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Abstract  

Healthy brain aging involves changes in both brain structure and function, including alterations 

in cellular composition and microstructure across brain regions. Unlike diffusion-weighted 

MRI (dMRI), diffusion-weighted MR spectroscopy (dMRS) can assess cell-type specific 

microstructural changes, providing indirect information on both cell composition and 

microstructure through the quantification and interpretation of metabolites’ diffusion 

properties. This work investigates age-related changes in the higher-order diffusion properties 

of three major intracellular metabolites (N-Acetyl-aspartate, Creatine and Choline) beyond the 

classical apparent diffusion coefficient in cerebral and cerebellar grey matter of healthy human 

brain. Twenty-five subjects were recruited and scanned using a diffusion-weighted semi-

LASER sequence in two brain regions-of-interest (ROI) at 3T: posterior-cingulate (PCC) and 

cerebellar cortices. Metabolites’ diffusion was characterized by quantifying metrics from both 

Gaussian and non-Gaussian signal representations and biophysical models. All studied 

metabolites exhibited lower apparent diffusivities and higher apparent kurtosis values in the 

cerebellum compared to the PCC, likely stemming from the higher microstructural complexity 

of cellular composition in the cerebellum. Multivariate regression analysis (accounting for ROI 

tissue composition as a covariate) showed slight decrease (or no change) of all metabolites’ 

diffusivities and slight increase of all metabolites' kurtosis with age, none of which statistically 

significant (p>0.05). The proposed age-trajectories provide benchmarks for identifying 

anomalies in the diffusion properties of major brain metabolites which could be related to 

pathological mechanisms altering both the brain microstructure and cellular composition.  

1. Introduction 

Healthy aging involves numerous and heterogeneous functional and structural changes in the 

brain depending also on the considered anatomical region. For instance, in-vivo studies showed 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 10, 2024. ; https://doi.org/10.1101/2024.06.04.597406doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.04.597406
http://creativecommons.org/licenses/by/4.0/


that the cerebellum presents slower age-related morphological changes compared to the 

cerebral cortex (Liang & Carlson, 2020), possibly due to different microstructural properties. 

Indeed, the cerebellum contains 60 to 80% of the total amount of neurons in the brain for only 

10% of the brain mass (Colin et al., 2001; Walløe et al., 2014). Investigating the 

neurobiological underpinnings of aging in the cerebellum is of interest as this structure projects 

to the entire brain and mediates cognitive functions affected by aging (Manto, 2022). Age-

related changes have been shown in the cerebellum and cerebral cortices only at the 

macroscopic level by in-vivo studies, whereas microstructural changes have been mostly 

observed ex-vivo throughout life (Andersen et al., 2003), and in patients with diseases 

progressing with aging (Grimaldi & Manto, 2013; R. J. Louis et al., 2014). These studies 

showed different results, with loss of white matter (WM) up to 25% associated with loss of 

Purkinje and Granule cells (Andersen et al., 2003; Arleo et al., 2024) and thinning of dendritic 

trees of Purkinje cells (R. J. Louis et al., 2014).  

Magnetic resonance imaging (MRI) studies have shown global macrostructural changes 

(volume loss) of grey matter (GM) and WM in the brain with aging  (Andersen et al., 2003; 

MacDonald & Pike, 2021; Walhovd et al., 2005); cortical thinning in the cerebral cortex 

(Sowell et al., 2004) with prefrontal and frontal cortices (alongside hippocampus) most affected 

during aging (Jernigan et al., 2001); and loss of GM in the cerebellar cortex (Stalter et al., 

2023).   

Diffusion-weighted MR imaging (dMRI) is a powerful and widely used imaging tool to 

quantify human brain microstructure in-vivo and non-invasively (Alexander et al., 2019; Jones, 

2010). Recent dMRI studies investigating variations of diffusion metrics with age observed a 

significant increase of mean diffusivity and decrease of fractional anisotropy in the cerebral 

cortex and subcortical regions (Helenius et al., 2002; Pfefferbaum et al., 2010; Raghavan et al., 
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2021; Schilling et al., 2022; Watanabe et al., 2013), while others remained inconclusive 

regarding the cerebellum (Behler et al., 2021; van Aalst et al., 2022). 

Although very sensitive to microstructural changes, dMRI cannot unambiguously inform on 

changes in cellular composition due to the poor cell-type specificity of water molecules. In 

contrast, diffusion-weighted MRS (dMRS) provides higher cell-type specificity (Cao & Wu, 

2017; Ligneul et al., 2023; Palombo et al., 2016, 2017; Palombo, Shemesh, et al., 2018; Ronen 

& Valette, 2015; Vincent et al., 2020), offering the opportunity to inform on alterations of both 

cellular composition and microstructure with age, through the interpretation of measurements 

of metabolite diffusion properties. Some of the major brain metabolites are purely intracellular 

(e.g., N-Acetyl-aspartate, NAA; creatine, Cr, and choline compounds, tCho) and cell-type 

specific (e.g., NAA mostly concentrated in neurons and tCho mostly concentrated in glia) and 

can be used to infer compartment specific microstructural changes (Ligneul et al., 2019, 2023; 

Palombo et al., 2016, 2017; Palombo, Ligneul, et al., 2018). A recent dMRS work showed that 

the apparent diffusion coefficient (ADC) of five major intracellular metabolites (myo-Inositol 

and Glutamate in addition to NAA, Cr and Cho) was faster in healthy older adults and depended 

on brain region, suggesting region-specific alterations in the intra-cellular microenvironment 

(Deelchand et al., 2020). However, it is still unknown how other informative diffusion 

properties of brain metabolites diffusion beyond the ADC change with aging. For example, the 

apparent diffusional kurtosis, a higher-order diffusion metrics that quantifies the degree of non-

Gaussianity, could inform on the effect of restrictions and hinderance imposed by the 

microenvironment on the diffusion of intracellular metabolites (Jensen et al., 2005).  

This work aims to fill this gap and provide first age-trajectories of higher-order diffusion 

properties of major intracellular metabolites (total N-acetyl-aspartate, tNAA:  NAA + N-acetyl-

aspartyl-glutamate, NAAG;  tCho: glycero-phosphoryl-choline, GPC +  phosphoryl-choline, 
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PCho; and total creatine, tCr: Cr, + phospho-creatine, PCr) and to highlight potential 

microstructural changes with  age in the cerebral and cerebellar GM using dMRS. We focused 

our investigation on cerebral and cerebellar cortices because of the role of cerebellum in 

mediating cognitive functions which are affected by aging in the brain and its higher 

microstructural complexity in contrast to cerebral cortex. 

2. Material and Methods 

2.1. Subjects 

A cohort of twenty-five healthy adults consisting of 11 females and 14 males were recruited 

for this study. The age range of the participants spanned from 25 to 80 years, with a mean age 

of 50.2 years and a standard deviation of 20.2 years. Dividing the cohort into younger (<50 

years) and older (>50 years) adults, we have 13 participants (6 females) with a mean age of 

31.8 and a standard deviation of 7.1 years, and 12 participants (5 females) with a mean age of 

70.2 and a standard deviation of 5.3 years, respectively. The healthy participant inclusion 

criteria involve absence of neurotropic treatment, psychiatric disorders, and cognitive function 

disorders. All subjects provided informed consent according to local procedures prior to the 

study. The study was approved by the local ethics committee. 

2.2. Data acquisition and processing:  

dMRS data were acquired using a 3T Siemens Prisma scanner (Siemens Healthineers, 

Erlangen, Germany) with a 64-channel receive-only head coil at the Paris Brain Institute 

(Institut du Cerveau, ICM), France. Three‐dimensional T1‐weighted magnetization‐prepared 

rapid gradient echo images (field of view, 256 (anterior – posterior) x 256 (foot – head) x 231 

(right – left) mm3; isotropic resolution, 0.9 mm; repetition and echo time (TR/TE), 2300/2.08 

ms; total acquisition time, 5 min. 17 sec. were acquired to position the spectroscopic region-

of-interest (ROI) and to perform tissue segmentation. Two ROIs targeting GM in the 
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cerebellum and posterior-cingulate-cortex (PCC) were examined using a diffusion-weighted 

semi-LASER sequence (Genovese, Marjańska, et al., 2021). The ROIs were defined as 5.3 cm3 

(15x16x22 mm3) in the cerebellum and 8.0 cm3 (20x20x20 mm3) in the PCC to maximize GM 

volume fraction (above 70%) in both ROIs. Spectral data was recorded with a spectral 

bandwidth of 3000 Hz and complex data points of 2048 at TE of 125 ms. During measurements, 

pulse triggering was applied, setting the average TR to three cardiac cycles. Diffusion-

weighting was applied using tetrahedral-encoding scheme in directions of (-1 -1 -1), (-1 1 1), 

(1 -1 1), and (1 1 -1). Six b-values (b = [0, 0.96, 3.85, 8.67, 15.41, 24.10] ms/µm2) were applied 

with an effective gradient duration (δ) of 26.4 ms (two pairs of bipolar gradients with 6.6 ms 

duration) and an effective diffusion gradient separation (Δ) of 62.5ms. The effective b-values 

were computed by including crusher and slice selection gradients as well as cross-terms 

compensation. Twenty-four transients were acquired for each diffusion-weighted condition and 

saved individually for further postprocessing. Water suppression was performed using variable 

power with optimized relaxation delays (VAPOR) and outer volume suppression (Tkac et al., 

1999). The water suppression flip-angle was calibrated for each participant. Additionally, water 

signals were acquired using the same diffusion-weighted conditions for eddy-current 

correction, excluding ultra-high b-values due to poor water signal. B0 shimming was performed 

using a fast automatic shimming technique with echo‐planar signal trains utilizing mapping 

along projections, FASTESTMAP (Gruetter & Tkac, 2000).  

Spectral processing was performed by following the state-of-the-art guidelines (Ligneul et al., 

2023) on MathWorks MATLAB R2022a (The MathWorks Inc., 2022). Zero‐order phase 

fluctuations and frequency drifts were corrected on single transients before averaging using the 

NAA peak. A peak‐thresholding procedure was applied, for each diffusion condition, to discard 

the transients with artefactual low signal-to-noise ratio (SNR) caused by non‐translational 

tissue motion (Genovese, Marjańska, et al., 2021). After processing of the transients in an 
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acquisition, e.g., a b-value measurement in a diffusion direction, the transients were averaged 

for independent data fitting.  

GM, WM, and cerebrospinal fluid (CSF) volume fractions were calculated in the ROIs using 

the T1-weighted images and the segment tool of SPM12 and MATLAB routines.  

2.3. Data fitting  

For each diffusion-weighted condition, averaged spectra were fitted independently with 

LCModel (Provencher, 1993). The SNR of spectra was reported from LCModel’s output (i.e., 

the ratio between signal intensity at 2.01ppm and twice the root mean square of fit residuals). 

The basis set was simulated with an in‐house written routine in MATLAB based on the density 

matrix formalism (Henry et al., 2006) and using previously reported chemical shifts and J‐

couplings (Govindaraju et al., 2000; Kaiser et al., 2010). The basis set included ascorbate, 

aspartate, Cr, γ‐aminobutyric acid, glucose, glutamate, glutamine, glutathione, GPC, myo-

inositol, lactate, NAA, NAAG, PCr, PCho, phosphorylethanolamine, scyllo‐inositol, and 

taurine. Independent spectra for the CH3 and CH2 groups of NAA, Cr, and PCr were simulated 

and included in the basis set.  

2.4. Data analysis  

To characterize the higher-order metabolites’ diffusion properties, multiple diffusion signal 

analyses were conducted including diffusion signal representations and biophysical models 

(Jensen et al., 2005; Ligneul et al., 2023; Palombo et al., 2017). The data and codes used to 

produce the results reported in this paper will be publicly available at 

https://github.com/kdrsimsek. 
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2.4.1. dMRS signal representations 

First, the direction-averaged diffusion signals were fitted monoexponentially up to 𝑏<5 ms/µm2 

to estimate the apparent diffusion coefficient (𝐴𝐷𝐶) and characterize Gaussian properties 

(Ligneul et al., 2023). Kurtosis signal representation (from Eq.5 in (Jensen et al., 2005)) was 

used to estimate the apparent diffusion kurtosis (𝐾) and determine non-Gaussian properties of 

metabolites up to 𝑏<10 ms/µm2 (Genovese, Marjańska, et al., 2021).  

2.4.2. dMRS biophysical models 

For biophysical modelling, the astro-sticks model was fitted to the direction-averaged signals 

at all b-values to estimate the apparent intra-stick axial diffusivity (𝐷𝑖𝑛𝑡𝑟𝑎) (Ligneul et al., 2023; 

Panagiotaki et al., 2012) 

 
𝑆

𝑆0
= ∫ 𝑒−𝑏𝐷𝑖𝑛𝑡𝑟𝑎 cos

2 𝜃
1

0

d (cos 𝜃) =
√𝜋

2

erf⁡(√𝑏𝐷𝑖𝑛𝑡𝑟𝑎)

√𝑏𝐷𝑖𝑛𝑡𝑟𝑎
 (1) 

here, the equation describes direction-averaged diffusion signal for the astro-sticks model. 𝜃 is 

the angle between the main axis of a given stick and the applied diffusion gradient. Error! 

Bookmark not defined. Additionally, astro-sticks model was modified to incorporate an 

effective intra-stick axial diffusivity (𝐷𝑒𝑓𝑓) defined as (Palombo et al., 2017; Palombo, Ligneul, 

et al., 2018; Sukstanskii & Yablonskiy, 2008; Yablonskiy & Sukstanskii, 2010): 

 𝐷𝑒𝑓𝑓(𝐷𝑖𝑛𝑡𝑟𝑎, 𝐾𝑖𝑛𝑡𝑟𝑎, 𝑏, 𝜃) = 𝐷𝑖𝑛𝑡𝑟𝑎(1 − 𝐾𝑖𝑛𝑡𝑟𝑎𝐷𝑖𝑛𝑡𝑟𝑎𝑏cos
2𝜃) (2) 

here, 𝐾𝑖𝑛𝑡𝑟𝑎
 is the apparent intra-neurite axial kurtosis and quantifies non-Gaussian diffusion 

characteristics stemming from hindering or restricting structures randomly displaced along the 

cellular processes, such as dendritic spines (Palombo, Ligneul, et al., 2018; Sukstanskii & 

Yablonskiy, 2008; Yablonskiy & Sukstanskii, 2010). The corresponding powder-averaged 
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signal for the modified astro-sticks model is computed by numerical integration given in the 

following equation: 

 𝑆/𝑆0 = ∫𝑒−𝑏𝐷𝑒𝑓𝑓cos
2𝜃𝑑(cos 𝜃)

1

0

 (3) 

2.4.3. Fitting routine  

Data analysis was conducted within the Python programming environment. Following spectral 

quantification using LCModel, we estimated the diffusion-weighted signal amplitude from the 

area under each metabolites’ peak(s) and direction-averaged it at each b value to obtain the 

direction-averaged diffusion signal decay for each metabolite. Diffusion fitting was performed 

using Levenberg-Marquardt non-linear least squares optimization in the Python library ‘lmfit’ 

(https://pypi.org/project/lmfit/). No constraints were imposed on the modelling functions, but 

boundary conditions of each model parameter were defined to be positive and not to exceed 

free metabolites’ diffusivity 1.0 µm2/ms (Döring et al., 2018) and 3.0 for apparent kurtosis 

parameters (Jensen et al., 2005). Three major metabolites were examined: tNAA as a neuronal 

biomarker; tCho as a glial biomarker; and tCr as a biomarker comprised in both neuronal and 

glial cells. Notably, one direction-averaged diffusion signal in the cerebellum, acquired from a 

subject, suffered from very poor SNR; hence, excluded from the diffusion analysis. 

2.5. Statistical Analysis 

Linear regression was performed on all estimated parameters to determine age-trajectories with 

computed 95% confidence interval and prediction limits. To analyze the specific impact of age 

on the changes of diffusion metrics, a regression analysis with age as the independent variable 

and each estimated model parameter as the dependent variable was performed, also accounting 
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for 𝑓𝐺𝑀
𝑓𝑊𝑀

 (the ratio between GM and WM volume fractions) as covariate by fitting the following 

expression: 𝑦 ∼ ⁡𝛽0 + 𝛽1 ⋅ 𝑎𝑔𝑒 + 𝛽2 ⋅ 𝑓𝐺𝑀/𝑓𝑊𝑀.  

Additionally, an independent T-test between younger (age < 50) and older (age≥ 50) people 

was performed to assess statistically significant differences between younger and older adult 

groups. Bonferroni correction was applied for only T-test, including two brain regions and 

three metabolites for each diffusion metric and the p-value, the threshold for statistical 

significance, was redefined to be 0.0083 (0.05/6). In both statistical analyses, the parameters 

values converging to the lower bound in the fitting were excluded from the age-trajectory 

analysis because considered unreliable.  

3. Results 

To simplify inspection of the findings, a color-coding scheme is used to identify the cerebellum 

and the PCC results as blue and red more clearly, respectively. 

Exemplary diffusion-weighted spectra acquired from both brain regions are shown in Figure 

1A which exhibit good spectral quality – linewidths at b0/bmax: 4.17/4.84 Hz in the cerebellum 

and 3.30/4.67 Hz in the PCC.  SNRs obtained from the corresponding LCModel fit results were 

18±3 and 24±4 (mean ± standard deviation over all subjects) at 𝑏 = 0 (i.e., no diffusion-

weighting) and 7±2 and 6±2 at the highest 𝑏 value in the cerebellar and cerebral cortexes, 

respectively. The tissue volume fractions (mean ± standard deviation over all subjects) were as 

follows: fGM: 0.82 ± 0.05 (GM volume fraction), fWM: 0.12 ± 0.05 (WM volume fraction), 

and fCSF: 0.06 ± 0.03 (CSF volume fraction) in the cerebellum; fGM: 0.69 ± 0.07, fWM: 0.14 

± 0.03, and fCSF: 0.17 ± 0.08 in the PCC. The localizations of spectroscopic voxels in both 

ROIs are depicted in Figure 1B. Furthermore, the age-trajectory for 𝑓𝐺𝑀
𝑓𝑊𝑀

 ratio was investigated 
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for variations with age and reported in Figure 1C. A significant decrease with age in 𝑓𝐺𝑀
𝑓𝑊𝑀

 in 

the cerebellum was observed, while no significant change in the PCC. 

The Cramer-Rao lower bound (CRLB) obtained from LCModel fit was used to assess the 

quality of the quantification. Overall fit results are excellent with low CRLBs (<5%) in both 

ROIs for the non-diffusion weighted spectra. Estimated CRLBs for the highest 𝑏 values were 

averaged over different diffusion directions and yielded CRLBtNAA=4%, CRLBtCho=6%, and 

CRLBtCr=4% in the cerebellum and CRLBtNAA=7%, CRLBtCho=10%, and CRLBtCr=5% in the 

PCC. In addition to CRLB, no other exclusion criteria were employed (Kreis, 2016).  

3.1. Metabolite Diffusion Properties 

Metabolite diffusion signals obtained from all subjects are displayed in Figure 2A for both 

cerebellum and PCC. The diffusion signals obtained from all participants (light) are reported 

alongside the corresponding cohort averages (dark). Overall, slower metabolite diffusion was 

observed for all metabolites in the cerebellum compared to PCC. Figure 2B presents the results 

of the estimated diffusion parameters from all subjects as a box-whiskers plot for all signal 

representations and biophysical models. The corresponding mean values of the estimated 

parameters obtained from the cohort are charted in Table 1. In the cerebellum, the model 

parameters for one dataset could not be estimated (and highlighted as an outlier with values of 

zero), due to low SNR at higher b-values. In all cases, the estimated apparent diffusivities 

(𝐴𝐷𝐶s & 𝐷𝑖𝑛𝑡𝑟𝑎) are lower in the cerebellum than in the PCC. Correspondingly, the kurtosis 

estimates (𝐾 and 𝐾𝑖𝑛𝑡𝑟𝑎) are higher in the cerebellum than in the PCC, for all metabolites. 

Noticeably, 𝐾𝑖𝑛𝑡𝑟𝑎 of tCho and tCr in both ROIs exhibit high variability due to relatively higher 

CRLB; e.g. in the tCho results, the median values in each metabolite result is at the lower bound 

while the mean values are higher as shown in Figure 2B.  
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3.2. Age-trajectories 

The age-trajectories for apparent diffusivities (𝐴𝐷𝐶 & 𝐷𝑖𝑛𝑡𝑟𝑎) of monoexponential 

representation and astro-sticks model are grouped together and presented in Figure 3. The 

apparent diffusivities presented similar trends with age for all metabolites: increasing in the 

PCC and decreasing in the cerebellum.  

The age-trajectories for diffusion kurtosis (𝐴𝐷𝐶 & 𝐾) and modified astro-sticks model (𝐷𝑖𝑛𝑡𝑟𝑎 

& 𝐾𝑖𝑛𝑡𝑟𝑎) analyses were grouped together and showed in Figure 4. The age-trajectories for the 

diffusion kurtosis parameters depicted in Figure 4A predominantly show similar trends for all 

metabolites except for the 𝐴𝐷𝐶 of tCr in the PCC and 𝐾 of tCho in the cerebellum, which 

exhibit opposite trend. Likewise, the age-trajectories of modified astro-sticks model parameters 

show decreasing trend in 𝐷𝑖𝑛𝑡𝑟𝑎 and increasing trend in 𝐾𝑖𝑛𝑡𝑟𝑎 for all metabolites in both ROIs 

as illustrated in Figure 4B. Only exception is the 𝐷𝑖𝑛𝑡𝑟𝑎 of tCr in the PCC showing increasing 

trend.  

Overall, the statistical analyses performed over diffusion metrics of tNAA (the neuronal 

biomarker), tCho (glial biomarker) and tCr (less cell-type specific) do not report any significant 

change with age for all the higher-order diffusion metrics investigated in this study (p>0.05). 

Notably, the T-test results of tCho 𝐾𝑖𝑛𝑡𝑟𝑎 show only significant increase in the PCC. 

Considering the high noise level in tCho and the median value of tCho 𝐾𝑖𝑛𝑡𝑟𝑎 at the lower 

bound in the modified astro-sticks model fitting, this outcome needs to be treated carefully. 

4. Discussion  

This work investigates variations in the higher-order diffusion properties of major intracellular 

brain metabolites with healthy aging in the cerebral and cerebellar GM in-vivo in human brain 

using dMRS and clinical 3T MRI scanner.  
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4.1. Metabolites apparent diffusivity in cerebellar and cerebral GM  

Apparent diffusivities (𝐴𝐷𝐶 & 𝐷𝑖𝑛𝑡𝑟𝑎) of the studied metabolites agree with literature findings 

(Branzoli et al., 2014; Deelchand et al., 2018; Döring et al., 2018; Döring & Kreis, 2019; Ingo 

et al., 2018; Kan et al., 2012; Najac et al., 2016; Palombo et al., 2016; Şimşek et al., 2022). 

Relatively slower metabolite apparent diffusivities in the cerebellum might stem from higher 

microstructural complexity of cellular composition compared to PCC: the Purkinje and granule 

cells are highly abundant in the cerebellum (E. D. Louis et al., 2014) while the PCC is 

comprised by the less complex Pyramidal neurons.  

4.2. Age-dependence of metabolites apparent diffusivity 

Overall, estimated apparent diffusivities did not present any significant trend nor changes with 

age, in contrast to mono-exponential ADCs reported by the only study in the literature 

(Deelchand et al., 2020). This difference might originate from having different sample size and 

more likely from different ROI tissue volume composition. In contrast to our work, Deelchand 

et al. recruited more participants and in two age groups (young: 18-22 and old: 70-83 years 

old). Regarding distinctions in tissue composition, the WM content in the PCC ROI in our 

work is around half that in the Deelchand’s work (our work, fWM=14%; Deelchand’s work, 

fWM≃30%). Higher fGM in our ROIs leads to a more isotropic microenvironment for 

metabolite diffusion; thus, a weaker dependence of metabolite apparent diffusivity on the fiber 

orientation. Other contributing factors might be differences in diffusion times (62.5 in our work 

and 125 ms in Deelchand’s work) and encoding schemes. Previous studies have shown that 

diffusion times have strong effects on estimated ADCs in both GM and WM (Assaf & Cohen, 

1998; Döring & Kreis, 2019; Ligneul et al., 2017; Ligneul & Valette, 2017), while TE-

dependence of metabolites ADC was only significant in ROIs with high content of WM 
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(Branzoli et al., 2014) like in Deelchand’s work and was negligible for ROIs with high content 

of GM (Ligneul et al., 2017), like in our study. 

4.3. Metabolites apparent kurtosis and non-Gaussianity in cerebellar and 

cerebral GM 

Estimated metabolite diffusion kurtosis 𝐾 values agree with current literature (Döring et al., 

2023; Genovese, Marjańska, et al., 2021; Ingo et al., 2018; Mougel et al., 2023). In accordance 

with metabolite apparent diffusivities, the 𝐾⁡&⁡𝐾𝑖𝑛𝑡𝑟𝑎 for all metabolites in the cerebellum 

compared to PCC agree with the expected higher complexity of the cellular microenvironment. 

For instance, the Purkinje cells in the cerebellum have higher spine density and higher 

branching order (Santamaria et al., 2006) in contrast to the PCC, which comprises mostly 

Pyramidal cells with lower spine density and branching order (Holtmaat et al., 2005). 

Therefore, the higher microstructural complexity in the cerebellum might lead to higher tNAA 

(the neuronal biomarker) apparent 𝐾⁡&⁡𝐾𝑖𝑛𝑡𝑟𝑎. Additionally, the relatively higher 𝐾⁡&⁡𝐾𝑖𝑛𝑡𝑟𝑎 

values for tCho (glial biomarker) in the cerebellum might be due to the presence of highly 

arborized Bergmann glia (Sild & Ruthazer, 2011). The same rationale can explain the observed 

lower diffusivities in the cerebellum compared to the PCC. 

4.4. Age-dependence of metabolites apparent kurtosis and non-

Gaussianity 

The age-trajectories of metabolite diffusion properties reveal overall similar trends for apparent 

diffusivities (𝐴𝐷𝐶 & 𝐷𝑖𝑛𝑡𝑟𝑎) from signal representations and biophysical models. The 

significant increase with age in 𝐾𝑖𝑛𝑡𝑟𝑎 of tCho in the PCC requires cautious interpretation due 

to the low SNR and high CRLB in the cerebellum data. Figure 2B illustrates that the median 

value of tCho 𝐾𝑖𝑛𝑡𝑟𝑎⁡is at the lower bound. Therefore, the low SNR in tCho might cause 
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instability in fitting of modified astro-sticks model that resulted in a significant increase in 

𝐾𝑖𝑛𝑡𝑟𝑎 in the PCC.  

4.5. Analysis of potential confounders: the negligible impact of ROI tissue 

composition 

The multivariate regression analysis does not report any significant impact of the accounted 

variables age (as independent) and 𝑓𝐺𝑀/𝑓𝑊𝑀 (as dependent) on the variation of diffusion 

metrics (p>0.05). Hence, the trend in age-trajectory cannot be attributed to changes in the 

volume fractions of tissue compositions in the ROIs. The only exception is for the tCho 

𝐾𝑖𝑛𝑡𝑟𝑎in the PCC (Figure 4B), having p-value for age just below the threshold (p=0.013). 

However, the observed change possibly arises from the encountered model fitting issues in 

tCho, the glial biomarker.  

A previous study reported that the ADC of tNAA changes by 8% between young and old groups 

and argued that the contribution stemming from their ROIs tissue composition would be 

relatively small in comparison to the observed percentage change in the tNAA ADC 

(Deelchand et al., 2020). A similar argument can be made in our study. For instance, 𝐷𝑖𝑛𝑡𝑟𝑎 of 

tCr from the astro-sticks model exhibits the strongest change of about 10% increase within the 

age limit in the PCC (Figure 4B). However, the change in the ROI tissue composition, 𝑓𝐺𝑀
𝑓𝑊𝑀

, is 

only around 2% (Figure 1C) and cannot alone explain the changes observed in the PCC. 

Moreover, the multivariate analysis of the corresponding age-trajectory does not demonstrate 

any dependence on 𝑓𝐺𝑀
𝑓𝑊𝑀

 (p>0.05). Therefore, other factors, more directly linked to changes in 

the tissue microstructure and cellular composition might explain the observed trends in age-

trajectories. A longitudinal study monitoring microstructural alterations in stroke linked an 

increase of tCr ADC with astrogliosis and glial reactivity in the presence of neuroinflammation 

in stroke patients (Genovese et al., 2023). Accordingly, an increase in astrogliosis and glial 
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reactivity with aging was also reported in the literature (Cotrina & Nedergaard, 2002) that 

might explain the slight increasing trend in the 𝐷𝑖𝑛𝑡𝑟𝑎 of tCr.  

4.6. Limitations 

Our study has a few limitations that future studies may want to address. Diffusion-weighted 

spectra are very sensitive to the bulk or physiological motion occurring during the acquisition, 

causing variations in signal amplitude and phase (Branzoli et al., 2014; Döring et al., 2018; 

Ligneul et al., 2023; Şimşek et al., 2022). Employing cardiac triggering during measurements 

and performing SNR thresholding partially eliminated these (Genovese, Marjańska, et al., 

2021; Ligneul et al., 2023). Due to poor water signal at high b-values, eddy-current correction 

was not applied to the spectra acquired at ultra-high b values. Because of the relatively small 

sample size, the statistical analysis was performed on two age groups (age<50 and age≥50) to 

accommodate enough datasets. 

4.7. Importance and potential impact 

The age-trajectories here reported are a precious resource for the community because they 

provide reference values for a large set of diffusion properties in two brain regions of potential 

interest for many diseases (e.g., Alzheimer’s disease and motor disorders), previously 

unavailable. As an example, choline compound is known as a neuroinflammation biomarker 

(De Marco et al., 2022; Genovese, Palombo, et al., 2021; Lind et al., 2021). A recent dMRS 

study (De Marco et al., 2022; Genovese, Palombo, et al., 2021) showed a significant increase 

in tCho ADC in the thalamus with neuroinflammation. The age-trajectories reported here 

provide reference values for the healthy brain cerebellum and PCC, suggesting that the age-

related changes of tCho ADC are less than 10% (decrease in the cerebellum and increase in the 

PCC with age) which can help further interpreting tCho diffusivity results in studies of 

neuroinflammation in these brain regions. Age is often found to be a significant covariant in 
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the analyses of the changes of metabolites diffusivity. Here we show to what extent age indeed 

alter the diffusion properties of major metabolites in ROIs mostly comprised of GM (> 70%). 

For instance, for the widely used ADC index, no statistically significant changes are observed 

for tNAA, tCr and tCho between younger (<50) and older (≥50) adults, with metabolites ADCs 

being overall less than 10% lower in older adults in the cerebellum, and less than 5% higher in 

older adults in the PCC.  

5. Conclusion 

This study offers previously unavailable age-trajectories of major intracellular brain 

metabolites’ diffusion properties in cerebral and cerebellar GM. We showed that observed 

variations in metabolite diffusion properties with healthy aging are minimal and most likely 

caused by age-related microstructural changes, demonstrating the potential utility of the 

metabolites high-order diffusion parameters as new (neuronal and glial) biomarkers of tissue 

pathology. The proposed age-trajectories provide benchmarks for identifying anomalies in the 

diffusion properties of major brain metabolites, which could be related to pathological 

mechanisms altering both the GM microstructure and cellular composition.  
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Figures & Tables 

 

Figure 1: (A) Diffusion-weighted spectra are illustrated for both regions of interest; cerebellum 

(blue frame, left) and PCC (red frame, right). Direction averaged dMRS signals exhibit 

excellent spectral quality. Color-coding in the legends displays b-values in the units of ms/μm2. 

(B) Regions of interest are demonstrated on T1-w images. (C) Age-trajectories of fGM/fWM 

ratio in both ROIs and the results of statistical analyses reporting only a significant decrease in 

fGM/fWM in the cerebellum with age. (p*<0.00833 indicates statistical significance for all 

tests). Abbreviations: PCC, posterior cingulate cortex; fGM, grey matter volume fraction; 

fWM, white matter volume fraction; tNAA, total N-Acetyl-aspartate; tCho, total choline; tCr, 

total creatine; ROI, region of interest. 
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Figure 2: (A) Diffusion signals of tNAA, tCho, and tCr obtained from each subject (light) and 

cohort averaged signals (dark) are illustrated in the figure for both brain regions: cerebellum 

(blue) and posterior-cingulate-cortex (red). (B) The estimated parameters of each metabolite 

by mono-exponential, kurtosis representations and astro-sticks and modified astro-sticks 

models from each subject are illustrated in the box-and-whiskers plot for both region of 

interests: cerebellum (blue) and PCC (red). Abbreviations: PCC, posterior cingulate cortex; 

tNAA, total N-Acetyl-aspartate; tCho, total choline; tCr, total creatine; ADC: apparent 

diffusion coefficient; K, apparent diffusion kurtosis; 𝐷𝑖𝑛𝑡𝑟𝑎, apparent intra-neurite axial 

diffusivity; 𝐾𝑖𝑛𝑡𝑟𝑎, apparent intra-neurite axial.
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Table 1: Estimated model parameters obtained from cohort averaged diffusion signals are 

charted with the corresponding error values in the fit (estimation ± error). All signal 

representations and biophysical model results are tabulated in the table. “ ̶ “ indicates that the 

estimations converge to zero. Abbreviations: PCC, posterior cingulate cortex; tNAA, total N-

Acetyl-aspartate; tCho, total choline; tCr, total creatine; ADC: apparent diffusion coefficient; 

K, apparent diffusion kurtosis; 𝐷𝑖𝑛𝑡𝑟𝑎, apparent intra-neurite axial diffusivity; 𝐾𝑖𝑛𝑡𝑟𝑎, apparent 

intra-neurite axial kurtosis 
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Figure 3: The results obtained from monoexponential signal analysis (𝑏<5ms/μm2) (𝐴𝐷𝐶) and 

astro-stick model (𝐷𝑖𝑛𝑡𝑟𝑎) are documented in the figure. The independent T-test analyses 

performed between younger and older groups do not report any statistically significant change 

in these parameters with aging. The p-value in linear regression is a measure for how significant 

the estimated slope is in the analysis. (p*<0.00833 indicates statistical significance for the T-

Test) Abbreviations: PCC, posterior cingulate cortex; fGM, grey matter volume fraction; fWM, 

white matter volume fraction; tNAA, total N-Acetyl-aspartate; tCho, total choline; tCr, total 

creatine; ADC: apparent diffusion coefficient; 𝐷𝑖𝑛𝑡𝑟𝑎, apparent intra-neurite axial diffusivity
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Figure 4: Age dependences of the estimated model parameters for kurtosis (𝑨𝑫𝑪 & 𝑲) in (A) and modified astro-stick model (𝑫𝒊𝒏𝒕𝒓𝒂 & 𝑲𝒊𝒏𝒕𝒓𝒂) in (B), obtained 

from studied metabolite signals, are depicted in the figure. For each brain region, a linear regression, a regression analysis using age and fGM/fWM as independent 

and dependent variables, respectively, and a paired T-test between two groups [age < 50 and age ≥ 50] are performed to analyze impact of age and tissue 

composition on the estimated parameters. For statistical tests, the confidence and prediction limits are also depicted in the figure. (p*<0.00833 indicates statistical 

significance for the T-test) Abbreviations: PCC, posterior cingulate cortex; fGM, grey matter volume fraction; fWM, white matter volume fraction; tNAA, total 

N-Acetyl-aspartate; tCho, total choline; tCr, total creatine; ADC: apparent diffusion coefficient; K, apparent diffusion kurtosis; 𝑫𝒊𝒏𝒕𝒓𝒂, apparent intra-neurite 

axial diffusivity; 𝑲𝒊𝒏𝒕𝒓𝒂, apparent intra-neurite axial kurtosis 
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