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Abstract

Speech brain-computer interfaces (BCls) directly translate brain activity into speech sound and
text, yet decoding tonal languages like Mandarin Chinese poses a significant, unexplored
challenge. Despite successful cases in non-tonal languages, the complexities of Mandarin, with
its distinct syllabic structures and pivotal lexical information conveyed through tonal nuances,
present challenges in BCI decoding. Here we designed a brain-to-text framework to decode
Mandarin tonal sentences from invasive neural recordings. Our modular approach dissects
speech onset, base syllables, and lexical tones, integrating them with contextual information
through Bayesian likelihood and the Viterbi decoder. The results demonstrate accurate tone and
syllable decoding under variances in continuous naturalistic speech production, surpassing
previous intracranial Mandarin tonal syllable decoders in decoding accuracy. We also verified
the robustness of our decoding framework and showed that the model hyperparameters can be
generalized across participants of varied gender, age, education backgrounds, pronunciation
behaviors, and coverage of electrodes. Our pilot study shed lights on the feasibility of more
generalizable brain-to-text decoding of natural tonal sentences from patients with high

heterogeneities.
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Introduction

Sentence is the basic language unit embodies our construal of representational meaning and

interpersonal meaning, which constitutes the basis for daily communication!. Recent
investigations have demonstrated the possibility of synthesis and decoding sentences in non-tonal
languages 2"!! using intracranial neural recordings such as electrocorticography (ECoG) and Utah
array. These studies have primarily relied on decoding the spatiotemporal neural patterns
associated with articulatory movements—such as those of the lips, tongue, and larynx—in the
ventral sensorimotor cortex during intended speech production. These advancements provided
novel approaches for treating anarthria'?> and enhanced the communication efficacy of speech

brain-computer interfaces (BCIs)">.

However, decoding tonal sentences is still a largely-unexplored work. More than 60% of the

languages in the world are tonal'*

, with approximately 2 billion people speaking tonal languages,
including most Sino-Tibetan languages and the entire Tai-Kadai family'>. Pitch in these languages
is used to distinguish lexical and grammatical meaning'®>. While prior research has investigated
decoding stereotypical instances of lexical tones from neural activity for monosyllabic speech!?,
decoding continuous tonal sentences is still a challenging issue. Unlike the relatively stable
acoustic cues in canonical forms, natural speech introduces substantial variability in tone
components. According to Fujisaki model, these components, typically represented by base
frequency (F0) contours, encompass base frequency, phrase variations, and accent components'®!”.
Furthermore, the influence of tone sandhi—alterations in a morpheme's tone due to syntactic

context—adds an additional layer of complexity's. Altogether, these variances make decoding

tonal sentences more complicated than both non-tonal sentences and isolated tonal syllables.
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Besides, existing invasive language BCI usually reported success in individual cases, usually with
intense hyperparameter optimizing>®!°. Few studies have tested the replication or generalization
of the decoding framework. It remains uncertain whether the same set of model design
hyperparameters—such as the number of convolution and recurrent blocks, hidden variables per
layer, and onset detection thresholds—will generalize across different subjects. Consequently,
verifying the generalizability of these published frameworks, especially when applied to patients
exhibiting high heterogeneity, remains elusive. In clinical settings, different patients need to
restore speech function via speech BCI have varied pronunciation behaviors, which is especially
obvious among tonal languages such as Mandarin Chinese. Mandarin speakers, influenced by
regional dialects such as Northern, Jianghuai, and subgroups like Wu-Tai, Shanghainese-
influenced, Northeastern Mandarin, demonstrate distinct tonal and syllabic variations'®. Though
sharing the same written form of Chinese word, speakers of these mandarin branches have distinct
pronunciation behaviors on both tones and syllables. While these distinct pronunciation behaviors
or preferences do not affect speakers’ daily communication, they add significant challenges to the
decoding task. In addition to the variance in pronunciation behaviors, the inherent variations in
language-functional cortical areas also contribute to the inter-subject variances. It is impossible
for invasive devices to collect identical neural signals from different patients even if the placement
of invasive electrodes is stringently controlled. Whether and to what extent these bias from both
language behaviors and varied neural signals will affect the robustness of language decoding
framework remain unknown. This uncertainty challenges the eventual generalization of speech

BCI across patients with high heterogeneity.

In this study, we aim to decode Mandarin tonal sentences from invasive neural recordings using

high-density ECoG. Targeting functionally separate neural populations within speech-related brain
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regions, we tailored distinct neural network modules which detected the onsets of the utterance of
each individual Chinese character and then decode tone labels and syllable labels in parallel,
reflecting the inherent parallel coding previously observed in tonal language articulation!20-22,
Subsequently, a language model was used to calculate the Bayesian likelihood of the entire
sentence from the probability distribution of tonal syllable sequences, integrating the contextual
and prior information (Fig.1). Moreover, we established a versatile framework using a set of
standardized hyperparameters, eliminating additional needs for hyperparameter optimization, and
assessed its potential for generalization by testing across multiple patients. This approach decoded

Mandarin tonal sentences across diverse patient profiles without specific hyperparameter

adjustments.
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Fig 1 Schematic overview of the brain-to-text decoder for natural speech of a tonal language.
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77  a. Schematic overview of the tonal speech production task. Each participant was guided by a
78 visual cue to produce one of the ten sentences. Each trial began with a fixation cross at the
79 center of the screen for 3 seconds, and the sentence was shown in the middle of the screen
80 in grey text. With each word turning black for 1.2 seconds consecutively from the
81 beginning to the end of the sentence, the participant was instructed to pronounce the
82 sentence following these go cues, the pace of the speech was not strictly aligned with the
83 visual cues.

84 b. During the experiment, neural activity from speech-related cortex was recorded using
85 implanted high-density electrocorticography array when the participant was instructed to
86 read sentences consisted of words from a predefined vocabulary set of 40 words. The
87 preprocessed neural signals from responsive electrodes were sampled by sliding window
88 and was sent to the speech detection module (speech detector) to detect the onsets of words.
89 The peri-onset neural activity within a fixed time window was used to compute the base
90 syllable probability (across 10 possible syllables) and lexical tone probability (across 4
91 tones) of the word via a tone decoder and a syllable decoder respectively. A Viterbi
92 decoding algorithm used these probabilities in conjunction with word-sequence
93 probabilities from a pre-trained natural language model to decode the most likely sentence
94 given the current neural activity.

95

96 Results

97 In this study, we recorded the neural activity of five native Mandarin-speaking participants who
98 underwent awake surgery to treat brain tumors. Each participant was guided by sequential visual
99  cues to produce 10 sentences consisted of 5-8 Chinese characters from a corpus of 40 Chinese
100  characters with varied tones (Fig. 1a). Among 5 participants, PA1-4 completed the speech
101  production task using normal articulating, while PAS5 completed the speech production task using
102  whispering. Participants’ brain activity was recorded by temporally placed high-density ECoG
103  grids. Subsequently, we assessed the efficacy of our proposed brain-to-text speech decoder across

104  these 5 participants.

105 Decoder overview
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106  Our brain-to-text decoder comprises interconnected modules: a speech detector, tone decoder,
107  syllable decoder, and a language model, functioning in a sequential stream. To decode Mandarin
108  tonal sentences from high-density ECoG neural recordings, our brain-to-text decoder starts with a
109  speech detector, which takes in sequence of neural activity recordings of pre-selected speech-
110  responsive electrodes and predicts whether each timepoint belongs to speech production or resting-
111 state. The output of the speech detector was used to identify speech production epochs, where each
112 epoch corresponding to the time interval of one Chinese character. Based on the decoded speech
113 production epochs, our tone and syllable decoders then decode tone label and syllable label from

114  neural signals of pre-selected tone and syllable discriminative electrodes during each epoch.

115  For PA1 to PA4, we identified 108,144,199, and129 speech responsive electrodes, 30,28,68, and
116 75 syllable discriminative electrodes and 10,12,21, and 48 tone discriminative electrodes,
117  respectively. For PAS, we found 118 speech responsive electrodes, 47 syllable discriminative
118  electrodes and 14 tone discriminative electrodes. The coverage and overlapping relationship of

119  these electrodes were shown in Fig. 2a-e.

120  For onset predicting, the neural activity across all speech-responsive electrodes was processed time
121  point by time point by an artificial neural network (ANN) containing sequentially arranged
122 Convolutional Neural Network (CNN) structure, a stack of Gated Recurrent Unit (GRU) layers
123  and a single dense (fully connected) layer, capturing both forward and backward temporal
124  dependencies in neural signals, which was designated for inference on dynamic temporal processes.
125  The dense layer projected the latent dimensions of the last GRU layer into probability space for
126  two event classes: speech and rest. (Fig. 2f) For simplify, all the hyperparameters in this step was
127  fixed. After that, the curve of the predicted probabilities along the dimension of time was smoothed

128  and binarized according to undefined smoothing window (§) and probability threshold (P;), the
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129  onset of each utterance was then predicted if a lasting silence states (7o) before the onset and a
130 lasting speech state (7ox) after it, while slightly errors labels within an undefined error permissive
131  rate (EPR) was also allowed (Fig. 3b). These five undefined hyperparameters need further tuning

132 through grid search for each participant.

133 As for tone and syllable decoder, a 1.2-second time window for syllable and 0.8-second time
134  window for tone of high gamma activity was processed by an ensemble of 5 pairs (10 total)
135  ensemble ANN models. ANNs in tone and syllable decoder share the same architecture but
136  different in their own hyperparameters. Within each ANN, the high gamma activity was processed
137 by an initial convolution with initial filter length (FLix;), stride of convolution ($7¢env). This initial
138 layer was followed by undefined number (Cayer) of CNN unit?>. Each CNN unit constituted of a
139  temporal convolution with undefined kernel length (FLconv), aforementioned stride length and
140  dimension (Cuim), a batch normalization, ELU activating function®’, a dropout layer with dropout
141 rate (D) and maxpooling layer with max-pooling kernel length (Lpoer) and max-pooling stride
142 (S8Tpoor). After that, data was processed by undefined number (Ryqyer) of stacked bidirectional gated
143 recurrent unit (GRU) layers with undefined number of dimension (Raim) >*. A dense layer projected
144  the final GRU layer into probability of syllable and tone of each of the words from the 10-syllable
145  set or 4-tone classes. Finally, we averaged these probability distributions from ensembled ANN

146  models to get the predicted syllable and tone probabilities. (Fig. 2g) It is worth noting that all the

147  aforementioned undefined hyperparameters required further tuning for each participant.

148  Subsequently, a language model integrates these decoded tone and syllable labels, along with prior
149  information of their transitional probabilities, to compute the Bayesian likelihood of entire word

150  sequences.
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154 Yellow: responsive electrodes; red: tone-discriminative electrodes; blue: syllable-
155 discriminative electrodes. Electrodes with combined feature were plotted with mixed
156 colors, nonresponsive electrodes were plotted as small black dot. Venn diagrams showed
157 the number of electrodes in each category for each participant.

158 f. Speech detection model schematic. Predefined hyperparameters in ANN and their values
159 were shown in italic.

160 g Syllable classification model schematic. CNN unit shown in green frame while RNN unit
161 shown in yellow. All of the undefined hyperparameters were shown in Italic, which can be
162 roughly divided into time-dimension-related group and size-related group. Former group
163 includes initial convolution filter length (FLini), stride of convolution ($7conv), filter length
164 of following convolutional blocks (FL¢onv), max-pooling kernel length (Lpeer) and max-
165 pooling stride ($7po0r). Later one including number of sequential convolutional blocks
166 (Clayer), number of layers of RNN (Ryqyer), number of filters in each convolutional process
167 (Cdim), number of dimensions in each RNN process (Raim), and dropout value (D)) The tone
168 classification model shared the same architecture with syllable classification model but
169 different hyperparameters.

170

171  Independent performance of speech detector, tone decoder and syllable decoder

172 First, we evaluated the performance of each individual decoder module. Since these decoder
173  modules work in sequential order, the performance of the tone and syllable decoders would rely
174  on the output of the speech detector. To evaluate the independent performance of these decoder
175  modules, we first calculate the decoding accuracies of syllable, tone, tonal syllable, and Chinese

176  characters on manually aligned speech onsets rather than onsets predicted by the speech detector.

177  Each of the participants completed 158 to 160 sentences in the speech production task. Using
178  nested cross-validation, we trained the brain-to-text decoder for each participant and evaluated the
179  decoding performance. Among five participants, our speech detector reached an area under curve

180 (AUC) of 0.96 to 0.99 (Fig. 3a). The tone decoder reached an accuracy of 57%+12% (mean [+

181  SD] classification accuracy across the 4 target tones in 5 participants, chance 25%) on manually

182  aligned neural signals (Fig. 3¢). Syllable decoder reached an accuracy of 69%+5% (mean [£SD]

183  classification accuracy across the 10 target syllables in 5 participants, chance 10%) on manually


https://doi.org/10.1101/2024.03.16.585337
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.16.585337; this version posted March 31, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

184  aligned neural signals (Fig. 3d). When multiply raw predicted probability of tone and syllable, we

185  acquired raw decoding accuracy of all the predicted tonal-syllables, which reaches 46% + 8%

186  (mean [+SD] classification accuracy across the 40 tonal syllables on 5 participants, chance 3.0%)
187  at the level of tonal syllable (Fig. 3e). After applying language model to calculate corresponding

188  Chinese words, the accuracy at the level of Chinese words reaches 87% +4% (mean [£SD]

189  classification accuracy across the 40 Chinese words on 5 participants, chance 2.5%) (Fig. 3f).

190 Overall decoding performance of tonal-sentences

191  After evaluated the independent performance, we then tested the performance of all the modules
192  when they were interconnected and worked in a stream. Aligned with speech onsets detected by

193  speech detector, tone decoder achieved an accuracy of 56%+13% (mean [+SD], Fig. 3g), while
194  syllable decoder achieved an accuracy of 64%+6% (mean [£SD], Fig. 3h). Accuracy at the level
195  of'raw tonal syllable reached 44%+7% (mean [+SD], Fig. 3i), while the final accuracy at the level
196  of Chinese words reaches 82%+4% (mean [+SD], Fig. 3j). These results were consistent with the

197  independent module performance, when actual speech onsets were manually aligned. We also
198  calculated the word error rate (WER) of each decoded sentence. Decoding accuracy was consistent

199  across participants (one way-ANOVA, F(4, 45) = 0.65, p=0.63), as the overall WER was 25%+
200 6%, 21%+5%, 21%+ 6%, 14%+3%, 18% +4% (mean [£SE]) from PA1 to PAS. For each

201  individual sentence, WER ranged from 1% to 52%. 47.74% of all the sentences (95/199) were
202  decoded correctly (WER=0) (Fig. 3k). There was no significant difference (Pearson’s correlation,

203 r =-0.03, P = 0.61) between the decoding accuracy and the complexity (number of words or
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204  phrases) of the sentence (Fig. 3m), suggesting that our proposed method worked for both short

205 and long sentences.
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206  Fig 3. Evaluation of the overall neural-to-text decoding performance of the decoder.
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a. Receiver Operating Characteristic (ROC) curves and corresponding area under curve
(AUC) of speech detectors in each participant.

b. One example trial, in which the participant produced the sentence “ft &~ Bt (His elder

brother ignores him). The raw speech sound waveform was plotted in black. The time
course of the predicted speech probability was plotted blue, while speech probability after
smoothing and binarized was plotted red and orange. Finally, the detected speech event
onsets from the neural decoder was plotted as yellow dotted vertical lines. All of the
undefined hyperparameters were shown in Italic.

c-f.  Confusion matrices of c) the tone labels, d) the syllable labels, €) the tonal syllables, and f)
the words (with language model), evaluated on the test set, using manually aligned actual
speech onsets.

g-j.  Confusion matrices of g) the tone labels, h) the syllable labels, 1) the tonal syllables, and j)
the words (with language model), evaluated on the test set, using decoded speech onsets
from the onset decoder.

k. The averaged word error rate (WER) of decoded sentences in 5 participants, mean [+sem],
the vertical dotted line indicated the overall averaged performance across all 5 participants.

1. Performances of the speech detector, the tone decoder, the syllable decoder and the overall
performances of each participant (in the same color keys as panel k), shown by AUC of
speech-silent classifier (AUC onset), tone accuracy (Acc tone), syllable accuracy
(Acc_sylb), word accuracy (Acc_word) and WER respectively.

m. The averaged WER of each individual sentence across all 5 participants, mean [+SE],
dotted line indicated the average performance across all sentences.

Robustness of the speech decoder under tonal variance in natural speech

In natural speech, the actual pitch trajectories of lexical tones often deviate from their canonical
forms, due to accent, emotions, and other contextual effect such as coarticulation and tone sandhi®>.

For example, all the patient articulated the tone of “AN” in “ANi145 2k with a pitch trajectory more
similar to tone 2 rather than tone 4 in single syllable form or in other phrases such as “f~HAR",

due to the rule of tone sandhi (Fig 4a). Even the same tonal syllable with different phonological
context would result in different pitch trajectories (Fig 4b). This suggests that the underlying neural
code commanding tone articulation may also encounter great variance. Therefore, the decoding

algorithm should not only consider the stereotypical canonical monosyllable instances of lexical
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239  tones, but also able to account for such significant variance during natural speech and robustly

240  decode lexical tones regardless of the variance.

241 First, we quantify the variance caused by tonal sentence context and tone sandhi behaviorally. We
242 performed tone intelligibility assessment (IA) test through which native mandarin speaking
243 participants listening to audio of each tonal Chinese word clipped from the natural tonal sentences

244 and judging the tone. We find the accuracy of the tone IA test only reached 70%+2% (mean [£SE]),

245  significantly lower (t-test, #(38) = 7.38, p = 7.6e-9) than behavioral performance under full natural

246  context (tone IA accuracy 91%+ 1%, mean [+SE], Fig 4c). Therefore, using contextual information

247  is important for listeners to overcome tonal variances in natural speech production.

248  Similarly, given only monosyllabic information, the tone decoder would perform suboptimal. To
249  show this, we adopted a baseline monosyllable decoder model previously used in Liu et al'>. The
250  monosyllable decoder only took in the neural activity aligned to the current syllable utterance and
251  did not consider contextual syllables. In our test dataset, the monosyllable baseline decoder model

252 achieved an averaged tone decoding accuracy of 35%+3% (mean [£SE], Fig. 4¢).

253  Finally, we tested the performance our proposed sentence decoder. We compared our tone-decoder
254  (without the language model) with our previous published tone decoder designed for

255  monosyllable!. Our framework (decoding accuracy 58%+9%, mean [+SE]) outperformed (t-test,
256 #(30) = -4.62, p = 6.9x10-5) previous monosyllable tone-decoder (decoding accuracy 32%+3%,

257 mean [+£SE]) on tonal sentence decoding task, which suggests our framework is more robust on
258  decoding tone components from natural language settings with multiple and unbalanced syllables.
259  Furthermore, after introducing language model to our decoding framework, a tone decoding

260  accuracy of 93%+3% (mean [+SE]) was achieved, which significantly exceed (t-test, #(34) = 7.12,
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261 P =3.1x10-8, Fig. 4¢) the accuracy of monosyllable tone 1A results (70%+2%, mean [+SE]), and
262  approximate the actual behavioral performance of native speakers under natural context (91%+

263 1%,). Hence, applying language model will largely eliminate the tone variance in natural language
264 by introducing contextual relationships, which is a promising solution of decoding tone in natural

265  tonal sentences accurately.

266  Speech decoding during non-intelligible tonal speech production

267  To further evaluate the robustness of our proposed decoder under different speech production
268  scenario, we tested if the decoder could decode from patient who did not produce intelligible
269  speech. In particular, PA5 completed the speech production task using whispering and the
270  produced tonal speech was largely non-intelligible. We first plot the Mel-spectrograms of Chinese
271 words clipped from whispering natural tonal sentences, finding no obvious base frequency (F0)

272 and consonant peak (Fig. 4b). Furthermore, the tone IA score of PAS was 23%+2% (mean [£SE)),

273  which was significantly lower than tone IA scores of normal articulating audios (t-test, #(28) = -
274 12.18, p =1.1x10-12) and within the range of chance level (Fig. 4c). Therefore, behaviorally PAS

275  was not able to produce intelligible tonal speech during the task.

276  We then compared the tone-decoding accuracy of our framework on both participant PAS and
277  other normal articulating participant, the intended speech was consistently decoded, the average

278  accuracy was 93%+3% and 95%+2% (mean [+SE]) with language model, 58%+9% and 51%+
279 2% (mean [+SE]) with language model, no significant difference was observed (t-test, with
280 language model: #(18) = 0.48, p = 6.4x10-1, without language model: #(18) = -0.79, p = 4.4x10-

281 1)
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282  Finally, tone decoding accuracy and the tone IA scores of each syllable in the 4 articulating
283  participants were significantly correlated (Pearson’s correlation »=0.61, p = 2.9x10-5), indicating
284  our tone decoder learned from behaviorally-relevant tone-related neural features, rather than other

285  co-variants (Fig. 4d).

286
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287 Fig 4. Evaluation of tonal decoding under natural contextual variances and whispering.
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288 a-b) Averaged pitch contours (mean [£SE]) of different Chinese characters of the same tonal

289 syllables (a: bu4, also the same Chinese character ““A” which represents negative meanings
290 such as “not”, b: ji4), black dots indicated time points with significant mean difference
291 (one-way ANOVA, p < 0.05). The text transcriptions were shown in the bottom with the
292 specific words highlighted in the corresponding colors. Corresponding Chinese characters,
293 Pinyin, and English translation of the choosen syllables were shown in the same color as
294 the pitch contour at the right part of the figures. In the last sentence of the subplot a, the
295 tone 4 of “ji” (also shown in color) leads to the change in the tone of previous “bu”, due to
296 the rule of tone sandhi.

297 ¢ Tone decoding performances (mean [+SE]) of previous monosyllabic neural decoding
298 model (monosyllabic model), our sentence-based neural decoding model without
299 language model (sentence model), our sentence-based neural decoding model with
300 language model (speech sentence+L.M), the accuracy of tone intelligible analysis (tone IA
301 score) by 20 volunteers using the corresponding speech audio syllable clips (tone [A), and
302 speech audio of each full sentences (speech tone IA). Blue dotted line indicated chance
303 level (25%); *** p <0.001, t-test, two-sided.

304 d) The mel-spectrograms of participant (PA1) spoke aloud four tones of “zhi” (upper row),
305 compared to the mel-spectrograms of participant (PAS) whispering four tones of “zhi”
306 (bottom).

307 e) Tone decoding performances using our proposed sentence decoder without language model
308 (sentence_model) and with language model (sentence model + LM), and the tone IA
309 scores (mean [£SE]) evaluated on the speech and whisper participants.

310 o) Scatterplot showing the correlation between of tone decoding accuracy (Acc_pred) and
311 tone IA score (Acc_IA) of articulating participants (Pearson’s correlation, » = 0.61, p =
312 2.9x10-5). Whispering data shown in purple, which was not included in the linear
313 regression due to randomly distributed tone IA scores.

314

315 Universal decoding framework with predefined hyperparameters is applicable on

316  participants with great variations

317  ANN-based BCI decoders often encounter model hyperparameters such as depth and width of the
318 network, kernel size and strides, dropout rate, etc. Training these models usually require
319  optimization of these hyperparameters for each individual subject. A key factor of the
320  generalizability of the BCI decoder is how robust the model performance is regarding different

321  sets of hyper-parameters across participants. To get an overall understanding of heterogeneity
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322  across participants, we computed their best hyperparameter combinations of speech detector, tone
323  decoder and syllable decoder chosen by the optimization process. These hyperparameters include
324  smoothing window (S5), the probability threshold value (P), the off-time threshold (7,5) and on-
325  time threshold (7,x), and the error permissive rate (EPR) which are related to the thresholding
326  utterance onsets; filter lengths (FLis for the first convolutional layer, FLcony for the rest
327  convolutional layers, and Lpes for max-pooling kernel) and strides ($7cony for convolutional
328 layers and S7po0 for max-pooling layers) which determined the temporal feature of neuro-decoders;
329  as well as depths (Ciayer for sequential convolutional blocks and Riayer for stacked recurrent layers)
330  and widths (Cuim for number of filters for convolutional process, Raim for number of dimensions in
331  each RNN process, D for dropout value) which determined the overall model architecture.. Very
332 few optimized hyperparameter remained the same across all participants, while most optimal
333  hyperparameters varied across participants with variations of age, gender, speech behaviors and
334  electrodes coverage (Fig. 5a-e). To figure out the impact of such heterogeneity on decoding
335 performance in our framework, we picked the medium value of each hyperparameter and
336  constructed a fixed pre-defined hyperparameter set. We then applied a universal decoder (UNI) on
337 all the participants using this fixed pre-defined hyperparameter set. We found this universal
338  decoder performed similar to (pair-wise t-test,PA1: #(9) = -0.62, p = 5.5%10-1, PA2: #9) = 0.05, p
339 =9.6x10-1, PA3: #9) =-2.00, p = 7.6x10-2, PA4: 1(9) = 0.23, p = 8.3x10-1, PAS: #(9) = -0.55, p
340 = 5.9x10-1) individually-optimized frameworks with hyperparameters optimized on individual
341  participants (Fig. 5f). Also, the decoding performance of universal framework across participants
342  was stable (oneway ANOVA, F(4, 45)=1.11, p=3.6x10-1). The UNI decoder even outperformed
343  four control models only contained RNN and CNN part of the framework (CNN and RNN) with

344  optimized hyperparameters. Mean WERs of decoding sentences through UNI remained lowest in
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all participants (Fig. 5g). Though the advantage was not significant in each individual participant

due to relatively small sample size, it was significant after combining data of all the participants

(paired t-test, UNI with CNN, #98) = -3.29, p = 1.8x10-3, UNI with RNN, #(98) = -4.97, p =

8.3%10-6).
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Fig 5. Evaluation of the neural decoder model hyperparameters across different

participants.

The optimal combinations of hyperparameters for speech detector in 5 different subjects

(colors consistent in f and g): § represents the smoothing size, P; represents probability
threshold, 7o represents off-time threshold and 7,, for on-time threshold, EPR represents
error permissive rate (detailed description of these hyperparameters see Methods Section.

The optimal combinations of hyperparameters for the tone decoder: b) FLin and FL. o

represents the filter length of the initial convolutional layer and all following convolutional
layers, ST.on represents for stride of all convolutional layers. Lyoo and STpon represent for
pooling length and stride of all pooling layers; €) Riayer and Raim represent numbers of layers
and hidden units of bidirectional Gated Recurrent Unit (GRU). Ciayer and Cuim represent
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360 number of convolutional-pooling blocks and number of filters in each convolutional layer.
361 D represents dropout value of each drop-out layers.

362 d-e) The optimal combinations of hyperparameters for syllable decoder, similar to b, c.

363 ) Comparison of decoding performances on each individual participant between individually-
364 optimized decoders and the universal decoder with shared hyperparameters. In all the participants,
365 universal decoder showed no significant difference from individually-optimized decoder (pair-
366 wise t-test,PAl: #9) = -0.62, p = 5.5%10-1, PA2: #9) = 0.05, p = 9.6x10-1, PA3: #9) = -
367 2.00, p =7.6x10-2, PA4: t(9) = 0.23, p = 8.3x10-1, PAS: #(9) = -0.55, p = 5.9x10-1).

368 g Comparison of decoding performances on each individual participant between universal
369 frameworks (UNI) and customized control frameworks with hyperparameters optimized.
370 In all the participants, UNI show lower WER than control models. In PA1, PA2 and PA4,
371 these is significance difference (pair-wise t-test, PA1_UNI with PA1 RNN: #©9) =-3.38, p
372 = 8.1x10-3, PA2 UNI with PA2 RNN: #9) = -7.00, p = 6.4x10-5, PA2 UNI with
373 PA2 CNN:#©9)=-2.33,p=4.5x10-2, PA4 UNIwith PA4 CNN: #9)=-2.44,p=3.7x10-
374 2)between decoding performances of UNI and control models.

375

376  Discussion

377 In this study, we present a brain-to-text framework capable of decoding natural tonal sentences
378  from high-density ECoG recordings. We adopted a modular approach to delineate speech onset,
379  base syllables, lexical tones, and leveraged contextual information through Bayesian likelihood
380 and the Viterbi algorithm to enhance the decoding process. For natural speech, our proposed
381  method achieved a tone decoding accuracy of 93%, similar to the behavioral performance of native
382  speakers. The overall word error rate of decoded natural speech was as low as 14% in the best
383  participant. Notably, we proposed a generalized spatiotemporal decoding framework for syllable
384  and tone decoders. The robustness of our framework was evident across diverse participant profiles,
385 including variations in gender, age, education, pronunciation behaviors, and electrode coverage,
386 indicating that our model hyperparameters possess a high degree of generalizability. Significantly,
387 the framework's standardization of hyperparameters negates the need for extensive individual
388  optimization, a step forward in practical application and scalability. Furthermore, our system

389 adeptly managed the inherent language heterogeneity encountered in Mandarin, effectively
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390  handling the variances introduced by tone sandhi, regional dialects and individual speech patterns.
391  Our decoder even showed robust performance in whispering conditions. These results underscore
392 the potential for clinical applications in aiding patients with anarthria and broadening the

393  communicative efficiency of BCls.

394  This work extends the scope of ECoG-based speech brain-computer interface to natural speech of
395 tonal languages. The past decade has witnessed significant breakthroughs in speech decoding and
396  brain-computer interfaces using intracranial neural recordings. Previous works have also used
397  ECoG to record local field potential directly from the sensorimotor cortex responsible for speech
398  production. These works diverge in their decoding targets: some directly decode neural activity
399  into speech sound or acoustics like spectrogram®?%%’; others map neural activity into discrete
400  linguistic units such as words or phonemes>!®?%, Here we adopted a brain-to-text framework
401  similar to the latter strategy where neural activity is first decoded into discrete syllables and lexical
402  tones. Although directly decoding speech sound allows for continuous and infinite speech output,
403  the quality of reconstructed speech is limited by the noisy neural signal. On the other hand,
404  decoding into a finite set of syllables and tones extracts the invariant information from the noisy
405 neural recordings. Furthermore, for cases like whispering or even completely covert speech, there

406  isno ground truth of explicit speech output. As a result, brain-to-text may be feasible to such silent

407  speech cases.

408  Our work underscores the importance of ventral sensory-motor cortex (vSMC) in speech
409  production and decoding, particularly for tonal languages. Similar to our previous work'?, we show
410 that tonal speech production can be reliably decoded from neural activity in vSMC. Previous
411  intracranial neurophysiology studies have investigated the spatiotemporal coding of the

412  articulatory movements responsible of pitch control and phonetics?®?2. A theoretical foundation of
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413  these studies is that there exist spatially distinct and distributed neural populations in the vSMC,
414  representing different articulatory gestures corresponding to phoneme and pitch articulation. High-
415  density ECoG recordings have proven to reliably cover the distributed network and dissociate these

416  fine-grained neural coding'>?.

417  Our results demonstrate the excellent efficacy of our proposed light-weighted models in decoding
418 articulatory movements, which is in line with a recent discovery that shallow feedforward
419  networks achieve better performance on motor control than deeper and complex ones®.
420  Articulatory movement is innervated via motor nerves which locates only one or two (considering
421  inhibitory interneurons) synapses downstreaming the large pyramidal neurons (corticonuclear tract)
422  originated from the motor cortex’!. Based on intracranial neural recordings of higher signal-noise
423  ratio (SNR), it is quite reasonable that light-weighted ANN is capable enough to replace the signal-
424  processing function of such a few layers of synapses (including the lateral connections within the
425 layers of cortex) *>%. In our UNI frameworks, the numbers of trainable parameters in speech
426  detectors, tone decoders and syllable decoders range from 2.3M to 6.7M. Such light-weighted
427  frameworks not only showed less sensitivity to variations in hyperparameters, but also achieved
428  better performance when trained on very limited amount of training data**. Such frameworks also
429  reduce the responding-time and energy-consumption of computational infrastructures, which is a

430  promising candidate for practical neuroprosthetic systems.

431  Our framework also provides insights into critical design considerations essential for speech BCI
432  models. Previous studies of speech BCI typically relied on extensive hyperparameter optimization
433 for individual participants who undergo chronic implantation®® . Such decoding models may not
434  be directly generalizable across different patients, resulting in repeated hyperparameters

435  optimizing procedures for each individual. In contrast, our study reveals the feasibility of a
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436  universal, hyperparameter-optimization-free framework to five individuals, demonstrating its
437  robustness across a spectrum of ages, genders, educational backgrounds, pronunciation habits, and
438  variations in brain electrode coverage. Furthermore, as oppose to prior work where specific CNN
439  and Recurrent Neural Network (RNN) models were designed for tone and syllable decoding
440  respectively'’, we proposed a unified CNN-RNN framework for both the tone and the syllable
441  decoders in this study. Our discovery further validates that this combined CNN-RNN model
442  achieved better decoding performance compared with baseline frameworks that employ only one
443  of these network types. The benefits of our combined approach cannot be replicated through
444  hyperparameter optimization alone. Our research highlights the potential for developing a broadly
445  applicable, hyperparameter-independent framework for neural decoding. Although our universal
446  framework has yielded stable performance across five distinct participants, future works remain to
447  be done to consolidate its generalizability in patients with anarthria, across different Chinese

448  dialects, and potentially other tonal languages.

449  This brain-to-text framework represents a pioneering effort in language BCI, designed to decode
450  the full spectrum of Mandarin characters. Mandarin's linguistic complexity is reflected in its use
451  of over 6,000 commonly utilized characters, each a single syllable word. Yet, within this vast
452  lexicon, there are only 416 unique segmental combinations of consonants and vowels. These
453  unique combinations, combined with suprasegmental pitch features (4 different lexical tones),
454  define 1664 unique tonal syllables®>. Although there are some important phonetic features to the
455  distinction standard 4 lexical tones such as turning point and AF0, amplitude, and speaker FO
456  range’S. Other factors that determine the pitch contour in Chinese include the prosodic structure of
457  the language, the interaction between syntax and phonology, and paralinguistic factors such as

458  speech rate and tempo'®. These factors can influence the pitch contour and contribute to the overall
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459  tonal patterns in Chinese, confusing native listeners listening to audio of each syllable clipped from
460  natural sentences. Such bias obviously added challenges to speech BCI decoding tone exclusively
461  from clips of neural signals while producing each syllable in natural sentences. The present
462  decoding strategy inherently integrates the critical tonal features of Mandarin, effectively handling
463  the variances introduced by tone sandhi, regional dialects and individual speech patterns, which
464  are paramount for accurate speech communication, offering advantages over phoneme-level
465  decoding. Besides, the current findings also highlight a pivotal insight: the decoding performance
466  1is not hindered by the length or complexity of the sentences, indicating the scalability of our
467  framework for broader applications and more general settings in tonal language communication.
468  Also, Mandarin characters are single syllable words usually consisted of only two or three
469  phonemes, which is far less discriminative than most English. For example, "ji" versus "qi", or
470  "zhi" versus "shi", as demonstrated in our study?. This structural intricacy of Mandarin, with its
471  concise phonemic diversity, renders the phoneme-level decoding strategies used in recent speech
472 BCl studies for non-tonal languages ineffective’. In response, our framework targets the decoding
473  of Mandarin speech at the mono-syllable word level, aligning more closely with the language's
474  inherent structure and providing a practical blueprint for decoding its entirety—potentially

475  expanding our current focus from the most frequently used 4x10 tonal syllables to all 4x416 tonal

476  syllables.

477  In addition to the established use of high-density ECoG in speech decoding, various neural
478  recording techniques offer distinct advantages in terms of coverage and temporal resolution.
479  Examples include the Utah array®>’, stereoelectroencephalography (SEEG) *%, and neuropixels®>*.

480  When choosing among these methods, a crucial consideration involves striking a balance between

481  obtaining high-resolution neural signals, such as investigating fine-grained spiking properties of
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482  multiple single units or microcircuits underlying speech production within a limited area of the
483  cortex”*, and achieving broad coverage of cortical networks, such as collecting neural signals
484  across the entire vSMC, which depicts a comprehensive view of neurodynamics of the functional
485  regions’!?>% Future works remain to be done to investigate the decoding capabilities of natural
486  tonal languages using signals of varying coverage and resolution scales. This entails identifying
487  the optimal trade-off point where high decoding performance aligns with decoding robustness

488  across patients with high heterogeneity.

489  Acknowledgements

490  Dr. Junfeng Lu is supported by STI 2030-Major Projects (2022ZD0212300) and the National
491  Natural Science Foundation of China General Program (32371146). Dr. Yuanning Li is supported
492 by the National Natural Science Foundation of China General Program (32371154) and Shanghai
493  Pujiang Program (22PJ1410500). Dr. Jinsong Wu receives funding from Innovation Program of
494  Shanghai Municipal Education Commission (2023ZKZD13) and National Social Science Fund of
495  China Major Program (No. 22&7ZD299).

496  Competing interests
497  The authors report no competing interests.
498  Data availability

499  Data relevant to this study are accessible from the authors under restricted access according to our
500 clinical trial protocol, which enables us to share de-identified information with researchers from
501 other institutions but prohibits us from making it publicly available. Access can be granted upon
502  reasonable request. Any data provided must be kept confidential and cannot be shared with others
503 unless approval is obtained. To protect the participants’ anonymity, any information that could
504 identify him or her will not be part of the shared data. Source data and code to recreate the figures
505  in the manuscript will be publicly released with code upon publication of the manuscript.

506 Code availability

507 Code and source data to replicate the main findings of this study can be found on GitHub at
508  https://github.com/yuanningli/tonal BCI decoding.

509 Author contributions

510 J.L. and Y.Li. conceived and supervised the project. J.L., Y.Li., D.Z., Y.Liu., Z.Z., and S.L.
511  designed the experiment. J.L, D.Z., Y.Q., and Z.Z. collected the data. D.Z., H.Z., X.H. finished
512  the phonetic and phonological transcription. Y.Li., D.Z. designed the neural network. Y.Li., Z.W.,


https://doi.org/10.1101/2024.03.16.585337
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.16.585337; this version posted March 31, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

513 D.Z., and W.L. designed the language model. D.Z. and Z.W. analyzed the data. J.L., Y.Li., L.C.,
514 K.X.,, and D.Z., interpreted the data. D.Z., Z.W., Y.Li., and J.L. wrote and revised the manuscript.
515  All authors reviewed and approved the manuscript.

516

517 Methods

518  Participants

519 A total of five participants (a 41-year-old female, a 44-year-old female, a 54-year-old male, a 46-
520 year-old male and a 30-year-old female) participated in this study. They were all patients with
521  eloquent brain tumors who underwent awake surgery as part of normal clinical routine. Two 128
522  high-density electrode arrays were temporarily placed onto the lateral surface of the brain to

523  collect the neural signals, and the participants were instructed to perform the speech tasks. All
524  participants are native Mandarin speakers. An experienced neurosurgeon performed the grid

525  placement, and the location of grid was determined based on the exposure and avoiding tumor.
526  The protocol was approved by the Huashan Hospital Institutional Review Board of Fudan

527  University (HIRB, KY2019-538). All participants gave their written, informed consent prior to
528 the surgery.

529  Design of the sentence corpus

530 To have a representative set of phonological features in Mandarin and maximize the

531 representativeness of our speech task, we selected the top 10 most frequently used open syllables
532  with monophthong, which cover the pronunciation of nearly 25.9% of all Chinese characters*!.
533  Using these 10 syllables, we obtained 40 distinct Chinese characters with 4 lexical tones and

534  constructed 29 Chinese words and phrases from these 40 characters. Finally, 10 sentences were
535  constructed with these 29 phrases, which eventually consisted the sentence corpus used in our

536  decoding task.
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537  The 10 syllables chosen for this work is:

538 1. 'shi', /sa/
539 2. 'de', /ty/
540 3. 91 /Jtei/
541 4. ', M/
542 5. 'bu', /pu/
543 6. 'ge', /ky/
544 7. 'qi', /tehi/
545 8. 'zhe', /ts¥/
546 9. 'ta', /tha/
547 10. 'zhi' /tse/
548

549  The 40 Chinese characters used in this work and their corresponding tonal syllables (five-level

550  tone marks):

551 1. %:shiss
552 2. —+:shi35
553 3. Ht:shi3s
554 4. 32:shi3s
555 5. +=:shi51
556 6. B9:de

557 7. Hb:de
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558 8. 15:de35
559 9. #:ji55
560 10. 3 ji55
561 11. #%: ji35
562 12.12:ji51
563 13. 3t ji51
564 14. 38: ji51
565 15. &: 1i35
566 16. B2:1i214
567 17. 3#: li214
568 18. Jfp: 1i51
569 19. % 1i51
570 20. 4~: bu35/bus1
571 21. %3: bu51
572 22. Bf: ge55
573 23. #q: ge55
574 24. /)~ ge51
575 25. t: qi55
576 26. &: qi35

577 27. H: qi35
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578 28. #2: qi214

579 29. #2: qi51

580 30. #7: zhe35

581 31. &: zhe214

582 32.3X: zhe51

583 33. fth: ta55

584 34. & ta214

585 35. 41: zhi55

586 36. 1¥: zhi55

587 37. HR: zhi35

588 38. 1k zhi214

589 39. &: zhiS1

590 40. & zhi51

591 *to simplify the decoding process, we use T1 (-) to denote 55, T2 (/) to denote 35, T3 (V) to
592 denote 214, and T4(\) to denote 51. The neutral tone syllables “f9:de” and “#b:de” were
593 marked as T1 or T4 according to the actual pronunciation of each individual patient.

594  The 29-Chinese phrases used in this work (with translation in English):

595 1. & sage
596 2. ig# journalist

597 3. Zp¥f lichee
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598 4. i thirty-precent off
599 5. 8 him/he

600 6. fBAY his

601 7. fBEF his brother

602 8. =15 elder brother

603 9. AHSHh often

604 10. & Ah encourage

605 11. tR E extremely

606 12. #1 % smart

607 13. L3454/l loom

608 14. iX B HY here

609 15. 2 is

610 16. f9 DE (structure auxiliary)
611 17. ¥& pagoda

612 18. A~ ignore

613 19. 2 is a/an

614 20. &7k miracle

615 21. N385 do not care about gains and losses (Chinese Idiom)
616 22. N5 have to

617 23. BHE resign
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618 24. #) & shelve

619 25. X this

620 26. 4], opportunity
621 27. H 3L actually
622 28. AN 1F more than
623 29. £+ seventy

624  The 10 sentences used in this work:

625

626 1. fhEF AR,

627 Ta g8 bu i ta
628 his elder.brother not  pay.attention.to him
629 ‘His elder brother ignores him.’

630 2. fABHELHTE.

631 Ta de lizhi  qizhé qi

632 his DE lichee 30.percent.off at.least
633 ‘His lichee is at least 30-percent off.’

634 3. BEAREAFR.

635 Jizhé budébu lizhi
636 to.record.person cannot.not.to resign
637 “The journalist has to resign.’

638 4. EILARIEEA.
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639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

Ta qishi buzhi qishi
he virtually not.merely  seventy

‘He is virtually more than seventy(-year-old).’
SR AR R

Gege bushide

elder.brother sometimes.not.but.sometimes will

‘The elder brother often encourages him.’
R EAE .

Ta  jiqi jizhi

he extremely smart

‘He is extremely smart.’
AHE2XEMN,

Zhibujt shi zheli  de
loom is here DE

‘The loom belongs here.’
XEMNEZNTE,

Zheli de ta shi ge qiji

iili ta

encourage him

here DE pagoda is a miraculous.sign

‘The pagoda here is a miracle.’
gEFHEL.

Zhizh& bjidéshi
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660 wise.person do.not.care.about.gains.and.losses

661 ‘The sage does not care about gains and losses.’

662 10. FE XN,

663 Geézhi zhege qijt
664 shelve this  opportunity
665 ‘Shelve this opportunity

666  Task design

667  Participants were guided by sequential visual cues to produce one of the 10 sentences consisted of
668  5-8 Chinese characters from a corpus of 10 base syllables and 40 Chinese characters with varied
669  tones (Fig. 1a). Within each trial, the participant was instructed to produce all 10 sentences once.
670 These sentences were presented in a random order. Ideally, each participant produced 160
671  sentences (4 blocks x 4 trials/block x 10 sentences/trial), which yielded approximately 30
672  repetitions per tonal syllable. But not all participant completed the entire reading task (158-160

673  sentences were completed).

674  Each participant was guided by visual cues to perform block tasks. Each block started with a
675  black cross at the center of white background on the screen, which lasted for 30 seconds. After
676 that, the cross turned grey for 3 seconds, and one of the sentences in the sentence set was shown
677  in the middle of the screen in grey text. With the individual Chinese characters turning black for
678 1.2 seconds in a sequential order from the beginning to the end of the sentence, the participant
679  was instructed to pronounce the sentence in a relatively uniform speed following these go cues.

680  The inter-sentence time interval and the inter-trial interval were both 3 seconds.

681  The first four participants (PA1-4) performed the speech task articulating, while the last
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682  participants (PAS) performed the speech task whispering. We synchronized audio recordings
683  with ECoG recordings by utilizing a mounted microphone concurrently. We collected two types
684  of blocks of the sentence task: first 3 optimization blocks (Trial 1-12, containing 118-120

685  sentences in total for each patient) and one evaluating block (Trial 13-16, containing 38-40

686  sentences for each patient).

687  Data acquisition and signal processing

688 For each participant, two 128-channel electrode grids were placed by an experienced
689  neurosurgeon. The anatomical positions to place the grids were chosen based on clinical exposure
690 and avoidance of the tumor. During the tasks, electrocorticography and audio sound were
691  simultaneously recorded using the Tucker-Davis Technologies ECoG system, at sampling rates of
692 3052 Hz and 24414 Hz, repectively. To exclude bad channels with artifacts or excessive noise,
693  ECoG signals on each channel were visually and quantitatively inspected. High-gamma (70-150
694 Hz) frequency component was extracted via Hilbert transform after ECoG signals got down-

695  sampled to 400 Hz>'.
696  Phonetic and phonological transcription

697  Transcriptions of the audio recordings, encompassing monosyllabic Chinese character, syllable,
698 and tone labels, were manually annotated by a native speaker at the syllable level using Praat
699  (Version 6.1.01, https://www.fon.hum.uva.nl/praat/) to ensure fidelity to the participants' actual
700  vocalizations >!3. Unexpected voicing unrelated to language task (such as communication with

701  clinicians) was excluded from samples used in training models.

702  Computational modeling infrastructure
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703  The training and testing of the decoding models were performed offline using cluster of multiple

704  NVIDIA GPUs.

705  Data splitting

706  We splitted the data for speech detector and the syllable/tone decoder model testing from electrode
707  selection and hyperparameter searching. For responsive and discriminant electrode selection and
708  hyperparameter optimization, only the optimization blocks were used, which contain Trial 1-12
709  with each trial consists of randomly arranged 10 sentences. The evaluation block contains

710  remaining Trial 13-16.

711  During the optimization stage of the speech detector model, we used a six-fold nested cross
712 validation (CV) and each fold consisted of 2 trials. At evaluation stage, we used a similar cross
713  validation process, which leaves each trial in evaluation block for testing model, while the other
714 15 trials for training and validating. For speech detector models, we used 10% of non-testing data
715  as validation set to perform early-stopping, while the left 90% for training, in each CV runs (Fig.
716  S1A&B). For syllable/tone decoder model, we trained 5 (optimization stage) or 10 (evaluation
717  stage) sub-models in each CV runs, with different potions of data performing early-stopping while
718  left for training. The final model used for evaluation was an ensemble of 5 or 10 sub models. And
719  the overall decoding performance was evaluated by averaging the test performance in all the CV

720  runs (Fig. SIC&D).

721  Speech-responsive electrodes

722 Speech-responsive electrodes were identified using two-sample t-test. Specifically, each time point
723 in the [-400 ms, 800 ms] time window relative to the consonant onsets in each word was tested

724  against the [-1800ms, -400ms] baseline time window before the onset of each sentence. If the
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725  results were significant (P < 0.01, Bonferroni corrected for the total number of electrodes and all
726  times points) in 40 consecutive time points (100 ms), the electrode would eventually be marked as

727  speech-responsive.

728 e Tone discriminant electrodes

729  To pinpoint electrodes exhibiting discriminative characteristics among lexical tones, we aligned
730  the high-gamma responses with the onsets of individual syllables again. Subsequently, we
731  employed a one-way ANOVA to assess the potential differences in mean high-gamma responses
732 across the four Mandarin tones. The time window for the average response spanned from -500 ms
733 to 500 ms relative to the onset, encompassing a total of 400 time points. Significant time points
734  were identified using a two-sided threshold of P < 0.05, with Bonferroni correction applied for
735  both the total number of electrodes and time points'®. To account for electrodes with multiple peaks
736  of high-gamma activity discriminant for tone decoding, we set the following criterion: if there was
737  acontinuous 200ms time window in which more than half of the time points were significant, the

738  electrode would be marked as tone-discriminant.

739 e Syllable discriminant electrodes

740  Similar to tone discriminant electrodes, the syllable discriminant electrodes were defined using
741  one-way ANOVA. We tested whether the mean high-gamma responses of the ten syllables were
742  significantly different. The time window for the average response spanned from -500 ms to 500
743 ms relative to the onset, encompassing a total of 400 time points. The significant time points were
744  determined via aforementioned criterion. Similarly, if there were a 200ms time window in which
745  more than half of the time points were significant, the electrode would be marked as syllable-

746  discriminant.

747 e C(Cortical surface reconstruction and electrodes visualization
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748  Electrodes on each individual brain were marked on preoperative T1 MRI in BrainLab®
749  neuronavigation system, which were double-checked by a neurosurgeon via intra-operative
750  photos'. The reconstruction of cerebral surface, anatomical labeling and plotting were performed

751  via Freesurfer and customized python codes as previously reported®.
752  Decoding framework

753  We built different neural network modules of speech detector, tone decoder and syllable decoder
754  to decode speech onsets and offsets, syllable labels and tone labels from the neural activity,

755  respectively. Inspired by previously published decoding models such as the EEGNet**,

our
756  decoders had separable CNN layers extracting within- and cross-electrodes spatiotemporal
757  features, followed by GRU layers extracting sequential information. Finally, similar to previous

758  brain-to-text works in non-tonal languages®®:!1%-37

, we also used a natural language model and a
759  Viterbi decoder to combine the sequential outputs of the tone and syllable decoders and generate

760 the entire sentence using maximum a posteriori probability (Fig. 1b).
761  Speech utterance detection model (speech detector)

762  The speech utterance detection model processed each time point of neural activity on speech
763  responsive electrodes using the time window spanning from 0.25 second before the time point to
764  0.25 seconds after the timepoint. The speech/silent state of each time point was decoded based on

765  the time-windowed neural activity.

766  We used the Torch 1.13.1+cul 17 Python package to create and train the event classification
767  model®. The event classification architecture was a CNN structure followed by a stack of three

768  GRU layers with a latent dimension size of 256 and a dropout of 0.5 applied at each layer.

769 The initial CNN structure contains an 1D convolutional layer with a kernel size (FLini) of 3 and
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770  astride(S7conv) of 1 followed by a Leaky ReLU activation function to introduce non-linearity,
771 and a max-pooling layer with kernel size (Lpo0r) of 2 for temporal downsampling*. The initial
772  processing, which involves convolution and pooling, enhances the model's ability to efficiently
773  extract local features from the input data. Subsequently, recurrent layers are incorporated to

774  maintain an internal state over time and assimilate new individual time samples of input data,

775  making them ideal for analyzing temporally dynamic processes. Additionally, the bidirectional
776  nature of the Gated Recurrent Unit (GRU) enables the model to grasp both forward and

777  backward temporal dependencies in the ECoG data, making it a fitting choice for event

778  classification tasks requiring a comprehensive understanding of sequential context. Following
779  the GRUs, we implemented a fully connected layer that projects the output of the last layer to
780  probabilities associated with two target events: rest and speech. During training, the model is

781  optimized to minimize weighted crossentrophy. The weighted crossentrophy loss was calculated
782  using the ratio of the number of all the speech time points and the number of all the rest time

783  points, to offset the bias caused by imbalanced samples. The batch size is 1024 and an Adam

784  optimizer was used with a learning rate of 0.001. The training process stops after the validation
785  loss no longer decreases for 10 epochs or after 50 epochs, ensuring that the model has

786  sufficiently learned the underlying patterns in the data but has not yet overfitted. A schematic

787  depiction of this architecture is given in Fig. 2f.

788  During testing, the neural network predicted probabilities for each speech event label (rest, speech)
789  given the input neural data. To convert these predicted probabilities into the time stamps of speech
790 onsets, thresholding of predicted speech probabilities is needed. A sliding window of smoothing
791  size (S) was used to smooth the decoded probability timecourse. Next, a probability threshold (Pr)

792  was applied to smooth probabilities to binarized values (with a value of 1 for speech and 0
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793  otherwise). We then sliced these binarized values by applying time thresholds for both a minimum
794  continuous duration of silent period before the predicted onset, and a minimum duration of
795  continuous speech period after the predicted onset (off-time threshold (75f) and on-time threshold

796  (Ton)). Detailed examples of thresholding process see Fig. 3b.

797  But the required continuous state is not strict, we set an error permissive rate (EPR) to allow a
798  small portion of timepoints with incorrectly predicted speech event labels presented during both
799  continuous silent period before the predicted onset as well as the speech period after the predicted
800  onset. Besides, we will not predict two or more onsets within 0.5s, since normal speaking rate of

801  our task do not allow such short interval and this update in algorithm speed up the iteration process.

802 Inall, this process of obtaining onset events from the predicted probabilities was parameterized by
803 five thresholding hyperparameters: the size of the smoothing window (), the probability threshold
804  value (Py), the off-time threshold (7,z5) and on-time threshold (7,.), and the error permissive rate
805 (EPR). Hyperparameter optimization was performed to eventually determine the exact values for

806 these parameters for the evaluation stage.

807 Tone decoder

808  For each speech utterance onset that was detected or manually aligned, tone decoder computed
809  tone likelihood by processing the neural activity in tone- discriminant electrodes spanning from

810 0.2 second before to 0.6 seconds after the detected onset of speech.

811  The tone decoder consists of ten ensemble neural networks with the same hyper-parameters but
812  different validation sets and training sets (see Fig. S1D). The input was high gamma ECoG data

813  array shaped N x T, N is the number of tone-discriminated electrodes, while T = 320, which is
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814  calculated by the time duration (0.8seconds) multiplies downsampled ECoG frequency (400 Hz).

815  Each network among 10 networks consists of the following stages:

816 e Stage 1

817 In the first stage, one-layer 2D convolution with the kernel size (FLini, N) and a stride of ($7conv,
818 0), followed by a batch normalization layer (momentum=0.1, affine=True, and eps=1e-5) applied
819 to the output of the spatial convolution. After an Exponential Linear Unit (ELU) activation
820 function. Max-pooling was then performed along the temporal axis with a kernel size of (Lpoos 1)
821  and a stride of ($7peas, 1). During training, we applied a dropout layer a dropout value of D in the

822  end of each CNN block for regularization to prevent overfitting.

823 e Stage 2

824  Inthe second stage, Ciyer convolutional pool blocks were applied after the aforementioned pooling
825 layer in series, each consisting of a dropout layer, a convolutional layer with kernel size (FLcony,
826 1) and a stride of (§7Tcom, 1), batch normalization, ELU activation, and max-pooling identical with
827  aforementioned ones. These blocks further processed and extracted features from the data. During

828 the first two stages, the filter number was set equal to Cim.

829 e Stage3

830 In the last stage, the output from the last convolutional pool block was fed into a stack of Riayer
831  bidirectional Gated Recurrent Unit (GRU) layers. Each GRU layer has Rgim hidden units. The final
832  hidden state of the last GRU layer was passed through a fully connected (dense) layer which project

833  to 10 output units, representing the number of syllable classes for classification. (Fig. 2g).

834  The model was optimized to minimize crossentrophy loss using a batch size of 8 and an Adam

835  optimizer with a learning rate of 0.0005. The training process stoped after the validation loss no
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836  longer decreases for 50 epochs. The weighted crossentrophy loss was calculated in the similar

837  same way as speech detector to offset the bias caused by imbalanced samples.
838  Syllable decoder

839  For each speech onset that was detected, the syllable decoder computed syllable likelihood by
840  processing the neural activity in syllable- discriminant electrodes spanning from 0.4 second before
841  to 0.8 seconds after the detected onset of speech utterance. The structure and training process of
842  syllable decoder was identical with the aforementional tone decoder, the only difference between
843  them was the crossentrophy loss was not weighted, since the syllable is almost balanced-

844  distributed in the task.
845  Hyperparameter optimization and the universal framework

846  The speech detector, the tone decoder and the syllable decoder include a total of 25

847  hyperparameters. To find the optimal combination of these hyperparameters, we used the

848  hyperopt Python package, which employs probabilistic sampling of hyperparameter

849  combinations during optimization®. Across our experimentation, we utilized three distinct types
850  of hyperparameter optimization procedures to fine-tune a total of 25 hyperparameters. (see Fig. 5
851  for undefined hyperparameters, their searching ranges and their optimal values in each patient).
852  During the optimization process, all the neural networks were tested through the six-fold (2 trials
853  per fold) cross-validation.

854 e Speech detection optimization

855  We used this procedure to optimize the size of the smoothing window (§), the probability

856  threshold value (Pr), the off-time threshold (7of) and on-time threshold (7,x), and the error

857  permissive rate (EPR). These hyperparameters were not related to the training of the ANN
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models. The predicted time points of speech onsets were derived from the available speech
probabilities through the current combination of thresholding hyperparameters during each
iteration of the optimization procedure. Subsequently, speech detection accuracy (Acc) was
calculated to quantify the performance of the current combination of hyperparameter values. For
timepoint of real onsets, we use X to represent the index of time points within 0.25s range of real
onsets (t;,i € [1,...,n]). For time point of predicted onsets, we use X to represent the index of

time points within 0.25s range of real onsets. Then, we calculated the Acc of X and X. The

formal expression of this objective function was illustrated through following equations:

R 0, others
X[t1=y1, if min |t—¢]<0.25

i€[1,...,n]
B 0, others
X[t1=y1, if min |t—¢]<0.25

i€[1,...,n]

0, x#+0

10={; 1,

X1 [R1e] - X[t]]
Nt

Acc was calculated to qualify the performance of the speech detector with each hyperparameter

Acc =

value combination. During the optimization process of one model, 500 hyperparameter value

combinations were evaluated.

Once the most optimized combination of hyperparameters was defined, we calculated the
predicted onset time list for all the 12 trials via six-fold prediction, we compared them with the
ground truth of onset of the 12 trials. If one onset time point in predicted list falls within 0.25s
range of real onsets, the labels (including tone, syllable and Chinese characteristic) belongs to the
manually aligned onset will be given to the predicted time point, which participated in the

following hyperparameter optimization. For those time points cannot match with any real onset
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879  time points, no labels will be given and this part of the data will not participate in the following
880  hyperparameter optimization. The similar match process will be performed in the evaluating

881  stage, calculating confusion matrix for syllable, tone and word on the bases of onset detection.
882  Because some real onset time points do not match with any detected onset time point, the

883  number of syllables and tones that actually used in calculating confusion matrices of decoding
884  performance after automated onset detection is less than the number of onsets detected.

885 e Tone and Syllable decoder optimization

886  We used this procedure to optimize ten hyperparameters for both tone decoder and syllable

887  decoder. These hyperparameters can be divided into two major groups according to their

888  properties.

889  The first group includes initial convolution filter length (FLisi), stride of convolution (ST cony), filter
890 length of following convolutional blocks (FLcony), max-pooling kernel length (Lpoor), max-pooling

891  stride (S7Tpoor), which are five hyperparameters related to the time dimension.

892  The second group includes the number of sequential convolutional blocks (Ciayer), number of layers
893  of RNN (Ruyer), number of filters in each convolutional process (Cuim), number of dimensions in
894  each RNN process (R4im), and dropout value (D), which are five hyperparameters related to model

895 architectures and sizes.

896  We performed model testing on manually-aligned-onset dataset and the dataset generated from
897  predicted onsets by the previously optimized speech detector. And the final loss is the average
898  value of loss on both datasets, in order to improve the model’s robustness when countering
899  automatedly aligned neural signals in our final evaluation. Each optimization evaluated 500
900 different combinations of hyperparameter values. We used the same cross-entrophy loss

901 functions to calculate the loss during the iteration.
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902 e The universal framework

903  The universal framework shares a predefined set of hyperparameters when testing on all 5

904  participants. We used the median value of each optimized hyperparameters among 5 participants
905 as the predefined value of hyperparameters.

906  Conversion from tonal syllables to Chinese words

907 Many Chinese characters are homophones that share the same pronunciations (including syllable
908 and tone), which prevented us from directly generating Chinese sentences using decoded tonal
909 syllables. To eventually decoding sentences consists of actual Chinese characters rather than
910 sequences of tonal syllables, we designed a natural language model that computed the next-
911  character transition probabilities given the previous Chinese character in a sequence. We first
912  divided the sentences into the aforementioned 29 words and phrases consisting of 1 to 4 Chinese
913  characters. We trained this model on a collection of sentences from the CCL corpus*’ that included
914  transferring pairs (transfers) between those words from the 29-word set. After that, we used a
915  Viterbi decoder to determine the most likely sequence of words given the predicted tonal syllable
916  probabilities from the tone decoder and syllable decoder, as well as the word-sequence
917  probabilities from the natural language model®. With the incorporation of the language model, the
918  Viterbi decoder was capable of projecting sets of probability (likelihoods) of tonal syllable to exact

919  Chinese characters, which eventually decoded sentences from neural activity.
920 Language model

921 e Collection of the corpus
922 We used CCL corpus from Peking University* to distill training dataset for our domain-specific
923  language model. We first measure the number of transfers between each two phrases (the counts

924  of the previous phrase transferred to the first word of the next phrase in the whole CCL corpus).
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925  Due to the inequality of Chinese language, we set a cut-off of 512 counts, and then performed a
926  ninth root for normalization. Since not all the transfers in our task appeared in CCL corpus, we

927 also incorporate the transfer probability of our own task corpus into our language model.

928 e Model fitting

929  We extracted all n-grams with n € {1, 2, 3, 4} from each phrase in our task corpus. An n-gram
930 refers a word lengthen n Chinese characters. For example, the n-grams (represented as tuples)

931  extracted from the longest phrases “ANi1454k” in this approach would be:
932 1.(AF)

933 2. (A1h)

934 3. (FiH)

935 4 (RiHEXR)

936 Then we expanded our transfer probability matrix into n-grams. We added the number of

937 transferring from q;_; (such as (4A~i1)) to g; (such as ("1118)). Except for full phrases, n-grams

938 as partial components of phrases can only transfer from q;_; to q; . The calculation of number of
939 each transfering from a full phrase to the beginning of next phrases is aformentioned.

940 e Hidden Markov Model (HMM) and Viterbi decoding

941  In this study, we employed a Hidden Markov Model (HMM) for neural activity and speech

942  modeling similar to that used in previous research®. This model interprets neural activity within
943  each time window at index i as observed states y; and treats the word spoken during this

944  period w;, along with its context c;, as hidden states q;. The model assumed first-order Markov

945  property and the current hidden state was fully characterized by p(q;|q;—1, y;). The transition
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946  probabilities, p(q;|q;—1), which represents the probability of transitioning from the n-gram at

947 index i — 1 to the n-gram at index i, can be calculated by word counting from the corpus.

948  Viterbi decoder™*-* was used to identify the most probable sequence of hidden states from the
949  observed neural activities. The algorithm used dynamic programming and considered the

950  probabilities of transitioning between hidden states and the likelihoods of observed states. In the
951  process of identifying the optimal hidden-state sequence, the algorithm calculated the

952  probabilities of different potential sequences of hidden states. Each potential sequence, or Viterbi
953  path, was defined by a unique sequence of hidden states (specific word sequence) and its

954  corresponding probability based on the neural signals observed.
955  Evaluation

956 e Evaluation of independent decoding performances via Receiver Operating
957 Characteristic (ROC) and Confusion Matrices

958 To evaluate the performance of our speech detector, we computed the Area Under the Curve
959  (AUC) of the Receiver Operating Characteristic (ROC) curve for each participant. To evaluate the
960 tone decoder and syllable decoder, we computed the classification accuracy and plotted the
961 confusion matrix, based on both the predicted and the manually aligned speech onsets. We also
962 calculated the classification accuracy and plotted confusion matrices of tonal-syllables and
963  Chinese characters, on both the predicted and the manually aligned speech onsets, in order to

964 further assess the capacity of the entire decoding system.

965 e Evaluation of overall decoding performance via Word Error Rates (WERs)
966 To evaluate the overall performance of our neural-to-text decoder, we analyzed the decoded

967  sentences using Word Error Rates (WERSs) between the target and decoded sentences for each
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968  sentence. WER is a widely-used metric for evaluating predicted word sequences®>'>2, WERs of
969  each decoded sentence in the evaluating blocks were calculated.

970 e Comparison with published tone decoder

971  To further validate the complexity of tone of sentences compared with tone of single syllable, we
972  applied our previously published monosyllabic tone decoder on tone decoding in sentence task. It
973 is a sequential CNN-LSTM structure to generate the syllable label based on manually aligned
974  neural activity when participants produce eight syllables "ma (tonel), ma (tone2), ma (tone3), ma

975  (tone4), mi (tonel), mi (tone2), mi (tone3), mi (tone4)" 3. (Fig. S2)

976 e Tone intelligibility assessment (IA)

977  Crowdsourcing-based listening tests are conventional for evaluating the quality of outputs in
978  natural language processing'>. To further validate the variance of lexical tones in natural sentences
979  compared with the canonical tones of single syllables, we extracted the audio clips of each syllable
980 utterance in the evaluation blocks of each participant, using the same timespan as the neural
981  decoder. We shuffled the sequence clips by syllables to avoid any possible of leakage of semantic
982 information. Evaluators were instructed to listen to the audio clip and then choose from the options
983  (four lexical tones) which tone they had just heard!®. For sentence tone 1A, we extracted the audio
984  clip of each sentence each patient pronounced in evaluation blocks. The evaluators listen to the
985 audio of the entire sentence and then choose from the options for each syllable in the sentence. 20
986 evaluators (native Mandarin speakers) were instructed to listen to the isolated audio clips and to
987  decide which tone they had just heard. For sentence tone IA, we extracted the audio clip of each
988  sentence each patient pronounced in evaluation blocks. The evaluators were instructed to listen to
989 the audio of the entire and then choose from the options which tone they had just heard for each

990 syllable in the sentence. We recruited 20 native Mandarin speakers from the Medical School of
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991  Fudan University, which do not know the purpose of this test before the evaluation. The tone 1A

992  score was defined as the average accuracy of evaluators’ judgement.

993 IA=1 r
B A

994  Where T is the number of error tone choices; A is the number of total tests'>.

995 e Comparison with baseline models

996  We evaluated the performance of our models and compared it against several baselines. The
997  baseline models include (1) CNN models, which do not contain RNN structure, all the other parts
998 remain identical with original optimized models. (2) RNN models, which do not contain CNN
999  structure, all the other parts remain identical with original optimized models (Fig. S3). WERs of

1000 decoded sentences were calculated to evaluate the performance of these baselines.

1001 e Electrode contributions (saliences)

1002  To quantify the contribution of each ECoG electrode to the brain-to-text decoding, we performed
1003 the electrode salience analysis®>®. In particular, we backpropagated the final loss function of each
1004  ANN module to each electrode in the input layer by computing the gradient. The magnitude of this
1005  gradient would quantify the amount of influence that a unit perturbation in each electrode would
1006  have on the final output of the neural network. We computed the Euclidean norm across time and
1007  across evaluation blocks of the resulting gradient values for each electrode. Finally, we normalized

1008 each set of electrode saliences by calculating their root mean square values (Fig. S4).
1009

1010
1011

1012
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1042  Fig. S1. Schematic depiction of data organization
1043 A. During the optimization stage of the speech detector model, we used a six-fold nested cross
1044 validation and each fold consisted of 2 trials, while 10% of data in each trial of the training set
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were separated as validation set in order to performing early-stopping.
B. During the evaluation stage of the speech detector model, we used a similar cross validation.
Still, 10% of data in each training trial were separated as validation set in order to performing
early-stopping.
C. During the optimization stage of the syllable/tone decoder model, we used a six-fold nested
cross validation and each fold consisted of 2 trials. In each fold, we trained 5 sub-models with
different potions of data performing early-stopping while left for training. The
training/validation/test split was 4:1:1.
D. During the evaluation stage of the syllable/tone decoder model, we used a similar cross
validation process. In each fold, we trained 10 sub-models with different potions of data
performing early-stopping while left for training. The training/validation/test split was 12:3:1.
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Fig. S2. Schematic of control models for speech detector and tone/syllable decoder.
A. CNN baseline for speech detector, which do not contain RNN structures, and all the other parts
remain unchanged.
B. CNN baseline for tone/syllable decoder, which do not contain RNN structures, and all the other
parts, including optimized hyperparameters, remain unchanged.
C. RNN baseline for speech detector, which do not contain CNN structures, and all the other parts
remain unchanged.
D. RNN baseline for tone/syllable decoder, which do not contain CNN structures, and all the other
parts, including optimized hyperparameters, remain unchanged.
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1073 Fig. S3. Schematic of our previously published tone decoder which successfully decoded tone from
1074 intracranial neural signals while participants articulate isolated monosyllables of four target tones.
1075 We applied our previously published monosyllabic tone decoder on tone decoding in sentence task. It is a
1076 sequential CNN-LSTM structure to generate the syllable label based on manually aligned neural activity
1077 when participants produce eight syllables "ma (tonel), ma (tone2), ma (tone3), ma (tone4), mi (tonel), mi

1078 (tone2), mi (tone3), mi (tone4)"13.
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Fig. S4. Participants’ brains reconstruction overlaid with the locations of the placed electrodes and
their relative contribution of each selected electrodes in decoding onset/syllable and tone.

A-E shown PA1, PA2, PA3, PA4 and PAS. Left part shown speech responsive electrodes in yellow shadows,
middle shown syllable discriminative electrodes in blue shadows, while right shown tone discriminative
electrodes in red shadows. Radius of shadows around electrodes shown contribution normalized root
mean square (RMS), with a scale shown at the upper left of each subplot. The colors of the electrodes

themselves represent whether they are speech responsive or syllable/tone discriminative, which is the

same as Fig. 2a-e.
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