity in the sensorimotor cortex have been reported in response to painful
480 thermal stimuli consistent with the present study [41]. Studies have shown that the primary and
481 secondary somatosensory and motor cortices are functionally connected with the PSI, and that this
482 connection is critical for the sensory discrimination aspect of pain processing [34; 35; 59]. Given
483 PSI-rTMS is believed to block PSI function, this might result in downregulation of sensorimotor
484 cortical GABA receptor activity resulting in antinociceptive effects. This hypothesis is speculative,
485 as further multimodal work is required to elucidate the mediating role of TEP N45 peak on the
486 analgesic effects of rTMS and the causal role of the TEP N45 peak in pain perception broadly.
487 Further caution is also advised in interpreting the mediation analysis, given its exploratory nature
488 and the relatively low sample size, and given a mediation of heat pain thresholds was not
489 demonstrated.

490 The present study did not reveal alterations in other TEP peaks, such as the N100. This is
491 inconsistent with research showing a decrease in the frontocentral N100 following 10 Hz rTMS to a
492 different target, namely the dlPFC, with these decreases associated with increases in cold pain
493 thresholds [77]. Beyond clear differences related to the targeting area, the effects on TEP peaks
494 other than N45 may have occurred later, rather than immediately after TMS, given the analgesic
495 effects of PSI-rTMS became larger overtime. Indeed, it has been suggested that the effects of M1
496 rTMS on pain seem to build up after at least the 1st hour following stimulation [22; 57]. In this
497 sense, it may have been suitable to record TEPs at multiple timepoints after rTMS to determine the
498 onset and duration of effects.

499

500 *Strengths and limitations*

501 This present study used a thorough experimental approach including a randomized sequence of
502 sham and active sessions, separated by ~2-3 weeks to minimize carry over effects, and TEP
503 measurement based on real-time monitoring to improve data quality. Furthermore, successful
504 blinding between active and sham sessions was achieved, and we reported no missing data.
505 However, some limitations require attention. First, active rTMS over the PSI area can induce strong
506 muscle activity in the temporalis and frontalis muscles. This may have, in turn, contributed to the

507 analgesic effects as opposed to stimulation of the PSI per se. Future studies are encouraged to use
508 control conditions that involve stimulation of the facial muscles. Another limitation is that visual
509 inspection was used to estimate the motor threshold of the TA muscle instead of EMG. While this
510 may have led to different estimation of the TA motor threshold, visual inspection has been shown to
511 be a reliable method of RMT determination and some studies have shown no difference in RMT
512 estimation between EMG and visual inspection [4; 62]. Moreover, the performance of visual
513 methods is further improved when using ML-PEST [54], as was done in this study

514

515 *Conclusion*

516 This study showed that PSI-rTMS reduces tonic experimental pain intensity and increases heat pain
517 thresholds. These effects are accompanied by a decrease in cortical inhibition assessed by the TEP
518 N45 response, with this decrease partially mediating the analgesic effects of rTMS. This study
519 expands our understanding of the effects of PSI stimulation in humans showing that not only pain
520 thresholds, but also experimental tonic pain is impacted by stimulating this target, and points to the
521 N45 as a potential marker and mediator of analgesic effects of rTMS.

522

523 **Acknowledgements:** Center for Neuroplasticity and Pain (CNAP) is supported by the Danish
524 National Research Foundation (DNRF121). DCA is supported by a Novo Nordisk Grant
525 (NNF21OC0072828). The present study was not pre-registered with an analysis plan

526 **Conflict of Interest:** The authors have no conflicts of interests to declare.

527

528

529 **REFERENCES**

530 [1] Alhajri N, Boudreau SA, Graven-Nielsen T. Decreased default mode network connectivity following 24
531 hours of capsaicin-induced pain persists during immediate pain relief and facilitation. *The Journal of Pain*
532 2023;24(5):796-811.

533 [2] Argaman Y, Granovsky Y, Sprecher E, Sinai A, Yarnitsky D, Weissman-Fogel I. Clinical effects of
534 repetitive transcranial magnetic stimulation of the motor cortex are associated with changes in
535 resting-state functional connectivity in patients with fibromyalgia syndrome. *The Journal of Pain*
536 2022;23(4):595-615.

537 [3] Awiszus F. Fast estimation of transcranial magnetic stimulation motor threshold: is it safe? *Brain*
538 *Stimulation: Basic, Translational, and Clinical Research in Neuromodulation* 2011;4(1):58-59.

539 [4] Badran BW, Ly M, DeVries WH, Glusman CE, Willis A, Pridmore S, George MS. Are EMG and visual
540 observation comparable in determining resting motor threshold? A reexamination after twenty years.
541 *Brain Stimul* 2019;12(2):364-366.

542 [5] Baptista AF, Fernandes AMB, Sá KN, Okano AH, Brunoni AR, Lara-Solares A, Iskandar AJ, Guerrero
543 C, Amescua-García C, Krachete DC. Latin American and Caribbean consensus on noninvasive
544 central nervous system neuromodulation for chronic pain management (LAC2-NIN-CP). *Pain*
545 reports 2019;4(1).

546 [6] Bartha F, Sellmeijer J, Hugel S, Waltisperger E, Barrot M, Yalcin I. The anterior cingulate cortex is a
547 critical hub for pain-induced depression. *Biological psychiatry* 2015;77(3):236-245.

548 [7] Beck AT, Steer RA, Brown GK. *Beck depression inventory*: Harcourt Brace Jovanovich New York:,
549 1987.

550 [8] Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An inventory for measuring depression. *Archives*
551 *of general psychiatry* 1961;4(6):561-571.

552 [9] Belardinelli P, König F, Liang C, Premoli I, Desideri D, Müller-Dahlhaus F, Gordon PC, Zipser C,
553 Zrenner C, Ziemann U. TMS-EEG signatures of glutamatergic neurotransmission in human cortex.
554 *Scientific reports* 2021;11(1):1-14.

555 [10] Casarotto S, Fecchio M, Rosanova M, Varone G, D'Ambrosio S, Sarasso S, Pigorini A, Russo S,
556 Comanducci A, Ilmoniemi RJ. The rt-TEP tool: real-time visualization of TMS-Evoked Potentials to
557 maximize cortical activation and minimize artifacts. *Journal of Neuroscience Methods*
558 2022;370:109486.

559 [11] Cavalieri R, Chipchase LS, Summers SJ, Chalmers J, Schabrun SM. The Relationship Between
560 Corticomotor Reorganization and Acute Pain Severity: A Randomized, Controlled Study Using
561 Rapid Transcranial Magnetic Stimulation Mapping. *Pain Medicine* 2021;22(6):1312-1323.

562 [12] Chowdhury NS, Chang W-J, Millard SK, Skippen P, Bilska K, Seminowicz DS, Schabrun SM. The
563 Effect of Acute and Sustained Pain on Corticomotor Excitability: A Systematic Review and Meta-
564 analysis of group-and individual-level data. *The Journal of Pain* 2022;23(10):1680-1696.

565 [13] Chowdhury NS, Chiang AK, Millard SK, Skippen P, Chang W-J, Seminowicz DA, Schabrun SM.
566 Combined transcranial magnetic stimulation and electroencephalography reveals alterations in
567 cortical excitability during pain. *Elife* 2023;12:RP88567.

568 [14] Chowdhury NS, Rogasch NC, Chiang AK, Millard SK, Skippen P, Chang W-J, Bilska K, Si E,
569 Seminowicz DA, Schabrun SM. The influence of sensory potentials on transcranial magnetic
570 stimulation-Electroencephalography recordings. *Clinical Neurophysiology* 2022;140:98-109.

571 [15] Chowdhury NS, Skippen P, Si E, Chiang AK, Millard SK, Furman AJ, Chen S, Schabrun SM,
572 Seminowicz DA. The reliability of two prospective cortical biomarkers for pain: EEG peak alpha
573 frequency and TMS corticomotor excitability. *Journal of neuroscience methods* 2023;385:109766.

574 [16] Cruccu G, Garcia-Larrea L, Hansson P, Keindl M, Lefaucheur JP, Paulus W, Taylor R, Tronnier V,
575 Truini A, Attal N. EAN guidelines on central neurostimulation therapy in chronic pain conditions.
576 *European Journal of Neurology* 2016;23(10):1489-1499.

577 [17] da Cunha PHM, Dongyang L, Fernandes AM, Thibes RB, Sato J, Tanaka H, Dale C, da Silva Lapa JD,
578 de Moraes ADS, Soares FHC. Non-invasive insular stimulation for peripheral neuropathic pain:
579 Influence of target or symptom? *Neurophysiologie Clinique* 2022;52(2):109-116.

580 [18] da Cunha PHM, Tanaka H, da Silva Lapa JD, Dongyang L, Sorte AAB, Pereira TMR, Soares FHC,
581 Fernandes AM, Da Silva VA, Graven-Nielsen T. The fast-posterior superior insula (Fast-PSI): A
582 neuronavigation-free targeting method for non-invasive neuromodulation. *Brain Stimulation: Basic,*
583 *Translational, and Clinical Research in Neuromodulation* 2022;15(5):1178-1180.

584 [19] Darmani G, Ziemann U. Pharmacophysiology of TMS-evoked EEG potentials: A mini-review. *Brain*
585 *Stimul* 2019;12(3):829-831.

586 [20] Darmani G, Zipser CM, Böhmer GM, Deschet K, Müller-Dahlhaus F, Belardinelli P, Schwab M,
587 Ziemann U. Effects of the Selective α 5-GABAAR Antagonist S44819 on Excitability in the Human
588 Brain: A TMS-EMG and TMS-EEG Phase I Study. *The Journal of neuroscience : the official journal*
589 of the Society for Neuroscience 2016;36(49):12312-12320.

590 [21] de Andrade DC, Galhardoni R, Pinto L, Lancelotti R, Rosi Jr J, Marcolin M, Teixeira M. Into the island:
591 a new technique of non-invasive cortical stimulation of the insula. *Neurophysiologie*
592 *Clinique/Clinical Neurophysiology* 2012;42(6):363-368.

593 [22] de Andrade DC, Mhalla A, Adam F, Texeira MJ, Bouhassira D. Neuropharmacological basis of rTMS-
594 induced analgesia: the role of endogenous opioids. *Pain* 2011;152(2):320-326.

595 [23] De Martino E, Casali A, Casarotto S, Hassan G, Rosanova M, Graven-Nielsen T, Ciampi de Andrade D.
596 Acute pain drives different effects on local and global cortical excitability in motor and prefrontal
597 areas: insights into interregional and interpersonal differences in pain processing. *Cerebral Cortex*
598 2023;33(18):9986-9996.

599 [24] De Martino E, Gregoret L, Zandalasini M, Graven-Nielsen T. Slowing in peak-alpha frequency
600 recorded after experimentally-induced muscle pain is not significantly different between high and
601 low pain-sensitive subjects. *The Journal of Pain* 2021;22(12):1722-1732.

602 [25] Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics
603 including independent component analysis. *Journal of neuroscience methods* 2004;134(1):9-21.

604 [26] Delorme A, Sejnowski T, Makeig S. Enhanced detection of artifacts in EEG data using higher-order
605 statistics and independent component analysis. *Neuroimage* 2007;34(4):1443-1449.

606 [27] Denis D, Marouf R, Rainville P, Bouthillier A, Nguyen D. Effects of insular stimulation on thermal
607 nociception. *European Journal of Pain* 2016;20(5):800-810.

608 [28] Dharmadasa T, Matamala JM, Howells J, Simon NG, Vucic S, Kiernan MC. The effect of coil type and
609 limb dominance in the assessment of lower-limb motor cortex excitability using TMS. *Neuroscience*
610 *Letters* 2019;699:84-90.

611 [29] Dimov LF, Toniolo EF, Alonso-Matielo H, de Andrade DC, Garcia-Larrea L, Ballester G, Teixeira MJ,
612 Dale CS. Electrical stimulation of the insular cortex as a novel target for the relief of refractory pain:
613 an experimental approach in rodents. *Behavioural brain research* 2018;346:86-95.

614 [30] Dongyang L, Fernandes AM, da Cunha PHM, Tibes R, Sato J, Listik C, Dale C, Kubota GT, Galhardoni
615 R, Teixeira MJ. Posterior-superior insular deep transcranial magnetic stimulation alleviates
616 peripheral neuropathic pain—A pilot double-blind, randomized cross-over study. *Neurophysiologie*
617 *Clinique* 2021;51(4):291-302.

618 [31] Dum RP, Levinthal DJ, Strick PL. The spinothalamic system targets motor and sensory areas in the
619 cerebral cortex of monkeys. *Journal of Neuroscience* 2009;29(45):14223-14235.

620 [32] Farzan F, Bortoletto M. Identification and verification of a 'true' TMS evoked potential in TMS-EEG.
621 *Journal of neuroscience methods* 2022;378:109651.

622 [33] Farzan F, Vernet M, Shafi MM, Rotenberg A, Daskalakis ZJ, Pascual-Leone A. Characterizing and
623 modulating brain circuitry through transcranial magnetic stimulation combined with
624 electroencephalography. *Frontiers in neural circuits* 2016;10:73.

625 [34] Frot M, Magnin M, Mauguierre F, Garcia-Larrea L. Cortical representation of pain in primary
626 sensory-motor areas (S1/M1)—a study using intracortical recordings in humans. *Human brain*
627 *mapping* 2013;34(10):2655-2668.

628 [35] Frot M, Mauguierre F. Dual representation of pain in the operculo-insular cortex in humans. *Brain*
629 2003;126(2):438-450.

630 [36] Fuchs PN, Peng YB, Boyette-Davis JA, Uhelski ML. The anterior cingulate cortex and pain processing.
631 *Frontiers in integrative neuroscience* 2014;8:35.

632 [37] Galhardoni R, Aparecida da Silva V, García-Larrea L, Dale C, Baptista AF, Barbosa LM, Menezes
633 LMB, de Siqueira SR, Valério F, Rosi Jr J. Insular and anterior cingulate cortex deep stimulation for
634 central neuropathic pain: Disassembling the percept of pain. *Neurology* 2019;92(18):e2165-e2175.

635 [38] Giannoni-Luza S, Pacheco-Barrios K, Cardenas-Rojas A, Mejia-Pando PF, Luna-Cuadros MA, Barouh
636 JL, Gnoatto-Medeiros M, Candido-Santos L, Barra A, Caumo W. Noninvasive motor cortex
637 stimulation effects on quantitative sensory testing in healthy and chronic pain subjects: a systematic
638 review and meta-analysis. *Pain* 2020;161(9):1955-1975.

639 [39] Gogolla N. The insular cortex. *Current Biology* 2017;27(12):R580-R586.

640 [40] Gordon EM, Chauvin RJ, Van AN, Rajesh A, Nielsen A, Newbold DJ, Lynch CJ, Seider NA, Krimmel
641 SR, Scheidter KM, Monk J, Miller RL, Metoki A, Montez DF, Zheng A, Elbau I, Madison T,
642 Nishino T, Myers MJ, Kaplan S, Badke D'Andrea C, Demeter DV, Feigalis M, Ramirez JSB, Xu T,
643 Barch DM, Smyser CD, Rogers CE, Zimmermann J, Botteron KN, Pruett JR, Willie JT, Brunner P,
644 Shimony JS, Kay BP, Marek S, Norris SA, Gratton C, Sylvester CM, Power JD, Liston C, Greene
645 DJ, Roland JL, Petersen SE, Raichle ME, Laumann TO, Fair DA, Dosenbach NUF. A somato-
646 cognitive action network alternates with effector regions in motor cortex. *Nature*
647 2023;617(7960):351-359.

648 [41] Gross J, Schnitzler A, Timmermann L, Ploner M. Gamma oscillations in human primary somatosensory
649 cortex reflect pain perception. *PLoS biology* 2007;5(5):e133.

650 [42] Han X, Zhu Z, Luan J, Lv P, Xin X, Zhang X, Shmuel A, Yao Z, Ma G, Zhang B. Effects of repetitive
651 transcranial magnetic stimulation and their underlying neural mechanisms evaluated with magnetic
652 resonance imaging-based brain connectivity network analyses. *European Journal of Radiology Open*
653 2023;10:100495.

654 [43] Hernandez-Pavon JC, Veniero D, Bergmann TO, Belardinelli P, Bortoletto M, Casarotto S, Casula EP,
655 Farzan F, Fecchio M, Julkunen P. TMS combined with EEG: Recommendations and open issues for
656 data collection and analysis. *Brain Stimulation* 2023.

657 [44] Hosomi K, Seymour B, Saitoh Y. Modulating the pain network—neurostimulation for central poststroke
658 pain. *Nature Reviews Neurology* 2015;11(5):290-299.

659 [45] Kayikcioglu O, Bilgin S, Seymenoglu G, Deveci A. State and Trait Anxiety Scores of Patients
660 Receiving Intravitreal Injections. *Biomedicine hub* 2017;2(2):1-5.

661 [46] Lefaucheur J-P, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, Filipović SR, Grefkes
662 C, Hasan A, Hummel FC. Evidence-based guidelines on the therapeutic use of repetitive transcranial
663 magnetic stimulation (rTMS): An update (2014–2018). *Clinical neurophysiology* 2020;131(2):474-
664 528.

665 [47] Lefaucheur J-P, André-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH, Cantello RM,
666 Cincotta M, de Carvalho M, De Ridder D. Evidence-based guidelines on the therapeutic use of
667 repetitive transcranial magnetic stimulation (rTMS). *Clinical Neurophysiology* 2014;125(11):2150-
668 2206.

669 [48] Lefaucheur J-P, Nguyen J-P. A practical algorithm for using rTMS to treat patients with chronic pain.
670 *Neurophysiologie Clinique* 2019;49(4):301-307.

671 [49] Lenoir C, Algoet M, Mouraux A. Deep continuous theta burst stimulation of the operculo-insular
672 cortex selectively affects A δ -fibre heat pain. *The Journal of physiology* 2018;596(19):4767-4787.

673 [50] Liu Y, Sun J, Wu C, Ren J, He Y, Sun N, Huang H, Chen Q, Liu D, Huang Y. Characterizing the
674 opioidergic mechanisms of repetitive transcranial magnetic stimulation-induced analgesia: a
675 randomized controlled trial. *Pain* 2022;10:1097.

676 [51] Liu Y, Yu L, Che X, Yan M. Prolonged continuous theta burst stimulation to demonstrate a larger
677 analgesia as well as cortical excitability changes dependent on the context of a pain episode.
678 *Frontiers in Aging Neuroscience* 2022;13:804362.

679 [52] Maarrawi J, Peyron R, Mertens P, Costes N, Magnin M, Sindou M, Laurent B, Garcia-Larrea L. Brain
680 opioid receptor density predicts motor cortex stimulation efficacy for chronic pain. *PAIN®*
681 2013;154(11):2563-2568.

682 [53] Mazzola L, Isnard J, Peyron R, Guénot M, Mauguire F. Somatotopic organization of pain responses to
683 direct electrical stimulation of the human insular cortex. *Pain* 2009;146(1-2):99-104.

684 [54] Mishory A, Molnar C, Koola J, Li X, Kozel FA, Myrick H, Stroud Z, Nahas Z, George MS. The
685 maximum-likelihood strategy for determining transcranial magnetic stimulation motor threshold,
686 using parameter estimation by sequential testing is faster than conventional methods with similar
687 precision. *The journal of ECT* 2004;20(3):160-165.

688 [55] Mutanen TP, Biabani M, Sarvas J, Ilmoniemi RJ, Rogasch NC. Source-based artifact-rejection
689 techniques available in TESA, an open-source TMS-EEG toolbox. *Brain Stimulation: Basic,*
690 *Translational, and Clinical Research in Neuromodulation* 2020;13(5):1349-1351.

691 [56] Mutanen TP, Metsomaa J, Liljander S, Ilmoniemi RJ. Automatic and robust noise suppression in EEG
692 and MEG: The SOUND algorithm. *Neuroimage* 2018;166:135-151.

693 [57] Nahmias F, Debes C, de Andrade DC, Mhalla A, Bouhassira D. Diffuse analgesic effects of unilateral
694 repetitive transcranial magnetic stimulation (rTMS) in healthy volunteers. *PAIN®* 2009;147(1-
695 3):224-232.

696 [58] Pagano RL, Fonoff ET, Dale CS, Ballester G, Teixeira MJ, Britto LR. Motor cortex stimulation inhibits
697 thalamic sensory neurons and enhances activity of PAG neurons: possible pathways for
698 antinociception. *PAIN®* 2012;153(12):2359-2369.

699 [59] Peltz E, Seifert F, DeCol R, Dörfler A, Schwab S, Maihöfner C. Functional connectivity of the human
700 insular cortex during noxious and innocuous thermal stimulation. *Neuroimage* 2011;54(2):1324-
701 1335.

702 [60] Premoli I, Castellanos N, Rivolta D, Belardinelli P, Bajo R, Zipser C, Espenhahn S, Heidegger T,
703 Müller-Dahlhaus F, Ziemann U. TMS-EEG signatures of GABAergic neurotransmission in the
704 human cortex. *Journal of Neuroscience* 2014;34(16):5603-5612.

705 [61] Premoli I, Király J, Müller-Dahlhaus F, Zipser CM, Rossini P, Zrenner C, Ziemann U, Belardinelli P.
706 Short-interval and long-interval intracortical inhibition of TMS-evoked EEG potentials. *Brain Stimul*
707 2018;11(4):818-827.

708 [62] Pridmore S, Fernandes Filho JA, Nahas Z, Liberatos C, George MS. Motor threshold in transcranial
709 magnetic stimulation: a comparison of a neurophysiological method and a visualization of
710 movement method, Vol. 14: LWW, 1998. pp. 25-27.

711 [63] Rogasch NC, Sullivan C, Thomson RH, Rose NS, Bailey NW, Fitzgerald PB, Farzan F, Hernandez-
712 Pavon JC. Analysing concurrent transcranial magnetic stimulation and electroencephalographic data:
713 A review and introduction to the open-source TESA software. *Neuroimage* 2017;147:934-951.

714 [64] Rossi S, Hallett M, Rossini PM, Pascual-Leone A. Safety, ethical considerations, and application
715 guidelines for the use of transcranial magnetic stimulation in clinical practice and research. *Clin
716 Neurophysiol* 2009;120(12):2008-2039.

717 [65] Rossini PM, Barker A, Berardelli A, Caramia M, Caruso G, Cracco R, Dimitrijević M, Hallett M,
718 Katayama Y, Lücking C. Non-invasive electrical and magnetic stimulation of the brain, spinal cord
719 and roots: basic principles and procedures for routine clinical application. Report of an IFCN
720 committee. *Electroencephalography and clinical neurophysiology* 1994;91(2):79-92.

721 [66] Russo S, Sarasso S, Puglisi GE, Dal Palù D, Pigorini A, Casarotto S, D'Ambrosio S, Astolfi A,
722 Massimini M, Rosanova M. TAAC-TMS Adaptable Auditory Control: A universal tool to mask
723 TMS clicks. *Journal of neuroscience methods* 2022;370:109491.

724 [67] Schecklmann M, Schmaußer M, Klinger F, Kreuzer PM, Krenkel L, Langguth B. Resting motor
725 threshold and magnetic field output of the figure-of-8 and the double-cone coil. *Sci Rep*
726 2020;10(1):1644.

727 [68] Short EB, Borckardt JJ, Anderson BS, Frohman H, Beam W, Reeves ST, George MS. Ten sessions of
728 adjunctive left prefrontal rTMS significantly reduces fibromyalgia pain: a randomized, controlled
729 pilot study. *Pain* 2011;152(11):2477-2484.

730 [69] Silbert B, Patterson H, Pevcic D, Windnagel K, Thickbroom G. A comparison of relative-frequency and
731 threshold-hunting methods to determine stimulus intensity in transcranial magnetic stimulation.
732 *Clinical Neurophysiology* 2013;124(4):708-712.

733 [70] Sullivan MJ, Bishop SR, Pivik J. The pain catastrophizing scale: development and validation.
734 *Psychological assessment* 1995;7(4):524.

735 [71] Taylor JJ, Borckardt JJ, George MS. Endogenous opioids mediate left dorsolateral prefrontal cortex
736 rTMS-induced analgesia. *Pain* 2012;153(6):1219-1225.

737 [72] Utne I, Miaskowski C, Bjordal K, Paul SM, Jakobsen G, Rustøen T. Differences in the use of pain
738 coping strategies between oncology inpatients with mild vs. moderate to severe pain. *Journal of pain
739 and symptom management* 2009;38(5):717-726.

740 [73] van Doorn J, van den Bergh D, Böhm U, Dablander F, Derkx K, Draws T, Etz A, Evans NJ, Gronau QF,
741 Haaf JM. The JASP guidelines for conducting and reporting a Bayesian analysis. *Psychonomic
742 Bulletin & Review* 2021;28:813-826.

743 [74] Voineskos D, Blumberger DM, Rogasch NC, Zomorodi R, Farzan F, Foussias G, Rajji TK, Daskalakis
744 ZJ. Neurophysiological effects of repetitive transcranial magnetic stimulation (rTMS) in treatment
745 resistant depression. *Clinical Neurophysiology* 2021;132(9):2306-2316.

746 [75] Vuorre M, Bolger N. Within-subject mediation analysis for experimental data in cognitive psychology
747 and neuroscience. *Behavior Research Methods* 2018;50:2125-2143.

748 [76] Watson D, Clark LA, Tellegen A. Development and validation of brief measures of positive and
749 negative affect: the PANAS scales. *Journal of personality and social psychology* 1988;54(6):1063.

750 [77] Ye Y, Wang J, Che X. Concurrent TMS-EEG to reveal the neuroplastic changes in the prefrontal and
751 insular cortices in the analgesic effects of DLPFC-rTMS. *Cerebral Cortex* 2022;32(20):4436-4446.

752 **FIGURE LEGENDS**

753 **Figure 1.** Diagram of the experimental protocol.

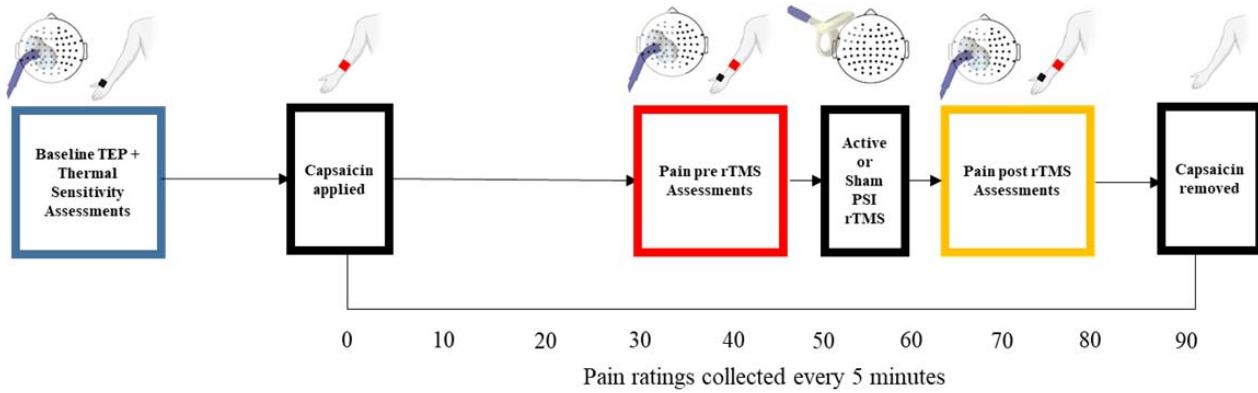
754 **Figure 2.** Mean (n = 20) and Standard Errors for capsaicin pain numerical rating scale (NRS) scores
755 (A), Δ cold pain thresholds (B), Δ heat pain thresholds (C) and Δ evoked pain NRS scores (D) at
756 each timepoint. *, **, ***, **** indicates moderate, strong, very strong and extreme Bayesian
757 evidence of a difference between conditions or difference from baseline.

758 **Figure 3. A:** The Grand-average TEPs (n = 20) for all 63 channels during the baseline, pain pre-
759 rTMS, and pain post-rTMS timepoints of the active repetitive transcranial magnetic stimulation
760 session. The red line represents the mean TEP for the frontocentral region of interest. **B:** Scalp
761 topographies and estimated source activity at timepoints where TEP peaks are commonly observed,
762 including the N15, P30, N45, P60, N100, and P180.

763 **Figure 4. A:** The Grand-average TEPs (n = 20) for all 63 channels during the baseline, pain pre-
764 rTMS and pain post-rTMS timepoints of the sham repetitive transcranial magnetic stimulation
765 session. The red line represents the mean TEP for the frontocentral region of interest. **B:** Scalp
766 topographies and estimated source activity at timepoints where TEP peaks are commonly observed,
767 including the N15, P30, N45, P60, N100, and P180.

768 **Figure 5.** The Grand-average TEPs (n=20) for the frontocentral ROI during the baseline, pain pre-
769 rTMS and pain post rTMS timepoints of the active (A) and sham (B) repetitive transcranial
770 magnetic stimulation sessions.

771 **Figure 6.** Mean (n = 20) and Standard Errors for Δ N15 (A), Δ P30 (B), Δ N45 (C), Δ P60 (D),
772 Δ N100 (E) and Δ P180 (F) peaks normalized to baseline. * indicates moderate Bayesian evidence of
773 a difference between conditions or a difference from baseline.


774 **Figure 7. (A)** Relationship between Δ N45 (pain pre-rTMS – baseline) and pain NRS at 45 minutes
775 pooled across sessions (B). Relationship between Δ N45 (pain pre-rTMS – baseline) and Δ heat pain
776 thresholds (pain pre-rTMS – baseline) pooled across sessions (C) Relationship between Δ N45 (pain
777 post-rTMS – pain pre-rTMS) and Δ pain NRS (90– 50 mins). (D) Relationship between Δ N45 (pain
778 post rTMS – pain pre rTMS) and Δ heat pain thresholds (pain post rTMS – pain pre rTMS). *, **,
779 ***, **** indicates moderate, strong, very strong and extreme Bayesian evidence of a correlation.

780 **Figure 8. (A)** Mediation model with session (active vs. sham) as the predicting variable, Δ pain
781 NRS (90– 50 mins) as the outcome variable, and Δ N45 (pain post-rTMS - pain pre-rTMS) as the
782 mediating variable. **(B)** Mediation model with session (active vs. sham) as the predicting variable, Δ
783 heat pain thresholds (pain post-rTMS-pain pre-rTMS) as the outcome variable, and Δ N45 (pain
784 post-rTMS -pain pre-rTMS) as the mediating variable. Credibility intervals for the mean effects and
785 standard deviations are shown in brackets. In both models, the total effect represents the effect of
786 session on the outcome in the absence of the mediator. The c' path represents the direct effect of
787 session on the outcome in the presence of the mediator, the a path represents the effect of session on
788 Δ N45, and the b path represents the effect of Δ N45 on the outcome. The indirect effect determines
789 the extent to which the effect of session on the outcome is accounted for by Δ N45.

790

791

792 **FIGURES**

793

794

795

796

797

798

799

800

801

802

803

804

805

806

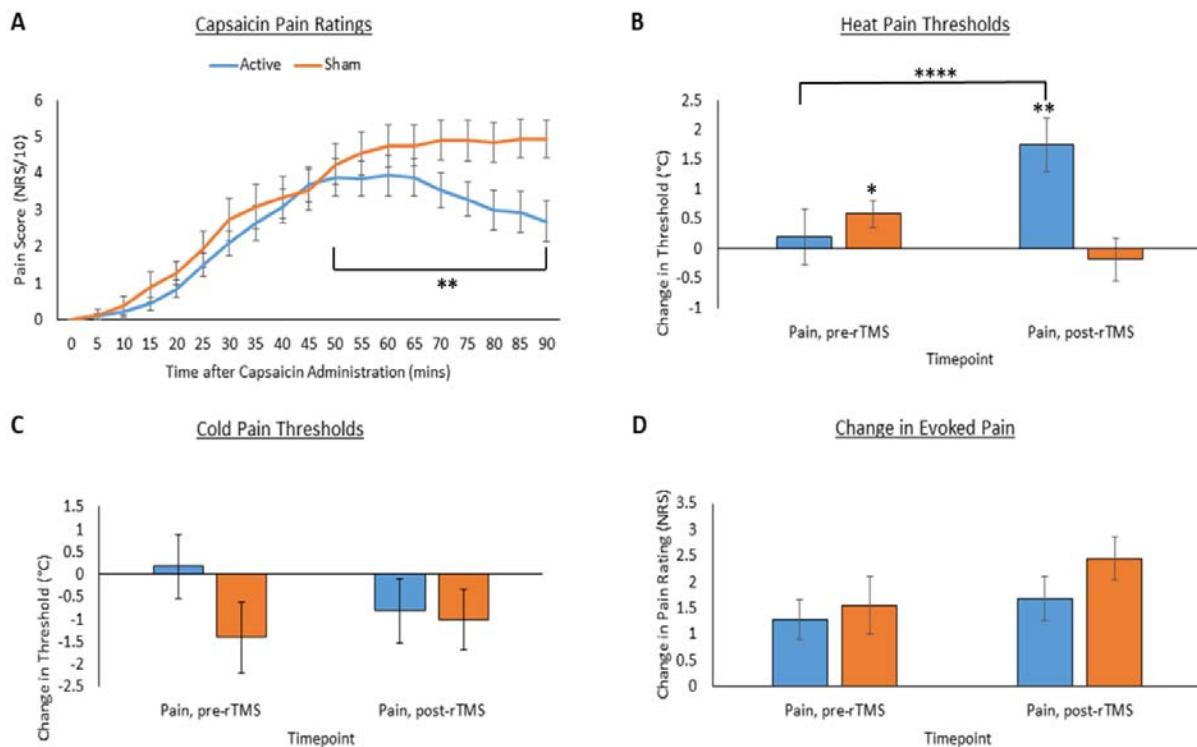
807

808

809

810

811


812

813

814

815

816

817

818

819

820

821

822

823

824

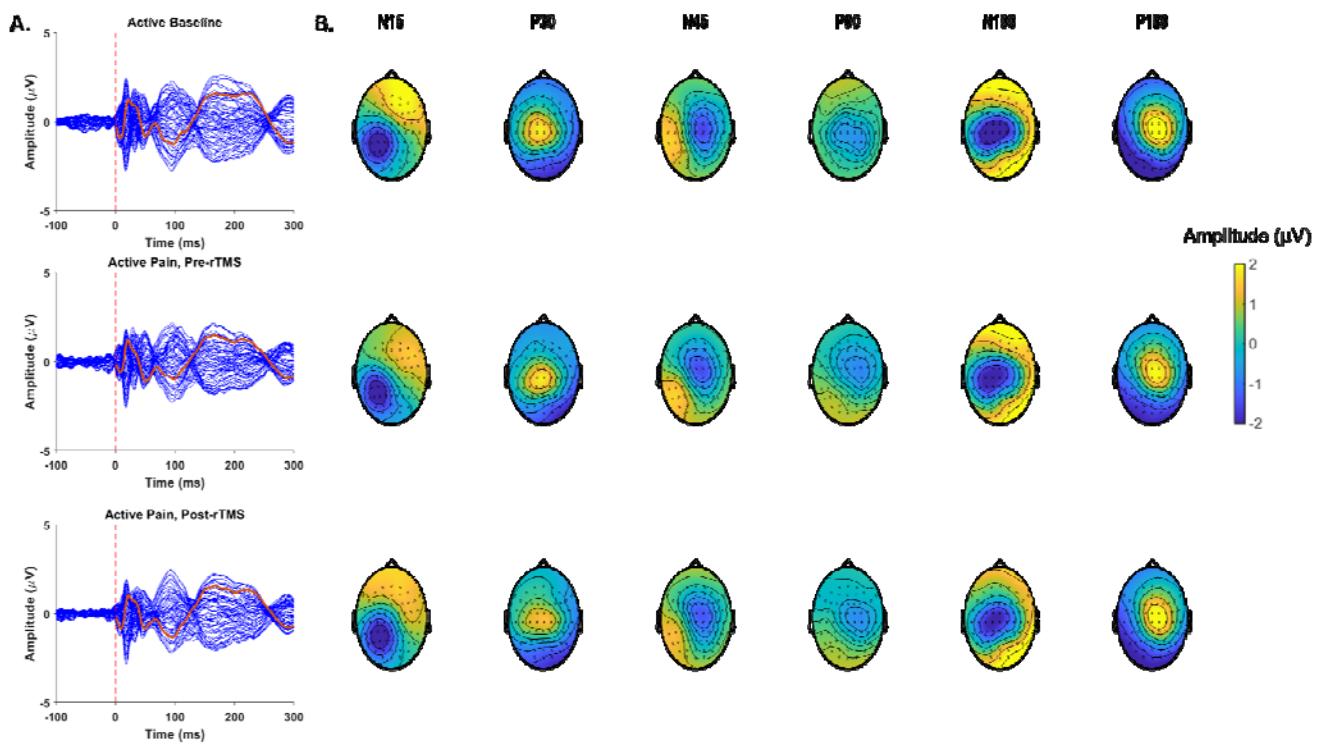
825

826

827

828

829


830

831

832

833

834

835

836

837

838

839

840

841

842

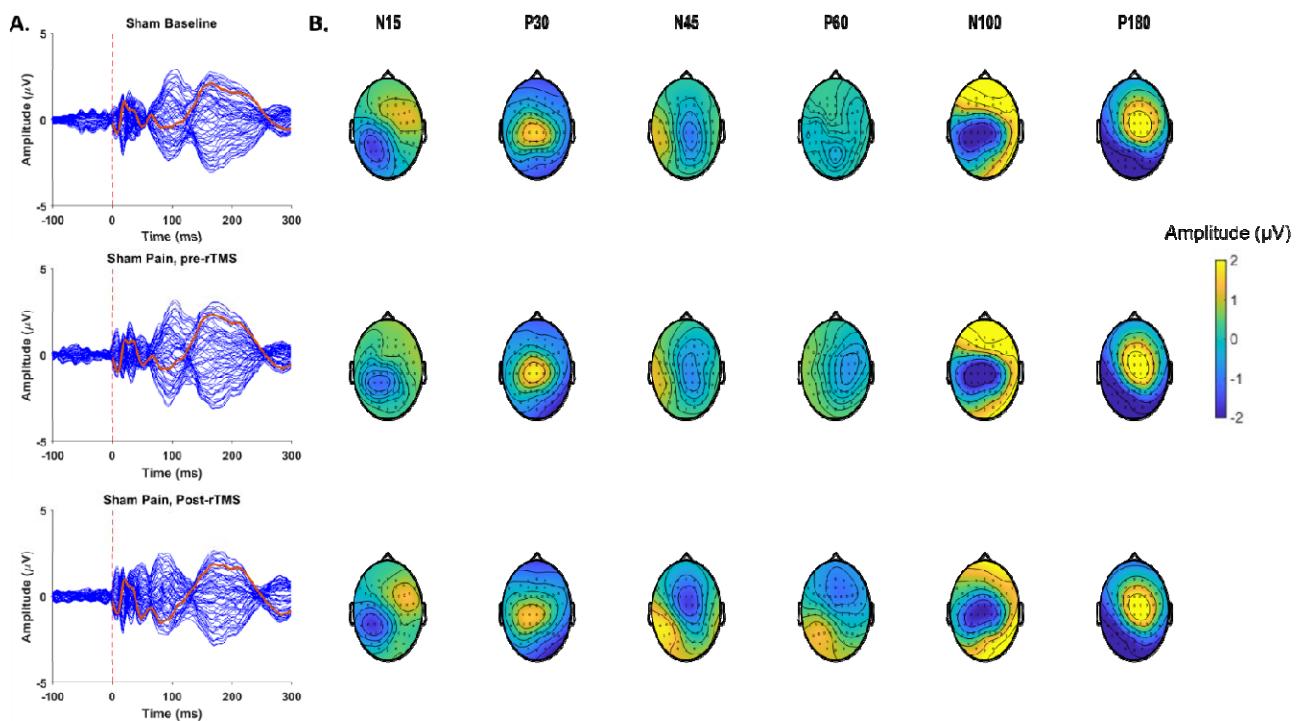
843

844

845

846

847


848

849

850

851

852

853

854

855

856

857

858

859

860

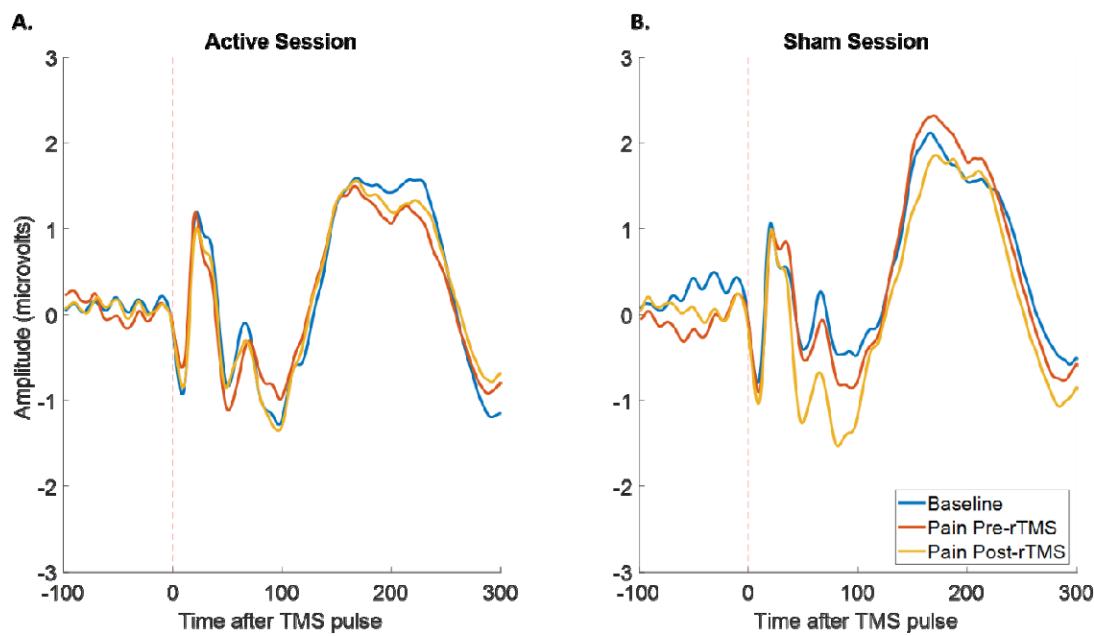
861

862

863

864

865


866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

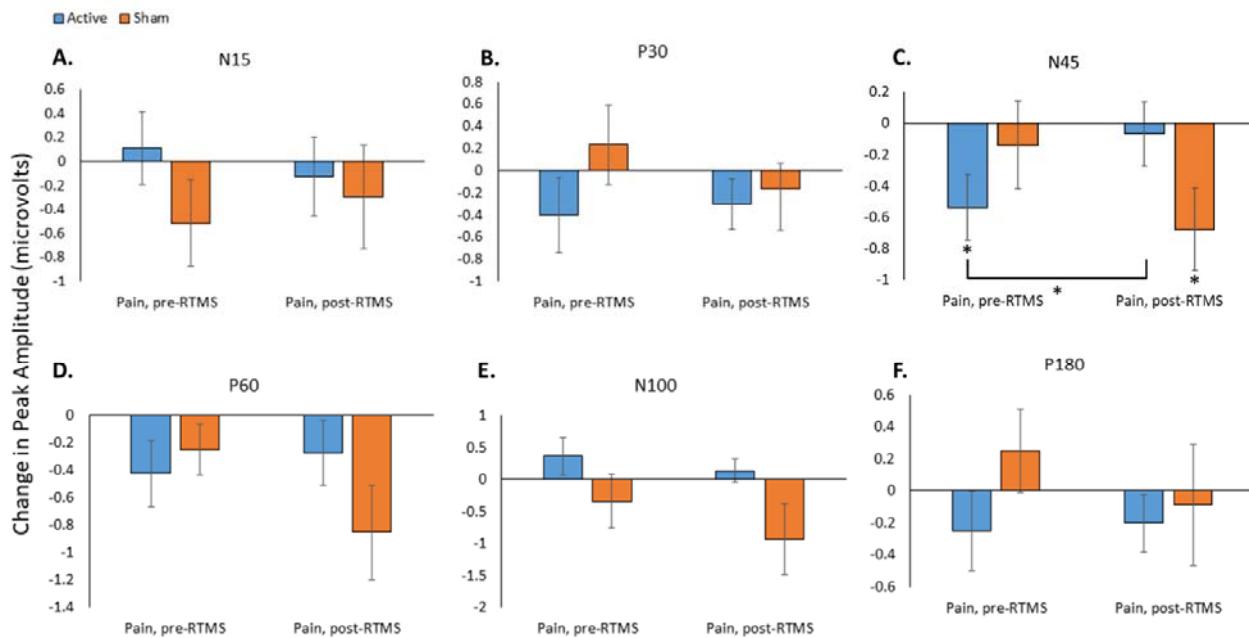
882

883

884

885

886


887

888

889

890

891

892

893

894

895

896

897

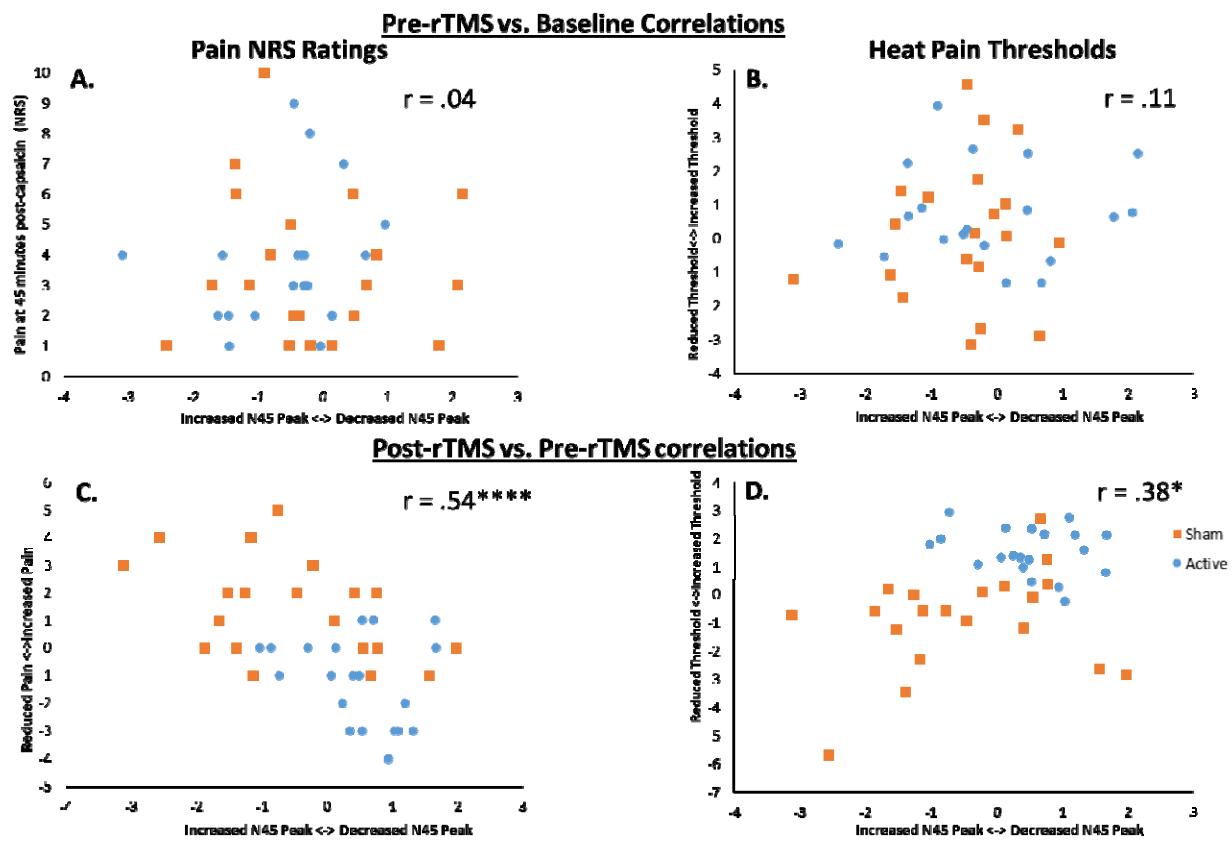
898

899

900

901

902


903

904

905

906

907

908

909

910

911

912

913

914

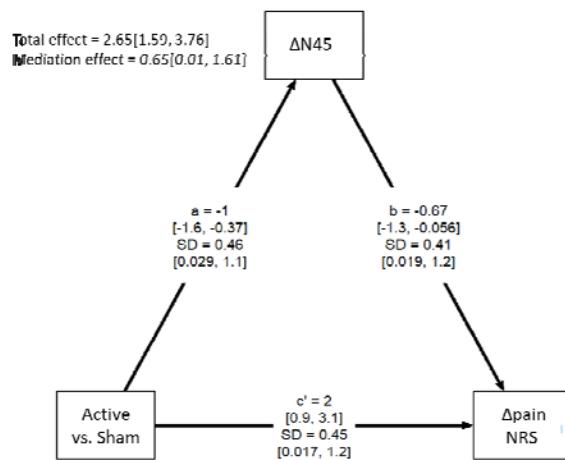
915

916

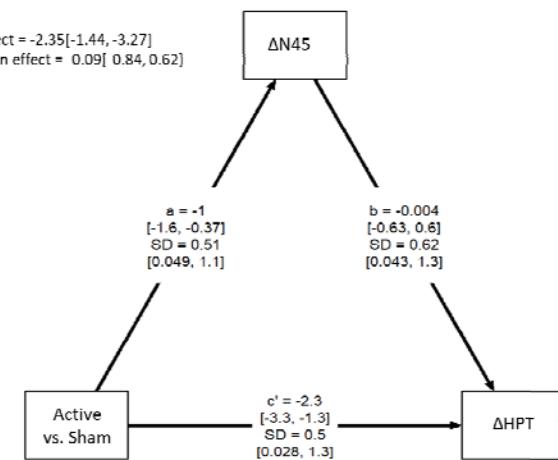
917

918

919


920

921


922

923

Pain NRS Scores

Heat Pain Thresholds

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

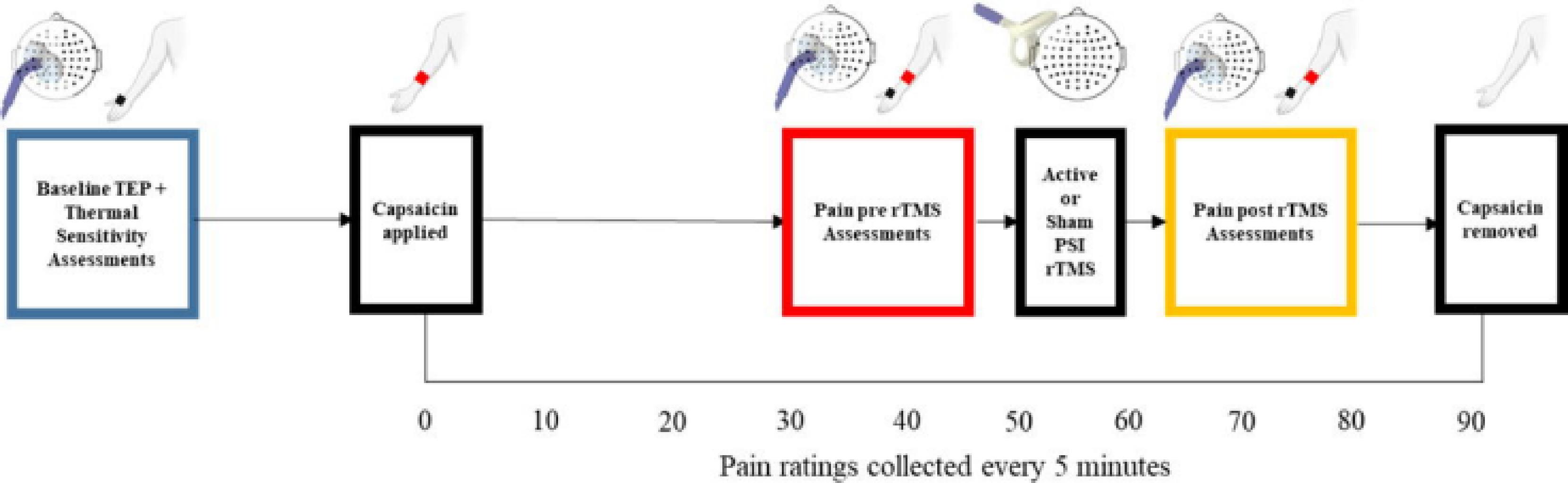
944

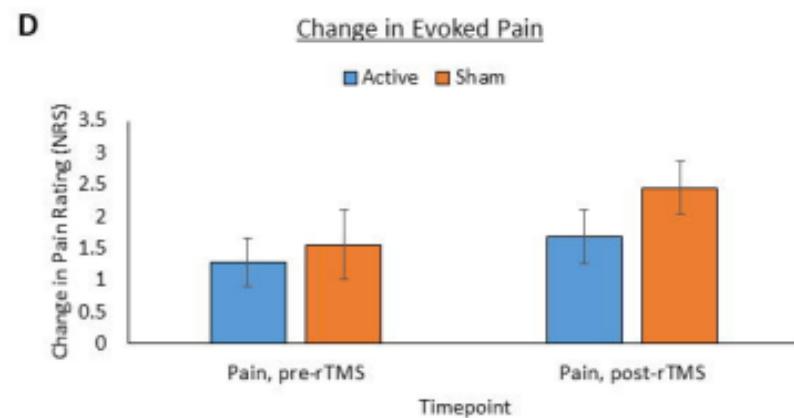
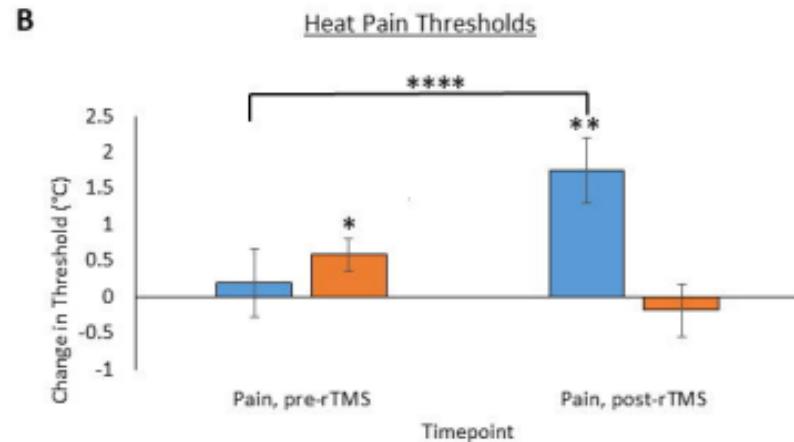
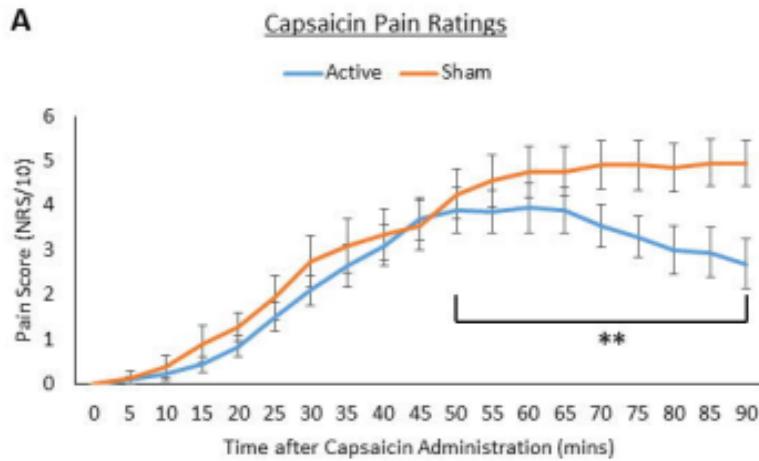
945

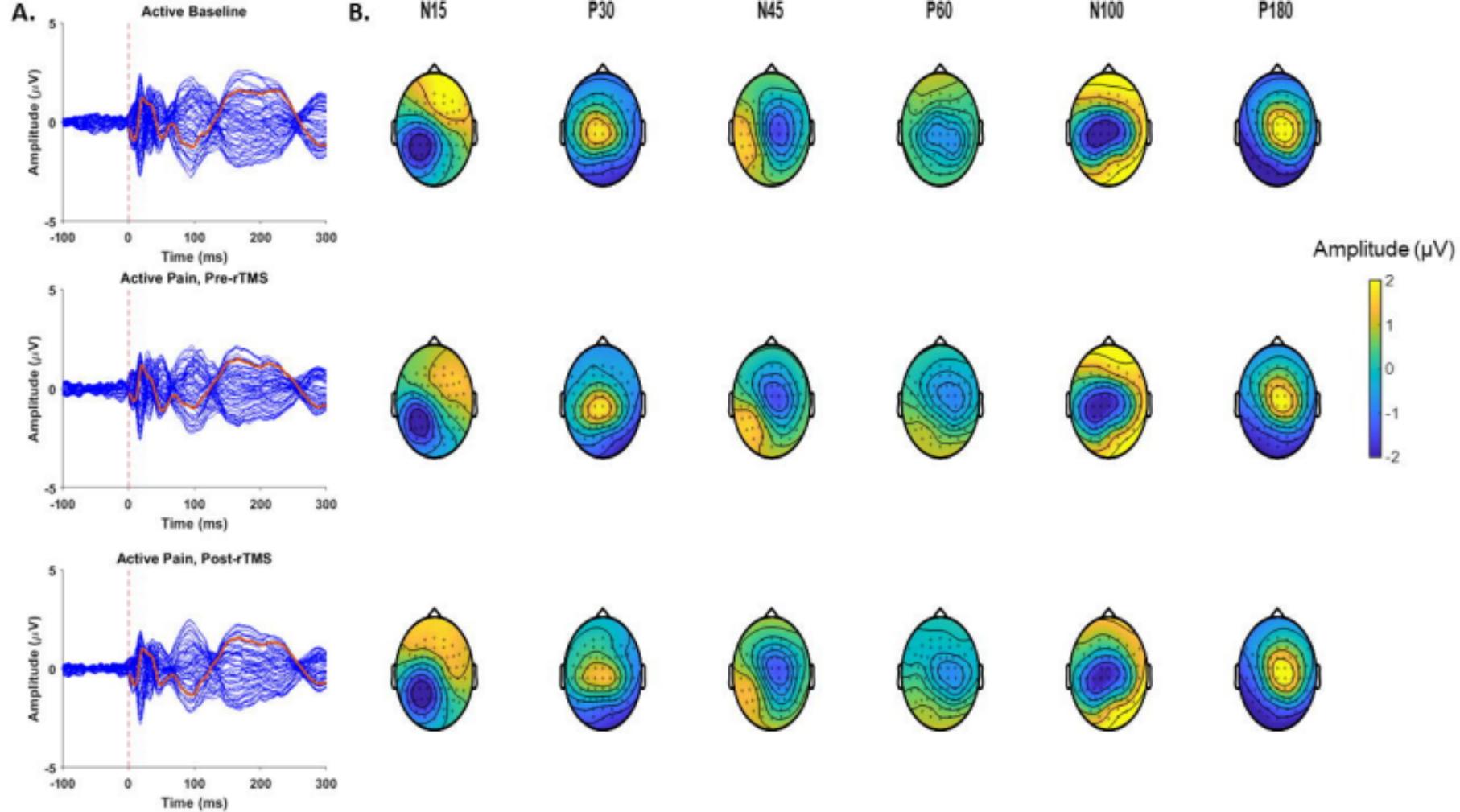
946 **TABLES**

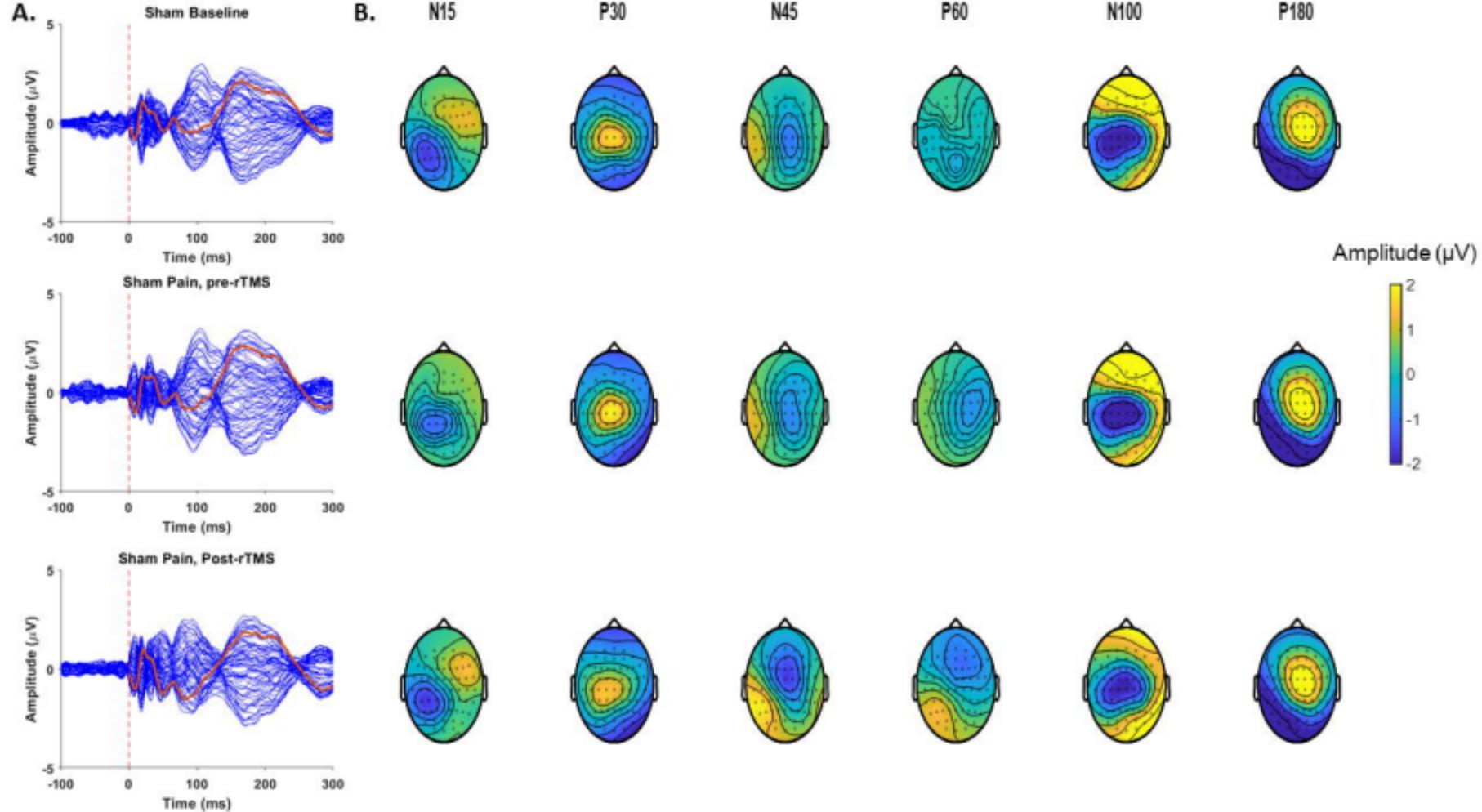
947 *Table 1. Thermal sensitivity outcomes at each timepoint for active and sham rTMS sessions before*
948 *and after capsaicin-induced pain. CDT = Cold Detection Threshold, WDT = Warm Detection*
949 *Threshold, CPT = Cold Pain Threshold, HPT = Heat Pain Threshold.*

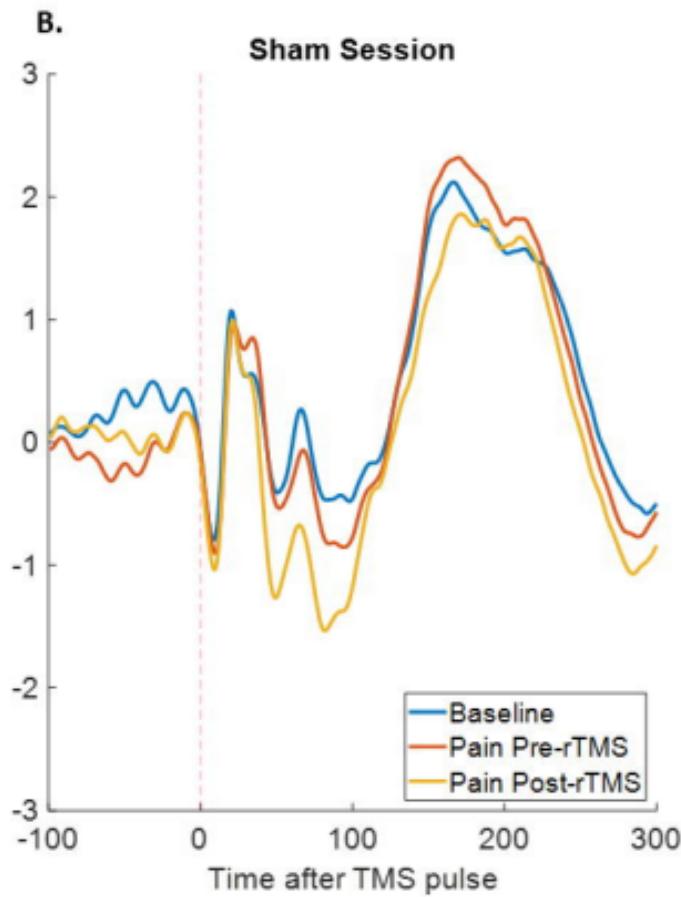
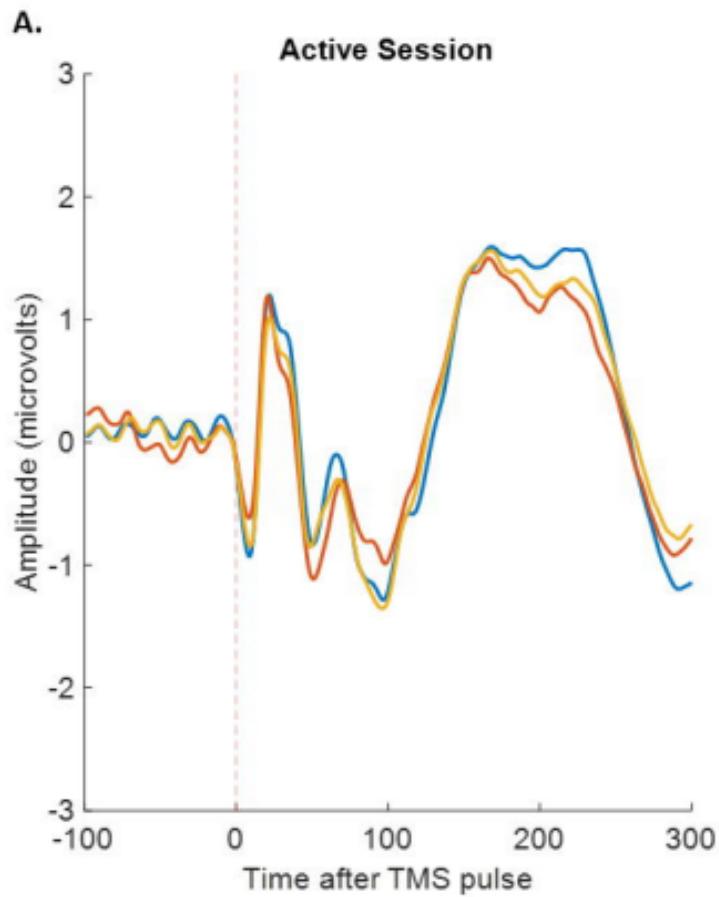
	Active rTMS			Sham rTMS		
	Baseline	Pain	Pain	Baseline	Pain	Pain
		pre-rTMS	post-rTMS		pre-rTMS	post-rTMS
CPT (°C)	9.4±1.92	9.5±1.78	8.5 ±1.85	8.3±2.05	6.9±1.83	7.3±1.83
HPT (°C)	45.1±0.74	45.3±0.74	46.9 ±0.71	46.5±0.80	47.1 ±0.73	46.3 ±0.82
Evoked Pain (NRS/10)	4.8±0.50	6.1±0.46	6.5±0.39	4.8±0.46	6.4±0.56	7.3±0.41

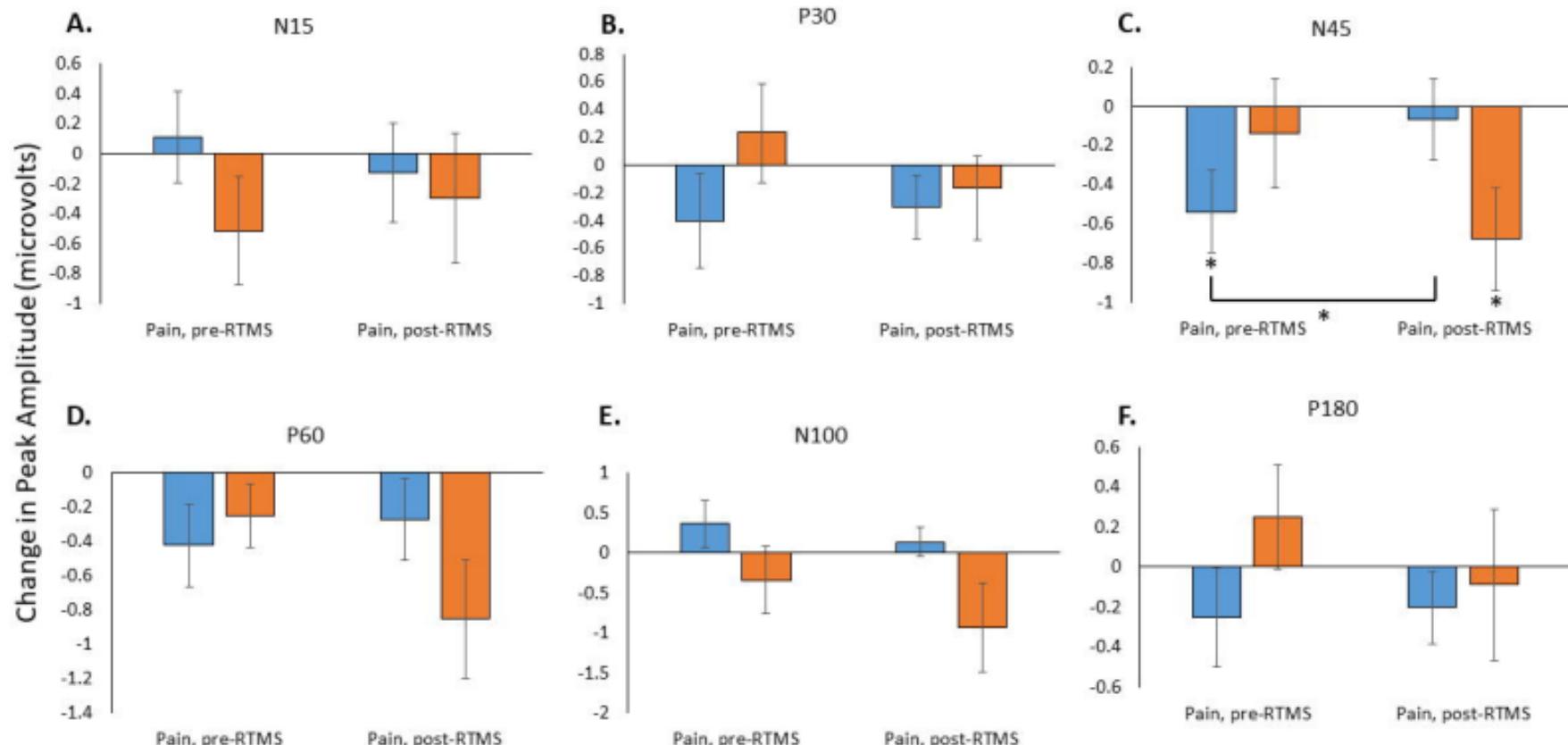

950

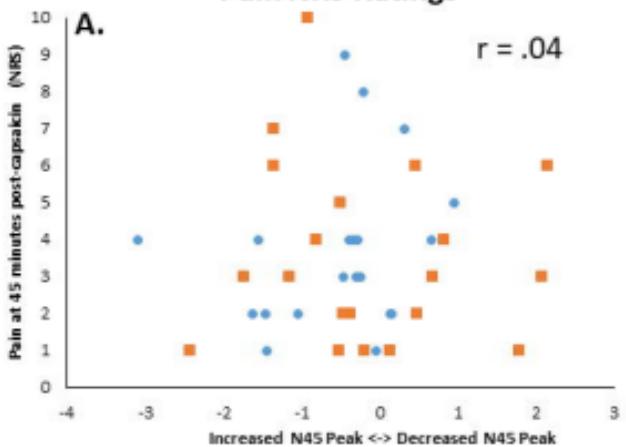



951


952

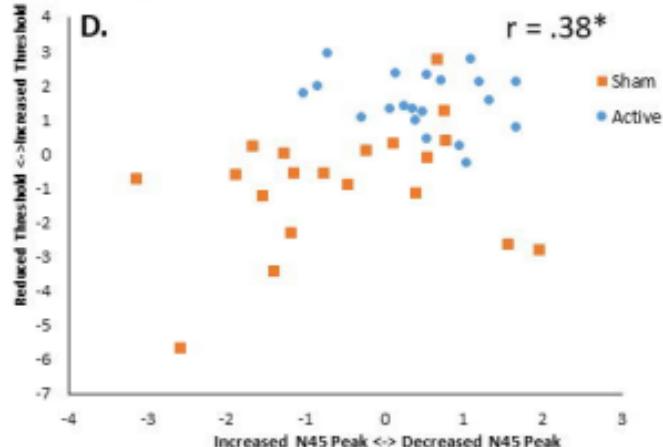
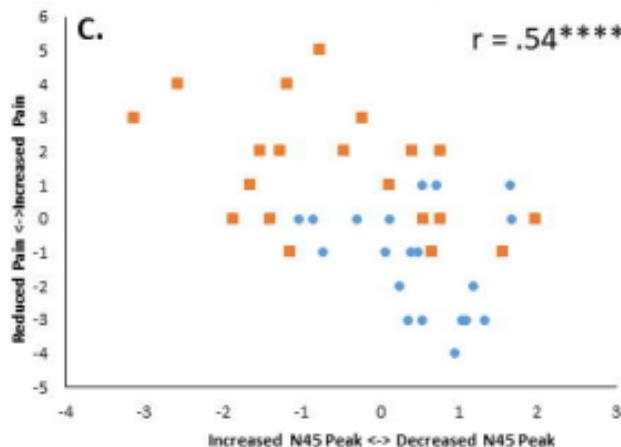

953



954

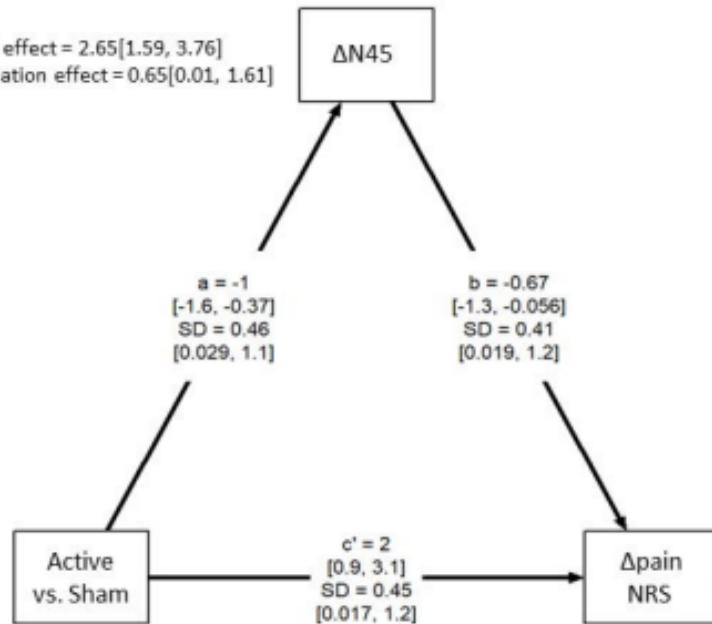




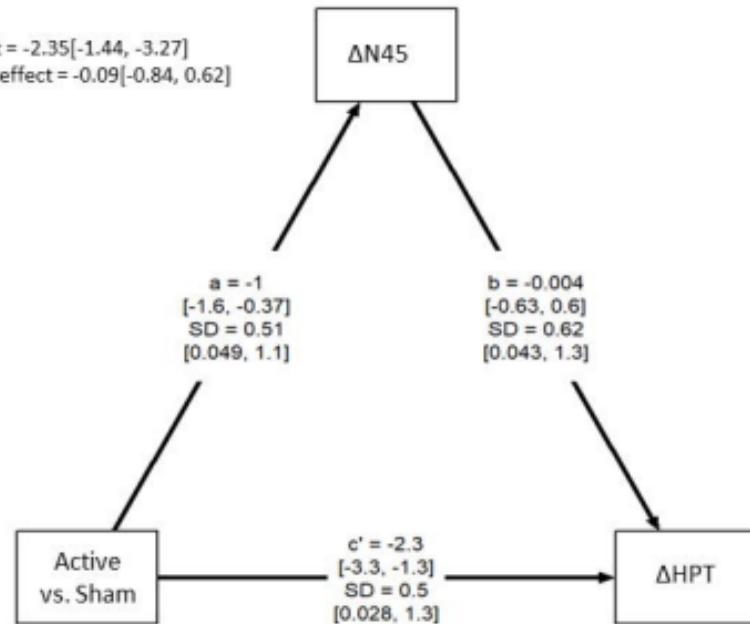
Pre-rTMS vs. Baseline Correlations



Pain NRS Ratings

Heat Pain Thresholds



Post-rTMS vs. Pre-rTMS correlations


Pain NRS Scores

Total effect = 2.65[1.59, 3.76]
Mediation effect = 0.65[0.01, 1.61]

Heat Pain Thresholds

Total effect = -2.35[-1.44, -3.27]
Mediation effect = -0.09[-0.84, 0.62]

