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Abstract1

We studied visual development in macaque monkeys using texture stimuli, matched in local spectral content but varying2

in "naturalistic" structure. In adult monkeys, naturalistic textures preferentially drive neurons in areas V2 and V4, but3

not V1. We paired behavioral measurements of naturalness sensitivity with separately-obtained neuronal population4

recordings from neurons in areas V1, V2, V4, and inferotemporal cortex (IT). We made behavioral measurements from5

16 weeks of age and physiological measurements as early as 20 weeks, and continued through 56 weeks. Behavioral6

sensitivity reached half of maximum at roughly 25 weeks of age. Neural sensitivities remained stable from the earliest7

ages tested. As in adults, neural sensitivity to naturalistic structure increased from V1 to V2 to V4. While sensitivities8

in V2 and IT were similar, the dimensionality of the IT representation was more similar to V4’s than to V2’s.9

Keywords development · visual cortex · macaque · naturalistic images · form vision10
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Introduction11

Behavioral performance improves during early life – animals learn new skills, and refine their performance within the12

space of skills they already know (Blumberg and Adolph, 2023; Dekker et al., 2020; Diamond and Goldman-Rakic,13

1989; Kiorpes, 2016; Pistorio et al., 2006). The basis of these improvements is of interest – the acquisition of new skills14

often reflects a mixture of neural, muscular, and morphological changes (Adolph and Hoch, 2019), but improvement on15

psychophysical tasks can more simply be linked to changes in the brain. By understanding where these changes take16

place, we gain insight into how behavior emerges from the combined activity of sensory, association, and motor areas.17

In the macaque visual system, behavioral capabilities on basic spatial vision tasks improve throughout the first year of18

life (Kiorpes, 2016). Despite this, neural sensitivity in the LGN, V1, and V2 is mature by roughly 16 weeks of age19

(Kiorpes and Movshon, 2004; Movshon et al., 2005; Zheng et al., 2007). Neurons in the inferotemporal cortex of infant20

macaques – like those in adults – can be selective for object identity, but are immature in their temporal dynamics21

(Rodman et al., 1993). Beyond this, the extent to which neural activity in developing V4 and IT limits behavioral22

development remains unknown. We wondered whether the gap between neural and behavioral development reflects23

immaturity in downstream visual areas like V4 or IT, or from more remote areas that convert sensory information into24

decisions and actions.25

To address these questions, we used synthetic visual textures (Portilla and Simoncelli, 2000) (Figure 1A) whose26

structural similarity to natural images can be titrated (Freeman et al., 2013), and which preferentially drive activity27

in areas V2 and V4 (but not V1) (Freeman et al., 2013; Okazawa et al., 2015, 2017). We designed a 4 choice task28

which allowed us to quickly and reliably estimate the behavioral texture sensitivities of macaque monkeys across29

development. We then used multielectrode recording arrays to measure neural texture sensitivities at the single site30

and population level from areas V1, V2, V4, and the posterior portion of inferotemporal cortex (IT). We used the31

same images as in behavior, as well as a larger set of similar images (Figure 1B). These measurements allowed us32

to compare neural encoding with behavioral performance, in overlapping sets of animals, as a function of age. They33

also allowed us to relate how early, middle, and late ventral visual areas encode naturalistic textures at all ages, and to34

bridge our understanding of how sensitivities to naturalistic texture in areas like V2 and V4 might support information35

representation in area IT.36
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Figure 1: Naturalistic texture stimuli. A: Texture images varying continuously in the strength of their naturalistic
structure. We used these images for measurements of behavioral and neurometric sensitivities. B: Naturalistic (top
row) and noise textures (bottom row) used to characterize discriminability. Here, we used a total of 35 families, each
containing 15 samples.

Results37

We made behavioral measurements of naturalistic texture sensitivity from 7 macaques, including 5 tested longitudinally38

from as early as 16 weeks, through the first 1-2 years of life, as well as 2 older controls. We made neural measurements39

of naturalistic texture encoding from 6 animals in total – 5 during the first year of life, as well as 2 adults (we implanted40

one animal twice).41

Behavioral sensitivities double during the first year of life42

To measure animals’ behavioral sensitivities, we designed a 4 choice oddity task (Figure 2A). We trained animals to43

fixate a red square at the center of the screen. Following a 200 ms delay, we showed 4 texture images (3 distractors, 144

target, detailed below), arranged in a square. Animals had 1200 ms to register a choice, which we marked as their first45

fixation of 400 ms or longer on one of the images.46

We generated all textures using the Portilla and Simoncelli model (Freeman et al., 2013; Portilla and Simoncelli,47

2000), including the "noise textures" we used as distractors, which matched the local spectral content of a given48

natural image. We also generated "naturalistic textures" using the model – textures that additionally matched the49

local correlation structure of the original image (Figure 1A). By interpolating the model parameters between matched50

noise and naturalistic textures, we generated textures parametrically varying in the strength of their structure (also see51

Freeman et al. (2013)). We used one of these naturalistic textures, varying in strength, as the target for each trial. Within52

a given experimental session, all textures belonged to the same "family" – they were derived from a single ancestral53

natural image. Within a trial, all 4 images (including distractors) came from different "samples" – no 2 images in a trial54

were identical. As a result, the only informative difference between the images was the presence of naturalistic structure55

in the target.56
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Figure 2: Behavioral task and developmental time course A: Task design. After fixating the center of the screen, and
a 200 ms delay, 4 texture stimuli would appear, each matched in "family" and differing in "sample". The 3 distractors
were noise textures. The target varied in the strength of its naturalistic structure. The display remained on for 1200
ms, unless the animals correctly chose the target by looking at it for at least 400 ms. B: Psychometric functions
for one animal at two ages. Filled circles represent data (± binomial variance), Solid lines represent cumulative
Weibull psychometric functions fit to the data. Vertical dashed lines mark thresholds, horizontal lines at the base
represent 95% CIs. Numerical values above the abscissa reflect sensitivities (inverse thresholds). C: Sensitivities
versus age: Each animal is represented with a distinct color. Points represent sensitivities (± 95% CI), solid lines
represent Michaelis-Menten functions corresponding to each animal. The black point above the abscissa represents the
half-maximum age extracted from the Michaelis-Menten fit (± 95% CI).
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Animals learned the fundamentals of the task within a single 30-60 minute session: they could reliably recognize57

textures at the earliest ages we studied. Their sensitivities stabilized within 3-4 sessions. Figure 2B shows psychometric58

functions measured from one animal (M1) at 17 and 50 weeks. Performance varied lawfully with the strength of59

the naturalistic structure at both ages. While performance on highly naturalistic textures was perfect at both ages,60

performance close to threshold improved with age – sensitivities (vertical dashed lines, numbers listed above the61

abscissa) more than doubled in this example.62

From our sample of 7 animals, we measured sensitivities to 5 different texture families from as early as 16 weeks to as63

late as 194 weeks (Figure 2C). We modeled the relationship between sensitivity and age with a modified Michaelis-64

Menten function which had the same shape for all animals. Animals differed systematically in their sensitivity, so65

we fit a maximum separately for each animal – this model to fit our data the most parsimoniously. We computed a66

half-maximum age of 23 weeks (50% CI: [20, 24]), suggesting that naturalistic texture sensitivity matured at a rate67

similar to other spatial vision tasks (El-Shamayleh et al., 2010; Kiorpes and Bassin, 2003; Rodríguez Deliz et al., 2024).68

A goal of these experiments was to establish a benchmark for comparison with separate neural measurements (below),69

made across a different age span. We parametrically estimated the magnitude of behavioral change between 26 and 5270

weeks. Across this span, we found that sensitivities increased by a factor of 1.39 (95% CI: [1.35, 1.44]).71

To confirm that our results did not reflect the learning of particular local features, we introduced a fifth texture family72

only once animals approached 1 year of age (data are plotted separately for each family in Supplemental Figure 1).73

Performance in this held-out family was consistent with performance on the other 4, suggesting that sensitivity was74

primarily determined by age, not stimulus-specific experience. Separately, we tested 2 animals cross-sectionally (M675

and M7), when they were nearly 4 years old (an age when visual capabilities are mature in the macaque). Their76

sensitivities were consistent with those seen in the other animals at ages at or beyond 1 year, despite their lack of77

previous experience with this task.78

Single site texture selectivity is stable across development79

Having observed that behavioral texture sensitivities increased from 26 to 52 weeks of age, we asked whether neural80

correlates of this improvement would be visible in the ventral visual areas modulated by the same statistics in adults,81

including areas V2, V4, and IT, as well as V1, an area previously shown to be insensitive to naturalistic structure82

(Freeman et al., 2013).83

To test this, we recorded multiunit neural activity from 6 passively-fixating animals (see Table 1). We implanted 9684

electrode "Utah" recording arrays in V1, V2, V4, and IT. We also implanted an array in the foveal confluence of85

visual cortex (hereafter FC, after Brewer et al., 2002), for which the specific area could not be determined. In our first86

experiment, we recorded responses to a total of 35 texture families (Figure 1B), with 15 samples per family, positioned87

to cover the receptive fields of the sites on the array. Most of our recordings were longitudinal – we recorded in V1, V2,88

and V4 from 30 to 56 weeks, and in FC and IT from 20 to 36 weeks. We also recorded single sessions at 409 weeks in89

V4, and 221 weeks in IT.90
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Figure 3: Single site texture selectivities across ages and areas. A: Poststimulus time histograms for example sites,
recorded from each area (V1, foveal confluence, V2, V4, and IT), at early and late ages. Traces represent mean
responses to all naturalistic textures (color), and all noise textures (gray), for stimuli presented in the first position
of a stimulus block, numerical values represent selectivities, for naturalistic versus noise textures, measured across
all stimuli. B: Single-site selectivities across all stimuli and areas. Within each panel, each element represents the
selectivity (d’) for a given texture family for a given site. Rows are organized from bottom to top based on increasing
perceptual sensitivities as reported in Freeman et al. (2013) (their Figure 7). Each column represents 1 site from the total
sample measured at a given age, sorted in order of increasing selectivity. The top row of panels represent the youngest
age measured in a given area, the bottom row represents the oldest age. Colors were cut off at 1.6, corresponding to
90% of a standard normal distribution. C: Single site selectivities versus age. Points represent mean values, error bars
represent 95% CIs. D: Single site selectivities between areas (one age used per array - see Table 1). Conventions as in
C. Pairwise interactions were significant unless marked with "n.s."
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Poststimulus time histograms from all areas are shown in Figure 3A, for sample sites recorded at the youngest (top row)91

and oldest (bottom row) ages measured in a given area. Texture selectivity – meaning a preference for naturalistic over92

noise textures – increased successively from V1 to V2 to V4, and declined from V4 to IT. We quantified selectivity in93

units of d’, and measured selectivities from populations at the youngest at oldest ages in our sample, in response to all94

35 texture families (Figure 3B). Selectivity again increased along the ventral stream – measurements in V2, V4, and95

IT were visibly more selective for texture than V1 or FC. As in Freeman et al. (2013), we observed similar tuning for96

texture families between sites in a given area – the horizontal bands visible in Figure 3B suggested similar tuning across97

sites. Qualitatively, we saw evidence of texture modulation from the earliest ages tested in all areas – as early as 2098

weeks in IT. One notable feature of these data is that the response dynamics are similar across age for all areas except99

IT, where responses were quite sluggish at 20 weeks. We return to this issue below.100

We measured the mean selectivity across texture families for each visually responsive site, from all ages and areas101

(Figure 3C, see also Supplemental Figure 2). We estimated the relationship between texture selectivity and age by linear102

regression in all areas except FC (where we lacked an older age point). We saw no evidence of age-related improvement.103

In V1, V4, and IT, slopes straddled zero (V1: -0.07, 95%CI [-0.16, 0.03]; V4: -0.04, [-0.1, 0.02]; and IT: 0, [-0.07,104

0.08]) – evidence that texture selective mechanisms were mature from the earliest ages we measured in those areas.105

In V2, this slope was negative (-0.4, [-0.56, -0.23]). Rather than reflecting an effect of age, we suspected that this might106

instead reflect a change in the tuning in our arrays – among the areas selectively responsive to naturalistic textures, V2107

was the only area for which we lacked an older, cross-sectional sample. As such, we wondered whether V2 might have108

been more vulnerable to changes reflecting the ages of the arrays, rather than the animals. In particular, we wondered109

whether tuning in our V2 arrays may have become more dispersed with time. To measure this, we computed the ratio of110

variance across texture families to the overall stimulus-driven variance (Supplemental Figure 3). This measure reflects111

tuning for specific stimulus classes, relative to the spread across all stimuli. A decline in this value would therefore112

reflect a shift towards signals which, while still visually evoked, may have become less reliably tuned. This ratio113

remained stable for recordings made in V1 and V4, but declined in V2, confirming that tuning, measured in this manner,114

may have declined with age in V2.115

Single site texture selectivity is lower in IT than in V4116

We wanted to compare texture selectivities between areas, to compare our results with prior measurements in V1 and V2,117

to relate the selectivities of V2 and V4 using the same stimuli, and to furnish a first measurement of naturalistic texture118

selectivity in IT. To avoid double-counting, we chose one recording per array (Figure 3D, and see Table 1). We found a119

significant group-level difference between areas (F = 14.3, permutation ANOVA p < 10-5), and significant pairwise120

differences between V1 and each of V2, V4, and IT (mean d’ difference: 0.31, 0.34, 0.27, respectively, permutation test121

p < 10-5).122

Downstream from V1, we found that selectivity was similar between V2 and V4 (mean difference: 0.03, p = 0.28),123

in line with prior findings (Okazawa et al., 2017). Selectivities were significantly lower in area IT than in V4 (mean124
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Figure 4: Population coding and representations in the developing ventral stream. A: Naturalistic texture discrim-
inability between naturalistic and noise textures, versus age. Values are the mean across multiple population samplings
of 30 sites. B: Stimulus detection performance versus age, for either naturalistic textures (white points), or noise textures
(gray points, shifted horizontally when necessary for visibility). Note that the scale on the ordinate is halved in height
relative to A; conventions are otherwise the same. C: Triangular representation. As indicated in the legend on the left,
the length of each side reflects the 3 population metrics from panels A and B. The sides emanating from the bottom
reflect detectability; the far side reflects discriminability. NB: The leftmost measurement in V1 could not geometrically
form a triangle – it has been left hollow to reflect this.

difference: -0.08, p < 0.002), but did not differ significantly from V2 (mean difference: -0.05, p = 0.09). These results125

suggest that selectivity to naturalistic texture may peak in V4.126

Neural populations stably encode naturalistic textures across development127

Our analysis of naturalistic texture encoding at the level of single electrode sites revealed two main findings: first,128

that texture selectivities were mature as early as could be measured – even as behavioral sensitivities continued to129

mature. Second, we found that texture selectivities peaked in midlevel visual areas, and declined in IT. We wondered130

whether these observations also held at the population level. To address the first point, we asked whether population131

representations of texture – taken across sites – might reveal a link to behavioral development.132
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To measure how neural populations encoded naturalistic texture, we projected the responses into a high dimensional133

space in which each axis represents the response of one site, and found the hyperplane that best separated responses to134

naturalistic and noise textures for each texture family. We then measured the distance between held-out examples of the135

two texture types along the line orthogonal to the hyperplane as a d’. As an analogous measure of detectability, we136

constructed identical decoders measuring the distance between naturalistic (or noise) textures and blank stimuli.137

Performance values for our naturalistic texture discrimination scheme are plotted in Figure 4A, for populations of 30138

sites (a number chosen to facilitate comparisons – see Methods). In all areas, the encoding of naturalistic textures139

was stable from the earliest ages measured, including both longitudinal measurements made within the first year of140

life (as early as 20 weeks), and, in V4 and IT, recordings made at considerably older ages (roughly 8 and 4 years,141

respectively). We fit slopes relating population performance with (log-transformed) age, and used those slopes to142

estimate the magnitude of change between 26 and 52 weeks (recall that behavioral sensitivities increased by a factor143

of 1.4 over this time). As for single sites, changes in behavior were not accounted for by changes at the population144

level – in V4 and IT, performance at 52 weeks fell to 0.95 and 0.97 of the performance at 26 weeks (95% CI: [0.93,145

0.97], [0.96, 0.98], respectively). In V2, we saw a substantial decline, with performance falling to 0.69 of the 26 week146

estimate (CI: 0.64, 0.74), which can be attributed to the inferred change in recording quality discussed above. V1 was147

more volatile, reflecting its overall lack of sensitivity to naturalistic texture (Change between 26-52 weeks [CI]: 2.5148

[2.1, 2.9]). We did not consider FC for this analysis, as we did not sample it at later ages.149

Our measurements of texture detectability provided additional context (Figure 4B) – detectability remained stable for150

both texture types during development, but was greater than texture discriminability (reflecting the ability of naturalistic151

textures to reliably evoke visual responses). Using the same 26-52 week comparison, we found modest increases in152

V1 and V4 (112% [CI: 107,117], 113% [112, 115], respectively), a modest decrease in IT (97% [95, 99]), and no153

significant change in V2 (105% [99.8, 110]). We again did not consider FC in this analysis. Together with our single site154

measurements, these results suggested that the increase in behavioral sensitivity to naturalistic textures that we observed155

did not stem from developmental changes in the ventral stream, and must instead result from changes elsewhere in the156

brain.157

Population representation of texture in different areas158

We recorded population responses to naturalistic texture in V1, V2, V4, and IT. We wondered how well the activity in159

each area could support texture discrimination. We compared the performance of each area using our measurements of160

discriminability (Figure 4A, see also Supplemental Figure 4). Performance was poor in V1 and FC, higher in V2, and161

highest in V4. IT performance was lower, similar to V2.162

Comparing texture discriminability in different areas revealed that these values did not always reflect the simple163

difference between the detectability values for naturalistic and noise textures. An additive relationship between164

detection and discrimination would imply that the population representation of naturalistic structure is in the same165
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subspace as the one that represents the presence of a texture stimulus. Deviations from an additive relationship indicate166

that the population encoding of naturalistic structure uses a different population subspace.167

To measure the relationship between the population representations for naturalistic structure and texture detection, we168

draw triangles whose side lengths reflect the 3 population measurements from each neural sample – the detectability169

measurements for noise and naturalistic texture, and the measurement of discriminability between the two. Figure 4C170

depicts these triangles. The length of the left, vertical arm represents an area’s ability to detect noise textures. The171

length of the right arm (arising from the bottom) represents its ability to detect naturalistic textures. Finally, the length172

of the opposite arm corresponds to the discriminability between naturalistic texture and noise.173

Neurons in V1 and V2 respond similarly strongly to the presence of texture images. As a result, the heights of the174

triangles in V1 and V2 are comparable. On the other hand, neurons in V2 respond differentially to naturalistic versus175

noise textures. As a result, the opposite side in V2 is longer than that in V1 (where the opposite side is of negligible176

length). Critically, the opposite side is not only longer in V4, the triangles formed are wider, suggesting that naturalistic177

structure is not only more strongly represented in V4, it is represented in a population subspace increasingly different178

from the one corresponding to texture detection.179

In IT, the height of the triangles is less than that in V1, V2, or V4, whereas their relative width is similar to those of V4,180

suggesting that the change in the subspace of the naturalistic texture representation in V4 may be preserved in IT. These181

results reflect a transition from the detection-driven response of V1, towards a representation in V2 and V4 which is182

both increasingly sensitive to naturalistic structure, and which represents this structure along a subspace increasingly183

different from the one corresponding to texture detection. In IT, while texture discriminability was lower than in V4,184

the dimensionality of how naturalistic texture is represented was similar.185

IT dynamics become faster during development186

Visual response latencies in areas V1 and V2 shorten during the first 8-16 weeks of life (Rust et al., 2002; Zheng187

et al., 2007), and latencies in area IT are longer in infancy than in adulthood (Rodman et al., 1993). Because latency188

shifts can reflect morphological changes like myelination, we wondered whether latency measurements might reveal189

visual development. To study changes in dynamics, we measured population performance using the same texture190

discrimination and naturalistic texture detection schemes as before, training and testing performance separately for the191

spike count in each 10 ms time bin in our data, as opposed to the 150 ms window used in the above analyses (see Hung192

et al. (2005), their Figure 3B).193

We used these curves (Figure 5A) to investigate whether neural dynamics changed developmentally. We measured the194

onset latency as the time at which a performance curve first began to rise from baseline (in V1 and FC, we only measured195

latencies in the detection paradigm). Latencies remained largely stable for V1, V2, and V4, for both paradigms (Figure196

5B). Latencies in IT shortened during the measured span. While saturation in areas V1 and V2 is unsurprising, given197

prior reports (Rust et al., 2002; Zheng et al., 2007), previous recordings from infant IT were made at the age of 4198
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Figure 5: Age-related changes in the temporal dynamics of responses in IT A: Population performance curves
versus time, trained and tested separately for each 10 ms time bin. Lines represent means across population samples.
Dashed lines represent naturalistic texture detection, solid lines represent texture discrimination. B: Half maximum
latencies, measured as the first time at which performance exceeded half of the eventual maximum, for both paradigms.
Error bars represent 95% CIs across population resamples; they are often smaller than the symbols, and thus invisible.

weeks (Rodman et al., 1993) – our measurements extended that maturation out to 20 weeks. Separately, comparing our199

simultaneous measurements from V2 and V4, we observed that naturalistic textures were discriminable in V2 at earlier200

times than in V4, despite the latter area’s overall heightened discriminability, evidence that this signal may first emerge201

in V2.202

Population neurometric sensitivities are stable across development203

Behaviorally, even young animals were largely perfect at discriminating fully naturalistic textures from noise (e.g.204

Figure 2B) – developmental improvement was only noticeable near threshold. The neural measurements we reported205

above sampled a large number of texture families, but included only fully naturalistic and noise textures. To test for206

evidence of neural development near threshold, we recorded neural responses to the texture images we used in our207

behavioral experiments – textures varying in the strength of their naturalistic structure. We recorded these responses208
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Figure 6: Stable neurometric sensitivities in the developing ventral stream. A: Example neurometric functions from
each area. Each panel depicts a neurometric function, and the population average for each condition, for one example
session. Points represent the average proportion correct for a given level, solid lines represent neurometric functions
fit to the data. Vertical dashed lines represent thresholds, which were inverted to obtain sensitivities (black numeric
values). B: Neurometric sensitivities versus age. Large points represent median sensitivities across 20 site subsampled
populations, for all fitted data measured in a given area, at a given age. Small points represent the sensitivities measured
for individual sessions (symbols indicate animal identity). Sessions for which a sensitivity could not be extracted are
represented with points below the ordinate ("n.s."). Error bars on large points depict median absolute deviations across
fit sensitivities.

from 3 of the animals reported above, again during passive fixation, and measured neurometric performance from209

populations of 20 sites.210

To measure neurometric sensitivities, we again found the hyperplane best separating fully naturalistic and noise textures.211

To simulate performance on a 4-alternative task, we projected 4 individual neural responses onto this axis – 3 noise212

texture responses (simulated distractors), and 1 trial varying in naturalistic structure (simulated target). If the magnitude213

of the target projection was the largest, we scored the trial as correct. Otherwise, we scored the trial as incorrect. We214

iterated across all responses in our held-out test set, extracted proportions correct for each level, and fit neurometric215

sensitivities. Examples are depicted in Figure 6A. The relationship between areas at the level of sensitivities was similar216

to what we previously observed with discriminabilities – V1 and FC were weakly sensitive to naturalistic textures, if at217

all. Sensitivities grew moving from V2 to V4, and declined moving from V4 to IT.218

We extracted sensitivities from all sessions (Figure 6B). Our observations were largely consistent with our previous219

reports – sensitivities increased in downstream areas, and did not change as a function of age. While neural sensitivities220

seem to be lower than behavioral ones, this merely reflects the chosen population size (see Supplemental Figure 4). We221

repeated these measurements after shuffling the relationship between sites, and found a modest decrease in performance222

that did not vary with age. Finally, we measured discriminability between fully naturalistic and noise textures in these223

same data, to relate discriminability with sensitivity at threshold (Supplemental Figure 5), and found that values tracked224
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closely. Between population sensitivities, discriminabilities, and the correlation structure between sites, naturalistic225

texture encoding in the ventral stream was stable across all ages tested, despite an increase in behavioral sensitivity226

during the same span.227
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Discussion228

Visual development229

We measured the rate at which macaque monkeys improved in their behavioral sensitivity to naturalistic textures.230

Sensitivities increased during early life at a rate similar to other spatial vision tasks (El-Shamayleh et al., 2010; Kiorpes231

et al., 2012; Rodríguez Deliz et al., 2024; Stavros and Kiorpes, 2008). Based on these results, and given prior evidence232

that neurons in areas V2 and V4 are sensitive to the same naturalistic structure, we recorded multiunit neural sensitivities233

in areas V1, V2, V4, and IT to naturalistic textures, using a superset of the images used for behavioral measurements.234

Other than changes in response dynamics in area IT, we saw no evidence for neural development of the representation235

of naturalistic texture in any of the ventral visual areas from which we recorded.236

Previous measurements from early visual areas established that both tuning and timing in areas like the LGN, V1,237

and V2 reach maturity by or before 16 weeks (Movshon et al., 2005; Rust et al., 2002; Zheng et al., 2007). Previous238

measurements from IT suggest that neuronal responses are selective for object identity from as early as 4 weeks239

(Rodman et al., 1993), and that response onsets are immature relative to adults. Through the use of population analysis240

methods, and our use of a behavioral benchmark, we have extended the disconnect between behavioral and neural241

development to the end of the ventral visual stream.242

The stable neuronal representations we observed across development complement recent results obtained from infant243

humans and macaques using functional imaging. In both species, retinotopic organization has been observed across244

a number of ventral areas (including V1, V2, and V4), from early ages – including the first 1-2 weeks in macaques245

(Arcaro and Livingstone, 2017), and 5.5 months in humans (Ellis et al., 2021). In infant macaques, face-preferring246

patches in IT are visible from the first month of life (Livingstone et al., 2017). In infant humans, face patches can247

be seen in IT-analogous areas from the age of 4 months (Deen et al., 2017). While refinements of these selectivities248

have been observed, it is of note that that refinement lags the onset of face-guided behavior in infants of both species249

(Maurer and Salapatek, 1976; Mendelson et al., 1982). The observed changes may instead reflect a process distinct from250

feed-forward neuronal drive. Taken with our own findings, evidence suggests that the visual system is both anatomically251

and functionally mature from an early age; behavioral development may therefore reflect development downstream252

from ventral visual cortex.253

If behavioral development is not limited by sensory cortex, what might constrain it? One possibility relates to254

decision and action – the lateral intraparietal area (LIP), frontal eye fields (FEF), and superior colliculus (SC) represent255

information pertaining not just to the stimulus, but also its relation to an eventual behavioral choice in saccade-based256

tasks (Gold and Shadlen, 2007; Mirpour and Bisley, 2021). Whereas neuronal motion sensitivity in macaque LIP257

correlates with behavioral improvements in a perceptual learning paradigm, the sensitivity of MT neurons remains258

stable (Law and Gold, 2008). We have previously shown a relationship between the visual stimulus used in a task, and259

the corresponding rate of behavioral development (see Kiorpes, 2015). In particular, behavioral development tends260

to take longer for tasks which require the integration of stimulus information across relatively large spatial expanses.261
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As a result, performance may be more dependent on development in downstream areas with large receptive fields,262

such as association areas related to visual recognition, which may develop more slowly. Protracted development in263

downstream areas is supported by anatomical measurements – occipital areas mature more quickly than parietal and264

frontal areas in macaques (Scott et al., 2016) and humans (Huttenlocher and Dabholkar, 1997). We designed our task to265

obtain psychophysical data as quickly as possible. A task with a more explicit delay period could allow for similar266

measurements in LIP, FEF, or any other area spanning the space between the ventral stream and motor output, assuming267

that such a task could be learned by infants.268

More broadly, these results, along with other demonstrations of adult-like tuning in the developing primate visual system,269

may help reorient our thinking about visual development (see also Makin and Krakauer (2023), for a contemporary270

reevaluation of postnatal reorganization). Earlier studies of plasticity following monocular deprivation led to a focus on271

the malleability of the developing visual system (Blakemore and Van Sluyters, 1974; Carlson et al., 1986; Movshon and272

Blakemore, 1974; Wiesel and Hubel, 1963), as opposed to studies that demonstrated the relative maturity of the normal273

visual system (Hubel and Wiesel, 1963). Moving forward, it may be worth thinking of visual cortex as a series of areas274

which are mostly adult-like in their tuning and function during typical development, and which feed into downstream275

areas whose ability to effectively process those sensory inputs may develop more slowly.276

Visual processing277

While the primary focus of these experiments was to understand development, our measurements also enabled us to278

explore naturalistic texture encoding in the areas from which we recorded. Like others, we found selectivity for texture279

information in mid-level visual areas like V2 and V4 (Arcizet et al., 2008; Freeman et al., 2013; Kim et al., 2019, 2022;280

Okazawa et al., 2017; Yu et al., 2015; Ziemba et al., 2016). Our latency measurements suggest that neural signals281

supporting texture discrimination emerge first in V2, and are amplified in V4. Our population analyses found that282

naturalistic texture was more strongly represented in V4 than in V2, despite similar single site metrics. We also found283

that the neural population subspaces supporting stimulus detection and naturalistic texture discrimination were more284

different in V4 than in V2.285

Our measurements from area IT showed lower responses to textures than in earlier areas. In our data, naturalistic286

texture information is most strongly represented in V4. Yet despite the diminished performance in IT, both areas287

appear to use distinct neural subspaces for naturalistic texture discrimination and for stimulus detection. An attenuation288

of texture responses in IT is consistent with its known sensitivity to visual objects (Gross et al., 1972; Hung et al.,289

2005; Majaj et al., 2015; Rust and DiCarlo, 2010; Tanaka, 1996). In that light, our results suggest that a neural290

representation of naturalistic structure first emerges in V2. Those signals are amplified in V4, and are represented in a291

subspace increasingly different from that reflecting the simple presence of the stimulus. In IT, the response to textures is292

attenuated, but the dimensionality is preserved. Combined with separate V4 representations of shape (Kim et al., 2019)293

and color (Bushnell et al., 2011), the neural subspaces we observed may therefore reflect a coding strategy in IT which294
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can support scene segmentation and object-centric coding while still providing information about more elementary295

visual features (DiCarlo et al., 2012; Lettvin, 1976; Movshon and Simoncelli, 2014).296
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Materials and Methods305

Visual stimuli306

We generated stimuli using the texture model of Portilla and Simoncelli (2000), using the methods detailed in Freeman307

et al. (2013). For our measurements of behavioral and neural texture sensitivities, we used 5 texture image sets, each308

corresponding to one texture "family" based on a single ancestral natural image (Figure 1A). As in Freeman et al.309

(2013), the resulting textures varied in the strength of naturalistic structure and in the precise location of their elements310

(their "sample"). We measured responses to one texture family per session. For behavioral measurements, we used 15311

samples for each level of naturalistic structure from a given family; for neural measurements we used 5 samples. In312

both cases, the strength of structure varied from 0 (spectrally matched noise) to 1 (fully naturalistic).313

For a separate measurement of naturalistic texture discriminability, we used a larger texture image set of 1150 images314

(Figure 1B): 525 naturalistic and noise textures (1050 total, from a total of 35 texture families, and with 15 texture315

samples per family), and 100 blank images (used to measure baseline firing rates).316

We presented stimuli on a gamma-corrected CRT monitor with a mean luminance of 28 cd m-2, a resolution of 1280 by317

960 pixels, and a frame rate of 100 Hz. We seated animals in a custom primate chair 114 cm from the monitor, at which318

the monitor subtended 20 by 15 deg.319

Behavioral experiments320

We performed all animal procedures in accordance with the National Institutes of Health Guide for the Care and Use of321

Laboratory Animals (2011), and with the approval of the New York University Animal Welfare Committee.322

We trained 7 macaques on our behavioral task (Macaca nemestrina, 3 female), using standard operant conditioning323

methods. Animals initiated trials by fixating a 1-2 deg red square at the center of the screen. Once they had done so, the324

square disappeared, and the screen remained blank for 200 ms. Four texture stimuli then appeared – 3 noise texture325

distractors, and 1 target texture. Each texture was 6.4 deg in diameter, centered ±3.2 deg from the center of the screen326

in both the horizontal and vertical direction (thus 4.5 deg eccentric). Once the textures appeared, subjects had 1200 ms327

to register a choice, which was defined as fixation on 1 of the 4 stimuli for more than 400 ms. Trials ended immediately328

after correct responses, at which point subjects received a juice reward. There was no penalty for incorrect responses,329

except that the stimuli would remain on screen for the full 1200 ms. We did not analyze trials in which the animal failed330

to respond, which were rare.331

We measured naturalistic texture sensitivity using a single texture family per session. On each trial, we varied the332

position of the target among the 4 locations as well as the strength of its naturalistic structure. The naturalistic structure333

varied along a series of fixed levels. We used different samples for all 4 images – including the noise texture distractors,334

to ensure that subjects could only distinguish targets from distractors on the basis of naturalistic texture statistics, instead335

of pixel-level cues.336
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We used the method of constant stimuli to determine the difficulty level for each trial. Roughly 5% of trials were catch337

trials in which the target was also a noise texture – we rewarded animals for choosing this target in the usual way. The338

levels we chose for a given session were adapted to span the psychometric function from chance to perfect performance,339

while maintaining the animals’ motivation. To maintain overall motivation levels, we showed fully naturalistic textures340

disproportionately often.341

Sessions typically contained 600-1000 total trials, with roughly 100 trials per condition. We measured performance on342

each texture family multiple times at each age, with the exception of M3, due to constraints imposed by electrophysio-343

logical measurements. We measured performance on at least 4 texture families per animal. We introduced a fifth for344

some animals at older ages, as a way to both estimate animals’ ability to generalize on the task, and to probe whether345

their performance was learned or age-based. We excluded sessions containing fewer than 120 trials, or with a peak346

performance of less than 90%.347

Physiological experiments348

For physiological recording, we trained the animals to fixate the central 3 deg of the screen, which was marked with a349

red central square 0.1-0.2 deg across. Texture images appeared after 160 ms in a pseudorandom order. For our texture350

set with 35 texture families, we presented blocks of 8 images, and showed each image for 100 ms, followed by a 100351

ms blank interval. For our measurements of neurometric thresholds, we showed blocks of 4 images for 200 ms (the352

same used to measure behavioral thresholds), and used a 200 ms blank interval.353

All texture images measured 6.4 deg in diameter. For most data, receptive fields (detailed below) were centered within354

the central 1.5 deg – for these cases, we centered stimuli at the center of the monitor. For one animal, detailed below,355

receptive fields were roughly 8 deg from the center of gaze. In this case, we centered stimuli over our estimate of the356

receptive field center. In all cases, the visual stimuli covered the aggregate receptive fields of the recording sites.357

We rewarded animals for remaining fixated through a block with a juice reward. If an animal broke fixation during358

a stimulus, we interrupted presentation and presented the interrupted stimulus again later in the overall sequence.359

We recorded at least 4 repetitions of each stimulus from our multifamily texture image set. We recorded at least 36360

repetitions of each stimulus in our (smaller) image set of textures varying in their naturalistic structure.361

Neural recording362

We recorded multiunit neural responses from a total of 6 animals. We recorded longitudinal data from 5 of these363

animals, starting between 18 and 26 weeks, and continuing for as long as the recording arrays could be maintained (see364

Table 1). We implanted one of these animals a second time after it had reached 4 years of age. Finally, we recorded365

from area V4 of a separate adult. We combined data collected from similar ages (within 2 weeks).366

After training animals to perform the fixation task, we implanted 96 electrode (Utah) recording arrays under sterile367

conditions. We used gross anatomical features to inform decisions about array placement. Electrodes were arranged in368
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Subject Behavioral age range (wk) Areas recorded Recording ages (wk; number of sites)

M1 (f) 17-95 V1-V2 border, V4 29 (n = 56, 34, 90), 37† (n = 60, 33, 91),
56 (n = 61, 32, 95)

M2 (f) 16-95 V2, V4 29 (n = 92, 21), 37† (n = 85, 45),
56 (n = 92, 57)

M3 (m) 16-65 FC, IT 20† (n = 87, 39), 31 (n = 81, 40),
34 (n = 55, 0 [F.C. only])

M4 (f) 27-53 N/A N/A
M5 (m) 17-64 N/A N/A
M6 (m) 184-194 V1, IT 30 (n = 0, 30), 34† (n = 13, 56)
M6 (see above) IT 221† (n = 52)
M7 (m) 184-194 IT 28 (n = 31), 34† (n = 48)
M8 (m) N/A V4 409† (n = 96)

Table 1: Experimental details. Animal numbers reflect the numbers used in behavioral experiments (female: f, male:
m). Numbers given in the fourth column represent the number of visually responsive sites used at a given age, for the
areas we recorded in that animal, using the texture set of 35 image families. For M3, we were not able to confidently
delineate area boundaries in the foveal confluence. Recordings from these arrays may therefore reflect activity in either
V1, V2, or V4, and are listed as F.C. in the above table. M6 was implanted with arrays in both hemispheres at different
ages, and is listed twice, corresponding to the separate arrays. For the comparison in Figure 3D, we used data recorded
at a single age, marked here with an obelisk (†).

a 10×10 square (four positions were not used for recording), had shanks 1 mm long and had an interelectrode spacing369

of 0.4 mm. Following implantation, we used anatomical landmarks (including gross anatomical landmarks such as370

sulci and vasculature, which we observed surgically and related to previously documented area boundaries Saleem and371

Logothetis (2012); Winters et al. (1969)), physiological response properties (e.g. response latencies), and receptive field372

characteristics to determine the cortical location of array sites. All sites on an array were typically within a single visual373

area, with 2 exceptions. In one animal, one array lay on the border between V1 and V2. In the other animal, we were374

unable to determine whether the arrays were located in area V1, V2, or V4. As receptive fields were close to the center375

of gaze, we refer to these data as stemming from the "foveal confluence" (see Brewer et al. (2002), their Figure 8B), as376

opposed to one or another visual cortical area.377

We recorded bandpass filtered (250 Hz to 7.5 kHz) electrical activity, at a sampling rate of 30 kHz. To minimize the378

influence of common-mode signals, we subtracted the median sample-by-sample voltage across all sites, and then379

defined spike events (threshold crossings) as negative voltage deviations at least 3 times the root mean squared deviation380

of the baseline voltage.381

Behavioral data analysis382

For the 5 animals we tested longitudinally, we used between 22 and 33 total sessions. For the 2 animals we tested at383

older ages, we used 3 sessions in one, and 11 in the other. For each animal, we combined behavioral data from a given384

texture family collected within a 7 day span.385

Two animals (M3 and M5) acquired a tendency to choose the same spatial position at older ages. Compared to the other386

animals in our sample, these two had run more 4 choice oddity tasks of various sorts. We retrained them to mitigate this387
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spatial bias, and rejected sessions where they chose one target at least 40% of the time (all results and model predictions388

were similar with and without this inclusion criterion).389

To measure behavioral sensitivities, we fit a shared cumulative Weibull psychometric function to all data (Wichmann390

and Hill, 2001a). We used a maximum likelihood fitting process to extract a slope parameter, common to all data, and391

separate thresholds and lapse rates for each individual measurement. We computed thresholds as the intercept of the392

Weibull function with 55% correct, corresponding to a d’ of 1 (Hacker and Ratcliff, 1979). We then estimated the393

individual variability for each threshold estimate using a nonparametric bootstrap (Kingdom and Prins, 2016), for which394

we fixed the slope and lapse rate to the values extracted from the original fitting routine. We inverted thresholds to395

obtain sensitivities.396

We modeled the relationship between sensitivity, s, and age, a, using a function of the form:397

s = smax
aα

aα50 + aα
,

where smax, a50, and α are free parameters representing the maximum sensitivity, the age corresponding to half-398

maximum performance, and a fit exponent capturing the rate of increase (larger values correspond to faster saturation),399

respectively. We fit this function by minimizing the squared error of the model predictions. Our psychometric function400

is fit in a logarithmic space (curves sharing a slope and lapse rate, but differing in threshold have the same shape in401

this space), thus we log-transformed our estimates prior to measuring model error. We tried a variety of models of this402

general form, and compared them using the corrected Akaike’s Information Criterion (Motulsky and Christopoulos,403

2004). Across all such models, our data were best explained by one in which the a50 and α parameters were shared404

across all data, and the smax was fit separately for each subject. To estimate the variability of model parameters, we405

nonparametrically resampled our data, and fit our model to the resampled data. We repeated this 1000 times, and406

extracted 95% confidence intervals around the parameter estimates.407

Physiological data analysis408

Initial analysis409

For analysis, we binned multiunit threshold crossings into 10 ms windows. To determine single-site response latencies,410

we separately measured the discriminability between blank stimuli, and either naturalistic texture or noise texture411

stimuli as a d’ between response distributions: µstim−µblank√
1
2 (σ

2
stim+σ2

blank)
, where µ reflects the mean of a distribution, and σ its412

standard deviation. We defined the onset time for a given site as the first deviation above a d’ of ± 0.4, as long as the413

following 2 windows were also suprathreshold (and of the same sign). The onset time for a given population was the414

median onset time across visually responsive sites. For most analyses, we then summed responses across the 150 ms415

window following stimulus onset.416

To determine whether a site was visually responsive in a given recording session, we measured the average response417

separately for even and odd repetitions of each stimulus. We measured the Pearson correlation between these vectors,418
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and used sites with a correlation of 0.4 or greater (the results reported here remained stable across a variety of different419

metrics and thresholds).420

We measured receptive field locations by recording neural responses to a small spot, which was tiled across the visual421

field. We used d’ values, summed for 200 ms following response onset, between spot stimuli and blanks to estimate422

receptive field centers and sizes. With one exception, that of M8, receptive fields were located within 2 deg of the center423

of gaze. For M8, receptive fields were roughly 8 deg eccentric from the center of gaze.424

As a single site measure of naturalistic texture discriminability, we measured the d’ between naturalistic and noise425

texture evoked response distributions, using the above formula.426

To compare tuning at the single site level, we measured the variance across all texture families (including naturalistic and427

noise textures), after averaging across stimulus repetitions, and computed its proportion of the overall stimulus-driven428

variance.429

Population analysis430

To measure population discriminability, we first performed singular value decomposition on a training set USV T =431

Mtrain of naturalistic and noise texture responses, for a given population (Mtrain was a matrix organized in the form432

stimulus × site). Array recordings result in varying population sizes. We primarily addressed this by subsampling433

populations to a matched size, allowing us to directly compare performance between ages and area. We obtained these434

subsamples by randomly selecting from the pool of visually responsive sites. We repeated this random sampling to435

estimate variability across measurements. For our first physiological experiment, using textures from many families, we436

used populations of 30 sites. For our measurements of population neurometric sensitivities, we used populations of 20437

sites. In Supplemental Figure 4, we measured the relationship between population size and performance, and found that438

our results generalized across population sizes.439

To minimize overfitting, we reduced the dimensionality of the resultant basis set V to rank 20 (10 for neurometric440

sensitivities). We then fit a linear discriminant, b, to the rotated matrix MtrainV, best separating naturalistic and noise441

responses. We measured performance across training-testing splits by projecting our held out data Mtest onto the same442

axis as MtestV b. We measured the discriminability between naturalistic and noise texture response distributions as a d’.443

To measure stimulus detectability, we repeated this process, but using naturalistic textures and blank stimuli.444

For our first experiment, we measured performance separately for each texture family. For cross-validation, we trained445

on 14 of the 15 samples, and tested on the held out sample. We reported performance as the average across all 15446

cross-validations.447

For our analysis of temporal dynamics, we measured discriminability using the same population scheme, but trained448

and tested separately for each 10 ms time bin. To measure population latencies, we fit a Heaviside function, modified to449

include a finite slope (which we fit as a free parameter), to the resultant average performance curves.450
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For our measurements of population neurometric sensitivities, we again used samples for fivefold cross-validation,451

using 4 samples for training, and the 5th for testing. In addition to population discriminability, we measured proportion452

correct in analogy to a 4 choice task, by iterating through each response in Mtest, with a simulated trial structure, where453

we projected each individual response in Mtest onto our learned axis (simulated target), along with 3 randomly chosen454

noise texture responses from Mtest (simulated distractors). If the projection of the simulated target onto the learned455

discriminant axis was larger than that of all 3 distractors, we scored the stimulated trial as correct. Otherwise, we scored456

it as incorrect. After repeating this process for all entries in Mtest, we computed an overall proportion correct for each457

level of naturalistic structure.458

We then fit neurometric functions with cumulatives of the Weibull distribution, fit separately to each session where the459

maximum proportion correct reached at least 0.5. We estimated variability using a parametric bootstrap (Wichmann and460

Hill, 2001b).461

We measured neurometric sensitivities separately using a correlation-based classifier. In this approach, we replaced the462

projection of 4 trials (a target and 3 distractors) onto a discriminating hyperplane, with the correlation between the same463

4 trials, and the average response to fully naturalistic textures, as measured from our training set. Here, we simulated464

choice as the trial with the highest correlation. Our results in this framework were qualitatively similar to those using465

the linear discriminant.466

For our analysis of the influence of neural correlation structure on decoding, we recomputed the population discrim-467

inability as measured from our second experiment, after randomly and separately shuffling the trial order for each site,468

to disrupt any trial-to-trial correlations in neural activity.469
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Supplementary Figures470
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Supplementary Figure 1: Behavioral texture sensitivities, plotted separately by texture family. Note the bottom
panel, which starts from an older age than the others. Conventions the same as in Figure 2C.
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Supplementary Figure 2: Single site texture selectivity distributions. Distributions of selectivity values, across areas.
Each value reflects the mean selectivity for that site, across all texture families. Points represent distribution means,
error bars represent 95% CIs around those means. Each subpanel represents data from a given age (note that ages are
not always matched within a row). Monkeys used in each sample (see Table 1) are indicated with "M#" (we implanted
M6 a second time in the opposite hemisphere, indicated with an asterisk).
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Supplementary Figure 3: Variance ratios measured for longitudinal data. Each histogram depicts the distribution of
variances across texture families (naturalistic and noise) to overall stimulus-driven variance, by age, by animal, for the
two animals (M1 and M2) with the longest-lasting arrays.
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Supplementary Figure 4: Performance scales with population size. Discriminability between naturalistic and noise
textures versus population size. Each point represents data from a given area and age (for a given population size, data
recorded at older ages are displaced increasingly to the right). Error bars depict 95% CIs across population resamplings;
they are often smaller than the symbols, and thus invisible.
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