
GTestimate: Improving relative gene expression
estimation in scRNA-seq using the Good-Turing

estimator

Martin Fahrenberger ∗1,2, Christopher Esk3,4, and Arndt von Haeseler1,5

1Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Labs, University of Vienna and Medical University of
Vienna, Vienna BioCenter (VBC), Vienna, Austria.

2Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, 1030
Vienna, Austria.

3Institute of Molecular Biology, University of Innsbruck, Innsbruck, Austria
4Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria

5University of Vienna, Faculty of Computer Science Bioinformatics and Computational Biology, Vienna, Austria.

August 30, 2024

Abstract1

Background: Single-cell RNA-seq suffers from unwanted technical variation between cells, caused by its2

complex experiments and shallow sequencing depths. Many conventional normalization methods try to3

remove this variation by calculating the relative gene expression per cell. However, their choice of the4

Maximum Likelihood estimator is not ideal for this application.5

Results: We present GTestimate, a new normalization method based on the Good-Turing estimator,6

which improves upon conventional normalization methods by accounting for unobserved genes. To vali-7

date GTestimate we developed a novel cell targeted PCR-amplification approach (cta-seq), which enables8

ultra-deep sequencing of single cells. Based on this data we show that the Good-Turing estimator improves9

relative gene expression estimation and cell-cell distance estimation. Finally, we use GTestimate’s com-10

patibility with Seurat workflows to explore three common example data-sets and show how it can improve11

downstream results.12

Conclusion: By choosing a more suitable estimator for the relative gene expression per cell, we were able to13

improve scRNA-seq normalization, with potentially large implications for downstream results. GTestimate14

is available as an easy-to-use R-package and compatible with a variety of workflows, which should enable15

widespread adoption.16

∗martin.fahrenberger@gmail.com
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Introduction20

Single-cell RNA-seq (scRNA-seq) provides new insights into cell diversity, differentiation and disease [1, 2, 3].21

These insights are enabled by affordable high-throughput methods for the parallel sequencing of thousands of22

cells [4, 5]. However, they require many experimental steps, whose efficiency differs between cells, leading to23

high variability in the number of mRNAs captured. Additionally, sequencing depths as low as 20,000 reads24

per cell [6] and the nature of parallel sequencing introduce stochastic variation [5, 7, 8]. After accounting25

for PCR-duplicates among reads, a median of ∼5,000 UMIs/cell (number of sequenced mRNA molecules26

per cell) with a range of ∼500-20,000 UMIs/cell is typical for a high quality sample (Fig. 1a). This high27

technical variation between cells results in a low signal-to-noise ratio, which makes data analysis challenging.28

During data processing (Fig. 1b) global-scaling normalization methods [8] such as e.g. Seurat’s Normal-29

izeData [9], scran’s computeSumFactors [10, 11] or scanpy’s normalize_total [12] account for the variation in30

UMIs/cell by calculating a single scaling-factor (or size-factor) per cell. Despite its simplicity, this approach31

has been shown to outperform more complex methods [13].32

Global-scaling normalization inherently requires the calculation of the relative gene expression levels per33

cell. Although not typically discussed as such, the calculation used by these methods is a Maximum Likeli-34

hood estimation (ML) [14] of the relative gene expression frequency per cell.35

f̂g
ML

=
cg∑
i ci

(ML)

where c denotes the transcriptomic profile of the cell with a count cg for each gene g.36

However, at ∼5,000 UMIs/cell only ∼2.5% of the ∼200,000 mRNA transcripts in a typical mammalian cell37

[15] are sequenced and many expressed genes remain unobserved, as evident by the low genes/cell observed38

in scRNA-seq experiments (Suppl. Figure 1). ML then estimates the relative expression of unobserved genes39

as zero. This inherently leads to overestimation of the relative expression for observed genes, since the sum40

of all relative frequencies equals one (
∑

g f̂g
ML

= 1).41

To reduce this overestimation we propose a Simple Good-Turing estimator [16, 17].42

f̂g
GT

=


(cg+1)∑

i ci
· Ncg+1

Ncg
, for cg > 0

0, for cg = 0

(GT)
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Figure 1: (a) Histogram of UMIs/cell for 17,653 cells in the cta-seq experiment before amplification. (b)
Schema of a scRNA-seq analysis showing where GTestimate integrates into the workflow. (c)
UMIs/cell for the 18 selected cells in the cta-seq experiment, before (typical) and after (ultra-deep)
amplification. Cells ordered based on UMIs/cell in the typical cta-seq data. (d) Absolute error of
the relative gene expression estimation in the cta-seq experiment. (e) Euclidean cell-cell distances
in PCA-space in the cta-seq experiment. (f) Average absolute estimation error of the relative
gene expression of a cell when subsampled to different UMIs/cell . (g-h) Mean Euclidean cell-cell
distance in relative gene expression space, between two independent random samples of the same
cell (g) between independent random samples of two different cells (h). (i) Difference between
the mean cell-cell distances in (g) and (h). Colored ribbons in (f,g,h) represent the 5% − 95%
quantile range.
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where Ncg denotes the number of genes with count cg in the cell.43

GT adjusts the relative expression estimates of observed genes, particularly those with low counts, based44

on the frequency of each count value in the cell. This even enables an estimate for the relative expression of45

unobserved genes (for further details see Suppl. Info. 1.1).46

In this study, we first compare the performance of GT and ML on novel ultra-deep sequencing data,47

and then show how GT improves downstream results, by integrating it into standard scRNA-seq analysis48

workflows. To achieve this we developed GTestimate, a new scRNA-seq normalization method centered49

around GT. GTestimate is an easy-to-use R-package designed to seamlessly replace Seurat’s NormalizeData.50

Results51

ultra-deep sequencing of single cells52

Comparison between GT and ML requires ground-truth transcriptomic profiles of single cells. However,53

current simulation software cannot adequately emulate the complexity of scRNA-seq data and the choice54

of simulator may affect benchmarking results [18]. We therefore designed a cell targeted PCR-amplification55

strategy (cta-seq), which enabled us to sequence a small set of selected cells, from a typical sequencing run,56

a second time at a ultra-deep sequencing depth. This ultra-deep sequencing data contains an average of 2357

million reads per cell, a stark contrast to the average 16,965 reads for the same cells in the typical data58

(Suppl. Figure 2). This led to a ∼7.4 fold increase in UMIs/cell (Fig. 1c) and a ∼3.3 fold increase in59

genes/cell (Suppl. Figure 3). We then used the relative gene expression levels of these ultra-deep profiles as60

the ground-truth for these cells.61

Performance of GT and ML62

Based on the cta-seq data we then evaluated GT and ML. When we applied GT and ML to the typical profiles63

and compared the results to the ground-truth, GT consistently showed a lower estimation error across all 1864

cells, by ∼17% on average (Fig. 1d).65

Relative gene expression profiles are the basis of most scRNA-seq analysis (Fig. 1b), such as the calculation66

of cell-cell distances in PCA-space (often used as a measure for the similarity between two cells). We therefore67

also calculated cell-cell distances between the typical profiles, once based on GT and once based on ML, and68

compared the results to the cell-cell distances between the ultra-deep profiles. We observed a 36% reduction69

of the distance estimation error when using GT instead of ML (Fig. 1e, Suppl. Table 1).70

Since UMIs/cell vary drastically (Fig. 1a) we further assessed the performance of GT and ML at different71

UMIs/cell . We applied GT and ML to random subsamples of the cell with the highest UMIs/cell in the72

ultra-deep cta-seq data (Cell 12, at 94,440 UMIs) and compared the estimates to the ground-truth expression73
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profile of this cell. Similar to before (Fig. 1d) the estimation error for both GT and ML decreased with74

increasing UMIs/cell and GT consistently showed a lower error than ML, especially at low UMIs/cell (Fig.75

1f).76

Next, we assessed the impact of UMIs/cell on cell-cell distances. We first compared the mean distance77

between two random samples of the same cell (cell 12), both sampled to the same UMIs/cell . This distance78

was calculated in relative gene expression space and should approach zero for high UMIs/cell . However,79

ML led to grossly overestimated distances at small UMIs/cell (Fig. 1g). The estimated distance after ML80

additionally showed strong correlation to the UMIs/cell , which is problematic as we assume that most of the81

observed variation in UMIs/cell is technical noise. In contrast, GT did not show correlation to the UMIs/cell82

and demonstrated lower distance estimation errors overall.83

We then examined the distances between two distinct cells by also drawing random samples from the cell84

with the second highest UMIs/cell in the ultra-deep cta-seq data (cell 15, at 58,589 UMIs), which is of a85

different cell-type. We calculated the distances between the sampled profiles of cell 12 and cell 15 at varying86

UMIs/cell . We again saw large overestimation of the distances when using ML, while using GT strongly87

reduced this error. For high UMIs/cell the estimated distances converged to the true distance of 0.015 (Fig.88

1h).89

When based on ML, the estimated distances between identical cells (Fig. 1g) and distinct cells (Fig. 1h)90

were almost the same for low UMIs/cell . This makes it very difficult to e.g. distinguish between cell-types.91

However, when we used GT as the basis for these distances we saw a much clearer separation between92

identical cells and cells of different cell-type, for cells with < 10, 000 UMIs/cell (Fig. 1i).93

GTestimate’s impact on downstream results94

After showing GT’s advantages for relative gene expression estimation and cell-cell distance estimation, we95

examined how our GT based normalization method GTestimate impacts downstream results. The difference96

between GTestimate and other global-scaling normalization methods is only in the estimator used, all other97

settings can be adjusted to be equivalent to e.g. scran’s computeSumFactors or scanpy’s normalize_total . At98

default settings GTestimate behaves identically to NormalizeData, including the same log-transformation.99

We therefore used NormalizeData, as a representative of ML based global-scaling normalizations for all100

following comparisons. However, we would expect similar results when comparing to other global-scaling101

normalization methods.102

We first assessed GTestimate’s impact on cell-type clustering by reanalyzing the pbmc3k data-set of103

peripheral blood mononuclear cells [19]. Here, normalization with GTestimate instead of NormalizeData104

resulted in 4.6% of cells being assigned to a different cluster (Fig. 2a), mostly among the Naive CD4 T-cells,105
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Figure 2: pbmc3k: (a) UMAPs based on NormalizeData and GTestimate, and UMAP highlighting differ-
ences in cluster assignment. (b) Boxplot showing log-normalized expression of NKG7 per cell-
type (zeroes not shown). Developing Pancreas: (c) UMAPs based on NormalizeData and
GTestimate, and UMAP highlighting differences in cluster assignment. (d) Sankey diagram show-
ing the differences in cluster assignment based on NormalizeData and GTestimate. Spatial Tran-
scriptomics: (e) log-normalized gene expression of Ttr based on NormalizeData and GTestimate
as well as percent difference in log-normalized expression of Ttr between NormalizeData and
GTestimate. (f) Density plot showing the distribution of log-normalized gene expression values of
Ttr for NormalizeData and GTestimate.
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Memory CD4 T-cells and CD8 T-cells.106

We additionally analyzed a developing pancreas data-set [20], characterized by more gradual cell-type tran-107

sitions compared to the pbmc3k data-set. After normalization with GTestimate instead of NormalizeData,108

14.6% of cells were assigned to a different cluster (Fig. 2c,d).109

While the correct classification of cells in both of these data-sets remains unknown, our results in Fig. 1110

suggest that GTestimate provides a better basis for this classification.111

To examine the impact of GTestimate on the expression estimates of individual genes we considered the112

log-normalized expression of cell-type specific marker genes in the pbmc3k data-set. As an example we113

used NKG7 a highly specific NK-cell and CD8+ T-cell marker [21]. When using GTestimate instead of114

NormalizeData, the log-normalized expression of NKG7 remained constant in NK-cells and CD8+ T-cells,115

but was reduced in all other cell-types (Fig. 2b). GTestimate therefore resulted in clearer separation of116

NK-cells and CD8+ T-cells from other cell-types. We observed this for nearly all marker genes described in117

Seurat’s pbmc3k tutorial (Suppl. Figure 4). These differences may explain some of the observed changes in118

clustering.119

Finally, we applied GTestimate to the spot-wise normalization of a Spatial Transcriptomics data-set of the120

mouse brain [22]. In this data-set, normalization with GTestimate and NormalizeData resulted in 17 and121

19 clusters respectively (Suppl. Figure 5, Figure 6, Figure 7), we therefore refrained from any cluster based122

comparisons of GTestimate and NormalizeData. However, the spatial coordinates enabled examination of123

area specific marker genes, independent of the clustering. As an example we considered the log-normalized124

expression of the choroid plexus marker gene Ttr (Fig. 2e). When using GTestimate we saw a reduction of125

the unspecific expression of Ttr for spots outside the choroid plexus. Here, GTestimate showed up to 50%126

reduction of the log-normalized expression, compared to NormalizeData, while expression estimates inside127

the choroid plexus remained constant (Fig. 2e). This resulted in clearer separation of the choroid plexus128

spots from the surrounding tissue as shown by the distribution of expression values of Ttr (Fig. 2f).129

When we additionally considered the UMIs/spot (Figure 8), we saw a negative correlation between the130

change in log-normalized expression of Ttr and UMIs/spot . This supports previous observations that131

NormalizeData overestimates the expression of Ttr in areas with low UMIs/spot . Whereas, GTestimate132

reduces this overestimation and improves the signal-to-noise ratio.133

Discussion134

In summary, the estimation of relative gene expression is a central part of scRNA-seq data analysis, which135

has not received the same attention as other steps. We have shown that replacing the standard ML with GT136

improves relative gene expression estimation, without requiring expensive computations. By improving the137
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signal-to-noise ratio at this basic level, our new normalization method GTestimate can have large impact on138

downstream results.139

In the validation we avoided potential issues with simulated data by employing a novel cell targeted PCR-140

amplification strategy to sequence the same cells at two vastly different UMIs/cell . This strategy may also141

be useful in other areas, such as the study of rare cell-types. Additionally, the resulting data-set may serve142

as a benchmark for other methods.143

GTestimate is available as an open-source R-package (https://www.github.com/Martin-Fahrenberger/144

GTestimate) and works with all common scRNA-seq data-formats. While GTestimate’s default behavior is145

designed to seamlessly replace NormalizeData it is also compatible with a wide variety of other workflows.146

Materials and Methods147

Implementation of GTestimate148

The user-facing section of our GTestimate package was developed in R and handles input and output in the149

various supported data-formats. The core implementation of the Simple Good-Turing estimator is written150

in C++ and is heavily based on Aaron Lun’s implementation for the edgeR R-package [23]. This core151

implementation includes the linear smoothing, which is necessary due to the sparsity of the frequencies of152

frequencies vector (i.e the frequency of the count values). It further includes a rescaling step which ensures153

that the estimated relative expression frequencies of all observed genes, plus the sum of probabilities of all154

unobserved genes (Suppl. Info. 1.1), add up to exactly one [17].155

cta-seq experiment156

In the cta-seq experiment we aimed to sequence a selected set of cells from a typical scRNA-seq library again157

at a ultra-deep sequencing depth. However, due to sequencing-saturation this quickly becomes prohibitively158

expensive. We therefore designed a PCR based cell targeted amplification strategy (cta-seq), to selectively159

amplify all transcripts from a small set of cells, through the use of primers specific to their cell-barcode. This160

is similar to the TAP-seq protocol [24], which uses gene-specific primers to amplify all transcripts of certain161

genes.162

Sequencing cta-seq, typical163

To ensure high quality input material we used leftover cDNA from a previously sequenced sample [25], which164

had shown high UMIs/cell and genes/cell . The sample was taken out of -20°C storage and prepared for165

Illumina sequencing at the Vienna Biocenter Next Generation Sequencing facility using 10X Dual Index Kit166

TT. We then split the resulting sequencing library into two aliquots and stored the second halve again at167
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-20°C. The first halve was sequenced on a Illumina NovaSeq S4 in paired-end mode with 2x150bp read length168

and 400 million reads.169

Sequencing cta-seq, ultra-deep170

Based on the results from the typical sequencing run we selected 18 cells of interest for the cta-seq experiment171

(see below). For these 18 cells we designed PCR primers specific to their cell-barcodes. We then used the172

second aliquote of the previously prepared sequencing library to perform three rounds of PCR amplification on173

it using Amplitaq Gold 360 MM (ThermoFisher, cat.: 4398886) supplemented with EvaGreen dye (Biotium,174

cat.: 31000). We used the following programs in a total volume of 50µl.. PCR1: 1. 95C, 10min; 2. 62C,175

30s; 3. 72C, 2min.; 4. Return to 2. x2; 5. 95C, 25s; 6. 62C, 30s; 7. 72C, 2min, fluorescence measurement;176

8. 72C, 15s; 9. return to 5. x16. PCR2: 1. 95C, 10min; 2. 62C, 30s; 3. 72C, 2min.; 4. Return to 2. x2;177

5. 95C, 25s; 6. 62C, 30s; 7. 72C, 2min, fluorescence measurement; 8. 72C, 15s; 9. return to 5. x16. PCR3:178

1. 95C, 10min; 2. 67C, 30s; 3. 72C, 2min.; 4. Return to 2. x2; 5. 95C, 25s; 6. 67C, 30s; 7. 72C, 2min,179

fluorescence measurement; 8. 72C, 15s; 9. return to 5. x8. Reactions were stopped in step 8 according to180

fluorescent measurements in log phase. Reaction input in PCRs 2 and 3 were 0.5 µl of the previous reaction.181

Resulting reactions were purified, and pooled for Illumina sequencing on a NovaSeq S4 in paired-end mode182

with 2x150bp read length and 400 million reads. The primer sequences used can be found in Suppl. Table183

1, PCR1 primers were designed with varying length to achieve similar melting temperatures.184

Data Analysis185

All data analysis was performed in R (v4.3.1) using Seurat (v5.0.0) functions at default settings unless stated186

otherwise.187

Data analysis, cta-seq typical depth188

We first processed the typical depth sequencing data using CellRanger (v7.1.0), this resulted in 20,214189

cells. During cell QC we then removed all cells expressing ≤ 1000 or ≥ 5000 genes as well as cells with190

≥ 8% mitochondrial reads, with 17,653 cells remaining. We then normalized with Seurat’s NormalizeData,191

selected the top 2000 most variable genes and performed gene-wise z-score scaling. Next we applied PCA192

and performed unsupervised clustering of cells using the Louvain algorithm [26](resolution = 0.1), based on193

the first 50 principal components (PCs). This resulted in four cell-type clusters, the smallest cluster (with194

only 504 cells) was excluded from the subsequent analysis.195

From the remaining 17,149 cells we selected 18 cells for targeted amplification, six cells from each of the196

three remaining clusters. To select a diverse set of cells from each cluster we used the following:197
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1. We identified the two nearest neighbors for each cell (in PCA space).198

2. We excluded cells for which at least one nearest neighbor belonged to a different cluster.199

3. For the remaining 16,295 cells, we computed the #UMI-rank, from the number of observed UMIs per200

cell (ties were broken randomly).201

4. Similarly, we computed the #UMI
#Genes -rank based on the ratio of the number of observed UMIs and the202

number of observed genes in the cell (ties were broken randomly).203

5. Subsequently, we calculated the diversity of each cell and it’s neighbors as the area of the induced204

triangle of the cell and its neighbors in a #UMI-rank x #UMI
#Genes -rank plot. The six cells from the two205

most diverse neighborhoods (i.e. largest triangle area) were selected for amplification.206

These steps were designed to cover a diverse set of cells for which the various experimental steps had varying207

efficiencies. The selection of triplets from the same neighborhoods provided groups of cells with similar gene208

expression patterns, while the number of UMIs and the number of observed genes were used as proxies for209

the mRNA capture efficiencies and the health of the isolated cells.210

Data analysis, cta-seq ultra-deep211

The sequencing data from the ultra-deep sequencing run were processed using CellRanger (v7.1.0).212

However, due to the high number of PCR cycles during amplification, and the resulting high number213

of reads for the 18 selected cells, CellRanger’s UMI correction approach was no longer sufficient. Manual214

inspection of the reads showed that errors in the UMI sequences had inflated the number of unique reads.215

This was further exacerbated by a faulty implementation of the UMI-correction approach in the CellRanger216

software by 10X Genomics. CellRanger erroneously corrects UMIs containing sequencing errors towards other217

UMIs that also contain sequencing errors. E.g. If we have 3 UMIs: AAAA with 10 reads, AAAT with 2218

reads and AATT with 1 read, AATT would be corrected towards AAAT (Hamming Distance 1) and stay219

as AAAT, eventhough the original 2 AAAT reads would be corrected to AAAA in the same step. We have220

reported this issue to 10X Genomics on 13th of July 2023, 10X Genomics acknowledge the issue on 14th of221

July 2023. The issue remains unresolved in CellRanger 7.2.0 (released on the 10th of November, 2023).222

To circumvent these issues we extracted the relevant information for each read (count, ensemble gene id,223

cell-barcode, uncorrected UMI and CellRanger corrected UMI) from the possorted_genome_bam.bam as224

provided by CellRanger and replicated CellRanger’s read counting workflow in R. As a sanity-check we first225

used the CellRanger corrected UMIs and achieved the exact same count-matrix as CellRanger. We then226

used the raw UMIs instead of the CellRanger corrected UMIs, implemented the UMI-tools directional UMI227

correction approach [27] in R and applied it to correct the UMIs for the 18 selected cells, we then counted228
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again. The resulting count-matrix showed differences for 28% of the non-zero entries when compared to the229

CellRanger results. We used these improved counts for the ultra-deep profiles in all further analysis.230

Comparison of GT and ML using cta-seq231

To evaluate the performance of GT and ML based on the cta-seq data-set we estimated the relative gene232

expression for the 18 selected cells by applying both estimators to the typical transcriptomic profiles.233

The relative gene expression for the ground-truth ultra-deep profiles was estimated with ML. We chose ML234

to be conservative regarding the performance of GT and since the overestimation due to unobserved genes235

should be small for the ultra-deep profiles Suppl. Figure 9.236

Relative gene expression estimation237

We calculated the absolute estimation error for the relative gene expression of the 18 cells by comparing the238

estimation results of GT and ML based on the typical transcriptomic profiles to the ground-truth relative239

gene expression of the ultra-deep profiles. We consider the relative gene expression estimation error of a cell240

to be the sum of the individual relative gene expression estimation errors in the cell.241

Cell-cell distances242

The pairwise Euclidean distances between the 18 cells were calculated in PCA space (as is common for243

cell-cell distances in scRNA-seq). However, to keep the necessary projections similar to a regular scRNA-seq244

analysis this space could not simply be constructed based only on the 18 selected cells.245

Instead we calculated the projections based on 17,653 cells in the typical sequencing run. After normal-246

ization there are three pre-processing steps which all depend on the context of a full data-set; Variable gene247

selection, gene-wise z-score scaling and PCA.248

To keep these steps identical for both the GT and ML profiles of the typical sequenced cells, as well as the249

ultra-deep profiles we performed them using customized functions. We used the same list of variable genes250

(calculated based on all 17,653 cells) for the analysis of all profiles. We then scaled the genes in all profiles251

using the mean and standard deviation of genes calculate based on the full 17,653 cells. Finally we projected252

all profiles into the same 50 dimensional PCA-space calculated from the full 17,653 cells.253

In this PCA-space we calculated the pairwise distances between the ML profiles, between the GT profiles254

as well as between the ground-truth ultra-deep profiles. We then compared the resulting non-zero distances255

based on GT and ML to the ground-truth ultra-deep distances.256
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Comparison of GT and ML at different UMIs/cell257

When analyzing the impact of UMIs/cell on the estimation performance we used the cell with the highest258

number of UMIs after amplification (cell 12, cell-barcode TCTCTGGGTGTGCTTA) and the cell with the259

second highest number of UMIs after amplification (cell 15, cell-barcode GGCTTTCGTGTGTCGC).260

We generated 1000 randomly sampled profiles at each UMIs/cell level by drawing genes from the ultra-deep261

count-vector, weighted by count and with replacement. The 20 UMIs/cell levels at which we sampled were262

chosen equidistant in log10-space from 100 to 100,000 (i.e. 100, 143, 206, 297, 428, 615, 885, 1274, 1832,263

2636, 3792, 5455, 7847, 11288, 16237, 23357, 33598, 48329, 69519, 100000 UMIs/cell). We then applied GT264

and ML respectively to these sampled profiles to estimate their relative gene expression.265

Relative gene expression estimation266

To asses the relative gene expression estimation performance of GT and ML we compared their estimates267

for each sampled profile from cell 12 to the relative gene expression of the full ultra-deep profile of cell 12,268

and calculated the absolute error.269

Cell-cell distance estimation270

To asses cell-cell distance estimation performance we calculated the Euclidean distances between the relative271

gene expression profiles of pairs of sampled profiles (either from cell 12 twice or from cell 12 and cell 15)272

based on GT and ML. We calculated the true distance based on the full ultra-deep profiles.273

Downstream analysis274

Data analysis, pbmc3k275

The pbmc3k data-set was downloaded from 10X Genomics [19] and processed following Seurat’s "Guided276

Clustering Tutorial" [28]. In short:277

During QC we filtered out genes expressed in less than 3 cells, and cells with less than 200 expressed genes.278

We then filtered out cells with > 5% mitochondrial reads and finally we removed all cells expressing more279

than 2,500 genes.280

During preprocessing cells were normalized using either Seurat’s NormalizeData or GTestimate at default281

settings. For both normalization methods individually, we then identified variable genes and z-score scaled the282

data, followed by calculation of the top 10 PCs. Based on these PCs we then constructed the neighborhood283

graphs and performed unsupervised Louvain clustering (resolution = 0.5). Finally we calculated the UMAP284

for both conditions and annotated clusters based on marker gene expression, following the Seurat tutorial.285
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Data analysis, developing pancreas286

The pancreas endocrinogenesis day15 dataset was downloaded [29] and imported into R to be processed287

using Seurat. We only used the spliced counts and normalized them using GTestimate and NormalizeData;288

from there on all following steps were performed identically for the two approaches.289

First we identified variable genes and performed gene-wise z-score scaling, followed by calculation of the290

top 50 PCs. Based on the PCs we constructed the neighborhood graph and performed unsupervised Louvain291

clustering (resolution = 0.4). Finally we calculated the UMAP.292

We manually adjusted the cluster numbering (and thereby their color) for Fig. 2c and Fig. 2d. to have293

consistent cluster-colors from left to right.294

Data analysis, Spatial Transcriptomics295

The stxBrain data-set of sagital mouse brain slices from 10X Genomics was downloaded using the SeuratData296

R-package. In our analysis we focused on the anterior1 slice of the data-set following Seurat’s "Analysis of297

spatial datasets (Sequencing-based)" vignette [30].298

Our analysis differs from the vignette only in the normalization methods used. While the vignette uses299

sctransform[31] for spot-wise normalization we instead used NormalizeData and GTestimate. Direct compar-300

ison of GT and ML to sctransform on the basis of relative gene expression is not possible, since sctransform301

does not calculate relative gene expression levels. Normalization was followed by variable gene selection and302

gene-wise scaling. We then calculated the first 30 PCs and used them to construct the neighborhood graph,303

perform unsupervised Louvain clustering and calculate the UMAP.304

Availability of supporting source code and requirements305

1. Project name: GTestimate306

2. Project home page: https://github.com/Martin-Fahrenberger/GTestimate307

3. Operating system(s): Platform independent308

4. Programming language: R, C++309

5. Other Requirements: devtools, sparseMatrixStats310

6. License: GPL3311

GTestimate is available as an open-source R-package on github (https://www.github.com/Martin-Fahrenberger/312

GTestimate). All code for the analysis in this paper, from raw-data to figures, is available on github313

(https://www.github.com/Martin-Fahrenberger/GTestimate-Paper).314
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Data Availability315

Processed cta-seq data, such as count-matrices, are available via GEO (https://www.ncbi.nlm.nih.gov/316

geo/), accession number GSE268930. Due to patient privacy concerns raw sequencing data will be made317

available through controlled access at the European Genome-Phenome Archive (EGA) upon publication.318
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1 Supplementary Materials417

1.1 The Missing Mass418

Besides improving the relative expression estimates of observed genes, GT can also estimate the sum of the419

relative frequencies of all unobserved genes. This can be viewed as the probability p0 that a next hypothetical420

UMI would be of a currently unobserved gene. We have therefore termed p0 the missing-mass of the relative421

gene expression distribution.422

The missing-mass for each cell is estimated from the number of genes with a UMI count of one (N1) and423

the sum of all counts (
∑

g cg) as has previously been discussed [16, 17].424

p̂0 =
N1∑
g cg

(1)

When applied to a Seurat or SingleCellExperiment object in R GTestimate saves the estimated p̂0 for each425

cell into a meta-data vector called "missing_mass".426

17

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 30, 2024. ; https://doi.org/10.1101/2024.07.02.601501doi: bioRxiv preprint 

https://satijalab.org/seurat/articles/pbmc3k_tutorial
https://satijalab.org/seurat/articles/pbmc3k_tutorial
https://satijalab.org/seurat/articles/pbmc3k_tutorial
https://github.com/theislab/scvelo_notebooks/raw/master/data/Pancreas/endocrinogenesis_day15.h5ad
https://github.com/theislab/scvelo_notebooks/raw/master/data/Pancreas/endocrinogenesis_day15.h5ad
https://github.com/theislab/scvelo_notebooks/raw/master/data/Pancreas/endocrinogenesis_day15.h5ad
https://satijalab.org/seurat/articles/spatial_vignette
https://satijalab.org/seurat/articles/spatial_vignette
https://satijalab.org/seurat/articles/spatial_vignette
https://doi.org/10.1101/2024.07.02.601501
http://creativecommons.org/licenses/by/4.0/


The Simple Good-Turing estimator scales the relative frequencies (including p0) to ensure427

∑
g

f̂g
GT

+ p̂0 = 1 (2)

for each cell.428

Suppl. Equation 1 provides insight into the amount of information present for each cell, which may warrant429

further study. E.g. the missing-mass in the cta-seq experiment is substantially reduced after cell targeted430

amplification of reads (Suppl. Fig. 9).431

Due to the typically low UMIs/cell , this missing mass of a cell in scRNA-seq can be quite substantial432

(Suppl. Fig. 10).433

1.2 Supplementary Tables434

Method Slope Sum of absolute Residuals Intercept Sum of absolute Errors
ML 1.529 1511.317 0.955 3258.049
GT 1.302 1263.276 -0.408 2093.645

Table 1: Characteristics of the regression line of the estimated vs. ground-truth distances for the cta-seq
data (Fig. 1d).

1.3 Supplementary Figures435
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Figure 1: Histogram showing the number of observed genes per cell for the 17,653 cells in the cta-seq sample
before amplification (typical).
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Figure 2: Raw read counts per cell before (typical) and after (ultra-deep) amplification for the 18 selected
cells in the cta-seq experiment.
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Figure 3: Number of observed genes before (typical) and after (ultra-deep) amplification for the 18 selected
cells in the cta-seq experiment.
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Figure 4: Log-normalized expression of all cell-type markers described in Seurat’s pbmc3k tutorial (zeroes
not shown).

Figure 5: UMAPs visualizing the clustering of Spatial Transcriptomics spots, based on NormalizeData (left)
and GTestimate (right) for the mouse brain Spatial Transcriptomics data-set.
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Figure 6: Visualization of the different clusters based on NormalizeData (left) and GTestimate (right) for
the mouse brain Spatial Transcriptomics data-set.
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Figure 7: Similarity of the clusters based on NormalizeData and GTestimate as represented by the Jaccard
Index. Clusters on the y-axis have been rearrange to maximize diagonal entries using the Hungarian
Algorithm.
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Figure 8: UMIs/spot in the Spatial Transcriptomics mouse brain data-set.
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Figure 9: Missing mass before (typical) and after (ultra-deep) amplification for the 18 selected cells in the
cta-seq experiment (see Suppl. Section 1.1).
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Figure 10: Histogram showing GTestimate’s missing mass estimates per cell for the 17,653 cells in the cta-seq
sample before amplification (typical).
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