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Abstract

Background: Single-cell RNA-seq suffers from unwanted technical variation between cells, caused by its
complex experiments and shallow sequencing depths. Many conventional normalization methods try to
remove this variation by calculating the relative gene expression per cell. However, their choice of the
Maximum Likelihood estimator is not ideal for this application.

Results: We present GTestimate, a new normalization method based on the Good-Turing estimator,
which improves upon conventional normalization methods by accounting for unobserved genes. To vali-
date GTestimate we developed a novel cell targeted PCR-amplification approach (cta-seq), which enables
ultra-deep sequencing of single cells. Based on this data we show that the Good-Turing estimator improves
relative gene expression estimation and cell-cell distance estimation. Finally, we use GTestimate’s com-
patibility with Seurat workflows to explore three common example data-sets and show how it can improve
downstream results.

Conclusion: By choosing a more suitable estimator for the relative gene expression per cell, we were able to
improve scRNA-seq normalization, with potentially large implications for downstream results. G7Testimate
is available as an easy-to-use R-package and compatible with a variety of workflows, which should enable

widespread adoption.

*martin.fahrenberger@gmail.com
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Introduction

Single-cell RNA-seq (scRNA-seq) provides new insights into cell diversity, differentiation and disease [1, 2, 3].
These insights are enabled by affordable high-throughput methods for the parallel sequencing of thousands of
cells |4, 5]. However, they require many experimental steps, whose efficiency differs between cells, leading to
high variability in the number of mRNAs captured. Additionally, sequencing depths as low as 20,000 reads
per cell [6] and the nature of parallel sequencing introduce stochastic variation [5, 7, 8]. After accounting
for PCR-duplicates among reads, a median of ~5,000 UMIs/cell (number of sequenced mRNA molecules
per cell) with a range of ~500-20,000 UMIs/cell is typical for a high quality sample (Fig. 1a). This high
technical variation between cells results in a low signal-to-noise ratio, which makes data analysis challenging.

During data processing (Fig. 1b) global-scaling normalization methods [8] such as e.g. Seurat’s Normal-
izeData 9], scran’s computeSumFactors |10, 11] or scanpy’s normalize_ total |12] account for the variation in
UMIs/cell by calculating a single scaling-factor (or size-factor) per cell. Despite its simplicity, this approach
has been shown to outperform more complex methods [13].

Global-scaling normalization inherently requires the calculation of the relative gene expression levels per
cell. Although not typically discussed as such, the calculation used by these methods is a Maximum Likeli-

hood estimation (ML) [14] of the relative gene expression frequency per cell.

~ML Cqg

fg = Z'Ci

(ML)

where ¢ denotes the transcriptomic profile of the cell with a count ¢4 for each gene g.

However, at ~5,000 UMIs/cell only ~2.5% of the ~200,000 mRNA transcripts in a typical mammalian cell
[15] are sequenced and many expressed genes remain unobserved, as evident by the low genes/cell observed
in scRNA-seq experiments (Suppl. Figure 1). ML then estimates the relative expression of unobserved genes
as zero. This inherently leads to overestimation of the relative expression for observed genes, since the sum
of all relative frequencies equals one (3, J?gML =1).

To reduce this overestimation we propose a Simple Good-Turing estimator [16, 17].

(cg+1) Neg+1
~GT Zz c; NCg Y

for ¢y >0

0, for c¢g =0
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(a)

Cells

(b)

Figure 1: (a) Histogram of UMIs/cell for 17,653 cells in the cta-seq experiment before amplification.
Schema of a scRNA-seq analysis showing where GTestimate integrates into the workflow.
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(b)
(c)

UMIs/cell for the 18 selected cells in the cta-seq experiment, before (typical) and after (ultra-deep)
amplification. Cells ordered based on UMIs/cell in the typical cta-seq data. (d) Absolute error of
the relative gene expression estimation in the cta-seq experiment. (e) Euclidean cell-cell distances

in PCA-space in the cta-seq experiment.

(f) Average absolute estimation error of the relative

gene expression of a cell when subsampled to different UMIs/cell. (g-h) Mean Euclidean cell-cell
distance in relative gene expression space, between two independent random samples of the same
cell (g) between independent random samples of two different cells (h). (i) Difference between
the mean cell-cell distances in (g) and (h). Colored ribbons in (f,g,h) represent the 5% — 95%

quantile range.
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where N, denotes the number of genes with count ¢, in the cell.

GT adjusts the relative expression estimates of observed genes, particularly those with low counts, based
on the frequency of each count value in the cell. This even enables an estimate for the relative expression of
unobserved genes (for further details see Suppl. Info. 1.1).

In this study, we first compare the performance of GT and ML on novel ultra-deep sequencing data,
and then show how GT improves downstream results, by integrating it into standard scRNA-seq analysis
workflows. To achieve this we developed GTestimate, a new scRNA-seq normalization method centered

around GT. GTestimate is an easy-to-use R-package designed to seamlessly replace Seurat’s NormalizeData.

Results

ultra-deep sequencing of single cells

Comparison between GT and ML requires ground-truth transcriptomic profiles of single cells. However,
current simulation software cannot adequately emulate the complexity of scRNA-seq data and the choice
of simulator may affect benchmarking results [18]. We therefore designed a cell targeted PCR-amplification
strategy (cta-seq), which enabled us to sequence a small set of selected cells, from a typical sequencing run,
a second time at a wltra-deep sequencing depth. This ultra-deep sequencing data contains an average of 23
million reads per cell, a stark contrast to the average 16,965 reads for the same cells in the typical data
(Suppl. Figure 2). This led to a ~7.4 fold increase in UMIs/cell (Fig. 1c) and a ~3.3 fold increase in
genes/cell (Suppl. Figure 3). We then used the relative gene expression levels of these ultra-deep profiles as

the ground-truth for these cells.

Performance of GT and ML

Based on the cta-seq data we then evaluated GT and ML. When we applied GT and ML to the typical profiles
and compared the results to the ground-truth, GT consistently showed a lower estimation error across all 18
cells, by ~17% on average (Fig. 1d).

Relative gene expression profiles are the basis of most scRNA-seq analysis (Fig. 1b), such as the calculation
of cell-cell distances in PCA-space (often used as a measure for the similarity between two cells). We therefore
also calculated cell-cell distances between the typical profiles, once based on GT and once based on ML, and
compared the results to the cell-cell distances between the ultra-deep profiles. We observed a 36% reduction
of the distance estimation error when using GT instead of ML (Fig. le, Suppl. Table 1).

Since UMIs/cell vary drastically (Fig. 1a) we further assessed the performance of GT and ML at different
UMIs/cell. We applied GT and ML to random subsamples of the cell with the highest UMIs/cell in the

ultra-deep cta-seq data (Cell 12, at 94,440 UMIs) and compared the estimates to the ground-truth expression
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profile of this cell. Similar to before (Fig. 1d) the estimation error for both GT and ML decreased with
increasing UMIs/cell and GT consistently showed a lower error than ML, especially at low UMIs/cell (Fig.
1f).

Next, we assessed the impact of UMIs/cell on cell-cell distances. We first compared the mean distance
between two random samples of the same cell (cell 12), both sampled to the same UMIs/cell. This distance
was calculated in relative gene expression space and should approach zero for high UMIs/cell. However,
ML led to grossly overestimated distances at small UMIs/cell (Fig. 1g). The estimated distance after ML
additionally showed strong correlation to the UMIs/cell, which is problematic as we assume that most of the
observed variation in UMIs/cell is technical noise. In contrast, GT did not show correlation to the UMIs/cell
and demonstrated lower distance estimation errors overall.

We then examined the distances between two distinct cells by also drawing random samples from the cell
with the second highest UMIs/cell in the ultra-deep cta-seq data (cell 15, at 58,589 UMIs), which is of a
different cell-type. We calculated the distances between the sampled profiles of cell 12 and cell 15 at varying
UMIs/cell. We again saw large overestimation of the distances when using ML, while using GT strongly
reduced this error. For high UMIs/cell the estimated distances converged to the true distance of 0.015 (Fig.
1h).

When based on ML, the estimated distances between identical cells (Fig. 1g) and distinct cells (Fig. 1h)
were almost the same for low UMIs/cell. This makes it very difficult to e.g. distinguish between cell-types.
However, when we used GT as the basis for these distances we saw a much clearer separation between

identical cells and cells of different cell-type, for cells with < 10,000 UMIs/cell (Fig. 1i).

GTestimate's impact on downstream results

After showing GT’s advantages for relative gene expression estimation and cell-cell distance estimation, we
examined how our GT based normalization method GTestimate impacts downstream results. The difference
between GTestimate and other global-scaling normalization methods is only in the estimator used, all other
settings can be adjusted to be equivalent to e.g. scran’s computeSumFactors or scanpy’s normalize_total. At
default settings GTestimate behaves identically to NormalizeData, including the same log-transformation.
We therefore used NormalizeData, as a representative of ML based global-scaling normalizations for all
following comparisons. However, we would expect similar results when comparing to other global-scaling
normalization methods.

We first assessed GTestimate’s impact on cell-type clustering by reanalyzing the pbme3k data-set of
peripheral blood mononuclear cells [19]. Here, normalization with GTestimate instead of NormalizeData

resulted in 4.6% of cells being assigned to a different cluster (Fig. 2a), mostly among the Naive CD4 T-cells,
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(a) UMAPs, pbmc3k (b) Expression of NKG7, pbmc3k
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Figure 2: pbmec3k: (a) UMAPs based on NormalizeData and GTestimate, and UMAP highlighting differ-
ences in cluster assignment. (b) Boxplot showing log-normalized expression of NKG7 per cell-
type (zeroes not shown). Developing Pancreas: (c) UMAPs based on NormalizeData and
G Testimate, and UMAP highlighting differences in cluster assignment. (d) Sankey diagram show-
ing the differences in cluster assignment based on NormalizeData and G Testimate. Spatial Tran-
scriptomics: (e) log-normalized gene expression of Ttr based on NormalizeData and GTestimate
as well as percent difference in log-normalized expression of Ttr between NormalizeData and
G Testimate. (f) Density plot showing the distribution of log-normalized gene expression values of
Ttr for NormalizeData and G Testimate.
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Memory CD4 T-cells and CD8 T-cells.

We additionally analyzed a developing pancreas data-set [20], characterized by more gradual cell-type tran-
sitions compared to the pbmc3k data-set. After normalization with GTestimate instead of NormalizeData,
14.6% of cells were assigned to a different cluster (Fig. 2c,d).

While the correct classification of cells in both of these data-sets remains unknown, our results in Fig. 1
suggest that GTestimate provides a better basis for this classification.

To examine the impact of GTestimate on the expression estimates of individual genes we considered the
log-normalized expression of cell-type specific marker genes in the pbmc3k data-set. As an example we
used NKG7 a highly specific NK-cell and CD8+ T-cell marker [21]. When using GTestimate instead of
NormalizeData, the log-normalized expression of NKG7 remained constant in NK-cells and CD8+ T-cells,
but was reduced in all other cell-types (Fig. 2b). GTestimate therefore resulted in clearer separation of
NK-cells and CD8+ T-cells from other cell-types. We observed this for nearly all marker genes described in
Seurat’s pbme3k tutorial (Suppl. Figure 4). These differences may explain some of the observed changes in
clustering.

Finally, we applied G'Testimate to the spot-wise normalization of a Spatial Transcriptomics data-set of the
mouse brain [22]. In this data-set, normalization with GTestimate and NormalizeData resulted in 17 and
19 clusters respectively (Suppl. Figure 5, Figure 6, Figure 7), we therefore refrained from any cluster based
comparisons of GTestimate and NormalizeData. However, the spatial coordinates enabled examination of
area specific marker genes, independent of the clustering. As an example we considered the log-normalized
expression of the choroid plexus marker gene Tir (Fig. 2e). When using GTestimate we saw a reduction of
the unspecific expression of Ttr for spots outside the choroid plexus. Here, GTestimate showed up to 50%
reduction of the log-normalized expression, compared to NormalizeData, while expression estimates inside
the choroid plexus remained constant (Fig. 2e). This resulted in clearer separation of the choroid plexus
spots from the surrounding tissue as shown by the distribution of expression values of Ttr (Fig. 2f).

When we additionally considered the UMIs/spot (Figure 8), we saw a negative correlation between the
change in log-normalized expression of Ttr and UMIs/spot. This supports previous observations that
NormalizeData overestimates the expression of Ttr in areas with low UMIs/spot. Whereas, G Testimate

reduces this overestimation and improves the signal-to-noise ratio.

Discussion

In summary, the estimation of relative gene expression is a central part of scRNA-seq data analysis, which
has not received the same attention as other steps. We have shown that replacing the standard ML with GT

improves relative gene expression estimation, without requiring expensive computations. By improving the
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signal-to-noise ratio at this basic level, our new normalization method GTestimate can have large impact on
downstream results.

In the validation we avoided potential issues with simulated data by employing a novel cell targeted PCR-
amplification strategy to sequence the same cells at two vastly different UMIs/cell. This strategy may also
be useful in other areas, such as the study of rare cell-types. Additionally, the resulting data-set may serve
as a benchmark for other methods.

G Testimate is available as an open-source R-package (https://www.github.com/Martin-Fahrenberger/
GTestimate) and works with all common scRNA-seq data-formats. While GTestimate’s default behavior is

designed to seamlessly replace NormalizeData it is also compatible with a wide variety of other workflows.

Materials and Methods

Implementation of GTestimate

The user-facing section of our GTestimate package was developed in R and handles input and output in the
various supported data-formats. The core implementation of the Simple Good-Turing estimator is written
in C++ and is heavily based on Aaron Lun’s implementation for the edgeR R-package [23|. This core
implementation includes the linear smoothing, which is necessary due to the sparsity of the frequencies of
frequencies vector (i.e the frequency of the count values). It further includes a rescaling step which ensures
that the estimated relative expression frequencies of all observed genes, plus the sum of probabilities of all

unobserved genes (Suppl. Info. 1.1), add up to exactly one [17].

cta-seq experiment

In the cta-seq experiment we aimed to sequence a selected set of cells from a typical scRNA-seq library again
at a ultra-deep sequencing depth. However, due to sequencing-saturation this quickly becomes prohibitively
expensive. We therefore designed a PCR based cell targeted amplification strategy (cta-seq), to selectively
amplify all transcripts from a small set of cells, through the use of primers specific to their cell-barcode. This
is similar to the TAP-seq protocol [24], which uses gene-specific primers to amplify all transcripts of certain

genes.

Sequencing cta-seq, typical

To ensure high quality input material we used leftover cDNA from a previously sequenced sample [25], which
had shown high UMIs/cell and genes/cell. The sample was taken out of -20°C storage and prepared for
[llumina sequencing at the Vienna Biocenter Next Generation Sequencing facility using 10X Dual Index Kit

TT. We then split the resulting sequencing library into two aliquots and stored the second halve again at
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-20°C. The first halve was sequenced on a I[llumina NovaSeq S4 in paired-end mode with 2x150bp read length

and 400 million reads.

Sequencing cta-seq, ultra-deep

Based on the results from the typical sequencing run we selected 18 cells of interest for the cta-seq experiment
(see below). For these 18 cells we designed PCR, primers specific to their cell-barcodes. We then used the
second aliquote of the previously prepared sequencing library to perform three rounds of PCR amplification on
it using Amplitaq Gold 360 MM (ThermoFisher, cat.: 4398886) supplemented with EvaGreen dye (Biotium,
cat.: 31000). We used the following programs in a total volume of 50ul.. PCR1: 1. 95C, 10min; 2. 62C,
30s; 3. 72C, 2min.; 4. Return to 2. x2; 5. 95C, 25s; 6. 62C, 30s; 7. 72C, 2min, fluorescence measurement;
8. 72C, 15s; 9. return to 5. x16. PCR2: 1. 95C, 10min; 2. 62C, 30s; 3. 72C, 2min.; 4. Return to 2. x2;
5. 95C, 25s; 6. 62C, 30s; 7. 72C, 2min, fluorescence measurement; 8. 72C, 15s; 9. return to 5. x16. PCR3:
1. 95C, 10min; 2. 67C, 30s; 3. 72C, 2min.; 4. Return to 2. x2; 5. 95C, 25s; 6. 67C, 30s; 7. 72C, 2min,
fluorescence measurement; 8. 72C, 15s; 9. return to 5. x8. Reactions were stopped in step 8 according to
fluorescent measurements in log phase. Reaction input in PCRs 2 and 3 were 0.5 ul of the previous reaction.
Resulting reactions were purified, and pooled for Illumina sequencing on a NovaSeq S4 in paired-end mode
with 2x150bp read length and 400 million reads. The primer sequences used can be found in Suppl. Table

1, PCR1 primers were designed with varying length to achieve similar melting temperatures.

Data Analysis

All data analysis was performed in R (v4.3.1) using Seurat (v5.0.0) functions at default settings unless stated

otherwise.

Data analysis, cta-seq typical depth

We first processed the typical depth sequencing data using CellRanger (v7.1.0), this resulted in 20,214
cells. During cell QC we then removed all cells expressing < 1000 or > 5000 genes as well as cells with
> 8% mitochondrial reads, with 17,653 cells remaining. We then normalized with Seurat’s NormalizeData,
selected the top 2000 most variable genes and performed gene-wise z-score scaling. Next we applied PCA
and performed unsupervised clustering of cells using the Louvain algorithm [26](resolution = 0.1), based on
the first 50 principal components (PCs). This resulted in four cell-type clusters, the smallest cluster (with
only 504 cells) was excluded from the subsequent analysis.

From the remaining 17,149 cells we selected 18 cells for targeted amplification, six cells from each of the

three remaining clusters. To select a diverse set of cells from each cluster we used the following:
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1. We identified the two nearest neighbors for each cell (in PCA space).
2. We excluded cells for which at least one nearest neighbor belonged to a different cluster.

3. For the remaining 16,295 cells, we computed the #UMI-rank, from the number of observed UMIs per

cell (ties were broken randomly).

#UMI

#Genes—rank based on the ratio of the number of observed UMIs and the

4. Similarly, we computed the

number of observed genes in the cell (ties were broken randomly).

5. Subsequently, we calculated the diversity of each cell and it’s neighbors as the area of the induced

#UMI

triangle of the cell and its neighbors in a #UMI-rank x ZGones

-rank plot. The six cells from the two

most diverse neighborhoods (i.e. largest triangle area) were selected for amplification.

These steps were designed to cover a diverse set of cells for which the various experimental steps had varying
efficiencies. The selection of triplets from the same neighborhoods provided groups of cells with similar gene
expression patterns, while the number of UMIs and the number of observed genes were used as proxies for

the mRNA capture efficiencies and the health of the isolated cells.

Data analysis, cta-seq ultra-deep

The sequencing data from the wltra-deep sequencing run were processed using CellRanger (v7.1.0).

However, due to the high number of PCR cycles during amplification, and the resulting high number
of reads for the 18 selected cells, CellRanger’s UMI correction approach was no longer sufficient. Manual
inspection of the reads showed that errors in the UMI sequences had inflated the number of unique reads.

This was further exacerbated by a faulty implementation of the UMI-correction approach in the CellRanger
software by 10X Genomics. CellRanger erroneously corrects UMIs containing sequencing errors towards other
UMIs that also contain sequencing errors. E.g. If we have 3 UMIs: AAAA with 10 reads, AAAT with 2
reads and AATT with 1 read, AATT would be corrected towards AAAT (Hamming Distance 1) and stay
as AAAT, eventhough the original 2 AAAT reads would be corrected to AAAA in the same step. We have
reported this issue to 10X Genomics on 13th of July 2023, 10X Genomics acknowledge the issue on 14th of
July 2023. The issue remains unresolved in CellRanger 7.2.0 (released on the 10th of November, 2023).

To circumvent these issues we extracted the relevant information for each read (count, ensemble gene id,
cell-barcode, uncorrected UMI and CellRanger corrected UMI) from the possorted genome bam.bam as
provided by CellRanger and replicated CellRanger’s read counting workflow in R. As a sanity-check we first
used the CellRanger corrected UMIs and achieved the exact same count-matrix as CellRanger. We then
used the raw UMIs instead of the CellRanger corrected UMIs, implemented the UMI-tools directional UMI

correction approach [27] in R and applied it to correct the UMIs for the 18 selected cells, we then counted
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again. The resulting count-matrix showed differences for 28% of the non-zero entries when compared to the

CellRanger results. We used these improved counts for the ultra-deep profiles in all further analysis.

Comparison of GT and ML using cta-seq

To evaluate the performance of GT and ML based on the cta-seq data-set we estimated the relative gene
expression for the 18 selected cells by applying both estimators to the typical transcriptomic profiles.

The relative gene expression for the ground-truth ultra-deep profiles was estimated with ML. We chose ML
to be conservative regarding the performance of GT and since the overestimation due to unobserved genes

should be small for the ultra-deep profiles Suppl. Figure 9.

Relative gene expression estimation

We calculated the absolute estimation error for the relative gene expression of the 18 cells by comparing the
estimation results of GT and ML based on the typical transcriptomic profiles to the ground-truth relative
gene expression of the ultra-deep profiles. We consider the relative gene expression estimation error of a cell

to be the sum of the individual relative gene expression estimation errors in the cell.

Cell-cell distances

The pairwise Euclidean distances between the 18 cells were calculated in PCA space (as is common for
cell-cell distances in scRNA-seq). However, to keep the necessary projections similar to a regular scRNA-seq
analysis this space could not simply be constructed based only on the 18 selected cells.

Instead we calculated the projections based on 17,653 cells in the typical sequencing run. After normal-
ization there are three pre-processing steps which all depend on the context of a full data-set; Variable gene
selection, gene-wise z-score scaling and PCA.

To keep these steps identical for both the GT and ML profiles of the typical sequenced cells, as well as the
ultra-deep profiles we performed them using customized functions. We used the same list of variable genes
(calculated based on all 17,653 cells) for the analysis of all profiles. We then scaled the genes in all profiles
using the mean and standard deviation of genes calculate based on the full 17,653 cells. Finally we projected
all profiles into the same 50 dimensional PCA-space calculated from the full 17,653 cells.

In this PCA-space we calculated the pairwise distances between the ML profiles, between the GT profiles
as well as between the ground-truth ultra-deep profiles. We then compared the resulting non-zero distances

based on GT and ML to the ground-truth ultra-deep distances.
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Comparison of GT and ML at different UMIs/cell

When analyzing the impact of UMIs/cell on the estimation performance we used the cell with the highest
number of UMIs after amplification (cell 12, cell-barcode TCTCTGGGTGTGCTTA) and the cell with the
second highest number of UMIs after amplification (cell 15, cell-barcode GGCTTTCGTGTGTCGC).

We generated 1000 randomly sampled profiles at each UMIs/cell level by drawing genes from the ultra-deep
count-vector, weighted by count and with replacement. The 20 UMIs/cell levels at which we sampled were
chosen equidistant in logl0-space from 100 to 100,000 (i.e. 100, 143, 206, 297, 428, 615, 885, 1274, 1832,
2636, 3792, 5455, 7847, 11288, 16237, 23357, 33598, 48329, 69519, 100000 UMIs/cell). We then applied GT

and ML respectively to these sampled profiles to estimate their relative gene expression.

Relative gene expression estimation

To asses the relative gene expression estimation performance of GT and ML we compared their estimates
for each sampled profile from cell 12 to the relative gene expression of the full wltra-deep profile of cell 12,

and calculated the absolute error.

Cell-cell distance estimation

To asses cell-cell distance estimation performance we calculated the Euclidean distances between the relative
gene expression profiles of pairs of sampled profiles (either from cell 12 twice or from cell 12 and cell 15)

based on GT and ML. We calculated the true distance based on the full ultra-deep profiles.

Downstream analysis
Data analysis, pbmc3k

The pbme3k data-set was downloaded from 10X Genomics [19] and processed following Seurat’s "Guided
Clustering Tutorial" [28]. In short:

During QC we filtered out genes expressed in less than 3 cells, and cells with less than 200 expressed genes.
We then filtered out cells with > 5% mitochondrial reads and finally we removed all cells expressing more
than 2,500 genes.

During preprocessing cells were normalized using either Seurat’s NormalizeData or GTestimate at default
settings. For both normalization methods individually, we then identified variable genes and z-score scaled the
data, followed by calculation of the top 10 PCs. Based on these PCs we then constructed the neighborhood
graphs and performed unsupervised Louvain clustering (resolution = 0.5). Finally we calculated the UMAP

for both conditions and annotated clusters based on marker gene expression, following the Seurat tutorial.

12


https://doi.org/10.1101/2024.07.02.601501
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.02.601501; this version posted August 30, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

26 Data analysis, developing pancreas

257 The pancreas endocrinogenesis dayl5 dataset was downloaded [29] and imported into R to be processed
288 using Seurat. We only used the spliced counts and normalized them using GTestimate and NormalizeData;
280 from there on all following steps were performed identically for the two approaches.

200 First we identified variable genes and performed gene-wise z-score scaling, followed by calculation of the
201 top 50 PCs. Based on the PCs we constructed the neighborhood graph and performed unsupervised Louvain
202 clustering (resolution = 0.4). Finally we calculated the UMAP.

203 We manually adjusted the cluster numbering (and thereby their color) for Fig. 2c and Fig. 2d. to have

24 consistent cluster-colors from left to right.

205 Data analysis, Spatial Transcriptomics

206 The stxBrain data-set of sagital mouse brain slices from 10X Genomics was downloaded using the SeuratData
207 R-package. In our analysis we focused on the anteriorl slice of the data-set following Seurat’s " Analysis of
208 spatial datasets (Sequencing-based)" vignette [30].

299 Our analysis differs from the vignette only in the normalization methods used. While the vignette uses
300 sctransform|31] for spot-wise normalization we instead used NormalizeData and G Testimate. Direct compar-
s ison of GT and ML to sctransform on the basis of relative gene expression is not possible, since sctransform
32 does not calculate relative gene expression levels. Normalization was followed by variable gene selection and
33 gene-wise scaling. We then calculated the first 30 PCs and used them to construct the neighborhood graph,

304 perform unsupervised Louvain clustering and calculate the UMAP.

s Availability of supporting source code and requirements

306 1. Project name: GTestimate

\)

307 . Project home page: https://github.com/Martin-Fahrenberger/GTestimate
308 3. Operating system(s): Platform independent
309 4. Programming language: R, C++

310 5. Other Requirements: devtools, sparseMatrixStats

311 6. License: GPL3

stz GTestimate is available as an open-source R-package on github (https://www.github.com/Martin-Fahrenberger/
si3 GTestimate). All code for the analysis in this paper, from raw-data to figures, is available on github

s (https://www.github.com/Martin-Fahrenberger/GTestimate-Paper).

s
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Data Availability

Processed cta-seq data, such as count-matrices, are available via GEO (https://www.ncbi.nlm.nih.gov/
geo/), accession number GSE268930. Due to patient privacy concerns raw sequencing data will be made

available through controlled access at the European Genome-Phenome Archive (EGA) upon publication.
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cta-seq: cell targeted PCR-amplification followed by sequencing; GT: Good-Turing estimator; ML: Maximum
Likelihood estimator; PC: principal component; scRNA-seq: single-cell RNA-sequencing;
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1 Supplementary Materials

1.1 The Missing Mass

Besides improving the relative expression estimates of observed genes, GT can also estimate the sum of the
relative frequencies of all unobserved genes. This can be viewed as the probability pg that a next hypothetical
UMI would be of a currently unobserved gene. We have therefore termed py the missing-mass of the relative
gene expression distribution.

The missing-mass for each cell is estimated from the number of genes with a UMI count of one (N7) and

the sum of all counts (3_, ¢g) as has previously been discussed [16, 17].

N Ny
bo =
Zg Cg

(1)

When applied to a Seurat or SingleCellExperiment object in R G Testimate saves the estimated pg for each

cell into a meta-data vector called "missing mass".
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27 The Simple Good-Turing estimator scales the relative frequencies (including pp) to ensure

SR vm=1 2)
g

a8 for each cell.

429 Suppl. Equation 1 provides insight into the amount of information present for each cell, which may warrant
a0 further study. E.g. the missing-mass in the cta-seq experiment is substantially reduced after cell targeted
s1  amplification of reads (Suppl. Fig. 9).

432 Due to the typically low UMIs/cell, this missing mass of a cell in scRNA-seq can be quite substantial
s3 (Suppl. Fig. 10).

s 1.2 Supplementary Tables

Method | Slope | Sum of absolute Residuals | Intercept | Sum of absolute Errors
ML 1.529 1511.317 0.955 3258.049
GT 1.302 1263.276 -0.408 2093.645

Table 1: Characteristics of the regression line of the estimated vs. ground-truth distances for the cta-seq
data (Fig. 1d).

s 1.3 Supplementary Figures
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Figure 1: Histogram showing the number of observed genes per cell for the 17,653 cells in the cta-seq sample
before amplification (typical).
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Figure 2: Raw read counts per cell before (typical) and after (ultra-deep) amplification for the 18 selected
cells in the cta-seq experiment.
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Figure 3: Number of observed genes before (typical) and after (ultra-deep) amplification for the 18 selected
cells in the cta-seq experiment.
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Figure 4: Log-normalized expression of all cell-type markers described in Seurat’s pbme3k tutorial (zeroes
not shown).
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Figure 5: UMAPs visualizing the clustering of Spatial Transcriptomics spots, based on NormalizeData (left)
and GTestimate (right) for the mouse brain Spatial Transcriptomics data-set.
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Figure 6: Visualization of the different clusters based on NormalizeData (left) and GTestimate (right) for
the mouse brain Spatial Transcriptomics data-set.
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Figure 7: Similarity of the clusters based on NormalizeData and GTestimate as represented by the Jaccard
Index. Clusters on the y-axis have been rearrange to maximize diagonal entries using the Hungarian
Algorithm.
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Figure 8: UMIs/spot in the Spatial Transcriptomics mouse brain data-set.
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Figure 9: Missing mass before (typical) and after (ultra-deep) amplification for the 18 selected cells in the
cta-seq experiment (see Suppl. Section 1.1).
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Figure 10: Histogram showing G Testimate’s missing mass estimates per cell for the 17,653 cells in the cta-seq
sample before amplification (typical).
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