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Abstract 1 

Speech brain-computer interfaces (BCIs) directly translate brain activity into speech sound and 2 

text, yet decoding tonal languages like Mandarin Chinese poses a significant, unexplored 3 

challenge. Despite successful cases in non-tonal languages, the complexities of Mandarin, with 4 

its distinct syllabic structures and pivotal lexical information conveyed through tonal nuances, 5 

present challenges in BCI decoding. Here we designed a brain-to-text framework to decode 6 

Mandarin tonal sentences from invasive neural recordings. Our modular approach dissects 7 

speech onset, base syllables, and lexical tones, integrating them with contextual information 8 

through Bayesian likelihood and the Viterbi decoder. The results demonstrate accurate tone and 9 

syllable decoding under variances in continuous naturalistic speech production, surpassing 10 

previous intracranial Mandarin tonal syllable decoders in decoding accuracy. We also verified 11 

the robustness of our decoding framework and showed that the model hyperparameters can be 12 

generalized across participants of varied gender, age, education backgrounds, pronunciation 13 

behaviors, and coverage of electrodes. Our pilot study shed lights on the feasibility of more 14 

generalizable brain-to-text decoding of natural tonal sentences from patients with high 15 

heterogeneities. 16 

Key words 17 

Electrocorticography (ECoG); Brain-Computer Interface (BCI); Tonal language; Natural speech; 18 

Neural Networks 19 
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Introduction 21 

Sentence is the basic language unit embodies our construal of representational meaning and 22 

interpersonal meaning, which constitutes the basis for daily communication1. Recent 23 

investigations have demonstrated the possibility of synthesis and decoding sentences in non-tonal 24 

languages 2-11 using intracranial neural recordings such as electrocorticography (ECoG) and Utah 25 

array. These studies have primarily relied on decoding the spatiotemporal neural patterns 26 

associated with articulatory movements—such as those of the lips, tongue, and larynx—in the 27 

ventral sensorimotor cortex during intended speech production. These advancements provided 28 

novel approaches for treating anarthria12 and enhanced the communication efficacy of speech 29 

brain-computer interfaces (BCIs)13.  30 

However, decoding tonal sentences is still a largely-unexplored work. More than 60% of the 31 

languages in the world are tonal14, with approximately 2 billion people speaking tonal languages, 32 

including most Sino-Tibetan languages and the entire Tai-Kadai family15. Pitch in these languages 33 

is used to distinguish lexical and grammatical meaning13. While prior research has investigated 34 

decoding stereotypical instances of lexical tones from neural activity for monosyllabic speech13, 35 

decoding continuous tonal sentences is still a challenging issue. Unlike the relatively stable 36 

acoustic cues in canonical forms, natural speech introduces substantial variability in tone 37 

components. According to Fujisaki model, these components, typically represented by base 38 

frequency (F0) contours, encompass base frequency, phrase variations, and accent components16,17. 39 

Furthermore, the influence of tone sandhi—alterations in a morpheme's tone due to syntactic 40 

context—adds an additional layer of complexity18. Altogether, these variances make decoding 41 

tonal sentences more complicated than both non-tonal sentences and isolated tonal syllables. 42 
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Besides, existing invasive language BCI usually reported success in individual cases, usually with 43 

intense hyperparameter optimizing5,9,10. Few studies have tested the replication or generalization 44 

of the decoding framework. It remains uncertain whether the same set of model design 45 

hyperparameters—such as the number of convolution and recurrent blocks, hidden variables per 46 

layer, and onset detection thresholds—will generalize across different subjects. Consequently, 47 

verifying the generalizability of these published frameworks, especially when applied to patients 48 

exhibiting high heterogeneity, remains elusive. In clinical settings, different patients need to 49 

restore speech function via speech BCI have varied pronunciation behaviors, which is especially 50 

obvious among tonal languages such as Mandarin Chinese. Mandarin speakers, influenced by 51 

regional dialects such as Northern, Jianghuai, and subgroups like Wu-Tai, Shanghainese-52 

influenced, Northeastern Mandarin, demonstrate distinct tonal and syllabic variations19. Though 53 

sharing the same written form of Chinese word, speakers of these mandarin branches have distinct 54 

pronunciation behaviors on both tones and syllables. While these distinct pronunciation behaviors 55 

or preferences do not affect speakers’ daily communication, they add significant challenges to the 56 

decoding task. In addition to the variance in pronunciation behaviors, the inherent variations in 57 

language-functional cortical areas also contribute to the inter-subject variances. It is impossible 58 

for invasive devices to collect identical neural signals from different patients even if the placement 59 

of invasive electrodes is stringently controlled. Whether and to what extent these bias from both 60 

language behaviors and varied neural signals will affect the robustness of language decoding 61 

framework remain unknown. This uncertainty challenges the eventual generalization of speech 62 

BCI across patients with high heterogeneity.  63 

In this study, we aim to decode Mandarin tonal sentences from invasive neural recordings using 64 

high-density ECoG. Targeting functionally separate neural populations within speech-related brain 65 
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regions, we tailored distinct neural network modules which detected the onsets of the utterance of 66 

each individual Chinese character and then decode tone labels and syllable labels in parallel, 67 

reflecting the inherent parallel coding previously observed in tonal language articulation13,20-22. 68 

Subsequently, a language model was used to calculate the Bayesian likelihood of the entire 69 

sentence from the probability distribution of tonal syllable sequences, integrating the contextual 70 

and prior information (Fig.1). Moreover, we established a versatile framework using a set of 71 

standardized hyperparameters, eliminating additional needs for hyperparameter optimization, and 72 

assessed its potential for generalization by testing across multiple patients. This approach decoded 73 

Mandarin tonal sentences across diverse patient profiles without specific hyperparameter 74 

adjustments. 75 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2024. ; https://doi.org/10.1101/2024.03.16.585337doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.16.585337
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Fig 1 Schematic overview of the brain-to-text decoder for natural speech of a tonal language.  76 
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a. Schematic overview of the tonal speech production task. Each participant was guided by a   77 
visual cue to produce one of the ten sentences. Each trial began with a fixation cross at the 78 
center of the screen for 3 seconds, and the sentence was shown in the middle of the screen 79 
in grey text. With each word turning black for 1.2 seconds consecutively from the 80 
beginning to the end of the sentence, the participant was instructed to pronounce the 81 
sentence following these go cues, the pace of the speech was not strictly aligned with the 82 
visual cues. 83 

b. During the experiment, neural activity from speech-related cortex was recorded using 84 
implanted high-density electrocorticography array when the participant was instructed to 85 
read sentences consisted of words from a predefined vocabulary set of 40 words. The 86 
preprocessed neural signals from responsive electrodes were sampled by sliding window 87 
and was sent to the speech detection module (speech detector) to detect the onsets of words. 88 
The peri-onset neural activity within a fixed time window was used to compute the base 89 
syllable probability (across 10 possible syllables) and lexical tone probability (across 4 90 
tones) of the word via a tone decoder and a syllable decoder respectively. A Viterbi 91 
decoding algorithm used these probabilities in conjunction with word-sequence 92 
probabilities from a pre-trained natural language model to decode the most likely sentence 93 
given the current neural activity. 94 

 95 

Results 96 

In this study, we recorded the neural activity of five native Mandarin-speaking participants who 97 

underwent awake surgery to treat brain tumors.  Each participant was guided by sequential visual 98 

cues to produce 10 sentences consisted of 5-8 Chinese characters from a corpus of 40 Chinese 99 

characters with varied tones (Fig. 1a). Among 5 participants, PA1-4 completed the speech 100 

production task using normal articulating, while PA5 completed the speech production task using 101 

whispering. Participants’ brain activity was recorded by temporally placed high-density ECoG 102 

grids. Subsequently, we assessed the efficacy of our proposed brain-to-text speech decoder across 103 

these 5 participants. 104 

Decoder overview 105 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2024. ; https://doi.org/10.1101/2024.03.16.585337doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.16.585337
http://creativecommons.org/licenses/by-nc-nd/4.0/


Our brain-to-text decoder comprises interconnected modules: a speech detector, tone decoder, 106 

syllable decoder, and a language model, functioning in a sequential stream. To decode Mandarin 107 

tonal sentences from high-density ECoG neural recordings, our brain-to-text decoder starts with a 108 

speech detector, which takes in sequence of neural activity recordings of pre-selected speech-109 

responsive electrodes and predicts whether each timepoint belongs to speech production or resting-110 

state. The output of the speech detector was used to identify speech production epochs, where each 111 

epoch corresponding to the time interval of one Chinese character. Based on the decoded speech 112 

production epochs, our tone and syllable decoders then decode tone label and syllable label from 113 

neural signals of pre-selected tone and syllable discriminative electrodes during each epoch.  114 

For PA1 to PA4, we identified 108,144,199, and129 speech responsive electrodes, 30,28,68, and 115 

75 syllable discriminative electrodes and 10,12,21, and 48 tone discriminative electrodes, 116 

respectively. For PA5, we found 118 speech responsive electrodes, 47 syllable discriminative 117 

electrodes and 14 tone discriminative electrodes. The coverage and overlapping relationship of 118 

these electrodes were shown in Fig. 2a-e.  119 

For onset predicting, the neural activity across all speech-responsive electrodes was processed time 120 

point by time point by an artificial neural network (ANN) containing sequentially arranged 121 

Convolutional Neural Network (CNN) structure, a stack of Gated Recurrent Unit (GRU) layers 122 

and a single dense (fully connected) layer, capturing both forward and backward temporal 123 

dependencies in neural signals, which was designated for inference on dynamic temporal processes.  124 

The dense layer projected the latent dimensions of the last GRU layer into probability space for 125 

two event classes: speech and rest. (Fig. 2f) For simplify, all the hyperparameters in this step was 126 

fixed. After that, the curve of the predicted probabilities along the dimension of time was smoothed 127 

and binarized according to undefined smoothing window (S) and probability threshold (Pt), the 128 
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onset of each utterance was then predicted if a lasting silence states (Toff) before the onset and a 129 

lasting speech state (Ton) after it, while slightly errors labels within an undefined error permissive 130 

rate (EPR) was also allowed (Fig. 3b). These five undefined hyperparameters need further tuning 131 

through grid search for each participant.  132 

As for tone and syllable decoder, a 1.2-second time window for syllable and 0.8-second time 133 

window for tone of high gamma activity was processed by an ensemble of 5 pairs (10 total) 134 

ensemble ANN models. ANNs in tone and syllable decoder share the same architecture but 135 

different in their own hyperparameters. Within each ANN, the high gamma activity was processed 136 

by an initial convolution with initial filter length (FLini), stride of convolution (STconv). This initial 137 

layer was followed by undefined number (Clayer) of CNN unit2. Each CNN unit constituted of a 138 

temporal convolution with undefined kernel length (FLconv), aforementioned stride length and 139 

dimension (Cdim), a batch normalization, ELU activating function23, a dropout layer with dropout 140 

rate (D) and maxpooling layer with max-pooling kernel length (Lpool) and max-pooling stride 141 

(STpool). After that, data was processed by undefined number (Rlayer) of stacked bidirectional gated 142 

recurrent unit (GRU) layers with undefined number of dimension (Rdim) 24. A dense layer projected 143 

the final GRU layer into probability of syllable and tone of each of the words from the 10-syllable 144 

set or 4-tone classes. Finally, we averaged these probability distributions from ensembled ANN 145 

models to get the predicted syllable and tone probabilities. (Fig. 2g) It is worth noting that all the 146 

aforementioned undefined hyperparameters required further tuning for each participant.  147 

Subsequently, a language model integrates these decoded tone and syllable labels, along with prior 148 

information of their transitional probabilities, to compute the Bayesian likelihood of entire word 149 

sequences. 150 
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 Fig 2 Electrode coverage, category and decoding model schematics 151 

a-e.  Anatomical reconstructions of PA1-PA5 (from a to e). The locations of the ECoG 152 
electrodes were plotted with colored discs. The colors indicated the electrode categories. 153 
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Yellow: responsive electrodes; red: tone-discriminative electrodes; blue: syllable-154 
discriminative electrodes. Electrodes with combined feature were plotted with mixed 155 
colors, nonresponsive electrodes were plotted as small black dot. Venn diagrams showed 156 
the number of electrodes in each category for each participant.  157 

f.  Speech detection model schematic. Predefined hyperparameters in ANN and their values 158 
were shown in italic. 159 

g.  Syllable classification model schematic. CNN unit shown in green frame while RNN unit 160 
shown in yellow. All of the undefined hyperparameters were shown in Italic, which can be 161 
roughly divided into time-dimension-related group and size-related group. Former group 162 
includes initial convolution filter length (FLini), stride of convolution (STconv), filter length 163 
of following convolutional blocks (FLconv), max-pooling kernel length (Lpool) and max-164 
pooling stride (STpool). Later one including number of sequential convolutional blocks 165 
(Clayer), number of layers of RNN (Rlayer), number of filters in each convolutional process 166 
(Cdim), number of dimensions in each RNN process (Rdim), and dropout value (D)) The tone 167 
classification model shared the same architecture with syllable classification model but 168 
different hyperparameters. 169 

 170 

Independent performance of speech detector, tone decoder and syllable decoder 171 

First, we evaluated the performance of each individual decoder module. Since these decoder 172 

modules work in sequential order, the performance of the tone and syllable decoders would rely 173 

on the output of the speech detector. To evaluate the independent performance of these decoder 174 

modules, we first calculate the decoding accuracies of syllable, tone, tonal syllable, and Chinese 175 

characters on manually aligned speech onsets rather than onsets predicted by the speech detector. 176 

Each of the participants completed 158 to 160 sentences in the speech production task. Using 177 

nested cross-validation, we trained the brain-to-text decoder for each participant and evaluated the 178 

decoding performance. Among five participants, our speech detector reached an area under curve 179 

(AUC) of 0.96 to 0.99 (Fig. 3a). The tone decoder reached an accuracy of 57%±12% (mean [± 180 

SD] classification accuracy across the 4 target tones in 5 participants, chance 25%) on manually 181 

aligned neural signals (Fig. 3c). Syllable decoder reached an accuracy of 69%±5% (mean [±SD] 182 

classification accuracy across the 10 target syllables in 5 participants, chance 10%) on manually 183 
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aligned neural signals (Fig. 3d). When multiply raw predicted probability of tone and syllable, we 184 

acquired raw decoding accuracy of all the predicted tonal-syllables, which reaches 46%±8% 185 

(mean [±SD] classification accuracy across the 40 tonal syllables on 5 participants, chance 3.0%) 186 

at the level of tonal syllable (Fig. 3e). After applying language model to calculate corresponding 187 

Chinese words, the accuracy at the level of Chinese words reaches 87%±4% (mean [±SD] 188 

classification accuracy across the 40 Chinese words on 5 participants, chance 2.5%) (Fig. 3f). 189 

Overall decoding performance of tonal-sentences 190 

After evaluated the independent performance, we then tested the performance of all the modules 191 

when they were interconnected and worked in a stream. Aligned with speech onsets detected by 192 

speech detector, tone decoder achieved an accuracy of 56%±13% (mean [±SD], Fig. 3g), while 193 

syllable decoder achieved an accuracy of 64%±6% (mean [±SD] , Fig. 3h). Accuracy at the level 194 

of raw tonal syllable reached 44%±7% (mean [±SD], Fig. 3i), while the final accuracy at the level 195 

of Chinese words reaches 82%±4% (mean [±SD], Fig. 3j). These results were consistent with the 196 

independent module performance, when actual speech onsets were manually aligned. We also 197 

calculated the word error rate (WER) of each decoded sentence. Decoding accuracy was consistent 198 

across participants (one way-ANOVA, F(4, 45) = 0.65, p=0.63), as the overall WER was 25%±199 

6%, 21%±5%, 21%±6%, 14%±3%, 18%±4% (mean [±SE]) from PA1 to PA5. For each 200 

individual sentence, WER ranged from 1% to 52%. 47.74% of all the sentences (95/199) were 201 

decoded correctly (WER=0) (Fig. 3k). There was no significant difference (Pearson’s correlation, 202 

r = -0.03, P = 0.61) between the decoding accuracy and the complexity (number of words or 203 
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phrases) of the sentence (Fig. 3m), suggesting that our proposed method worked for both short 204 

and long sentences.  205 
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Fig 3. Evaluation of the overall neural-to-text decoding performance of the decoder. 206 
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a.  Receiver Operating Characteristic (ROC) curves and corresponding area under curve 207 
(AUC) of speech detectors in each participant.  208 

b.  One example trial, in which the participant produced the sentence “他哥不理他” (His elder 209 
brother ignores him). The raw speech sound waveform was plotted in black. The time 210 
course of the predicted speech probability was plotted blue, while speech probability after 211 
smoothing and binarized was plotted red and orange.  Finally, the detected speech event 212 
onsets from the neural decoder was plotted as yellow dotted vertical lines. All of the 213 
undefined hyperparameters were shown in Italic. 214 

c-f.  Confusion matrices of c) the tone labels, d) the syllable labels, e) the tonal syllables, and f) 215 
the words (with language model), evaluated on the test set, using manually aligned actual 216 
speech onsets.   217 

g-j.  Confusion matrices of g) the tone labels, h) the syllable labels, i) the tonal syllables, and j) 218 
the words (with language model), evaluated on the test set, using decoded speech onsets 219 
from the onset decoder.   220 

k.  The averaged word error rate (WER) of decoded sentences in 5 participants, mean [±sem], 221 
the vertical dotted line indicated the overall averaged performance across all 5 participants. 222 

l.  Performances of the speech detector, the tone decoder, the syllable decoder and the overall 223 
performances of each participant (in the same color keys as panel k), shown by AUC of 224 
speech-silent classifier (AUC_onset), tone accuracy (Acc_tone), syllable accuracy 225 
(Acc_sylb), word accuracy (Acc_word) and WER respectively. 226 

m.  The averaged WER of each individual sentence across all 5 participants, mean [±SE], 227 
dotted line indicated the average performance across all sentences.  228 

 229 

Robustness of the speech decoder under tonal variance in natural speech 230 

In natural speech, the actual pitch trajectories of lexical tones often deviate from their canonical 231 

forms, due to accent, emotions, and other contextual effect such as coarticulation and tone sandhi25. 232 

For example, all the patient articulated the tone of “不” in “不计得失” with a pitch trajectory more 233 

similar to tone 2 rather than tone 4 in single syllable form or in other phrases such as “不得不”, 234 

due to the rule of tone sandhi (Fig 4a). Even the same tonal syllable with different phonological 235 

context would result in different pitch trajectories (Fig 4b). This suggests that the underlying neural 236 

code commanding tone articulation may also encounter great variance. Therefore, the decoding 237 

algorithm should not only consider the stereotypical canonical monosyllable instances of lexical 238 
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tones, but also able to account for such significant variance during natural speech and robustly 239 

decode lexical tones regardless of the variance.  240 

First, we quantify the variance caused by tonal sentence context and tone sandhi behaviorally. We 241 

performed tone intelligibility assessment (IA) test through which native mandarin speaking 242 

participants listening to audio of each tonal Chinese word clipped from the natural tonal sentences 243 

and judging the tone. We find the accuracy of the tone IA test only reached 70%±2% (mean [±SE]), 244 

significantly lower (t-test, t(38) = 7.38, p = 7.6e-9) than behavioral performance under full natural 245 

context (tone IA accuracy 91%±1%, mean [±SE], Fig 4c). Therefore, using contextual information 246 

is important for listeners to overcome tonal variances in natural speech production.   247 

Similarly, given only monosyllabic information, the tone decoder would perform suboptimal. To 248 

show this, we adopted a baseline monosyllable decoder model previously used in Liu et al13. The 249 

monosyllable decoder only took in the neural activity aligned to the current syllable utterance and 250 

did not consider contextual syllables. In our test dataset, the monosyllable baseline decoder model 251 

achieved an averaged tone decoding accuracy of 35%±3% (mean [±SE], Fig. 4c).  252 

Finally, we tested the performance our proposed sentence decoder. We compared our tone-decoder 253 

(without the language model) with our previous published tone decoder designed for 254 

monosyllable13. Our framework (decoding accuracy 58%±9%, mean [±SE]) outperformed (t-test, 255 

t(30) = -4.62, p = 6.9×10-5) previous monosyllable tone-decoder (decoding accuracy 32%±3%, 256 

mean [±SE]) on tonal sentence decoding task, which suggests our framework is more robust on 257 

decoding tone components from natural language settings with multiple and unbalanced syllables. 258 

Furthermore, after introducing language model to our decoding framework, a tone decoding 259 

accuracy of 93%±3% (mean [±SE]) was achieved, which significantly exceed (t-test, t(34) = 7.12, 260 
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P = 3.1×10-8, Fig. 4c) the accuracy of monosyllable tone IA results (70%±2%, mean [±SE]), and 261 

approximate the actual behavioral performance of native speakers under natural context (91%±262 

1%,). Hence, applying language model will largely eliminate the tone variance in natural language 263 

by introducing contextual relationships, which is a promising solution of decoding tone in natural 264 

tonal sentences accurately.  265 

Speech decoding during non-intelligible tonal speech production 266 

To further evaluate the robustness of our proposed decoder under different speech production 267 

scenario, we tested if the decoder could decode from patient who did not produce intelligible 268 

speech. In particular, PA5 completed the speech production task using whispering and the 269 

produced tonal speech was largely non-intelligible. We first plot the Mel-spectrograms of Chinese 270 

words clipped from whispering natural tonal sentences, finding no obvious base frequency (F0) 271 

and consonant peak (Fig. 4b). Furthermore, the tone IA score of PA5 was 23%±2% (mean [±SE]), 272 

which was significantly lower than tone IA scores of normal articulating audios (t-test, t(28) = -273 

12.18, p = 1.1×10-12) and within the range of chance level (Fig. 4c). Therefore, behaviorally PA5 274 

was not able to produce intelligible tonal speech during the task. 275 

We then compared the tone-decoding accuracy of our framework on both participant PA5 and 276 

other normal articulating participant, the intended speech was consistently decoded, the average 277 

accuracy was 93%±3% and 95%±2% (mean [±SE]) with language model, 58%±9% and 51%±278 

2% (mean [±SE]) with language model, no significant difference was observed (t-test, with 279 

language model: t(18) = 0.48, p = 6.4×10-1, without language model: t(18) = -0.79,  p = 4.4×10-280 

1).  281 
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Finally, tone decoding accuracy and the tone IA scores of each syllable in the 4 articulating 282 

participants were significantly correlated (Pearson’s correlation r = 0.61, p = 2.9×10–5), indicating 283 

our tone decoder learned from behaviorally-relevant tone-related neural features, rather than other 284 

co-variants (Fig. 4d).  285 

 286 
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 Fig 4. Evaluation of tonal decoding under natural contextual variances and whispering.  287 
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a-b)  Averaged pitch contours (mean [±SE]) of different Chinese characters of the same tonal 288 
syllables (a: bu4, also the same Chinese character “不” which represents negative meanings 289 
such as “not”, b: ji4), black dots indicated time points with significant mean difference 290 
(one-way ANOVA, p < 0.05). The text transcriptions were shown in the bottom with the 291 
specific words highlighted in the corresponding colors. Corresponding Chinese characters, 292 
Pinyin, and English translation of the choosen syllables were shown in the same color as 293 
the pitch contour at the right part of the figures. In the last sentence of the subplot a, the 294 
tone 4 of “ji” (also shown in color) leads to the change in the tone of previous “bu”, due to 295 
the rule of tone sandhi. 296 

c)  Tone decoding performances (mean [±SE]) of previous monosyllabic neural decoding 297 
model (monosyllabic_model), our sentence-based neural decoding model without 298 
language model (sentence_model), our sentence-based neural decoding model with 299 
language model (speech_sentence+LM), the accuracy of tone intelligible analysis (tone IA 300 
score) by 20 volunteers using the corresponding speech audio syllable clips (tone_IA), and 301 
speech audio of each full sentences (speech_tone_IA). Blue dotted line indicated chance 302 
level (25%); *** p < 0.001, t-test, two-sided. 303 

d) The mel-spectrograms of participant (PA1) spoke aloud four tones of “zhi” (upper row), 304 
compared to the mel-spectrograms of participant (PA5) whispering four tones of “zhi” 305 
(bottom).  306 

e) Tone decoding performances using our proposed sentence decoder without language model 307 
(sentence_model) and with language model (sentence_model + LM), and the tone IA 308 
scores (mean [±SE]) evaluated on the speech and whisper participants. 309 

f) Scatterplot showing the correlation between of tone decoding accuracy (Acc_pred) and 310 
tone IA score (Acc_IA) of articulating participants (Pearson’s correlation, r = 0.61, p = 311 
2.9×10–5). Whispering data shown in purple, which was not included in the linear 312 
regression due to randomly distributed tone IA scores. 313 

 314 

Universal decoding framework with predefined hyperparameters is applicable on 315 

participants with great variations 316 

ANN-based BCI decoders often encounter model hyperparameters such as depth and width of the 317 

network, kernel size and strides, dropout rate, etc. Training these models usually require 318 

optimization of these hyperparameters for each individual subject. A key factor of the 319 

generalizability of the BCI decoder is how robust the model performance is regarding different 320 

sets of hyper-parameters across participants. To get an overall understanding of heterogeneity 321 
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across participants, we computed their best hyperparameter combinations of speech detector, tone 322 

decoder and syllable decoder chosen by the optimization process. These hyperparameters include 323 

smoothing window (S), the probability threshold value (Pt), the off-time threshold (Toff) and on-324 

time threshold (Ton), and the error permissive rate (EPR) which are related to the thresholding 325 

utterance onsets; filter lengths (FLini  for the first convolutional layer, FLconv for the rest 326 

convolutional layers, and Lpool for max-pooling kernel)  and  strides (STconv for convolutional 327 

layers and STpool for max-pooling layers) which determined the temporal feature of neuro-decoders; 328 

as well as depths (Clayer for sequential convolutional blocks and Rlayer for stacked recurrent layers) 329 

and widths (Cdim for number of filters for convolutional process, Rdim for number of dimensions in 330 

each RNN process, D for dropout value) which determined the overall model architecture.. Very 331 

few optimized hyperparameter remained the same across all participants, while most optimal 332 

hyperparameters varied across participants with variations of age, gender, speech behaviors and 333 

electrodes coverage (Fig. 5a-e). To figure out the impact of such heterogeneity on decoding 334 

performance in our framework, we picked the medium value of each hyperparameter and 335 

constructed a fixed pre-defined hyperparameter set. We then applied a universal decoder (UNI) on 336 

all the participants using this fixed pre-defined hyperparameter set. We found this universal 337 

decoder performed similar to (pair-wise t-test,PA1: t(9) = -0.62, p = 5.5×10-1, PA2: t(9) = 0.05, p 338 

= 9.6×10-1, PA3: t(9) = -2.00, p = 7.6×10-2, PA4: t(9) = 0.23, p = 8.3×10-1, PA5: t(9) = -0.55, p 339 

= 5.9×10-1) individually-optimized frameworks with hyperparameters optimized on individual 340 

participants (Fig. 5f). Also, the decoding performance of universal framework across participants 341 

was stable (oneway ANOVA, F(4, 45) = 1.11, p = 3.6×10-1). The UNI decoder even outperformed 342 

four control models only contained RNN and CNN part of the framework (CNN and RNN) with 343 

optimized hyperparameters. Mean WERs of decoding sentences through UNI remained lowest in 344 
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all participants (Fig. 5g). Though the advantage was not significant in each individual participant 345 

due to relatively small sample size, it was significant after combining data of all the participants 346 

(paired t-test, UNI with CNN, t(98) = -3.29,  p = 1.8×10-3, UNI with RNN, t(98) = -4.97, p = 347 

8.3×10-6). 348 

 Fig 5. Evaluation of the neural decoder model hyperparameters across different 349 

participants.  350 

a) The optimal combinations of hyperparameters for speech detector in 5 different subjects 351 
(colors consistent in f and g): S represents the smoothing size, Pt represents probability 352 
threshold, Toff represents off-time threshold and Ton for on-time threshold, EPR represents 353 
error permissive rate (detailed description of these hyperparameters see Methods Section.  354 

b-c)  The optimal combinations of hyperparameters for the tone decoder: b) FLini and FLconv 355 
represents the filter length of the initial convolutional layer and all following convolutional 356 
layers, STconv represents for stride of all convolutional layers. Lpool and STpool represent for 357 
pooling length and stride of all pooling layers; c) Rlayer and Rdim represent numbers of layers 358 
and hidden units of bidirectional Gated Recurrent Unit (GRU). Clayer and Cdim represent 359 
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number of convolutional-pooling blocks and number of filters in each convolutional layer. 360 
D represents dropout value of each drop-out layers.  361 

d-e)  The optimal combinations of hyperparameters for syllable decoder, similar to b, c.  362 

f)  Comparison of decoding performances on each individual participant between individually-363 
optimized decoders and the universal decoder with shared hyperparameters. In all the participants, 364 
universal decoder showed no significant difference from individually-optimized decoder (pair-365 
wise t-test,PA1: t(9) = -0.62, p = 5.5×10-1, PA2: t(9) = 0.05, p = 9.6×10-1, PA3: t(9) = -366 
2.00, p = 7.6×10-2, PA4: t(9) = 0.23, p = 8.3×10-1, PA5: t(9) = -0.55, p = 5.9×10-1).  367 

g) Comparison of decoding performances on each individual participant between universal 368 
frameworks (UNI) and customized control frameworks with hyperparameters optimized. 369 
In all the participants, UNI show lower WER than control models. In PA1, PA2 and PA4, 370 
these is significance difference (pair-wise t-test, PA1_UNI with PA1_RNN: t(9) = -3.38, p 371 
= 8.1×10-3, PA2_UNI with PA2_RNN: t(9) = -7.00, p = 6.4×10-5, PA2_UNI with 372 
PA2_CNN: t(9) = -2.33, p = 4.5×10-2, PA4_UNI with PA4_CNN: t(9) = -2.44, p = 3.7×10-373 
2)between decoding performances of UNI and control models. 374 

 375 

Discussion 376 

In this study, we present a brain-to-text framework capable of decoding natural tonal sentences 377 

from high-density ECoG recordings. We adopted a modular approach to delineate speech onset, 378 

base syllables, lexical tones, and leveraged contextual information through Bayesian likelihood 379 

and the Viterbi algorithm to enhance the decoding process. For natural speech, our proposed 380 

method achieved a tone decoding accuracy of 93%, similar to the behavioral performance of native 381 

speakers. The overall word error rate of decoded natural speech was as low as 14% in the best 382 

participant. Notably, we proposed a generalized spatiotemporal decoding framework for syllable 383 

and tone decoders. The robustness of our framework was evident across diverse participant profiles, 384 

including variations in gender, age, education, pronunciation behaviors, and electrode coverage, 385 

indicating that our model hyperparameters possess a high degree of generalizability. Significantly, 386 

the framework's standardization of hyperparameters negates the need for extensive individual 387 

optimization, a step forward in practical application and scalability. Furthermore, our system 388 

adeptly managed the inherent language heterogeneity encountered in Mandarin, effectively 389 
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handling the variances introduced by tone sandhi, regional dialects and individual speech patterns. 390 

Our decoder even showed robust performance in whispering conditions. These results underscore 391 

the potential for clinical applications in aiding patients with anarthria and broadening the 392 

communicative efficiency of BCIs. 393 

This work extends the scope of ECoG-based speech brain-computer interface to natural speech of 394 

tonal languages. The past decade has witnessed significant breakthroughs in speech decoding and 395 

brain-computer interfaces using intracranial neural recordings. Previous works have also used 396 

ECoG to record local field potential directly from the sensorimotor cortex responsible for speech 397 

production. These works diverge in their decoding targets: some directly decode neural activity 398 

into speech sound or acoustics like spectrogram2,26,27; others map neural activity into discrete 399 

linguistic units such as words or phonemes5,10,28. Here we adopted a brain-to-text framework 400 

similar to the latter strategy where neural activity is first decoded into discrete syllables and lexical 401 

tones. Although directly decoding speech sound allows for continuous and infinite speech output, 402 

the quality of reconstructed speech is limited by the noisy neural signal. On the other hand, 403 

decoding into a finite set of syllables and tones extracts the invariant information from the noisy 404 

neural recordings. Furthermore, for cases like whispering or even completely covert speech, there 405 

is no ground truth of explicit speech output. As a result, brain-to-text may be feasible to such silent 406 

speech cases.  407 

Our work underscores the importance of ventral sensory-motor cortex (vSMC) in speech 408 

production and decoding, particularly for tonal languages. Similar to our previous work13, we show 409 

that tonal speech production can be reliably decoded from neural activity in vSMC. Previous 410 

intracranial neurophysiology studies have investigated the spatiotemporal coding of the 411 

articulatory movements responsible of pitch control and phonetics20-22. A theoretical foundation of 412 
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these studies is that there exist spatially distinct and distributed neural populations in the vSMC, 413 

representing different articulatory gestures corresponding to phoneme and pitch articulation. High-414 

density ECoG recordings have proven to reliably cover the distributed network and dissociate these 415 

fine-grained neural coding13,29.  416 

Our results demonstrate the excellent efficacy of our proposed light-weighted models in decoding 417 

articulatory movements, which is in line with a recent discovery that shallow feedforward 418 

networks achieve better performance on motor control than deeper and complex ones30. 419 

Articulatory movement is innervated via motor nerves which locates only one or two (considering 420 

inhibitory interneurons) synapses downstreaming the large pyramidal neurons (corticonuclear tract) 421 

originated from the motor cortex31. Based on intracranial neural recordings of higher signal-noise 422 

ratio (SNR), it is quite reasonable that light-weighted ANN is capable enough to replace the signal-423 

processing function of such a few layers of synapses (including the lateral connections within the 424 

layers of cortex) 32,33. In our UNI frameworks, the numbers of trainable parameters in speech 425 

detectors, tone decoders and syllable decoders range from 2.3M to 6.7M. Such light-weighted 426 

frameworks not only showed less sensitivity to variations in hyperparameters, but also achieved 427 

better performance when trained on very limited amount of training data34. Such frameworks also 428 

reduce the responding-time and energy-consumption of computational infrastructures, which is a 429 

promising candidate for practical neuroprosthetic systems. 430 

Our framework also provides insights into critical design considerations essential for speech BCI 431 

models. Previous studies of speech BCI typically relied on extensive hyperparameter optimization 432 

for individual participants who undergo chronic implantation5,9 . Such decoding models may not 433 

be directly generalizable across different patients, resulting in repeated hyperparameters 434 

optimizing procedures for each individual. In contrast, our study reveals the feasibility of a 435 
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universal, hyperparameter-optimization-free framework to five individuals, demonstrating its 436 

robustness across a spectrum of ages, genders, educational backgrounds, pronunciation habits, and 437 

variations in brain electrode coverage. Furthermore, as oppose to prior work where specific CNN 438 

and Recurrent Neural Network (RNN) models were designed for tone and syllable decoding 439 

respectively13, we proposed a unified CNN-RNN framework for both the tone and the syllable 440 

decoders in this study. Our discovery further validates that this combined CNN-RNN model 441 

achieved better decoding performance compared with baseline frameworks that employ only one 442 

of these network types. The benefits of our combined approach cannot be replicated through 443 

hyperparameter optimization alone. Our research highlights the potential for developing a broadly 444 

applicable, hyperparameter-independent framework for neural decoding. Although our universal 445 

framework has yielded stable performance across five distinct participants, future works remain to 446 

be done to consolidate its generalizability in patients with anarthria, across different Chinese 447 

dialects, and potentially other tonal languages.  448 

This brain-to-text framework represents a pioneering effort in language BCI, designed to decode 449 

the full spectrum of Mandarin characters. Mandarin's linguistic complexity is reflected in its use 450 

of over 6,000 commonly utilized characters, each a single syllable word. Yet, within this vast 451 

lexicon, there are only 416 unique segmental combinations of consonants and vowels. These 452 

unique combinations, combined with suprasegmental pitch features (4 different lexical tones), 453 

define 1664 unique tonal syllables35. Although there are some important phonetic features to the 454 

distinction standard 4 lexical tones such as turning point and ∆F0, amplitude, and speaker F0 455 

range36. Other factors that determine the pitch contour in Chinese include the prosodic structure of 456 

the language, the interaction between syntax and phonology, and paralinguistic factors such as 457 

speech rate and tempo18. These factors can influence the pitch contour and contribute to the overall 458 
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tonal patterns in Chinese, confusing native listeners listening to audio of each syllable clipped from 459 

natural sentences. Such bias obviously added challenges to speech BCI decoding tone exclusively 460 

from clips of neural signals while producing each syllable in natural sentences. The present 461 

decoding strategy inherently integrates the critical tonal features of Mandarin, effectively handling 462 

the variances introduced by tone sandhi, regional dialects and individual speech patterns, which 463 

are paramount for accurate speech communication, offering advantages over phoneme-level 464 

decoding. Besides, the current findings also highlight a pivotal insight: the decoding performance 465 

is not hindered by the length or complexity of the sentences, indicating the scalability of our 466 

framework for broader applications and more general settings in tonal language communication. 467 

Also, Mandarin characters are single syllable words usually consisted of only two or three 468 

phonemes, which is far less discriminative than most English. For example, "ji" versus "qi", or 469 

"zhi" versus "shi", as demonstrated in our study2. This structural intricacy of Mandarin, with its 470 

concise phonemic diversity, renders the phoneme-level decoding strategies used in recent speech 471 

BCI studies for non-tonal languages ineffective7,8. In response, our framework targets the decoding 472 

of Mandarin speech at the mono-syllable word level, aligning more closely with the language's 473 

inherent structure and providing a practical blueprint for decoding its entirety—potentially 474 

expanding our current focus from the most frequently used 4×10 tonal syllables to all 4×416 tonal 475 

syllables. 476 

In addition to the established use of high-density ECoG in speech decoding, various neural 477 

recording techniques offer distinct advantages in terms of coverage and temporal resolution. 478 

Examples include the Utah array9,37, stereoelectroencephalography (SEEG) 38, and neuropixels39,40. 479 

When choosing among these methods, a crucial consideration involves striking a balance between 480 

obtaining high-resolution neural signals, such as investigating fine-grained spiking properties of 481 
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multiple single units or microcircuits underlying speech production within a limited area of the 482 

cortex9,40, and achieving broad coverage of cortical networks, such as collecting neural signals 483 

across the entire vSMC, which depicts a comprehensive view of neurodynamics of the functional 484 

regions21,22,29. Future works remain to be done to investigate the decoding capabilities of natural 485 

tonal languages using signals of varying coverage and resolution scales. This entails identifying 486 

the optimal trade-off point where high decoding performance aligns with decoding robustness 487 

across patients with high heterogeneity. 488 
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 516 

 Methods 517 

Participants 518 

A total of five participants (a 41-year-old female, a 44-year-old female, a 54-year-old male, a 46-519 

year-old male and a 30-year-old female) participated in this study. They were all patients with 520 

eloquent brain tumors who underwent awake surgery as part of normal clinical routine. Two 128 521 

high-density electrode arrays were temporarily placed onto the lateral surface of the brain to 522 

collect the neural signals, and the participants were instructed to perform the speech tasks. All 523 

participants are native Mandarin speakers. An experienced neurosurgeon performed the grid 524 

placement, and the location of grid was determined based on the exposure and avoiding tumor. 525 

The protocol was approved by the Huashan Hospital Institutional Review Board of Fudan 526 

University (HIRB, KY2019-538). All participants gave their written, informed consent prior to 527 

the surgery.  528 

Design of the sentence corpus 529 

To have a representative set of phonological features in Mandarin and maximize the 530 

representativeness of our speech task, we selected the top 10 most frequently used open syllables 531 

with monophthong, which cover the pronunciation of nearly 25.9% of all Chinese characters41.  532 

Using these 10 syllables, we obtained 40 distinct Chinese characters with 4 lexical tones and 533 

constructed 29 Chinese words and phrases from these 40 characters. Finally, 10 sentences were 534 

constructed with these 29 phrases, which eventually consisted the sentence corpus used in our 535 

decoding task.  536 
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The 10 syllables chosen for this work is: 537 

1. 'shi',  /ʂɚ/  538 

2. 'de',   /tɤ/ 539 

3. 'ji',   /tɕi/  540 

4. 'li',   /li/  541 

5. 'bu',  /pu/ 542 

6. 'ge',  /kɤ/ 543 

7. 'qi',  /tɕʰi/ 544 

8. 'zhe',  /ʈʂɤ/ 545 

9. 'ta',  /tʰa/ 546 

10. 'zhi'  /ʈʂɚ/ 547 

 548 

The 40 Chinese characters used in this work and their corresponding tonal syllables (five-level 549 

tone marks): 550 

1. 失: shi55 551 

2. 十: shi35 552 

3. 时: shi35 553 

4. 实: shi35 554 

5. 是: shi51 555 

6. 的: de 556 

7. 地: de 557 
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8. 得: de35 558 

9. 机: ji55 559 

10. 激: ji55 560 

11. 极: ji35 561 

12. 记: ji51 562 

13. 计: ji51 563 

14. 迹: ji51 564 

15. 离: li35 565 

16. 里: li214 566 

17. 理: li214 567 

18. 励: li51 568 

19. 荔: li51 569 

20. 不: bu35/bu51 570 

21. 布: bu51 571 

22. 哥: ge55 572 

23. 搁: ge55 573 

24. 个: ge51 574 

25. 七: qi55 575 

26. 奇: qi35 576 

27. 其: qi35 577 
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28. 起: qi214 578 

29. 契: qi51 579 

30. 折: zhe35 580 

31. 者: zhe214 581 

32. 这: zhe51 582 

33. 他: ta55 583 

34. 塔: ta214 584 

35. 织: zhi55 585 

36. 枝: zhi55 586 

37. 职: zhi35 587 

38. 止: zhi214 588 

39. 置: zhi51 589 

40. 智: zhi51 590 

*to simplify the decoding process, we use T1 (-) to denote 55, T2 (/) to denote 35, T3 (\/) to 591 

denote 214, and T4(\) to denote 51. The neutral tone syllables “的:de” and “地:de” were 592 

marked as T1 or T4 according to the actual pronunciation of each individual patient. 593 

The 29-Chinese phrases used in this work (with translation in English)： 594 

1. 智者 sage 595 

2. 记者 journalist 596 

3. 荔枝 lichee 597 
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4. 七折起 thirty-precent off 598 

5. 他 him/he 599 

6. 他的 his 600 

7. 他哥 his brother 601 

8. 哥哥 elder brother 602 

9. 不时地 often 603 

10. 激励 encourage 604 

11. 极其 extremely 605 

12. 机智 smart 606 

13. 织布机 loom 607 

14. 这里的 here 608 

15. 是 is 609 

16. 的 DE (structure auxiliary) 610 

17. 塔 pagoda 611 

18. 不理 ignore 612 

19. 是个 is a/an 613 

20. 奇迹 miracle 614 

21. 不计得失 do not care about gains and losses (Chinese Idiom) 615 

22. 不得不 have to 616 

23. 离职 resign 617 
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24. 搁置 shelve 618 

25. 这个 this 619 

26. 契机 opportunity 620 

27. 其实 actually 621 

28. 不止 more than 622 

29. 七十 seventy 623 

The 10 sentences used in this work: 624 

 625 

1.  他哥不理他。 626 

Tā gē  bù lǐ   tā 627 

his elder.brother not pay.attention.to  him 628 

‘His elder brother ignores him.’ 629 

2. 他的荔枝七折起。 630 

Tā de lìzhī qīzhé  qǐ 631 

his DE lichee 30.percent.off at.least 632 

‘His lichee is at least 30-percent off.’ 633 

3. 记者不得不离职。 634 

Jìzhě              bùdébù  lízhí 635 

to.record.person cannot.not.to resign 636 

‘The journalist has to resign.’ 637 

4. 他其实不止七十。 638 
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Tā qíshí  bùzhǐ  qīshí 639 

he virtually not.merely seventy 640 

‘He is virtually more than seventy(-year-old).’ 641 

5. 哥哥不时地激励他。 642 

Gēge  bùshíde                                      jīlì  tā 643 

elder.brother sometimes.not.but.sometimes will  encourage him 644 

‘The elder brother often encourages him.’     645 

6. 他极其机智。 646 

Tā jíqí  jīzhì 647 

he extremely smart 648 

‘He is extremely smart.’ 649 

7. 织布机是这里的。 650 

Zhībùjī  shì zhèlǐ de 651 

loom  is here DE 652 

‘The loom belongs here.’ 653 

8. 这里的塔是个奇迹。 654 

Zhèlǐ de tǎ  shì gè qíjì 655 

here DE pagoda  is a miraculous.sign 656 

‘The pagoda here is a miracle.’ 657 

9. 智者不计得失。 658 

Zhìzhě              bújìdéshī 659 
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wise.person  do.not.care.about.gains.and.losses 660 

‘The sage does not care about gains and losses.’ 661 

10. 搁置这个契机。 662 

Gēzhì zhègè qìjī 663 

shelve this opportunity 664 

‘Shelve this opportunity 665 

Task design 666 

Participants were guided by sequential visual cues to produce one of the 10 sentences consisted of 667 

5-8 Chinese characters from a corpus of 10 base syllables and 40 Chinese characters with varied 668 

tones (Fig. 1a). Within each trial, the participant was instructed to produce all 10 sentences once. 669 

These sentences were presented in a random order. Ideally, each participant produced 160 670 

sentences (4 blocks × 4 trials/block × 10 sentences/trial), which yielded approximately 30 671 

repetitions per tonal syllable. But not all participant completed the entire reading task (158-160 672 

sentences were completed).  673 

Each participant was guided by visual cues to perform block tasks. Each block started with a 674 

black cross at the center of white background on the screen, which lasted for 30 seconds. After 675 

that, the cross turned grey for 3 seconds, and one of the sentences in the sentence set was shown 676 

in the middle of the screen in grey text. With the individual Chinese characters turning black for 677 

1.2 seconds in a sequential order from the beginning to the end of the sentence, the participant 678 

was instructed to pronounce the sentence in a relatively uniform speed following these go cues. 679 

The inter-sentence time interval and the inter-trial interval were both 3 seconds.  680 

The first four participants (PA1-4) performed the speech task articulating, while the last 681 
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participants (PA5) performed the speech task whispering. We synchronized audio recordings 682 

with ECoG recordings by utilizing a mounted microphone concurrently. We collected two types 683 

of blocks of the sentence task: first 3 optimization blocks (Trial 1-12, containing 118-120 684 

sentences in total for each patient) and one evaluating block (Trial 13-16, containing 38-40 685 

sentences for each patient). 686 

Data acquisition and signal processing 687 

For each participant, two 128-channel electrode grids were placed by an experienced 688 

neurosurgeon. The anatomical positions to place the grids were chosen based on clinical exposure 689 

and avoidance of the tumor. During the tasks, electrocorticography and audio sound were 690 

simultaneously recorded using the Tucker-Davis Technologies ECoG system, at sampling rates of 691 

3052 Hz and 24414 Hz, repectively. To exclude bad channels with artifacts or excessive noise, 692 

ECoG signals on each channel were visually and quantitatively inspected. High-gamma (70-150 693 

Hz) frequency component was extracted via Hilbert transform after ECoG signals got down-694 

sampled to 400 Hz5,13.  695 

Phonetic and phonological transcription 696 

Transcriptions of the audio recordings, encompassing monosyllabic Chinese character, syllable, 697 

and tone labels, were manually annotated by a native speaker at the syllable level using Praat 698 

(Version 6.1.01, https://www.fon.hum.uva.nl/praat/) to ensure fidelity to the participants' actual 699 

vocalizations 5,13. Unexpected voicing unrelated to language task (such as communication with 700 

clinicians) was excluded from samples used in training models. 701 

Computational modeling infrastructure 702 
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The training and testing of the decoding models were performed offline using cluster of multiple 703 

NVIDIA GPUs.  704 

Data splitting 705 

We splitted the data for speech detector and the syllable/tone decoder model testing from electrode 706 

selection and hyperparameter searching. For responsive and discriminant electrode selection and 707 

hyperparameter optimization, only the optimization blocks were used, which contain Trial 1-12 708 

with each trial consists of randomly arranged 10 sentences. The evaluation block contains 709 

remaining Trial 13-16. 710 

During the optimization stage of the speech detector model, we used a six-fold nested cross 711 

validation (CV) and each fold consisted of 2 trials. At evaluation stage, we used a similar cross 712 

validation process, which leaves each trial in evaluation block for testing model, while the other 713 

15 trials for training and validating. For speech detector models, we used 10% of non-testing data 714 

as validation set to perform early-stopping, while the left 90% for training, in each CV runs (Fig. 715 

S1A&B). For syllable/tone decoder model, we trained 5 (optimization stage) or 10 (evaluation 716 

stage) sub-models in each CV runs, with different potions of data performing early-stopping while 717 

left for training. The final model used for evaluation was an ensemble of 5 or 10 sub models. And 718 

the overall decoding performance was evaluated by averaging the test performance in all the CV 719 

runs (Fig. S1C&D). 720 

Speech-responsive electrodes 721 

Speech-responsive electrodes were identified using two-sample t-test. Specifically, each time point 722 

in the [-400 ms, 800 ms] time window relative to the consonant onsets in each word was tested 723 

against the [-1800ms, -400ms] baseline time window before the onset of each sentence. If the 724 
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results were significant (P < 0.01, Bonferroni corrected for the total number of electrodes and all 725 

times points) in 40 consecutive time points (100 ms), the electrode would eventually be marked as 726 

speech-responsive.  727 

• Tone discriminant electrodes 728 

To pinpoint electrodes exhibiting discriminative characteristics among lexical tones, we aligned 729 

the high-gamma responses with the onsets of individual syllables again. Subsequently, we 730 

employed a one-way ANOVA to assess the potential differences in mean high-gamma responses 731 

across the four Mandarin tones. The time window for the average response spanned from -500 ms 732 

to 500 ms relative to the onset, encompassing a total of 400 time points. Significant time points 733 

were identified using a two-sided threshold of P < 0.05, with Bonferroni correction applied for 734 

both the total number of electrodes and time points13. To account for electrodes with multiple peaks 735 

of high-gamma activity discriminant for tone decoding, we set the following criterion: if there was 736 

a continuous 200ms time window in which more than half of the time points were significant, the 737 

electrode would be marked as tone-discriminant.  738 

• Syllable discriminant electrodes 739 

Similar to tone discriminant electrodes, the syllable discriminant electrodes were defined using 740 

one-way ANOVA. We tested whether the mean high-gamma responses of the ten syllables were 741 

significantly different. The time window for the average response spanned from -500 ms to 500 742 

ms relative to the onset, encompassing a total of 400 time points. The significant time points were 743 

determined via aforementioned criterion. Similarly, if there were a 200ms time window in which 744 

more than half of the time points were significant, the electrode would be marked as syllable-745 

discriminant. 746 

• Cortical surface reconstruction and electrodes visualization 747 
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Electrodes on each individual brain were marked on preoperative T1 MRI in BrainLab® 748 

neuronavigation system, which were double-checked by a neurosurgeon via intra-operative 749 

photos13. The reconstruction of cerebral surface, anatomical labeling and plotting were performed 750 

via Freesurfer and customized python codes as previously reported42. 751 

Decoding framework 752 

 We built different neural network modules of speech detector, tone decoder and syllable decoder 753 

to decode speech onsets and offsets, syllable labels and tone labels from the neural activity, 754 

respectively. Inspired by previously published decoding models such as the EEGNet43,44, our 755 

decoders had separable CNN layers extracting within- and cross-electrodes spatiotemporal 756 

features, followed by GRU layers extracting sequential information. Finally, similar to previous 757 

brain-to-text works in non-tonal languages5,9,10,37, we also used a natural language model and a 758 

Viterbi decoder to combine the sequential outputs of the tone and syllable decoders and generate 759 

the entire sentence using maximum a posteriori probability (Fig. 1b).  760 

Speech utterance detection model (speech detector) 761 

The speech utterance detection model processed each time point of neural activity on speech 762 

responsive electrodes using the time window spanning from 0.25 second before the time point to 763 

0.25 seconds after the timepoint. The speech/silent state of each time point was decoded based on 764 

the time-windowed neural activity. 765 

We used the Torch 1.13.1+cu117 Python package to create and train the event classification 766 

model45. The event classification architecture was a CNN structure followed by a stack of three 767 

GRU layers with a latent dimension size of 256 and a dropout of 0.5 applied at each layer.  768 

 The initial CNN structure contains an 1D convolutional layer with a kernel size (FLini) of 3 and 769 
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a stride(STconv) of 1 followed by a Leaky ReLU activation function to introduce non-linearity, 770 

and a max-pooling layer with kernel size (Lpool) of 2 for temporal downsampling46. The initial 771 

processing, which involves convolution and pooling, enhances the model's ability to efficiently 772 

extract local features from the input data. Subsequently, recurrent layers are incorporated to 773 

maintain an internal state over time and assimilate new individual time samples of input data, 774 

making them ideal for analyzing temporally dynamic processes. Additionally, the bidirectional 775 

nature of the Gated Recurrent Unit (GRU) enables the model to grasp both forward and 776 

backward temporal dependencies in the ECoG data, making it a fitting choice for event 777 

classification tasks requiring a comprehensive understanding of sequential context. Following 778 

the GRUs, we implemented a fully connected layer that projects the output of the last layer to 779 

probabilities associated with two target events: rest and speech. During training, the model is 780 

optimized to minimize weighted crossentrophy. The weighted crossentrophy loss was calculated 781 

using the ratio of the number of all the speech time points and the number of all the rest time 782 

points, to offset the bias caused by imbalanced samples. The batch size is 1024 and an Adam 783 

optimizer was used with a learning rate of 0.001. The training process stops after the validation 784 

loss no longer decreases for 10 epochs or after 50 epochs, ensuring that the model has 785 

sufficiently learned the underlying patterns in the data but has not yet overfitted. A schematic 786 

depiction of this architecture is given in Fig. 2f. 787 

During testing, the neural network predicted probabilities for each speech event label (rest, speech) 788 

given the input neural data. To convert these predicted probabilities into the time stamps of speech 789 

onsets, thresholding of predicted speech probabilities is needed. A sliding window of smoothing 790 

size (S) was used to smooth the decoded probability timecourse. Next, a probability threshold (Pt) 791 

was applied to smooth probabilities to binarized values (with a value of 1 for speech and 0 792 
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otherwise). We then sliced these binarized values by applying time thresholds for both a minimum 793 

continuous duration of silent period before the predicted onset, and a minimum duration of 794 

continuous speech period after the predicted onset (off-time threshold (Toff) and on-time threshold 795 

(Ton)). Detailed examples of thresholding process see Fig. 3b. 796 

But the required continuous state is not strict, we set an error permissive rate (EPR) to allow a 797 

small portion of timepoints with incorrectly predicted speech event labels presented during both 798 

continuous silent period before the predicted onset as well as the speech period after the predicted 799 

onset. Besides, we will not predict two or more onsets within 0.5s, since normal speaking rate of 800 

our task do not allow such short interval and this update in algorithm speed up the iteration process. 801 

In all, this process of obtaining onset events from the predicted probabilities was parameterized by 802 

five thresholding hyperparameters: the size of the smoothing window (S), the probability threshold 803 

value (Pt), the off-time threshold (Toff) and on-time threshold (Ton), and the error permissive rate 804 

(EPR). Hyperparameter optimization was performed to eventually determine the exact values for 805 

these parameters for the evaluation stage. 806 

Tone decoder 807 

For each speech utterance onset that was detected or manually aligned, tone decoder computed 808 

tone likelihood by processing the neural activity in tone- discriminant electrodes spanning from 809 

0.2 second before to 0.6 seconds after the detected onset of speech. 810 

The tone decoder consists of ten ensemble neural networks with the same hyper-parameters but 811 

different validation sets and training sets (see Fig. S1D). The input was high gamma ECoG data 812 

array shaped N × T, N is the number of tone-discriminated electrodes, while T = 320, which is 813 
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calculated by the time duration (0.8seconds) multiplies downsampled ECoG frequency (400 Hz). 814 

Each network among 10 networks consists of the following stages: 815 

• Stage 1 816 

In the first stage, one-layer 2D convolution with the kernel size (FLini, N) and a stride of (STconv, 817 

0), followed by a batch normalization layer (momentum=0.1, affine=True, and eps=1e-5) applied 818 

to the output of the spatial convolution. After an Exponential Linear Unit (ELU) activation 819 

function. Max-pooling was then performed along the temporal axis with a kernel size of (Lpool, 1) 820 

and a stride of (STpool, 1). During training, we applied a dropout layer a dropout value of D in the 821 

end of each CNN block for regularization to prevent overfitting. 822 

• Stage 2 823 

In the second stage, Clayer convolutional pool blocks were applied after the aforementioned pooling 824 

layer in series, each consisting of a dropout layer, a convolutional layer with kernel size (FLconv, 825 

1) and a stride of (STconv, 1), batch normalization, ELU activation, and max-pooling identical with 826 

aforementioned ones. These blocks further processed and extracted features from the data. During 827 

the first two stages, the filter number was set equal to Cdim. 828 

• Stage 3 829 

In the last stage, the output from the last convolutional pool block was fed into a stack of Rlayer 830 

bidirectional Gated Recurrent Unit (GRU) layers. Each GRU layer has Rdim hidden units. The final 831 

hidden state of the last GRU layer was passed through a fully connected (dense) layer which project 832 

to 10 output units, representing the number of syllable classes for classification. (Fig. 2g). 833 

 The model was optimized to minimize crossentrophy loss using a batch size of 8 and an Adam 834 

optimizer with a learning rate of 0.0005. The training process stoped after the validation loss no 835 
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longer decreases for 50 epochs. The weighted crossentrophy loss was calculated in the similar 836 

same way as speech detector to offset the bias caused by imbalanced samples.  837 

Syllable decoder 838 

For each speech onset that was detected, the syllable decoder computed syllable likelihood by 839 

processing the neural activity in syllable- discriminant electrodes spanning from 0.4 second before 840 

to 0.8 seconds after the detected onset of speech utterance. The structure and training process of 841 

syllable decoder was identical with the aforementional tone decoder, the only difference between 842 

them was the crossentrophy loss was not weighted, since the syllable is almost balanced-843 

distributed in the task. 844 

Hyperparameter optimization and the universal framework 845 

The speech detector, the tone decoder and the syllable decoder include a total of 25 846 

hyperparameters. To find the optimal combination of these hyperparameters, we used the 847 

hyperopt Python package, which employs probabilistic sampling of hyperparameter 848 

combinations during optimization5. Across our experimentation, we utilized three distinct types 849 

of hyperparameter optimization procedures to fine-tune a total of 25 hyperparameters. (see Fig. 5 850 

for undefined hyperparameters, their searching ranges and their optimal values in each patient). 851 

During the optimization process, all the neural networks were tested through the six-fold (2 trials 852 

per fold) cross-validation.  853 

• Speech detection optimization 854 

We used this procedure to optimize the size of the smoothing window (S), the probability 855 

threshold value (Pt), the off-time threshold (Toff) and on-time threshold (Ton), and the error 856 

permissive rate (EPR). These hyperparameters were not related to the training of the ANN 857 
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models. The predicted time points of speech onsets were derived from the available speech 858 

probabilities through the current combination of thresholding hyperparameters during each 859 

iteration of the optimization procedure. Subsequently, speech detection accuracy (Acc) was 860 

calculated to quantify the performance of the current combination of hyperparameter values. For 861 

timepoint of real onsets, we use 𝑋𝑋� to represent the index of time points within 0.25s range of real 862 

onsets (𝑡𝑡𝑖𝑖∗, 𝑖𝑖 ∈ [1, … , 𝑛𝑛]). For time point of predicted onsets, we use 𝑋𝑋� to represent the index of 863 

time points within 0.25s range of real onsets. Then, we calculated the Acc of  𝑋𝑋�  and 𝑋𝑋�. The 864 

formal expression of this objective function was illustrated through following equations: 865 

𝑋𝑋�[𝑡𝑡] = �
 0, others
1, if min

𝑖𝑖∈[1,…,𝑛𝑛]
|𝑡𝑡 − 𝑡𝑡𝑖𝑖∗| < 0.25 866 

𝑋𝑋�[𝑡𝑡] = �
 0, others
1, if min

𝑖𝑖∈[1,…,𝑛𝑛]
|𝑡𝑡 − 𝑡𝑡𝑖𝑖∗| < 0.25 867 

𝟙𝟙(x) = �0, x ≠ 0
1, x = 0 868 

Acc =  
∑ 𝟙𝟙 �𝑋𝑋�[𝑡𝑡] − 𝑋𝑋�[𝑡𝑡]�𝑡𝑡

∑ 𝑡𝑡
 869 

Acc was calculated to qualify the performance of the speech detector with each hyperparameter 870 

value combination. During the optimization process of one model, 500 hyperparameter value 871 

combinations were evaluated. 872 

Once the most optimized combination of hyperparameters was defined, we calculated the 873 

predicted onset time list for all the 12 trials via six-fold prediction, we compared them with the 874 

ground truth of onset of the 12 trials. If one onset time point in predicted list falls within 0.25s 875 

range of real onsets, the labels (including tone, syllable and Chinese characteristic) belongs to the 876 

manually aligned onset will be given to the predicted time point, which participated in the 877 

following hyperparameter optimization. For those time points cannot match with any real onset 878 
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time points, no labels will be given and this part of the data will not participate in the following 879 

hyperparameter optimization. The similar match process will be performed in the evaluating 880 

stage, calculating confusion matrix for syllable, tone and word on the bases of onset detection. 881 

Because some real onset time points do not match with any detected onset time point, the 882 

number of syllables and tones that actually used in calculating confusion matrices of decoding 883 

performance after automated onset detection is less than the number of onsets detected. 884 

• Tone and Syllable decoder optimization  885 

We used this procedure to optimize ten hyperparameters for both tone decoder and syllable 886 

decoder. These hyperparameters can be divided into two major groups according to their 887 

properties. 888 

The first group includes initial convolution filter length (FLini), stride of convolution (STconv), filter 889 

length of following convolutional blocks (FLconv), max-pooling kernel length (Lpool), max-pooling 890 

stride (STpool), which are five hyperparameters related to the time dimension. 891 

The second group includes the number of sequential convolutional blocks (Clayer), number of layers 892 

of RNN (Rlayer), number of filters in each convolutional process (Cdim), number of dimensions in 893 

each RNN process (Rdim), and dropout value (D), which are five hyperparameters related to model 894 

architectures and sizes. 895 

We performed model testing on manually-aligned-onset dataset and the dataset generated from 896 

predicted onsets by the previously optimized speech detector. And the final loss is the average 897 

value of loss on both datasets, in order to improve the model’s robustness when countering 898 

automatedly aligned neural signals in our final evaluation. Each optimization evaluated 500 899 

different combinations of hyperparameter values. We used the same cross-entrophy loss 900 

functions to calculate the loss during the iteration. 901 
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• The universal framework 902 

 The universal framework shares a predefined set of hyperparameters when testing on all 5 903 

participants. We used the median value of each optimized hyperparameters among 5 participants 904 

as the predefined value of hyperparameters.  905 

Conversion from tonal syllables to Chinese words 906 

Many Chinese characters are homophones that share the same pronunciations (including syllable 907 

and tone), which prevented us from directly generating Chinese sentences using decoded tonal 908 

syllables. To eventually decoding sentences consists of actual Chinese characters rather than 909 

sequences of tonal syllables, we designed a natural language model that computed the next-910 

character transition probabilities given the previous Chinese character in a sequence. We first 911 

divided the sentences into the aforementioned 29 words and phrases consisting of 1 to 4 Chinese 912 

characters. We trained this model on a collection of sentences from the CCL corpus47 that included 913 

transferring pairs (transfers) between those words from the 29-word set. After that, we used a 914 

Viterbi decoder to determine the most likely sequence of words given the predicted tonal syllable 915 

probabilities from the tone decoder and syllable decoder, as well as the word-sequence 916 

probabilities from the natural language model8. With the incorporation of the language model, the 917 

Viterbi decoder was capable of projecting sets of probability (likelihoods) of tonal syllable to exact 918 

Chinese characters, which eventually decoded sentences from neural activity.  919 

Language model 920 

• Collection of the corpus 921 

We used CCL corpus from Peking University47 to distill training dataset for our domain-specific 922 

language model. We first measure the number of transfers between each two phrases (the counts 923 

of the previous phrase transferred to the first word of the next phrase in the whole CCL corpus). 924 
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Due to the inequality of Chinese language, we set a cut-off of 512 counts, and then performed a 925 

ninth root for normalization. Since not all the transfers in our task appeared in CCL corpus, we 926 

also incorporate the transfer probability of our own task corpus into our language model. 927 

• Model fitting 928 

 We extracted all n-grams with n ∈ {1, 2, 3, 4} from each phrase in our task corpus. An n-gram 929 

refers a word lengthen n Chinese characters. For example, the n-grams (represented as tuples) 930 

extracted from the longest phrases “不计得失” in this approach would be: 931 

1. (不)  932 

2. (不计)  933 

3. (不计得)  934 

4. (不计得失) 935 

 Then we expanded our transfer probability matrix into n-grams. We added the number of 936 

transferring from 𝑞𝑞𝑖𝑖−1 (such as (不计)) to 𝑞𝑞𝑖𝑖 (such as (不计得)). Except for full phrases, n-grams 937 

as partial components of phrases can only transfer from 𝑞𝑞𝑖𝑖−1 to 𝑞𝑞𝑖𝑖 . The calculation of number of 938 

each transfering from a full phrase to the beginning of next phrases is aformentioned. 939 

• Hidden Markov Model (HMM) and Viterbi decoding 940 

In this study, we employed a Hidden Markov Model (HMM) for neural activity and speech 941 

modeling similar to that used in previous research5. This model interprets neural activity within 942 

each time window at index 𝑖𝑖 as observed states 𝑦𝑦𝑖𝑖 and treats the word spoken during this 943 

period 𝑤𝑤𝑖𝑖, along with its context 𝒄𝒄𝑖𝑖, as hidden states 𝑞𝑞𝑖𝑖. The model assumed first-order Markov 944 

property and the current hidden state was fully characterized by 𝑝𝑝(𝑞𝑞𝑖𝑖|𝑞𝑞𝑖𝑖−1, 𝑦𝑦𝑖𝑖). The transition 945 
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probabilities, 𝑝𝑝(𝑞𝑞𝑖𝑖|𝑞𝑞𝑖𝑖−1), which represents the probability of transitioning from the n-gram at 946 

index 𝑖𝑖 − 1 to the n-gram at index 𝑖𝑖, can be calculated by word counting from the corpus.  947 

Viterbi decoder5,48-50 was used to identify the most probable sequence of hidden states from the 948 

observed neural activities. The algorithm used dynamic programming and considered the 949 

probabilities of transitioning between hidden states and the likelihoods of observed states. In the 950 

process of identifying the optimal hidden-state sequence, the algorithm calculated the 951 

probabilities of different potential sequences of hidden states. Each potential sequence, or Viterbi 952 

path, was defined by a unique sequence of hidden states (specific word sequence) and its 953 

corresponding probability based on the neural signals observed.  954 

Evaluation 955 

• Evaluation of independent decoding performances via Receiver Operating 956 

Characteristic (ROC) and Confusion Matrices 957 

 To evaluate the performance of our speech detector, we computed the Area Under the Curve 958 

(AUC) of the Receiver Operating Characteristic (ROC) curve for each participant. To evaluate the 959 

tone decoder and syllable decoder, we computed the classification accuracy and plotted the 960 

confusion matrix, based on both the predicted and the manually aligned speech onsets. We also 961 

calculated the classification accuracy and plotted confusion matrices of tonal-syllables and 962 

Chinese characters, on both the predicted and the manually aligned speech onsets, in order to 963 

further assess the capacity of the entire decoding system. 964 

• Evaluation of overall decoding performance via Word Error Rates (WERs) 965 

 To evaluate the overall performance of our neural-to-text decoder, we analyzed the decoded 966 

sentences using Word Error Rates (WERs) between the target and decoded sentences for each 967 
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sentence. WER is a widely-used metric for evaluating predicted word sequences5,51,52. WERs of 968 

each decoded sentence in the evaluating blocks were calculated. 969 

• Comparison with published tone decoder 970 

 To further validate the complexity of tone of sentences compared with tone of single syllable, we 971 

applied our previously published monosyllabic tone decoder on tone decoding in sentence task. It 972 

is a sequential CNN-LSTM structure to generate the syllable label based on manually aligned 973 

neural activity when participants produce eight syllables "ma (tone1), ma (tone2), ma (tone3), ma 974 

(tone4), mi (tone1), mi (tone2), mi (tone3), mi (tone4)" 13. (Fig. S2) 975 

• Tone intelligibility assessment (IA) 976 

Crowdsourcing-based listening tests are conventional for evaluating the quality of outputs in 977 

natural language processing13. To further validate the variance of lexical tones in natural sentences 978 

compared with the canonical tones of single syllables, we extracted the audio clips of each syllable 979 

utterance in the evaluation blocks of each participant, using the same timespan as the neural 980 

decoder. We shuffled the sequence clips by syllables to avoid any possible of leakage of semantic 981 

information. Evaluators were instructed to listen to the audio clip and then choose from the options 982 

(four lexical tones) which tone they had just heard13. For sentence tone IA, we extracted the audio 983 

clip of each sentence each patient pronounced in evaluation blocks. The evaluators listen to the 984 

audio of the entire sentence and then choose from the options for each syllable in the sentence. 20 985 

evaluators (native Mandarin speakers) were instructed to listen to the isolated audio clips and to 986 

decide which tone they had just heard. For sentence tone IA, we extracted the audio clip of each 987 

sentence each patient pronounced in evaluation blocks. The evaluators were instructed to listen to 988 

the audio of the entire and then choose from the options which tone they had just heard for each 989 

syllable in the sentence. We recruited 20 native Mandarin speakers from the Medical School of 990 
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Fudan University, which do not know the purpose of this test before the evaluation. The tone IA 991 

score was defined as the average accuracy of evaluators’ judgement.  992 

IA =  1 −
𝑇𝑇
𝐴𝐴

 993 

Where T is the number of error tone choices; A is the number of total tests13.   994 

• Comparison with baseline models 995 

We evaluated the performance of our models and compared it against several baselines. The 996 

baseline models include (1) CNN models, which do not contain RNN structure, all the other parts 997 

remain identical with original optimized models. (2) RNN models, which do not contain CNN 998 

structure, all the other parts remain identical with original optimized models (Fig. S3). WERs of 999 

decoded sentences were calculated to evaluate the performance of these baselines. 1000 

• Electrode contributions (saliences) 1001 

To quantify the contribution of each ECoG electrode to the brain-to-text decoding, we performed 1002 

the electrode salience analysis5,53. In particular, we backpropagated the final loss function of each 1003 

ANN module to each electrode in the input layer by computing the gradient. The magnitude of this 1004 

gradient would quantify the amount of influence that a unit perturbation in each electrode would 1005 

have on the final output of the neural network. We computed the Euclidean norm across time and 1006 

across evaluation blocks of the resulting gradient values for each electrode. Finally, we normalized 1007 

each set of electrode saliences by calculating their root mean square values (Fig. S4).   1008 

 1009 

 1010 

 1011 

 1012 
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 1041 

Fig. S1. Schematic depiction of data organization 1042 

A. During the optimization stage of the speech detector model, we used a six-fold nested cross 1043 
validation and each fold consisted of 2 trials, while 10% of data in each trial of the training set 1044 
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were separated as validation set in order to performing early-stopping. 1045 
B. During the evaluation stage of the speech detector model, we used a similar cross validation. 1046 

Still, 10% of data in each training trial were separated as validation set in order to performing 1047 
early-stopping. 1048 

C. During the optimization stage of the syllable/tone decoder model, we used a six-fold nested 1049 
cross validation and each fold consisted of 2 trials. In each fold, we trained 5 sub-models with 1050 
different potions of data performing early-stopping while left for training. The 1051 
training/validation/test split was 4:1:1. 1052 

D. During the evaluation stage of the syllable/tone decoder model, we used a similar cross 1053 
validation process. In each fold, we trained 10 sub-models with different potions of data 1054 
performing early-stopping while left for training. The training/validation/test split was 12:3:1. 1055 

Fig. S2. Schematic of control models for speech detector and tone/syllable decoder.  1056 

A. CNN baseline for speech detector, which do not contain RNN structures, and all the other parts 1057 
remain unchanged. 1058 

B. CNN baseline for tone/syllable decoder, which do not contain RNN structures, and all the other 1059 
parts, including optimized hyperparameters, remain unchanged. 1060 

C. RNN baseline for speech detector, which do not contain CNN structures, and all the other parts 1061 
remain unchanged. 1062 

D. RNN baseline for tone/syllable decoder, which do not contain CNN structures, and all the other 1063 
parts, including optimized hyperparameters, remain unchanged. 1064 
 1065 

 1066 

 1067 

 1068 

 1069 

 1070 
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 1071 

 1072 

Fig. S3. Schematic of our previously published tone decoder which successfully decoded tone from 1073 
intracranial neural signals while participants articulate isolated monosyllables of four target tones.  1074 

We applied our previously published monosyllabic tone decoder on tone decoding in sentence task. It is a 1075 
sequential CNN-LSTM structure to generate the syllable label based on manually aligned neural activity 1076 
when participants produce eight syllables "ma (tone1), ma (tone2), ma (tone3), ma (tone4), mi (tone1), mi 1077 
(tone2), mi (tone3), mi (tone4)"13. 1078 
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Fig. S4. Participants’ brains reconstruction overlaid with the locations of the placed electrodes and 1080 
their relative contribution of each selected electrodes in decoding onset/syllable and tone.  1081 

A-E shown PA1, PA2, PA3, PA4 and PA5. Left part shown speech responsive electrodes in yellow shadows, 1082 
middle shown syllable discriminative electrodes in blue shadows, while right shown tone discriminative 1083 
electrodes in red shadows. Radius of shadows around electrodes shown contribution normalized root 1084 
mean square (RMS), with a scale shown at the upper left of each subplot. The colors of the electrodes 1085 
themselves represent whether they are speech responsive or syllable/tone discriminative, which is the 1086 
same as Fig. 2a-e. 1087 
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