

Generative interpolation and restoration of images using deep learning for improved 3D tissue mapping

Saurabh Joshi^{1,2+}, André Forjaz^{1,2+}, Kyu Sang Han^{1,2}, Yu Shen^{1,2,3}, Vasco Queiroga^{1,2}, Daniel Xenes⁴, Jordan Matelsk⁴, Brock Wester⁴, Arrate Munoz Barrutia⁵, Ashley L. Kiemen^{2,3}, Pei-Hsun Wu^{1,2}, and Denis Wirtz^{1,2,3,6*}

¹ Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore MD

²The Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD

³ Departments of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD

⁴Research and Exploratory Development Department, Johns Hopkins Applied Physics Laboratory, Laurel, MD

⁵ Bioengineering Department, Universidad Carlos III de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain

⁶ Department of Oncology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD

+ Authors contributed equally

*Send correspondence to:

Denis Wirtz, Ph.D.

Department of Chemical & Biomolecular Engineering
3400 N Charles St, Baltimore MD, 21218
wirtz@jhu.edu

Conflict of interest statement

The authors declare no conflicts of interest.

Sources of Support

The authors acknowledge the following sources of support: U54CA268083; UG3CA275681; R24MH114785; U54AR081774; Lustgarten Foundation-AACR Career development award for pancreatic cancer research in honor of Ruth Bader Ginsburg; Susan Wojcicki and Denis Troper; The Carl and Carol Nale Fund for Pancreatic Cancer Research; Rolfe Pancreatic Cancer Foundation; Ministerio de Ciencia, Innovación y Universidades (PID2019-109820RB-I00); European Regional Development Fund (ERDF); University Carlos III of Madrid.

35 **ABSTRACT**

36 The development of novel imaging platforms has improved our ability to collect and analyze large
37 three-dimensional (3D) biological imaging datasets. Advances in computing have led to an ability
38 to extract complex spatial information from these data, such as the composition, morphology, and
39 interactions of multi-cellular structures, rare events, and integration of multi-modal features
40 combining anatomical, molecular, and transcriptomic (among other) information. Yet, the accuracy
41 of these quantitative results is intrinsically limited by the quality of the input images, which can
42 contain missing or damaged regions, or can be of poor resolution due to mechanical, temporal, or
43 financial constraints. In applications ranging from intact imaging (e.g. light-sheet microscopy and
44 magnetic resonance imaging) to sectioning based platforms (e.g. serial histology and serial section
45 transmission electron microscopy), the quality and resolution of imaging data has become
46 paramount.

47 Here, we address these challenges by leveraging frame interpolation for large image motion
48 (FILM), a generative AI model originally developed for temporal interpolation, for spatial
49 interpolation of a range of 3D image types. Comparative analysis demonstrates the superiority of
50 FILM over traditional linear interpolation to produce functional synthetic images, due to its ability
51 to better preserve biological information including microanatomical features and cell counts, as
52 well as image quality, such as contrast, variance, and luminance. FILM repairs tissue damages in
53 images and reduces stitching artifacts. We show that FILM can decrease imaging time by
54 synthesizing skipped images. We demonstrate the versatility of our method with a wide range of
55 imaging modalities (histology, tissue-clearing/light-sheet microscopy, magnetic resonance
56 imaging, serial section transmission electron microscopy), species (human, mouse), healthy and
57 diseased tissues (pancreas, lung, brain), staining techniques (IHC, H&E), and pixel resolutions (8
58 nm, 2 μ m, 1mm). Overall, we demonstrate the potential of generative AI in improving the
59 resolution, throughput, and quality of biological image datasets, enabling improved 3D imaging.

60 INTRODUCTION

61 Novel three-dimensional (3D) imaging techniques and algorithms designed to integrate large,
62 multimodal datasets have improved our ability to assess normal anatomy and tissue heterogeneity
63 using anatomical, molecular, -omic probes.¹⁻⁷ Across 3D image modalities, a common challenge
64 emerges: a lack of resolution due to mechanical or financial constraints, or due to the presence of
65 damaged or distorted tissue. Here, we introduce a methodology to repair and enhance 3D
66 biological imaging data using generative artificial intelligence (AI) image interpolation. We
67 demonstrate the utility of this method across serial sectioning-based and intact imaging datasets.

68 Serial sectioning-based and intact imaging methods both present resolution challenges. Imaging
69 methods that utilize serial sectioning take advantage of the ability to multiplex across tens to
70 hundreds of sections.^{2,8,9} However, sectioning-based techniques face two resolution-limiting
71 hurdles. First, the resolution of the sample is limited by the thickness of the serial sections (4 – 10
72 μm for histology and \sim 40 nm for serial section transmission electron microscopy [ssTEM]). This
73 resolution is further limited during the common practice of intermixing stains (hematoxylin and
74 eosin [H&E], immunohistochemistry [IHC], spatial transcriptomics) at regular intervals.^{6,8-12}
75 Second, the axial resolution of the sample is diminished due to physical artifacts of sectioning,
76 where tissue splitting, folding, and warping can dramatically limit the user's ability to reconstruct
77 continuous structures.^{4,13,14} In contrast, intact imaging approaches such as magnetic resonance
78 imaging (MRI), computed tomography (CT), and tissue clearing enable 3D views of continuous
79 structures.¹⁵⁻¹⁷ While the preservation of 3D structure generally enables higher resolution images
80 than serial sectioning approaches, these techniques sacrifice the ability to multiplex across z-
81 planes. Additionally, in spite of the lack of sectioning, resolution problems persist, as the effects
82 of photobleaching, light-sheet absorption, susceptibility to motion artifacts, and signal loss can
83 result in localized loss of tissue connectivity and clarity.¹⁸⁻²⁰

84 A promising solution lies in the application of generative models and interpolation techniques to
85 enhance the fidelity of reconstructed images. Various generative deep learning models have been
86 employed to synthesize tissue images. Prominent are CycleGANs (Cycle-Consistent Generative
87 Adversarial Networks) and diffusion models.²¹⁻²⁸ CycleGANs are generative deep learning models
88 that allow for cross modality translation. They have been used for the transformation of H&E-
89 stained slides into synthetic IHC-stained slides that mark specific proteins in tissues.^{23-25,29}
90 Diffusion models have been used to generate magnetic resonance imaging (MRI) and computed
91 tomography (CT) scans to augment the training datasets of deep learning models.^{21,27,30}

92 Despite advances in generative models, limitations persist in achieving synthetic biological images
93 that look realistic, as assessed by rigorous metrics.^{21-28,31-33} Issues such as the accurate
94 representation of subtle or rare textures, cell arrangements, and tissue boundaries are areas of active
95 research.^{22,26} Here, we explore interpolation techniques, such as frame interpolation for large
96 motion (FILM), to enhance the resolution of 3D biological images.³¹⁻³⁴ Using FILM to generate
97 synthetic intervening slides, we propagate information contained in adjacent slides, which
98 enhances z-axis resolution of 3D microanatomical structures and allows for additional information.

99 We demonstrate that interpolation of biological images using FILM provides superior performance
100 compared to conventional linear interpolation. FILM-synthesized images can reconstruct
101 microanatomical features, image contrast, and cell counts from damaged slides. Using FILM, 3D
102 reconstructions of semantically segmented synthetic images of complex microanatomical
103 structures - such as ducts and blood vessels - feature fewer artifacts than original, damaged datasets

104 (as assessed considering 13 Haralick features). The versatility of FILM is shown by its applications
105 to different imaging modalities (light microscopy, MRI, ssTEM), species (human, mouse), organs
106 (pancreas, brain, lungs), and pixel resolutions (8 nm, 2 μ m, 1mm). These applications highlight
107 the potential of generative AI interpolation techniques such as FILM to enhance spatial resolution,
108 restore and recover damaged image slides, and mitigate information loss in volumetric biomedical
109 imaging.

110

111 **MATERIALS AND METHODS**

112 **Specimen acquisition**

113 A sample of non-diseased human pancreas tissue was stained with hematoxylin and eosin (H&E);
114 another similar sample was stained with leukocyte marker CD45 via immunohistochemistry (IHC-
115 CD45). Both samples were from individuals who underwent surgical resection for pancreatic
116 cancer at the Johns Hopkins Hospital.² The H&E-stained dataset consisted of a stack of 101 serially
117 sectioned 4µm apart slides at 5x magnification. H and E are standard histological stains that mark
118 nuclei and cellular structures (H) and ECM (E). The IHC-CD45 stained dataset consisted of 275
119 slides at 5x magnification where every third slide of the serial section was stained 16µm apart.
120 CD45 is a general marker of leukocytes. This retrospective study was approved by the Johns
121 Hopkins University Institutional Review Board (IRB).

122 A stack of serial section transmission electron micrographs (ssTEM) within a densely annotated
123 mouse visual cortex petascale image volume (public dataset Minnie65) was obtained through the
124 online Brain Observatory Storage Service and Database (BossDB), created, and managed by the
125 Johns Hopkins Applied Physics Laboratory (APL). This dataset consisted of 100 ssTEM slides
126 captured at a resolution of 8 nm x 8nm x 40 nm.^{2,7}

127 Light-sheet microscopy images of mouse lung were obtained from the Image Data Resource (IDR)
128 public repository.^{35,36} This dataset consisted of 401 serial light-sheet microscopy images captured
129 at a resolution of 3.22µm x 3.22µm x 10µm.

130 MRI samples of human brain were obtained from the Amsterdam Open MRI Collection
131 (AOMIC).³⁷ Specifically, the PIOP2 (Population Imaging of Psychology) cohort consisting of
132 structural MRI scans of students was used. The dataset consisted of 220 structural MRI scans
133 captured at a resolution of 1mm x 1mm x 1mm.

134

135 **Segmentation of pancreatic microanatomy in histology slides**

136 CODA, a previously developed semantic segmentation model, was leveraged to segment the H&E-
137 stained pancreas whole slide images (WSIs) into their respective microanatomical components.²
138 CODA was specifically trained for the segmentation of microanatomical components of the
139 pancreas and labeled seven components at a resolution of 2 µm per pixel, including islet of
140 Langerhans, ductal epithelium, blood vessels, fat, acini, extracellular matrix (ECM), and
141 pancreatic intraepithelial neoplasia (PanIN), which are precursor lesions of pancreatic cancer.²

142

143 **Interpolation between 2D images**

144 Spatial interpolation between 2D slides within a stack was carried out using Frame Interpolation
145 for Large Image Motion (FILM), a model previously developed for temporal interpolation between
146 frames of videos by Reda *et al.*³⁴ The model uses a three-step process to generate intermediate
147 frames between two input images: a feature extraction pyramid, optical flow estimation, and
148 feature fusion and frame generation.

149 The feature extraction pyramid consists of six convolutional layers responsible for extracting
150 features from the input images, each with increasing kernel size and decreasing stride capturing
151 progressively larger receptive fields, extracting features from coarser to finer scales. This coupled
152 with the use of shared weights across scales, allows the model to extract features for both small
153 and large motions efficiently.

154 The features extracted are then fed into a bi-directional optical flow estimation module. This
155 module calculates the pixel-wise motion vectors (or "flows") between the features of two input
156 images at each pyramid level. These flows represent the transformation needed to warp the features
157 from one frame to the other. The bi-directional approach allows the model to capture both forward
158 and backward motion, leading to more accurate and detailed interpolations.³⁴

159 With the extracted features and estimated flows, FILM enters the final fusion stage. The aligned
160 features from both input images, along with the flows and the original input images themselves,
161 are concatenated into a single feature pyramid. This captures both the feature information and the
162 motion dynamics between the two frames. Finally, a U-Net decoder architecture processes this
163 fused feature pyramid and generates the final interpolated frame. The U-Net's skip connections,
164 which bypass several layers within the network and concatenate their outputs directly with the
165 outputs of later layers, ensures that the generated frame retains fine details and maintains
166 consistency with the input images.³⁴

167 FILM used a recursive function (Eq.1) which accounted for the number of input frames, n , and the
168 number of recursive passes over which the model would interpolate, k . This limited the number of
169 frames that could be generated between the input images to be either one, four, seven, or fifteen
170 frames (Eq.1).

171
$$f = 2^k(n - 1) - 1 \quad \text{Eq.1}$$

172 Recognizing the need for flexibility in slide skipping based on user requirements, a time series
173 spanning from 0 to 1 was implemented, with step sizes dynamically determined by the number of
174 skipped slides. This approach generated time points corresponding to the skipped slides,
175 facilitating variable frame interpolation between input pairs.

176 FILM was pretrained on the Vimeo-90k dataset, a largescale dataset of 89,800 high quality videos
177 designed specifically to train models oriented towards video processing tasks such as frame
178 interpolation, image denoising and resolution enhancement.³⁴ The optical flow of this model is
179 already robustly pretrained on a diverse set of videos with different moving objects, such as
180 vehicles, people, and smaller features like cameras and soccer balls. Re-training of the model posed
181 two challenges: a lack of documentation on retraining and perfectly registering histological slides
182 to curate a training dataset. The focus of FILM on optical flow means that the model is sensitive
183 to misalignment in the training images, making histological slides an unfavorable dataset to retrain
184 the optical flow model due to inherent variability in tissue preparation, staining intensities, and
185 sectioning processes, which lead to unpredictable distortions and variations that complicate
186 accurate spatial alignment of a stack of slides.

187

188 **Pearson correlation**

189 To characterize the correlation between input image pairs to our model, the Pearson correlation
190 was calculated between pairs of authentic images used to interpolate. This metric allowed for a
191 comparison of three interpolation techniques: nearest-neighbor interpolation, linear interpolation,
192 and FILM. By determining the correlation between the middle interpolated image (furthest from
193 input images) and the corresponding authentic image for each method of interpolation we
194 determined linear interpolation performed the nearest to FILM and hence chose it as the form of
195 interpolation for a more stringent comparison to FILM interpolation (Fig. 2d). The Pearson
196 correlation was calculated using the SciPy stats package available in python.

197

198 **Haralick texture features**

199 Thirteen Haralick texture features were calculated to provide a quantitative representation of the
200 texture patterns within an image, offering insights into its spatial arrangements and
201 relationships.^{38,39} The 13 features measured: angular second moment, contrast, correlation, sum of
202 squares variance, inverse difference moment, sum average, sum variance, difference variance, sum
203 entropy, difference entropy, entropy, information measure of correlation 1, and information
204 measure of correlation 2.^{38,39} Contrast measures the intensity variations between neighboring
205 pixels, correlation gauges the linear dependency of gray levels, energy represents the image
206 uniformity, and homogeneity measures the closeness of gray level pairs.

207 To manage the complexity and high dimensionality of the feature space, dimensionality reduction
208 was carried out using principal component analysis (PCA). PCA transformed the original set of
209 Haralick features into a reduced set of principal components, retaining the most significant
210 information while discarding redundant or less informative aspects. This reduction not only
211 simplifies the interpretation of the data, but also allows for a holistic assessment of image quality,
212 capturing the essential texture information in a more compact form.

213 Additionally, analysis of the Euclidean distances between authentic and interpolated images was
214 computed using 13 of the Haralick features. By considering the Euclidean distances across all
215 selected Haralick features simultaneously, a comprehensive evaluation of the overall error value
216 was achieved. This validation process ensured that the collective impact of texture features was
217 considered, providing a robust measure of dissimilarity or similarity between images. The
218 combination of Haralick texture features, PCA for dimensionality reduction, and Euclidean
219 distance computation offered a systematic and effective approach for evaluating image quality and
220 texture patterns.

221

222 **Cell detection in histological sections**

223 To validate the interpolated IHC images, the CODA cell detection module was used to count the
224 total number of CD45+ cells and compare it with respective authentic images.² For this task, the
225 intensity range of blue pixels was first determined for the nuclei of cells, along with the intensity
226 of brown pixels for positive CD45 stain. Using k-means clustering, the mode blue pixel intensity

227 was determined and selected to represent the hematoxylin channel, while the mode brown pixel
228 intensity was selected to represent the positive stain. With color deconvolution, the cells stained
229 with hematoxylin could be extracted from the remaining tissue, thereby providing a cell count.

230

231 **3D rendering of interpolated 2D images**

232 FILM was used to interpolate stacks of whole slide images (WSIs) of missing or damaged slides,
233 which resulted in the restoration of the whole serial sectioned dataset (Fig. 1b). During post-
234 processing, CODA was used to semantically segment histology slides and MRI images to
235 reconstruct microanatomical tissue structures and whole organs in 3D (Fig. 1b).² Through manual
236 annotations of microanatomical tissue structures in a small subset of histology slides and whole
237 organ annotations of the brain in a subset of MRI images, CODA allowed for two deep learning
238 models to be trained to recognize these annotations and apply them to the remaining slides/images
239 in the respective datasets, thereby generating stacks of segmented histology slides and MRI
240 images. Labels within the segmented slides/images, corresponding to the annotations could then
241 be used by CODA to reconstruct and visualize 3D tissue structures of interest, such as epithelial
242 ducts in the case of the pancreas, and whole organs such as the brain. Similarly, CODA was
243 leveraged to 3D reconstruct synapses in the mouse brain using pre-segmented ssTEM slides with
244 the appropriate synapse label. Tissue-cleared light-sheet images were separated into their
245 respective RGB channels allowing for three stacks to be obtained, one for each channel. 3D
246 reconstructions of structures within the tissue-cleared light-sheet images of the lung were then
247 generated by creating volumes using stacks of channel-separated images. Specifically, the red
248 channel was used to reconstruct the bronchioles in the mouse lung.

249

250 **Computing hardware and software**

251 We used Python (v3.8.16) and Tensorflow (2.10.0) for all image interpolations and analysis. For
252 the CODA quantifications and 3D renderings, we used MATLAB (2023a).

253 For smaller sized images, computers equipped with a single NVIDIA RTX 3090 GPU could easily
254 interpolate them. For larger whole slide images, with dimensions exceeding 14000x10000 pixels,
255 using more GPU power would allow to speed up the interpolation processing times. To handle
256 these larger images with higher magnifications, we utilized the Rockfish cluster at Johns Hopkins
257 University, which is equipped with nodes containing four NVIDIA A100 GPUs each. This high-
258 performance computing resource enabled us to interpolate whole slide histological images in
259 shorter times. In case of no access to GPU clusters, users may opt for a tile and stitch approach
260 provided in our code, which allows for tiling of large WSIs, interpolating the tiles individually,
261 and then stitching them back together into WSIs during post-processing.

262 **RESULTS**

263 **Multi-modal tissue cohorts and interpolation workflows**

264 Here we applied a method based on optical flow, FILM, to restore damages in stacks of 2D images
265 to recover lost microanatomical features in 3D reconstructions of tissue architecture and
266 tissue/cellular composition (Fig. 1).²⁷ We procured and tested FILM for a non-diseased pancreatic
267 tissue cohort (stained with H&E and IHC), a structural MRI dataset of the human brain, a stack of
268 ssTEM micrographs of thin sections of the mouse brain, and a mouse lung tissue cleared and
269 imaged under light-sheet microscopy. The selection of these datasets encompassed different image
270 characteristics (size and resolution), species (human, mouse), tissue types (pancreas, brain, lung),
271 imaging modalities (histology, ssTEM, structural MRI, tissue clearing for light-sheet microscopy),
272 and magnifications. This diversity of datasets ensured that the robustness of FILM was evaluated
273 across a broad spectrum of imaging modalities.

274 FILM, which we compare to other interpolation methods, uses pairs of undamaged 2D images
275 from an image stack to improve spatial resolution or recover lost microanatomical information
276 (Fig. 1b). The user specifies the number of images to be interpolated based on the number of
277 damaged or missing images between the input slides. Using the output interpolated 2D image
278 stacks, 3D volumes can be reconstructed without missing or damaged images (Fig. 1b). This results
279 in improved spatial resolution and reconstruction of tissue components in 3D (Fig. 1b).

280

281 **FILM interpolation for stacks of histological slides**

282 We first tested the ability of FILM to interpolate whole slide images from a stack of histological
283 images from human pancreatic tissue samples. Histological slides are often lost or damaged due
284 to improper storage or documentation.^{13,14} The ability of FILM to interpolate slides was compared
285 to a linear interpolation of the same slides and then compared to the corresponding authentic slide
286 (Fig. 2).^{32,40-42} To qualitatively compare the interpolated slides, two ROI's from the 101 serially
287 sectioned and H&E stained human pancreas dataset were selected based on the tissue structures
288 present. ROIs had a total of eight tissue components, including islets of Langerhans, ductal
289 epithelium, blood vessels, fat, acini, ECM, whitespace, and PanIN (precursor) lesions. Pairs of
290 images were selected one every 8 images (skip 7) of the original stack of authentic images, and
291 the missing 7 images were interpolated (Fig. 2a). Interpolated images were validated against their
292 respective authentic images (Fig. 2, b and c).

293 We examined ducts and blood vessels due to their complex branching character within the first
294 ROI (Fig. 2b). The authentic image of the duct showed damage fixed by FILM interpolation (top
295 row, top arrow, Fig. 2b). In contrast, the epithelium layer of the duct showed significant noise in
296 the linearly interpolated image due to pixel averaging (top row, bottom arrowhead, Fig. 2b). This
297 caused overlay artifacts absent in FILM, which tracked pixel movements using optical flow for a
298 sharper image. We also observed that linear interpolation replaced the damaged areas with acinus,
299 unlike the whitespace in the authentic slide (top row, top arrowhead, Fig. 2b). In contrast, FILM
300 successfully removed the damage and preserved the whitespace (top row, top arrow, Fig. 2b).
301 Furthermore, FILM preserved the central structure of the duct, whereas linear interpolation thinned
302 and elongated the lumen (top row, middle arrowhead, Fig. 2b). The superiority of FILM over linear

303 interpolation was further seen in the blood vessel microanatomical structures (bottom row, bottom
304 arrowhead, Fig. 2b). With linear interpolation, overlay artifacts were present throughout the entire
305 structure of the blood vessel (bottom arrow, Fig. 2b). Critically, linear interpolation could not
306 preserve the structure of the blood vessel, unlike FILM (Fig. 2b). Linear interpolation also
307 incorrectly generated fat regions absent in the authentic images (bottom row, top arrowhead, Fig.
308 2b).

309 In the second ROI, enriched in ducts, fat, and islets, linear interpolation created a duct lumen
310 shadow (top row, top arrowhead, Fig. 2c). In contrast, FILM accurately interpolated the duct
311 without artifact (top row, Fig. 2c). Other key structures were fat and islets, which typically
312 presented a small and faint morphology (bottom row, Fig. 2c). The authentic slide contained 8 fat
313 and 5 islets structures, however linear interpolated images showed fat shadows where the real fat
314 was located (bottom row, top arrowhead, Fig. 2c). Additionally, it generated a non-existent fat
315 region (bottom row, bottom arrowhead Fig. 2c). These fat shadows could be wrongly interpreted
316 as islets, especially in regions where islets are present (bottom row Fig. 2c). Although FILM
317 struggled with overlapping fat, it properly interpolated distinct fat without artifacts and could
318 clearly distinguish islets from fat.

319 We quantified differences between FILM and linear interpolation of whole slide images using
320 Pearson correlation for each of our scenarios (when skipping 1, 3, and 7 slides) (Fig. 2d). The
321 correlation was calculated (i) between the two input WSIs to the model as well as (ii) between the
322 input WSIs and middle authentic WSIs for each scenario. This correlation (ii) represented the
323 correlation achieved when interpolating images using the nearest neighbor form of interpolation.
324 Lastly, the correlation (iii) between the middle FILM, (iv) the middle linear interpolated image
325 and the middle authentic image for each scenario was calculated. FILM-interpolated WSIs were
326 clearly more correlated to their authentic counterparts than the nearest neighbor-interpolated
327 images. Linearly interpolated images closely matched the correlation obtained between FILM
328 interpolated images and authentic images (Fig. 2d). Hence, linear interpolation was chosen as the
329 benchmark comparative form of interpolation to FILM.

330 Thirteen Haralick features (angular second moment, contrast, correlation, sum of squares variance,
331 inverse difference moment, sum average, sum variance, difference variance, sum entropy,
332 difference entropy, entropy, information measure of correlation 1, and information measure of
333 correlation 2) were measured to evaluate the interpolated images.^{38,39} The results of each score
334 were averaged for the different tested scenarios (authentic, FILM_{skip1}, FILM_{skip3}, FILM_{skip7},
335 linear_{skip1}, linear_{skip3}, and linear_{skip7}) (Table S1.), which allowed for principal component analysis
336 (PCA) to be carried out (Fig. 2e). This analysis demonstrated that the FILM-interpolated slides
337 represented more closely the information in the authentic slides, even when skipping seven slides,
338 as compared to linear interpolation. The averaged values were also used to compute the Euclidean
339 distance of the 13 Haralick features between authentic and interpolated images (Fig. 2e). Even
340 skipping 7 slides, FILM images were <1/2 the distance of linear images skipping just 1 slide from
341 authentic images.

342 Standard metrics, such as mean square error (MSE), structural similarity index measure (SSIM),
343 peak signal-to-noise ratio (PSNR), Spearman correlation, Jaccard correlation, Sobel filter, and
344 channel wise pixel-to-pixel intensity correlation could not quantify the structural errors in
345 microanatomical features from linear interpolation (Fig. 2, b and c). The dominant, easily
346 interpolated acini surrounding microanatomy resulted in similar metric values for linear and FILM,

347 since these metrics are less sensitive to small-pixel deviations compared to large-pixel deviations.
348 Masking out acini to consider only the pixels associated with microanatomical structures was
349 attempted, but registration differences between authentic and interpolated images meant that these
350 metrics only highlighted alignment differences rather than the quality of interpolation.

351 In sum, FILM can accurately interpolate damaged or missing H&E-stained histological images,
352 which restores lost information in 2D image stacks and, consequently, improves connectivity of
353 microanatomical structures in 3D (see also more below). Unlike linear interpolation, FILM does
354 not generate non-existent microanatomical structures like ducts or fat.

355

356 **FILM interpolation for stacks of images stained via immunohistochemistry (IHC)**

357 To further demonstrate the ability of FILM to interpolate histological WSIs, a second human
358 pancreas sample was immunostained (IHC) for leukocyte marker CD45. We note the substantial
359 z-directional distance of 52 μ m between input slides, equivalent to omitting twelve successive 4-
360 μ m-thick sections (Fig. 2f). The target images, for which authentic validation slides were available
361 for comparison, are shaded in dark grey, while the missing slides between the input and target
362 slides are shaded in light grey (Fig. 2f).

363 We compared the middle target slide interpolated to the middle authentic validation slide using
364 both linear and FILM models (Fig. 2f). When zooming in to a specific fat dense region, linear
365 interpolation artifacts were evident, while FILM lacked such artifacts (bottom row, middle
366 arrowhead, top row, arrow Fig. 2f). Additionally, whereas cells were distinctly observed in the
367 authentic image, the linearly interpolated image showed faintly stained cells covered with white
368 hues resembling fat (bottom row, right arrowhead, Fig. 2f). In contrast, FILM could interpolate
369 distinct cells around the fat and even preserved most of the ductal and ECM structures (top row,
370 arrow, Fig. 4a), unlike the linear model (bottom row, left arrowhead, Fig. 2f).

371 Using CODA, the total cell count of CD45 positive cells was determined for each of the linear and
372 FILM interpolated images and compared to the cell counts in the authentic slides while skipping
373 and interpolating 12 slides. Linear interpolation resulted in slides with inconsistent CD45+ cell
374 counts which were either much less or greater than those in authentic slides. Conversely, FILM
375 interpolated slides resulted in cell counts which closely matched the cell count trend in authentic
376 slides (Fig 2g). Linearly interpolated slides had a higher percent error in cell count reaching over
377 90% for certain slides whereas FILM interpolated slides never exceeded 45% error in cell count
378 (Extended Fig. 2f).

379 Thirteen Haralick texture features were evaluated for authentic and interpolated slides when
380 interpolating 7 and 12 slides. The results of each score were averaged for the different scenarios
381 assessed (authentic, FILM_{skip7}, FILM_{skip12}, linear_{skip7}, and linear_{skip12}) (Table S1.). PCA showed
382 FILM-interpolated slides more closely represented authentic slide information along principal
383 component 1, while linear along component 2 (Fig. 2h). The Euclidean distance between authentic
384 and interpolated images demonstrated FILM_{skip12} more closely represented the authentic slides
385 compared to linear_{skip7} (Fig. 2h).

386 In summary, by interpolating IHC-CD45 stained images and determining the difference in cell
387 count between authentic and interpolated images, we show the ability of FILM to interpolate not

388 only multicellular structures (ducts, blood vessels) in stacks of histological images, but also smaller
389 features such as individual cells.

390

391 **FILM interpolation for stacks of MRI and light-sheet microscopy images**

392 Next, we tested the ability of FILM to interpolate images within stacks of MRI images. MRI
393 imaging faces inherent limitations, such as susceptibility to motion artifacts due to prolonged scan
394 times, leading to patient discomfort, and potential for signal loss due to magnetic field in
395 homogeneity that can impact the quality of acquired images. Pairs of images were selected one
396 every 8 images (skip 7) of the original stack of authentic images, and the missing 7 images were
397 interpolated (Fig. 3a). Interpolated images were validated against their respective authentic images
398 (Fig. 3b).

399 Linear interpolation of MRI images caused band artifacts generated around the boundary of the
400 soft tissue, unlike FILM which did not such artifacts (middle row, Fig. 3b). Additionally, FILM
401 could accurately interpolate the soft tissue structure to make biologically accurate structures,
402 whereas linear interpolation created what resembles a grey smudge with significant overlay
403 artifacts (bottom row, Fig. 3b).

404 To further demonstrate its versatility, we applied FILM to interpolate images within a stack of
405 light-sheet micrographs obtained from a cleared mouse lung. Light-sheet microscopy presents
406 challenges, including photobleaching and light sheet absorption, which may result in uneven
407 illumination, and tissue movement during imaging, which can introduce distortions. Again, pairs
408 of images were selected every 8 images of the authentic stack (Fig. 3e), and interpolated images
409 were compared to their authentic counterpart.

410 Linear interpolation of light-sheet micrographs created double boundary lines around the
411 bronchioles creating a structure that is biologically inaccurate (middle row, top arrowhead, Fig.
412 3f) (bottom row, bottom arrowhead, Fig. 3f). In contrast, FILM correctly interpolated the structure
413 of bronchioles to accurately depict the structure observed in the authentic image (middle row,
414 arrow Fig. 3f). In the second row of zoom-ins, we can see that the authentic image suffers from
415 artifacts of light-sheet absorption and photobleaching on the top left side of the bronchiole, which
416 cause bleeding of the green and red channels into the bronchiole (bottom row, arrowhead, Fig. 3f).
417 Linear interpolation reduced these artifacts, but could not remove them entirely (bottom row, top
418 arrowhead Fig. 3f), whereas FILM removed the bleed of the red and green channels (bottom row,
419 arrow Fig. 3f).

420 For both MRI and light-sheet microscopy datasets, thirteen Haralick texture features introduced
421 above were measured to compare authentic and interpolated images, when interpolating 1, 3, and
422 7 slides. The results for each score were averaged for the different comparisons (authentic,
423 FILM_{skip1}, FILM_{skip3}, FILM_{skip7}, linear_{skip1}, linear_{skip3}, and linear_{skip7}) (Table S1.), and shown in a
424 principal component analysis (PCA) plane (Fig 3, c and g). For MRI images, FILM-interpolated
425 slides represented more closely the information in the authentic slides, even when skipping seven
426 slides, compared to linear interpolation. The averaged values were also used to compute the
427 Euclidean distance between authentic and interpolated images (Fig 3c). Again, even when skipping
428 seven slides, FILM-interpolated slides were < 1/2 the Euclidean distance between the authentic
429 slides and the linearly interpolated slides when skipping only one slide. The Euclidean distance by

430 slide further emphasizes the superiority of FILM over linear interpolation as the Euclidean distance
431 increased when progressing through the stack of slides and interpolating linearly as opposed to
432 FILM (Fig 3d).

433 Similarly, the PCA analysis for light-sheet interpolated images showed that FILM interpolated
434 images were more closely representative of the authentic images for principal component 2, while
435 the linear interpolated images were closer for principal component 1 (Fig 3g). Nevertheless, when
436 considering the mean Euclidean distance, FILM outperformed linear interpolation for each
437 individual skip scenario (Fig 3g). The Euclidean distance by slide increased when interpolating
438 linearly through the stack as opposed to FILM, for which it remained consistent through the stack.
439 (Fig 3h).

440 In sum, we demonstrated the ability of FILM to interpolate MRI and light-sheet images more
441 accurately than linear interpolation. FILM reduces motion artifacts in MRI images whereas linear
442 interpolation exaggerates these artifacts, resulting in band artifacts. FILM reduces photobleaching
443 and light-sheet absorption artifacts present in the authentic light-sheet images, whereas linear
444 interpolation cannot. Elimination of such artifacts allows for more accurate 3D reconstructions of
445 whole organ structures and microanatomical structures in tissue samples.

446

447 **FILM interpolation and restoration of ssTEM images**

448 A stack of serial section transmission electron micrographs (ssTEM) of the mouse brain was used
449 to show our ability to interpolate not only histological sections, but also EM micrographs of tissue
450 sections (Fig. 4a). Authentic tiles shown represent a 2000x3500 pixel tile of the authentic whole
451 slide image (Fig. 4a). Thick irregular black lines were observed across most of the slides in the
452 authentic stack of images, which correspond to damage due to unavoidable tissue tear during
453 processing of thin sections (left column, arrows, Fig. 4b). For a randomly selected subset of 100
454 continuous slides from a stack of the >13,000 ssTEM slides, we found that >70% were damaged,
455 many of them containing >1 damaged region. Additionally, fainter grey lines were observed, going
456 horizontally across the authentic images, which are artifacts of image stitching (top row, bound by
457 red box Fig. 4b). Interpolation between two undamaged EM slides using FILM could not only
458 remove the damage to the slides while preserving the structures within them, but also significantly
459 reduce stitching artifacts (right column, Fig. 4b).

460 Thirteen Haralick features were measured for the authentic and interpolated images when
461 interpolating 1, 3, and 7 slides. The results of each score were averaged for the different tested
462 scenarios (authentic, FILM_{skip1}, FILM_{skip3}, FILM_{skip7}, linear_{skip1}, linear_{skip3}, and linear_{skip7}) (Table
463 S1.). PCA showed that FILM-interpolated slides more closely represented authentic slide
464 information along principal component 2, while linear along component 1 (Fig. 4c). Euclidean
465 distance between authentic and interpolated images where it can be seen that FILM_{skip1} more
466 closely represents the authentic than linear_{skip1} and similarly for the instance of skipping 3 and 7
467 slides (Fig. 4c).

468 In sum, we demonstrate the ability of FILM to eliminate damage in ssTEM slides. This allows for
469 more accurate 3D reconstructions of the neural pathways by decreasing loss connectivity which
470 arises due to the damage on individual 2D sections.

471

472 **3D reconstruction of FILM-interpolated images**

473 To better show the application of FILM to enhance 3D visualization of microanatomical structures
474 from 2D interpolated images, FILM interpolation was applied across different image modalities
475 such as histological (H&E and IHC), MRI, ssTEM, and light-sheet images. Sematic segmentation
476 and subsequent concatenation of the 2D segmented images into a volume allowed visualization of
477 microanatomical features in three dimensions.

478 Using CODA, we 3D reconstructed the epithelial duct from the pancreatic H&E dataset (Fig. 5a).
479 The 3D reconstruction of the authentic volume skipping 7 images demonstrates the loss in ductal
480 connectivity as a result of missing or damaged slides. Linear interpolation of the H&E samples
481 created noise around the structure of the duct when 3D reconstructed and was unable to preserve
482 the branching structure of the duct (zoom-in, Fig. 5a). On the other hand, FILM was able to restore
483 the microanatomical connectivity in the 3D reconstruction of the main and smaller branches of the
484 duct, while also creating a smoother volume without the propagation of noise (Supplementary
485 Video 1).

486 Similarly, CODA was used to 3D reconstruct a whole human brain using the stack of MRI images.
487 A comparison of the authentic volume to the authentic volume skipping 7 images showed how
488 connectivity was lost as a result of damaged or missing images. The authentic volume skipping 7
489 images also lacked the topographical structure of the brain seen in the authentic volume, replacing
490 the topography with single planes of information (Fig 5b). Using linear interpolation to recover
491 the missing or damaged scans resulted in increased edges in 3D volumes, which resembled objects
492 extruding abnormally out of the brain. This is especially evident around the base of the brain where
493 the brain stem starts and at the top of the brain towards the skull cap (Fig. 5b). When interpolating
494 images using FILM, the 3D reconstructed volume resembled more closely that of the authentic
495 one, with accurate indentations around the surface of the brain and even accurate reconstruction
496 of the branching brain stem structure.

497 Tissue-cleared light-sheet images were separated by channel and used to 3D reconstruct the
498 bronchioles in a mouse lung (Fig 5c). Similarly, a comparison of the authentic volume to a
499 downsampled reconstruction of the authentic volume (skipping 7 images between adjacent z-
500 planes) demonstrates the loss in connectivity of the bronchioles in 3D as a result of damaged or
501 missing image scans. The use of linear interpolation to recover missing z-planes did not improve
502 the connectivity of the bronchioles in 3D, but rather more closely resembled the structure of the
503 downsampled volume (Fig. 5c). FILM recovered the missing planes, which restored the
504 connectivity of the bronchioles, and consequently resulted in a volume that resembled the authentic
505 biospecimen.

506 Segmented ssTEM images were interpolated using FILM and linear interpolation to 3D reconstruct
507 synapses in the mouse brain. A qualitative assessment between the authentic volume and
508 downsampled recreation of the authentic volume (skipping 7 images between adjacent z-planes)
509 shows the loss in synapse connectivity (Fig. 5d). Linear interpolation to recover the missing z-
510 planes results in the creation of a low resolution volume with blocked structures. Conversely, using
511 FILM to recover the missing planes resulted in a higher resolution 3D volume, which resembled
512 that of the authentic volume, and allowed for the synapse connectivity to be restored
513 (Supplementary Video 2).

514 In sum, missing or damaged slides and images in biomedical image stacks cause significant loss
515 in 3D spatial information which hinders the accurate 3D reconstruction of microanatomical and
516 whole organ structures from these 2D image stacks. We demonstrate that linear interpolation is
517 not sufficiently robust to recover the information lost in complex biomedical images, resulting in
518 inaccurate 3D reconstructions. In contrast, the optical flow-based model FILM can recover more
519 information to allow for 3D reconstructions that resemble their authentic counterparts.

520 **DISCUSSION**

521 We are entering an era in which 3D imaging of biomedical samples has become a requirement as
522 2D assessments are not sufficient in capturing the content and morphology of multi-cellular
523 structures, rare events, and spatial relationships among different cell types.¹ Various models have
524 been developed to leverage 2D biomedical image stacks of histology slides, MRI images, ssTEM
525 slides, and tissue-cleared light-sheet images to reconstruct volumes of microanatomical structures
526 and whole organs. Such models rely on the quality of individual 2D images within the image stacks
527 for the accurate reconstruction of volumes. Limitations in z-resolution often arise due to missing
528 slides and images, tissue damage, and the high cost associated with imaging.

529 Here, we address these challenges by leveraging FILM and its ability to extract and track features
530 in biomedical images using optical flow for image interpolation. By interpolating between
531 undamaged slides to generate missing or damaged slides, we bridge gaps in z-resolution. This
532 technique enhances 3D reconstructions and mitigates issues arising from damaged or missing
533 slides. This method broadens the applicability of 2D biomedical image stacks for 3D
534 reconstructions and quantitative assessments of cellular composition, tissue topography, and
535 degree of branching of ducts and blood vessels in volumetric tissues.

536 We conducted a thorough comparative assessment of FILM to linear interpolation using thirteen
537 Haralick texture features. Linear interpolation, which averages pixel intensities creating hued
538 colors and structures, cannot create realistic biomedical images. As the number of images skipped
539 increases, linearly interpolated images further degrade in authenticity, especially for the images
540 furthest from input images (middle-interpolated image). For large number of skipped images (skip
541 7), the middle-interpolated image presents strong hues as pixel intensities deviate largely between
542 input images. Conversely, FILM can interpolate biomedical images that resemble their authentic
543 counterparts.

544 By interpolating images using FILM, we reduce the time required for image acquisition. This is
545 especially applicable when considering MRI scans and the time spent by patients in the machine,
546 which can lead to patient discomfort and, in extension, motion artifacts that hinder imaging quality.
547 Similarly, for light-sheet microscopy, we demonstrate the ability of FILM to accurately interpolate
548 images in the z-direction reducing the number z-steps required during image acquisition. This
549 significantly decreases the total time required to image a sample as samples are imaged tile by tile
550 laterally before moving onto the next z-level. Collection time increases exponentially with the
551 lateral size of the sample, from minutes for a $10^4 \mu\text{m}^3$ sample at a spatial resolution of 500 nm to
552 a week for a $10^8 \mu\text{m}^3$ sample at the same resolution.¹⁶ FILM interpolation helps address this
553 limitation.

554 In conclusion, our work goes beyond existing methods of image translation which use
555 CycleGAN's and diffusion models to generate biomedical images by leveraging FILM's method
556 of image interpolation. Where image translation would require physical access to the slides of
557 interest to be translated, our workflow interpolates missing or inaccessible slides, restores damaged
558 images, eliminates artifacts of image stitching, and works with a wide range of complex
559 multimodal biomedical images.

560

561 **REFERENCES**

- 562 1. Forjaz, A. *et al.* Three-dimensional assessments are necessary to determine the true
563 spatial tissue composition of diseased tissues. *bioRxiv* 2023.12.04.569986 (2023)
564 doi:10.1101/2023.12.04.569986.
- 565 2. Kiemen, A. L. *et al.* nature methods CODA: quantitative 3D reconstruction of large tissues
566 at cellular resolution. *Nature Methods* / **19**, 1490–1499 (2022).
- 567 3. Cline, H. E., Dumoulin, C. L., Hart, H. R., Lorensen, W. E. & Ludke, S. 3D reconstruction of
568 the brain from magnetic resonance images using a connectivity algorithm. *Magn Reson*
569 *Imaging* **5**, 345–352 (1987).
- 570 4. Consortium, Mic. *et al.* Functional connectomics spanning multiple areas of mouse visual
571 cortex. *bioRxiv* 2021.07.28.454025 (2021) doi:10.1101/2021.07.28.454025.
- 572 5. Yin, W. *et al.* A petascale automated imaging pipeline for mapping neuronal circuits with
573 high-throughput transmission electron microscopy. *Nature Communications* 2020 **11**:1 **11**,
574 1–12 (2020).
- 575 6. Bell, A. T. *et al.* PanIN and CAF Transitions in Pancreatic Carcinogenesis Revealed with
576 Spatial Data Integration. doi:10.1101/2022.07.16.500312.
- 577 7. Maitin-Shepard, J. *et al.* google/neuroglancer: Preprint at
578 <https://doi.org/10.5281/zenodo.5573294> (2021).
- 579 8. Crawford, A. J. *et al.* Precision-engineered biomimetics: the human fallopian tube. *bioRxiv*
580 2023.06.06.543923 (2023) doi:10.1101/2023.06.06.543923.
- 581 9. Lin, J. R. *et al.* Multiplexed 3D atlas of state transitions and immune interaction in
582 colorectal cancer. *Cell* **186**, 363–381.e19 (2023).
- 583 10. Sans, M. *et al.* Spatial Transcriptomics of Intraductal Papillary Mucinous Neoplasms of the
584 Pancreas Identifies NKX6-2 as a Driver of Gastric Differentiation and Indolent Biological
585 Potential. *Cancer Discov* **13**, 1844–1861 (2023).
- 586 11. AM, B. *et al.* Three-dimensional genomic mapping of human pancreatic tissue reveals
587 striking multifocality and genetic heterogeneity in precancerous lesions. *bioRxiv* **21**, IA11–
588 IA11 (2023).
- 589 12. Liu, Y. *et al.* High-Spatial-Resolution Multi-Omics Sequencing via Deterministic Barcoding in
590 Tissue. *Cell* **183**, 1665–1681.e18 (2020).
- 591 13. McInnes, E. Artefacts in histopathology. *Comp Clin Path* **13**, 100–108 (2005).
- 592 14. Taqi, S. A., Sami, S. A., Sami, L. B. & Zaki, S. A. A review of artifacts in histopathology. *J Oral*
593 *Maxillofac Pathol* **22**, 279 (2018).
- 594 15. Glaser, A. K. *et al.* A hybrid open-top light-sheet microscope for versatile multi-scale
595 imaging of cleared tissues. *Nat Methods* **19**, 613 (2022).

596 16. Daetwyler, S. & Fiolka, R. P. Light-sheets and smart microscopy, an exciting future is
597 dawning. *Communications Biology* 2023 6:1 **6**, 1–11 (2023).

598 17. Kubota, S. I. *et al.* Whole-organ analysis of TGF- β -mediated remodelling of the tumour
599 microenvironment by tissue clearing. *Commun Biol* **4**, (2021).

600 18. Nárai, Á. *et al.* Movement-related artefacts (MR-ART) dataset of matched motion-
601 corrupted and clean structural MRI brain scans. *Scientific Data* 2022 9:1 **9**, 1–6 (2022).

602 19. Gilmore, A. D., Buser, N. J. & Hanson, J. L. Variations in structural MRI quality significantly
603 impact commonly used measures of brain anatomy. *Brain Inform.* **8**, 7 (2021).

604 20. Krupa, K. & Bekiesińska-Figatowska, M. Artifacts in Magnetic Resonance Imaging. *Pol J
605 Radiol* **80**, 93 (2015).

606 21. Khader, F. *et al.* Denoising diffusion probabilistic models for 3D medical image generation.
607 *Scientific Reports* 2023 13:1 **13**, 1–12 (2023).

608 22. Kazerouni, A. *et al.* Diffusion models in medical imaging: A comprehensive survey. *Med
609 Image Anal* **88**, 102846 (2023).

610 23. Bai, B. *et al.* Deep learning-enabled virtual histological staining of biological samples.
611 *Official journal of the CIOMP* 2047–7538 doi:10.1038/s41377-023-01104-7.

612 24. Koivukoski, S., Khan, U., Ruusuvuori, P. & Latonen, L. Unstained Tissue Imaging and Virtual
613 Hematoxylin and Eosin Staining of Histologic Whole Slide Images. *Laboratory Investigation*
614 **103**, 100070 (2023).

615 25. Kang, L., Li, X., Zhang, Y. & Wong, T. T. W. Deep learning enables ultraviolet photoacoustic
616 microscopy based histological imaging with near real-time virtual staining. *Photoacoustics*
617 **25**, 100308 (2022).

618 26. Deshpande, S., Dawood, M., Minhas, F. & Rajpoot, N. SynCLay: Interactive synthesis of
619 histology images from bespoke cellular layouts. *Med Image Anal* **91**, 102995 (2024).

620 27. Li, Y. *et al.* Zero-shot Medical Image Translation via Frequency-Guided Diffusion Models.
621 *IEEE Trans Med Imaging* **XX**, 1 (2023).

622 28. Cross-Zamirska, J. O. *et al.* Class-Guided Image-to-Image Diffusion: Cell Painting from
623 Brightfield Images with Class Labels. (2023).

624 29. Xu, Z., Huang, X., Moro, C. F., Bozóky, B. & Zhang, Q. GAN-based Virtual Re-Staining: A
625 Promising Solution for Whole Slide Image Analysis. (2019).

626 30. Ho, J., Jain, A. & Abbeel, P. Denoising Diffusion Probabilistic Models. *Adv Neural Inf Process
627 Syst* **2020-December**, (2020).

628 31. Gaffling, S., Jäger, F., Daum, V., Tauchi, M. & Lütjen-Drecoll, E. Interpolation of Histological
629 Slices by Means of Non-Rigid Registration.

630 32. Leng, J., Xu, G. & Zhang, Y. Medical image interpolation based on multi-resolution
631 registration. *Computers & Mathematics with Applications* **66**, 1–18 (2013).

632 33. Akhtar, P. & Azhar, F. A single image interpolation scheme for enhanced super resolution in
633 bio-medical imaging. *2010 4th International Conference on Bioinformatics and Biomedical
634 Engineering, iCBBE 2010* (2010) doi:10.1109/ICBBE.2010.5518164.

635 34. Reda, F. *et al.* FILM: Frame Interpolation for Large Motion.

636 35. Williams, E. *et al.* Image Data Resource: a bioimage data integration and publication
637 platform. *Nature Methods* **2017 14:8** **14**, 775–781 (2017).

638 36. Kubota, S. I. *et al.* Whole-organ analysis of TGF- β -mediated remodelling of the tumour
639 microenvironment by tissue clearing. *Commun Biol* **4**, (2021).

640 37. Snoek, L. *et al.* The Amsterdam Open MRI Collection, a set of multimodal MRI datasets for
641 individual difference analyses. *Scientific Data* **2021 8:1** **8**, 1–23 (2021).

642 38. Brynolfsson, P. *et al.* Haralick texture features from apparent diffusion coefficient (ADC)
643 MRI images depend on imaging and pre-processing parameters. *Scientific Reports* **2017**
644 **7:1** **7**, 1–11 (2017).

645 39. Haralick, R. M., Dinstein, I. & Shanmugam, K. Textural Features for Image Classification.
646 *IEEE Trans Syst Man Cybern* **3**, 610–621 (1973).

647 40. Upchurch, P. *et al.* Deep Feature Interpolation for Image Content Changes. 7064–7073
648 Preprint at (2017).

649 41. Liu, X. *et al.* Image interpolation via regularized local linear regression. *IEEE Transactions
650 on Image Processing* **20**, 3455–3469 (2011).

651 42. Blu, T., Thévenaz, P. & Unser, M. Linear interpolation revitalized. *IEEE Transactions on
652 Image Processing* **13**, 710–719 (2004)

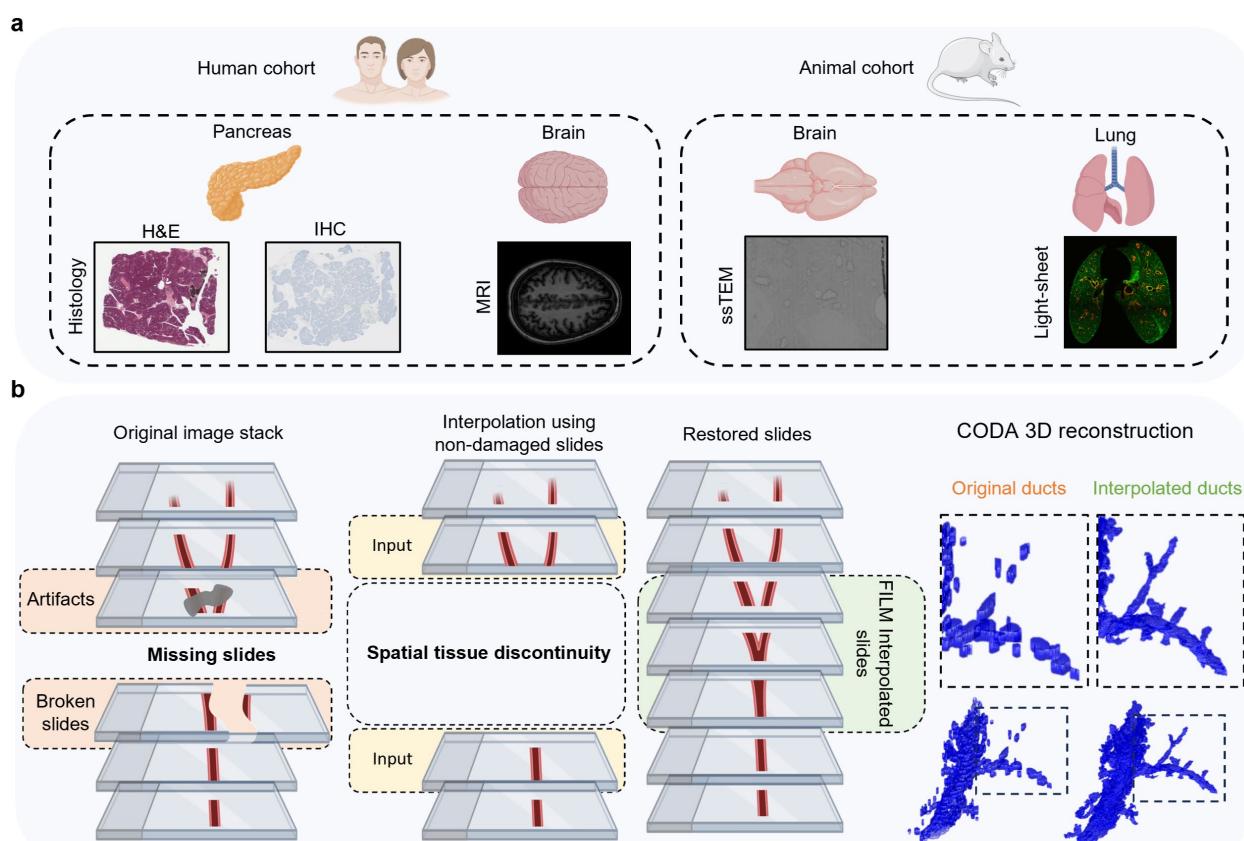
653 **Data availability**

654 The data analyzed here is available from the corresponding author upon request.

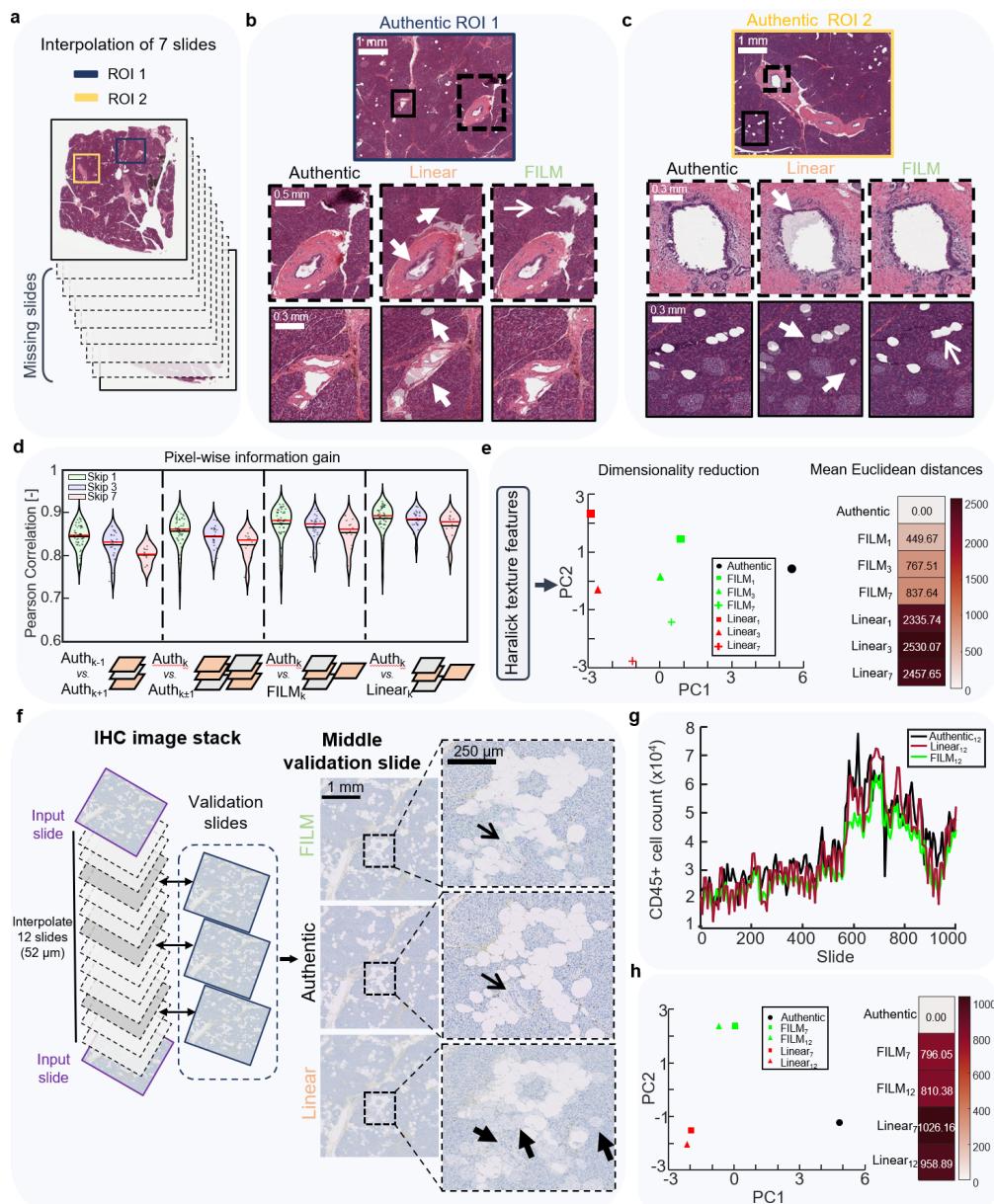
655 **Author contributions**

656 D.W., S.J., A.F, A.L.K., and P.W. conceived the project. D.W., A.L.K., P.W., and A.M.B. supervised
657 the study. A.L.K., and A.F. collected and processed the human pancreas samples. D.X., J.M. and
658 B.W. collected the mouse brain samples. S. J., A.F, collected and processed the mouse lung and
659 human brain samples. S.J., A.F., K.S.H., Y.S., and P.W. conducted the image analysis,
660 quantifications, and validation. S.J., A.F, A.L.K., and D.W. wrote the first draft of the manuscript,
661 which all authors edited and approved.

662 **Figures and Captions**

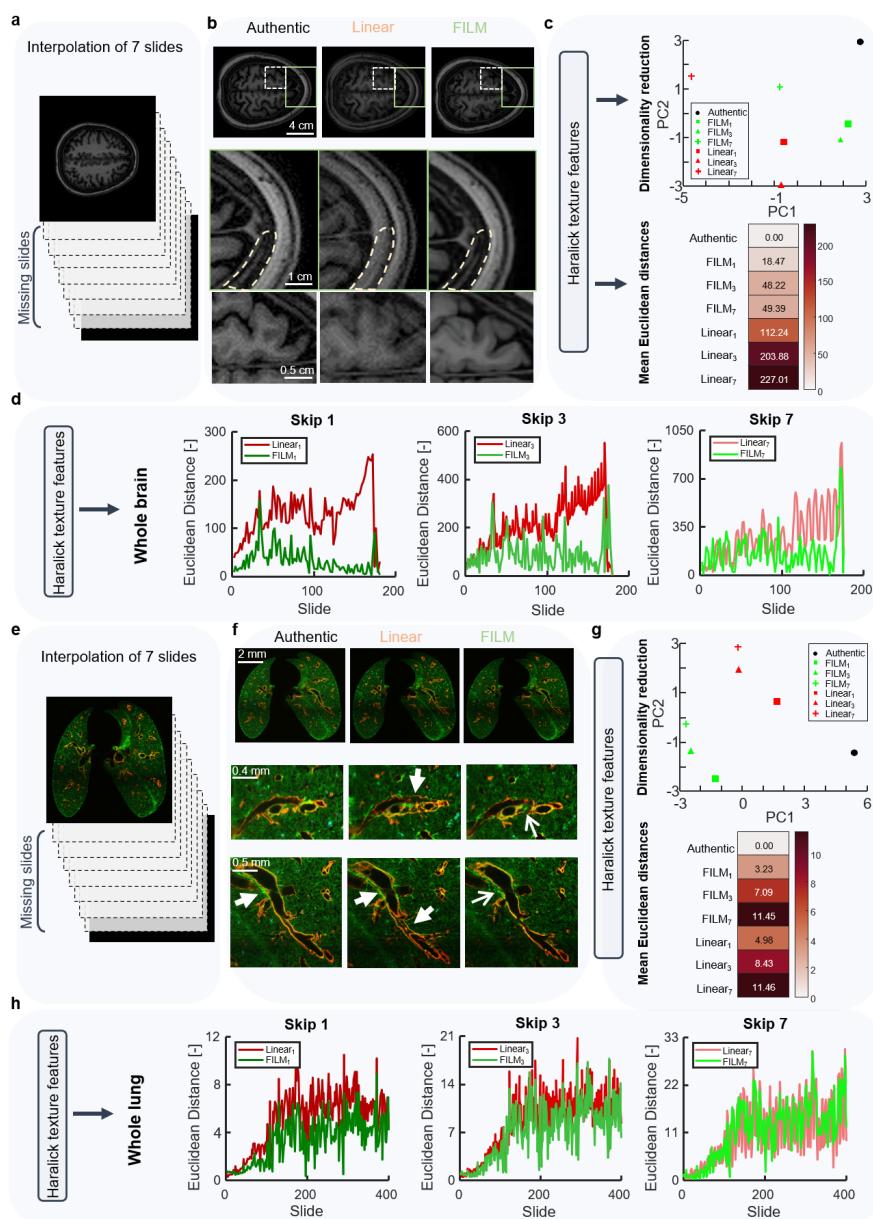


663
664 **Fig 1. Interpolation workflow and datasets.** (a) Samples were obtained from two species, mouse, and
665 human. Four different organs were analyzed: human pancreas, human brain, mouse brain, and mouse lung.
666 Five imaging modalities were tested: hematoxylin and eosin (H&E) stained histology slides,
667 immunohistochemistry (IHC) stained histology slides, magnetic resonance imaging (MRI), serial section
668 transmission electron microscopy (ssTEM) slides, and combined tissue clearing with light-sheet
669 microscopy slides. (b) Aligned slides are manually searched through to identify missing or damaged slides,
670 and damaged slides are removed from the stack of slides. FLM interpolation is carried out using the
671 sections adjacent to the damaged or missing slides as inputs to recreate slides that were stained differently,
672 missing, or damaged, resulting in a uniform stack of slides. Using CODA, slides are segmented into labeled
673 tissue masks, with each label representing different microanatomical structures in the slide, which is then
674 used to recreate and visualize microanatomical 3D structures in the tissue sample.



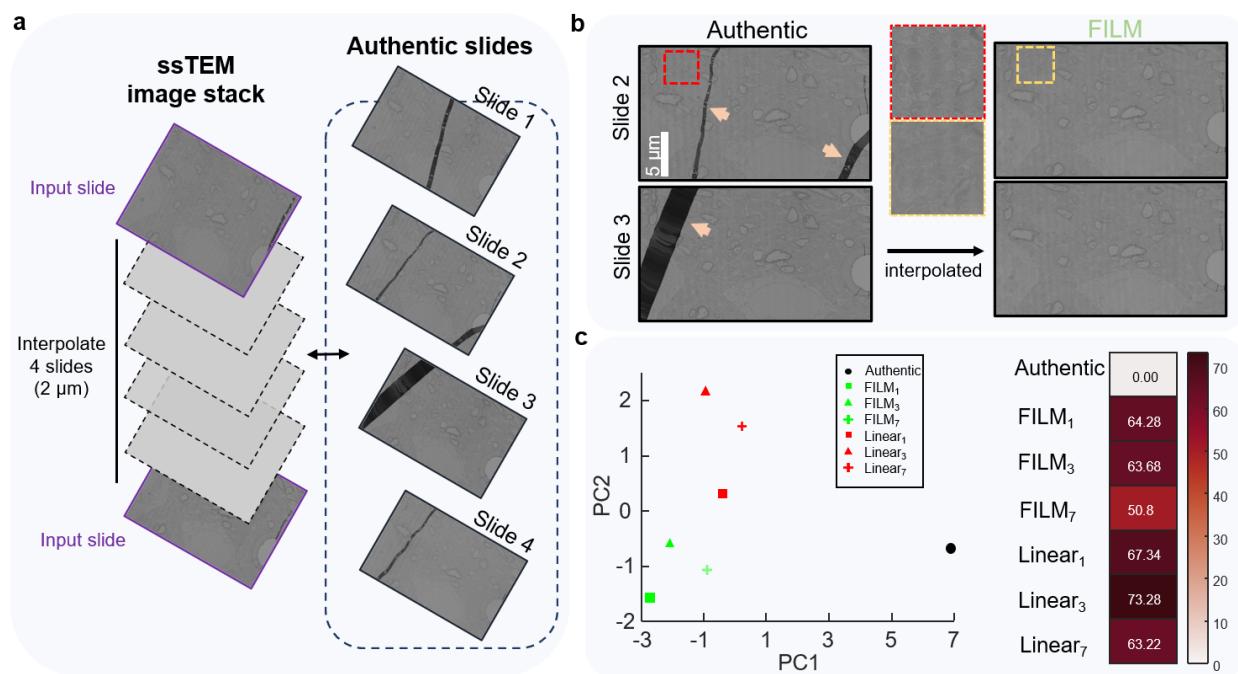
675

Fig. 2 Comparison of linear and FILM interpolations for stacks of histological images of pancreatic tissues. (a)
 676 Regions of interest (ROI's) were selected from the whole slide images (WSI's), ensuring that all microanatomical features (islets of Langerhans,
 677 ductal epithelium, blood vessels, fat cells, acini, extra-cellular matrix (ECM), whitespace, and pancreatic intraepithelial neoplasia (PanIN) were
 678 present in the ROI and slides were interpolated while skipping 7 slides between adjacent sections, thereby generating 7 slides. **(b)** ROI 1:
 679 Comparison of linear and FILM interpolation to the authentic ROI for the middle-interpolated image (image 4) for ductal epithelium and blood
 680 vessels. Arrowheads show linear interpolation replacing damage with acini as opposed to whitespace, creating noise around the epithelium layer
 681 of the duct, incorrectly generating fat regions, and unable to preserve vessel structure. The arrow shows FILM correctly replaces damage with
 682 whitespace. **(c)** ROI 2: Comparison of linear and FILM interpolation to the authentic ROI for the middle-interpolated image (image 4) for ductal
 683 epithelium, fat cells, and blood vessels. Arrowheads show linear interpolation creates duct lumen shadows and fat shadows resembling islets as
 684 well as non-existent fat regions. **(d)** Pearson correlation compares the correlation between the authentic input images and the nearest-neighbor-
 685 interpolated, FILM-interpolated, and linearly interpolated images. **(e)** Principal component analysis of thirteen Haralick features for authentic,
 686 FILM, and linearly interpolated images for various numbers of skipped images. Mean Euclidean distance of interpolated images from authentic
 687 images based on thirteen Haralick features. **(f)** IHC pancreas slides used to interpolate with authentic slides for validation to compare interpolated
 688 images to authentic images. The middle validation slide is visualized for comparison with the interpolated images. Arrow shows how FILM
 689 preserves vessel structure, unlike linear interpolation, which was also unable to preserve fat domains (arrowheads). **(g)** Comparison of CD45+
 690 cell counts in authentic images and interpolated images when skipping 12 slides. **(h)** Principal component analysis of thirteen Haralick features
 691 for authentic, FILM, and linearly interpolated IHC images for various numbers of skipped images. Mean Euclidean distance of interpolated
 692 images from authentic images based on thirteen Haralick features.
 693



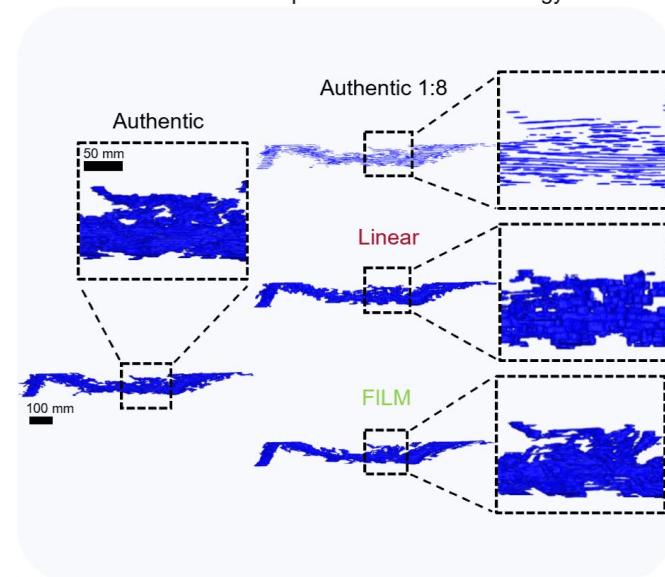
694

695 **Fig. 3. FILD interpolation for stacks of MRI and light-sheet microscopy images.** (a) MRI images were
696 interpolated while skipping 7 slides between adjacent sections, thereby generating 7 slides. (b) Qualitative comparison
697 of linear and FILD interpolation to the authentic image for the middle-interpolated MRI image (image 4). The circled
698 region shows linear interpolation creates band artifacts, unlike FILD. (c) Principal component analysis of thirteen
699 Haralick features for authentic, FILD, and linearly interpolated MRI images for various numbers of skipped images.
700 Mean Euclidean distance of interpolated images from authentic images based on thirteen Haralick features. (d)
701 Euclidean distance by slide of interpolated images from authentic images based on thirteen Haralick features for
702 various numbers of skipped MRI images. (e) Tissue-cleared light-sheet images were interpolated skipping 7 slides
703 between adjacent sections, thereby generating 7 slides. (f) Qualitative comparison of linear and FILD interpolations
704 to the authentic image for the middle-interpolated light-sheet image (image 4). Arrowhead shows linear interpolation
705 creates double boundary lines around bronchioles. In second row, the arrowhead shows photobleaching in authentic
706 reduced by linear interpolation and completely removed by FILD (arrow). (g) Principal component analysis of thirteen
707 Haralick features for authentic, FILD, and linearly interpolated light-sheet images for various numbers of skipped
708 light-sheet images. Mean Euclidean distance of interpolated images from authentic images based on thirteen Haralick
709 features. (h) Euclidean distance by slide of interpolated images from authentic images based on thirteen Haralick
710 features for various numbers of skipped light-sheet images.

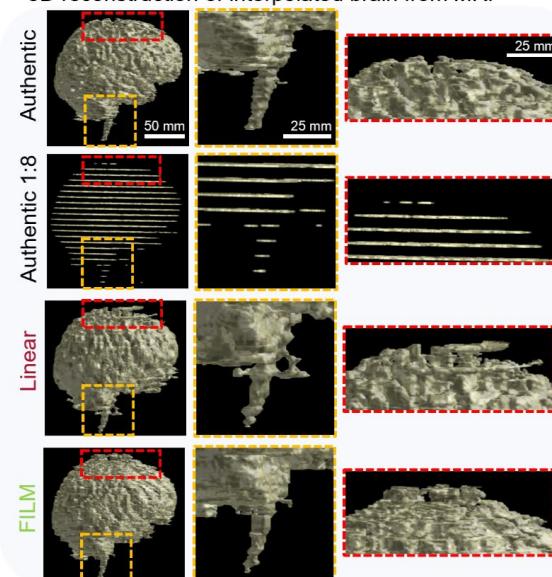


711
712 **Fig. 4. FILM interpolation for a stack of ssTEM images.** (a) ssTEM slides were interpolated while skipping 4
713 slides between adjacent sections, thereby generating 4 slides. (b) FILM interpolation of mouse brain ssTEM slides
714 to remove damage from slides (arrowheads) and reduce stitching artifacts (red box). (c) Principal component
715 analysis of thirteen Haralick features for authentic, FILM, and linearly interpolated ssTEM images for various
716 skipped images. Mean Euclidean distance of interpolated images from authentic images based on thirteen Haralick
717 features.

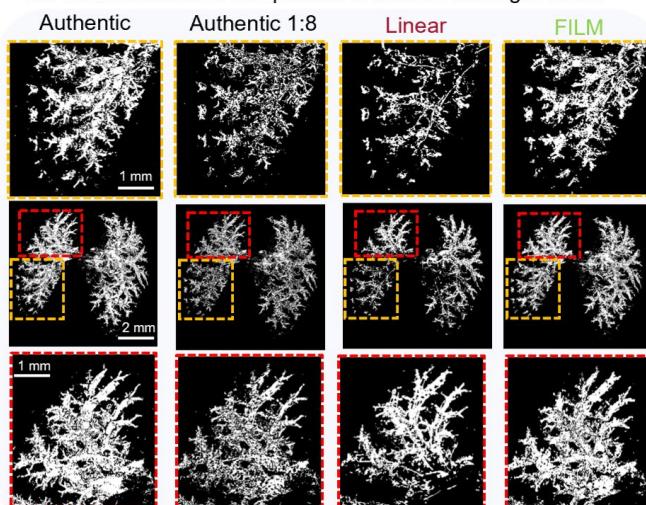
a 3D reconstruction of interpolated ducts from histology



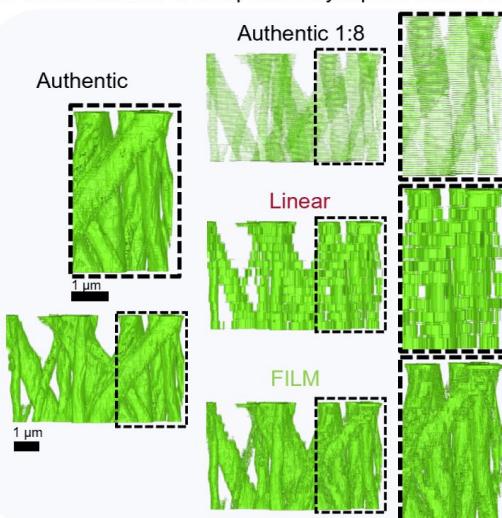
b 3D reconstruction of interpolated brain from MRI



c 3D reconstruction of interpolated bronchioli from light-sheet

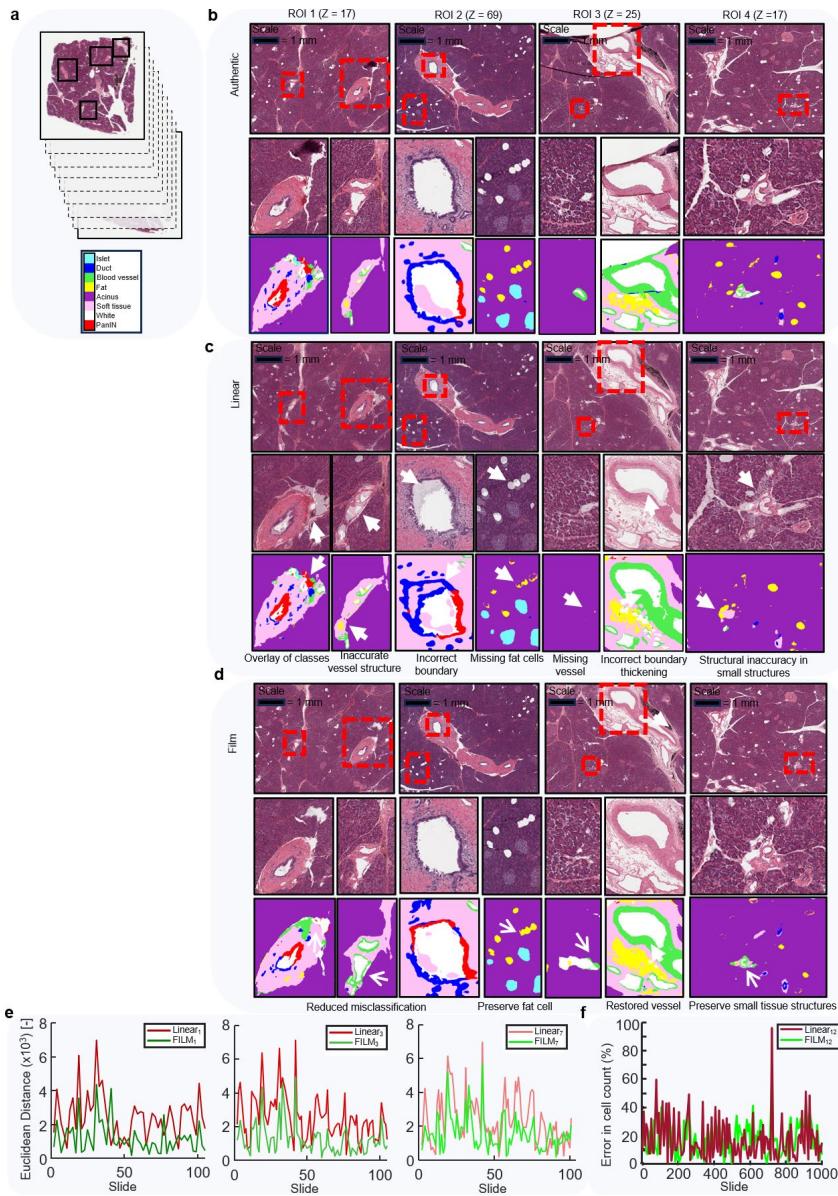


d 3D reconstruction of interpolated synapses from ssTEM



718
719
720
721
722
723
724
725
726

Fig. 5. 3D reconstruction of interpolated images. (a) Comparison of 3D reconstructions of pancreatic duct when skipping 7 slides between authentic images and when interpolating the missing slides using linear and FILM interpolations. (b) Comparison of 3D reconstructions of brain MRI images when skipping 7 images between authentic images and when interpolating the missing slides using linear and FILM interpolations. (c) Comparison of 3D reconstructions of bronchioles from light-sheet images of the mouse lung when skipping 7 images between authentic images and when interpolating the missing slides using linear and FILM interpolations. (d) Comparison of 3D reconstructions of synapses from ssTEM slides of the mouse brain when skipping 7 images between authentic images and when interpolating the missing slides using linear and FILM interpolations.



727

728 **Extended Fig 2. Qualitative comparison of linear and FILM interpolations to authentic H&E-stained**
729 **histological slides of a human pancreas when skipping 7 slides for four different ROI's. (a)** Four ROIs were
730 selected from H&E-stained whole slide images (WSI's). Slides were interpolated when skipping 7 slides between
731 adjacent sections, thereby generating 7 slides. **(b)** The top row of authentic images shows the middle skipped z-slide
732 of all four different ROI's selected for interpolation. The middle row of zoom-ins of authentic images shows
733 microanatomical structures observed within the different ROI's. The third row of zoom-ins shows the CODA
734 classification of these microanatomical structures. **(c)** The top row of linearly interpolated images shows the middle
735 interpolated z-slide of all four different ROI's corresponding to the authentic images. The middle row of zoom-ins of
736 linearly interpolated images shows microanatomical structures generated by linear interpolation within the different
737 ROI's. The third row of zoom-ins shows the CODA classification of these linearly interpolated microanatomical
738 structures. **(d)** The top row of FILM interpolated images shows the middle interpolated z-slide of all four different
739 ROI's corresponding to the authentic images. The middle row of zoom-ins of FILM interpolated images shows
740 microanatomical structures generated by FILM within the different ROI's. The third row of zoom-ins shows the
741 CODA classification of these FILM interpolated microanatomical structures. **(e)** Euclidean distance by slide of
742 interpolated images from authentic images based on thirteen Haralick features for ROI 1 and ROI 2. **(f)** Percent error
743 in CD45+ cell count by slide between authentic and interpolated images when skipping 12 slides.

HE WSI															
Dataset	Energy	Contrast	Correlation	Variance	Homogenetiy	Sum Average	Sum Variance	Sum Entropy	Entropy	Difference	Difference	Info	Meas of	Info	Meas of
Authentic	1.42E-02	5.62E+02	9.57E-01	6.51E+03	3.32E-01	3.08E+02	2.55E+04	7.34E+00	1.12E+01	3.39E-04	4.82E+00	-2.65E-01	9.83E-01		
FILM_1	1.23E-02	4.11E+02	9.68E-01	6.43E+03	3.30E-01	3.07E+02	2.53E+04	7.31E+00	1.11E+01	3.48E-04	4.68E+00	-2.76E-01	9.85E-01		
FILM_3	1.19E-02	3.92E+02	9.69E-01	6.36E+03	3.28E-01	3.08E+02	2.51E+04	7.32E+00	1.11E+01	3.45E-04	4.67E+00	-2.76E-01	9.85E-01		
FILM_7	1.17E-02	3.91E+02	9.69E-01	6.35E+03	3.26E-01	3.08E+02	2.50E+04	7.35E+00	1.11E+01	3.40E-04	4.68E+00	-2.77E-01	9.85E-01		
Linear_1	1.34E-02	3.15E+02	9.74E-01	6.05E+03	3.31E-01	3.08E+02	2.39E+04	7.29E+00	1.10E+01	3.51E-04	4.59E+00	-2.84E-01	9.86E-01		
Linear_3	1.29E-02	3.32E+02	9.72E-01	6.01E+03	3.28E-01	3.08E+02	2.37E+04	7.31E+00	1.10E+01	3.44E-04	4.62E+00	-2.82E-01	9.86E-01		
Linear_7	1.26E-02	3.63E+02	9.70E-01	6.02E+03	3.25E-01	3.08E+02	2.37E+04	7.36E+00	1.11E+01	3.36E-04	4.67E+00	-2.82E-01	9.86E-01		
IHC WSI															
Dataset	Energy	Contrast	Correlation	Variance	Homogenetiy	Sum Average	Sum Variance	Sum Entropy	Entropy	Difference	Difference	Info	Meas of	Info	Meas of
Authentic	3.30E-02	5.30E+02	5.76E-01	6.31E+02	3.80E-01	4.34E+02	1.99E+03	6.24E+00	9.96E+00	4.36E-04	4.65E+00	-1.71E-01	9.18E-01		
FILM_7	2.14E-02	3.03E+02	6.76E-01	4.72E+02	3.56E-01	4.35E+02	1.58E+03	6.34E+00	1.00E+01	3.93E-04	4.50E+00	-1.79E-01	9.25E-01		
FILM_12	1.98E-02	2.93E+02	6.85E-01	4.69E+02	3.51E-01	4.35E+02	1.58E+03	6.37E+00	1.01E+01	3.83E-04	4.50E+00	-1.79E-01	9.26E-01		
Linear_7	2.08E-02	2.95E+02	6.50E-01	4.26E+02	3.28E-01	4.33E+02	1.41E+03	6.33E+00	1.01E+01	3.42E-04	4.61E+00	-1.57E-01	9.05E-01		
Linear_12	2.06E-02	3.11E+02	6.43E-01	4.39E+02	3.25E-01	4.33E+02	1.45E+03	6.35E+00	1.02E+01	3.35E-04	4.64E+00	-1.55E-01	9.04E-01		
MRI															
Dataset	Energy	Contrast	Correlation	Variance	Homogenetiy	Sum Average	Sum Variance	Sum Entropy	Entropy	Difference	Difference	Info	Meas of	Info	Meas of
Authentic	4.40E-01	7.62E+01	9.26E-01	5.32E+02	7.18E-01	2.40E+01	2.05E+03	3.39E+00	4.77E+00	3.73E-03	2.35E+00	-4.12E-01	9.41E-01		
FILM_1	4.42E-01	6.99E+01	9.33E-01	5.29E+02	7.28E-01	2.40E+01	2.04E+03	3.39E+00	4.73E+00	3.54E-03	2.28E+00	-4.41E-01	9.51E-01		
FILM_3	4.42E-01	6.68E+01	9.35E-01	5.23E+02	7.29E-01	2.40E+01	2.02E+03	3.39E+00	4.72E+00	3.54E-03	2.26E+00	-4.44E-01	9.51E-01		
FILM_7	4.32E-01	6.45E+01	9.37E-01	5.23E+02	7.24E-01	2.45E+01	2.03E+03	3.45E+00	4.81E+00	3.18E-03	2.29E+00	-4.40E-01	9.58E-01		
Linear_1	4.34E-01	5.51E+01	9.46E-01	5.10E+02	7.24E-01	2.41E+01	1.98E+03	3.42E+00	4.76E+00	3.53E-03	2.26E+00	-4.41E-01	9.53E-01		
Linear_3	4.38E-01	5.02E+01	9.48E-01	4.92E+02	7.23E-01	2.41E+01	1.92E+03	3.39E+00	4.68E+00	4.04E-03	2.24E+00	-4.40E-01	9.50E-01		
Linear_7	4.21E-01	5.15E+01	9.45E-01	4.87E+02	7.12E-01	2.46E+01	1.90E+03	3.49E+00	4.86E+00	3.67E-03	2.32E+00	-4.30E-01	9.57E-01		
Light-sheet															
Dataset	Energy	Contrast	Correlation	Variance	Homogenetiy	Sum Average	Sum Variance	Sum Entropy	Entropy	Difference	Difference	Info	Meas of	Info	Meas of
Authentic	3.89E-01	4.25E-01	9.87E-01	1.94E+01	9.22E-01	6.25E+00	7.70E+01	2.61E+00	2.85E+00	5.36E-03	7.05E-01	-7.19E-01	9.67E-01		
FILM_1	3.97E-01	3.80E-01	9.88E-01	1.88E+01	9.29E-01	6.25E+00	7.46E+01	2.57E+00	2.79E+00	5.57E-03	6.58E-01	-7.49E-01	9.72E-01		
FILM_3	3.98E-01	3.57E-01	9.89E-01	1.80E+01	9.29E-01	6.24E+00	7.16E+01	2.56E+00	2.78E+00	5.66E-03	6.52E-01	-7.48E-01	9.72E-01		
FILM_7	3.96E-01	3.39E-01	9.89E-01	1.71E+01	9.29E-01	6.25E+00	6.81E+01	2.57E+00	2.78E+00	5.88E-03	6.53E-01	-7.45E-01	9.72E-01		
Linear_1	3.89E-01	3.42E-01	9.88E-01	1.84E+01	9.26E-01	6.24E+00	7.32E+01	2.60E+00	2.82E+00	5.95E-03	6.77E-01	-7.26E-01	9.67E-01		
Linear_3	3.88E-01	3.15E-01	9.89E-01	1.77E+01	9.28E-01	6.25E+00	7.05E+01	2.60E+00	2.81E+00	6.72E-03	6.63E-01	-7.31E-01	9.69E-01		
Linear_7	3.86E-01	3.10E-01	9.88E-01	1.71E+01	9.27E-01	6.25E+00	6.81E+01	2.60E+00	2.81E+00	7.22E-03	6.63E-01	-7.31E-01	9.69E-01		
Cryo-electron microscopy															
Dataset	Energy	Contrast	Correlation	Variance	Homogenetiy	Sum Average	Sum Variance	Sum Entropy	Entropy	Difference	Difference	Info	Meas of	Info	Meas of
Authentic	3.23E-03	1.62E+01	8.25E-01	4.71E+01	2.76E-01	2.60E+02	1.72E+02	5.74E+00	8.76E+00	7.71E-04	3.14E+00	-1.77E-01	8.97E-01		
FILM_1	5.63E-03	7.47E+00	8.90E-01	3.48E+01	3.77E-01	2.59E+02	1.32E+02	5.53E+00	7.99E+00	1.20E-03	2.62E+00	-2.55E-01	9.45E-01		
FILM_3	5.48E-03	8.03E+00	8.83E-01	3.49E+01	3.70E-01	2.61E+02	1.32E+02	5.54E+00	8.05E+00	1.14E-03	2.67E+00	-2.45E-01	9.41E-01		
FILM_7	5.02E-03	8.80E+00	8.83E-01	3.77E+01	3.61E-01	2.62E+02	1.42E+02	5.61E+00	8.18E+00	1.10E-03	2.73E+00	-2.42E-01	9.42E-01		
Linear_1	5.00E-03	9.25E+00	8.61E-01	3.40E+01	3.38E-01	2.60E+02	1.27E+02	5.51E+00	8.13E+00	1.07E-03	2.77E+00	-2.17E-01	9.23E-01		
Linear_3	6.40E-03	9.63E+00	8.52E-01	3.31E+01	3.39E-01	2.62E+02	1.23E+02	5.47E+00	7.95E+00	1.04E-03	2.79E+00	-2.14E-01	9.17E-01		
Linear_7	5.33E-03	1.03E+01	8.54E-01	3.52E+01	3.30E-01	2.62E+02	1.30E+02	5.54E+00	8.14E+00	1.01E-03	2.83E+00	-2.12E-01	9.20E-01		

744 **Table S1. Mean Haralick texture feature scores for each dataset and skip scenario.**