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ABSTRACT 35 

The development of novel imaging platforms has improved our ability to collect and analyze large 36 
three-dimensional (3D) biological imaging datasets. Advances in computing have led to an ability 37 
to extract complex spatial information from these data, such as the composition, morphology, and 38 
interactions of multi-cellular structures, rare events, and integration of multi-modal features 39 
combining anatomical, molecular, and transcriptomic (among other) information. Yet, the accuracy 40 
of these quantitative results is intrinsically limited by the quality of the input images, which can 41 
contain missing or damaged regions, or can be of poor resolution due to mechanical, temporal, or 42 
financial constraints. In applications ranging from intact imaging (e.g. light-sheet microscopy and 43 
magnetic resonance imaging) to sectioning based platforms (e.g. serial histology and serial section 44 
transmission electron microscopy), the quality and resolution of imaging data has become 45 
paramount.  46 

Here, we address these challenges by leveraging frame interpolation for large image motion 47 
(FILM), a generative AI model originally developed for temporal interpolation, for spatial 48 
interpolation of a range of 3D image types. Comparative analysis demonstrates the superiority of 49 
FILM over traditional linear interpolation to produce functional synthetic images, due to its ability 50 
to better preserve biological information including microanatomical features and cell counts, as 51 
well as image quality, such as contrast, variance, and luminance. FILM repairs tissue damages in 52 
images and reduces stitching artifacts. We show that FILM can decrease imaging time by 53 
synthesizing skipped images. We demonstrate the versatility of our method with a wide range of 54 
imaging modalities (histology, tissue-clearing/light-sheet microscopy, magnetic resonance 55 
imaging, serial section transmission electron microscopy), species (human, mouse), healthy and 56 
diseased tissues (pancreas, lung, brain), staining techniques (IHC, H&E), and pixel resolutions (8 57 
nm, 2 µm, 1mm). Overall, we demonstrate the potential of generative AI in improving the 58 
resolution, throughput, and quality of biological image datasets, enabling improved 3D imaging.  59 
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INTRODUCTION 60 

Novel three-dimensional (3D) imaging techniques and algorithms designed to integrate large, 61 
multimodal datasets have improved our ability to assess normal anatomy and tissue heterogeneity 62 
using anatomical, molecular, -omic probes.1–7 Across 3D image modalities, a common challenge 63 
emerges: a lack of resolution due to mechanical or financial constraints, or due to the presence of 64 
damaged or distorted tissue. Here, we introduce a methodology to repair and enhance 3D 65 
biological imaging data using generative artificial intelligence (AI) image interpolation. We 66 
demonstrate the utility of this method across serial sectioning-based and intact imaging datasets. 67 

Serial sectioning-based and intact imaging methods both present resolution challenges. Imaging 68 
methods that utilize serial sectioning take advantage of the ability to multiplex across tens to 69 
hundreds of sections.2,8,9 However, sectioning-based techniques face two resolution-limiting 70 
hurdles. First, the resolution of the sample is limited by the thickness of the serial sections (4 – 10 71 
µm for histology and ~40 nm for serial section transmission electron microscopy [ssTEM]). This 72 
resolution is further limited during the common practice of intermixing stains (hematoxylin and 73 
eosin [H&E], immunohistochemistry [IHC], spatial transcriptomics) at regular intervals.6,8–12 74 
Second, the axial resolution of the sample is diminished due to physical artifacts of sectioning, 75 
where tissue splitting, folding, and warping can dramatically limit the user’s ability to reconstruct 76 
continuous structures.4,13,14 In contrast, intact imaging approaches such as magnetic resonance 77 
imaging (MRI), computed tomography (CT), and tissue clearing enable 3D views of continuous 78 
structures.15–17 While the preservation of 3D structure generally enables higher resolution images 79 
than serial sectioning approaches, these techniques sacrifice the ability to multiplex across z-80 
planes. Additionally, in spite of the lack of sectioning, resolution problems persist, as the effects 81 
of photobleaching, light-sheet absorption, susceptibility to motion artifacts, and signal loss can 82 
result in localized loss of tissue connectivity and clarity. 18–20 83 

A promising solution lies in the application of generative models and interpolation techniques to 84 
enhance the fidelity of reconstructed images. Various generative deep learning models have been 85 
employed to synthesize tissue images. Prominent are CycleGANs (Cycle-Consistent Generative 86 
Adversarial Networks) and diffusion models.21–28 CycleGANs are generative deep learning models 87 
that allow for cross modality translation. They have been used for the transformation of H&E-88 
stained slides into synthetic IHC-stained slides that mark specific proteins in tissues.23–25,29 89 
Diffusion models have been used to generate magnetic resonance imaging (MRI) and computed 90 
tomography (CT) scans to augment the training datasets of deep learning models.21,27,30  91 

Despite advances in generative models, limitations persist in achieving synthetic biological images 92 
that look realistic, as assessed by rigorous metrics.21–28,31–33 Issues such as the accurate 93 
representation of subtle or rare textures, cell arrangements, and tissue boundaries are areas of active 94 
research.22,26 Here, we explore interpolation techniques, such as frame interpolation for large 95 
motion (FILM), to enhance the resolution of 3D biological images.31–34 Using FILM to generate 96 
synthetic intervening slides, we propagate information contained in adjacent slides, which 97 
enhances z-axis resolution of 3D microanatomical structures and allows for additional information. 98 

We demonstrate that interpolation of biological images using FILM provides superior performance 99 
compared to conventional linear interpolation. FILM-synthesized images can reconstruct 100 
microanatomical features, image contrast, and cell counts from damaged slides. Using FILM, 3D 101 
reconstructions of semantically segmented synthetic images of complex microanatomical 102 
structures - such as ducts and blood vessels - feature fewer artifacts than original, damaged datasets 103 
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(as assessed considering 13 Haralick features). The versatility of FILM is shown by its applications 104 
to different imaging modalities (light microscopy, MRI, ssTEM), species (human, mouse), organs 105 
(pancreas, brain, lungs), and pixel resolutions (8 nm, 2 µm, 1mm). These applications highlight 106 
the potential of generative AI interpolation techniques such as FILM to enhance spatial resolution, 107 
restore and recover damaged image slides, and mitigate information loss in volumetric biomedical 108 
imaging. 109 

  110 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 28, 2024. ; https://doi.org/10.1101/2024.03.07.583909doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.07.583909
http://creativecommons.org/licenses/by-nc-nd/4.0/


MATERIALS AND METHODS 111 

Specimen acquisition 112 

A sample of non-diseased human pancreas tissue was stained with hematoxylin and eosin (H&E); 113 
another similar sample was stained with leukocyte marker CD45 via immunohistochemistry (IHC-114 
CD45). Both samples were from individuals who underwent surgical resection for pancreatic 115 
cancer at the Johns Hopkins Hospital.2 The H&E-stained dataset consisted of a stack of 101 serially 116 
sectioned 4µm apart slides at 5x magnification. H and E are standard histological stains that mark 117 
nuclei and cellular structures (H) and ECM (E). The IHC-CD45 stained dataset consisted of 275 118 
slides at 5x magnification where every third slide of the serial section was stained 16µm apart. 119 
CD45 is a general marker of leukocytes. This retrospective study was approved by the Johns 120 
Hopkins University Institutional Review Board (IRB). 121 

A stack of serial section transmission electron micrographs (ssTEM) within a densely annotated 122 
mouse visual cortex petascale image volume (public dataset Minnie65) was obtained through the 123 
online Brain Observatory Storage Service and Database (BossDB), created, and managed by the 124 
Johns Hopkins Applied Physics Laboratory (APL). This dataset consisted of 100 ssTEM slides 125 
captured at a resolution of 8 nm x 8nm x 40 nm.2,7 126 

Light-sheet microscopy images of mouse lung were obtained from the Image Data Resource (IDR) 127 
public repository.35,36 This dataset consisted of 401 serial light-sheet microscopy images captured 128 
at a resolution of 3.22µm x 3.22µm x 10µm. 129 

MRI samples of human brain were obtained from the Amsterdam Open MRI Collection 130 
(AOMIC).37 Specifically, the PIOP2 (Population Imaging of Psychology) cohort consisting of 131 
structural MRI scans of students was used. The dataset consisted of 220 structural MRI scans 132 
captured at a resolution of 1mm x 1mm x 1mm.  133 

 134 

Segmentation of pancreatic microanatomy in histology slides 135 

CODA, a previously developed semantic segmentation model, was leveraged to segment the H&E-136 
stained pancreas whole slide images (WSIs) into their respective microanatomical components.2 137 
CODA was specifically trained for the segmentation of microanatomical components of the 138 
pancreas and labeled seven components at a resolution of 2 µm per pixel, including islet of 139 
Langerhans, ductal epithelium, blood vessels, fat, acini, extracellular matrix (ECM), and 140 
pancreatic intraepithelial neoplasia (PanIN), which are precursor lesions of pancreatic cancer.2 141 

 142 

Interpolation between 2D images 143 

Spatial interpolation between 2D slides within a stack was carried out using Frame Interpolation 144 
for Large Image Motion (FILM), a model previously developed for temporal interpolation between 145 
frames of videos by Reda et al.34 The model uses a three-step process to generate intermediate 146 
frames between two input images: a feature extraction pyramid, optical flow estimation, and 147 
feature fusion and frame generation.  148 
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The feature extraction pyramid consists of six convolutional layers responsible for extracting 149 
features from the input images, each with increasing kernel size and decreasing stride capturing 150 
progressively larger receptive fields, extracting features from coarser to finer scales. This coupled 151 
with the use of shared weights across scales, allows the model to extract features for both small 152 
and large motions efficiently. 153 

The features extracted are then fed into a bi-directional optical flow estimation module. This 154 
module calculates the pixel-wise motion vectors (or "flows") between the features of two input 155 
images at each pyramid level. These flows represent the transformation needed to warp the features 156 
from one frame to the other. The bi-directional approach allows the model to capture both forward 157 
and backward motion, leading to more accurate and detailed interpolations.34 158 

With the extracted features and estimated flows, FILM enters the final fusion stage. The aligned 159 
features from both input images, along with the flows and the original input images themselves, 160 
are concatenated into a single feature pyramid. This captures both the feature information and the 161 
motion dynamics between the two frames. Finally, a U-Net decoder architecture processes this 162 
fused feature pyramid and generates the final interpolated frame. The U-Net's skip connections, 163 
which bypass several layers within the network and concatenate their outputs directly with the 164 
outputs of later layers, ensures that the generated frame retains fine details and maintains 165 
consistency with the input images.34 166 

FILM used a recursive function (Eq.1) which accounted for the number of input frames, n, and the 167 
number of recursive passes over which the model would interpolate, k. This limited the number of 168 
frames that could be generated between the input images to be either one, four, seven, or fifteen 169 
frames (Eq.1). 170 

𝑓𝑓 = 2𝑘𝑘(𝑛𝑛 − 1) − 1          Eq.1 171 

Recognizing the need for flexibility in slide skipping based on user requirements, a time series 172 
spanning from 0 to 1 was implemented, with step sizes dynamically determined by the number of 173 
skipped slides. This approach generated time points corresponding to the skipped slides, 174 
facilitating variable frame interpolation between input pairs. 175 

FILM was pretrained on the Vimeo-90k dataset, a largescale dataset of 89,800 high quality videos 176 
designed specifically to train models oriented towards video processing tasks such as frame 177 
interpolation, image denoising and resolution enhancement.34 The optical flow of this model is 178 
already robustly pretrained on a diverse set of videos with different moving objects, such as 179 
vehicles, people, and smaller features like cameras and soccer balls. Re-training of the model posed 180 
two challenges: a lack of documentation on retraining and perfectly registering histological slides 181 
to curate a training dataset. The focus of FILM on optical flow means that the model is sensitive 182 
to misalignment in the training images, making histological slides an unfavorable dataset to retrain 183 
the optical flow model due to inherent variability in tissue preparation, staining intensities, and 184 
sectioning processes, which lead to unpredictable distortions and variations that complicate 185 
accurate spatial alignment of a stack of slides.  186 

 187 
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Pearson correlation  188 

To characterize the correlation between input image pairs to our model, the Pearson correlation 189 
was calculated between pairs of authentic images used to interpolate. This metric allowed for a 190 
comparison of three interpolation techniques: nearest-neighbor interpolation, linear interpolation, 191 
and FILM. By determining the correlation between the middle interpolated image (furthest from 192 
input images) and the corresponding authentic image for each method of interpolation we 193 
determined linear interpolation performed the nearest to FILM and hence chose it as the form of 194 
interpolation for a more stringent comparison to FILM interpolation (Fig. 2d). The Pearson 195 
correlation was calculated using the SciPy stats package available in python.   196 

 197 

Haralick texture features 198 

Thirteen Haralick texture features were calculated to provide a quantitative representation of the 199 
texture patterns within an image, offering insights into its spatial arrangements and 200 
relationships.38,39 The 13 features measured: angular second moment, contrast, correlation, sum of 201 
squares variance, inverse difference moment, sum average, sum variance, difference variance, sum 202 
entropy, difference entropy, entropy, information measure of correlation 1, and information 203 
measure of correlation 2.38,39 Contrast measures the intensity variations between neighboring 204 
pixels, correlation gauges the linear dependency of gray levels, energy represents the image 205 
uniformity, and homogeneity measures the closeness of gray level pairs. 206 

To manage the complexity and high dimensionality of the feature space, dimensionality reduction 207 
was carried out using principal component analysis (PCA). PCA transformed the original set of 208 
Haralick features into a reduced set of principal components, retaining the most significant 209 
information while discarding redundant or less informative aspects. This reduction not only 210 
simplifies the interpretation of the data, but also allows for a holistic assessment of image quality, 211 
capturing the essential texture information in a more compact form. 212 

Additionally, analysis of the Euclidean distances between authentic and interpolated images was 213 
computed using 13 of the Haralick features. By considering the Euclidean distances across all 214 
selected Haralick features simultaneously, a comprehensive evaluation of the overall error value 215 
was achieved. This validation process ensured that the collective impact of texture features was 216 
considered, providing a robust measure of dissimilarity or similarity between images. The 217 
combination of Haralick texture features, PCA for dimensionality reduction, and Euclidean 218 
distance computation offered a systematic and effective approach for evaluating image quality and 219 
texture patterns. 220 

 221 

Cell detection in histological sections 222 

To validate the interpolated IHC images, the CODA cell detection module was used to count the 223 
total number of CD45+ cells and compare it with respective authentic images.2 For this task, the 224 
intensity range of blue pixels was first determined for the nuclei of cells, along with the intensity 225 
of brown pixels for positive CD45 stain. Using k-means clustering, the mode blue pixel intensity 226 
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was determined and selected to represent the hematoxylin channel, while the mode brown pixel 227 
intensity was selected to represent the positive stain. With color deconvolution, the cells stained 228 
with hematoxylin could be extracted from the remaining tissue, thereby providing a cell count. 229 

 230 

3D rendering of interpolated 2D images 231 

FILM was used to interpolate stacks of whole slide images (WSIs) of missing or damaged slides, 232 
which resulted in the restoration of the whole serial sectioned dataset (Fig. 1b). During post-233 
processing, CODA was used to semantically segment histology slides and MRI images to 234 
reconstruct microanatomical tissue structures and whole organs in 3D (Fig. 1b). 2 Through manual 235 
annotations of microanatomical tissue structures in a small subset of histology slides and whole 236 
organ annotations of the brain in a subset of MRI images, CODA allowed for two deep learning 237 
models to be trained to recognize these annotations and apply them to the remaining slides/images 238 
in the respective datasets, thereby generating stacks of segmented histology slides and MRI 239 
images. Labels within the segmented slides/images, corresponding to the annotations could then 240 
be used by CODA to reconstruct and visualize 3D tissue structures of interest, such as epithelial 241 
ducts in the case of the pancreas, and whole organs such as the brain. Similarly, CODA was 242 
leveraged to 3D reconstruct synapses in the mouse brain using pre-segmented ssTEM slides with 243 
the appropriate synapse label. Tissue-cleared light-sheet images were separated into their 244 
respective RGB channels allowing for three stacks to be obtained, one for each channel. 3D 245 
reconstructions of structures within the tissue-cleared light-sheet images of the lung were then 246 
generated by creating volumes using stacks of channel-separated images. Specifically, the red 247 
channel was used to reconstruct the bronchioles in the mouse lung. 248 

 249 

Computing hardware and software 250 

We used Python (v3.8.16) and Tensorflow (2.10.0) for all image interpolations and analysis. For 251 
the CODA quantifications and 3D renderings, we used MATLAB (2023a). 252 

For smaller sized images, computers equipped with a single NVIDIA RTX 3090 GPU could easily 253 
interpolate them. For larger whole slide images, with dimensions exceeding 14000x10000 pixels, 254 
using more GPU power would allow to speed up the interpolation processing times. To handle 255 
these larger images with higher magnifications, we utilized the Rockfish cluster at Johns Hopkins 256 
University, which is equipped with nodes containing four NVIDIA A100 GPUs each. This high-257 
performance computing resource enabled us to interpolate whole slide histological images in 258 
shorter times. In case of no access to GPU clusters, users may opt for a tile and stitch approach 259 
provided in our code, which allows for tiling of large WSIs, interpolating the tiles individually, 260 
and then stitching them back together into WSIs during post-processing.  261 
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RESULTS 262 

Multi-modal tissue cohorts and interpolation workflows 263 

Here we applied a method based on optical flow, FILM, to restore damages in stacks of 2D images 264 
to recover lost microanatomical features in 3D reconstructions of tissue architecture and 265 
tissue/cellular composition (Fig. 1).27 We procured and tested FILM for a non-diseased pancreatic 266 
tissue cohort (stained with H&E and IHC), a structural MRI dataset of the human brain, a stack of 267 
ssTEM micrographs of thin sections of the mouse brain, and a mouse lung tissue cleared and 268 
imaged under light-sheet microscopy. The selection of these datasets encompassed different image 269 
characteristics (size and resolution), species (human, mouse), tissue types (pancreas, brain, lung), 270 
imaging modalities (histology, ssTEM, structural MRI, tissue clearing for light-sheet microscopy), 271 
and magnifications. This diversity of datasets ensured that the robustness of FILM was evaluated 272 
across a broad spectrum of imaging modalities. 273 

FILM, which we compare to other interpolation methods, uses pairs of undamaged 2D images 274 
from an image stack to improve spatial resolution or recover lost microanatomical information 275 
(Fig. 1b). The user specifies the number of images to be interpolated based on the number of 276 
damaged or missing images between the input slides. Using the output interpolated 2D image 277 
stacks, 3D volumes can be reconstructed without missing or damaged images (Fig. 1b). This results 278 
in improved spatial resolution and reconstruction of tissue components in 3D (Fig. 1b).  279 

 280 

FILM interpolation for stacks of histological slides 281 

We first tested the ability of FILM to interpolate whole slide images from a stack of histological 282 
images from human pancreatic tissue samples. Histological slides are often lost or damaged due 283 
to improper storage or documentation.13,14 The ability of FILM to interpolate slides was compared 284 
to a linear interpolation of the same slides and then compared to the corresponding authentic slide 285 
(Fig. 2).32,40–42 To qualitatively compare the interpolated slides, two ROI’s from the 101 serially 286 
sectioned and H&E stained human pancreas dataset were selected based on the tissue structures 287 
present. ROIs had a total of eight tissue components, including islets of Langerhans, ductal 288 
epithelium, blood vessels, fat, acini, ECM, whitespace, and PanIN (precursor) lesions. Pairs of 289 
images were selected one every 8 images (skip 7) of the original stack of authentic images, and 290 
the missing 7 images were interpolated (Fig. 2a). Interpolated images were validated against their 291 
respective authentic images (Fig. 2, b and c). 292 

We examined ducts and blood vessels due to their complex branching character within the first 293 
ROI (Fig. 2b). The authentic image of the duct showed damage fixed by FILM interpolation (top 294 
row, top arrow, Fig. 2b). In contrast, the epithelium layer of the duct showed significant noise in 295 
the linearly interpolated image due to pixel averaging (top row, bottom arrowhead, Fig. 2b). This 296 
caused overlay artifacts absent in FILM, which tracked pixel movements using optical flow for a 297 
sharper image. We also observed that linear interpolation replaced the damaged areas with acinus, 298 
unlike the whitespace in the authentic slide (top row, top arrowhead, Fig. 2b). In contrast, FILM 299 
successfully removed the damage and preserved the whitespace (top row, top arrow, Fig. 2b). 300 
Furthermore, FILM preserved the central structure of the duct, whereas linear interpolation thinned 301 
and elongated the lumen (top row, middle arrowhead, Fig. 2b). The superiority of FILM over linear 302 
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interpolation was further seen in the blood vessel microanatomical structures (bottom row, bottom 303 
arrowhead, Fig. 2b). With linear interpolation, overlay artifacts were present throughout the entire 304 
structure of the blood vessel (bottom arrow, Fig. 2b). Critically, linear interpolation could not 305 
preserve the structure of the blood vessel, unlike FILM (Fig. 2b). Linear interpolation also 306 
incorrectly generated fat regions absent in the authentic images (bottom row, top arrowhead, Fig. 307 
2b).  308 

In the second ROI, enriched in ducts, fat, and islets, linear interpolation created a duct lumen 309 
shadow (top row, top arrowhead, Fig. 2c). In contrast, FILM accurately interpolated the duct 310 
without artifact (top row, Fig. 2c). Other key structures were fat and islets, which typically 311 
presented a small and faint morphology (bottom row, Fig. 2c). The authentic slide contained 8 fat 312 
and 5 islets structures, however linear interpolated images showed fat shadows where the real fat 313 
was located (bottom row, top arrowhead, Fig. 2c). Additionally, it generated a non-existent fat 314 
region (bottom row, bottom arrowhead Fig. 2c). These fat shadows could be wrongly interpreted 315 
as islets, especially in regions where islets are present (bottom row Fig. 2c). Although FILM 316 
struggled with overlapping fat, it properly interpolated distinct fat without artifacts and could 317 
clearly distinguish islets from fat. 318 

We quantified differences between FILM and linear interpolation of whole slide images using 319 
Pearson correlation for each of our scenarios (when skipping 1, 3, and 7 slides) (Fig. 2d). The 320 
correlation was calculated (i) between the two input WSIs to the model as well as (ii) between the 321 
input WSIs and middle authentic WSIs for each scenario. This correlation (ii) represented the 322 
correlation achieved when interpolating images using the nearest neighbor form of interpolation. 323 
Lastly, the correlation (iii) between the middle FILM, (iv) the middle linear interpolated image 324 
and the middle authentic image for each scenario was calculated. FILM-interpolated WSIs were 325 
clearly more correlated to their authentic counterparts than the nearest neighbor-interpolated 326 
images. Linearly interpolated images closely matched the correlation obtained between FILM 327 
interpolated images and authentic images (Fig. 2d). Hence, linear interpolation was chosen as the 328 
benchmark comparative form of interpolation to FILM. 329 

Thirteen Haralick features (angular second moment, contrast, correlation, sum of squares variance, 330 
inverse difference moment, sum average, sum variance, difference variance, sum entropy, 331 
difference entropy, entropy, information measure of correlation 1, and information measure of 332 
correlation 2) were measured to evaluate the interpolated images.38,39 The results of each score 333 
were averaged for the different tested scenarios (authentic, FILMskip1, FILMskip3, FILMskip7, 334 
linearskip1, linearskip3, and linearskip7) (Table S1.), which allowed for principal component analysis 335 
(PCA) to be carried out (Fig. 2e). This analysis demonstrated that the FILM-interpolated slides 336 
represented more closely the information in the authentic slides, even when skipping seven slides, 337 
as compared to linear interpolation. The averaged values were also used to compute the Euclidean 338 
distance of the 13 Haralick features between authentic and interpolated images (Fig. 2e). Even 339 
skipping 7 slides, FILM images were <1/2 the distance of linear images skipping just 1 slide from 340 
authentic images. 341 

Standard metrics, such as mean square error (MSE), structural similarity index measure (SSIM), 342 
peak signal-to-noise ratio (PSNR), Spearman correlation, Jaccard correlation, Sobel filter, and 343 
channel wise pixel-to-pixel intensity correlation could not quantify the structural errors in 344 
microanatomical features from linear interpolation (Fig. 2, b and c). The dominant, easily 345 
interpolated acini surrounding microanatomy resulted in similar metric values for linear and FILM, 346 
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since these metrics are less sensitive to small-pixel deviations compared to large-pixel deviations. 347 
Masking out acini to consider only the pixels associated with microanatomical structures was 348 
attempted, but registration differences between authentic and interpolated images meant that these 349 
metrics only highlighted alignment differences rather than the quality of interpolation. 350 

In sum, FILM can accurately interpolate damaged or missing H&E-stained histological images, 351 
which restores lost information in 2D image stacks and, consequently, improves connectivity of 352 
microanatomical structures in 3D (see also more below). Unlike linear interpolation, FILM does 353 
not generate non-existent microanatomical structures like ducts or fat. 354 

 355 

FILM interpolation for stacks of images stained via immunohistochemistry (IHC)  356 

To further demonstrate the ability of FILM to interpolate histological WSIs, a second human 357 
pancreas sample was immunostained (IHC) for leukocyte marker CD45. We note the substantial 358 
z-directional distance of 52μm between input slides, equivalent to omitting twelve successive 4-359 
μm-thick sections (Fig. 2f). The target images, for which authentic validation slides were available 360 
for comparison, are shaded in dark grey, while the missing slides between the input and target 361 
slides are shaded in light grey (Fig. 2f).  362 

We compared the middle target slide interpolated to the middle authentic validation slide using 363 
both linear and FILM models (Fig. 2f). When zooming in to a specific fat dense region, linear 364 
interpolation artifacts were evident, while FILM lacked such artifacts (bottom row, middle 365 
arrowhead, top row, arrow Fig. 2f). Additionally, whereas cells were distinctly observed in the 366 
authentic image, the linearly interpolated image showed faintly stained cells covered with white 367 
hues resembling fat (bottom row, right arrowhead, Fig. 2f). In contrast, FILM could interpolate 368 
distinct cells around the fat and even preserved most of the ductal and ECM structures (top row, 369 
arrow, Fig. 4a), unlike the linear model (bottom row, left arrowhead, Fig. 2f). 370 

Using CODA, the total cell count of CD45 positive cells was determined for each of the linear and 371 
FILM interpolated images and compared to the cell counts in the authentic slides while skipping 372 
and interpolating 12 slides. Linear interpolation resulted in slides with inconsistent CD45+ cell 373 
counts which were either much less or greater than those in authentic slides. Conversely, FILM 374 
interpolated slides resulted in cell counts which closely matched the cell count trend in authentic 375 
slides (Fig 2g). Linearly interpolated slides had a higher percent error in cell count reaching over 376 
90% for certain slides whereas FILM interpolated slides never exceeded 45% error in cell count 377 
(Extended Fig. 2f). 378 

Thirteen Haralick texture features were evaluated for authentic and interpolated slides when 379 
interpolating 7 and 12 slides. The results of each score were averaged for the different scenarios 380 
assessed (authentic, FILMskip7, FILMskip12, linearskip7, and linearskip12) (Table S1.). PCA showed 381 
FILM-interpolated slides more closely represented authentic slide information along principal 382 
component 1, while linear along component 2 (Fig. 2h). The Euclidean distance between authentic 383 
and interpolated images demonstrated FILMskip12 more closely represented the authentic slides 384 
compared to linearskip7 (Fig. 2h). 385 

In summary, by interpolating IHC-CD45 stained images and determining the difference in cell 386 
count between authentic and interpolated images, we show the ability of FILM to interpolate not 387 
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only multicellular structures (ducts, blood vessels) in stacks of histological images, but also smaller 388 
features such as individual cells.  389 

 390 

FILM interpolation for stacks of MRI and light-sheet microscopy images 391 

Next, we tested the ability of FILM to interpolate images within stacks of MRI images. MRI 392 
imaging faces inherent limitations, such as susceptibility to motion artifacts due to prolonged scan 393 
times, leading to patient discomfort, and potential for signal loss due to magnetic field in 394 
homogeneity that can impact the quality of acquired images. Pairs of images were selected one 395 
every 8 images (skip 7) of the original stack of authentic images, and the missing 7 images were 396 
interpolated (Fig. 3a). Interpolated images were validated against their respective authentic images 397 
(Fig. 3b). 398 

Linear interpolation of MRI images caused band artifacts generated around the boundary of the 399 
soft tissue, unlike FILM which did not such artifacts (middle row, Fig. 3b). Additionally, FILM 400 
could accurately interpolate the soft tissue structure to make biologically accurate structures, 401 
whereas linear interpolation created what resembles a grey smudge with significant overlay 402 
artifacts (bottom row, Fig. 3b).  403 

To further demonstrate its versatility, we applied FILM to interpolate images within a stack of 404 
light-sheet micrographs obtained from a cleared mouse lung. Light-sheet microscopy presents 405 
challenges, including photobleaching and light sheet absorption, which may result in uneven 406 
illumination, and tissue movement during imaging, which can introduce distortions. Again, pairs 407 
of images were selected every 8 images of the authentic stack (Fig. 3e), and interpolated images 408 
were compared to their authentic counterpart.     409 

Linear interpolation of light-sheet micrographs created double boundary lines around the 410 
bronchioles creating a structure that is biologically inaccurate (middle row, top arrowhead, Fig. 411 
3f) (bottom row, bottom arrowhead, Fig. 3f). In contrast, FILM correctly interpolated the structure 412 
of bronchioles to accurately depict the structure observed in the authentic image (middle row, 413 
arrow Fig. 3f). In the second row of zoom-ins, we can see that the authentic image suffers from 414 
artifacts of light-sheet absorption and photobleaching on the top left side of the bronchiole, which 415 
cause bleeding of the green and red channels into the bronchiole (bottom row, arrowhead, Fig. 3f). 416 
Linear interpolation reduced these artifacts, but could not remove them entirely (bottom row, top 417 
arrowhead Fig. 3f), whereas FILM removed the bleed of the red and green channels (bottom row, 418 
arrow Fig. 3f).  419 

For both MRI and light-sheet microscopy datasets, thirteen Haralick texture features introduced 420 
above were measured to compare authentic and interpolated images, when interpolating 1, 3, and 421 
7 slides. The results for each score were averaged for the different comparisons (authentic, 422 
FILMskip1, FILMskip3, FILMskip7, linearskip1, linearskip3, and linearskip7) (Table S1.), and shown in a 423 
principal component analysis (PCA) plane (Fig 3, c and g). For MRI images, FILM-interpolated 424 
slides represented more closely the information in the authentic slides, even when skipping seven 425 
slides, compared to linear interpolation. The averaged values were also used to compute the 426 
Euclidean distance between authentic and interpolated images (Fig 3c). Again, even when skipping 427 
seven slides, FILM-interpolated slides were < 1/2 the Euclidean distance between the authentic 428 
slides and the linearly interpolated slides when skipping only one slide. The Euclidean distance by 429 
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slide further emphasizes the superiority of FILM over linear interpolation as the Euclidean distance 430 
increased when progressing through the stack of slides and interpolating linearly as opposed to 431 
FILM (Fig 3d).  432 

Similarly, the PCA analysis for light-sheet interpolated images showed that FILM interpolated 433 
images were more closely representative of the authentic images for principal component 2, while 434 
the linear interpolated images were closer for principal component 1 (Fig 3g). Nevertheless, when 435 
considering the mean Euclidean distance, FILM outperformed linear interpolation for each 436 
individual skip scenario (Fig 3g). The Euclidean distance by slide increased when interpolating 437 
linearly through the stack as opposed to FILM, for which it remained consistent through the stack. 438 
(Fig 3h). 439 

In sum, we demonstrated the ability of FILM to interpolate MRI and light-sheet images more 440 
accurately than linear interpolation. FILM reduces motion artifacts in MRI images whereas linear 441 
interpolation exaggerates these artifacts, resulting in band artifacts. FILM reduces photobleaching 442 
and light-sheet absorption artifacts present in the authentic light-sheet images, whereas linear 443 
interpolation cannot. Elimination of such artifacts allows for more accurate 3D reconstructions of 444 
whole organ structures and microanatomical structures in tissue samples. 445 

 446 

FILM interpolation and restoration of ssTEM images 447 

A stack of serial section transmission electron micrographs (ssTEM) of the mouse brain was used 448 
to show our ability to interpolate not only histological sections, but also EM micrographs of tissue 449 
sections (Fig. 4a). Authentic tiles shown represent a 2000x3500 pixel tile of the authentic whole 450 
slide image (Fig. 4a). Thick irregular black lines were observed across most of the slides in the 451 
authentic stack of images, which correspond to damage due to unavoidable tissue tear during 452 
processing of thin sections (left column, arrows, Fig. 4b). For a randomly selected subset of 100 453 
continuous slides from a stack of the >13,000 ssTEM slides, we found that >70% were damaged, 454 
many of them containing >1 damaged region. Additionally, fainter grey lines were observed, going 455 
horizontally across the authentic images, which are artifacts of image stitching (top row, bound by 456 
red box Fig. 4b). Interpolation between two undamaged EM slides using FILM could not only 457 
remove the damage to the slides while preserving the structures within them, but also significantly 458 
reduce stitching artifacts (right column, Fig. 4b). 459 

Thirteen Haralick features were measured for the authentic and interpolated images when 460 
interpolating 1, 3, and 7 slides. The results of each score were averaged for the different tested 461 
scenarios (authentic, FILMskip1, FILMskip3, FILMskip7, linearskip1, linearskip3, and linearskip7) (Table 462 
S1.). PCA showed that FILM-interpolated slides more closely represented authentic slide 463 
information along principal component 2, while linear along component 1 (Fig. 4c). Euclidean 464 
distance between authentic and interpolated images where it can be seen that FILMskip1 more 465 
closely represents the authentic than linearskip1 and similarly for the instance of skipping 3 and 7 466 
slides (Fig. 4c). 467 

In sum, we demonstrate the ability of FILM to eliminate damage in ssTEM slides. This allows for 468 
more accurate 3D reconstructions of the neural pathways by decreasing loss connectivity which 469 
arises due to the damage on individual 2D sections.  470 

 471 
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3D reconstruction of FILM-interpolated images  472 

To better show the application of FILM to enhance 3D visualization of microanatomical structures 473 
from 2D interpolated images, FILM interpolation was applied across different image modalities 474 
such as histological (H&E and IHC), MRI, ssTEM, and light-sheet images. Sematic segmentation 475 
and subsequent concatenation of the 2D segmented images into a volume allowed visualization of 476 
microanatomical features in three dimensions. 477 

Using CODA, we 3D reconstructed the epithelial duct from the pancreatic H&E dataset (Fig. 5a). 478 
The 3D reconstruction of the authentic volume skipping 7 images demonstrates the loss in ductal 479 
connectivity as a result of missing or damaged slides. Linear interpolation of the H&E samples 480 
created noise around the structure of the duct when 3D reconstructed and was unable to preserve 481 
the branching structure of the duct (zoom-in, Fig. 5a). On the other hand, FILM was able to restore 482 
the microanatomical connectivity in the 3D reconstruction of the main and smaller branches of the 483 
duct, while also creating a smoother volume without the propagation of noise (Supplementary 484 
Video 1). 485 

Similarly, CODA was used to 3D reconstruct a whole human brain using the stack of MRI images. 486 
A comparison of the authentic volume to the authentic volume skipping 7 images showed how 487 
connectivity was lost as a result of damaged or missing images. The authentic volume skipping 7 488 
images also lacked the topographical structure of the brain seen in the authentic volume, replacing 489 
the topography with single planes of information (Fig 5b). Using linear interpolation to recover 490 
the missing or damaged scans resulted in increased edges in 3D volumes, which resembled objects 491 
extruding abnormally out of the brain. This is especially evident around the base of the brain where 492 
the brain stem starts and at the top of the brain towards the skull cap (Fig. 5b). When interpolating 493 
images using FILM, the 3D reconstructed volume resembled more closely that of the authentic 494 
one, with accurate indentations around the surface of the brain and even accurate reconstruction 495 
of the branching brain stem structure. 496 

Tissue-cleared light-sheet images were separated by channel and used to 3D reconstruct the 497 
bronchioles in a mouse lung (Fig 5c). Similarly, a comparison of the authentic volume to a 498 
downsampled reconstruction of the authentic volume (skipping 7 images between adjacent z-499 
planes) demonstrates the loss in connectivity of the bronchioles in 3D as a result of damaged or 500 
missing image scans. The use of linear interpolation to recover missing z-planes did not improve 501 
the connectivity of the bronchioles in 3D, but rather more closely resembled the structure of the 502 
downsampled volume (Fig. 5c). FILM recovered the missing planes, which restored the 503 
connectivity of the bronchioles, and consequently resulted in a volume that resembled the authentic 504 
biospecimen. 505 

Segmented ssTEM images were interpolated using FILM and linear interpolation to 3D reconstruct 506 
synapses in the mouse brain. A qualitative assessment between the authentic volume and 507 
downsampled recreation of the authentic volume (skipping 7 images between adjacent z-planes) 508 
shows the loss in synapse connectivity (Fig. 5d). Linear interpolation to recover the missing z-509 
planes results in the creation of a low resolution volume with blocked structures. Conversely, using 510 
FILM to recover the missing planes resulted in a higher resolution 3D volume, which resembled 511 
that of the authentic volume, and allowed for the synapse connectivity to be restored 512 
(Supplementary Video 2).  513 
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In sum, missing or damaged slides and images in biomedical image stacks cause significant loss 514 
in 3D spatial information which hinders the accurate 3D reconstruction of microanatomical and 515 
whole organ structures from these 2D image stacks. We demonstrate that linear interpolation is 516 
not sufficiently robust to recover the information lost in complex biomedical images, resulting in 517 
inaccurate 3D reconstructions. In contrast, the optical flow-based model FILM can recover more 518 
information to allow for 3D reconstructions that resemble their authentic counterparts.  519 
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DISCUSSION 520 

We are entering an era in which 3D imaging of biomedical samples has become a requirement as 521 
2D assessments are not sufficient in capturing the content and morphology of multi-cellular 522 
structures, rare events, and spatial relationships among different cell types.1 Various models have 523 
been developed to leverage 2D biomedical image stacks of histology slides, MRI images, ssTEM 524 
slides, and tissue-cleared light-sheet images to reconstruct volumes of microanatomical structures 525 
and whole organs. Such models rely on the quality of individual 2D images within the image stacks 526 
for the accurate reconstruction of volumes. Limitations in z-resolution often arise due to missing 527 
slides and images, tissue damage, and the high cost associated with imaging.  528 

Here, we address these challenges by leveraging FILM and its ability to extract and track features 529 
in biomedical images using optical flow for image interpolation. By interpolating between 530 
undamaged slides to generate missing or damaged slides, we bridge gaps in z-resolution. This 531 
technique enhances 3D reconstructions and mitigates issues arising from damaged or missing 532 
slides. This method broadens the applicability of 2D biomedical image stacks for 3D 533 
reconstructions and quantitative assessments of cellular composition, tissue topography, and 534 
degree of branching of ducts and blood vessels in volumetric tissues. 535 

We conducted a thorough comparative assessment of FILM to linear interpolation using thirteen 536 
Haralick texture features. Linear interpolation, which averages pixel intensities creating hued 537 
colors and structures, cannot create realistic biomedical images. As the number of images skipped 538 
increases, linearly interpolated images further degrade in authenticity, especially for the images 539 
furthest from input images (middle-interpolated image). For large number of skipped images (skip 540 
7), the middle-interpolated image presents strong hues as pixel intensities deviate largely between 541 
input images. Conversely, FILM can interpolate biomedical images that resemble their authentic 542 
counterparts.  543 

By interpolating images using FILM, we reduce the time required for image acquisition. This is 544 
especially applicable when considering MRI scans and the time spent by patients in the machine, 545 
which can lead to patient discomfort and, in extension, motion artifacts that hinder imaging quality. 546 
Similarly, for light-sheet microscopy, we demonstrate the ability of FILM to accurately interpolate 547 
images in the z-direction reducing the number z-steps required during image acquisition. This 548 
significantly decreases the total time required to image a sample as samples are imaged tile by tile 549 
laterally before moving onto the next z-level. Collection time increases exponentially with the 550 
lateral size of the sample, from minutes for a 104 µm3 sample at a spatial resolution of 500 nm to 551 
a week for a 108 µm3 sample at the same resolution.16 FILM interpolation helps address this 552 
limitation.  553 

In conclusion, our work goes beyond existing methods of image translation which use 554 
CycleGAN’s and diffusion models to generate biomedical images by leveraging FILM’s method 555 
of image interpolation. Where image translation would require physical access to the slides of 556 
interest to be translated, our workflow interpolates missing or inaccessible slides, restores damaged 557 
images, eliminates artifacts of image stitching, and works with a wide range of complex 558 
multimodal biomedical images.  559 

 560 
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Figures and Captions  662 

 663 
Fig 1. Interpolation workflow and datasets. (a) Samples were obtained from two species, mouse, and 664 
human. Four different organs were analyzed: human pancreas, human brain, mouse brain, and mouse lung. 665 
Five imaging modalities were tested: hematoxylin and eosin (H&E) stained histology slides, 666 
immunohistochemistry (IHC) stained histology slides, magnetic resonance imaging (MRI), serial section 667 
transmission electron microscopy (ssTEM) slides, and combined tissue clearing with light-sheet 668 
microscopy slides. (b) Aligned slides are manually searched through to identify missing or damaged slides, 669 
and damaged slides are removed from the stack of slides. FILM interpolation is carried out using the 670 
sections adjacent to the damaged or missing slides as inputs to recreate slides that were stained differently, 671 
missing, or damaged, resulting in a uniform stack of slides. Using CODA, slides are segmented into labeled 672 
tissue masks, with each label representing different microanatomical structures in the slide, which is then 673 
used to recreate and visualize microanatomical 3D structures in the tissue sample.  674 
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 675 
Fig. 2 Comparison of linear and FILM interpolations for stacks of histological images of pancreatic tissues. (a) 676 
Regions of interest (ROI’s) were selected from the whole slide images (WSI’s), ensuring that all microanatomical features (islets of Langerhans, 677 
ductal epithelium, blood vessels, fat cells, acini, extra-cellular matrix (ECM), whitespace, and pancreatic intraepithelial neoplasia (PanIN) were 678 
present in the ROI and slides were interpolated while skipping 7 slides between adjacent sections, thereby generating 7 slides. (b) ROI 1: 679 
Comparison of linear and FILM interpolation to the authentic ROI for the middle-interpolated image (image 4) for ductal epithelium and blood 680 
vessels. Arrowheads show linear interpolation replacing damage with acini as opposed to whitespace, creating noise around the epithelium layer 681 
of the duct, incorrectly generating fat regions, and unable to preserve vessel structure. The arrow shows FILM correctly replaces damage with 682 
whitespace. (c) ROI 2: Comparison of linear and FILM interpolation to the authentic ROI for the middle-interpolated image (image 4) for ductal 683 
epithelium, fat cells, and blood vessels. Arrowheads show linear interpolation creates duct lumen shadows and fat shadows resembling islets as 684 
well as non-existent fat regions. (d) Pearson correlation compares the correlation between the authentic input images and the nearest-neighbor-685 
interpolated, FILM-interpolated, and linearly interpolated images. (e) Principal component analysis of thirteen Haralick features for authentic, 686 
FILM, and linearly interpolated images for various numbers of skipped images. Mean Euclidean distance of interpolated images from authentic 687 
images based on thirteen Haralick features. (f) IHC pancreas slides used to interpolate with authentic slides for validation to compare interpolated 688 
images to authentic images. The middle validation slide is visualized for comparison with the interpolated images. Arrow shows how FILM 689 
preserves vessel structure, unlike linear interpolation, which was also unable to preserve fat domains (arrowheads). (g) Comparison of CD45+ 690 
cell counts in authentic images and interpolated images when skipping 12 slides. (h) Principal component analysis of thirteen Haralick features 691 
for authentic, FILM, and linearly interpolated IHC images for various numbers of skipped images. Mean Euclidean distance of interpolated 692 
images from authentic images based on thirteen Haralick features.  693 
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 694 

Fig. 3. FILM interpolation for stacks of MRI and light-sheet microscopy images. (a) MRI images were 695 
interpolated while skipping 7 slides between adjacent sections, thereby generating 7 slides. (b) Qualitative comparison 696 
of linear and FILM interpolation to the authentic image for the middle-interpolated MRI image (image 4). The circled 697 
region shows linear interpolation creates band artifacts, unlike FILM. (c) Principal component analysis of thirteen 698 
Haralick features for authentic, FILM, and linearly interpolated MRI images for various numbers of skipped images. 699 
Mean Euclidean distance of interpolated images from authentic images based on thirteen Haralick features. (d) 700 
Euclidean distance by slide of interpolated images from authentic images based on thirteen Haralick features for 701 
various numbers of skipped MRI images. (e) Tissue-cleared light-sheet images were interpolated skipping 7 slides 702 
between adjacent sections, thereby generating 7 slides. (f) Qualitative comparison of linear and FILM interpolations 703 
to the authentic image for the middle-interpolated light-sheet image (image 4). Arrowhead shows linear interpolation 704 
creates double boundary lines around bronchioles. In second row, the arrowhead shows photobleaching in authentic 705 
reduced by linear interpolation and completely removed by FILM (arrow). (g) Principal component analysis of thirteen 706 
Haralick features for authentic, FILM, and linearly interpolated light-sheet images for various numbers of skipped 707 
light-sheet images. Mean Euclidean distance of interpolated images from authentic images based on thirteen Haralick 708 
features. (h) Euclidean distance by slide of interpolated images from authentic images based on thirteen Haralick 709 
features for various numbers of skipped light-sheet images.  710 
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711 
Fig. 4. FILM interpolation for a stack of ssTEM images. (a) ssTEM slides were interpolated while skipping 4 712 
slides between adjacent sections, thereby generating 4 slides. (b) FILM interpolation of mouse brain ssTEM slides 713 
to remove damage from slides (arrowheads) and reduce stitching artifacts (red box). (c) Principal component 714 
analysis of thirteen Haralick features for authentic, FILM, and linearly interpolated ssTEM images for various 715 
skipped images. Mean Euclidean distance of interpolated images from authentic images based on thirteen Haralick 716 
features. 717 
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 718 
Fig. 5. 3D reconstruction of interpolated images. (a) Comparison of 3D reconstructions of pancreatic duct when 719 
skipping 7 slides between authentic images and when interpolating the missing slides using linear and FILM 720 
interpolations. (b) Comparison of 3D reconstructions of brain MRI images when skipping 7 images between authentic 721 
images and when interpolating the missing slides using linear and FILM interpolations. (c) Comparison of 3D 722 
reconstructions of bronchioles from light-sheet images of the mouse lung when skipping 7 images between authentic 723 
images and when interpolating the missing slides using linear and FILM interpolations. (d) Comparison of 3D 724 
reconstructions of synapses from ssTEM slides of the mouse brain when skipping 7 images between authentic images 725 
and when interpolating the missing slides using linear and FILM interpolations. 726 
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 727 

Extended Fig 2. Qualitative comparison of linear and FILM interpolations to authentic H&E-stained 728 
histological slides of a human pancreas when skipping 7 slides for four different ROI’s. (a) Four ROIs were 729 
selected from H&E-stained whole slide images (WSI’s). Slides were interpolated when skipping 7 slides between 730 
adjacent sections, thereby generating 7 slides. (b) The top row of authentic images shows the middle skipped z-slide 731 
of all four different ROIs selected for interpolation. The middle row of zoom-ins of authentic images shows 732 
microanatomical structures observed within the different ROI’s. The third row of zoom-ins shows the CODA 733 
classification of these microanatomical structures. (c)  The top row of linearly interpolated images shows the middle 734 
interpolated z-slide of all four different ROI’s corresponding to the authentic images. The middle row of zoom-ins of 735 
linearly interpolated images shows microanatomical structures generated by linear interpolation within the different 736 
ROI’s. The third row of zoom-ins shows the CODA classification of these linearly interpolated microanatomical 737 
structures. (d) The top row of FILM interpolated images shows the middle interpolated z-slide of all four different 738 
ROI’s corresponding to the authentic images. The middle row of zoom-ins of FILM interpolated images shows 739 
microanatomical structures generated by FILM within the different ROI’s. The third row of zoom-ins shows the 740 
CODA classification of these FILM interpolated microanatomical structures. (e) Euclidean distance by slide of 741 
interpolated images from authentic images based on thirteen Haralick features for ROI 1 and ROI 2. (f) Percent error 742 
in CD45+ cell count by slide between authentic and interpolated images when skipping 12 slides. 743 
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Table S1. Mean Haralick texture feature scores for each dataset and skip scenario. 744 

Dataset Energy Contrast Correlation Variance Homogenetiy Sum Average Sum Variance Sum Entropy Entropy
Difference 
Variance

Difference 
Entropy

Info 
Meas of 

Corr

Infor 
Meas of 

Corr 2
Authentic 1.42E-02 5.62E+02 9.57E-01 6.51E+03 3.32E-01 3.08E+02 2.55E+04 7.34E+00 1.12E+01 3.39E-04 4.82E+00 -2.65E-01 9.83E-01
FILM_1 1.23E-02 4.11E+02 9.68E-01 6.43E+03 3.30E-01 3.07E+02 2.53E+04 7.31E+00 1.11E+01 3.48E-04 4.68E+00 -2.76E-01 9.85E-01
FILM_3 1.19E-02 3.92E+02 9.69E-01 6.36E+03 3.28E-01 3.08E+02 2.51E+04 7.32E+00 1.11E+01 3.45E-04 4.67E+00 -2.76E-01 9.85E-01
FILM_7 1.17E-02 3.91E+02 9.69E-01 6.35E+03 3.26E-01 3.08E+02 2.50E+04 7.35E+00 1.11E+01 3.40E-04 4.68E+00 -2.77E-01 9.85E-01
Linear_1 1.34E-02 3.15E+02 9.74E-01 6.05E+03 3.31E-01 3.08E+02 2.39E+04 7.29E+00 1.10E+01 3.51E-04 4.59E+00 -2.84E-01 9.86E-01
Linear_3 1.29E-02 3.32E+02 9.72E-01 6.01E+03 3.28E-01 3.08E+02 2.37E+04 7.31E+00 1.10E+01 3.44E-04 4.62E+00 -2.82E-01 9.86E-01
Linear_7 1.26E-02 3.63E+02 9.70E-01 6.02E+03 3.25E-01 3.08E+02 2.37E+04 7.36E+00 1.11E+01 3.36E-04 4.67E+00 -2.82E-01 9.86E-01

Dataset Energy Contrast Correlation Variance Homogenetiy Sum Average Sum Variance Sum Entropy Entropy
Difference 
Variance

Difference 
Entropy

Info 
Meas of 

Corr

Infor 
Meas of 

Corr 2
Authentic 3.30E-02 5.30E+02 5.76E-01 6.31E+02 3.80E-01 4.34E+02 1.99E+03 6.24E+00 9.96E+00 4.36E-04 4.65E+00 -1.71E-01 9.18E-01
FILM_7 2.14E-02 3.03E+02 6.76E-01 4.72E+02 3.56E-01 4.35E+02 1.58E+03 6.34E+00 1.00E+01 3.93E-04 4.50E+00 -1.79E-01 9.25E-01
FILM_12 1.98E-02 2.93E+02 6.85E-01 4.69E+02 3.51E-01 4.35E+02 1.58E+03 6.37E+00 1.01E+01 3.83E-04 4.50E+00 -1.79E-01 9.26E-01
Linear_7 2.08E-02 2.95E+02 6.50E-01 4.26E+02 3.28E-01 4.33E+02 1.41E+03 6.33E+00 1.01E+01 3.42E-04 4.61E+00 -1.57E-01 9.05E-01
Linear_12 2.06E-02 3.11E+02 6.43E-01 4.39E+02 3.25E-01 4.33E+02 1.45E+03 6.35E+00 1.02E+01 3.35E-04 4.64E+00 -1.55E-01 9.04E-01

Dataset Energy Contrast Correlation Variance Homogenetiy Sum Average Sum Variance Sum Entropy Entropy
Difference 
Variance

Difference 
Entropy

Info 
Meas of 

Corr

Infor 
Meas of 

Corr 2
Authentic 4.40E-01 7.62E+01 9.26E-01 5.32E+02 7.18E-01 2.40E+01 2.05E+03 3.39E+00 4.77E+00 3.73E-03 2.35E+00 -4.12E-01 9.41E-01
FILM_1 4.42E-01 6.99E+01 9.33E-01 5.29E+02 7.28E-01 2.40E+01 2.04E+03 3.39E+00 4.73E+00 3.54E-03 2.28E+00 -4.41E-01 9.51E-01
FILM_3 4.42E-01 6.68E+01 9.35E-01 5.23E+02 7.29E-01 2.40E+01 2.02E+03 3.39E+00 4.72E+00 3.54E-03 2.26E+00 -4.44E-01 9.51E-01
FILM_7 4.32E-01 6.45E+01 9.37E-01 5.23E+02 7.24E-01 2.45E+01 2.03E+03 3.45E+00 4.81E+00 3.18E-03 2.29E+00 -4.40E-01 9.58E-01
Linear_1 4.34E-01 5.51E+01 9.46E-01 5.10E+02 7.24E-01 2.41E+01 1.98E+03 3.42E+00 4.76E+00 3.53E-03 2.26E+00 -4.41E-01 9.53E-01
Linear_3 4.38E-01 5.02E+01 9.48E-01 4.92E+02 7.23E-01 2.41E+01 1.92E+03 3.39E+00 4.68E+00 4.04E-03 2.24E+00 -4.40E-01 9.50E-01
Linear_7 4.21E-01 5.15E+01 9.45E-01 4.87E+02 7.12E-01 2.46E+01 1.90E+03 3.49E+00 4.86E+00 3.67E-03 2.32E+00 -4.30E-01 9.57E-01

Dataset Energy Contrast Correlation Variance Homogenetiy Sum Average Sum Variance Sum Entropy Entropy
Difference 
Variance

Difference 
Entropy

Info 
Meas of 

Corr

Infor 
Meas of 

Corr 2
Authentic 3.89E-01 4.25E-01 9.87E-01 1.94E+01 9.22E-01 6.25E+00 7.70E+01 2.61E+00 2.85E+00 5.36E-03 7.05E-01 -7.19E-01 9.67E-01
FILM_1 3.97E-01 3.80E-01 9.88E-01 1.88E+01 9.29E-01 6.25E+00 7.46E+01 2.57E+00 2.79E+00 5.57E-03 6.58E-01 -7.49E-01 9.72E-01
FILM_3 3.98E-01 3.57E-01 9.89E-01 1.80E+01 9.29E-01 6.24E+00 7.16E+01 2.56E+00 2.78E+00 5.66E-03 6.52E-01 -7.48E-01 9.72E-01
FILM_7 3.96E-01 3.39E-01 9.89E-01 1.71E+01 9.29E-01 6.25E+00 6.81E+01 2.57E+00 2.78E+00 5.88E-03 6.53E-01 -7.45E-01 9.72E-01
Linear_1 3.89E-01 3.42E-01 9.88E-01 1.84E+01 9.26E-01 6.24E+00 7.32E+01 2.60E+00 2.82E+00 5.95E-03 6.77E-01 -7.26E-01 9.67E-01
Linear_3 3.88E-01 3.15E-01 9.89E-01 1.77E+01 9.28E-01 6.25E+00 7.05E+01 2.60E+00 2.81E+00 6.72E-03 6.63E-01 -7.31E-01 9.69E-01
Linear_7 3.86E-01 3.10E-01 9.88E-01 1.71E+01 9.27E-01 6.25E+00 6.81E+01 2.60E+00 2.81E+00 7.22E-03 6.63E-01 -7.31E-01 9.69E-01

Dataset Energy Contrast Correlation Variance Homogenetiy Sum Average Sum Variance Sum Entropy Entropy
Difference 
Variance

Difference 
Entropy

Info 
Meas of 

Corr

Infor 
Meas of 

Corr 2
Authentic 3.23E-03 1.62E+01 8.25E-01 4.71E+01 2.76E-01 2.60E+02 1.72E+02 5.74E+00 8.76E+00 7.71E-04 3.14E+00 -1.77E-01 8.97E-01
FILM_1 5.63E-03 7.47E+00 8.90E-01 3.48E+01 3.77E-01 2.59E+02 1.32E+02 5.53E+00 7.99E+00 1.20E-03 2.62E+00 -2.55E-01 9.45E-01
FILM_3 5.48E-03 8.03E+00 8.83E-01 3.49E+01 3.70E-01 2.61E+02 1.32E+02 5.54E+00 8.05E+00 1.14E-03 2.67E+00 -2.45E-01 9.41E-01
FILM_7 5.02E-03 8.80E+00 8.83E-01 3.77E+01 3.61E-01 2.62E+02 1.42E+02 5.61E+00 8.18E+00 1.10E-03 2.73E+00 -2.42E-01 9.42E-01
Linear_1 5.00E-03 9.25E+00 8.61E-01 3.40E+01 3.38E-01 2.60E+02 1.27E+02 5.51E+00 8.13E+00 1.07E-03 2.77E+00 -2.17E-01 9.23E-01
Linear_3 6.40E-03 9.63E+00 8.52E-01 3.31E+01 3.39E-01 2.62E+02 1.23E+02 5.47E+00 7.95E+00 1.04E-03 2.79E+00 -2.14E-01 9.17E-01
Linear_7 5.33E-03 1.03E+01 8.54E-01 3.52E+01 3.30E-01 2.62E+02 1.30E+02 5.54E+00 8.14E+00 1.01E-03 2.83E+00 -2.12E-01 9.20E-01

HE WSI

IHC WSI

MRI

Light-sheet

Cryo-electron microscopy
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