

A brain-to-text framework of decoding natural tonal sentences

Daohan Zhang^{1,2,3#}, Zhenjie Wang^{4#}, Youkun Qian^{1,2,3#}, Zehao Zhao^{1,2,3}, Yan Liu^{1,2,3}, Xiaotao Hao^{1,2,3}, Wanxin Li^{1,2,3}, Shuo Lu⁵, Honglin Zhu⁶, Luyao Chen⁷, Kunyu Xu⁸, Yuanning Li^{4,9*}, Junfeng Lu^{1,2,3,8,10*}

Author affiliations:

¹Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China

²Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai 200040, China

³National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China

⁴School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China

⁵Department of Chinese Language and Literature, Sun Yat-sen University, Guangzhou 510080, China

⁶Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, UK

⁷School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China

⁸Institute of Modern Languages and Linguistics, Fudan University, Shanghai 200433, China

⁹State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China

¹⁰MOE Frontiers Center for Brain Science, Huashan Hospital, Fudan University, Shanghai 200040, China

[#] These authors contributed equally to this work.

* Corresponding authors: Junfeng Lu (junfeng_lu@fudan.edu.cn), Yuanning Li (liyn2@shanghaitech.edu.cn)

1 **Abstract**

2 Speech brain-computer interfaces (BCIs) directly translate brain activity into speech sound and
3 text, yet decoding tonal languages like Mandarin Chinese poses a significant, unexplored
4 challenge. Despite successful cases in non-tonal languages, the complexities of Mandarin, with
5 its distinct syllabic structures and pivotal lexical information conveyed through tonal nuances,
6 present challenges in BCI decoding. Here we designed a brain-to-text framework to decode
7 Mandarin tonal sentences from invasive neural recordings. Our modular approach dissects
8 speech onset, base syllables, and lexical tones, integrating them with contextual information
9 through Bayesian likelihood and the Viterbi decoder. The results demonstrate accurate tone and
10 syllable decoding under variances in continuous naturalistic speech production, surpassing
11 previous intracranial Mandarin tonal syllable decoders in decoding accuracy. We also verified
12 the robustness of our decoding framework and showed that the model hyperparameters can be
13 generalized across participants of varied gender, age, education backgrounds, pronunciation
14 behaviors, and coverage of electrodes. Our pilot study shed lights on the feasibility of more
15 generalizable brain-to-text decoding of natural tonal sentences from patients with high
16 heterogeneities.

17 **Key words**

18 Electrocorticography (ECoG); Brain-Computer Interface (BCI); Tonal language; Natural speech;
19 Neural Networks

20

21 **Introduction**

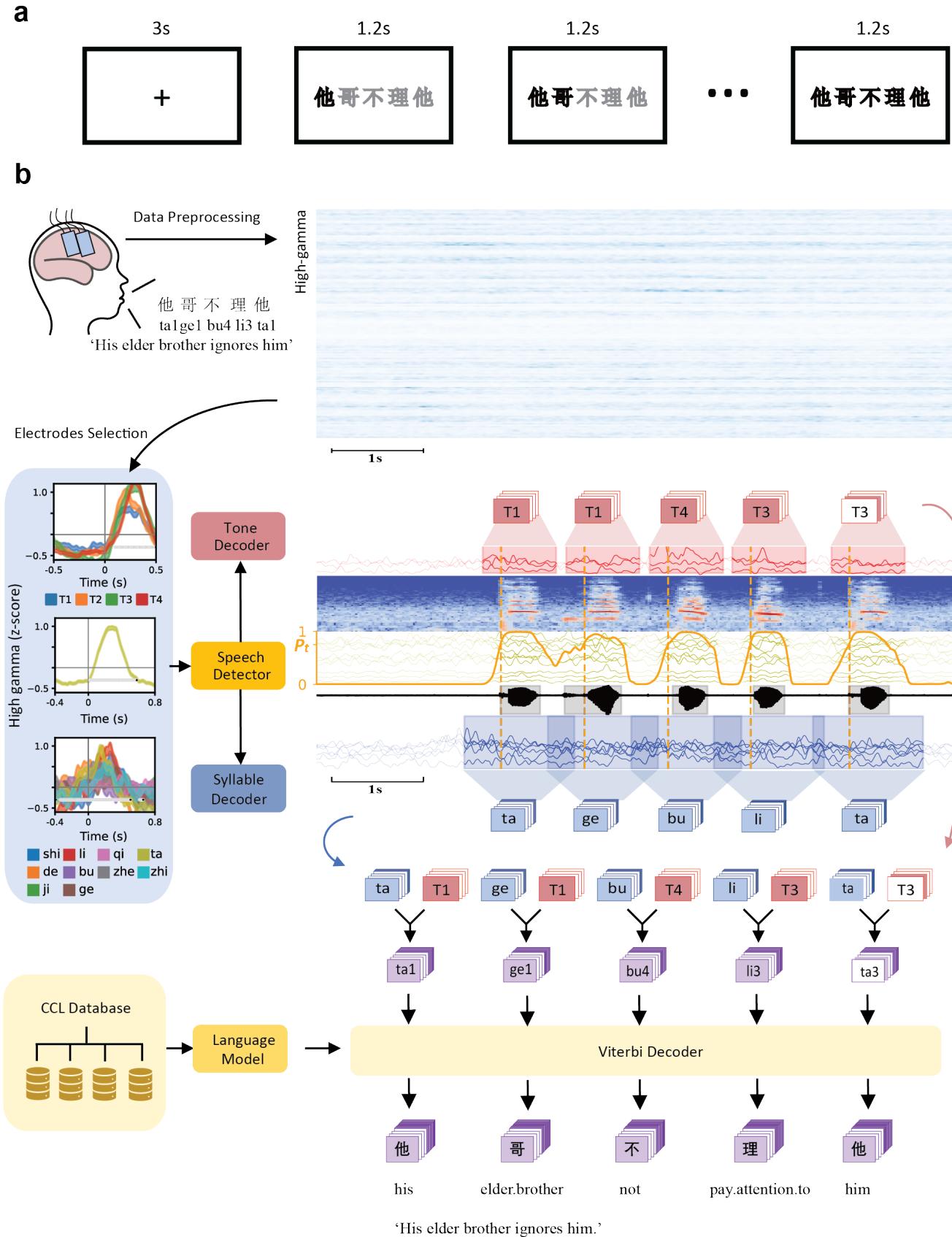
22 Sentence is the basic language unit embodies our construal of representational meaning and
23 interpersonal meaning, which constitutes the basis for daily communication¹. Recent
24 investigations have demonstrated the possibility of synthesis and decoding sentences in non-tonal
25 languages²⁻¹¹ using intracranial neural recordings such as electrocorticography (ECoG) and Utah
26 array. These studies have primarily relied on decoding the spatiotemporal neural patterns
27 associated with articulatory movements—such as those of the lips, tongue, and larynx—in the
28 ventral sensorimotor cortex during intended speech production. These advancements provided
29 novel approaches for treating anarthria¹² and enhanced the communication efficacy of speech
30 brain-computer interfaces (BCIs)¹³.

31 However, decoding tonal sentences is still a largely-unexplored work. More than 60% of the
32 languages in the world are tonal¹⁴, with approximately 2 billion people speaking tonal languages,
33 including most Sino-Tibetan languages and the entire Tai-Kadai family¹⁵. Pitch in these languages
34 is used to distinguish lexical and grammatical meaning¹³. While prior research has investigated
35 decoding stereotypical instances of lexical tones from neural activity for monosyllabic speech¹³,
36 decoding continuous tonal sentences is still a challenging issue. Unlike the relatively stable
37 acoustic cues in canonical forms, natural speech introduces substantial variability in tone
38 components. According to Fujisaki model, these components, typically represented by base
39 frequency (F0) contours, encompass base frequency, phrase variations, and accent components^{16,17}.
40 Furthermore, the influence of tone sandhi—alterations in a morpheme's tone due to syntactic
41 context—adds an additional layer of complexity¹⁸. Altogether, these variances make decoding
42 tonal sentences more complicated than both non-tonal sentences and isolated tonal syllables.

43 Besides, existing invasive language BCI usually reported success in individual cases, usually with
44 intense hyperparameter optimizing^{5,9,10}. Few studies have tested the replication or generalization
45 of the decoding framework. It remains uncertain whether the same set of model design
46 hyperparameters—such as the number of convolution and recurrent blocks, hidden variables per
47 layer, and onset detection thresholds—will generalize across different subjects. Consequently,
48 verifying the generalizability of these published frameworks, especially when applied to patients
49 exhibiting high heterogeneity, remains elusive. In clinical settings, different patients need to
50 restore speech function via speech BCI have varied pronunciation behaviors, which is especially
51 obvious among tonal languages such as Mandarin Chinese. Mandarin speakers, influenced by
52 regional dialects such as Northern, Jianghuai, and subgroups like Wu-Tai, Shanghainese-
53 influenced, Northeastern Mandarin, demonstrate distinct tonal and syllabic variations¹⁹. Though
54 sharing the same written form of Chinese word, speakers of these mandarin branches have distinct
55 pronunciation behaviors on both tones and syllables. While these distinct pronunciation behaviors
56 or preferences do not affect speakers' daily communication, they add significant challenges to the
57 decoding task. In addition to the variance in pronunciation behaviors, the inherent variations in
58 language-functional cortical areas also contribute to the inter-subject variances. It is impossible
59 for invasive devices to collect identical neural signals from different patients even if the placement
60 of invasive electrodes is stringently controlled. Whether and to what extent these bias from both
61 language behaviors and varied neural signals will affect the robustness of language decoding
62 framework remain unknown. This uncertainty challenges the eventual generalization of speech
63 BCI across patients with high heterogeneity.

64 In this study, we aim to decode Mandarin tonal sentences from invasive neural recordings using
65 high-density ECoG. Targeting functionally separate neural populations within speech-related brain

66 regions, we tailored distinct neural network modules which detected the onsets of the utterance of
67 each individual Chinese character and then decode tone labels and syllable labels in parallel,
68 reflecting the inherent parallel coding previously observed in tonal language articulation^{13,20-22}.
69 Subsequently, a language model was used to calculate the Bayesian likelihood of the entire
70 sentence from the probability distribution of tonal syllable sequences, integrating the contextual
71 and prior information (**Fig.1**). Moreover, we established a versatile framework using a set of
72 standardized hyperparameters, eliminating additional needs for hyperparameter optimization, and
73 assessed its potential for generalization by testing across multiple patients. This approach decoded
74 Mandarin tonal sentences across diverse patient profiles without specific hyperparameter
75 adjustments.



76 Fig 1 Schematic overview of the brain-to-text decoder for natural speech of a tonal language.

77 a. Schematic overview of the tonal speech production task. Each participant was guided by a
78 visual cue to produce one of the ten sentences. Each trial began with a fixation cross at the
79 center of the screen for 3 seconds, and the sentence was shown in the middle of the screen
80 in grey text. With each word turning black for 1.2 seconds consecutively from the
81 beginning to the end of the sentence, the participant was instructed to pronounce the
82 sentence following these go cues, the pace of the speech was not strictly aligned with the
83 visual cues.

84 b. During the experiment, neural activity from speech-related cortex was recorded using
85 implanted high-density electrocorticography array when the participant was instructed to
86 read sentences consisted of words from a predefined vocabulary set of 40 words. The
87 preprocessed neural signals from responsive electrodes were sampled by sliding window
88 and was sent to the speech detection module (speech detector) to detect the onsets of words.
89 The peri-onset neural activity within a fixed time window was used to compute the base
90 syllable probability (across 10 possible syllables) and lexical tone probability (across 4
91 tones) of the word via a tone decoder and a syllable decoder respectively. A Viterbi
92 decoding algorithm used these probabilities in conjunction with word-sequence
93 probabilities from a pre-trained natural language model to decode the most likely sentence
94 given the current neural activity.

95

96 **Results**

97 In this study, we recorded the neural activity of five native Mandarin-speaking participants who
98 underwent awake surgery to treat brain tumors. Each participant was guided by sequential visual
99 cues to produce 10 sentences consisted of 5-8 Chinese characters from a corpus of 40 Chinese
100 characters with varied tones (**Fig. 1a**). Among 5 participants, PA1-4 completed the speech
101 production task using normal articulating, while PA5 completed the speech production task using
102 whispering. Participants' brain activity was recorded by temporally placed high-density ECoG
103 grids. Subsequently, we assessed the efficacy of our proposed brain-to-text speech decoder across
104 these 5 participants.

105 **Decoder overview**

106 Our brain-to-text decoder comprises interconnected modules: a speech detector, tone decoder,
107 syllable decoder, and a language model, functioning in a sequential stream. To decode Mandarin
108 tonal sentences from high-density ECoG neural recordings, our brain-to-text decoder starts with a
109 speech detector, which takes in sequence of neural activity recordings of pre-selected speech-
110 responsive electrodes and predicts whether each timepoint belongs to speech production or resting-
111 state. The output of the speech detector was used to identify speech production epochs, where each
112 epoch corresponding to the time interval of one Chinese character. Based on the decoded speech
113 production epochs, our tone and syllable decoders then decode tone label and syllable label from
114 neural signals of pre-selected tone and syllable discriminative electrodes during each epoch.

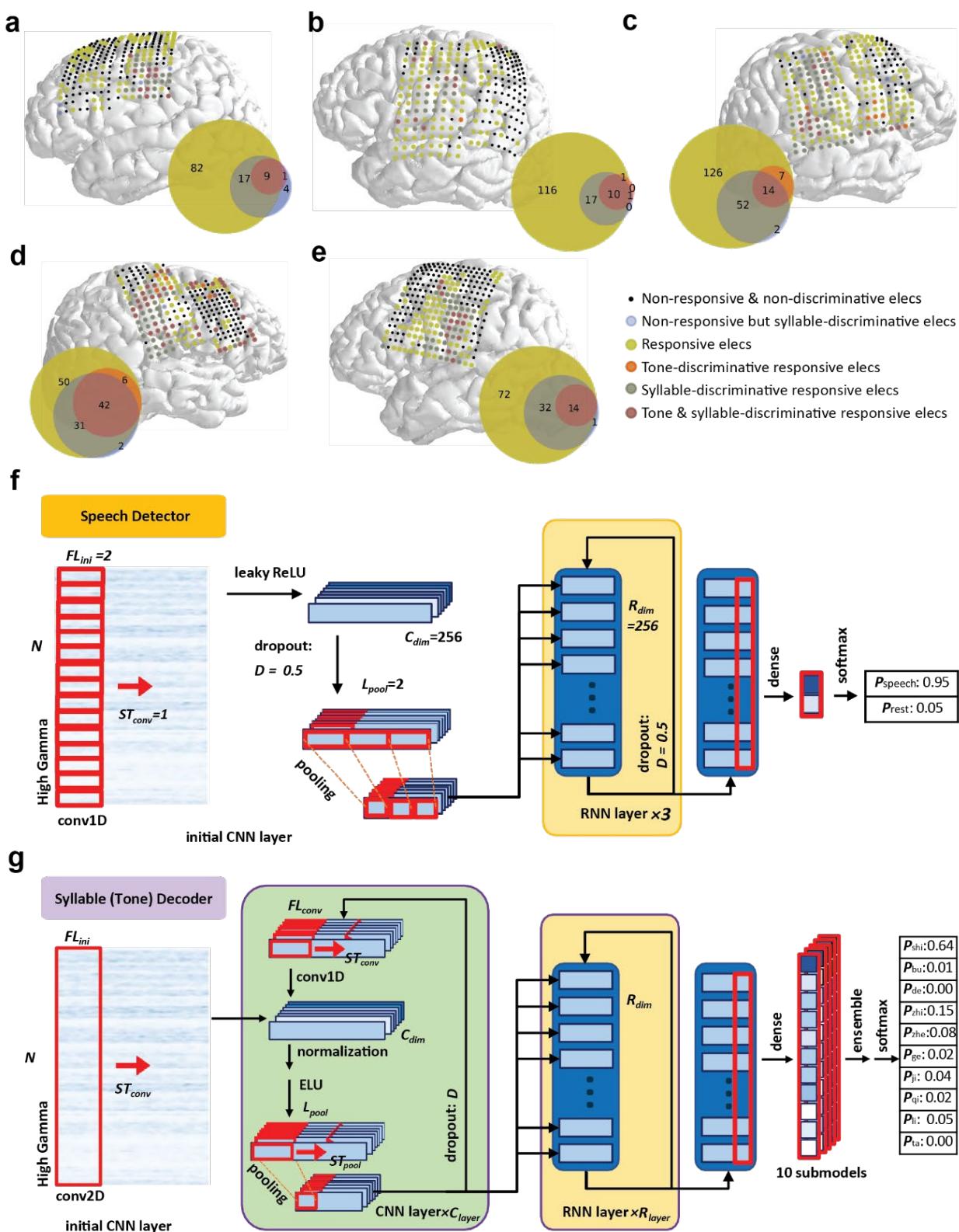
115 For PA1 to PA4, we identified 108,144,199, and 129 speech responsive electrodes, 30,28,68, and
116 75 syllable discriminative electrodes and 10,12,21, and 48 tone discriminative electrodes,
117 respectively. For PA5, we found 118 speech responsive electrodes, 47 syllable discriminative
118 electrodes and 14 tone discriminative electrodes. The coverage and overlapping relationship of
119 these electrodes were shown in **Fig. 2a-e**.

120 For onset predicting, the neural activity across all speech-responsive electrodes was processed time
121 point by time point by an artificial neural network (ANN) containing sequentially arranged
122 Convolutional Neural Network (CNN) structure, a stack of Gated Recurrent Unit (GRU) layers
123 and a single dense (fully connected) layer, capturing both forward and backward temporal
124 dependencies in neural signals, which was designated for inference on dynamic temporal processes.
125 The dense layer projected the latent dimensions of the last GRU layer into probability space for
126 two event classes: speech and rest. (**Fig. 2f**) For simplify, all the hyperparameters in this step was
127 fixed. After that, the curve of the predicted probabilities along the dimension of time was smoothed
128 and binarized according to undefined smoothing window (S) and probability threshold (P_t), the

129 onset of each utterance was then predicted if a lasting silence states (T_{off}) before the onset and a
130 lasting speech state (T_{on}) after it, while slightly errors labels within an undefined error permissive
131 rate (**EPR**) was also allowed (**Fig. 3b**). These five undefined hyperparameters need further tuning
132 through grid search for each participant.

133 As for tone and syllable decoder, a 1.2-second time window for syllable and 0.8-second time
134 window for tone of high gamma activity was processed by an ensemble of 5 pairs (10 total)
135 ensemble ANN models. ANNs in tone and syllable decoder share the same architecture but
136 different in their own hyperparameters. Within each ANN, the high gamma activity was processed
137 by an initial convolution with initial filter length (FL_{ini}), stride of convolution (ST_{conv}). This initial
138 layer was followed by undefined number (C_{layer}) of CNN unit². Each CNN unit constituted of a
139 temporal convolution with undefined kernel length (FL_{conv}), aforementioned stride length and
140 dimension (C_{dim}), a batch normalization, ELU activating function²³, a dropout layer with dropout
141 rate (D) and maxpooling layer with max-pooling kernel length (L_{pool}) and max-pooling stride
142 (ST_{pool}). After that, data was processed by undefined number (R_{layer}) of stacked bidirectional gated
143 recurrent unit (GRU) layers with undefined number of dimension (R_{dim})²⁴. A dense layer projected
144 the final GRU layer into probability of syllable and tone of each of the words from the 10-syllable
145 set or 4-tone classes. Finally, we averaged these probability distributions from ensembled ANN
146 models to get the predicted syllable and tone probabilities. (**Fig. 2g**) It is worth noting that all the
147 aforementioned undefined hyperparameters required further tuning for each participant.

148 Subsequently, a language model integrates these decoded tone and syllable labels, along with prior
149 information of their transitional probabilities, to compute the Bayesian likelihood of entire word
150 sequences.



151 **Fig 2 Electrode coverage, category and decoding model schematics**

152 a-e. Anatomical reconstructions of PA1-PA5 (from a to e). The locations of the ECoG
 153 electrodes were plotted with colored discs. The colors indicated the electrode categories.

154 Yellow: responsive electrodes; red: tone-discriminative electrodes; blue: syllable-
155 discriminative electrodes. Electrodes with combined feature were plotted with mixed
156 colors, nonresponsive electrodes were plotted as small black dot. Venn diagrams showed
157 the number of electrodes in each category for each participant.

158 f. Speech detection model schematic. Predefined hyperparameters in ANN and their values
159 were shown in italic.

160 g. Syllable classification model schematic. CNN unit shown in green frame while RNN unit
161 shown in yellow. All of the undefined hyperparameters were shown in Italic, which can be
162 roughly divided into time-dimension-related group and size-related group. Former group
163 includes initial convolution filter length (FL_{ini}), stride of convolution (ST_{conv}), filter length
164 of following convolutional blocks (FL_{conv}), max-pooling kernel length (L_{pool}) and max-
165 pooling stride (ST_{pool}). Later one including number of sequential convolutional blocks
166 (C_{layer}), number of layers of RNN (R_{layer}), number of filters in each convolutional process
167 (C_{dim}), number of dimensions in each RNN process (R_{dim}), and dropout value (D)) The tone
168 classification model shared the same architecture with syllable classification model but
169 different hyperparameters.

170

171 **Independent performance of speech detector, tone decoder and syllable decoder**

172 First, we evaluated the performance of each individual decoder module. Since these decoder
173 modules work in sequential order, the performance of the tone and syllable decoders would rely
174 on the output of the speech detector. To evaluate the independent performance of these decoder
175 modules, we first calculate the decoding accuracies of syllable, tone, tonal syllable, and Chinese
176 characters on manually aligned speech onsets rather than onsets predicted by the speech detector.

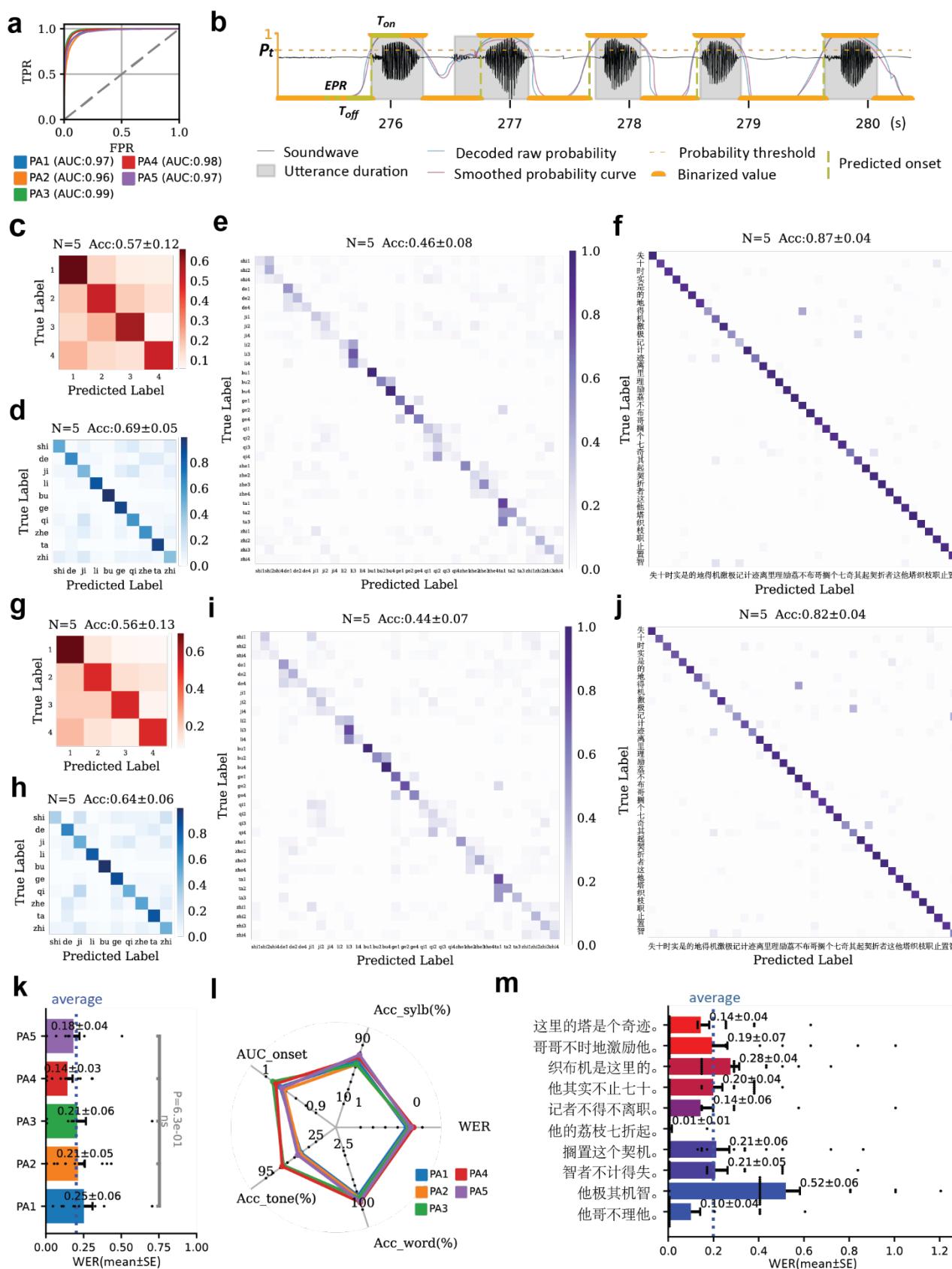
177 Each of the participants completed 158 to 160 sentences in the speech production task. Using
178 nested cross-validation, we trained the brain-to-text decoder for each participant and evaluated the
179 decoding performance. Among five participants, our speech detector reached an area under curve
180 (AUC) of 0.96 to 0.99 (**Fig. 3a**). The tone decoder reached an accuracy of $57\% \pm 12\%$ (mean [\pm
181 SD] classification accuracy across the 4 target tones in 5 participants, chance 25%) on manually
182 aligned neural signals (**Fig. 3c**). Syllable decoder reached an accuracy of $69\% \pm 5\%$ (mean [\pm SD]
183 classification accuracy across the 10 target syllables in 5 participants, chance 10%) on manually

184 aligned neural signals (**Fig. 3d**). When multiply raw predicted probability of tone and syllable, we
185 acquired raw decoding accuracy of all the predicted tonal-syllables, which reaches $46\% \pm 8\%$
186 (mean [\pm SD] classification accuracy across the 40 tonal syllables on 5 participants, chance 3.0%)
187 at the level of tonal syllable (**Fig. 3e**). After applying language model to calculate corresponding
188 Chinese words, the accuracy at the level of Chinese words reaches $87\% \pm 4\%$ (mean [\pm SD]
189 classification accuracy across the 40 Chinese words on 5 participants, chance 2.5%) (**Fig. 3f**).

190 **Overall decoding performance of tonal-sentences**

191 After evaluated the independent performance, we then tested the performance of all the modules
192 when they were interconnected and worked in a stream. Aligned with speech onsets detected by
193 speech detector, tone decoder achieved an accuracy of $56\% \pm 13\%$ (mean [\pm SD], **Fig. 3g**), while
194 syllable decoder achieved an accuracy of $64\% \pm 6\%$ (mean [\pm SD] , **Fig. 3h**). Accuracy at the level
195 of raw tonal syllable reached $44\% \pm 7\%$ (mean [\pm SD], **Fig. 3i**), while the final accuracy at the level
196 of Chinese words reaches $82\% \pm 4\%$ (mean [\pm SD], **Fig. 3j**). These results were consistent with the
197 independent module performance, when actual speech onsets were manually aligned. We also
198 calculated the word error rate (WER) of each decoded sentence. Decoding accuracy was consistent
199 across participants (one way-ANOVA, $F(4, 45) = 0.65, p=0.63$), as the overall WER was $25\% \pm$
200 6% , $21\% \pm 5\%$, $21\% \pm 6\%$, $14\% \pm 3\%$, $18\% \pm 4\%$ (mean [\pm SE]) from PA1 to PA5. For each
201 individual sentence, WER ranged from 1% to 52%. 47.74% of all the sentences (95/199) were
202 decoded correctly (WER=0) (**Fig. 3k**). There was no significant difference (Pearson's correlation,
203 $r = -0.03, P = 0.61$) between the decoding accuracy and the complexity (number of words or

204 phrases) of the sentence (**Fig. 3m**), suggesting that our proposed method worked for both short
205 and long sentences.



206 Fig 3. Evaluation of the overall neural-to-text decoding performance of the decoder.

207 a. Receiver Operating Characteristic (ROC) curves and corresponding area under curve
208 (AUC) of speech detectors in each participant.

209 b. One example trial, in which the participant produced the sentence “他哥不理他” (His elder
210 brother ignores him). The raw speech sound waveform was plotted in black. The time
211 course of the predicted speech probability was plotted blue, while speech probability after
212 smoothing and binarized was plotted red and orange. Finally, the detected speech event
213 onsets from the neural decoder was plotted as yellow dotted vertical lines. All of the
214 undefined hyperparameters were shown in Italic.

215 c-f. Confusion matrices of c) the tone labels, d) the syllable labels, e) the tonal syllables, and f)
216 the words (with language model), evaluated on the test set, using manually aligned actual
217 speech onsets.

218 g-j. Confusion matrices of g) the tone labels, h) the syllable labels, i) the tonal syllables, and j)
219 the words (with language model), evaluated on the test set, using decoded speech onsets
220 from the onset decoder.

221 k. The averaged word error rate (WER) of decoded sentences in 5 participants, mean [\pm sem],
222 the vertical dotted line indicated the overall averaged performance across all 5 participants.

223 l. Performances of the speech detector, the tone decoder, the syllable decoder and the overall
224 performances of each participant (in the same color keys as panel k), shown by AUC of
225 speech-silent classifier (AUC_onset), tone accuracy (Acc_tone), syllable accuracy
226 (Acc_sylb), word accuracy (Acc_word) and WER respectively.

227 m. The averaged WER of each individual sentence across all 5 participants, mean [\pm SE],
228 dotted line indicated the average performance across all sentences.

229

230 **Robustness of the speech decoder under tonal variance in natural speech**

231 In natural speech, the actual pitch trajectories of lexical tones often deviate from their canonical
232 forms, due to accent, emotions, and other contextual effect such as coarticulation and tone sandhi²⁵.
233 For example, all the patient articulated the tone of “不” in “不计得失” with a pitch trajectory more
234 similar to tone 2 rather than tone 4 in single syllable form or in other phrases such as “不得不”,
235 due to the rule of tone sandhi (Fig 4a). Even the same tonal syllable with different phonological
236 context would result in different pitch trajectories (Fig 4b). This suggests that the underlying neural
237 code commanding tone articulation may also encounter great variance. Therefore, the decoding
238 algorithm should not only consider the stereotypical canonical monosyllable instances of lexical

239 tones, but also able to account for such significant variance during natural speech and robustly
240 decode lexical tones regardless of the variance.

241 First, we quantify the variance caused by tonal sentence context and tone sandhi behaviorally. We
242 performed tone intelligibility assessment (IA) test through which native mandarin speaking
243 participants listening to audio of each tonal Chinese word clipped from the natural tonal sentences
244 and judging the tone. We find the accuracy of the tone IA test only reached $70\% \pm 2\%$ (mean [\pm SE]),
245 significantly lower (t -test, $t(38) = 7.38, p = 7.6e-9$) than behavioral performance under full natural
246 context (tone IA accuracy $91\% \pm 1\%$, mean [\pm SE], Fig 4c). Therefore, using contextual information
247 is important for listeners to overcome tonal variances in natural speech production.

248 Similarly, given only monosyllabic information, the tone decoder would perform suboptimal. To
249 show this, we adopted a baseline monosyllable decoder model previously used in Liu et al¹³. The
250 monosyllable decoder only took in the neural activity aligned to the current syllable utterance and
251 did not consider contextual syllables. In our test dataset, the monosyllable baseline decoder model
252 achieved an averaged tone decoding accuracy of $35\% \pm 3\%$ (mean [\pm SE], Fig. 4c).

253 Finally, we tested the performance our proposed sentence decoder. We compared our tone-decoder
254 (without the language model) with our previous published tone decoder designed for
255 monosyllable¹³. Our framework (decoding accuracy $58\% \pm 9\%$, mean [\pm SE]) outperformed (t -test,
256 $t(30) = -4.62, p = 6.9 \times 10^{-5}$) previous monosyllable tone-decoder (decoding accuracy $32\% \pm 3\%$,
257 mean [\pm SE]) on tonal sentence decoding task, which suggests our framework is more robust on
258 decoding tone components from natural language settings with multiple and unbalanced syllables.
259 Furthermore, after introducing language model to our decoding framework, a tone decoding
260 accuracy of $93\% \pm 3\%$ (mean [\pm SE]) was achieved, which significantly exceed (t -test, $t(34) = 7.12$,

261 $P = 3.1 \times 10^{-8}$, **Fig. 4c**) the accuracy of monosyllable tone IA results ($70\% \pm 2\%$, mean [\pm SE]), and
262 approximate the actual behavioral performance of native speakers under natural context ($91\% \pm$
263 1%). Hence, applying language model will largely eliminate the tone variance in natural language
264 by introducing contextual relationships, which is a promising solution of decoding tone in natural
265 tonal sentences accurately.

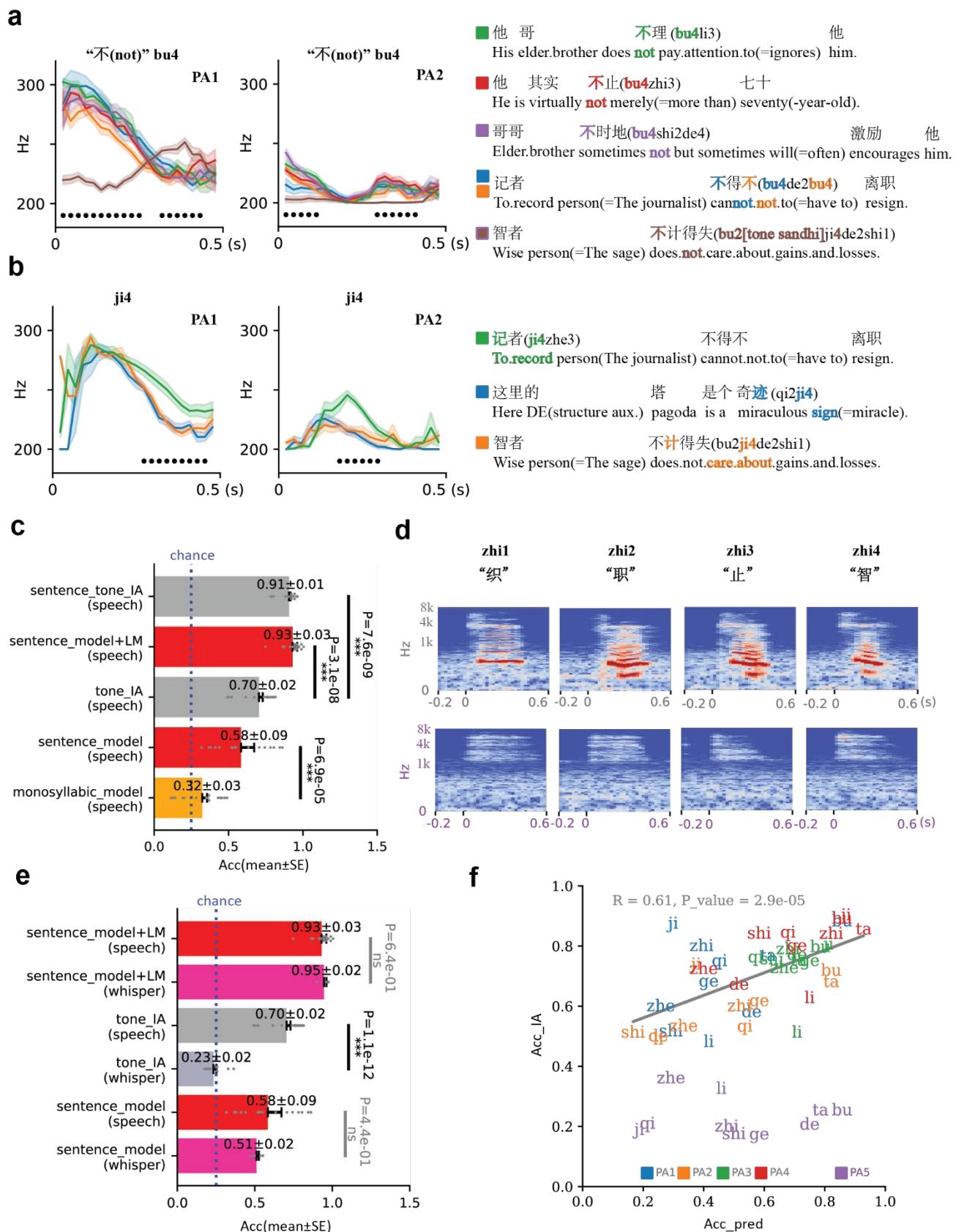
266 **Speech decoding during non-intelligible tonal speech production**

267 To further evaluate the robustness of our proposed decoder under different speech production
268 scenario, we tested if the decoder could decode from patient who did not produce intelligible
269 speech. In particular, PA5 completed the speech production task using whispering and the
270 produced tonal speech was largely non-intelligible. We first plot the Mel-spectrograms of Chinese
271 words clipped from whispering natural tonal sentences, finding no obvious base frequency (F0)
272 and consonant peak (**Fig. 4b**). Furthermore, the tone IA score of PA5 was $23\% \pm 2\%$ (mean [\pm SE]),
273 which was significantly lower than tone IA scores of normal articulating audios (t-test, $t(28) = -$
274 $12.18, p = 1.1 \times 10^{-12}$) and within the range of chance level (**Fig. 4c**). Therefore, behaviorally PA5
275 was not able to produce intelligible tonal speech during the task.

276 We then compared the tone-decoding accuracy of our framework on both participant PA5 and
277 other normal articulating participant, the intended speech was consistently decoded, the average
278 accuracy was $93\% \pm 3\%$ and $95\% \pm 2\%$ (mean [\pm SE]) with language model, $58\% \pm 9\%$ and $51\% \pm$
279 2% (mean [\pm SE]) with language model, no significant difference was observed (t-test, with
280 language model: $t(18) = 0.48, p = 6.4 \times 10^{-1}$, without language model: $t(18) = -0.79, p = 4.4 \times 10^{-$
281 1}).

282 Finally, tone decoding accuracy and the tone IA scores of each syllable in the 4 articulating
283 participants were significantly correlated (Pearson's correlation $r = 0.61, p = 2.9 \times 10^{-5}$), indicating
284 our tone decoder learned from behaviorally-relevant tone-related neural features, rather than other
285 co-variants (**Fig. 4d**).

286



288 **a-b)** Averaged pitch contours (mean [\pm SE]) of different Chinese characters of the same tonal
289 syllables (a: bu4, also the same Chinese character “不” which represents negative meanings
290 such as “not”, b: ji4), black dots indicated time points with significant mean difference
291 (one-way ANOVA, $p < 0.05$). The text transcriptions were shown in the bottom with the
292 specific words highlighted in the corresponding colors. Corresponding Chinese characters,
293 *Pinyin*, and English translation of the chosen syllables were shown in the same color as
294 the pitch contour at the right part of the figures. In the last sentence of the subplot **a**, the
295 tone 4 of “ji” (also shown in color) leads to the change in the tone of previous “bu”, due to
296 the rule of tone sandhi.

297 **c)** Tone decoding performances (mean [\pm SE]) of previous monosyllabic neural decoding
298 model (monosyllabic_model), our sentence-based neural decoding model without
299 language model (sentence_model), our sentence-based neural decoding model with
300 language model (speech_sentence+LM), the accuracy of tone intelligible analysis (tone IA
301 score) by 20 volunteers using the corresponding speech audio syllable clips (tone_IA), and
302 speech audio of each full sentences (speech_tone_IA). Blue dotted line indicated chance
303 level (25%); *** $p < 0.001$, t-test, two-sided.

304 **d)** The mel-spectrograms of participant (PA1) spoke aloud four tones of “zhi” (upper row),
305 compared to the mel-spectrograms of participant (PA5) whispering four tones of “zhi”
306 (bottom).

307 **e)** Tone decoding performances using our proposed sentence decoder without language model
308 (sentence_model) and with language model (sentence_model + LM), and the tone IA
309 scores (mean [\pm SE]) evaluated on the speech and whisper participants.

310 **f)** Scatterplot showing the correlation between of tone decoding accuracy (Acc_pred) and
311 tone IA score (Acc_IA) of articulating participants (Pearson’s correlation, $r = 0.61$, $p =$
312 2.9×10^{-5}). Whispering data shown in purple, which was not included in the linear
313 regression due to randomly distributed tone IA scores.

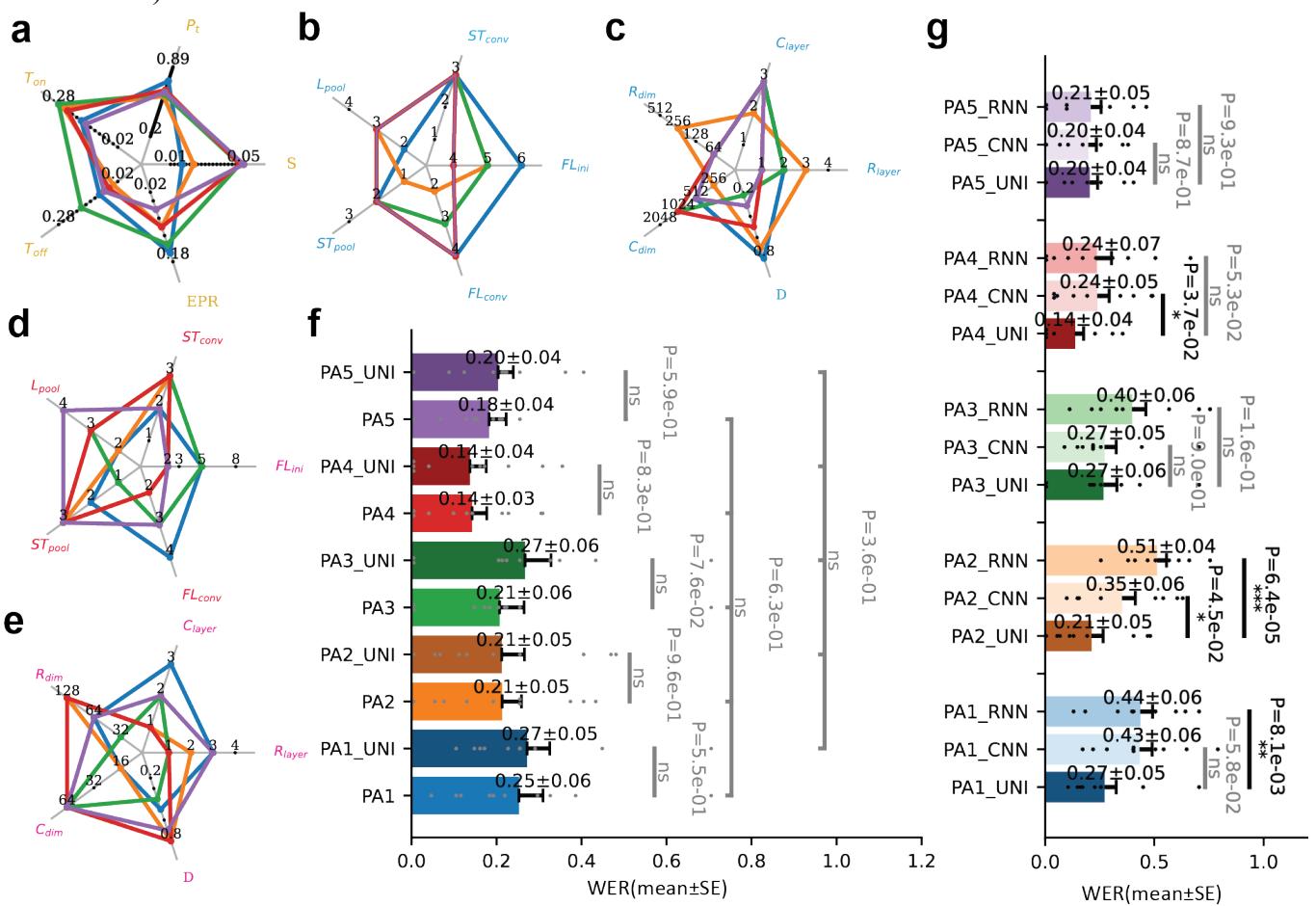
314

315 **Universal decoding framework with predefined hyperparameters is applicable on**
316 **participants with great variations**

317 ANN-based BCI decoders often encounter model hyperparameters such as depth and width of the
318 network, kernel size and strides, dropout rate, etc. Training these models usually require
319 optimization of these hyperparameters for each individual subject. A key factor of the
320 generalizability of the BCI decoder is how robust the model performance is regarding different
321 sets of hyper-parameters across participants. To get an overall understanding of heterogeneity

322 across participants, we computed their best hyperparameter combinations of speech detector, tone
323 decoder and syllable decoder chosen by the optimization process. These hyperparameters include
324 smoothing window (S), the probability threshold value (P_t), the off-time threshold (T_{off}) and on-
325 time threshold (T_{on}), and the error permissive rate (EPR) which are related to the thresholding
326 utterance onsets; filter lengths (FL_{ini} for the first convolutional layer, FL_{conv} for the rest
327 convolutional layers, and L_{pool} for max-pooling kernel) and strides (ST_{conv} for convolutional
328 layers and ST_{pool} for max-pooling layers) which determined the temporal feature of neuro-decoders;
329 as well as depths (C_{layer} for sequential convolutional blocks and R_{layer} for stacked recurrent layers)
330 and widths (C_{dim} for number of filters for convolutional process, R_{dim} for number of dimensions in
331 each RNN process, D for dropout value) which determined the overall model architecture.. Very
332 few optimized hyperparameter remained the same across all participants, while most optimal
333 hyperparameters varied across participants with variations of age, gender, speech behaviors and
334 electrodes coverage (**Fig. 5a-e**). To figure out the impact of such heterogeneity on decoding
335 performance in our framework, we picked the medium value of each hyperparameter and
336 constructed a fixed pre-defined hyperparameter set. We then applied a universal decoder (UNI) on
337 all the participants using this fixed pre-defined hyperparameter set. We found this universal
338 decoder performed similar to (pair-wise t-test, PA1: $t(9) = -0.62, p = 5.5 \times 10^{-1}$, PA2: $t(9) = 0.05, p$
339 $= 9.6 \times 10^{-1}$, PA3: $t(9) = -2.00, p = 7.6 \times 10^{-2}$, PA4: $t(9) = 0.23, p = 8.3 \times 10^{-1}$, PA5: $t(9) = -0.55, p$
340 $= 5.9 \times 10^{-1}$) individually-optimized frameworks with hyperparameters optimized on individual
341 participants (**Fig. 5f**). Also, the decoding performance of universal framework across participants
342 was stable (oneway ANOVA, $F(4, 45) = 1.11, p = 3.6 \times 10^{-1}$). The UNI decoder even outperformed
343 four control models only contained RNN and CNN part of the framework (CNN and RNN) with
344 optimized hyperparameters. Mean WERs of decoding sentences through UNI remained lowest in

345 all participants (**Fig. 5g**). Though the advantage was not significant in each individual participant
 346 due to relatively small sample size, it was significant after combining data of all the participants
 347 (paired t-test, UNI with CNN, $t(98) = -3.29$, $p = 1.8 \times 10^{-3}$, UNI with RNN, $t(98) = -4.97$, $p =$
 348 8.3×10^{-6}).



349 **Fig 5. Evaluation of the neural decoder model hyperparameters across different**
 350 **participants.**

351 **a)** The optimal combinations of hyperparameters for speech detector in 5 different subjects
 352 (colors consistent in **f** and **g**): **S** represents the smoothing size, **P_t** represents probability
 353 threshold, **T_{off}** represents off-time threshold and **T_{on}** for on-time threshold, **EPR** represents
 354 error permissive rate (detailed description of these hyperparameters see **Methods Section**).
 355 **b-c)** The optimal combinations of hyperparameters for the tone decoder: **b)** **FL_{ini}** and **FL_{conv}**
 356 represents the filter length of the initial convolutional layer and all following convolutional
 357 layers, **ST_{conv}** represents for stride of all convolutional layers. **L_{pool}** and **ST_{pool}** represent for
 358 pooling length and stride of all pooling layers; **c)** **R_{layer}** and **R_{dim}** represent numbers of layers
 359 and hidden units of bidirectional Gated Recurrent Unit (GRU). **C_{layer}** and **C_{dim}** represent

360 number of convolutional-pooling blocks and number of filters in each convolutional layer.
361 **D** represents dropout value of each drop-out layers.

362 **d-e)** The optimal combinations of hyperparameters for syllable decoder, similar to **b, c**.

363 **f)** Comparison of decoding performances on each individual participant between individually-
364 optimized decoders and the universal decoder with shared hyperparameters. In all the participants,
365 universal decoder showed no significant difference from individually-optimized decoder (pair-
366 wise t-test, PA1: $t(9) = -0.62, p = 5.5 \times 10^{-1}$, PA2: $t(9) = 0.05, p = 9.6 \times 10^{-1}$, PA3: $t(9) = -$
367 $2.00, p = 7.6 \times 10^{-2}$, PA4: $t(9) = 0.23, p = 8.3 \times 10^{-1}$, PA5: $t(9) = -0.55, p = 5.9 \times 10^{-1}$).

368 **g)** Comparison of decoding performances on each individual participant between universal
369 frameworks (UNI) and customized control frameworks with hyperparameters optimized.
370 In all the participants, UNI show lower WER than control models. In PA1, PA2 and PA4,
371 these is significance difference (pair-wise t-test, PA1_UNI with PA1_RNN: $t(9) = -3.38, p$
372 $= 8.1 \times 10^{-3}$, PA2_UNI with PA2_RNN: $t(9) = -7.00, p = 6.4 \times 10^{-5}$, PA2_UNI with
373 PA2_CNN: $t(9) = -2.33, p = 4.5 \times 10^{-2}$, PA4_UNI with PA4_CNN: $t(9) = -2.44, p = 3.7 \times 10^{-2}$)
374 between decoding performances of UNI and control models.

375

376 **Discussion**

377 In this study, we present a brain-to-text framework capable of decoding natural tonal sentences
378 from high-density ECoG recordings. We adopted a modular approach to delineate speech onset,
379 base syllables, lexical tones, and leveraged contextual information through Bayesian likelihood
380 and the Viterbi algorithm to enhance the decoding process. For natural speech, our proposed
381 method achieved a tone decoding accuracy of 93%, similar to the behavioral performance of native
382 speakers. The overall word error rate of decoded natural speech was as low as 14% in the best
383 participant. Notably, we proposed a generalized spatiotemporal decoding framework for syllable
384 and tone decoders. The robustness of our framework was evident across diverse participant profiles,
385 including variations in gender, age, education, pronunciation behaviors, and electrode coverage,
386 indicating that our model hyperparameters possess a high degree of generalizability. Significantly,
387 the framework's standardization of hyperparameters negates the need for extensive individual
388 optimization, a step forward in practical application and scalability. Furthermore, our system
389 adeptly managed the inherent language heterogeneity encountered in Mandarin, effectively

390 handling the variances introduced by tone sandhi, regional dialects and individual speech patterns.

391 Our decoder even showed robust performance in whispering conditions. These results underscore

392 the potential for clinical applications in aiding patients with anarthria and broadening the

393 communicative efficiency of BCIs.

394 This work extends the scope of ECoG-based speech brain-computer interface to natural speech of

395 tonal languages. The past decade has witnessed significant breakthroughs in speech decoding and

396 brain-computer interfaces using intracranial neural recordings. Previous works have also used

397 ECoG to record local field potential directly from the sensorimotor cortex responsible for speech

398 production. These works diverge in their decoding targets: some directly decode neural activity

399 into speech sound or acoustics like spectrogram^{2,26,27}; others map neural activity into discrete

400 linguistic units such as words or phonemes^{5,10,28}. Here we adopted a brain-to-text framework

401 similar to the latter strategy where neural activity is first decoded into discrete syllables and lexical

402 tones. Although directly decoding speech sound allows for continuous and infinite speech output,

403 the quality of reconstructed speech is limited by the noisy neural signal. On the other hand,

404 decoding into a finite set of syllables and tones extracts the invariant information from the noisy

405 neural recordings. Furthermore, for cases like whispering or even completely covert speech, there

406 is no ground truth of explicit speech output. As a result, brain-to-text may be feasible to such silent

407 speech cases.

408 Our work underscores the importance of ventral sensory-motor cortex (vSMC) in speech

409 production and decoding, particularly for tonal languages. Similar to our previous work¹³, we show

410 that tonal speech production can be reliably decoded from neural activity in vSMC. Previous

411 intracranial neurophysiology studies have investigated the spatiotemporal coding of the

412 articulatory movements responsible of pitch control and phonetics²⁰⁻²². A theoretical foundation of

413 these studies is that there exist spatially distinct and distributed neural populations in the vSMC,
414 representing different articulatory gestures corresponding to phoneme and pitch articulation. High-
415 density ECoG recordings have proven to reliably cover the distributed network and dissociate these
416 fine-grained neural coding^{13,29}.

417 Our results demonstrate the excellent efficacy of our proposed light-weighted models in decoding
418 articulatory movements, which is in line with a recent discovery that shallow feedforward
419 networks achieve better performance on motor control than deeper and complex ones³⁰.
420 Articulatory movement is innervated via motor nerves which locates only one or two (considering
421 inhibitory interneurons) synapses downstreaming the large pyramidal neurons (corticounuclear tract)
422 originated from the motor cortex³¹. Based on intracranial neural recordings of higher signal-noise
423 ratio (SNR), it is quite reasonable that light-weighted ANN is capable enough to replace the signal-
424 processing function of such a few layers of synapses (including the lateral connections within the
425 layers of cortex)^{32,33}. In our UNI frameworks, the numbers of trainable parameters in speech
426 detectors, tone decoders and syllable decoders range from 2.3M to 6.7M. Such light-weighted
427 frameworks not only showed less sensitivity to variations in hyperparameters, but also achieved
428 better performance when trained on very limited amount of training data³⁴. Such frameworks also
429 reduce the responding-time and energy-consumption of computational infrastructures, which is a
430 promising candidate for practical neuroprosthetic systems.

431 Our framework also provides insights into critical design considerations essential for speech BCI
432 models. Previous studies of speech BCI typically relied on extensive hyperparameter optimization
433 for individual participants who undergo chronic implantation^{5,9}. Such decoding models may not
434 be directly generalizable across different patients, resulting in repeated hyperparameters
435 optimizing procedures for each individual. In contrast, our study reveals the feasibility of a

436 universal, hyperparameter-optimization-free framework to five individuals, demonstrating its
437 robustness across a spectrum of ages, genders, educational backgrounds, pronunciation habits, and
438 variations in brain electrode coverage. Furthermore, as oppose to prior work where specific CNN
439 and Recurrent Neural Network (RNN) models were designed for tone and syllable decoding
440 respectively¹³, we proposed a unified CNN-RNN framework for both the tone and the syllable
441 decoders in this study. Our discovery further validates that this combined CNN-RNN model
442 achieved better decoding performance compared with baseline frameworks that employ only one
443 of these network types. The benefits of our combined approach cannot be replicated through
444 hyperparameter optimization alone. Our research highlights the potential for developing a broadly
445 applicable, hyperparameter-independent framework for neural decoding. Although our universal
446 framework has yielded stable performance across five distinct participants, future works remain to
447 be done to consolidate its generalizability in patients with anarthria, across different Chinese
448 dialects, and potentially other tonal languages.

449 This brain-to-text framework represents a pioneering effort in language BCI, designed to decode
450 the full spectrum of Mandarin characters. Mandarin's linguistic complexity is reflected in its use
451 of over 6,000 commonly utilized characters, each a single syllable word. Yet, within this vast
452 lexicon, there are only 416 unique segmental combinations of consonants and vowels. These
453 unique combinations, combined with suprasegmental pitch features (4 different lexical tones),
454 define 1664 unique tonal syllables³⁵. Although there are some important phonetic features to the
455 distinction standard 4 lexical tones such as turning point and ΔF0, amplitude, and speaker F0
456 range³⁶. Other factors that determine the pitch contour in Chinese include the prosodic structure of
457 the language, the interaction between syntax and phonology, and paralinguistic factors such as
458 speech rate and tempo¹⁸. These factors can influence the pitch contour and contribute to the overall

459 tonal patterns in Chinese, confusing native listeners listening to audio of each syllable clipped from
460 natural sentences. Such bias obviously added challenges to speech BCI decoding tone exclusively
461 from clips of neural signals while producing each syllable in natural sentences. The present
462 decoding strategy inherently integrates the critical tonal features of Mandarin, effectively handling
463 the variances introduced by tone sandhi, regional dialects and individual speech patterns, which
464 are paramount for accurate speech communication, offering advantages over phoneme-level
465 decoding. Besides, the current findings also highlight a pivotal insight: the decoding performance
466 is not hindered by the length or complexity of the sentences, indicating the scalability of our
467 framework for broader applications and more general settings in tonal language communication.
468 Also, Mandarin characters are single syllable words usually consisted of only two or three
469 phonemes, which is far less discriminative than most English. For example, "ji" versus "qi", or
470 "zhi" versus "shi", as demonstrated in our study². This structural intricacy of Mandarin, with its
471 concise phonemic diversity, renders the phoneme-level decoding strategies used in recent speech
472 BCI studies for non-tonal languages ineffective^{7,8}. In response, our framework targets the decoding
473 of Mandarin speech at the mono-syllable word level, aligning more closely with the language's
474 inherent structure and providing a practical blueprint for decoding its entirety—potentially
475 expanding our current focus from the most frequently used 4×10 tonal syllables to all 4×416 tonal
476 syllables.

477 In addition to the established use of high-density ECoG in speech decoding, various neural
478 recording techniques offer distinct advantages in terms of coverage and temporal resolution.
479 Examples include the Utah array^{9,37}, stereoelectroencephalography (SEEG)³⁸, and neuropixels^{39,40}.
480 When choosing among these methods, a crucial consideration involves striking a balance between
481 obtaining high-resolution neural signals, such as investigating fine-grained spiking properties of

482 multiple single units or microcircuits underlying speech production within a limited area of the
483 cortex^{9,40}, and achieving broad coverage of cortical networks, such as collecting neural signals
484 across the entire vSMC, which depicts a comprehensive view of neurodynamics of the functional
485 regions^{21,22,29}. Future works remain to be done to investigate the decoding capabilities of natural
486 tonal languages using signals of varying coverage and resolution scales. This entails identifying
487 the optimal trade-off point where high decoding performance aligns with decoding robustness
488 across patients with high heterogeneity.

489 **Acknowledgements**

490 Dr. Junfeng Lu is supported by ST1 2030-Major Projects (2022ZD0212300) and the National
491 Natural Science Foundation of China General Program (32371146). Dr. Yuanning Li is supported
492 by the National Natural Science Foundation of China General Program (32371154) and Shanghai
493 Pujiang Program (22PJ1410500). Dr. Jinsong Wu receives funding from Innovation Program of
494 Shanghai Municipal Education Commission (2023ZKZD13) and National Social Science Fund of
495 China Major Program (No. 22&ZD299).

496 **Competing interests**

497 The authors report no competing interests.

498 **Data availability**

499 Data relevant to this study are accessible from the authors under restricted access according to our
500 clinical trial protocol, which enables us to share de-identified information with researchers from
501 other institutions but prohibits us from making it publicly available. Access can be granted upon
502 reasonable request. Any data provided must be kept confidential and cannot be shared with others
503 unless approval is obtained. To protect the participants' anonymity, any information that could
504 identify him or her will not be part of the shared data. Source data and code to recreate the figures
505 in the manuscript will be publicly released with code upon publication of the manuscript.

506 **Code availability**

507 Code and source data to replicate the main findings of this study can be found on GitHub at
508 https://github.com/yuanningli/tonal_BCI_decoding.

509 **Author contributions**

510 J.L. and Y.Li. conceived and supervised the project. J.L., Y.Li., D.Z., Y.Liu., Z.Z., and S.L.
511 designed the experiment. J.L, D.Z., Y.Q., and Z.Z. collected the data. D.Z., H.Z., X.H. finished
512 the phonetic and phonological transcription. Y.Li., D.Z. designed the neural network. Y.Li., Z.W.,

513 D.Z., and W.L. designed the language model. D.Z. and Z.W. analyzed the data. J.L., Y.Li., L.C.,
514 K.X., and D.Z., interpreted the data. D.Z., Z.W., Y.Li., and J.L. wrote and revised the manuscript.
515 All authors reviewed and approved the manuscript.

516

517 **Methods**

518 **Participants**

519 A total of five participants (a 41-year-old female, a 44-year-old female, a 54-year-old male, a 46-
520 year-old male and a 30-year-old female) participated in this study. They were all patients with
521 eloquent brain tumors who underwent awake surgery as part of normal clinical routine. Two 128
522 high-density electrode arrays were temporarily placed onto the lateral surface of the brain to
523 collect the neural signals, and the participants were instructed to perform the speech tasks. All
524 participants are native Mandarin speakers. An experienced neurosurgeon performed the grid
525 placement, and the location of grid was determined based on the exposure and avoiding tumor.
526 The protocol was approved by the Huashan Hospital Institutional Review Board of Fudan
527 University (HIRB, KY2019-538). All participants gave their written, informed consent prior to
528 the surgery.

529 **Design of the sentence corpus**

530 To have a representative set of phonological features in Mandarin and maximize the
531 representativeness of our speech task, we selected the top 10 most frequently used open syllables
532 with monophthong, which cover the pronunciation of nearly 25.9% of all Chinese characters⁴¹.
533 Using these 10 syllables, we obtained 40 distinct Chinese characters with 4 lexical tones and
534 constructed 29 Chinese words and phrases from these 40 characters. Finally, 10 sentences were
535 constructed with these 29 phrases, which eventually consisted the sentence corpus used in our
536 decoding task.

537 The 10 syllables chosen for this work is:

538 1. 'shi', /ʂə/

539 2. 'de', /tʂ/

540 3. 'ji', /tʂi/

541 4. 'li', /li/

542 5. 'bu', /pu/

543 6. 'ge', /kʂ/

544 7. 'qi', /tʂʰi/

545 8. 'zhe', /tʂə/

546 9. 'ta', /tʰa/

547 10. 'zhi' /tʂə/

548

549 The 40 Chinese characters used in this work and their corresponding tonal syllables (five-level
550 tone marks):

551 1. 失: shi55

552 2. 十: shi35

553 3. 时: shi35

554 4. 实: shi35

555 5. 是: shi51

556 6. 的: de

557 7. 地: de

558 8. 得: de35

559 9. 机: ji55

560 10. 激: ji55

561 11. 极: ji35

562 12. 记: ji51

563 13. 计: ji51

564 14. 迹: ji51

565 15. 离: li35

566 16. 里: li214

567 17. 理: li214

568 18. 励: li51

569 19. 荔: li51

570 20. 不: bu35/bu51

571 21. 布: bu51

572 22. 哥: ge55

573 23. 搞: ge55

574 24. 个: ge51

575 25. 七: qi55

576 26. 奇: qi35

577 27. 其: qi35

578 28. 起: qi214

579 29. 契: qi51

580 30. 折: zhe35

581 31. 者: zhe214

582 32. 这: zhe51

583 33. 他: ta55

584 34. 塔: ta214

585 35. 织: zhi55

586 36. 枝: zhi55

587 37. 职: zhi35

588 38. 止: zhi214

589 39. 置: zhi51

590 40. 智: zhi51

591 *to simplify the decoding process, we use T1 (-) to denote 55, T2 (/) to denote 35, T3 (＼) to
592 denote 214, and T4(＼) to denote 51. The neutral tone syllables “的:de” and “地:de” were
593 marked as T1 or T4 according to the actual pronunciation of each individual patient.

594 The 29-Chinese phrases used in this work (with translation in English):

595 1. 智者 sage

596 2. 记者 journalist

597 3. 荔枝 lichee

598 4. 七折起 thirty-precent off

599 5. 他 him/he

600 6. 他的 his

601 7. 他哥 his brother

602 8. 哥哥 elder brother

603 9. 不时地 often

604 10. 激励 encourage

605 11. 极其 extremely

606 12. 机智 smart

607 13. 织布机 loom

608 14. 这里的 here

609 15. 是 is

610 16. 的 DE (structure auxiliary)

611 17. 塔 pagoda

612 18. 不理 ignore

613 19. 是个 is a/an

614 20. 奇迹 miracle

615 21. 不计得失 do not care about gains and losses (Chinese Idiom)

616 22. 不得不 have to

617 23. 离职 resign

618 24. 搁置 shelve

619 25. 这个 this

620 26. 契机 opportunity

621 27. 其实 actually

622 28. 不止 more than

623 29. 七十 seventy

624 The 10 sentences used in this work:

625

626 1. 他哥不理他。

627 Tā gē bù lǐ tā
628 his elder.brother not pay.attention.to him
629 'His elder brother ignores him.'

630 2. 他的荔枝七折起。

631 Tā de lìzhī qīzhé qǐ
632 his DE lichee 30.percent.off at.least
633 'His lichee is at least 30-percent off.'

634 3. 记者不得不离职。

635 Jizhě bùdébù lízhí
636 to.record.person cannot.not.to resign
637 'The journalist has to resign.'

638 4. 他其实不止七十。

639 Tā qíshí bùzhǐ qīshí

640 he virtually not.merely seventy

641 ‘He is virtually more than seventy(-year-old).’

642 5. 哥哥不时地激励他。

643 Gēge bùshíde jǐlì tā

644 elder.brother sometimes.not.but.sometimes will encourage him

645 ‘The elder brother often encourages him.’

646 6. 他极其机智。

647 Tā jíqí jīzhì

648 he extremely smart

649 ‘He is extremely smart.’

650 7. 织布机是这里的。

651 Zhībùjī shì zhèlǐ de

652 loom is here DE

653 ‘The loom belongs here.’

654 8. 这里的塔是个奇迹。

655 Zhèlǐ de tǎ shì gè qíjì

656 here DE pagoda is a miraculous.sign

657 ‘The pagoda here is a miracle.’

658 9. 智者不计得失。

659 Zhìzhě bújìdéshī

660 wise.person do.not.care.about.gains.and.losses

661 'The sage does not care about gains and losses.'

662 10. 搁置这个契机。

663 Gēzhì zhègè qìjī

664 shelve this opportunity

665 'Shelve this opportunity

666 Task design

667 Participants were guided by sequential visual cues to produce one of the 10 sentences consisted of
668 5-8 Chinese characters from a corpus of 10 base syllables and 40 Chinese characters with varied
669 tones (**Fig. 1a**). Within each trial, the participant was instructed to produce all 10 sentences once.
670 These sentences were presented in a random order. Ideally, each participant produced 160
671 sentences (4 blocks × 4 trials/block × 10 sentences/trial), which yielded approximately 30
672 repetitions per tonal syllable. But not all participant completed the entire reading task (158-160
673 sentences were completed).

674 Each participant was guided by visual cues to perform block tasks. Each block started with a
675 black cross at the center of white background on the screen, which lasted for 30 seconds. After
676 that, the cross turned grey for 3 seconds, and one of the sentences in the sentence set was shown
677 in the middle of the screen in grey text. With the individual Chinese characters turning black for
678 1.2 seconds in a sequential order from the beginning to the end of the sentence, the participant
679 was instructed to pronounce the sentence in a relatively uniform speed following these go cues.
680 The inter-sentence time interval and the inter-trial interval were both 3 seconds.

681 The first four participants (PA1-4) performed the speech task articulating, while the last

682 participants (PA5) performed the speech task whispering. We synchronized audio recordings
683 with ECoG recordings by utilizing a mounted microphone concurrently. We collected two types
684 of blocks of the sentence task: first 3 optimization blocks (Trial 1-12, containing 118-120
685 sentences in total for each patient) and one evaluating block (Trial 13-16, containing 38-40
686 sentences for each patient).

687 **Data acquisition and signal processing**

688 For each participant, two 128-channel electrode grids were placed by an experienced
689 neurosurgeon. The anatomical positions to place the grids were chosen based on clinical exposure
690 and avoidance of the tumor. During the tasks, electrocorticography and audio sound were
691 simultaneously recorded using the Tucker-Davis Technologies ECoG system, at sampling rates of
692 3052 Hz and 24414 Hz, respectively. To exclude bad channels with artifacts or excessive noise,
693 ECoG signals on each channel were visually and quantitatively inspected. High-gamma (70-150
694 Hz) frequency component was extracted via Hilbert transform after ECoG signals got down-
695 sampled to 400 Hz^{5,13}.

696 **Phonetic and phonological transcription**

697 Transcriptions of the audio recordings, encompassing monosyllabic Chinese character, syllable,
698 and tone labels, were manually annotated by a native speaker at the syllable level using Praat
699 (Version 6.1.01, <https://www.fon.hum.uva.nl/praat/>) to ensure fidelity to the participants' actual
700 vocalizations^{5,13}. Unexpected voicing unrelated to language task (such as communication with
701 clinicians) was excluded from samples used in training models.

702 **Computational modeling infrastructure**

703 The training and testing of the decoding models were performed offline using cluster of multiple
704 NVIDIA GPUs.

705 **Data splitting**

706 We splitted the data for speech detector and the syllable/tone decoder model testing from electrode
707 selection and hyperparameter searching. For responsive and discriminant electrode selection and
708 hyperparameter optimization, only the optimization blocks were used, which contain Trial 1-12
709 with each trial consists of randomly arranged 10 sentences. The evaluation block contains
710 remaining Trial 13-16.

711 During the optimization stage of the speech detector model, we used a six-fold nested cross
712 validation (CV) and each fold consisted of 2 trials. At evaluation stage, we used a similar cross
713 validation process, which leaves each trial in evaluation block for testing model, while the other
714 15 trials for training and validating. For speech detector models, we used 10% of non-testing data
715 as validation set to perform early-stopping, while the left 90% for training, in each CV runs (**Fig.**
716 **S1A&B**). For syllable/tone decoder model, we trained 5 (optimization stage) or 10 (evaluation
717 stage) sub-models in each CV runs, with different portions of data performing early-stopping while
718 left for training. The final model used for evaluation was an ensemble of 5 or 10 sub models. And
719 the overall decoding performance was evaluated by averaging the test performance in all the CV
720 runs (**Fig. S1C&D**).

721 **Speech-responsive electrodes**

722 Speech-responsive electrodes were identified using two-sample t-test. Specifically, each time point
723 in the [-400 ms, 800 ms] time window relative to the consonant onsets in each word was tested
724 against the [-1800ms, -400ms] baseline time window before the onset of each sentence. If the

725 results were significant ($P < 0.01$, Bonferroni corrected for the total number of electrodes and all
726 times points) in 40 consecutive time points (100 ms), the electrode would eventually be marked as
727 speech-responsive.

728 • **Tone discriminant electrodes**

729 To pinpoint electrodes exhibiting discriminative characteristics among lexical tones, we aligned
730 the high-gamma responses with the onsets of individual syllables again. Subsequently, we
731 employed a one-way ANOVA to assess the potential differences in mean high-gamma responses
732 across the four Mandarin tones. The time window for the average response spanned from -500 ms
733 to 500 ms relative to the onset, encompassing a total of 400 time points. Significant time points
734 were identified using a two-sided threshold of $P < 0.05$, with Bonferroni correction applied for
735 both the total number of electrodes and time points¹³. To account for electrodes with multiple peaks
736 of high-gamma activity discriminant for tone decoding, we set the following criterion: if there was
737 a continuous 200ms time window in which more than half of the time points were significant, the
738 electrode would be marked as tone-discriminant.

739 • **Syllable discriminant electrodes**

740 Similar to tone discriminant electrodes, the syllable discriminant electrodes were defined using
741 one-way ANOVA. We tested whether the mean high-gamma responses of the ten syllables were
742 significantly different. The time window for the average response spanned from -500 ms to 500
743 ms relative to the onset, encompassing a total of 400 time points. The significant time points were
744 determined via aforementioned criterion. Similarly, if there were a 200ms time window in which
745 more than half of the time points were significant, the electrode would be marked as syllable-
746 discriminant.

747 • **Cortical surface reconstruction and electrodes visualization**

748 Electrodes on each individual brain were marked on preoperative T1 MRI in BrainLab®
749 neuronavigation system, which were double-checked by a neurosurgeon via intra-operative
750 photos¹³. The reconstruction of cerebral surface, anatomical labeling and plotting were performed
751 via Freesurfer and customized python codes as previously reported⁴².

752 **Decoding framework**

753 We built different neural network modules of speech detector, tone decoder and syllable decoder
754 to decode speech onsets and offsets, syllable labels and tone labels from the neural activity,
755 respectively. Inspired by previously published decoding models such as the EEGNet^{43,44}, our
756 decoders had separable CNN layers extracting within- and cross-electrodes spatiotemporal
757 features, followed by GRU layers extracting sequential information. Finally, similar to previous
758 brain-to-text works in non-tonal languages^{5,9,10,37}, we also used a natural language model and a
759 Viterbi decoder to combine the sequential outputs of the tone and syllable decoders and generate
760 the entire sentence using maximum a posteriori probability (**Fig. 1b**).

761 **Speech utterance detection model (speech detector)**

762 The speech utterance detection model processed each time point of neural activity on speech
763 responsive electrodes using the time window spanning from 0.25 second before the time point to
764 0.25 seconds after the timepoint. The speech/silent state of each time point was decoded based on
765 the time-windowed neural activity.

766 We used the Torch 1.13.1+cu117 Python package to create and train the event classification
767 model⁴⁵. The event classification architecture was a CNN structure followed by a stack of three
768 GRU layers with a latent dimension size of 256 and a dropout of 0.5 applied at each layer.

769 The initial CNN structure contains an 1D convolutional layer with a kernel size (FL_{ini}) of 3 and

770 a stride(ST_{conv}) of 1 followed by a Leaky ReLU activation function to introduce non-linearity,
771 and a max-pooling layer with kernel size (L_{pool}) of 2 for temporal downsampling⁴⁶. The initial
772 processing, which involves convolution and pooling, enhances the model's ability to efficiently
773 extract local features from the input data. Subsequently, recurrent layers are incorporated to
774 maintain an internal state over time and assimilate new individual time samples of input data,
775 making them ideal for analyzing temporally dynamic processes. Additionally, the bidirectional
776 nature of the Gated Recurrent Unit (GRU) enables the model to grasp both forward and
777 backward temporal dependencies in the ECoG data, making it a fitting choice for event
778 classification tasks requiring a comprehensive understanding of sequential context. Following
779 the GRUs, we implemented a fully connected layer that projects the output of the last layer to
780 probabilities associated with two target events: rest and speech. During training, the model is
781 optimized to minimize weighted crossentropy. The weighted crossentropy loss was calculated
782 using the ratio of the number of all the speech time points and the number of all the rest time
783 points, to offset the bias caused by imbalanced samples. The batch size is 1024 and an Adam
784 optimizer was used with a learning rate of 0.001. The training process stops after the validation
785 loss no longer decreases for 10 epochs or after 50 epochs, ensuring that the model has
786 sufficiently learned the underlying patterns in the data but has not yet overfitted. A schematic
787 depiction of this architecture is given in **Fig. 2f**.
788 During testing, the neural network predicted probabilities for each speech event label (rest, speech)
789 given the input neural data. To convert these predicted probabilities into the time stamps of speech
790 onsets, thresholding of predicted speech probabilities is needed. A sliding window of smoothing
791 size (S) was used to smooth the decoded probability timecourse. Next, a probability threshold (P_t)
792 was applied to smooth probabilities to binarized values (with a value of 1 for speech and 0

793 otherwise). We then sliced these binarized values by applying time thresholds for both a minimum
794 continuous duration of silent period before the predicted onset, and a minimum duration of
795 continuous speech period after the predicted onset (off-time threshold (T_{off}) and on-time threshold
796 (T_{on})). Detailed examples of thresholding process see **Fig. 3b**.

797 But the required continuous state is not strict, we set an error permissive rate (**EPR**) to allow a
798 small portion of timepoints with incorrectly predicted speech event labels presented during both
799 continuous silent period before the predicted onset as well as the speech period after the predicted
800 onset. Besides, we will not predict two or more onsets within 0.5s, since normal speaking rate of
801 our task do not allow such short interval and this update in algorithm speed up the iteration process.

802 In all, this process of obtaining onset events from the predicted probabilities was parameterized by
803 five thresholding hyperparameters: the size of the smoothing window (S), the probability threshold
804 value (P_t), the off-time threshold (T_{off}) and on-time threshold (T_{on}), and the error permissive rate
805 (**EPR**). Hyperparameter optimization was performed to eventually determine the exact values for
806 these parameters for the evaluation stage.

807 **Tone decoder**

808 For each speech utterance onset that was detected or manually aligned, tone decoder computed
809 tone likelihood by processing the neural activity in tone- discriminant electrodes spanning from
810 0.2 second before to 0.6 seconds after the detected onset of speech.

811 The tone decoder consists of ten ensemble neural networks with the same hyper-parameters but
812 different validation sets and training sets (see **Fig. S1D**). The input was high gamma ECoG data
813 array shaped $N \times T$, N is the number of tone-discriminated electrodes, while $T = 320$, which is

814 calculated by the time duration (0.8seconds) multiplies downsampled ECoG frequency (400 Hz).

815 Each network among 10 networks consists of the following stages:

816 • **Stage 1**

817 In the first stage, one-layer 2D convolution with the kernel size (FL_{ini}, N) and a stride of ($ST_{conv},$
818 **0**), followed by a batch normalization layer (momentum=0.1, affine=True, and eps=1e-5) applied
819 to the output of the spatial convolution. After an Exponential Linear Unit (ELU) activation
820 function. Max-pooling was then performed along the temporal axis with a kernel size of ($L_{pool}, 1$)
821 and a stride of ($ST_{pool}, 1$). During training, we applied a dropout layer a dropout value of D in the
822 end of each CNN block for regularization to prevent overfitting.

823 • **Stage 2**

824 In the second stage, C_{layer} convolutional pool blocks were applied after the aforementioned pooling
825 layer in series, each consisting of a dropout layer, a convolutional layer with kernel size ($FL_{conv},$
826 **1**) and a stride of ($ST_{conv}, 1$), batch normalization, ELU activation, and max-pooling identical with
827 aforementioned ones. These blocks further processed and extracted features from the data. During
828 the first two stages, the filter number was set equal to C_{dim} .

829 • **Stage 3**

830 In the last stage, the output from the last convolutional pool block was fed into a stack of R_{layer}
831 bidirectional Gated Recurrent Unit (GRU) layers. Each GRU layer has R_{dim} hidden units. The final
832 hidden state of the last GRU layer was passed through a fully connected (dense) layer which project
833 to 10 output units, representing the number of syllable classes for classification. (**Fig. 2g**).

834 The model was optimized to minimize crossentropy loss using a batch size of 8 and an Adam
835 optimizer with a learning rate of 0.0005. The training process stoped after the validation loss no

836 longer decreases for 50 epochs. The weighted crossentropy loss was calculated in the similar
837 same way as speech detector to offset the bias caused by imbalanced samples.

838 **Syllable decoder**

839 For each speech onset that was detected, the syllable decoder computed syllable likelihood by
840 processing the neural activity in syllable- discriminant electrodes spanning from 0.4 second before
841 to 0.8 seconds after the detected onset of speech utterance. The structure and training process of
842 syllable decoder was identical with the aforementioned tone decoder, the only difference between
843 them was the crossentropy loss was not weighted, since the syllable is almost balanced-
844 distributed in the task.

845 **Hyperparameter optimization and the universal framework**

846 The speech detector, the tone decoder and the syllable decoder include a total of 25
847 hyperparameters. To find the optimal combination of these hyperparameters, we used the
848 *hyperopt* Python package, which employs probabilistic sampling of hyperparameter
849 combinations during optimization⁵. Across our experimentation, we utilized three distinct types
850 of hyperparameter optimization procedures to fine-tune a total of 25 hyperparameters. (see **Fig. 5**
851 for undefined hyperparameters, their searching ranges and their optimal values in each patient).
852 During the optimization process, all the neural networks were tested through the six-fold (2 trials
853 per fold) cross-validation.

854 • **Speech detection optimization**

855 We used this procedure to optimize the size of the smoothing window (S), the probability
856 threshold value (P_t), the off-time threshold (T_{off}) and on-time threshold (T_{on}), and the error
857 permissive rate (EPR). These hyperparameters were not related to the training of the ANN

858 models. The predicted time points of speech onsets were derived from the available speech
859 probabilities through the current combination of thresholding hyperparameters during each
860 iteration of the optimization procedure. Subsequently, speech detection accuracy (*Acc*) was
861 calculated to quantify the performance of the current combination of hyperparameter values. For
862 timepoint of real onsets, we use \hat{X} to represent the index of time points within 0.25s range of real
863 onsets ($t_i^*, i \in [1, \dots, n]$). For time point of predicted onsets, we use \tilde{X} to represent the index of
864 time points within 0.25s range of real onsets. Then, we calculated the *Acc* of \hat{X} and \tilde{X} . The
865 formal expression of this objective function was illustrated through following equations:

$$\hat{X}[t] = \begin{cases} 0, & \text{others} \\ 1, & \text{if } \min_{i \in [1, \dots, n]} |t - t_i^*| < 0.25 \end{cases}$$
$$\tilde{X}[t] = \begin{cases} 0, & \text{others} \\ 1, & \text{if } \min_{i \in [1, \dots, n]} |t - t_i^*| < 0.25 \end{cases}$$
$$\mathbb{1}(x) = \begin{cases} 0, & x \neq 0 \\ 1, & x = 0 \end{cases}$$
$$\text{Acc} = \frac{\sum_t \mathbb{1}[\hat{X}[t] - \tilde{X}[t]]}{\sum t}$$

870 *Acc* was calculated to qualify the performance of the speech detector with each hyperparameter
871 value combination. During the optimization process of one model, 500 hyperparameter value
872 combinations were evaluated.

873 Once the most optimized combination of hyperparameters was defined, we calculated the
874 predicted onset time list for all the 12 trials via six-fold prediction, we compared them with the
875 ground truth of onset of the 12 trials. If one onset time point in predicted list falls within 0.25s
876 range of real onsets, the labels (including tone, syllable and Chinese characteristic) belongs to the
877 manually aligned onset will be given to the predicted time point, which participated in the
878 following hyperparameter optimization. For those time points cannot match with any real onset

879 time points, no labels will be given and this part of the data will not participate in the following
880 hyperparameter optimization. The similar match process will be performed in the evaluating
881 stage, calculating confusion matrix for syllable, tone and word on the bases of onset detection.
882 Because some real onset time points do not match with any detected onset time point, the
883 number of syllables and tones that actually used in calculating confusion matrices of decoding
884 performance after automated onset detection is less than the number of onsets detected.

885 • **Tone and Syllable decoder optimization**

886 We used this procedure to optimize ten hyperparameters for both tone decoder and syllable
887 decoder. These hyperparameters can be divided into two major groups according to their
888 properties.

889 The first group includes initial convolution filter length (FL_{ini}), stride of convolution (ST_{conv}), filter
890 length of following convolutional blocks (FL_{conv}), max-pooling kernel length (L_{pool}), max-pooling
891 stride (ST_{pool}), which are five hyperparameters related to the time dimension.

892 The second group includes the number of sequential convolutional blocks (C_{layer}), number of layers
893 of RNN (R_{layer}), number of filters in each convolutional process (C_{dim}), number of dimensions in
894 each RNN process (R_{dim}), and dropout value (D), which are five hyperparameters related to model
895 architectures and sizes.

896 We performed model testing on manually-aligned-onset dataset and the dataset generated from
897 predicted onsets by the previously optimized speech detector. And the final loss is the average
898 value of loss on both datasets, in order to improve the model's robustness when countering
899 automatedly aligned neural signals in our final evaluation. Each optimization evaluated 500
900 different combinations of hyperparameter values. We used the same cross-entropy loss
901 functions to calculate the loss during the iteration.

902 • **The universal framework**

903 The universal framework shares a predefined set of hyperparameters when testing on all 5
904 participants. We used the median value of each optimized hyperparameters among 5 participants
905 as the predefined value of hyperparameters.

906 **Conversion from tonal syllables to Chinese words**

907 Many Chinese characters are homophones that share the same pronunciations (including syllable
908 and tone), which prevented us from directly generating Chinese sentences using decoded tonal
909 syllables. To eventually decoding sentences consists of actual Chinese characters rather than
910 sequences of tonal syllables, we designed a natural language model that computed the next-
911 character transition probabilities given the previous Chinese character in a sequence. We first
912 divided the sentences into the aforementioned 29 words and phrases consisting of 1 to 4 Chinese
913 characters. We trained this model on a collection of sentences from the CCL corpus⁴⁷ that included
914 transferring pairs (transfers) between those words from the 29-word set. After that, we used a
915 Viterbi decoder to determine the most likely sequence of words given the predicted tonal syllable
916 probabilities from the tone decoder and syllable decoder, as well as the word-sequence
917 probabilities from the natural language model⁸. With the incorporation of the language model, the
918 Viterbi decoder was capable of projecting sets of probability (likelihoods) of tonal syllable to exact
919 Chinese characters, which eventually decoded sentences from neural activity.

920 **Language model**

921 • **Collection of the corpus**

922 We used CCL corpus from Peking University⁴⁷ to distill training dataset for our domain-specific
923 language model. We first measure the number of transfers between each two phrases (the counts
924 of the previous phrase transferred to the first word of the next phrase in the whole CCL corpus).

925 Due to the inequality of Chinese language, we set a cut-off of 512 counts, and then performed a
926 ninth root for normalization. Since not all the transfers in our task appeared in CCL corpus, we
927 also incorporate the transfer probability of our own task corpus into our language model.

928 • **Model fitting**

929 We extracted all n-grams with $n \in \{1, 2, 3, 4\}$ from each phrase in our task corpus. An n-gram
930 refers a word lengthen n Chinese characters. For example, the n-grams (represented as tuples)
931 extracted from the longest phrases “不计得失” in this approach would be:

932 1. (不)

933 2. (不计)

934 3. (不计得)

935 4. (不计得失)

936 Then we expanded our transfer probability matrix into n-grams. We added the number of
937 transferring from q_{i-1} (such as (不计)) to q_i (such as (不计得)). Except for full phrases, n-grams
938 as partial components of phrases can only transfer from q_{i-1} to q_i . The calculation of number of
939 each transferring from a full phrase to the beginning of next phrases is aformentioned.

940 • **Hidden Markov Model (HMM) and Viterbi decoding**

941 In this study, we employed a Hidden Markov Model (HMM) for neural activity and speech
942 modeling similar to that used in previous research⁵. This model interprets neural activity within
943 each time window at index i as observed states y_i and treats the word spoken during this
944 period w_i , along with its context c_i , as hidden states q_i . The model assumed first-order Markov
945 property and the current hidden state was fully characterized by $p(q_i|q_{i-1}, y_i)$. The transition

946 probabilities, $p(q_i|q_{i-1})$, which represents the probability of transitioning from the n-gram at
947 index $i - 1$ to the n-gram at index i , can be calculated by word counting from the corpus.

948 Viterbi decoder^{5,48-50} was used to identify the most probable sequence of hidden states from the
949 observed neural activities. The algorithm used dynamic programming and considered the
950 probabilities of transitioning between hidden states and the likelihoods of observed states. In the
951 process of identifying the optimal hidden-state sequence, the algorithm calculated the
952 probabilities of different potential sequences of hidden states. Each potential sequence, or Viterbi
953 path, was defined by a unique sequence of hidden states (specific word sequence) and its
954 corresponding probability based on the neural signals observed.

955 **Evaluation**

956 • **Evaluation of independent decoding performances via Receiver Operating
957 Characteristic (ROC) and Confusion Matrices**

958 To evaluate the performance of our speech detector, we computed the Area Under the Curve
959 (AUC) of the Receiver Operating Characteristic (ROC) curve for each participant. To evaluate the
960 tone decoder and syllable decoder, we computed the classification accuracy and plotted the
961 confusion matrix, based on both the predicted and the manually aligned speech onsets. We also
962 calculated the classification accuracy and plotted confusion matrices of tonal-syllables and
963 Chinese characters, on both the predicted and the manually aligned speech onsets, in order to
964 further assess the capacity of the entire decoding system.

965 • **Evaluation of overall decoding performance via Word Error Rates (WERs)**

966 To evaluate the overall performance of our neural-to-text decoder, we analyzed the decoded
967 sentences using Word Error Rates (WERs) between the target and decoded sentences for each

968 sentence. WER is a widely-used metric for evaluating predicted word sequences^{5,51,52}. WERs of
969 each decoded sentence in the evaluating blocks were calculated.

970 • **Comparison with published tone decoder**

971 To further validate the complexity of tone of sentences compared with tone of single syllable, we
972 applied our previously published monosyllabic tone decoder on tone decoding in sentence task. It
973 is a sequential CNN-LSTM structure to generate the syllable label based on manually aligned
974 neural activity when participants produce eight syllables "ma (tone1), ma (tone2), ma (tone3), ma
975 (tone4), mi (tone1), mi (tone2), mi (tone3), mi (tone4)" ¹³. (**Fig. S2**)

976 • **Tone intelligibility assessment (IA)**

977 Crowdsourcing-based listening tests are conventional for evaluating the quality of outputs in
978 natural language processing¹³. To further validate the variance of lexical tones in natural sentences
979 compared with the canonical tones of single syllables, we extracted the audio clips of each syllable
980 utterance in the evaluation blocks of each participant, using the same timespan as the neural
981 decoder. We shuffled the sequence clips by syllables to avoid any possible of leakage of semantic
982 information. Evaluators were instructed to listen to the audio clip and then choose from the options
983 (four lexical tones) which tone they had just heard¹³. For sentence tone IA, we extracted the audio
984 clip of each sentence each patient pronounced in evaluation blocks. The evaluators listen to the
985 audio of the entire sentence and then choose from the options for each syllable in the sentence. 20
986 evaluators (native Mandarin speakers) were instructed to listen to the isolated audio clips and to
987 decide which tone they had just heard. For sentence tone IA, we extracted the audio clip of each
988 sentence each patient pronounced in evaluation blocks. The evaluators were instructed to listen to
989 the audio of the entire and then choose from the options which tone they had just heard for each
990 syllable in the sentence. We recruited 20 native Mandarin speakers from the Medical School of

991 Fudan University, which do not know the purpose of this test before the evaluation. The tone IA
992 score was defined as the average accuracy of evaluators' judgement.

993
$$IA = 1 - \frac{T}{A}$$

994 Where T is the number of error tone choices; A is the number of total tests¹³.

995 • **Comparison with baseline models**

996 We evaluated the performance of our models and compared it against several baselines. The
997 baseline models include (1) CNN models, which do not contain RNN structure, all the other parts
998 remain identical with original optimized models. (2) RNN models, which do not contain CNN
999 structure, all the other parts remain identical with original optimized models (Fig. S3). WERs of
1000 decoded sentences were calculated to evaluate the performance of these baselines.

1001 • **Electrode contributions (saliences)**

1002 To quantify the contribution of each ECoG electrode to the brain-to-text decoding, we performed
1003 the electrode salience analysis^{5,53}. In particular, we backpropagated the final loss function of each
1004 ANN module to each electrode in the input layer by computing the gradient. The magnitude of this
1005 gradient would quantify the amount of influence that a unit perturbation in each electrode would
1006 have on the final output of the neural network. We computed the Euclidean norm across time and
1007 across evaluation blocks of the resulting gradient values for each electrode. Finally, we normalized
1008 each set of electrode saliences by calculating their root mean square values (Fig. S4).

1009

1010

1011

1012

1013

1014 Supplementary Information

1015

1016 Daohan Zhang^{1,2,3#}, Zhenjie Wang^{4#}, Youkun Qian^{1,2,3#}, Zehao Zhao^{1,2,3}, Yan Liu^{1,2,3}, Xiaotao Hao^{1,2,3}, Wanxin
1017 Li^{1,2,3}, Shuo Lu⁵, Honglin Zhu⁶, Luyao Chen⁷, Kunyu Xu⁸, Yuanning Li^{4,9*}, Junfeng Lu^{1,2,3,8,10*}

1018 Author affiliations:

1019 ¹Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai
1020 200040, China

1021 ²Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai 200040, China

1022 ³National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan
1023 University, Shanghai 200040, China

1024 ⁴School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China

1025 ⁵Department of Chinese Language and Literature, Sun Yat-sen University, Guangzhou 510080, China

1026 ⁶Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, UK

1027 ⁷School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China

1028 ⁸Institute of Modern Languages and Linguistics, Fudan University, Shanghai 200433, China

1029 ⁹State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai
1030 201210, China

1031 ¹⁰MOE Frontiers Center for Brain Science, Huashan Hospital, Fudan University, Shanghai 200040, China

1032 [#]These authors contributed equally to this work.

1033 ^{*}Corresponding authors: Junfeng Lu (junfeng_lu@fudan.edu.cn), Yuanning Li (liyn2@shanghaitech.edu.cn)

1034

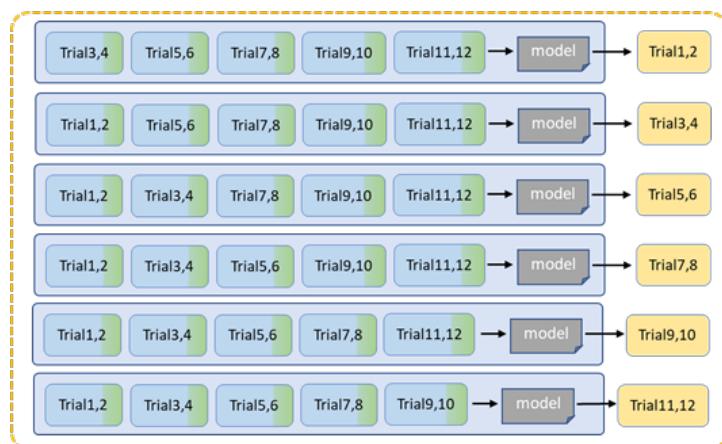
1035 Figure S1. Schematic depiction of data organization..... 53

1036 Figure S2. Schematic of control models for speech detector and tone/syllable decoder. 54

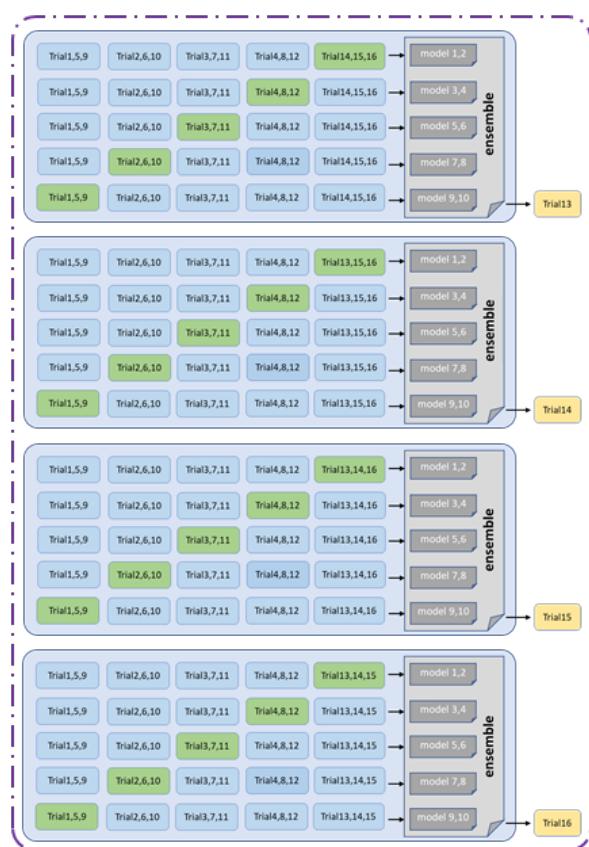
1037 Figure S3. Schematic of our previously published tone decoder which successfully decoded tone from
1038 intracranial neural signals while participants articulate monosyllable of four target tones. 4

1039 Figure S4. Participants' brains reconstruction overlaid with the locations of the implanted electrodes and
1040 their relative contribution of each selected electrodes in decoding onset/syllable and tone..... 5

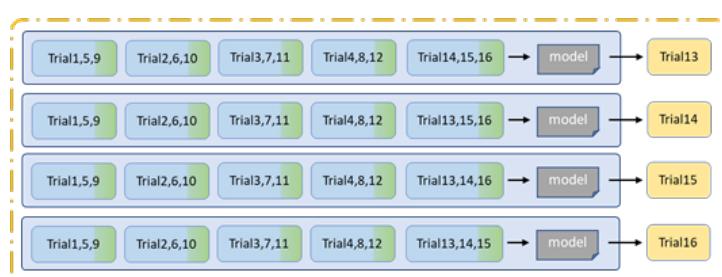
A



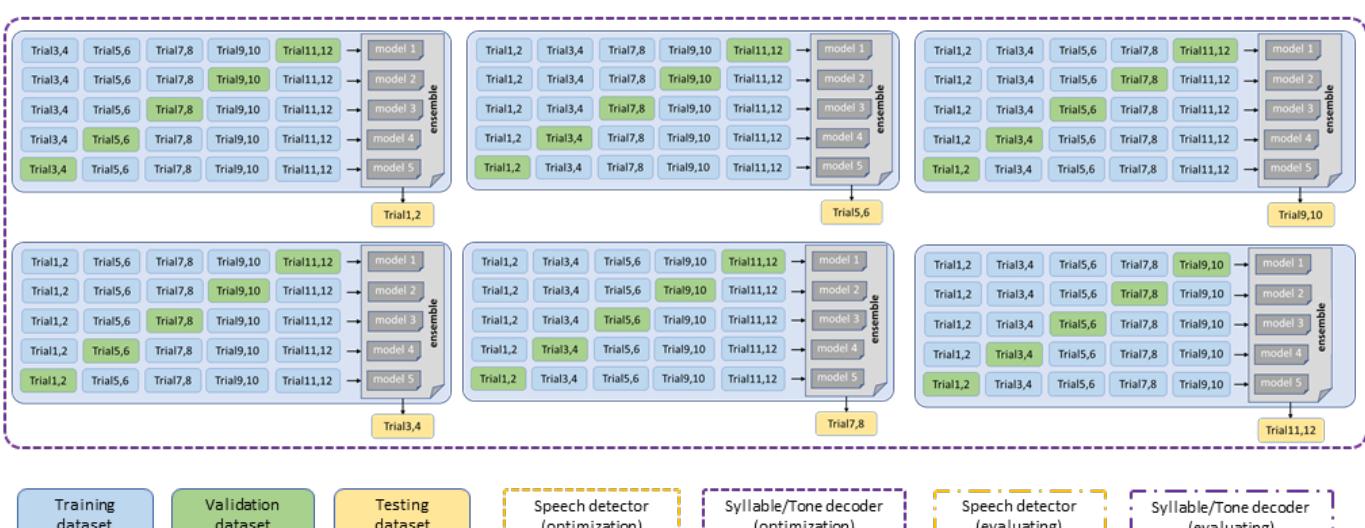
D



B



C



Training dataset

Validation dataset

Testing dataset

Speech detector (optimization)

Syllable/Tone decoder (optimization)

Speech detector (evaluating)

Syllable/Tone decoder (evaluating)

1041

1042 **Fig. S1. Schematic depiction of data organization**

1043 A. During the optimization stage of the speech detector model, we used a six-fold nested cross
 1044 validation and each fold consisted of 2 trials, while 10% of data in each trial of the training set

1045 were separated as validation set in order to performing early-stopping.

1046 B. During the evaluation stage of the speech detector model, we used a similar cross validation.
1047 Still, 10% of data in each training trial were separated as validation set in order to performing
1048 early-stopping.

1049 C. During the optimization stage of the syllable/tone decoder model, we used a six-fold nested
1050 cross validation and each fold consisted of 2 trials. In each fold, we trained 5 sub-models with
1051 different potions of data performing early-stopping while left for training. The
1052 training/validation/test split was 4:1:1.

1053 D. During the evaluation stage of the syllable/tone decoder model, we used a similar cross
1054 validation process. In each fold, we trained 10 sub-models with different potions of data
1055 performing early-stopping while left for training. The training/validation/test split was 12:3:1.

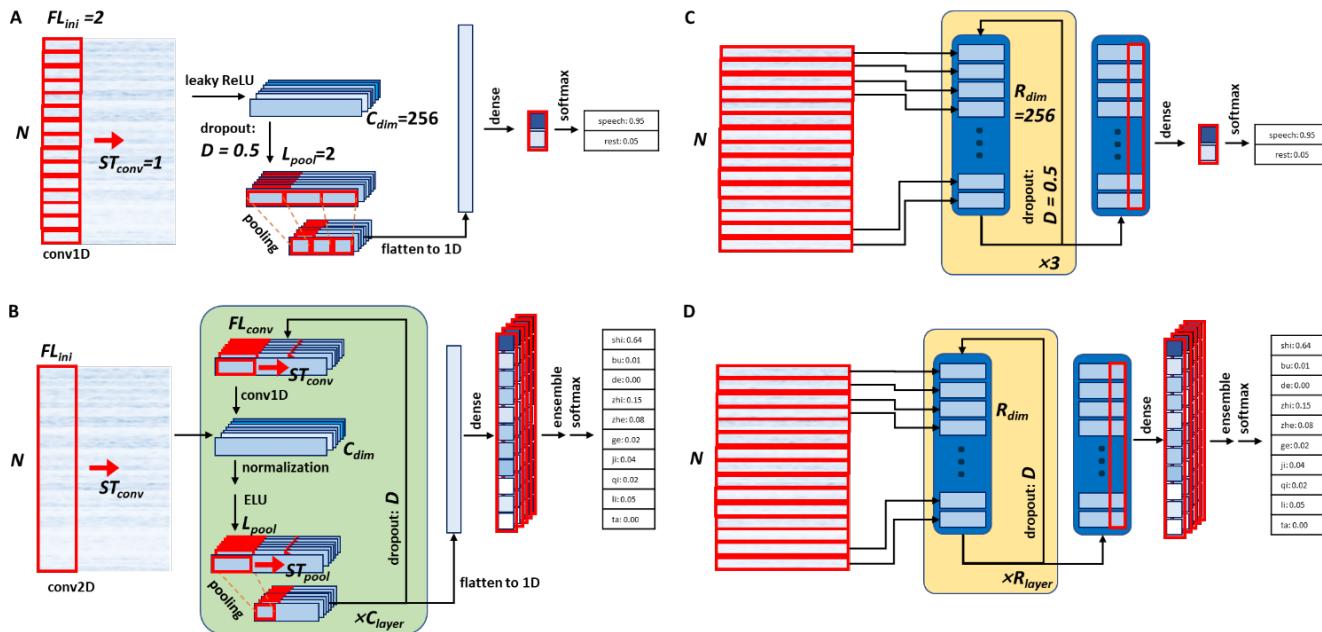
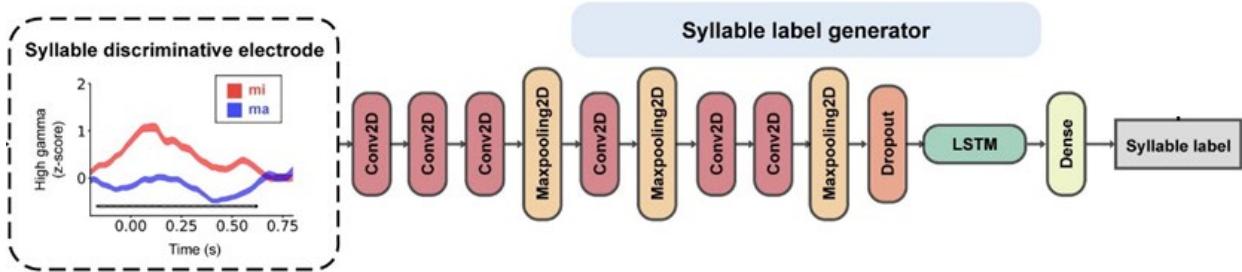


Fig. S2. Schematic of control models for speech detector and tone/syllable decoder.

1057 A. CNN baseline for speech detector, which do not contain RNN structures, and all the other parts
1058 remain unchanged.
1059 B. CNN baseline for tone/syllable decoder, which do not contain RNN structures, and all the other
1060 parts, including optimized hyperparameters, remain unchanged.
1061 C. RNN baseline for speech detector, which do not contain CNN structures, and all the other parts
1062 remain unchanged.
1063 D. RNN baseline for tone/syllable decoder, which do not contain CNN structures, and all the other
1064 parts, including optimized hyperparameters, remain unchanged.

1071

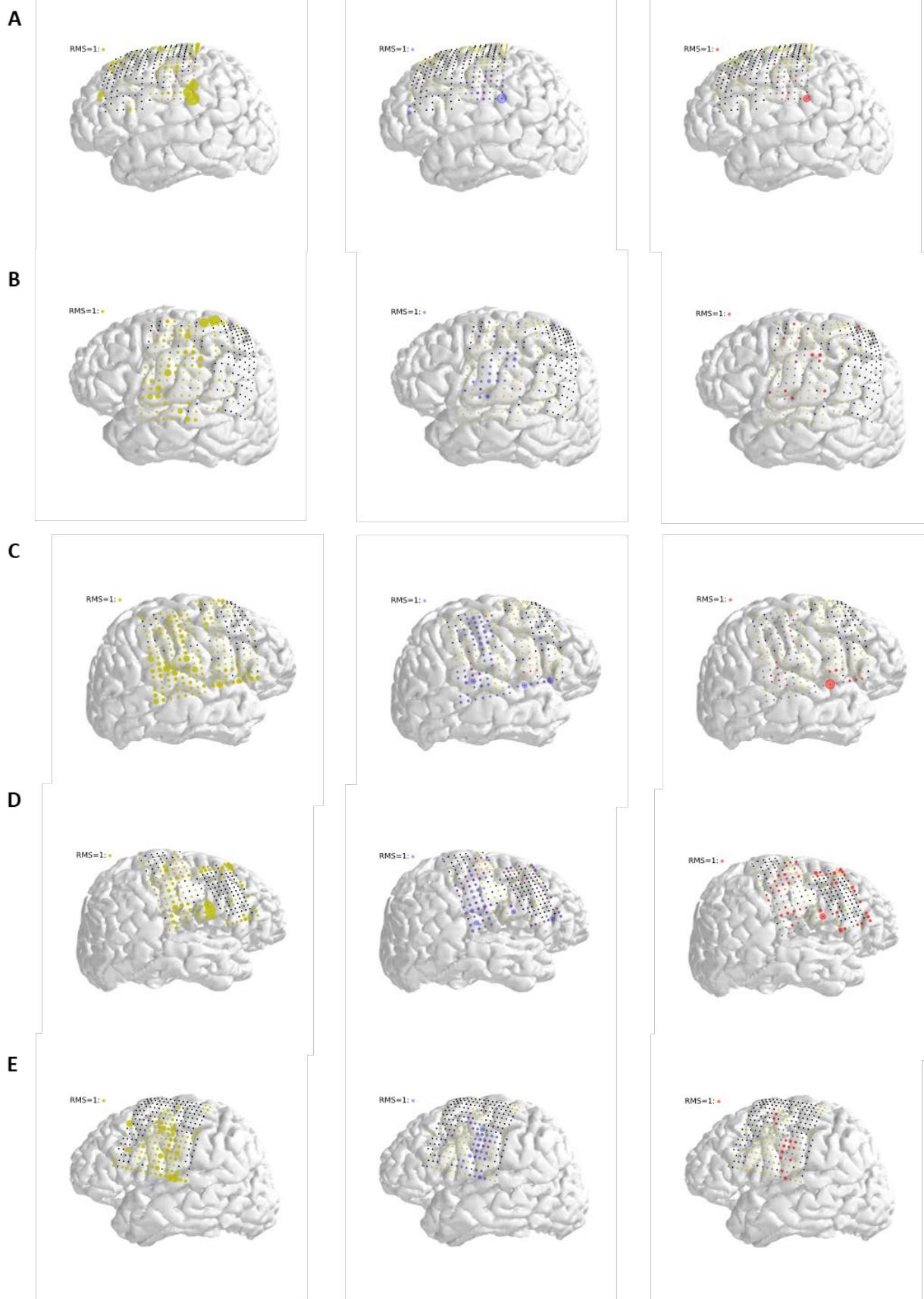
1072



1073 **Fig. S3. Schematic of our previously published tone decoder which successfully decoded tone from**
1074 **intracranial neural signals while participants articulate isolated monosyllables of four target tones.**

1075 We applied our previously published monosyllabic tone decoder on tone decoding in sentence task. It is a
1076 sequential CNN-LSTM structure to generate the syllable label based on manually aligned neural activity
1077 when participants produce eight syllables "ma (tone1), ma (tone2), ma (tone3), ma (tone4), mi (tone1), mi
1078 (tone2), mi (tone3), mi (tone4)"¹³.

1079



1080 **Fig. S4. Participants' brains reconstruction overlaid with the locations of the placed electrodes and**
1081 **their relative contribution of each selected electrodes in decoding onset/syllable and tone.**

1082 A-E shown PA1, PA2, PA3, PA4 and PA5. Left part shown speech responsive electrodes in yellow shadows,
1083 middle shown syllable discriminative electrodes in blue shadows, while right shown tone discriminative
1084 electrodes in red shadows. Radius of shadows around electrodes shown contribution normalized root
1085 mean square (RMS), with a scale shown at the upper left of each subplot. The colors of the electrodes
1086 themselves represent whether they are speech responsive or syllable/tone discriminative, which is the
1087 same as **Fig. 2a-e**.

1088

1089 **References**

- 1090 1 Gilakjani, A. P. & Ahmadi, M. R. A study of factors affecting EFL learners' English listening
1091 comprehension and the strategies for improvement. (2011).
- 1092 2 Anumanchipalli, G. K., Chartier, J. & Chang, E. F. Speech synthesis from neural decoding of
1093 spoken sentences. *Nature* **568**, 493-498, doi:10.1038/s41586-019-1119-1 (2019).
- 1094 3 Moses, D. A., Leonard, M. K., Makin, J. G. & Chang, E. F. Real-time decoding of question-and-
1095 answer speech dialogue using human cortical activity. *Nat Commun* **10**, 3096,
1096 doi:10.1038/s41467-019-10994-4 (2019).
- 1097 4 Makin, J. G., Moses, D. A. & Chang, E. F. Machine translation of cortical activity to text with an
1098 encoder-decoder framework. *Nat Neurosci* **23**, 575-582, doi:10.1038/s41593-020-0608-8 (2020).
- 1099 5 Moses, D. A. *et al.* Neuroprosthesis for Decoding Speech in a Paralyzed Person with Anarthria. *N
1100 Engl J Med* **385**, 217-227, doi:10.1056/NEJMoa2027540 (2021).
- 1101 6 Angrick, M. *et al.* Speech synthesis from ECoG using densely connected 3D convolutional neural
1102 networks. *J Neural Eng* **16**, 036019, doi:10.1088/1741-2552/ab0c59 (2019).
- 1103 7 Willett, F. R. *et al.* A high-performance speech neuroprosthesis. *Nature*, 1-6 (2023).
- 1104 8 Metzger, S. L. *et al.* A high-performance neuroprosthesis for speech decoding and avatar
1105 control. *Nature*, 1-10 (2023).
- 1106 9 Willett, F. R. *et al.* A high-performance speech neuroprosthesis. *Nature* **620**, 1031-1036 (2023).
- 1107 10 Metzger, S. L. *et al.* A high-performance neuroprosthesis for speech decoding and avatar
1108 control. *Nature* **620**, 1037-1046 (2023).
- 1109 11 Komeiji, S. *et al.* in *ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and
1110 Signal Processing (ICASSP)*. 1311-1315 (IEEE).
- 1111 12 Koch Fager, S., Fried-Oken, M., Jakobs, T. & Beukelman, D. R. New and emerging access
1112 technologies for adults with complex communication needs and severe motor impairments:
1113 State of the science. *Augmentative and Alternative Communication* **35**, 13-25 (2019).
- 1114 13 Liu, Y. *et al.* Decoding and synthesizing tonal language speech from brain activity. *Science
1115 Advances* **9**, eadh0478 (2023).
- 1116 14 Yip, M. *Tone*. (Cambridge University Press, 2002).
- 1117 15 Dryer, M. S. & Haspelmath, M. The world atlas of language structures online. (2013).
- 1118 16 Fons-ant, H. & Naessentialr, S. A model for the synthesis of pitch contours of connected speech.
1119 *annual report of the engineering research institute* **23** (1969).
- 1120 17 Fujisaki, H., Hirose, K., Hallé, P. A. & Lei, H. in *ICSLP*. 841-844.
- 1121 18 Chen, M. Y. An overview of tone sandhi phenomena across Chinese dialects. *Journal of Chinese
1122 Linguistics Monograph Series*, 111-156 (1991).
- 1123 19 Ho, D.-a. The characteristics of Mandarin dialects. *The Sino-Tibetan languages*, 126-130 (2003).

1124 20 Dichter, B. K., Breshears, J. D., Leonard, M. K. & Chang, E. F. The Control of Vocal Pitch in Human
1125 Laryngeal Motor Cortex. *Cell* **174**, 21-31 e29, doi:10.1016/j.cell.2018.05.016 (2018).

1126 21 Lu, J. *et al.* Neural control of lexical tone production in human laryngeal motor cortex. *Nature
1127 Communications* **14**, 6917 (2023).

1128 22 Bouchard, K. E., Mesgarani, N., Johnson, K. & Chang, E. F. Functional organization of human
1129 sensorimotor cortex for speech articulation. *Nature* **495**, 327-332, doi:10.1038/nature11911
1130 (2013).

1131 23 Qiumei, Z., Dan, T. & Fenghua, W. Improved convolutional neural network based on fast
1132 exponentially linear unit activation function. *Ieee Access* **7**, 151359-151367 (2019).

1133 24 Zargar, S. Introduction to sequence learning models: RNN, LSTM, GRU. *Department of
1134 Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina
1135 27606* (2021).

1136 25 Chen, M. Y. *Tone sandhi: Patterns across Chinese dialects*. Vol. 92 (Cambridge University Press,
1137 2000).

1138 26 Pasley, B. N. *et al.* Reconstructing speech from human auditory cortex. *PLoS biology* **10**,
1139 e1001251 (2012).

1140 27 Martin, S. *et al.* Decoding spectrotemporal features of overt and covert speech from the human
1141 cortex. *Frontiers in neuroengineering* **7**, 14 (2014).

1142 28 Herff, C. *et al.* Generating natural, intelligible speech from brain activity in motor, premotor, and
1143 inferior frontal cortices. *Frontiers in neuroscience* **13**, 1267 (2019).

1144 29 Duraivel, S. *et al.* High-resolution neural recordings improve the accuracy of speech decoding.
1145 *Nature Communications* **14**, 6938 (2023).

1146 30 Willsey, M. S. *et al.* Real-time brain-machine interface in non-human primates achieves high-
1147 velocity prosthetic finger movements using a shallow feedforward neural network decoder. *Nat
1148 Commun* **13**, 6899, doi:10.1038/s41467-022-34452-w (2022).

1149 31 Davidoff, M., Robert A. The pyramidal tract. *Neurology* **40**, 332-332 (1990).

1150 32 Yazdan-Shahmorad, A., Kipke, D. R. & Lehmkuhle, M. J. High gamma power in ECoG reflects
1151 cortical electrical stimulation effects on unit activity in layers V/VI. *Journal of neural engineering*
1152 **10**, 066002 (2013).

1153 33 Sanes, J. N. & Donoghue, J. P. Plasticity and primary motor cortex. *Annual review of
1154 neuroscience* **23**, 393-415 (2000).

1155 34 Myung, I. J. The importance of complexity in model selection. *Journal of mathematical
1156 psychology* **44**, 190-204 (2000).

1157 35 McCawley, J. D. in *Tone* 113-131 (Elsevier, 1978).

1158 36 Jongman, A., Wang, Y., Moore, C. B. & Sereno, J. A. *Perception and production of Mandarin
1159 Chinese tones*. (na, 2006).

1160 37 Willett, F. R., Avansino, D. T., Hochberg, L. R., Henderson, J. M. & Shenoy, K. V. High-
1161 performance brain-to-text communication via handwriting. *Nature* **593**, 249-254,
1162 doi:10.1038/s41586-021-03506-2 (2021).

1163 38 Cuisenier, P. *et al.* Relationship between direct cortical stimulation and induced high-frequency
1164 activity for language mapping during SEEG recording. *J Neurosurg* **134**, 1251-1261,
1165 doi:10.3171/2020.2.JNS192751 (2020).

1166 39 Leonard, M. K. *et al.* Large-scale single-neuron speech sound encoding across the depth of
1167 human cortex. *Nature*, 1-10 (2023).

1168 40 Coughlin, B. *et al.* Modified Neuropixels probes for recording human neurophysiology in the
1169 operating room. *Nature Protocols* **18**, 2927-2953 (2023).

1170 41 Da, J. in *Proceedings of the fourth international conference on new technologies in teaching and
1171 learning Chinese*. 501-511 (Citeseer).

1172 42 Hamilton, L. S., Chang, D. L., Lee, M. B. & Chang, E. F. Semi-automated anatomical labeling and
1173 inter-subject warping of high-density intracranial recording electrodes in electrocorticography.
1174 *Frontiers in Neuroinformatics* **11**, 62 (2017).

1175 43 Lawhern, V. J. *et al.* EEGNet: a compact convolutional neural network for EEG-based brain–
1176 computer interfaces. *Journal of neural engineering* **15**, 056013 (2018).

1177 44 Makin, J. G., Moses, D. A. & Chang, E. F. Machine translation of cortical activity to text with an
1178 encoder–decoder framework. *Nature Neuroscience* **23**, 575–582, doi:10.1038/s41593-020-0608-
1179 8 (2020).

1180 45 Paszke, A. *et al.* Pytorch: An imperative style, high-performance deep learning library. *Advances*
1181 *in neural information processing systems* **32** (2019).

1182 46 Maas, A. L., Hannun, A. Y. & Ng, A. Y. in *Proc. icml.* 3 (Atlanta, Georgia, USA).

1183 47 Zhan, W., Guo, R., Chang, B., Chen, Y. & Chen, L. in *Corpus Linguistics*. 71–86.

1184 48 Fink, G. A. *Markov models for pattern recognition: from theory to applications*. (Springer Science
1185 & Business Media, 2014).

1186 49 Theodoridis, S. & Koutroumbas, K. *Pattern recognition*. (Elsevier, 2006).

1187 50 Bishop, C. M. Pattern recognition and machine learning. *Springer google schola* **2**, 5–43 (2006).

1188 51 Bates, M. Models of natural language understanding. *Proceedings of the National Academy of*
1189 *Sciences* **92**, 9977–9982 (1995).

1190 52 Wang, Y.-Y., Acero, A. & Chelba, C. in *2003 IEEE workshop on automatic speech recognition and*
1191 *understanding (IEEE Cat. No. 03EX721)*. 577–582 (IEEE).

1192 53 Simonyan, K., Vedaldi, A. & Zisserman, A. Visualising image classification models and saliency
1193 maps. *Deep Inside Convolutional Networks* **2** (2014).

1194