

1
2
3
4 **Integrator dynamics in the cortico-basal ganglia loop underlie flexible motor timing**
5
6
7

8 Zidan Yang¹, Miho Inagaki¹, Charles R. Gerfen², Lorenzo Fontolan³, Hidehiko K. Inagaki^{1*}
9
10
11
12

13 1 Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA.

14 2 National Institute of Mental Health, Bethesda, MD 20814, USA.

15 3 Turing Centre for Living Systems, Aix- Marseille University, INSERM, INMED U1249,
16 Marseille, France

17
18 *Correspondence: Hidehiko.inagaki@mpfi.org
19
20
21
22

23 **Abstract**

24 Flexible control of motor timing is crucial for behavior. Before volitional movement begins, the
25 frontal cortex and striatum exhibit ramping spiking activity, with variable ramp slopes anticipating
26 movement onsets. This activity in the cortico-basal ganglia loop may function as an adjustable
27 'timer,' triggering actions at the desired timing. However, because the frontal cortex and striatum
28 share similar ramping dynamics and are both necessary for timing behaviors, distinguishing their
29 individual roles in this timer function remains challenging. To address this, we conducted
30 perturbation experiments combined with multi-regional electrophysiology in mice performing a
31 flexible lick-timing task. Following transient silencing of the frontal cortex, cortical and striatal
32 activity swiftly returned to pre-silencing levels and resumed ramping, leading to a shift in lick
33 timing close to the silencing duration. Conversely, briefly inhibiting the striatum caused a gradual
34 decrease in ramping activity in both regions, with ramping resuming from post-inhibition levels,
35 shifting lick timing beyond the inhibition duration. Thus, inhibiting the frontal cortex and striatum
36 effectively paused and rewound the timer, respectively. These findings suggest the striatum is a
37 part of the network that temporally integrates input from the frontal cortex and generates ramping
38 activity that regulates motor timing.

39

Introduction

40 Flexible control of movement onset, or motor timing, is crucial for a wide range of behaviors, including
41 vocal communication, driving, playing sports, and performing music. Most vertebrate species can adjust
42 their motor timing to obtain reward or avoid punishment¹⁻⁹, implying the ancient origins and significance
43 of flexible motor timing. Without these abilities, our behaviors would be restricted to immediate reactions
44 to stimuli.

45 To execute timed actions, the brain tracks the passage of time over seconds and then triggers actions, akin
46 to how a timer beeps at the end of a preset duration. To perform actions at flexible timings, this 'timer' in
47 the brain should be adjustable to the desired durations⁴⁻¹⁰. Neurons in the frontal cortex and striatum exhibit
48 neural correlates of such a flexible timer. Before voluntary movements begin, many neurons in these areas
49 demonstrate a gradual change in spiking activity, often characterized by ramping activity that peaks at the
50 onset of movement^{4-7,10-19}. When animals perform actions at various timings, the slope of this ramping
51 activity varies accordingly, leading to the attainment of a hypothetical threshold level that triggers action at
52 different timings^{4-7,10-19}. Hence, the slow spiking dynamics in the frontal cortex and striatum may function
53 as a timer, and the alteration in the speed of these dynamics could be analogous to adjusting the timer (Fig.
54 1a).

55 Because isolated neurons can sustain activity only for tens of milliseconds, the seconds-long slow dynamics
56 underlying motor timing likely arise from interactions among populations of neurons^{19,20}. From a dynamical
57 systems perspective, the population activity traces a trajectory within a high-dimensional state space, with
58 each dimension corresponding to the activity of individual neurons²¹. Network interactions, for example
59 via feedback connections, govern the evolution of trajectories and can stabilize certain states, known as
60 attractors^{19,20,22}. Within this framework, the slow dynamics can be generated by groups of quasi-stable
61 states, forming a continuous attractor or point attractors with shallow basins. Such slow dynamics allow for
62 the temporal integration of inputs to the network (when the input has a component aligned with the
63 attractor), enabling the network to operate as an 'integrator'²²⁻²⁸. Integrator networks can generate ramping
64 activity by temporally integrating a non-ramping input (step or other types of inputs)^{16,24,29}, with the
65 amplitude of the input adjusting the speed of the ramp (Fig. 1a). Therefore, the integrator has been proposed
66 as a mechanism to generate ramping activity for flexible motor timing^{16,24,29}.

67 While neural correlates of an integrator have been observed in the frontal cortex and striatum^{4,10,16,30} — two
68 central brain areas in the cortico-basal ganglia loop — the precise roles of these areas in implementing the
69 integrator dynamics remain unclear. Manipulations of the frontal cortex and striatum affect timing behavior,
70 supporting their causal roles^{10,18,31-41}. However, the presence of neural correlates and necessity cannot
71 determine their computational roles^{42,43}. First, neural correlates may be generated locally (internally
72 generated) or inherited from other brain regions (externally driven). Second, a brain area that is 'causal' for
73 timing behavior might 1) house the attractor landscape that generates integrator dynamics, 2) supply
74 essential inputs for another brain area to function as an integrator, or 3) affect behavior through mechanisms
75 independent of integrator dynamics, for example by controlling movement execution. This presents a
76 general challenge in pinpointing the precise loci of computations within a multi-regional recurrent network.
77 In the context of motor timing, the integrator generating the neural representation of time can either be:
78 distributed across the frontal cortex and striatum; redundantly present in both areas; present in one area

79 (specialized); or located in upstream areas (dynamics in the frontal cortex and striatum externally-driven)
 80 (Fig. 1b).

81 We addressed these knowledge gaps by performing a series of transient perturbations with simultaneous
 82 multi-regional electrophysiology. Depending on the computational role of the manipulated brain area,
 83 multi-regional dynamics are expected to respond to and recover from brief disturbances differently (Fig. 1c
 84 and Extended Data Fig. 1). For instance, silencing a brain area that is dispensable for the observed
 85 dynamics, i.e., an area with externally-driven dynamics, will result in a rapid return of ramping dynamics
 86 to the original trajectory after the silencing (Fig. 1c1). This manipulation has no effect on subsequent
 87 dynamics and actions, regardless of the inhibition's strength, as observed during frontal cortical silencing
 88 in other behavioral tasks^{44,45}. In contrast, inhibiting a brain area that is indispensable for the dynamics, such
 89 as one acting as an integrator or providing essential input, will result in a long-lasting change in subsequent
 90 dynamics and motor timing. The nature of this enduring influence can vary depending on the specific role
 91 of the targeted areas. Silencing a brain area that supplies essential input for an integrator will temporarily
 92 pause the integration in the recipient area, delaying the action by the duration of the silencing (Fig. 1c2).
 93 Silencing a brain area that acts as an integrator may reset the ramping dynamics, causing a delay in motor

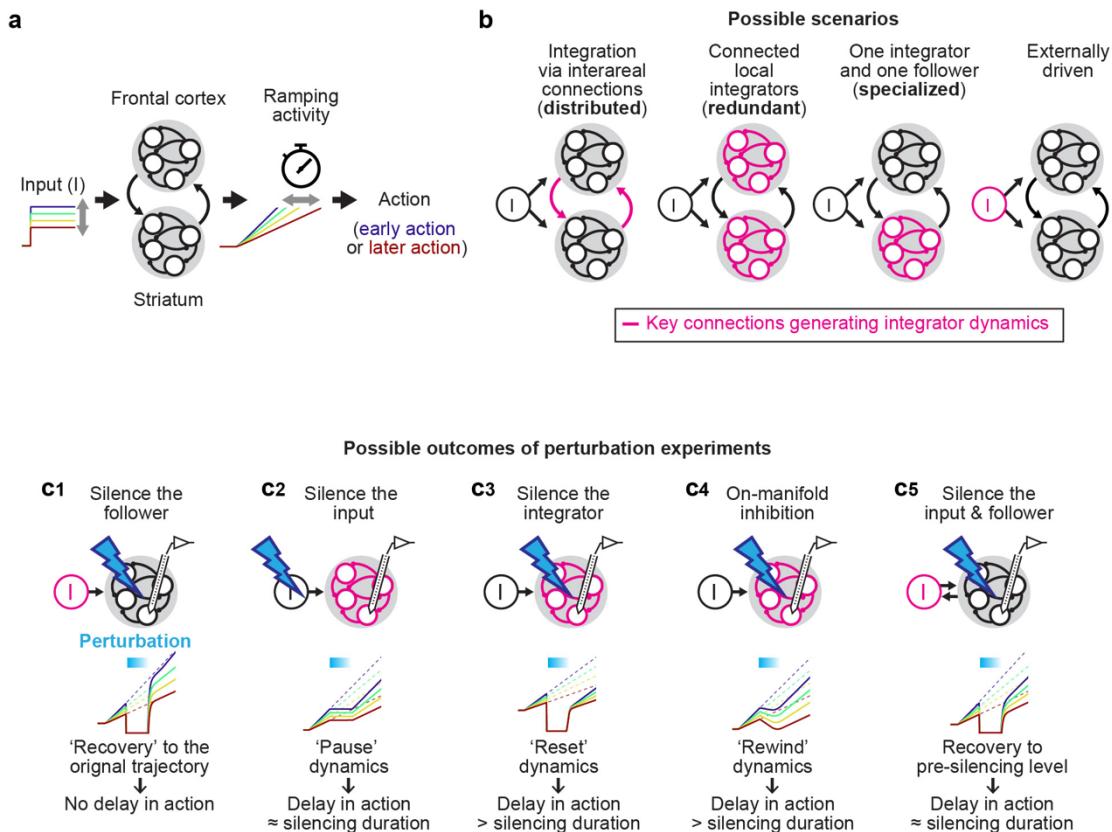


Figure 1. Multi-regional models of flexible motor timing

- Schema of the computation performed by the cortico-basal ganglia loop for motor timing. The network may integrate a non-ramping (e.g., step) input to generate ramping dynamics with varying slopes, resulting in different lick timings. For simplicity, other areas connecting the striatum and frontal cortex are omitted.
- Possible configurations of the cortico-striatal network to implement integrator dynamics. The key connections that generate integrator dynamics are shown in pink.
- Schema of perturbation experiments and expected results.

94 timing beyond the silencing duration (Fig. 1c3). In a specific situation, inhibition may target a combination
95 of neurons that act as an integrator or input, altering activity patterns along the direction in the activity
96 space implementing the integrator. This ‘on-manifold’ inhibition⁴³ will be integrated into the ramping
97 dynamics, resulting in the rewinding of the representation of time during the inhibition and causing a delay
98 in motor timing beyond the silencing duration (Fig. 1c4). Additionally, a brain area can function as both the
99 input and follower of an integrator (‘input/follower’). In this case, silencing the input/follower area will
100 pause integration in the connected integrator. Thus, when the input/follower area recovers, its activity will
101 return to the pre-silencing level (but not the original trajectory), causing a delay in action equal to the
102 duration of the silencing (Fig. 1c5).

103
104 To systematically dissect multi-regional dynamics following this model-driven approach, we developed a
105 flexible lick-timing task in mice, where mice explore various lick times over 600 trials per session (652 ±
106 9 trials; mean ± SEM; 224 sessions, 48 mice; Fig. 2a). This enabled a series of perturbations within
107 individual sessions. Large-scale electrophysiology in the frontal cortex and striatum allowed decoding of
108 planned lick time in individual trials, providing an ideal testbed to quantify how the dynamics respond to
109 perturbations. Leveraging this system, we identified specialized functional roles of the frontal cortex and
110 striatum in implementing integrator dynamics, generating ramping activity that serves as an adjustable
111 timer.

112

113 Results

114

115 The frontal cortex is required for lick timing control

116
117 We developed a flexible lick-timing task for mice. In this task, an auditory cue (3 kHz, 0.6 s) signals trial
118 onset followed by a delay epoch with unsignaled duration (1 - 3 s; Fig. 2a, Methods). If mice lick after the
119 delay, they receive a water reward. In contrast, a premature lick during the delay terminates the trial without
120 reward. We varied the delay duration in blocks of trials within a session (with the number of trials within
121 each block randomly selected from 30 - 70 trials; Fig. 2b and Extended Data Fig. 2ab). Despite the absence
122 of a sensory cue instructing the delay duration or block transitions, mice dynamically adjusted their lick
123 time distribution according to the delay within 10 trials after the delay switch (Fig. 2bc and Extended Data
124 Fig. 2de).

125
126 The only information available for mice to infer the appropriate lick time in this task is their prior lick times
127 and the outcomes. To investigate whether such ‘trial history’ guides trial-by-trial lick timing, we exploited
128 a linear regression model to predict future lick times based on trial history^{31,46} (n = 30 mice; Methods). This
129 analysis revealed a positive correlation between upcoming lick times and previous lick times, alongside a
130 negative influence of previous reward outcomes on upcoming lick times: mice tended to lick earlier after a
131 reward and later after a lack of reward (Fig. 2d and Extended Data Fig. 2l). Since an absence of reward
132 indicates a premature lick in this task, delaying licking after an unrewarded attempt is an adaptive strategy.
133 In contrast, when we keep the delay duration constant across trials and sessions (‘constant delay condition’;
134 n= 13 mice; Extended Data Fig. 2c), there was no significant influence of former trials on lick timing (Fig.
135 2d). Thus, mice use trial history to strategically adjust lick timings³² only when the delay duration is
136 variable. We employed this behavior as a model system to examine how the brain strategically and flexibly

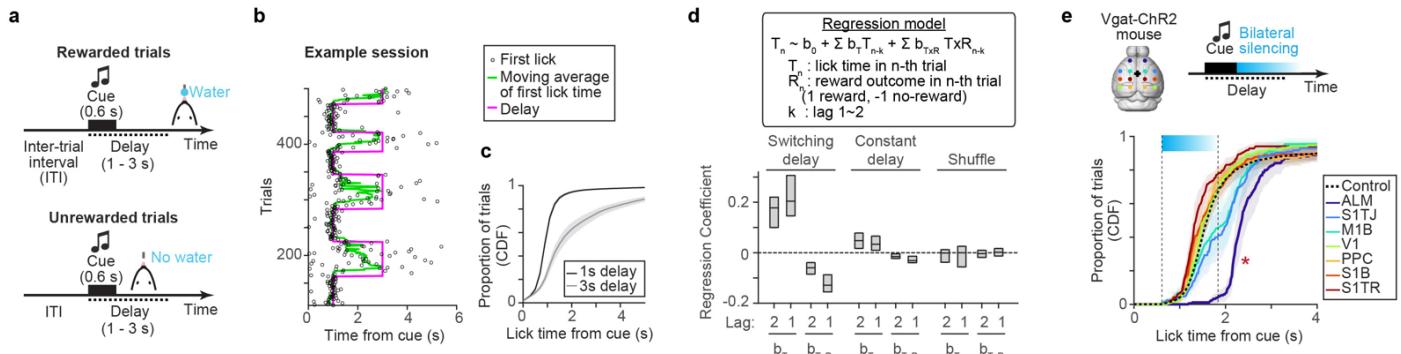


Figure 2. ALM is required for lick timing control

- Flexible lick timing task. The delay epoch started at the trial onset signaled by the cue. The first lick after the delay was rewarded, and a premature lick during the delay aborted the trial.
- Example session. Only part of a session is shown for visualization.
- Cumulative distribution of lick time in 1 s and 3 s delay blocks (56 sessions, 10 mice). Shaded, SEM (hierarchical bootstrap).
- Regression coefficients of the regression model based on previous lick time (T) and its interaction with reward outcome ($T \times R$), with 2-trial lags. Switching delay ($n = 30$ mice). Constant delay ($n = 13$ mice). The central line in the box plot, median. Top and bottom edges, 75% and 25% points.
- Top, optogenetic loss-of-function screening of dorsal cortical areas during delay. Bottom, cumulative distribution of lick time in trials with different silenced areas (3879 control trials, 172 ± 5 silencing trials per brain region; mean \pm SEM; 9 sessions, 3 mice). Cyan bar, silencing window (1.2 s). Shaded, SEM (hierarchical bootstrap). *, $p < 0.001$ (hierarchical bootstrap with a null hypothesis that the lick times in control trials are later than or equal to the ones in silencing trials). Regions adjacent to ALM (M1B and S1TJ) exhibited weaker effects, attributed to the limited spatial resolution of the manipulation⁴⁸.

137 adjusts the timing of actions (see Extended Data Figs. 2 and 3 for further quantifications, models explaining
 138 lick time distribution, and body part tracking).

139
 140 To identify dorsal cortical areas that control lick timing in an unbiased manner, we performed optogenetic
 141 loss-of-function screening using transgenic mice expressing ChR2 in GABAergic neurons (Vgat-ChR2-
 142 EYFP mice⁴⁷) with a clear skull preparation⁴⁸ (Methods). We bilaterally silenced individual dorsal cortical
 143 areas during the delay epoch (delay duration: 1.5 s) by scanning a blue laser in randomly interleaved trials
 144 (488 nm, 1.5 mW). Photostimulation started 0.6 s after the cue and lasted for 1.2 s including a 0.2 s ramp
 145 down of laser power at the end (3 mice; Fig. 2e; Methods). Lick initiation was blocked during the silencing
 146 of a frontal cortical area: anterior-lateral motor cortex (ALM; anterior 2.5 mm, lateral 1.5 mm from
 147 Bregma). This is consistent with the established role of ALM as a premotor cortex for licking¹⁹. Notably,
 148 following the transient silencing of ALM, the distribution of lick times shifted significantly later, with the
 149 median lick time delayed by 0.79 (0.59 - 0.97) s (mean and 95% confidence interval). This suggests a causal
 150 role of ALM in controlling the lick time.

151
 152 Similar scalable timing dynamics in ALM and striatum

153
 154 To investigate neural activity associated with lick time control in ALM, we conducted high-density silicon
 155 probe recordings (4467 putative pyramidal neurons recorded in 172 sessions, 45 mice; Extended Data
 156 Table. 1). Many ALM neurons displayed ramping activity during the task, peaking around the onset of lick

157 (Fig. 3a; Out of 4467 neurons, 1363 showed a significant increase and 1809 showed a significant decrease
 158 in spike rate before the lick compared to the baseline; Methods). The ramping speed of these neurons varied
 159 across trials and predicted lick timing (Fig. 3a). Notably, temporal warping^{10,16,36,41,49-52}, which normalizes
 160 the temporal axis between cue and lick in each trial, significantly reduced across-trial variability in spike
 161 rate in 68.1% of neurons (Fig. 3a bottom and Extended Data Fig. 4a-c). This indicates that two-thirds of
 162 ALM neurons exhibited temporal scaling (stretching or shrinking) of activity patterns across trials, with the
 163 speed of their dynamics anticipating lick time.
 164

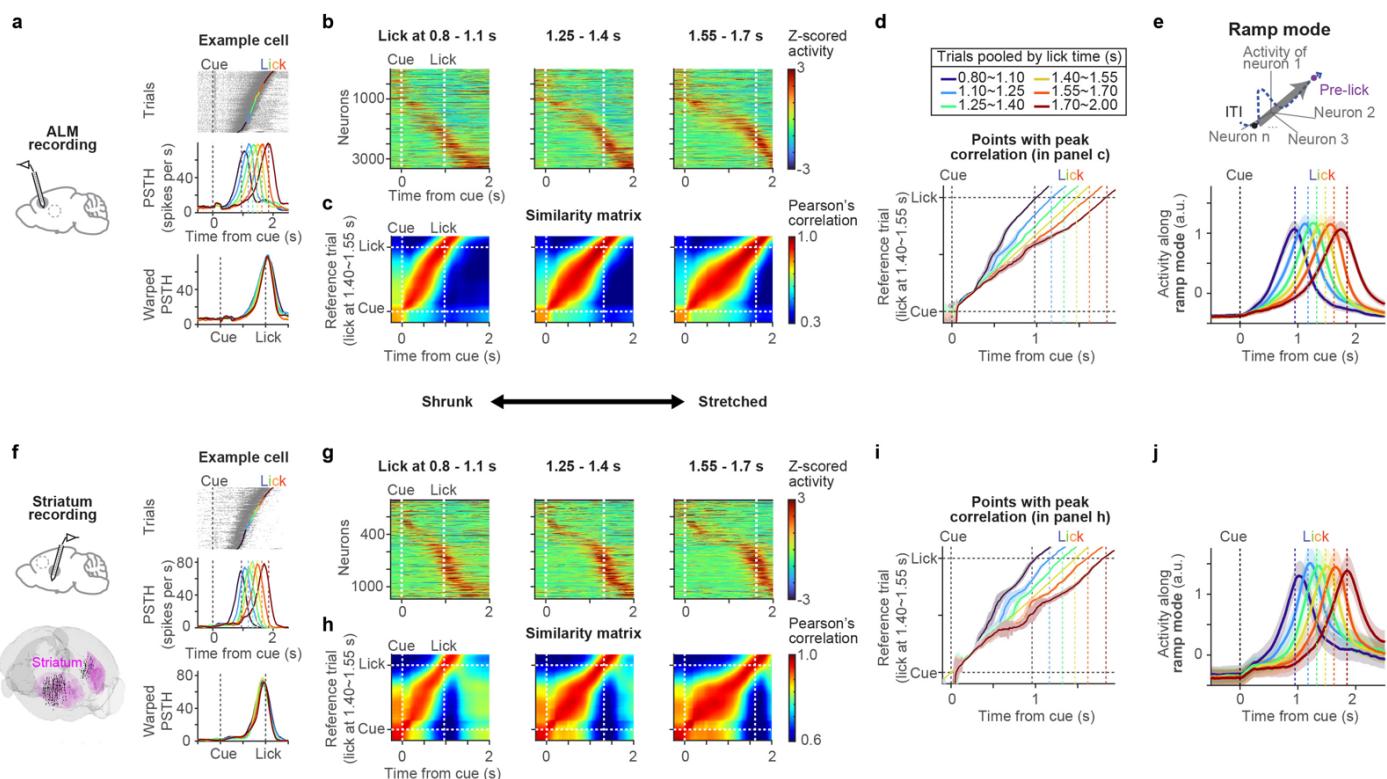


Figure 3. Similar scalable timing dynamics in ALM and striatum

- An example ALM cell. Top, spike raster. Trials are sorted by lick time. Colored dots, first lick time, divided into six lick time ranges shown in **d** (top). Middle, peri-stimulus time histogram (PSTH) of the six lick time groups. Vertical dotted lines in the same color indicate the corresponding lick time. Bottom, PSTH following temporal warping (Methods).
- ALM activity (Z-scored) across trials with different lick time ranges. Neurons are sorted in the same order for all panels (by peak firing time in trials with lick between 1.40 - 1.55 s). Only neurons with more than 10 trials across all six lick time ranges were analyzed (n = 3261 neurons, 45 mice).
- Similarity matrix (Pearson's correlation) comparing ALM population activity between trials with different lick time ranges.
- Time points with the peak correlation in the similarity matrix (**c**), across six different lick time ranges. Lines, mean. Shaded, SEM (hierarchical bootstrap).
- Top, schema of ramp mode. Bottom, ALM population activity projected along the ramp mode, with trials grouped by lick time (same color scheme as **d**). n = 3261 neurons, 45 mice. Lines, grand mean. Shaded, SEM (hierarchical bootstrap).
- The same as in **a-e** but for striatal recording (n = 1073 neurons, 16 mice). Bottom in **f**, the location of all recorded units registered to Allen common coordinate framework.

165 Consistent with individual cells, the population activity patterns in ALM appeared to temporally scale with
166 lick time (Fig. 3b). To quantify this observation, we calculated similarity matrices using Pearson's
167 correlations, comparing population activity between trials with differing lick times (Fig. 3c). We then
168 identified the points with peak correlations in these similarity matrices (Fig. 3d). This analysis revealed that
169 although similar population activity patterns emerged across trials, the speed at which these patterns
170 unfolded varied as a function of lick time (Fig. 3d).

171

172 To further characterize the population activity patterns between the cue and the lick, we defined three modes
173 (directions in population activity space) to differentiate the spike rate during specific time windows after
174 the cue from the baseline activity during the inter-trial interval (ITI; 0 - 1 s before the cue): 0 - 300 ms after
175 the cue (cue mode, CM), 500 - 800 ms before the lick (middle mode, MM), and 200 - 500 ms before the
176 lick (ramp mode, RM) (Methods). Population activity along these three modes collectively spanned the
177 time from cue to lick and explained most of the task-modulated activity (74%; Extended Data Fig. 5).
178 Notably, population activity along the MM (MM activity) and RM (RM activity) displayed temporal scaling
179 (Fig. 3e and Extended Data Fig. 5b-d, k-l). Thus, a large proportion of ALM activity between the cue and
180 the lick, which we refer to as 'timing dynamics', demonstrated temporal scaling, similar to observations in
181 other timing tasks and species^{10,16,36,41,49-52}.

182

183 Many excitatory neurons in ALM project to the striatum, spanning various sectors, including the
184 ventrolateral striatum⁵³⁻⁵⁵ (VLS; Extended Data Fig. 6a). Considering the involvement of the striatum in
185 various timing behaviors^{10,13,18,33,34,36,38-40,49,50}, it likely cooperates with ALM to control lick timing. We
186 performed electrophysiological recordings in the striatum using Neuropixels probes⁵⁶ (Fig. 3f and Extended
187 Data Fig. 6b and d). In total, we recorded 1972 neurons (97 sessions, 16 mice), with the majority classified
188 as putative striatal projection neurons (SPN; 64%) or fast-spiking interneurons (FSI; 30%) based on spike
189 features⁵⁷ (Extended Data Fig. 6e). Because both SPN and FSI showed similar activity patterns (consistent
190 with previous study⁵⁷) and comprised ~95% of the population together, we have pooled all cell types for
191 analysis. Overall, striatal activity between the cue and lick was analogous to those in ALM^{10,18,49,57}. Firstly,
192 the activity of individual striatal neurons was well-explained by temporal scaling (in 56% of cells; Fig. 3fg
193 and Extended Data Fig. 4c), and many neurons displayed ramping activity (out of 1972 neurons, 741
194 showed a significant increase and 400 showed a significant decrease in spike rate before the lick compared
195 to the baseline). Secondly, striatal population activity (similarity matrix, MM activity, and RM activity)
196 showed a temporal profile similar to that in ALM with temporal scaling (Fig. 3h-j and Extended Data Fig.
197 5f-l).

198

199 In some sessions, we simultaneously recorded from ALM and the striatum (16 sessions, 8 mice). At each
200 time point, we used the population activity from either ALM or the striatum to predict how much time was
201 left until lick using a k-nearest neighbor (kNN) decoder ('time to lick ($T_{\text{to lick}}$ '); Extended Data Fig. 6f-g;
202 Methods). The decoded $T_{\text{to lick}}$ in these two brain areas was significantly correlated across individual trials
203 (Extended Data Fig. 6h-j). Thus, ALM and the striatum demonstrate similar scalable timing dynamics
204 coupled at the single-trial level.

205

206 Neural correlates of trial history in ALM and striatum

207

208 What determines the speed of timing dynamics after the cue and guides lick time? Given that trial history
209 influences lick time in this task (Fig. 2d), we hypothesized that certain neurons encode trial history before
210 the cue. Such neural activity could establish the initial conditions of a network^{9,46} and/or provide inputs³¹
211 to guide the speed of timing dynamics and action timing.
212

213 In line with our hypothesis, some ALM neurons exhibited tonic activity during ITI, predicting the upcoming
214 lick time even 2 - 3 s before the cue onset: the proportion of neurons with a significant rank correlation of
215 spiking activity during ITI vs. upcoming lick time was 22.8 (19.4 - 26.5)%; mean (95% confidence interval;
216 Extend Data Fig. 4e-g; Methods). The tonic activity of these neurons was correlated with the lick time and
217 reward outcome of the previous trial (Fig. 4a and Extend Data Fig. 4ef). Because upcoming lick time and
218 trial history are correlated (Fig. 2d), we calculated the partial correlation between the activity of ALM
219 neurons and previous lick time while removing the effect of upcoming lick time (Methods). This partial
220 correlation was significantly higher than trial shuffle and session permutation controls⁵⁸ both before and
221 after the cue (Extended Data Fig. 4h). ALM neurons encoding previous lick time also tended to encode
222 previous reward outcome (Extended Data Fig. 4i). Together, ALM neurons encode trial history and
223 anticipate upcoming lick time even before the cue.
224

225 If trial-history information encoded in ALM influences subsequent lick times, such neural correlates may
226 be absent in contexts where trial history is not used. Supporting this idea, ALM activity was not correlated
227 with trial history above chance level under the constant delay condition (Extended Data Fig. 4h and l),
228 where mice did not rely on trial history to guide their lick times.
229

230 To examine the evolution of ALM activity encoding trial history at the population level, we defined a “trial-
231 history mode” defined by the rank correlation between the ITI activity and trial history (the predicted lick
232 time based on previous trials using trial-history regression; Fig. 4b, left; Methods). ALM activity along the
233 trial-history mode was modulated after reward outcome (Extended Data Fig. 4j3), exhibited a graded

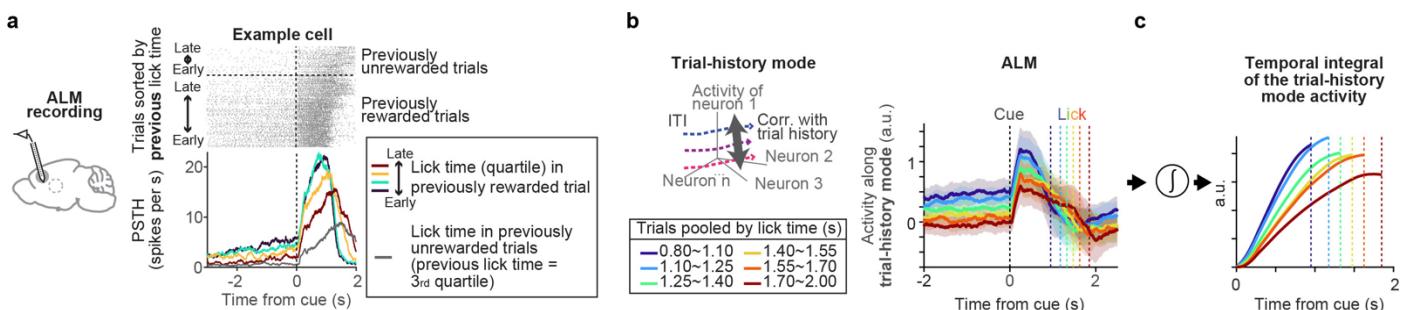


Figure 4. Neural correlates of trial history

- An ALM example cell whose activity is modulated by the lick time and reward outcome in the previous trial. Top, spike raster, grouped by reward outcome in the previous trial and sorted by the lick time in the previous trial. In this example cell, the ITI activity is higher in trials after rewarded trials and with earlier licks. Bottom, PSTH. Lick times of the previous rewarded trials were divided into quartiles indicated by different colors. The gray trace, trials following previously unrewarded trials with previous trial's lick times within the 3rd quartile.
- Left, schema of trial-history mode. Right, ALM population activity projected along trial-history mode. $n = 3261$ neurons, 45 mice. Lines, grand mean. Shaded, SEM (hierarchical bootstrap).
- Temporal integration of activity along the trial-history mode after the cue (based on plots in b) results in ramps with different slopes.

234 persistent activity during the ITI, and showed a step-like increase upon the cue presentation at the trial onset
235 (Fig. 4b). The amplitude of this activity anticipated upcoming lick times throughout the trial (Fig. 4b). Thus,
236 activity along this mode carries trial-history information and predicts upcoming lick time across trials.
237 Temporal integration of graded activity with varying amplitudes produces a ramp with different slopes
238 (with the cue at trial onset acting as a gate to initiate integration). Indeed, temporal integration of the activity
239 profile of the trial-history mode after the cue generates ramping with different slopes (Fig. 4c). Similarly,
240 some striatum neurons also exhibited tonic activity during ITI anticipating upcoming lick time (but it was
241 weaker than in ALM; Extended Data Fig. 4g and k). Together, there are neural correlates of trial history in
242 both ALM and striatum, which may function as an input to the integrator and guide the speed of timing
243 dynamics and lick timing.

244

245 ALM silencing pauses the timer

246

247 Neural correlates of temporal integration (i.e., trial-history mode and RM) in ALM alone are insufficient to
248 conclude that ALM is the integrator. Likewise, while ALM silencing shifted lick time (Fig. 2e), this
249 behavioral effect alone is insufficient to attribute a specific computational function to ALM (Extended Data
250 Fig. 1). Therefore, to examine whether ALM functions as an integrator, we recorded ALM activity using
251 silicon probes during calibrated silencing.

252

253 Strong cortical silencing can induce post-silencing rebound spiking activity that triggers actions^{59,60}
254 complicating the interpretation of subsequent dynamics and behavior. To address this, we calibrated the
255 silencing protocol to minimize rebound activity. Silicon probe recordings confirmed nearly complete ALM
256 silencing during photostimulation using 1.5 mW 488 nm laser in Vgat-ChR2-EYFP mice (8 spots, bilateral).
257 Limiting the silencing duration to 0.6 s (including a 0.3 s ramp down) minimized post-silencing rebound
258 activity and licking (Extended Data Fig. 7a-d). However, rebound activity and licking increased over
259 sessions due to an unknown adaptation mechanism^{61,62} (Extended Data Fig. 7ab). Therefore, we restricted
260 our analysis to the initial two days of ALM silencing (similarly, restricted to the first day for striatal
261 manipulation in Fig. 6; Extended Data Fig. 7).

262

263 Silencing ALM during the delay epoch (0.6 s after cue onset) with this protocol shifted the median lick time
264 by 0.47 (0.37 - 0.56) s (mean and 95% confidence interval, n = 14 mice; Fig. 5ab and Extended Data Fig.
265 8a-d). Interestingly, this temporal shift was close to the silencing duration (0.6 s), as if the 'timer' was paused
266 during ALM silencing. In contrast, silencing ALM before the cue did not shift the lick time distribution,
267 suggesting that this manipulation has no long-lasting effect on lick time (ALM activity rapidly recovered
268 after ITI silencing, implying that trial-history information is robustly maintained across brain areas before
269 the trial onset⁶³⁻⁶⁶; Extended Data Fig. 9q).

270

271 Silicon probe recordings of ALM during delay silencing (590 neurons, 14 mice) revealed that, despite near-
272 complete silencing during photostimulation, population activity patterns resembling those just before the
273 silencing suddenly reemerged after the silencing ceased, and ALM dynamics continued to unfold from there
274 in parallel to the unperturbed condition (quantified by similarity matrix; Fig. 5ef). Consistently, at the end
275 of ALM silencing, RM activity rapidly recovered (Fig. 5g and Extended Data Fig. 9a). However, RM
276 activity after silencing was significantly lower than in the unperturbed condition (Extended Data Fig. 9a),

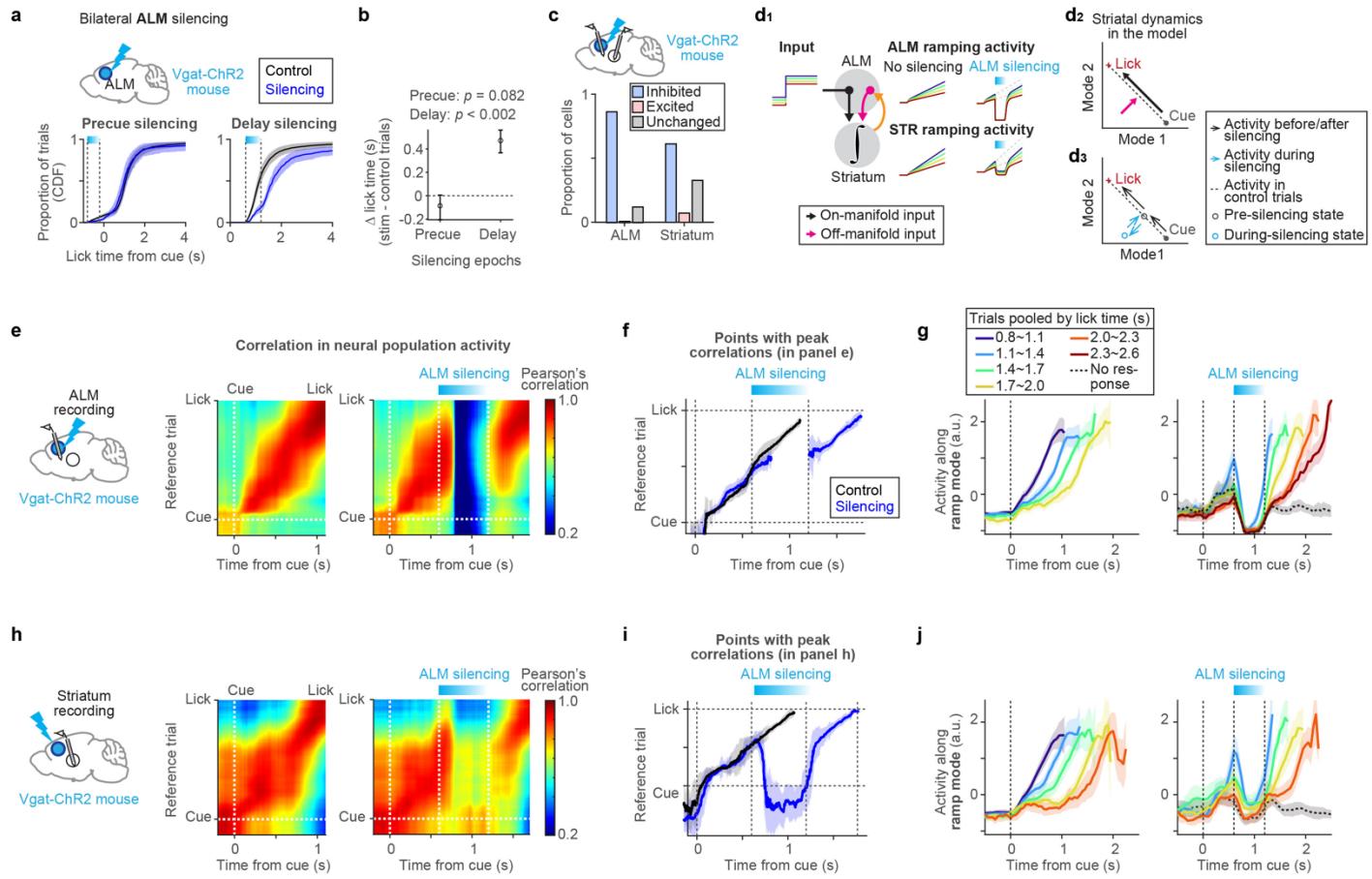


Figure 5. Transient optogenetic perturbation of ALM

- Top, bilateral ALM silencing in Vgat-ChR2 mouse. Bottom, cumulative distribution of lick time in trials with precue (left) or delay silencing (right). Black, control trials. Blue, silencing trials. Shaded, 95% confidence interval (hierarchical bootstrap). $n = 28$ sessions, 14 mice.
- Change in median lick time in **a**. Error bars, 95% confidence interval (hierarchical bootstrap). P -value, hierarchical bootstrap with a null hypothesis that there is no change in lick time.
- The proportion of ALM pyramidal neurons (left) and striatal neurons (right) with spiking activity significantly inhibited or excited ($p < 0.05$; Unchanged, $p \geq 0.05$; rank sum test) during ALM silencing. Neurons with a mean spike rate above 1 Hz in control trials during the silencing were analyzed. This includes 391 neurons in ALM ($n = 28$ sessions, 14 mice) and 238 neurons in the striatum ($n = 14$ sessions, 7 mice).
- Schema of a model explaining the data (**d1**). Schema of how on- and off-manifold inputs from ALM modulate activity in striatum (**d2**). Schema of striatal activity during ALM silencing (**d3**). Orange arrows, ALM receives input from the striatum to follow the ramping activity generated there.
- Left, recording of ALM during ALM silencing. Middle and right, similarity matrix of ALM population activity between trial types. Middle, control (unperturbed trials with lick around the median lick time; Methods) vs. ref trial (unperturbed trials with lick between 1.4 - 1.7 s). Right, ALM silencing trials (perturbed trials with lick between 1.7 - 2.0 s) vs. ref trial.
- Points with the peak correlation in the similarity matrix in **e**. Lines, mean. Shaded, SEM (hierarchical bootstrap). Black, control. Blue, silencing.
- ALM population activity along the ramp mode ($n = 28$ sessions, 14 mice), trials grouped by lick time. Activity up to lick time is shown. Lick time ranges that exist in at least two-thirds of the analyzed sessions were shown. Therefore, the plotted lick time ranges vary depending on the manipulation conditions. Lines, grand mean. Shaded, SEM (hierarchical bootstrap). Left, control. Right, ALM silencing.
- Same as in **e-g** but for striatal recording. $n = 14$ sessions, 7 mice.

277 indicating that it is not a recovery to the original trajectory as depicted in Fig. 1c1. Instead, RM activity
278 recovered close to the pre-silencing level, after which activity began to slowly ramp up again (Fig. 5g and
279 Extended Data Fig. 9a; akin to Fig. 1cs). To appreciate high-dimensional timing dynamics, we also used a
280 kNN decoder to analyze the evolution of decoded $T_{\text{to lick}}$. We compared ALM silencing and unperturbed
281 trials with matched decoded $T_{\text{to lick}}$ before the silencing (0.6 s after the cue). During the silencing, the
282 decoded $T_{\text{to lick}}$ diverged between ALM silencing and unperturbed trials, and such shift persisted in parallel
283 after the silencing (Extended Data Fig. 9d). Together, after ALM silencing, ALM activity rapidly recovered
284 to the pre-silencing level, and then ALM dynamics unfolded in parallel to those observed under unperturbed
285 conditions, explaining the shift in lick time close to the silencing duration.

286

287 The rank order of RM activity across trials predicted lick time under unperturbed conditions (Fig. 5g, left).
288 Notably, this rank order collapsed during silencing but recovered afterward (Fig. 5g and Extended Data
289 Fig. 9b). Similarly, ALM population activity before and after silencing both significantly predicted
290 upcoming lick time on single trials using the kNN decoder, whereas this predictability was lost during
291 silencing (Extended Data Fig. 9c; Methods). These findings suggest that following silencing, ALM activity
292 rapidly reverted to a state closely resembling its pre-perturbation condition at the individual trial level.

293

294 The recovery of ALM activity to pre-silencing levels and the shift in lick time close to the silencing duration
295 challenge multiple network models where ALM acts as the only integrator or is solely driven by external
296 inputs (Extended Data Fig. 1). Instead, our data suggest that ALM silencing momentarily pauses the
297 temporal integration because ALM provides input to an integrator (a ‘timer’) in another brain area.
298 Additionally, the rapid post-perturbation recovery of ALM ramping activity to pre-perturbation levels
299 implies that ALM ramping activity follows the dynamics of the external integrator, which was paused
300 during the ALM silencing. This indicates that ALM acts both as an input to and a follower of the external
301 integrator (Fig. 1cs; Extended Data Fig. 1f).

302

303 The striatum maintains timing information during ALM silencing

304

305 During ALM silencing, other brain areas must retain the timing information to restore ALM dynamics
306 afterward. Given the prominent timing dynamics observed in the striatum (Fig. 3), the striatum may serve
307 such a role. To test this, we recorded striatal activity during ALM silencing using Neuropixels probes⁵⁶
308 (372 neurons, 7 mice). A significant portion of striatal neurons (60%) decreased their spike rates during
309 ALM silencing, indicating that ALM provides a major excitatory drive to the striatum (Fig. 5c, right, and
310 Extended Data Fig. 10e-h). Consistently, upon ALM silencing, RM activity in the striatum rapidly decayed,
311 and the population activity patterns (similarity matrix) resembled those observed during ITI when the spike
312 rate was low (Fig. 5h-j). Following ALM silencing, striatal activity recovered to near pre-silencing levels,
313 and then dynamics unfolded in parallel to those observed under unperturbed conditions (Fig. 5h-j), similar
314 to what was observed in ALM. However, striatal activity was not entirely abolished during ALM silencing
315 (Fig. 5c and j). The residual striatal activity during ALM silencing maintained the rank order of RM activity
316 and predicted lick time (Fig. 5j and Extended Data Fig. 9fg). Thus, despite the reduced mean spiking
317 activity, the striatum retained timing information during ALM silencing.

318

319 Striatum activity stayed at a low level and did not ramp up during ALM silencing (Fig. 5j), suggesting ALM
320 is providing essential input to generate the ramping activity. The observed multi-regional dynamics can be

321 replicated by a model where the striatum (and/or subcortical areas situated between the striatum and ALM,
322 such as the substantia nigra reticulata and the thalamus) functions as an integrator, and ALM acts as both
323 an input to and a follower of this ‘subcortical integrator’ (Fig. 5d1 and Extended Data Fig. 1f). In this model,
324 input from ALM to the striatum has both on- and off-manifold components to explain the pause of time
325 representation and the reduction in striatal activity during ALM silencing:
326

327 1) The on-manifold component of the ALM input is temporally integrated by the subcortical integrator to
328 generate scalable timing dynamics (Fig. 5d1-2, black arrows). The trial-history mode activity may play this
329 role (Fig. 4bc). In the state space, this input aligns with the direction in which timing dynamics evolve (i.e.,
330 along the direction of integration, Fig. 5d2). During ALM silencing, the lack of on-manifold input pauses
331 the evolution of activity along this direction, effectively pausing the representation of time.
332

333 2) The off-manifold component of the ALM input functions as an excitatory drive (Fig. 5d1-2, pink arrows).
334 In the state space, the off-manifold input is orthogonal to the direction in which timing dynamics evolve,
335 amplifying striatal activity without affecting the representation of time (Fig. 5d2). During ALM silencing,
336 the lack of this excitatory drive results in a large reduction in striatal activity.
337

338 Altogether, due to the loss of these inputs from ALM, the representation of time is paused in the striatum
339 at a reduced activity level during ALM silencing (cyan circle in Fig. 5d3). Once ALM silencing ends, the
340 excitatory drive returns, and the striatal activity recovers to pre-silencing levels. Additionally, the recovery
341 of the on-manifold input after ALM silencing allows the timing dynamics to evolve from the pre-silencing
342 level along a normal trajectory. This results in a parallel shift in timing dynamics after ALM silencing,
343 consistent with the experimental data (Fig. 5d, and Extended Data Fig. 1f).
344

345 Temporal integration can be achieved through feedforward (FF) networks⁶⁷⁻⁶⁹, in addition to positive
346 feedback loops (Fig. 5d and Extended Data Fig. 1). Recurrent network models with FF connections can
347 produce both sequential evolutions of population activity patterns and ramping activity, as observed in the
348 data (Extended Data Fig. 11a-c). We generated multi-regional FF networks assigning different roles to
349 ALM and the striatum. In a model where ALM acts as an input/follower of the subcortical FF network,
350 ALM perturbation resulted in a pause in time representation similar to the data (but not in other models;
351 Extended Data Fig. 11d-g). In this model, ALM provides the recurrent excitatory input necessary for the
352 activity patterns to unfold in the subcortical FF network. Without this input, the representation of time
353 pauses. Therefore, regardless of the detailed implementation of the integrator (i.e., positive feedback models
354 or FF models), our data suggest that ALM provides essential input for the subcortical integrator to maintain
355 temporal integration and represent time. The key assumption of these models is that the striatum (and/or
356 subcortical areas situated between the striatum and ALM) serves as the integrator. To test this prediction,
357 we conducted perturbation experiments in the striatum.
358

359 Striatum inhibition rewinds striatal timing dynamics

360 The striatum contains two major projection cell types: D1 receptor-expressing direct pathway SPN (D1-
361 SPN) and D2 receptor-expressing indirect pathway SPN (D2-SPN)⁷⁰. Consistent with the anti-kinetic
362 function of D2-SPN⁷⁰⁻⁷², D2-SPN silencing and non-cell-type-specific striatal silencing using the soma-

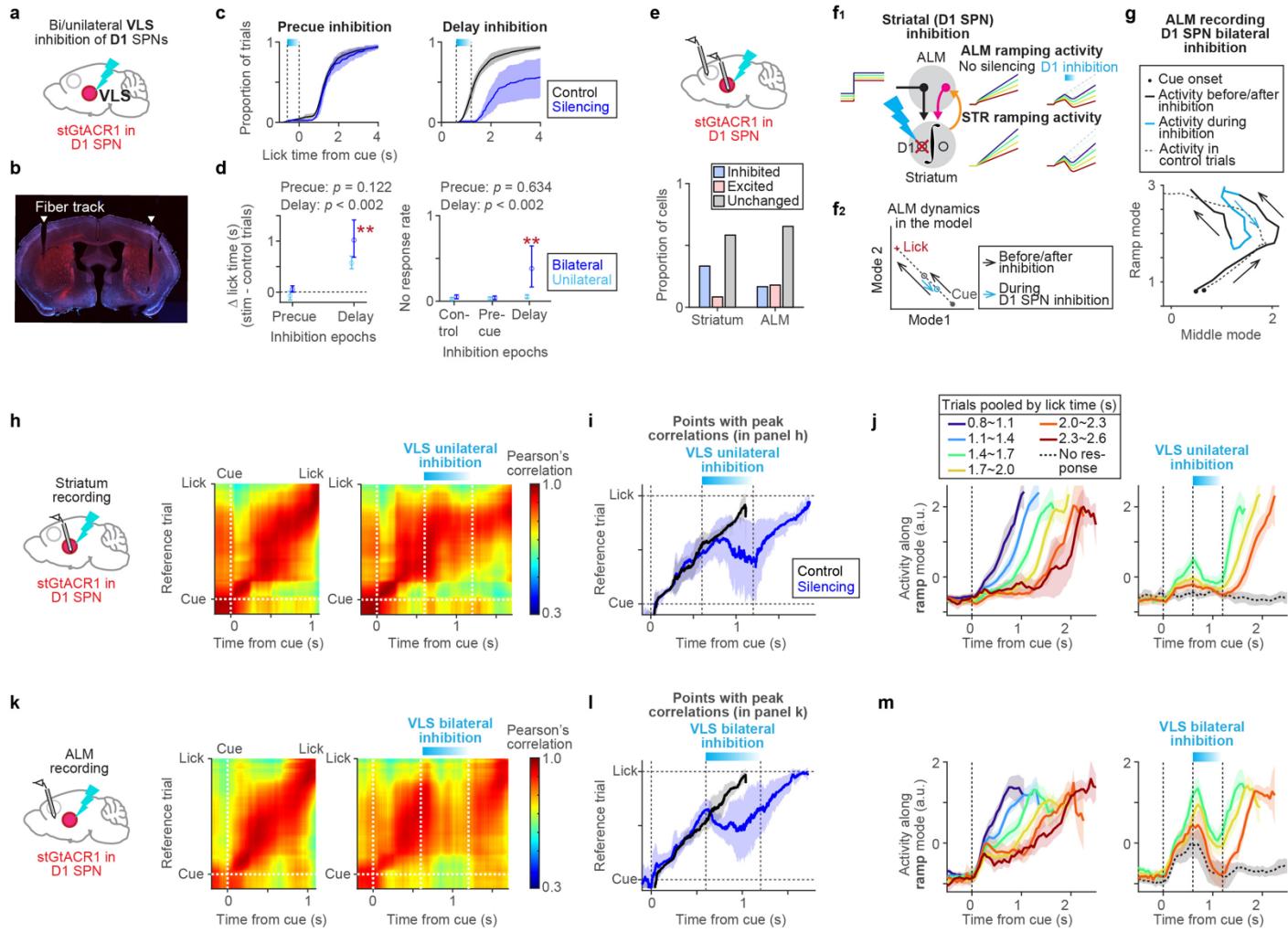


Figure 6. Transient optogenetic perturbation of D1 SPN in the striatum

- Schema of inhibiting D1 SPN in ventral lateral striatum (VLS).
- Coronal section of a Drd1-cre;cre-dependent-stGtACR1:fusion-red mouse with bilateral tapered optic fiber implanted in the VLS (white arrows). Red, fusion red. Blue, DAPI staining.
- Cumulative distribution of lick time in trials with precue (left) or delay inhibition (right). Black, control trials. Blue, trials with bilateral inhibition. Shaded, 95% confidence interval (hierarchical bootstrap).
- Left, change in median lick time in c. Right, no-response rate in c. Error bars, 95% confidence interval (hierarchical bootstrap). P -value, hierarchical bootstrap with a null hypothesis of no change compared to control in bilateral inhibition. **, $p < 0.002$. Blue, bilateral inhibition. Light blue, unilateral inhibition.
- The proportion of striatal neurons (left) and ALM pyramidal neurons (right) with spiking activity significantly inhibited or excited ($p < 0.05$; Unchanged, $p \geq 0.05$; rank sum test) by inhibiting D1 SPN in VLS. Neurons with a mean spike rate above 1 Hz in control trials during the silencing window were analyzed. This includes 25 striatal projection neurons ($n = 5$ sessions, 5 mice) and 156 ALM neurons ($n = 6$ sessions, 6 mice).
- Schema of the model explaining the data (f1). Schema of ALM dynamics during striatal inhibition in the model (f2).
- ALM activity in a two-dimensional space along the ramp and middle mode during inhibition of D1 SPN in VLS. The mean trajectory of trials with silencing (lick between 1.4 - 1.7 s) is shown. Arrows indicate the direction in which the trajectory evolves.
- Left, striatum recording during unilateral D1 SPN inhibition in VLS. Middle and right, similarity matrix of striatal population activity between trial types. Middle, control vs. ref trial (lick between 1.4 - 1.7 s). Right, D1 SPN inhibition trials vs. ref trial.
- Points with the peak correlation in the similarity matrix in h. Lines, mean. Shaded, SEM (hierarchical bootstrap).
- Striatal population activity along the ramp mode ($n = 10$ sessions, 5 mice), trials grouped by lick time. Lines, grand mean. Shaded, SEM (hierarchical bootstrap). Left, control. Right, D1 SPN inhibition trials.
- Same as in h-j but for ALM recording during bilateral inhibition of D1 SPN in VLS. $n = 6$ sessions, 6 mice.

364 targeted light-dependent chloride channel, stGtACR1⁷³, triggered licking during photostimulation
365 (Extended Data Fig. 8m-s). This response made it unsuitable for testing the function of the striatum in lick
366 timing control. Consequently, we focused on inhibiting D1-SPNs to investigate the effects of transient
367 striatal perturbation.

368
369 To inhibit D1-SPN, we crossed Drd1-cre FK150⁷⁴ line with cre-dependent stGtACR1 transgenic reporter
370 mice⁵⁹, and bilaterally implanted tapered fiber optics⁷⁵ (1.0 mm taper, NA 0.37) to deliver light to a large
371 volume in the striatum (Fig. 6b and Extended Data Fig. 6c). We confirmed the inhibition using optrode
372 recordings (488 nm, 0.25 - 0.5 mW): 9 out of 25 SPNs (36%) significantly reduced spike rates without
373 axonal excitation^{59,76,77} or post-silencing rebound (Fig. 6e, left, Extended Data Fig. 7de, and Extended Data
374 Fig. 10i-l). We cannot distinguish SPN subtypes based on spike features^{55,78}, but since half of the SPNs are
375 D1 SPN⁷⁰, we estimated that we inhibited ~70% of D1 SPN around the fiber optics.

376
377 Transient bilateral inhibition of D1 SPN in the ventrolateral striatum (VLS) during the delay epoch (0.6 s
378 duration, starting 0.6 s after the cue onset; 488 nm, 0.25 - 0.5 mW) significantly increased the no-response
379 rate by 38 (5.7 - 41)% (mean, 95% confidence interval, n = 6 mice; Fig. 6cd). In trials where mice licked
380 after the inhibition, the median lick time was shifted later by 1.0 (0.69 - 1.4) s (mean, 95% confidence
381 interval), significantly longer than the duration of photostimulation, and the effect of ALM silencing (Fig.
382 5).
383

384 The shift in lick time caused by unilateral inhibition was approximately half that of bilateral inhibition,
385 suggesting an additive effect of this manipulation (Fig. 6cd, light blue). Inhibiting VLS before the cue did
386 not affect the subsequent lick time distribution, implying that the striatum is specifically involved in lick
387 timing control after the cue and that this manipulation has no long-lasting effect (Fig. 6cd). The behavioral
388 effect of VLS inhibition was stronger than dorsomedial striatum (DMS) inhibition (Extended Data Fig. 8i-
389 l, n = 6 mice), consistent with the strong anatomical and functional connections between VLS and ALM⁵³⁻
390 ⁵⁵.

391
392 To measure the impact of D1-SPN inhibition on striatal dynamics, we performed optrode recordings (103
393 neurons, 5 mice). During unilateral inhibition, population activity patterns comprising all striatal cell types
394 in VLS, appeared to effectively ‘rewind’ their progression: they stopped unfolding, with a slight recession
395 in the points with peak correlation (quantified by similarity matrix, Fig. 6hi). After the inhibition, activity
396 patterns developed from the post-inhibition state, parallel to those in the unperturbed condition (Fig. 6i).
397 During D1-SPN inhibition, striatal population activity patterns stopped unfolding but remained highly
398 correlated with those in the reference unperturbed trials (Fig. 6h). This indicates that D1-SPN inhibition did
399 not deviate striatal population activity patterns from their natural patterns, implying that it exerted an ‘on-
400 manifold’ perturbation of striatal dynamics⁴³.

401
402 To further quantify the effect of inhibition on striatal dynamics representing time, we analyzed the striatal
403 RM activity and decoded T_{to} lick. Unlike ALM silencing, which rapidly decreased the striatal activity at the
404 stimulation onset (Fig. 5j), both striatal RM activity and decoded T_{to} lick gradually decayed during
405 photoinhibition (Fig. 6j and Extended Data Fig. 9l). Because significantly photoinhibited cells (i.e., putative
406 D1 SPN expressing stGtACR1) showed rapid silencing at light onset (within 50 ms; Extended Data Fig.
407 10l), the gradual decay in timing dynamics is unlikely due to slow photoinhibition but more likely driven

408 by network effects (for example, D1-SPN may modulate thalamic activity via the substantia nigra reticulata,
409 and these thalamic neurons project back to the striatum). After inhibition, the ramp restarted in parallel to
410 control conditions from the post-inhibition level (Fig. 6j and Extended Data Fig. 9i and l). Hence, striatal
411 timing dynamics slowly rewind during unilateral VLS D1-SPN inhibition, as if the D1 SPN inhibition is
412 integrated into the timing dynamics. Altogether, D1 SPN inhibition exerts an on-manifold influence on
413 striatal dynamics (Fig. 1c4), implying that D1 SPN has a highly specific role in implementing the integrator:
414 it may be a part of the integrator or providing on-manifold input to the integrator.
415

416 Striatum is required for ALM timing dynamics

417
418 In our network model (Fig. 6f and Extended Data Fig. 1f and 11g), ALM timing dynamics follow those
419 generated by the subcortical integrator. If so, VLS D1-SPN inhibition should rewind ALM timing dynamics
420 as well. To test this hypothesis, we recorded ALM activity during bilateral VLS D1-SPN inhibition (255
421 neurons, 6 mice). VLS D1-SPN inhibition had relatively minor effects on ALM spiking activity both during
422 ITI and delay epoch: 16.7% of ALM neurons were significantly inhibited and 18.0% were excited during
423 D1-SPN inhibition (Fig. 6e, right). The mean spiking activity decreased by 0.17 ± 0.14 spikes per second
424 (mean \pm SEM) during D1-SPN inhibition in the ITI. Thus, VLS D1-SPN is not the major excitatory drive
425 of ALM activity.
426

427 Notably, however, VLS D1-SPN inhibition during the delay significantly impacted the timing dynamics in
428 the ALM. During VLS D1-SPN inhibition, ALM population activity patterns paused their progression with
429 a slight recession in the points showing peak correlation (Fig. 6kl). Similar to striatal dynamics, ALM
430 activity patterns did not deviate from natural activity patterns during D1-SPN inhibition, suggesting that
431 D1-SPN inhibition exerted an on-manifold perturbation of ALM dynamics.
432

433 ALM RM activity and decoded $T_{\text{to lick}}$ gradually decayed during VLS D1-SPN inhibition but resumed
434 ramping in parallel to control trials after inhibition ended, without a rapid recovery phase (Fig. 6m and
435 Extended Data Fig. 9m and p). Consistent with 'rewinding', during VLS D1-SPN inhibition, ALM dynamics
436 in the two-dimensional space defined by RM and MM evolved in nearly the opposite direction from the
437 normal trajectory (Fig. 6g). This contrasts with ALM dynamics during ALM silencing, where activity
438 moved toward zero point (See Extended Data Fig. 12 for quantification of rewinding vs. activity moving
439 toward zero). Unilateral VLS inhibition induced a similar, albeit weaker, decay in RM and decoded $T_{\text{to lick}}$
440 in the ipsilateral ALM (Extended Data Fig. 13d-f), similar to how unilateral VLS inhibition affected striatal
441 timing dynamics (Fig. 6j). Thus, while D1-SPN is not a major excitatory drive of ALM activity, it strongly
442 influences timing dynamics in ALM. These results are consistent with a model where ALM timing
443 dynamics follow those generated in the subcortical area (Extended Data Fig. 1f and 11g), rather than ALM
444 maintaining an additional integrator (Extended Data Fig. 1c and 11e).
445

446 The impact of ALM and VLS inhibition on ALM timing dynamics differs qualitatively. Even a weak ALM
447 inhibition (0.3 mW instead of the 1.5 mW used in Fig. 5) caused a weak yet rapid decay in RM activity at
448 the onset of photostimulation, followed by a recovery of ramping during photostimulation (Extended Data
449 Fig. 13a-c) and a mild behavioral effect (shifted the median lick time by 0.13 (0.028 - 0.26) s; mean, 95%
450 confidence interval; $n = 5$ mice). Thus, the gradual decay in ALM timing dynamics during D1-SPN
451 inhibition cannot be explained by its weak inhibitory effect.

452

453 Overall, VLS D1-SPN inhibition has a stronger impact on behavior than ALM silencing, despite its weaker
454 effect on mean spike rates. This strong behavioral effect is likely due to its on-manifold impact on timing
455 dynamics. The absence of rapid recovery of timing dynamics after striatal inhibition (Fig. 6m and Extended
456 Data Fig. 9m) suggests there is no other independent area functioning as a timer to restore the activity.
457 These findings support a model where the striatum (and/or subcortical areas situated between the striatum
458 and ALM) implements an integrator that generates timing dynamics, with ALM timing dynamics reflecting
459 those generated by this subcortical integrator (Fig. 6f).

460

461 Discussion

462

463 The frontal cortex and striatum often exhibit similar activity patterns and are essential for motor timing and
464 many other behaviors^{4-8,19,30} (Fig. 3). This poses a challenge in distinguishing their functional roles. To
465 address this, we conducted a series of transient perturbations coupled with multi-regional
466 electrophysiology. Across conditions, both ALM and striatum population activity predicted subsequent lick
467 timing even after perturbations (Extended Data Fig. 9), indicating a tight causal link between the dynamics
468 in these brain areas and motor timing. All transient manipulations temporally shifted subsequent timing
469 dynamics in parallel to unperturbed conditions beyond the perturbation period and affected lick time.
470 Furthermore, the extent of the shift depended on the strength of manipulations (unilateral vs. bilateral
471 striatal inhibition, and ALM silencing with different laser powers; Extended Data Fig. 13) as if the
472 perturbation was integrated into the timing dynamics. These findings support the hypothesis that an
473 integrator mediates the generation of timing dynamics.

474

475 Importantly, depending on the manipulated brain areas, the multi-regional dynamics during and after
476 perturbation exhibited striking differences: Silencing ALM paused the 'timer' without erasing the timing
477 information in the striatum, whereas inhibiting the striatum effectively rewound the 'timer' in both areas.
478 Our findings support a model where the subcortical areas (striatum and/or subcortical areas situated
479 between the striatum and ALM) function as an integrator generating timing dynamics in response to inputs
480 provided via ALM (Fig. 5d, 6f, and Extended Data Fig. 1f and 11g). The trial-history information encoded
481 in ALM (Fig. 4) may adjust the ramping slope according to trial history and guide lick timing. ALM follows
482 the ramping activity generated in the subcortical integrator, which is likely critical for ALM to trigger a
483 lick¹⁹.

484

485 The neocortex providing inputs to control the subcortical integrator may be a general mechanism of
486 temporal integration within the cortico-basal ganglia loop. First, singing mice (*Scotinomys teguina*) adjust
487 their song durations based on social context. Silencing the frontal cortex reduces this context-dependent
488 modulation⁷⁹, supporting our model where the frontal cortex adjusts the timer based on contextual
489 information^{79,80}. Second, temperature manipulation of the striatum influences the perception of duration³⁶,
490 implying that the striatum is essential for both controlling action timing and perceiving time. Third, ramping
491 activity correlated with temporal integration of external signals, or evidence accumulation, is observed in
492 both the frontal cortex and striatum during decision-making tasks, and the striatum is a key site for evidence
493 accumulation^{14,30,81-83}. Our network model may explain the mechanism of temporal integration across motor
494 and cognitive behaviors.

495

496 Neural correlates and the causality of manipulation on behavior are insufficient to distinguish multi-regional
497 dynamics models (Extended Data Fig. 1 and 11). Specifically, prolonged manipulations that encompass the
498 entire trial (such as muscimol infusion and chemogenetics) have limited ability to differentiate between
499 models (Extended Data Fig. 1, bottom). Therefore, combining transient perturbation with large-scale
500 electrophysiology is critical. This strategy can be employed to dissect multi-regional dynamics across
501 behaviors. Importantly, stringent consideration of behavioral adaptation to perturbations^{61,62}, and calibration
502 of photostimulation conditions to prevent rebound are critical for interpretable and reproducible
503 perturbation experiments (Extended Data Fig. 7j-q).

504

505 In a memory-guided licking task with a sensory cue signaling proper lick time, transient ALM silencing
506 was followed by a rapid recovery of ramping activity to the original trajectory (akin to Fig. 1c1), regardless
507 of the strength of inhibition^{44,45}. In contrast, identical ALM manipulation during the timing task led to a
508 temporal shift in ramping activity, with the extent of the shift depending on the inhibition strength. Thus,
509 depending on the task, the same brain area (ALM) and similar neural activity (ramping activity) are
510 governed by different dynamical systems, presumably to optimize computation for the task at hand.

511

512 Similarly, ALM encoded trial history across trials only when mice used trial history to adapt lick timing.
513 We expected that silencing ALM during the ITI would alter the subsequent lick time by affecting this trial
514 history information. Unexpectedly, ALM activity recovered rapidly following ITI silencing and did not
515 affect lick time (Fig. 5a and Extended Data Fig. 9q). This implies that trial history information is robustly
516 maintained across brain areas^{63–66}.

517

518 In a dynamical system, the evolution of activity states is shaped by both the initial conditions and external
519 inputs of a network^{9,31,46,84}. Although we treated trial history information as an input to the integrator in
520 models, it probably functions as both initial conditions and external inputs to determine action timing.
521 Temporal integration can be implemented by tuned feedback loops, and feedforward networks^{23,25–27,67–69}.
522 Regardless of the implementation of temporal integration (Extended Data Fig. 1 and 11), our results are
523 consistent with the ALM function as an input/follower to the subcortical integrator. The striatum
524 predominantly comprises inhibitory neurons with relatively sparse lateral connections⁷⁰, so it is unlikely
525 that D1 SPN alone implements an integrator. The striatum indirectly modulates thalamic activity through
526 other basal ganglia nuclei, while intralaminar thalamic nuclei provide direct excitatory input to the
527 striatum^{53,54,70,71,85,86}. Future perturbation experiments across areas within this long-range subcortical loop
528 may help elucidate how the integrator is fully implemented in these subcortical areas.

529

530 **Acknowledgments:** We thank P. Dayan, M. Andermann, N. Li, D. Fitzpatrick, T. Wang, M. Sarvestani, L.
531 Colgan, B. Mensh, R. Heldman, K. Citrin, T. Yiu, X. Yu, and Inagaki lab members for comments on the
532 manuscript, K. Daie, S. Romani and S. Saxena for discussions, P. Scarpinato and N. Spiller for DeepLabCut
533 pipeline, K. Shirley for imaging, and H. Shearin and other MPFI ARC members for animal care. This work
534 was funded by Max Planck Florida Institute for Neuroscience (H.K.I.), Max Planck Free Floater Program
535 (H.K.I.), NIH New Innovator Award (NINDS and OD; 1DP2NS132108; H.K.I.), Searle Scholars Program
536 (H.K.I.), Klingenstein-Simons Fellowship (H.K.I.), and McKnight Scholar Award (H.K.I.). **Author**
537 **contributions:** Conceptualization: HKI; Investigation: ZY, MI, CG, LF, HKI; Funding acquisition: HKI;
538 Supervision: HKI; Writing: ZY, HKI. **Declaration of interests:** Authors declare that they have no
539 competing interests.

540 **METHOD DETAILS**

541 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

542 *Mice*

543 This study is based on both adult male and female mice (age > P60). We used five mouse lines: C57Bl/6J
544 (JAX# 000664), VGAT-ChR2-EYFP⁸⁷ (JAX #14548), Drd1-cre FK150⁷⁴, Adora2-cre KG126⁷⁴, R26-LNL-
545 GtACR1-Fred-Kv2.1⁸⁸ (JAX #33089). See Extended Data Table 1 for mice used in each experiment.

546 All procedures were in accordance with protocols approved by the MPFI IACUC committee. We followed
547 the published water restriction protocol⁸⁹. Mice were housed in a 12:12 reverse light: dark cycle and
548 behaviorally tested during the dark phase. A typical behavioral session lasts between 1 and 2 hours. Mice
549 obtained all of their water in the behavior apparatus (approximately 0.6 ml per day). Mice were implanted
550 with a titanium headpost for head fixation⁸⁹ and single-housed. For cortical photoinhibition, mice were
551 implanted with a clear skull cap⁴⁸. For bilateral D1/D2 SPN silencing, tapered fiber optics (1.0 mm taper,
552 NA 0.37, core diameter 200 μ m, Doric lenses) were bilaterally implanted during the headpost surgery
553 around the following target coordinates (Extended Data Fig. 6c; Bregma, mm): AP -0.3, ML \pm 3, DV 3.5
554 for the ventral lateral striatum (VLS); AP 0.6, ML \pm 1.5, DV 3 for the dorsal medial striatum (DMS).
555 Craniotomies for recording were made after behavioral training.

556 *Viral injection*

557 To virally express stGtACR1 in the striatum (Extended Data Fig. 8q), we followed published protocols
558 (dx.doi.org/10.17504/protocols.io.bctxiwpm) for virus injection. AAV2/5 CamKII-stGtACR1-FusionRed
559 (titer: 9.5 \times 10¹²) was injected into AP -0.3 mm, ML 3 mm, DV 2.75 and 3.5 mm, 100nl each depth. The
560 same tapered fiber optics described above were bilaterally implanted at DV 3.5 mm.

561 *Behavior*

562 At the beginning of each trial, an auditory cue was presented, which consisted of three repeats of pure tones
563 (3 kHz, 150 ms duration with 100 ms inter-tone intervals, 74 dB). A delay epoch started from the onset of
564 the cue presentation. Licking during the delay epoch aborted the trial without water reward, followed by a
565 1.5 s timeout epoch. Licking during the 10 s answer epoch following the delay was considered a ‘correct
566 lick’, and a water reward (approximately 2 μ L/drop) was delivered immediately, followed by a 1.5 s
567 consumption epoch. If mice did not lick during the 10 s answer period, the trial would end without a reward.
568 Trials were separated by an inter-trial interval (ITI) randomly sampled from an exponential distribution
569 with a mean of 3 s with 1 s offset (with a maximum ITI of 7 s). This prevented mice from predicting the
570 trial onset without cue. Animals had to withhold licking during the full ITI epoch for the next trial to begin
571 (otherwise the ITI epoch repeated). In approximately 10% of randomly interleaved trials, the auditory cue
572 was omitted to assess spontaneous lick rate (‘no cue’ trials). No water reward was delivered in no cue trials.

573 We followed the protocol described in Majumder et al, 2023⁹⁰ for training. In brief, the delay duration
574 increased from 0.1 s to 1.8 s gradually based on the animal’s performance⁹⁰. Once mice reached 1.8 s delay,
575 we started either the switching delay (Extended Data Fig. 2a), the random delay (Extended Data Fig. 2b),
576 or the constant delay conditions (Extended Data Fig. 2c). In the switching delay condition, we switched
577 delay between 1 vs. 3 s or 1 vs. 1.8 s every 30 - 70 trials (the number of trials was randomly selected from
578 30-70 and not contingent upon behavior). Similarly, in the random delay condition, we randomly switched
579 delay among 0.5, 1.0, 1.5, 2.0, 3.0, or 5.0 s every 30 - 70 trials. For the constant delay condition, mice were
580

581 trained with a constant delay of 1.5 s across sessions for at least two weeks. Otherwise, the task design and
582 reward contingency remained the same. ALM and striatal perturbation experiments (Fig. 5 and 6) were
583 performed under the switching delay condition. To avoid human bias, the behavior was automatically
584 controlled by Bpod (Sanworks) and custom MATLAB codes.

585 ***Optogenetics***

586 Photostimulation was deployed on < 25% in randomly selected trials. To prevent mice from distinguishing
587 photostimulation trials from control trials using visual cues, a ‘masking flash’ (1 ms pulses at 10 Hz) was
588 delivered using 470 nm LEDs (Luxeon Star) throughout the trial. For both ChR2 and stGtACR1, we used
589 a 488 nm laser (OBIS 488 - 150C, Coherent).

590 The ChR2-assisted photoinhibition of the dorsal cortices was performed through clear-skull cap⁴⁸ (Fig. 2e)
591 or craniotomy (in case of simultaneous recording; Fig. 5). We scanned the 488 nm laser light using Galvo
592 mirrors. We stimulated GABAergic interneurons in Vgat-ChR2-EYFP mice starting at 0.6 s after the cue,
593 lasting for 1.2 s (including 0.2 s ramping down; Fig. 2e) or 0.6 s duration (including 0.3 s ramping down;
594 Fig. 5). Time-averaged laser power was 1.5 (or 0.3 for Extended Data Fig 13) mW per spot (8 spots in total:
595 4 spots in each hemisphere centered around the target coordinates with 1 mm intervals; We photoinhibited
596 each spot sequentially at the rate of 5 ms per step). For Fig. 2e, the targeted brain area was randomly selected
597 for each photostimulation trial. The target coordinates were AP 2.5, ML ±1.5 (ALM); AP 0.5, ML ±1.5
598 (M1B); AP 0.5, ML ±2.5 (S1TJ); AP -1.0, ML ±1.5 (S1TR); AP -1.0, ML ±3.0 (S1B); AP -2, ML ±1.5
599 (PPC); and AP -2.5, ML ±3.5 (V1) respectively (Bregma, mm).

600 To silence D1 or D2 expressing SPNs using stGtACR1 (Fig. 6), we delivered photostimuli (0.25 or 0.5mW,
601 488 nm) bilaterally (Fig. 6k-m) or unilaterally (in case of optrode; Fig. 6h-j) in the striatum starting 0.6 s
602 after the cue and lasting for 0.6 s (including 0.3 s ramping down). The light was delivered through implanted
603 fiber optics and intensity was measured at the fiber tip.

604 ***Extracellular electrophysiology***

605 A small craniotomy (diameter, 0.5 - 1 mm) was made over the recording sites one day before the first
606 recording session. Extracellular spikes were recorded acutely using 64-channel two-shank silicon probes
607 (H-2, Cambridge Neurotech) for ALM, and Neuropixels probe 1.0⁵⁶ for striatum. For the H-2 probes,
608 voltage signals were multiplexed, recorded on a PCI6133 board (National instrument), and digitized at 400
609 kHz (14-bit). All recordings were made with the open-source software SpikeGLX
610 (<http://billkarsh.github.io/SpikeGLX/>). During recordings, the craniotomy was immersed in a cortex buffer
611 (125 mM NaCl, 5 mM KCl, 10 mM glucose, 10 mM HEPES, 2 mM MgSO₄, 2 mM CaCl₂; adjust pH to
612 7.4). Brain tissue was allowed to settle for at least five minutes before recordings.

613 For the optrode recordings (Fig. 6h-j), we used 64-channel two-shank silicon optrodes with a 1.0 mm taper
614 fiber optic attached adjacently (NA 0.22, core diameter 200 μ m, Cambridge Neurotech). Optrode was
615 acutely inserted each session and the light delivery protocol was identical to that used for behavioral
616 experiments described in ***Optogenetics***. Neuropixels probe and optrode tracks labeled with CM-Dil were
617 used to determine recording locations⁹¹.

618 ***Histology***

619 Mice were perfused transcardially with PBS, followed by 4% PFA / 0.1 M PBS. To reconstruct recording
620 tracks, we either generated coronal sections followed by conventional imaging (protocol described in
621 *Inagaki et al, 2022*⁹²), or cleared the brain followed by light-sheet microscopy. To clear the brain, we used
622 the EZ Clear method⁹³. We followed the previous protocol to map the recording tracks to Allen Common
623 Coordinate Framework (CCF)⁹¹. Extended Data Fig. 6a is based on a brain imaged in Guo et al, 2017⁹⁴.
624

625 QUANTIFICATION AND STATISTICAL ANALYSIS

626 *Behavioral analysis*

627 We analyzed the time of the first lick after the cue onset in each trial. Lick time was measured by detecting
628 the tongue's contact with the lick port using an electrical lick detector. For optogenetic experiments (Fig.
629 5ab, 6cd, and Extended Data Fig. 8), we analyzed trials with the first lick occurring after the onset time of
630 photostimulation (0.6 s after the cue) in both control and photostimulated trials to compare the effect of
631 photostimulation on behavior. The no-response rate (Fig. 6d, right, and Extended Data Fig. 8) was
632 calculated as the probability of mice not responding within 5 s after the cue. The shift in lick time (Δ lick
633 time; Fig. 5b, 6d, and Extended Data Fig. 8) was based on the median lick time. Post-stim lick rate
634 (Extended Data Fig. 7bc) was calculated as the probability of mice licking within 0.6 s after the
635 photostimulation offset time in no cue trials. To analyze behavior while the mice were engaged in the task,
636 we analyzed all trials between the first occurrence of five consecutive cue trials with licks and 20 trials
637 before the last occurrence of three consecutive no-response trials.

638 To analyze whether optogenetic manipulation affects the separation of lick time distributions between
639 different delay blocks in the switching delay condition (short vs. long delay blocks; Extended Data Fig. 8d,
640 h, l, and p), we performed a receiver operating characteristic (ROC) analysis. First, we conducted ROC
641 analysis to distinguish lick time distributions between the two delay blocks (for control and
642 photostimulation trials separately). We then quantified the area under the curve (AUC) to measure the
643 separation in lick time distributions between delay blocks, and compared these values between control and
644 photostimulation trials.

645 Due to the attenuation of behavioral effects of optogenetic manipulation (Extended Data Fig. 7f-i), we
646 restricted analyses of both behavioral and physiological data to the first (for striatal manipulation) or the
647 first two (for ALM manipulation) manipulation sessions per mouse. All analyses, including the calculation
648 of confidence intervals and p-values, were performed using a hierarchical bootstrap, unless stated
649 otherwise. First, we randomly selected animals with replacements. Second, we randomly selected sessions
650 for each animal with replacement. Third, we randomly selected trials for each session with replacements.
651 Then, we calculated the behavioral metrics described above. This procedure was repeated 1000 times to
652 estimate the mean, confidence intervals, and statistics.

653 *Behavioral simulation*

654 We estimated the optimal lick time in the timing task (Extended Data Fig. 2g-k). Based on the mean and
655 standard deviation (std) of the lick time distribution in the data (std lick time = $-0.2 + 1.1 \times$ mean lick time;
656 Extended Data Fig. 2f), and assuming an inverse Gaussian distribution of lick time⁹⁵⁻⁹⁷, we randomly
657 sampled hypothetical lick times in 1000 trials for a given mean lick time. Then, following the task structure

658 (identical to that described in ***Behavior***), we determined whether the agent would receive water or not for
659 each trial and calculated the estimated reward amount per trial or time.

660

661 *Trial-history regression analysis*

662 For the linear regression analysis in Fig. 2d and Extended Data Fig. 2l, we tested 42 combinations of
663 regressors with 1 - 6 lags with 5-fold cross-validation. The median absolute deviation (MAD) of lick time
664 explained by different regression models was calculated as $1 - R1 / R2$, where R1 is the median of the
665 absolute value of the model residuals, and R2 is the median of the absolute value of the null model residuals.

666

667 *Videography analysis*

668 High-speed (300 Hz) videography of orofacial movement (side view) was acquired using a CMOS camera
669 (Chameleon3 CM3-U3-13Y3M-CS, FLIR) with IR illumination (940nm LED). We used DeepLabCut⁹⁸ to
670 track the movement of the tongue and jaw. Movements along the dorsoventral direction were analyzed and
671 plotted in Extended Data Fig. 3. Trajectories were normalized by subtracting the mean position before the
672 cue from each trajectory and then dividing by the minimum value within a session (thus, the downward
673 movement of the tongue and jaw looks upward in the plot). The onset of jaw movement in each trial is the
674 first time point after the cue when the normalized movement trajectory exceeds 10% of the max value. The
675 onset of tongue movement is when DeepLabCut first detects the tongue after the cue. In two out of 34 mice,
676 mice moved jaws within 200 ms after the cue in some trials. These trials were excluded from the analysis
677 for the average jaw and tongue onset analyses (Extended Data Fig. 3d), as these rare early subthreshold
678 movements are likely startled responses to the cue.

679

680 *Extracellular recording analysis*

681 *Spike sorting and cell type classification*

682 JRClust⁹⁹ (<https://github.com/JaneliaSciComp/JRCLUST>) with manual curations was used for spike
683 sorting. We used quality metrics (described in Majumder et al, 2023⁹⁰) to select single units. Units with a
684 total trial number of less than 75 were excluded from analyses.

685 For ALM recording, units with a mean spike rate above 0.5 Hz were analyzed. This includes 4467 putative
686 pyramidal neurons (spike width ≥ 0.5 ms⁴⁸) out of a total of 5093 neurons. For striatal recording, units
687 within the striatum (regions annotated as “striatum”, “caudoputamen”, and “fundus of striatum” after
688 registration to the Allen CCF) with a mean spike rate above 0.1 Hz were analyzed. This contains 1217
689 striatal projection neurons (spike width ≥ 0.4 ms and with post-spike suppression duration ≤ 40 ms), 584
690 fast-spiking interneurons (spike width < 0.4 ms and with less than 10% chance of having a long interspike
691 interval), 127 tonically active neurons (TAN), and 44 other unidentified interneurons⁵⁷. For the single
692 session analyses (decoding and projection to modes), only putative pyramidal neurons were analyzed for
693 the ALM recording, while all neurons were included for the striatal recording data. See Extended Data
694 Table 1 for the number of recorded neurons in each experiment.

695 *Similarity matrices*

696 To plot the similarity matrix of population activity, we calculated the mean spike activity of individual
697 neurons across trials with different lick time ranges to yield a population activity matrix, with the number
698 of rows equal to the number of neurons and the number of columns equal to the number of time points (200
699 ms bin). For Fig. 3, we calculated pairwise Pearson’s correlation of these population activity matrices
700 between trials with lick times between 1.40 - 1.55 s (reference trials) and the trials with other lick time

701 ranges. For Fig. 5 and 6, we compared the pairwise Pearson's correlation between unperturbed trials with
702 lick times between 1.4 - 1.7 s (reference trials) and the photostimulation trials with lick times between 1.7~
703 2.0s). As a control, we subselected unperturbed trials with lick times closest to the median lick time in the
704 unperturbed condition (the number of trials was matched to the number of trials as in the photostimulation
705 condition). The choice of reference trials did not change results qualitatively. For each similarity matrix,
706 we identified the points along the Y-axis with the maximum correlation (above 0.8) for each time point,
707 and repeated this procedure with the hierarchical bootstrap (Fig. 3d, 3i, 5f, 5i, 6i and 6l).

708

709 *Single-cell analyses*

710 To plot the peri-stimulus time histogram (PSTH) of example cells, PSTHs were calculated based on 1 ms
711 time bin, and smoothed with a 200 ms causal boxcar filter unless specified otherwise. To temporally warp
712 PSTH for individual cells, we linearly scaled the spike timing after the cue, based on the time from cue to
713 lick. Specifically, $\text{Spike time}_{\text{warped}} = \text{Spike time}_{\text{original}} / (\text{LT}_{\text{trial to be warped}} / \text{LT}_{\text{target warp time}})$, where LT denotes
714 the first lick time in each trial, and $\text{LT}_{\text{target warp time}} = 1$ s.

715 Across-trial variance (Extended Data Fig. 4a-c) was calculated as the variance of spiking activity across
716 trials for the original or temporally warped data (the across-trial variance was calculated for five 200 ms
717 time windows after the cue and then averaged).

718 To quantify the number of cells that significantly increase/decrease spike rate before the lick compared to
719 baseline, trial-averaged spike rate of 0.2 - 0.5 s before the lick was compared with those 0 - 1 s before the
720 cue. Signed rank tests were performed to determine if the spike rate difference was significant.

721 To calculate the proportion of cells affected/unaffected by photostimulation (Fig. 5c, 6e, and Extended Data
722 Fig. 10), we analyzed the spikes within the time window of 50 - 250 ms from the photostimulation onset
723 time. To quantify the effect of photostimulation, trials with licks before the photostimulation onset time
724 were excluded from the analysis. For individual cells, the spike rate in control and photostimulation trials
725 was compared using the rank sum test. Cells with a mean spike rate above 1 Hz during this window and
726 more than 10 trials per condition were analyzed.

727 In Extended Data Fig. 4, we analyzed the partial rank correlation between the spike rate (in specific time
728 windows) and the lick time in previous trials, removing the effect of upcoming lick time, for each cell (we
729 only analyzed trials after rewarded trials to avoid confound caused by the representation of rewards;
730 analysis of previous unrewarded trials yielded similar results). Specifically, we calculated the rank
731 correlation between spike rate (R) vs. previous lick time (P) (ρ_{RP}), rank correlation between R vs.
732 upcoming lick time (U) (ρ_{RU}), and rank correlation between P and U (ρ_{PU}). Then the partial correlation
733 between spike rate vs. lick time in the previous trial removing the effect of upcoming lick time is as follows:

$$734 \quad \rho_{RP \cdot U} = \frac{\rho_{RP} - \rho_{RU} \cdot \rho_{PU}}{\sqrt{1 - \rho^2_{RU}} \sqrt{1 - \rho^2_{PU}}}$$

735 As controls, we performed a trial shuffle test, which shuffles the trial order and destroys trial history, and a
736 session permutation test to avoid the confound of nonsensical correlations (1000 iterations)⁵⁸. The
737 proportion of cells with a correlation higher than the chance level estimated by these controls is shown.

738 *Dimensionality reduction*

739 We characterized population activity patterns between the cue and the lick by defining modes that
740 differentiate the baseline activity during the inter-trial interval (ITI; 0 - 1 s before the cue) from the activity
741 during specific 300 ms time windows after the cue: 0 - 0.3 s after the cue (cue mode, **CM**), 0.5 - 0.8 s before
742 the lick (middle mode, **MM**), 0.2 - 0.5 s before the lick (ramp mode, **RM**), and 0 - 0.3 s after the lick
743 (execution mode, **EM**).

744

745 Specifically, to calculate **RM** for a population of n recorded neurons, we looked for an $n \times 1$ unit vector
746 that maximally distinguished the mean activity before the trial onset (0 - 1 s before cue; $\mathbf{r}_{\text{before cue}}$) and the
747 mean activity before the first lick (0.2 - 0.5 s before the first lick; $\mathbf{r}_{\text{before lick}}$) in the n -dimensional activity
748 space. We defined a population ramping vector: $\mathbf{w} = \mathbf{r}_{\text{before lick}} - \mathbf{r}_{\text{before cue}}$. **RM** is \mathbf{w} normalized by its norm.
749 Similarly, we defined **CM**, **MM**, **EM** using different time windows, and **MM** was orthogonalized to **RM**,
750 and **CM** was orthogonalized to both **MM** and **RM** using the Gram-Schmidt process. Thus, the upper limit
751 of the sum of variance explained (**CM+MM+RM**) in Extended Data Fig. 5 is 1. **EM** was orthogonalized
752 to **RM** (Extended Data Fig. 4j₃ and k₃).

753 To calculate the trial-history mode, we first calculated the rank correlation between the ITI activity (0 - 1 s
754 before the cue) and the predicted lick time across trials for each neuron. To predict the lick time for each
755 trial, we used the linear regression model described in Fig. 2d following 5-fold cross-validation. We
756 obtained an $n \times 1$ unit vector representing the rank correlation of each neuron and normalized it by its norm
757 to calculate the trial-history mode.

758 In Fig. 3, 4, and Extended Data Fig. 4 and 5, we have pooled cells recorded across sessions (i.e., pseudo-
759 sessions). For each cell, we randomly selected 50 unperturbed control trials to define the mode. These
760 unperturbed trials met the following criteria: the first lick occurred within 1 to 3 s after the cue, and there
761 were no licks 3 s before the cue onset. Then, we selected a different set of trials to project the activity along
762 these modes. Only neurons with more than 10 trials within all six lick time ranges were included. The six
763 lick time ranges are: 0.80 - 1.10, 1.10 - 1.25, 1.25 - 1.40, 1.40 - 1.55, 1.55 - 1.70, and 1.70 - 2.00 s.

764 To calculate the variance of spiking activity explained (variance explained) by individual modes (Extended
765 Data Fig. 5), we calculated the squared sum of the activity along individual modes after subtracting the
766 baseline activity (0 - 0.2 s before the cue), and then divided that by the squared sum of the spike rate across
767 neurons after subtracting the baseline activity. To calculate the variance explained by the sum of **CM**, **MM**,
768 and **RM** reported in the main text, we calculated the variance explained between 0.2s from cue (around
769 when task modulation started) to lick for individual lick time ranges and then averaged across them. We
770 calculated the variance explained by trial-history mode activity similarly but without subtraction of the
771 baseline activity (Extended Data Fig. 4j-l). In Extended Data Fig. 4m, we performed a linear regression
772 analysis between trial-history mode activity during 0 - 1 s before the cue and the upcoming lick time for
773 each iteration of the hierarchical bootstrap. We then plotted the distribution of the linear regression
774 coefficient (slope) across these iterations as a cumulative distribution function.

775 *Single session analyses*

776 For single-session analyses (Fig. 5g, and j, 6g, j, and m, Extended Data Fig. 9, 12, and 13), sessions with
777 more than 300 trials and five neurons were analyzed. Spiking activity was binned per 50 ms time window.
778 Activity between 1 s prior to the cue and the first lick in each trial was analyzed (i.e., post-lick activity was

779 excluded as we focused on timing dynamics prior to the first lick). Dimensionality reduction was performed
780 in the same manner as in the pseudo-session analysis, but modes were defined individually for each session.
781 For plots, lick time ranges that exist in at least two-thirds of the analyzed sessions were shown. Therefore,
782 the plotted lick time ranges vary depending on the manipulation conditions.

783
784 To decode the time to lick ($T_{\text{to lick}}$) from simultaneously recorded neural population activity, we conducted
785 a k-nearest neighbor (kNN) regression analysis. Within each experimental session, trials were partitioned
786 into two sets: a test set comprising randomly selected 100 unperturbed trials and all perturbed trials, and a
787 training set consisting of the remaining trials. For each moment in a test trial (50 ms window), we searched
788 all time points in the training set to identify k data points with the most similar population activity patterns
789 (Mahalanobis distance based on the top principal components explaining 90% of variance). To estimate the
790 time to lick of the test set, we averaged the time to lick in these k nearest neighbors. We tested “k” values
791 between 20 - 50 (which are close to the square root of the number of data points in the training dataset) and
792 found they yielded similar results and did not change conclusions (data not shown). In the paper, we report
793 the results with k = 30. Some sessions showed low decodability due to a small number of recorded neurons,
794 trials, and/or lack of task-modulated cells (Extended Data Fig. 6g). We analyzed sessions in which the kNN
795 decodability (Pearson’s correlation between decoded lick time at the perturbation onset time, i.e., 0.6 s after
796 the cue vs. actual lick time) was higher than 0.25.

797 To analyze the effect of perturbations systematically, we compared unperturbed vs. perturbed trials after
798 matching the number of trials and decoded time at the perturbation onset time (Extended Data Fig. 9a, c-d,
799 e, g-h, i, k-l, m and o-q, and 13c and f). Specifically, we randomly resampled animals, sessions, and trials
800 hierarchically (hierarchical bootstrap; 1000 iterations). For each perturbed trial in each bootstrap iteration,
801 we identified an unperturbed trial within the same session with the closest decoded time at the perturbation
802 onset time (0.6 s after the cue). Then, we pooled these trials. This procedure allowed us to examine how
803 decoded time (and projection along each mode) changed after the perturbation in conditions where their
804 activity patterns were similar before the perturbation.

805 For the two-dimensional plots and vector field analysis (Extended Data Fig. 12), we analyzed how activity
806 evolves in the two-dimensional space defined by RM and MM. Spiking activity was binned in 50 ms time
807 windows, and activity between the cue and the first lick in each trial was analyzed. For each session, we
808 projected the activity of ALM neurons along RM and MM. The projection was normalized by the standard
809 deviation of activity among control trials but was not subtracted by the mean so that 0 represents 0 spike
810 activity. For individual activity state (x) in control trials, we calculated the vector r_x^{control} representing the
811 direction activity evolves in the next time point (50 ms time bin) in the two-dimensional state. Then, we
812 calculated the mean vector for individual states in the two-dimensional space by averaging all vectors within
813 a spatial bin of 0.5 along both the MM- and RM- axes (if the spatial bin contains more than 30 data points):
814 r_{XY}^{control} , where X and Y denotes the location of the state along MM and RM axes, respectively. Similarly,
815 we acquired the vector field during inhibition by pooling all time points during inhibition (100 ms - 400 ms
816 from the inhibition onset) in photostimulation trials to acquire r_{XY}^{stim} . Then, we calculate the direction
817 between r_{XY}^{control} and r_{XY}^{stim} for all states where both control and stim vectors exist. We have excluded
818 points where r_{XY}^{control} is within $\pi/6$ from $\text{tanh}(Y/X)$ because if the activity is evolving against the zero point
819 under control conditions, we cannot distinguish between whether during inhibition the activity is rewinding
820 or moving toward the zero point.

821

822 **Network models**

823 Using a dynamical systems approach, we consider four variables representing the average membrane
824 currents (h) and spike rates ($r = f(h)$, where $f(h)$ is the neural activation function) of neuronal populations
825 in ALM and striatum. Conceptually, in these models, the striatum represents both connections within the
826 striatum and the subcortical loop via the thalamus, which is why there are excitatory connections. In these
827 models, the membrane potential of neuron i , $h_i(t)$, was governed by the following nonlinear differential
828 equation:

829
$$\tau \frac{dh_i(t)}{dt} = -h_i(t) + \sum W_{ij} r_j(t) + I_i^{base}(t) + I_i^{ext}(t) + I_i^{stim}(t)$$

830
$$r_i(t) = f(h_i(t))$$

831 Where τ is the membrane time constant (10 ms), W_{ij} is the element of the connectivity matrix between
832 presynaptic neuron j and postsynaptic neuron i , $I_i^{base}(t)$ is the baseline input current, $I_i^{ext}(t)$ is the external
833 input current, and $I_i^{stim}(t)$ is the negative current mediated by optogenetics to neuron i . The membrane
834 current $h_i(t)$ was converted to the spike rate by applying a threshold-linear activation function $f(h) =$
835 $\max(h, 0)$.

836 For integrators mediated by a positive feedback loop (Extended Data Fig. 1), we modeled two neurons in
837 each brain area. The baseline input currents were chosen so that the system displays a stable fixed point at
838 a low spike rate (lower attractor) with a spike rate of 5 spikes per second, consistent with the baseline firing
839 rate observed in the experimental data. The connectivity matrix W and the external input $I^{ext}(t)$ are shown
840 in Extended Data Fig. 1. In these models, temporal integration is mediated by a continuous attractor,
841 achieved by having an eigenvalue of 1 in the connectivity matrix. For each area, we defined the ramp mode
842 using the same criteria as in the experimental data, and we then plotted spike rate activity along the ramp
843 mode (Extended Data Fig. 1).

844 We tested models with different connectivity matrices reflecting distinct computational roles of ALM and
845 striatum (Extended Data Fig. 1). In the *externally driven* model (Extended Data Fig. 1a), ALM received a
846 ramping input that scaled with the desired lick times, progressively shifting the location of the fixed point
847 in time. In the *distributed* model (Extended Data Fig. 1b), integration was achieved only when interareal
848 connections between ALM and striatum exists; in the absence of these long-range connections, neither
849 ALM nor striatum displayed slow temporal dynamics. Conversely, in the *redundant* model, ALM and
850 striatum implemented two identical integrators (Extended Data Fig. 1c). Although weakly connected, their
851 behavior was independent of each other's input. In the *specialized ALM integrator* model (Extended Data
852 Fig. 1d), ALM served as the integrator while the striatum followed ALM dynamics. In the *specialized ALM*
853 *leaky integrator* model (Extended Data Fig. 1e), ALM integrated the input with substantial leakiness. While
854 this model replicated the rewinding effect of striatal inhibition, it failed to reproduce the effect of ALM
855 silencing. The model that best matched the neural dynamics observed in our data featured the striatum as a
856 perfect integrator and the ALM as a crucial input region (*specialized striatum integrator*, Extended Data
857 Fig. 1f).

858 To mimic transient perturbation experiments, the negative current was introduced at 0.6 s after the cue and
859 lasted for 0.6 s, including a 300 ms ramp down. For prolonged perturbations, the negative current was
860 applied throughout the trial without a ramp-down. To simulate ALM silencing, both ALM neurons (A1 and
861 A2 in Extended Data Fig. 1) received a negative current $I^{stim}(t) = -10$. To stimulate D1-SPN inhibition,
862 we injected a negative current into one of the striatum neurons (S1). To maintain similar perturbation effects
863 on striatal ramp mode activity across different conditions, the negative current for D1-SPN inhibition was
864 varied across models as follows: -0.3, -0.1, -0.1, -0.2, -0.02, and -0.03 for Extended Data Fig. 1a-f,
865 respectively.

866 For integrators mediated by recurrent networks with feedforward connections (Extended Data Fig. 11), we
867 modeled four neurons in each area. In these models, recurrent connections in each recurrent stage are not
868 strong enough to generate ramping activity from a step input, and FF connections between stages are
869 essential to amplify the slow time constant and generate ramping activity. To implement temporal scaling,
870 we provided a global inhibition to neurons in the FF network, i.e., $I_i^{base}(t)$ was set to negative. This allows
871 activity to propagate from one neuron to another when the effect of excitatory input exceeds this inhibition.
872 Consequently, the speed of dynamics is controlled by the strength of step input into the network. The
873 connectivity matrix W is shown in Extended Data Fig. 11. Transient perturbations were simulated similarly
874 to the positive feedback network. For ALM complete silencing $I^{stim}(t) = -10$ was injected into all ALM
875 neurons. To simulate D1-SPN inhibition, a negative current was injected into half of the striatal neurons
876 (s2 and s3; the result did not change regardless of the choice of two inhibited neurons). To maintain similar
877 perturbation effects on striatal ramp mode activity across different conditions, the negative current for D1-
878 SPN inhibition was varied across models as follows: -5, -5, -100, and -2.5 for Extended Data Fig. 11d-g,
879 respectively. For each area, we defined the ramp and other modes using the same criteria as in the
880 experimental data, and we then plotted spike rate activity along these modes.

881 **Statistics**

882 The sample sizes are similar to the sample sizes used in the field. No statistical methods were used to
883 determine the sample size. During spike sorting, experimenters could not tell the trial type and, therefore,
884 were blind to conditions. All *signed rank* and *rank sum* tests were two-sided. All bootstrap was done over
885 1,000 iterations.

886

887 **Reagent and data availability**

888 The recording data in NWB format will be shared on DANDI at the time of publication. Codes will be
889 available at https://github.com/inagaki-lab/Yang_et_al_2024.

890 REFERENCES

891

892 1. Bateson, M. Interval timing and optimal foraging. in *Functional and neural mechanisms of*
893 *interval timing* 113–141 (CRC Press/Routledge/Taylor & Francis Group, Boca Raton, FL,
894 US, 2003). doi:10.1201/9780203009574.ch5.

895 2. Caro, T. M. *Antipredator Defenses in Birds and Mammals*. (University of Chicago Press,
896 2005).

897 3. Henderson, J., Hurly, T. A., Bateson, M. & Healy, S. D. Timing in free-living rufous
898 *hummingbirds, Selasphorus rufus*. *Curr. Biol. CB* **16**, 512–515 (2006).

899 4. Buhusi, C. V. & Meck, W. H. What makes us tick? Functional and neural mechanisms of
900 interval timing. *Nat. Rev. Neurosci.* **6**, 755–765 (2005).

901 5. Mauk, M. D. & Buonomano, D. V. The Neural Basis of Temporal Processing. *Annu. Rev.*
902 *Neurosci.* **27**, 307–340 (2004).

903 6. Paton, J. J. & Buonomano, D. V. The Neural Basis of Timing: Distributed Mechanisms for
904 Diverse Functions. *Neuron* **98**, 687–705 (2018).

905 7. Merchant, H., Harrington, D. L. & Meck, W. H. Neural Basis of the Perception and
906 Estimation of Time. *Annu. Rev. Neurosci.* **36**, 313–336 (2013).

907 8. Tsao, A., Yousefzadeh, S. A., Meck, W. H., Moser, M.-B. & Moser, E. I. The neural bases
908 for timing of durations. *Nat. Rev. Neurosci.* **23**, 646–665 (2022).

909 9. Remington, E. D., Egger, S. W., Narain, D., Wang, J. & Jazayeri, M. A Dynamical Systems
910 Perspective on Flexible Motor Timing. *Trends Cogn. Sci.* **22**, 938–952 (2018).

911 10. Wang, J., Narain, D., Hosseini, E. A. & Jazayeri, M. Flexible timing by temporal scaling of
912 cortical responses. *Nat. Neurosci.* **21**, 102–110 (2018).

913 11. Romo, R. & Schultz, W. Role of primate basal ganglia and frontal cortex in the internal
914 generation of movements. *Exp. Brain Res.* **91**, 396–407 (1992).

915 12. Tanji, J. & Evarts, E. V. Anticipatory activity of motor cortex neurons in relation to direction
916 of an intended movement. *J. Neurophysiol.* **39**, 1062–1068 (1976).

917 13. Kunifuji, J., Suzuki, T. W., Ohmae, S. & Tanaka, M. Different contributions of preparatory
918 activity in the basal ganglia and cerebellum for self-timing. *eLife* **7**, e35676 (2018).

919 14. Thura, D. & Cisek, P. The Basal Ganglia Do Not Select Reach Targets but Control the
920 Urgency of Commitment. *Neuron* **95**, 1160–1170.e5 (2017).

921 15. Narayanan, N. S. Ramping activity is a cortical mechanism of temporal control of action.
922 *Curr. Opin. Behav. Sci.* **8**, 226–230 (2016).

923 16. Murakami, M., Vicente, M. I., Costa, G. M. & Mainen, Z. F. Neural antecedents of self-
924 initiated actions in secondary motor cortex. *Nat. Neurosci.* **17**, 1574–1582 (2014).

925 17. Bakhurin, K. I. *et al.* Differential Encoding of Time by Prefrontal and Striatal Network
926 Dynamics. *J. Neurosci.* **37**, 854–870 (2017).

927 18. Emmons, E. B. *et al.* Rodent Medial Frontal Control of Temporal Processing in the
928 Dorsomedial Striatum. *J. Neurosci.* **37**, 8718–8733 (2017).

929 19. Inagaki, H. K. *et al.* Neural Algorithms and Circuits for Motor Planning. *Annu. Rev. Neurosci.*
930 **45**, 249–271 (2022).

931 20. Vyas, S., Golub, M. D., Sussillo, D. & Shenoy, K. V. Computation Through Neural
932 Population Dynamics. *Annu. Rev. Neurosci.* **43**, 249–275 (2020).

933 21. Cunningham, J. P. & Yu, B. M. Dimensionality reduction for large-scale neural recordings.
934 *Nat. Neurosci.* **17**, 1500–1509 (2014).

935 22. Khona, M. & Fiete, I. R. Attractor and integrator networks in the brain. *Nat. Rev. Neurosci.*
936 **23**, 744–766 (2022).

937 23. Aksay, E. *et al.* Functional dissection of circuitry in a neural integrator. *Nat. Neurosci.* **10**,
938 494–504 (2007).

939 24. Simen, P., Balci, F., deSouza, L., Cohen, J. D. & Holmes, P. A Model of Interval Timing by
940 Neural Integration. *J. Neurosci.* **31**, 9238–9253 (2011).

941 25. Seung, H. S. How the brain keeps the eyes still. *Proc. Natl. Acad. Sci.* **93**, 13339–13344
942 (1996).

943 26. Lim, S. & Goldman, M. S. Balanced cortical microcircuitry for maintaining information in
944 working memory. *Nat. Neurosci.* **16**, 1306–1314 (2013).

945 27. Cannon, S. C., Robinson, D. A. & Shamma, S. A proposed neural network for the integrator
946 of the oculomotor system. *Biol. Cybern.* **49**, 127–136 (1983).

947 28. Wong, K.-F. & Wang, X.-J. A Recurrent Network Mechanism of Time Integration in
948 Perceptual Decisions. *J. Neurosci.* **26**, 1314–1328 (2006).

949 29. Balci, F. & Simen, P. A decision model of timing. *Curr. Opin. Behav. Sci.* **8**, 94–101 (2016).

950 30. Gold, J. I. & Shadlen, M. N. The Neural Basis of Decision Making. *Annu. Rev. Neurosci.* **30**,
951 535–574 (2007).

952 31. Murakami, M., Shteingart, H., Loewenstein, Y. & Mainen, Z. F. Distinct Sources of
953 Deterministic and Stochastic Components of Action Timing Decisions in Rodent Frontal
954 Cortex. *Neuron* **94**, 908–919.e7 (2017).

955 32. Xie, T., Huang, C., Zhang, Y., Liu, J. & Yao, H. Influence of Recent Trial History on Interval
956 Timing. *Neurosci. Bull.* **39**, 559–575 (2023).

957 33. Bakhurin, K. I. *et al.* Opponent regulation of action performance and timing by striatonigral
958 and striatopallidal pathways. *eLife* **9**, e54831 (2020).

959 34. Gouvêa, T. S. *et al.* Striatal dynamics explain duration judgments. *eLife* **4**, e11386 (2015).

960 35. Buhusi, C. V., Reyes, M. B., Gathers, C.-A., Oprisan, S. A. & Buhusi, M. Inactivation of the
961 Medial-Prefrontal Cortex Impairs Interval Timing Precision, but Not Timing Accuracy or
962 Scalar Timing in a Peak-Interval Procedure in Rats. *Front. Integr. Neurosci.* **12**, (2018).

963 36. Monteiro, T. *et al.* Using temperature to analyze the neural basis of a time-based decision.
964 *Nat. Neurosci.* **26**, 1407–1416 (2023).

965 37. Kim, J., Jung, A. H., Byun, J., Jo, S. & Jung, M. W. Inactivation of medial prefrontal cortex
966 impairs time interval discrimination in rats. *Front. Behav. Neurosci.* **3**, 38 (2009).

967 38. Wolff, S. B. E., Ko, R. & Ölveczky, B. P. Distinct roles for motor cortical and thalamic inputs
968 to striatum during motor skill learning and execution. *Sci. Adv.* **8**, eabk0231 (2022).

969 39. Tunes, G. C. *et al.* Time encoding migrates from prefrontal cortex to dorsal striatum during
970 learning of a self-timed response duration task. *eLife* **11**, e65495.

971 40. Bruce, R. A. *et al.* Complementary cognitive roles for D2-MSNs and D1-MSNs in interval

972 timing. *eLife* **13**, (2024).

973 41. Banerjee, A., Chen, F., Druckmann, S. & Long, M. A. Temporal scaling of motor cortical
974 dynamics reveals hierarchical control of vocal production. *Nat. Neurosci.* **27**, 527–535
975 (2024).

976 42. Wolff, S. B. & Ölveczky, B. P. The promise and perils of causal circuit manipulations. *Curr.*
977 *Opin. Neurobiol.* **49**, 84–94 (2018).

978 43. Jazayeri, M. & Afraz, A. Navigating the Neural Space in Search of the Neural Code. *Neuron*
979 **93**, 1003–1014 (2017).

980 44. Li, N., Daie, K., Svoboda, K. & Druckmann, S. Robust neuronal dynamics in premotor cortex
981 during motor planning. *Nature* **532**, 459–464 (2016).

982 45. Inagaki, H. K., Fontolan, L., Romani, S. & Svoboda, K. Discrete attractor dynamics underlies
983 persistent activity in the frontal cortex. *Nature* **566**, 212–217 (2019).

984 46. Boucher, P. O. *et al.* Initial conditions combine with sensory evidence to induce decision-
985 related dynamics in premotor cortex. *Nat. Commun.* **14**, 6510 (2023).

986 47. Zhao, S. *et al.* Cell-type Specific Optogenetic Mice for Dissecting Neural Circuitry Function.
987 *Nat. Methods* **8**, 745–752 (2011).

988 48. Guo, Z. V. *et al.* Flow of Cortical Activity Underlying a Tactile Decision in Mice. *Neuron* **81**,
989 179–194 (2014).

990 49. Zhou, S., Masmanidis, S. C. & Buonomano, D. V. Neural Sequences as an Optimal
991 Dynamical Regime for the Readout of Time. *Neuron* **108**, 651-658.e5 (2020).

992 50. Mello, G. B. M., Soares, S. & Paton, J. J. A Scalable Population Code for Time in the
993 Striatum. *Curr. Biol.* **25**, 1113–1122 (2015).

994 51. Jazayeri, M. & Shadlen, M. N. A Neural Mechanism for Sensing and Reproducing a Time
995 Interval. *Curr. Biol.* **25**, 2599–2609 (2015).

996 52. Tanaka, M. Cognitive Signals in the Primate Motor Thalamus Predict Saccade Timing. *J.*
997 *Neurosci.* **27**, 12109–12118 (2007).

998 53. Hintiryan, H. *et al.* The mouse cortico-striatal projectome. *Nat. Neurosci.* **19**, 1100–1114
999 (2016).

1000 54. Hunnicutt, B. J. *et al.* A comprehensive excitatory input map of the striatum reveals novel
1001 functional organization. *eLife* **5**, e19103.

1002 55. Tang, Y. *et al.* *Opposing Regulation of Short-Term Memory by Basal Ganglia Direct and*
1003 *Indirect Pathways That Are Coactive during Behavior.*
1004 <http://biorxiv.org/lookup/doi/10.1101/2021.12.15.472735> (2021)
1005 doi:10.1101/2021.12.15.472735.

1006 56. Jun, J. J. *et al.* Fully integrated silicon probes for high-density recording of neural activity.
1007 *Nature* **551**, 232–236 (2017).

1008 57. Peters, A. J., Fabre, J. M. J., Steinmetz, N. A., Harris, K. D. & Carandini, M. Striatal activity
1009 topographically reflects cortical activity. *Nature* **591**, 420–425 (2021).

1010 58. Harris, K. D. Nonsense correlations in neuroscience. 2020.11.29.402719 Preprint at
1011 <https://doi.org/10.1101/2020.11.29.402719> (2021).

1012 59. Li, N. *et al.* Spatiotemporal constraints on optogenetic inactivation in cortical circuits. *eLife* **8**,
1013 e48622 (2019).

1014 60. Guo, J.-Z. *et al.* Cortex commands the performance of skilled movement. *eLife* **4**, e10774
1015 (2015).

1016 61. Jeurissen, D., Shushruth, S., El-Shamayleh, Y., Horwitz, G. D. & Shadlen, M. N. Deficits in
1017 decision-making induced by parietal cortex inactivation are compensated at two timescales.
1018 *Neuron* **110**, 1924-1931.e5 (2022).

1019 62. Bao, C. *et al.* The rat frontal orienting field dynamically encodes value for economic
1020 decisions under risk. *Nat. Neurosci.* **26**, 1942–1952 (2023).

1021 63. Bari, B. A. *et al.* Stable Representations of Decision Variables for Flexible Behavior. *Neuron*
1022 **103**, 922-933.e7 (2019).

1023 64. Findling, C. *et al.* Brain-wide representations of prior information in mouse decision-making.
1024 2023.07.04.547684 Preprint at <https://doi.org/10.1101/2023.07.04.547684> (2023).

1025 65. Hattori, R. & Komiyama, T. Context-dependent persistency as a coding mechanism for
1026 robust and widely distributed value coding. *Neuron* **110**, 502-515.e11 (2022).

1027 66. Akrami, A., Kopec, C. D., Diamond, M. E. & Brody, C. D. Posterior parietal cortex represents
1028 sensory history and mediates its effects on behaviour. *Nature* **554**, 368–372 (2018).

1029 67. Goldman, M. S. Memory without Feedback in a Neural Network. *Neuron* **61**, 621–634
1030 (2009).

1031 68. Brown, L. S. *et al.* Neural circuit models for evidence accumulation through choice-selective
1032 sequences. 2023.09.01.555612 Preprint at <https://doi.org/10.1101/2023.09.01.555612>
1033 (2024).

1034 69. Daie, K., Fontolan, L., Druckmann, S. & Svoboda, K. Feedforward amplification in recurrent
1035 networks underlies paradoxical neural coding. 2023.08.04.552026 Preprint at
1036 <https://doi.org/10.1101/2023.08.04.552026> (2023).

1037 70. Gerfen, C. R. & Surmeier, D. J. Modulation of Striatal Projection Systems by Dopamine.
1038 *Annu. Rev. Neurosci.* **34**, 441–466 (2011).

1039 71. DeLong, M. R. Primate models of movement disorders of basal ganglia origin. *Trends
1040 Neurosci.* **13**, 281–285 (1990).

1041 72. Kravitz, A. V. *et al.* Regulation of parkinsonian motor behaviours by optogenetic control of
1042 basal ganglia circuitry. *Nature* **466**, 622–626 (2010).

1043 73. Govorunova, E. G., Sineshchekov, O. A., Janz, R., Liu, X. & Spudich, J. L.
1044 NEUROSCIENCE. Natural light-gated anion channels: A family of microbial rhodopsins for
1045 advanced optogenetics. *Science* **349**, 647–650 (2015).

1046 74. Gerfen, C. R., Paletzki, R. & Heintz, N. GENSAT BAC Cre-recombinase driver lines to study
1047 the functional organization of cerebral cortical and basal ganglia circuits. *Neuron* **80**,
1048 10.1016/j.neuron.2013.10.016 (2013).

1049 75. Pisanello, F. *et al.* Dynamic illumination of spatially restricted or large brain volumes via a
1050 single tapered optical fiber. *Nat. Neurosci.* **20**, 1180–1188 (2017).

1051 76. Mahn, M. *et al.* High-efficiency optogenetic silencing with soma-targeted anion-conducting
1052 channelrhodopsins. *Nat. Commun.* **9**, 4125 (2018).

1053 77. Messier, J. E., Chen, H., Cai, Z.-L. & Xue, M. Targeting light-gated chloride channels to
1054 neuronal somatodendritic domain reduces their excitatory effect in the axon. *eLife* **7**, e38506
1055 (2018).

1056 78. Shin, J. H., Kim, D. & Jung, M. W. Differential coding of reward and movement information
1057 in the dorsomedial striatal direct and indirect pathways. *Nat. Commun.* **9**, 404 (2018).

1058 79. Okobi, D. E., Banerjee, A., Matheson, A. M. M., Phelps, S. M. & Long, M. A. Motor cortical
1059 control of vocal interaction in neotropical singing mice. *Science* **363**, 983–988 (2019).

1060 80. Wang, T.-Y., Liu, J. & Yao, H. Control of adaptive action selection by secondary motor
1061 cortex during flexible visual categorization. *eLife* **9**, e54474 (2020).

1062 81. Brody, C. D. & Hanks, T. D. Neural underpinnings of the evidence accumulator. *Curr. Opin.*
1063 *Neurobiol.* **37**, 149–157 (2016).

1064 82. Erlich, J. C., Brunton, B. W., Duan, C. A., Hanks, T. D. & Brody, C. D. Distinct effects of
1065 prefrontal and parietal cortex inactivations on an accumulation of evidence task in the rat.
1066 *eLife* **4**, e05457 (2015).

1067 83. Yartsev, M. M., Hanks, T. D., Yoon, A. M. & Brody, C. D. Causal contribution and dynamical
1068 encoding in the striatum during evidence accumulation. *eLife* **7**, e34929 (2018).

1069 84. Kao, T.-C., Sadabadi, M. S. & Hennequin, G. Optimal anticipatory control as a theory of
1070 motor preparation: A thalamo-cortical circuit model. *Neuron* **109**, 1567–1581.e12 (2021).

1071 85. Mandelbaum, G. *et al.* Distinct Cortical-Thalamic-Striatal Circuits through the Parafascicular
1072 Nucleus. *Neuron* **102**, 636–652.e7 (2019).

1073 86. Lee, K. *et al.* Gain Modulation by Corticostriatal and Thalamostriatal Input Signals during
1074 Reward-Conditioned Behavior. *Cell Rep.* **29**, 2438–2449.e4 (2019).

1075 87. Zhao, S. *et al.* Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic
1076 dissection of neural circuitry function. *Nat. Methods* **8**, 745–752 (2011).

1077 88. Li, N. *et al.* Spatiotemporal constraints on optogenetic inactivation in cortical circuits. *eLife* **8**,
1078 e48622 (2019).

1079 89. Guo, Z. V. *et al.* Procedures for Behavioral Experiments in Head-Fixed Mice. *PLOS ONE* **9**,
1080 e88678 (2014).

1081 90. Majumder, S. *et al.* Cell-type-specific plasticity shapes neocortical dynamics for motor
1082 learning. 2023.08.09.552699 Preprint at <https://doi.org/10.1101/2023.08.09.552699> (2023).

1083 91. Liu, L. D., Chen, S., Economo, M. N., Li, N. & Svoboda, K. Accurate localization of linear
1084 probe electrodes across multiple brains. Preprint at
1085 <https://doi.org/10.1101/2020.02.25.965210> (2020).

1086 92. Inagaki, H. K. *et al.* A midbrain-thalamus-cortex circuit reorganizes cortical dynamics to
1087 initiate movement. *Cell* **185**, 1065–1081.e23 (2022).

1088 93. Hsu, C.-W. *et al.* EZ Clear for simple, rapid, and robust mouse whole organ clearing. *eLife*
1089 **11**, e77419 (2022).

1090 94. Guo, Z. V. *et al.* Maintenance of persistent activity in a frontal thalamocortical loop. *Nature*
1091 **545**, 181–186 (2017).

1092 95. Çavdaroglu, B., Zeki, M. & Balcı, F. Time-based reward maximization. *Philos. Trans. R.*
1093 *Soc. B Biol. Sci.* **369**, 20120461 (2014).

1094 96. Freestone, D. M., Balcı, F., Simen, P. & Church, R. M. Optimal response rates in humans
1095 and rats. *J. Exp. Psychol. Anim. Learn. Cogn.* **41**, 39–51 (2015).

1096 97. Balcı, F. *et al.* Optimal Temporal Risk Assessment. *Front. Integr. Neurosci.* **5**, (2011).

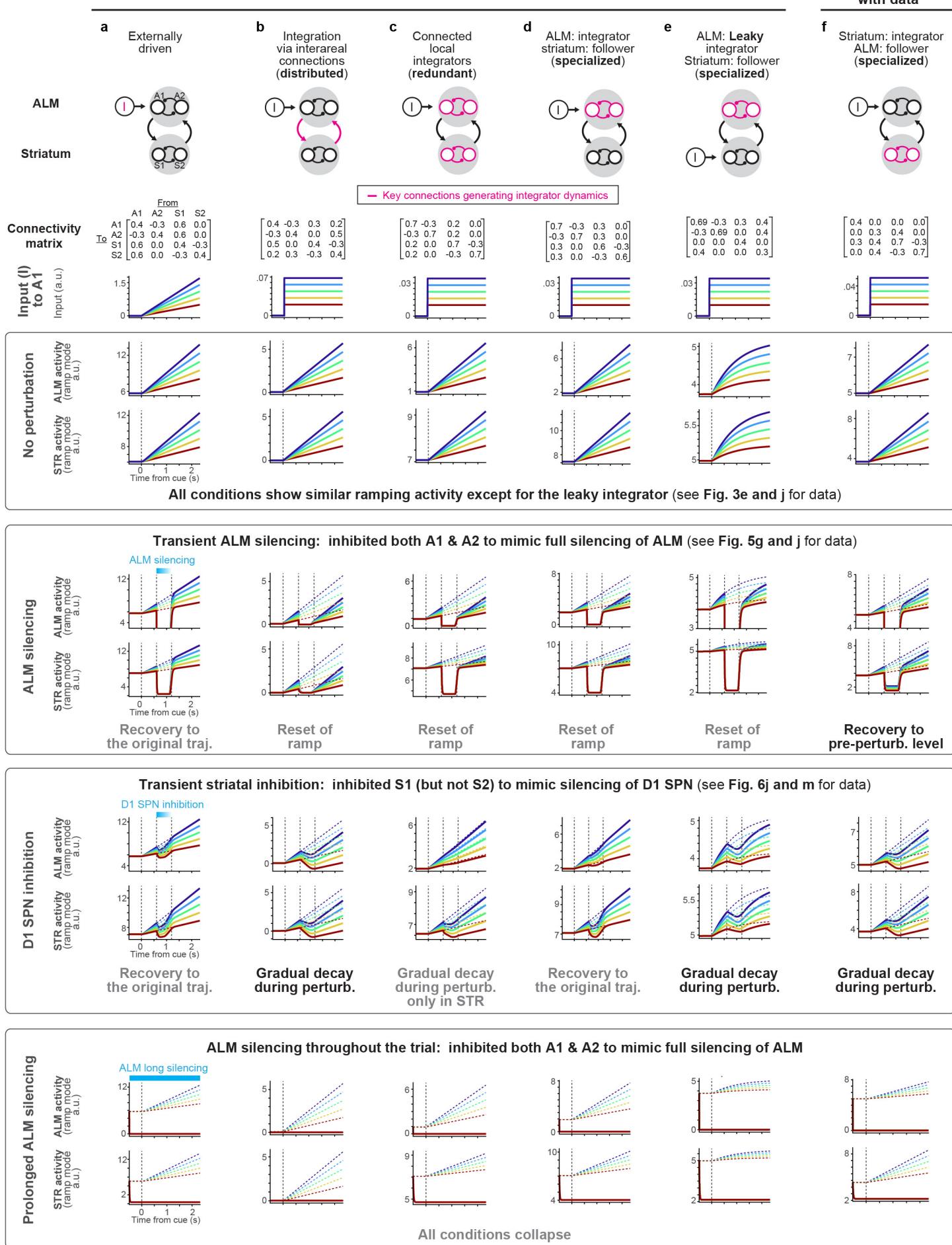
1097 98. Mathis, A. *et al.* DeepLabCut: markerless pose estimation of user-defined body parts with
1098 deep learning. *Nat. Neurosci.* **21**, 1281–1289 (2018).

1099 99. Jun, J. J. *et al.* Real-time spike sorting platform for high-density extracellular probes with
1100 ground-truth validation and drift correction. Preprint at <https://doi.org/10.1101/101030>
1101 (2017).

1102 100. Kheifets, A. & Gallistel, C. R. Mice take calculated risks. *Proc. Natl. Acad. Sci.* **109**,
1103 8776–8779 (2012).

1104 101. Mitchell, S. H. Assessing delay discounting in mice. *Curr. Protoc. Neurosci. Editor.*
1105 *Board Jacqueline N Crawley Al* **66**, 8.30.1-8.30.12 (2014).

1106 102. Gibbon, J. Scalar expectancy theory and Weber's law in animal timing. *Psychol. Rev.*
1107 **84**, 279–325 (1977).

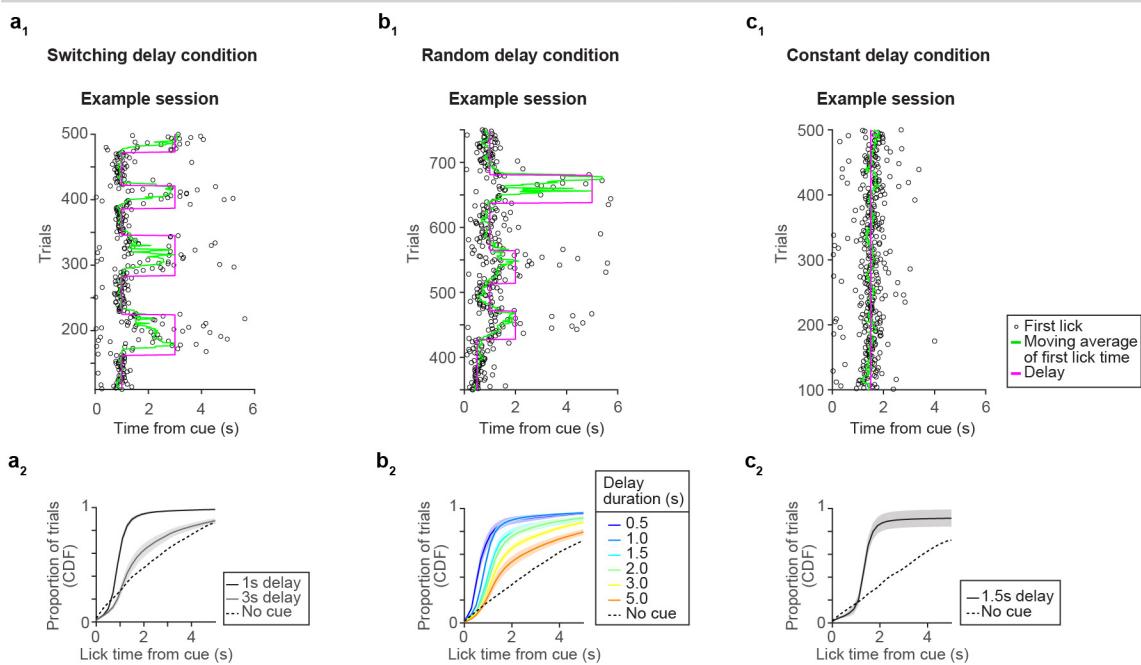


1108 **Extended Data Fig 1. Two-regional network models replicating the ramping activity in ALM and**
1109 **striatum**

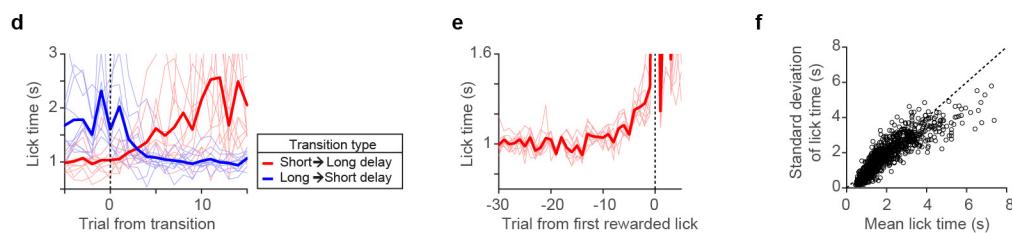
1110 Multi-regional network models of ALM and striatum: both regions contain two neurons and exhibit
1111 ramping activity with temporal scaling as in Fig. 3. Additionally, step input mimicking the trial-history
1112 mode activity is provided to ALM (except for e; most models yield consistent results even if we provide
1113 the input to the striatum, and thus only one configuration is shown). The network configuration, i.e., the
1114 connectivity matrix, varies across models, leading to a different location(s) of the integrator(s) and various
1115 responses to transient perturbations. ALM silencing was implemented by silencing both neurons in ALM,
1116 and striatal inhibition was implemented by silencing one of the striatal neurons (mimicking the silencing of
1117 D1 SPNs). Note that prolonged silencing does not distinguish between models (bottom row), underscoring
1118 that transient perturbation with concurrent multi-regional recording is essential to differentiate models.
1119

1120 a. Externally driven model. 1st row, schema of the model, and the connectivity matrix used for the
1121 simulation. 2nd row, input (I) into the network. 3rd and 4th row, ALM and striatal ramp mode activity
1122 without perturbation. 5th and 6th row, ALM and striatal ramp mode activity during transient ALM
1123 silencing (the ALM activity along the ramp mode was cropped for visualization purposes. In all cases,
1124 ALM activity during ALM silencing decreased to 0). 7th and 8th row, ALM and striatal ramp mode
1125 activity during transient striatum inhibition. 9th and 10th row, ALM and striatal ramp mode activity
1126 during prolonged ALM silencing throughout the trial. Dashed lines, control conditions overlaid.

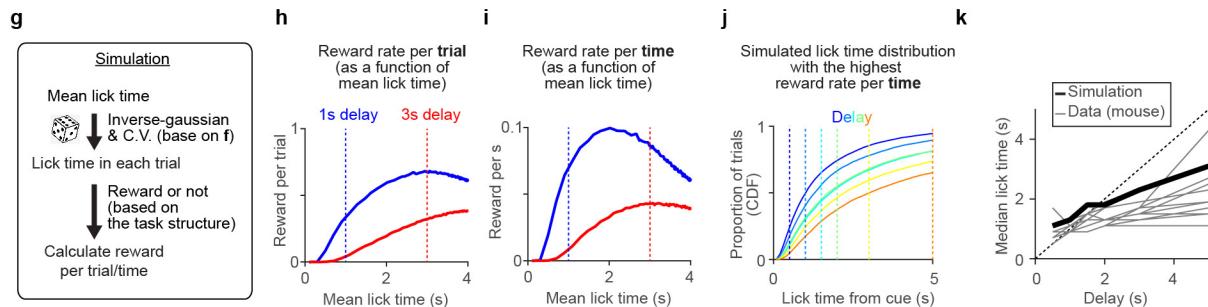
1127 b. Same as in a but for integration via interareal connections (distributed) model.
1128 c. Same as in a but for coupled local integrators (redundant) model.
1129 d. Same as in a but for ALM being the integrator and striatum being the follower (specialized) model.
1130 e. Same as in a but for ALM being a leaky integrator and striatum being the follower (specialized) model.
1131 This model replicates the rewinding of ALM and striatum dynamics during striatal inhibition (where
1132 rewinding is caused by the loss of input to the leaky integrator) but cannot reproduce the effect of ALM
1133 silencing.
1134 f. Same as in a but for striatum being the integrator and ALM being the follower (specialized) model that
1135 replicates the data.



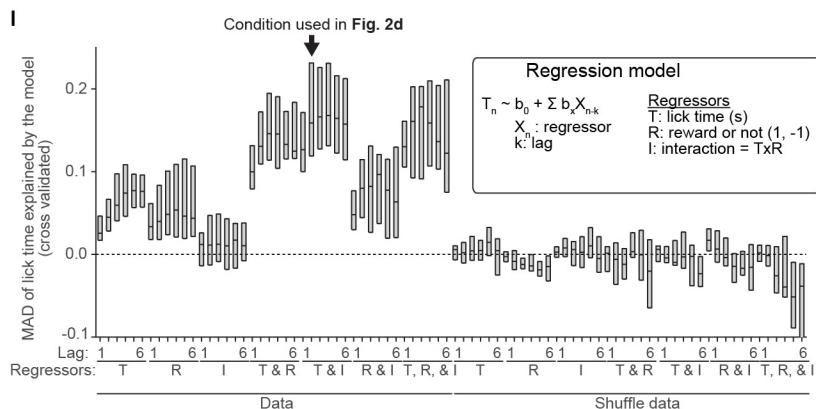
Transition in the switching delay condition (d & e) and scalar property (f)



Simulation of lick time distribution



Regression analysis



1136 **Extended Data Fig 2. Characterization of the lick time distribution in the lick-timing task**

1137 We either changed the delay duration in blocks of trials (**a**, switching delay condition, when switching
1138 between two delays; **b**, random delay condition, when switching across multiple delays) or kept the delay
1139 identical across sessions/trials (**c**, constant delay condition). When delays switched, mice adjusted their lick
1140 times within 10 trials (**d**, **e**). The lick time distribution exhibited scalar properties, similar to many other
1141 timing tasks across species (**f**). Mice often licked earlier than the delay duration, not maximizing reward
1142 per trial. However, this lick time distribution (especially in the best-performing mice) is close to the
1143 simulated distribution that maximizes the reward amount per time, given the short inter-trial interval and
1144 the inverse normal distribution of lick times^{95–97,100,101} (**g–k**, Methods). 42 regression models were screened
1145 to identify the best model explaining the lick time (**l**).

1146

1147 **a.** Lick time distribution under switching delay condition. Example session (**a1**). Cumulative distribution
1148 of lick time in 1 s and 3 s delay blocks (**a2**). Duplicated from Figure 2bc for comparison.

1149 **b.** Same as in **a** but for the random delay condition. n = 276 sessions, 17 mice.

1150 **c.** Same as in **a** but for the constant delay condition. n = 71 sessions, 13 mice.

1151 **d.** Change in lick time after transitioning between 1 and 3 s delay blocks. 0, last trial before delay
1152 transition. Thick lines, the mean across mice. Thin lines, individual mice (n = 10 mice).

1153 **e.** Change in lick time before the first rewarded lick following transitions from a short to a long delay.
1154 Thick line, the mean across mice. Thin lines, individual mice (n = 10 mice).

1155 **f.** Relationship between the mean and the standard deviation of lick time. Circles, individual sessions (n
1156 = 153 sessions, 30 mice). The mean and standard deviation of lick time are correlated, consistent with
1157 scalar properties reported across species¹⁰².

1158 **g.** Simulated lick time distribution following an inverse-Gaussian distribution and coefficient of variation
1159 (CV) in **f**. Subsequently, based on the task structure, we calculated the reward rate (Methods).

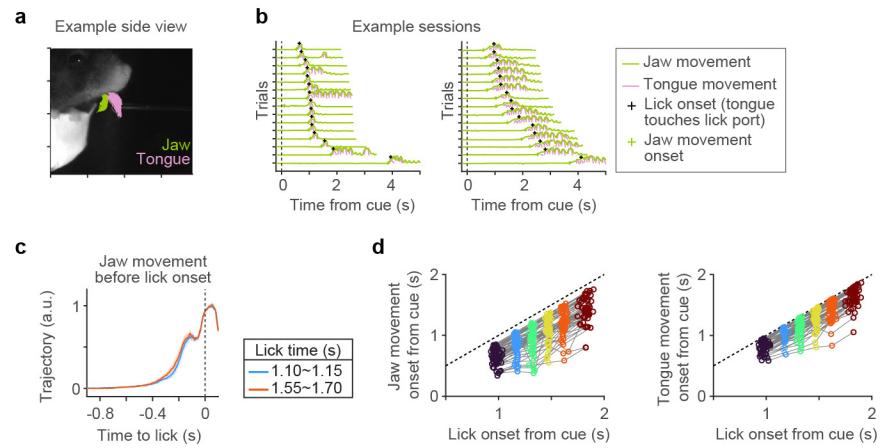
1160 **h.** Simulated reward rate per **trial** as a function of mean lick time in 1 s delay block (blue) and 3 s delay
1161 block (red).

1162 **i.** Simulated reward rate per **time** as a function of mean lick time. Note that the peak reward rate is attained
1163 with a shorter mean lick time compared to that in **h**.

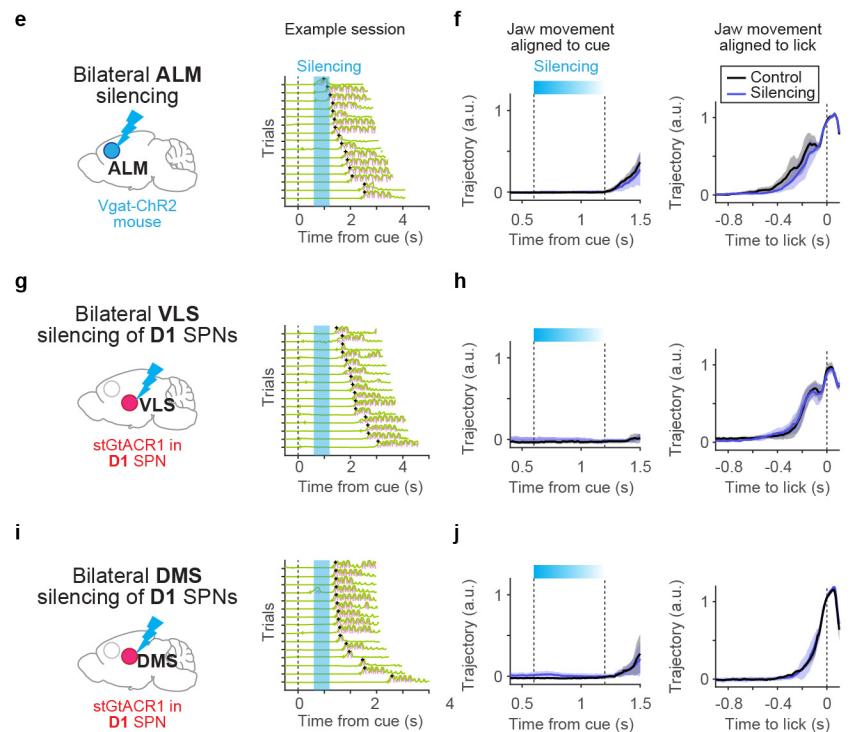
1164 **j.** Following the procedure described in **g** and **i**, we estimated the optimal mean lick time that yielded the
1165 highest reward rate per unit of time for each delay duration (delay duration is indicated by colored
1166 vertical dotted lines). We plotted the distribution of simulated lick times in these conditions. Note that
1167 in a large proportion of trials, the licks occurred before the end of the delay period, replicating what
1168 was observed in the data.

1169 **k.** Thick line, the median lick time of simulated optimal lick time distribution in **j**. Thin lines, experimental
1170 data (individual mice). The optimal lick time appears to align with the upper limit of the experimental
1171 data.

1172 **l.** Median absolute deviation (MAD) of lick time explained by different trial-history regression models
1173 following cross-validation under the random delay condition (n = 276 sessions, 17 mice; results were
1174 consistent in the switching delay condition). Regressors and lags in each model are indicated at the
1175 bottom. Arrow, the condition that best explained the data (Fig. 2d). The central line in the box plot,
1176 median. Top and bottom edges, 75% and 25% points.



Optogenetic manipulations do not induce abnormal orofacial movement



Extended Data Fig. 3

1177 **Extended Data Fig 3. Characterization of orofacial movements in the lick-timing task**
1178 Jaw and tongue movements were tracked using high-speed videography and DeepLabCut⁹⁸ (**a**; Methods).
1179 This revealed that mice adjusted lick times (detected by contact of the tongue with the lick port) by
1180 controlling the onset rather than the speed of tongue/jaw movements (**b-d**). Additionally, we did not detect
1181 any abnormal movements during/after ALM silencing (**e, f**), VLS inhibition (**g, h**), and DMS inhibition (**i,**
1182 **j**).

1183

1184 **a.** An example side view clip of a mouse. Movement of the jaw (green) and tongue (purple) were tracked.
1185 Trajectories of individual trials are overlaid.

1186 **b.** Vertical jaw (green) and tongue (purple) movements in two example sessions. The left session is from
1187 the animal shown in **a**. 15 randomly selected trials sorted by lick time are shown.

1188 **c.** Average trajectories of vertical jaw movement aligned to the lick onset. The kinematics of jaw
1189 movement remains consistent regardless of the lick timing (indicated in different colors). Lines, grand
1190 median. Shaded, SEM (bootstrap). n = 58 sessions, 34 mice.

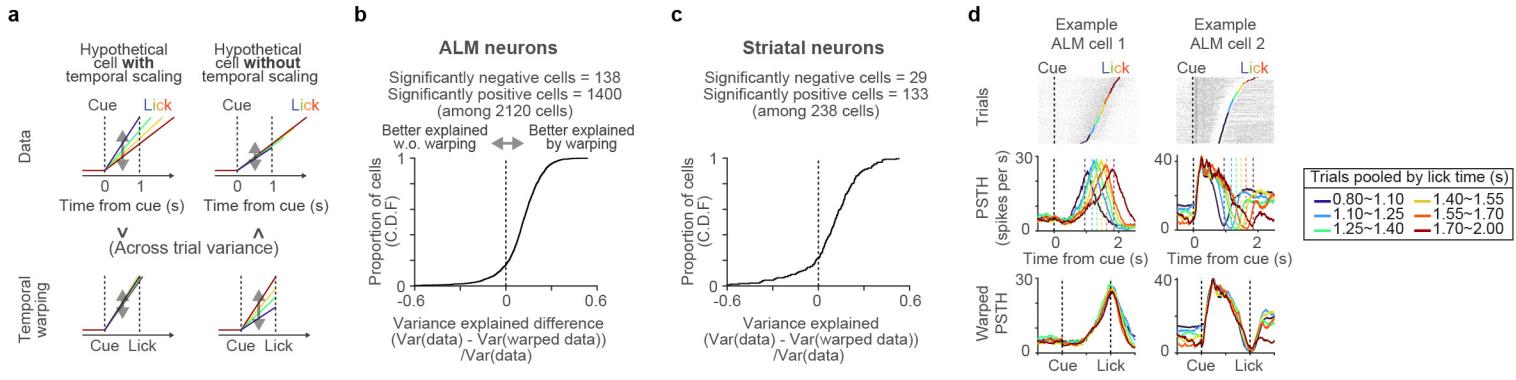
1191 **d.** Relationship between lick onset (the timing when the tongue contacted the lick port) and jaw movement
1192 onset (left) or tongue movement onset (right). Trials were grouped into six ranges. The onset of
1193 movement was tightly correlated with lick onset. Circles, individual mice. Dotted line, the unity line. n
1194 = 58 sessions, 34 mice. **e-d** conclude that mice did not change their kinematics but instead the onset of
1195 movement when they lick at different timings. n = 58 sessions, 34 mice.

1196 **e.** Tongue and jaw movement trajectories in an example session with ALM silencing. Same format as in
1197 **b**. Cyan bar, silencing.

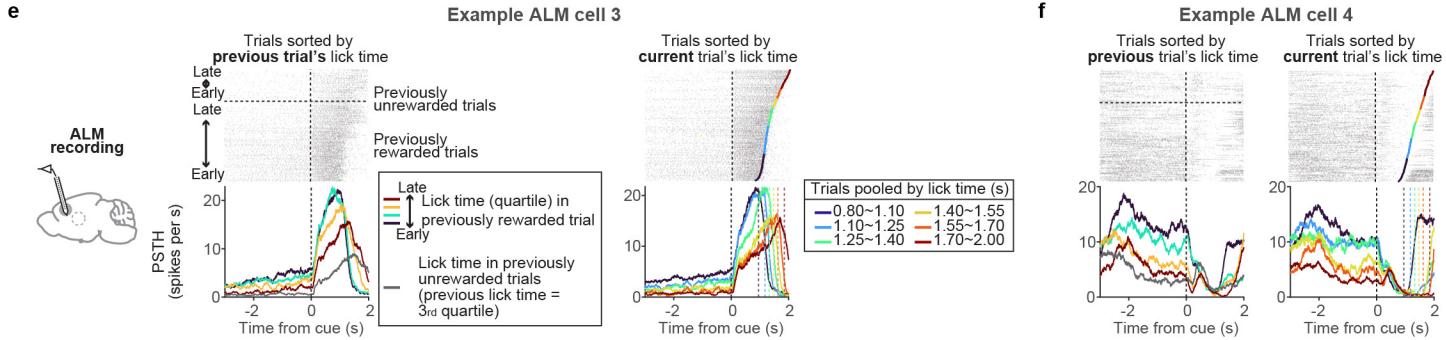
1198 **f.** Jaw movement aligned to the cue (left) or the lick onset (right). Trials with lick after the silencing were
1199 analyzed. Lines, grand median. Shaded, SEM (bootstrap). n = 26 sessions, 9 mice. No abnormal
1200 movement was detected during silencing, and the animals followed normal kinematics to lick even in
1201 the silencing trials.

1202 **g-h.** Same as in **e-f**, but with D1 VLS silencing. n = 6 sessions, 6 mice.

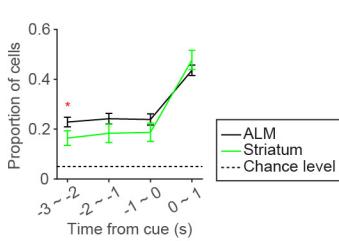
1203 **i-j.** Same as in **e-f**, but with D1 DMS silencing. n = 6 sessions, 6 mice.



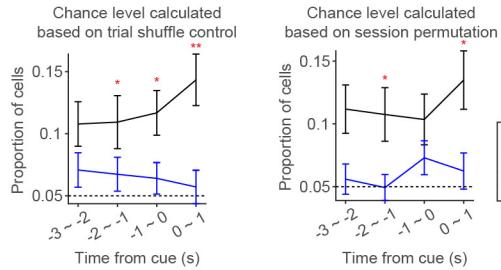
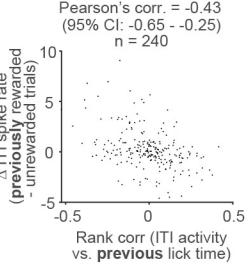
Trial history encoding



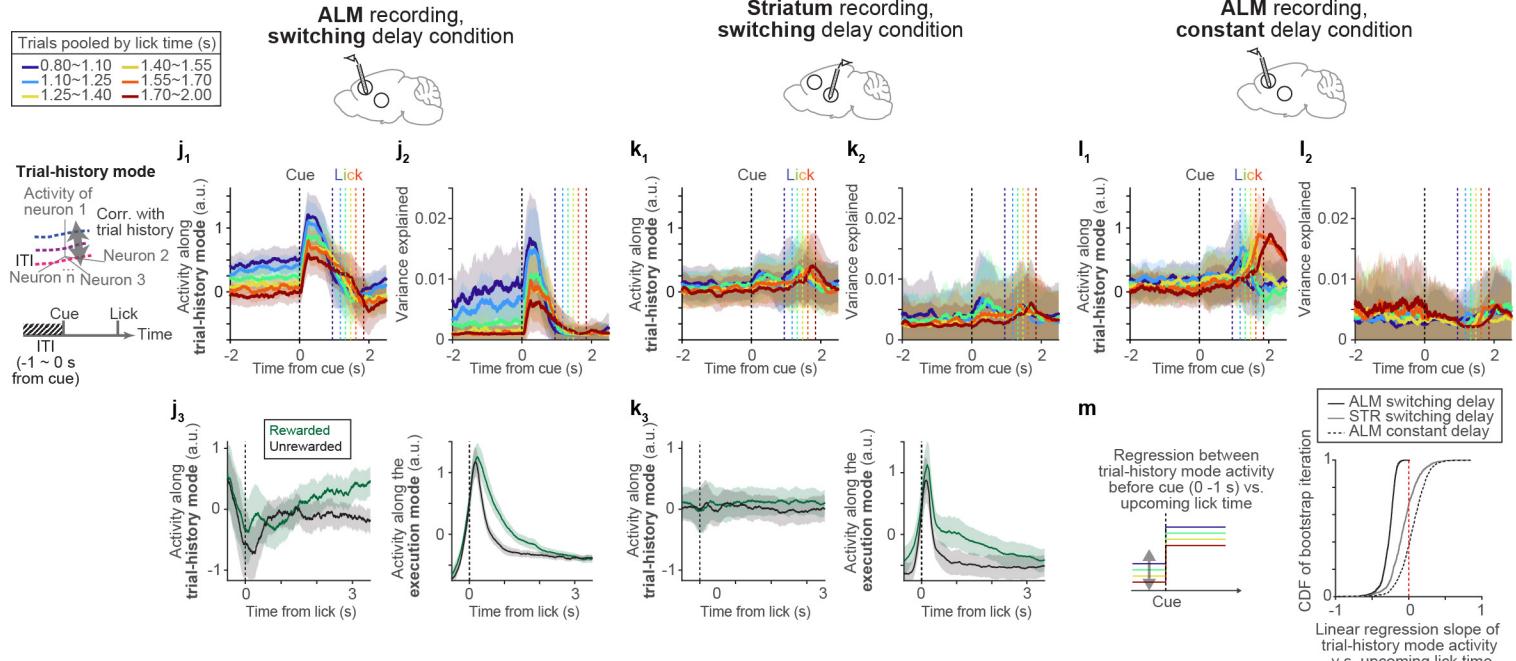
g Cells with correlations of spike rate and **upcoming** lick time higher than the chance level



h Cells with partial correlations of spike rate and **previous** lick time (in rewarded trials) higher than the chance level



Characterization of trial-history mode activity



1204 **Extended Data Fig 4. Temporal scaling and encoding of trial history in ALM and striatum**

1205 Temporal warping of spike times revealed that the activity in a large proportion of ALM and striatal neurons

1206 can be better explained by temporal scaling rather than a null model without scaling (**a-d**). Some ALM and

1207 striatal neurons maintain tonic activity during the ITI, which predicts upcoming lick time (**g**) and encodes

1208 trial history (**h-i** and example cells in **e** and **f**). Activity along the trial-history mode in the ALM under the

1209 switching delay condition predicts upcoming lick time (**j** and **m**). However, activity along the trial-history

1210 mode in the striatum under the switching delay condition (**k**) was weaker. Additionally, ALM activity under

1211 the constant delay condition (**l**) does not predict upcoming lick time, consistent with single cells (**h**).

1212

1213 a. Schema illustrating two hypothetical cells that encode time differently through ramping activity⁴¹. Left,

1214 a cell with ramping activity encoding relative time, where the ramping speed changes as the lick time

1215 varies (i.e., temporal scaling). In this scenario, the across-trial variance (double-headed arrows)

1216 decreases following temporal warping (bottom). Right, a cell with ramping activity encoding absolute

1217 time, where the spike rate increases as time progresses. In this case, the across-trial variance increases

1218 following temporal warping (right).

1219 b. The cumulative distribution of the difference of variance explained between data and warped data

1220 across ALM neurons (higher value represents data explained better by temporal scaling; see **a**,

1221 Methods). $n = 2139$ neurons, 31 mice. Neurons with more than 200 trials were analyzed. Significant

1222 cells, $p < 0.05$ with bootstrap of trials.

1223 c. Same as in **b** but for striatal cells, $n = 595$ neurons, 10 mice.

1224 d. Two example ALM cells showing temporal scaling. Same format as **Fig. 3a**: trials are sorted by the

1225 current trial's lick time and grouped into six ranges.

1226 e. An ALM example cell whose ITI activity is modulated by the lick time and reward outcome in the

1227 previous trial and anticipates upcoming lick time. The same cell as in Fig. 4a for comparison. Top,

1228 spike raster, grouped by reward outcome in the previous trial and sorted by the lick time in the previous

1229 trial. In this example cell, the ITI activity is higher in trials after rewarded trials and with earlier licks.

1230 Bottom, PSTH. Lick times of the previous rewarded trials were divided into quartiles indicated by

1231 different colors. The gray trace, trials following previously unrewarded trials with previous trial's lick

1232 times within the 3rd quartile. Right, the same cell but trials sorted by lick time in current trials. The

1233 spike rate during ITI predicts the upcoming lick time.

1234 f. Another ALM example cell showing trial history modulation during ITI, same format as **e**.

1235 g. The proportion of neurons with a rank correlation between spiking activity (in different time windows

1236 indicated on the x-axis) and upcoming lick time higher than the trial shuffle control ($\alpha = 0.05$). Neurons

1237 with more than 100 current trials and a current lick time later than 1 second (to avoid the influence of

1238 post-lick activity for the 0 - 1 second time window) were analyzed. * $p < 0.05$, hierarchical bootstrap

1239 comparing ALM and striatum. Bars, SEM (hierarchical bootstrap),

1240 h. The proportion of ALM neurons with a partial rank correlation between spiking activity (in different

1241 time windows indicated on the x-axis) and previous lick time higher than the trial shuffle control (left)

1242 and session permutation control (right) ($\alpha = 0.05$). Partial correlation was calculated to control for the

1243 effect of upcoming lick time (Methods). Both yielded consistent results. Neurons with more than 50

1244 current trials and a current lick time later than 1 second (to be consistent with **g**) were analyzed. * $p <$

1245 0.05, ** $p < 0.005$, hierarchical bootstrap comparing switching vs. constant delay condition. Bars, SEM

1246 (hierarchical bootstrap),

1247 i. Relationship between the encoding of previous lick time (partial rank correlation between spike rate vs
1248 the lick time in previous rewarded trials, controlling for the effect of upcoming lick time; Methods) and
1249 whether the animal received a reward or not in the previous trial (based on activity during ITI: 0 - 1s
1250 before the cue) in ALM. Dots, individual neurons. Neurons with more than 20 previous unrewarded
1251 trials, 20 previous rewarded trials, 50 current trials with lick time later than 1 s were analyzed. Neurons
1252 encoding previous lick time also tend to encode previous reward outcome.

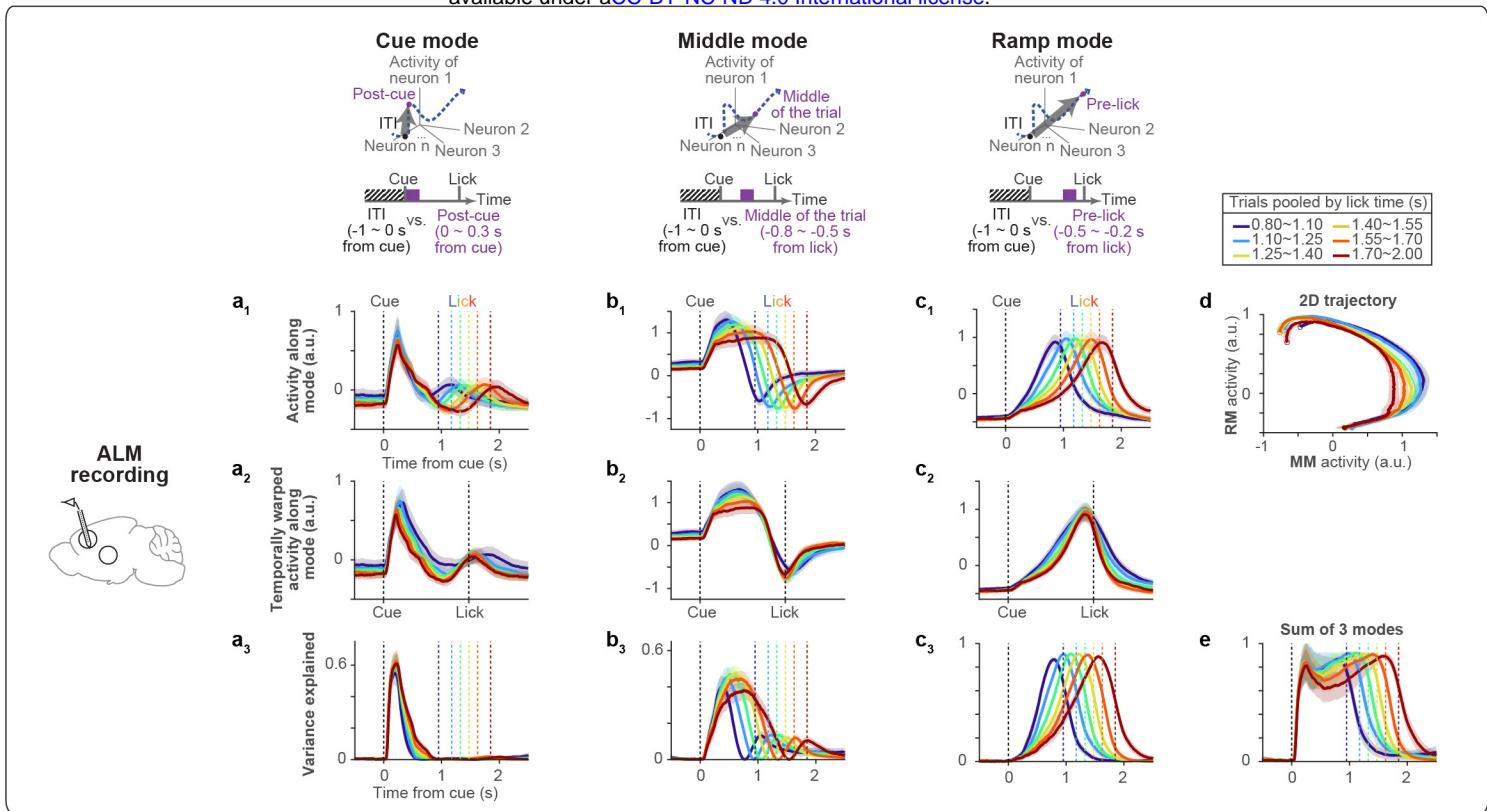
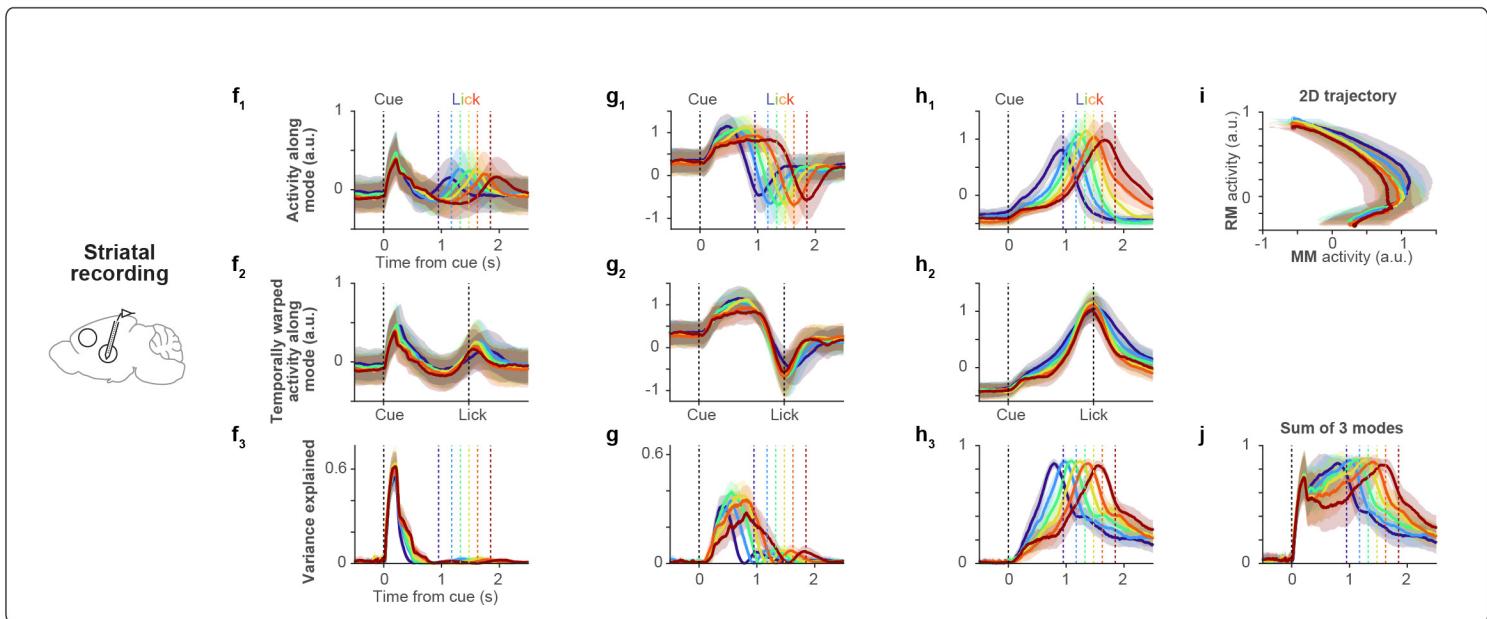
1253 j. ALM population activity along the trial-history mode, under switching delay condition (j1). Duplicated
1254 from Fig. 4b for comparison. Variance of spiking activity explained by trial-history mode (j2). Colors,
1255 different lick times. Lines, grand mean. Shades, SEM (hierarchical bootstrap). n = 3261 neurons. ALM
1256 activity along the trial-history mode gradually diverged after rewarded vs. unrewarded licks (left) under
1257 the switching delay condition (j3). In contrast, ALM activity along the execution mode, which captures
1258 the activity during the lick (Methods), showed a transient change in activity after the lick (up to ~2 s).
1259 This transient change along the execution mode most likely reflects differences in lick patterns between
1260 these trial types. Since the trial-history mode activity started diverging after the execution modes
1261 converged, the divergence of trial-history mode activity is likely not due to movement. Rewarded
1262 (green) and unrewarded (black) trials with similar lick times (lick between 1.4 and 1.8 s after the cue)
1263 were analyzed.

1264 k. Same as in j for striatal recording during the switching delay condition.

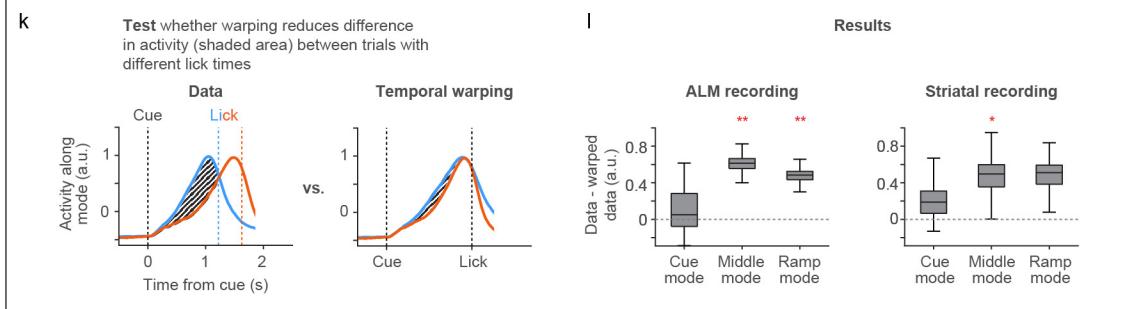
1265 l. Same as in j for ALM recording during the constant delay condition.

1266 m. The relationship between trial-history mode activity and upcoming lick time. We performed a linear
1267 regression analysis between trial-history mode activity during 0 - 1 s before the cue and the upcoming
1268 lick time for each iteration of the hierarchical bootstrap (left, schema). We then plotted the distribution
1269 of the linear regression coefficient (slope) across these iterations. A negative value indicates higher
1270 trial-history mode activity precedes earlier lick. $p < 0.001$, $= 0.3274, 0.6310$ for ALM under switching
1271 delay, striatum under switching delay, ALM under constant delay, respectively (with a null hypothesis
1272 that the slope of the linear regression is larger than or equal to 0). Thus, only under the switching delay
1273 condition in ALM, the trial-history mode activity significantly predicts the upcoming lick time.

1274



Quantification of temporal scaling of activity along modes



1275 **Extended Data Fig 5. Comparison of activity modes across brain regions**

1276 In both ALM and striatum, we observed three modes of population activities (cue mode, middle mode, and
1277 ramp mode) that together tiled the time from trial onset to lick, explaining around 80% of the variance in
1278 task-modulated spiking activity. Activity along cue mode did not show temporal scaling, while activity patterns
1279 along middle and ramp mode showed temporal scaling (quantified in **k** and **I**). Note that activity patterns
1280 along these modes and the variance explained are qualitatively similar between ALM and striatum.

1281

1282 **a.** ALM population activity along the cue mode, under switching delay condition (**a1**). Cue mode activity
1283 temporally warped between cue and lick (**a2**, Methods). Variance of spiking activity explained by cue
1284 mode (**a3**, Methods). Colors, different lick times. Lines, grand mean. Shades, SEM (hierarchical
1285 bootstrap). n = 3261 neurons.

1286 **b.** Same as in **a** but for ALM population activity along the middle mode.

1287 **c.** Same as in **a** but for ALM population activity along the ramp mode. Duplicated from Fig. 3e for
1288 comparison.

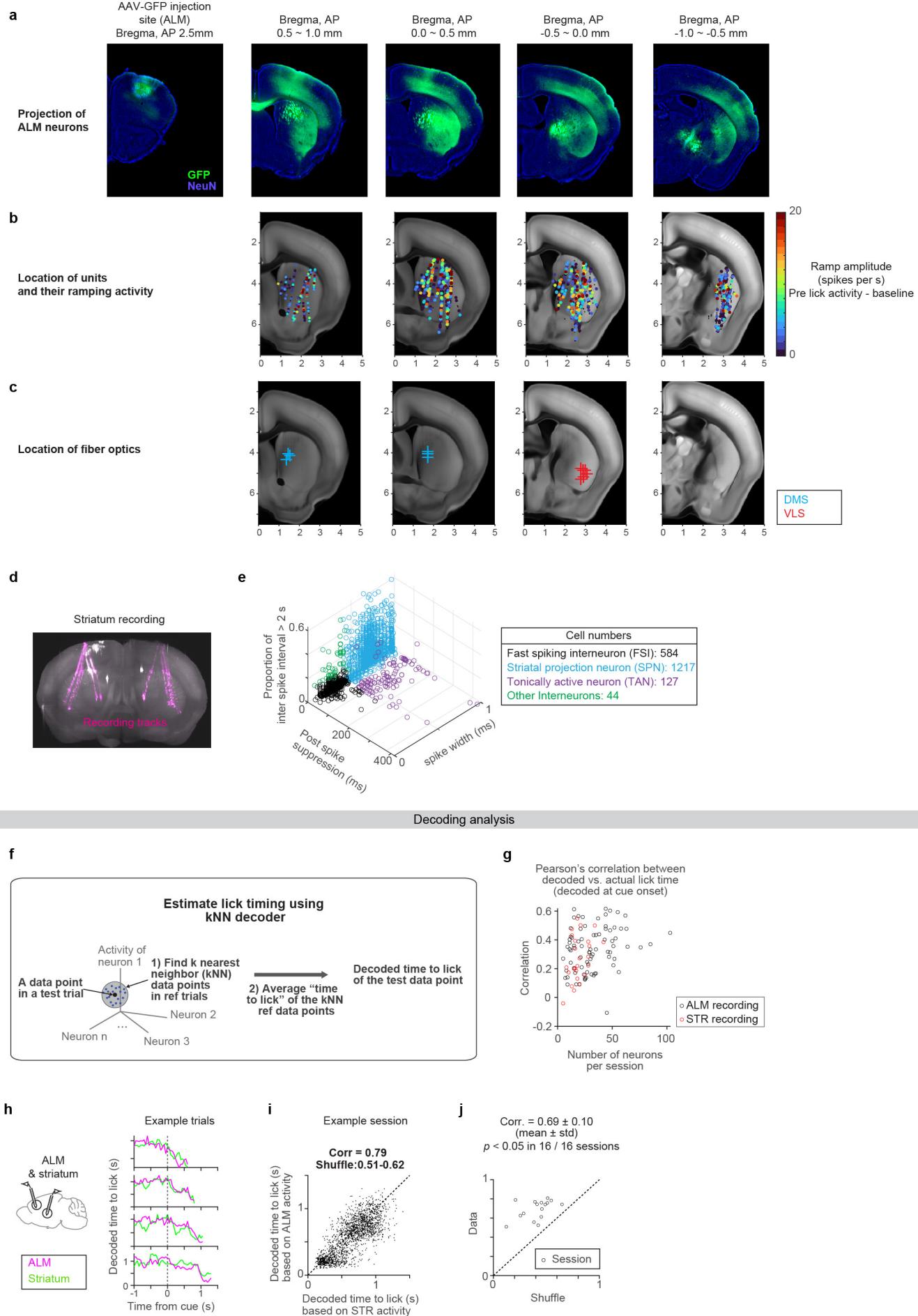
1289 **d.** Population activity in a two-dimensional space defined by the ramp mode (RM) and middle mode
1290 (MM). Trajectories are plotted from the cue (filled circles) to the lick (open circles). Regardless of the
1291 lick time, the activity follows a similar trajectory, but the speed varies across different lick times.

1292 **e.** The total variance explained by the three modes.

1293 **f-j.** Same as in **a-e** but for striatal neurons under switching delay condition. n = 1073 cells.

1294 **k.** Schema representing the quantification of temporal scaling. We calculated the difference in activity
1295 along a mode between two trial types (trials with licks occurring 1.1 - 1.25 seconds vs. 1.55 - 1.7
1296 seconds; the difference was calculated from the cue to the lick, shaded area). If the population activity
1297 along a mode exhibits temporal scaling, the difference between lick times will be smaller following
1298 temporal warping.

1299 **l.** Left, the difference in activity (shaded area) as described in panel **k** is compared between the data and
1300 the temporally warped data for each mode in the ALM. Right, same for the striatum. The central line
1301 in the box plot, median. Top and bottom edges, 75% and 25% points. Whiskers, the lowest/highest
1302 datum within the 1.5 interquartile range of the lower/upper quartile. **p < 0.001, *p < 0.01 (significant
1303 scaling; hierarchical bootstrap with a null hypothesis that the difference between data minus temporal
1304 warped data is less than or equal to 0).

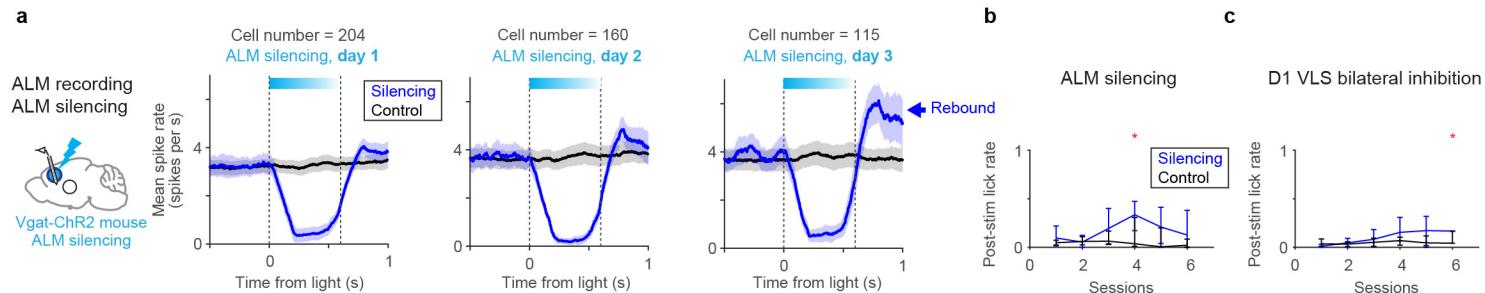


1305 **Extended Data Fig 6. Striatal anatomy and recording**

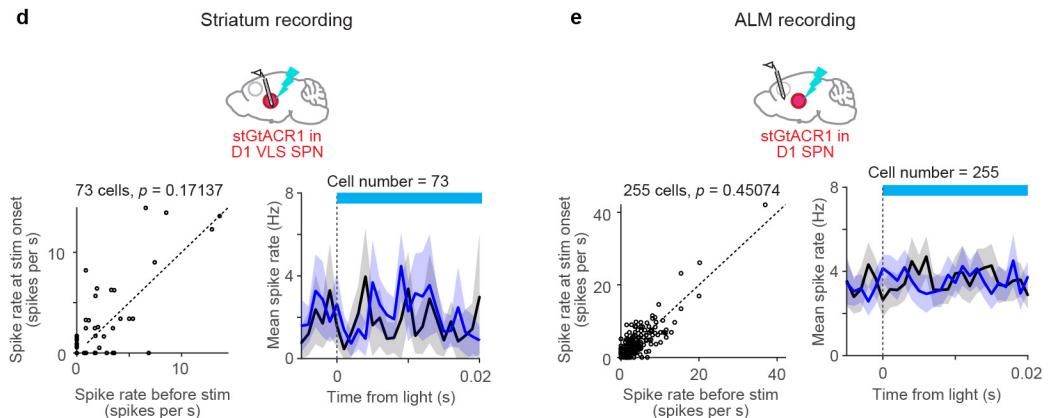
1306 ALM projects to a large portion of the striatum (**a**), and we observed task-modulated activity across these
1307 sectors (**b**). See **d** for example recording tracks and **e** for the classification of cell types based on spike
1308 features. We developed a kNN-based decoder to estimate the time to lick using simultaneously recorded
1309 units at single time points (**f-g**). When ALM and striatum were simultaneously recorded, the decoded time
1310 to lick in both regions (decoded independently) was correlated at the single trial level, implying that the
1311 representations of time are highly synchronized between these areas (**h-j**).
1312

- 1313 a. ALM neurons project across sectors in the striatum. AAV-GFP was injected into ALM.
- 1314 b. The spatial distribution of recorded striatal neurons in the Allen CCF. Colors, the extent of increase in
1315 spiking activity before the lick compared to the baseline. Black dots, neurons that do not ramp up.
- 1316 c. Locations of the tips of the tapered fiber optics implanted for bilateral striatal silencing (only showing
1317 one hemisphere as the two fibers were implanted symmetrically). Related to Fig.6.
- 1318 d. An example brain image of recording tracks acquired by a light sheet microscopy (Methods). Striatal
1319 recording tracks are labeled with CM-DiI (magenta). Coronal view, maximal intensity projection of
1320 415 μm optical section.
- 1321 e. Striatal cell types were classified based on three spike features⁵⁷ (Methods).
- 1322 f. Schema depicting a k-nearest neighbor (kNN) method to decode the time to lick ($T_{\text{to lick}}$) using
1323 population neural activity at each time point (Methods).
- 1324 g. The performance of the kNN decoder as a function of the number of simultaneously recorded neurons.
1325 Decoding accuracy was quantified by Pearson's correlation between actual lick time vs. lick time
1326 decoded at cue onset. The performance increased with more recorded neurons.
- 1327 h. Decoded $T_{\text{to lick}}$ was highly correlated between ALM and striatum at a single trial level. Four example
1328 trials from an example session are shown. Traces end at the time of lick.
- 1329 i. The relationship between decoded lick times estimated from ALM and striatal neurons in an example
1330 session. Dots, all time points (50 ms bin; from cue to lick) in the example session. Pearson's correlation
1331 across all time points (0.79) was significantly higher than that of the trial shuffle control (0.51 - 0.62,
1332 95% confidence interval).
- 1333 j. Pearson's correlation of decoded time between ALM and striatum was significantly higher than trial
1334 shuffle controls in all simultaneously recorded sessions (16 sessions). Thus, ALM and striatal timing
1335 dynamics are synchronized at a single trial level.

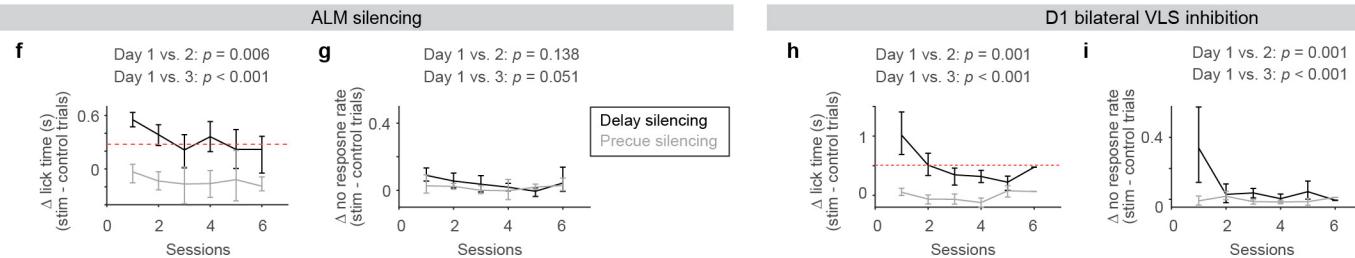
Silencing effect and post-silencing rebound



stGtACR1 in VLS does not induce axonal excitation



Optogenetic behavioral effects attenuate over days



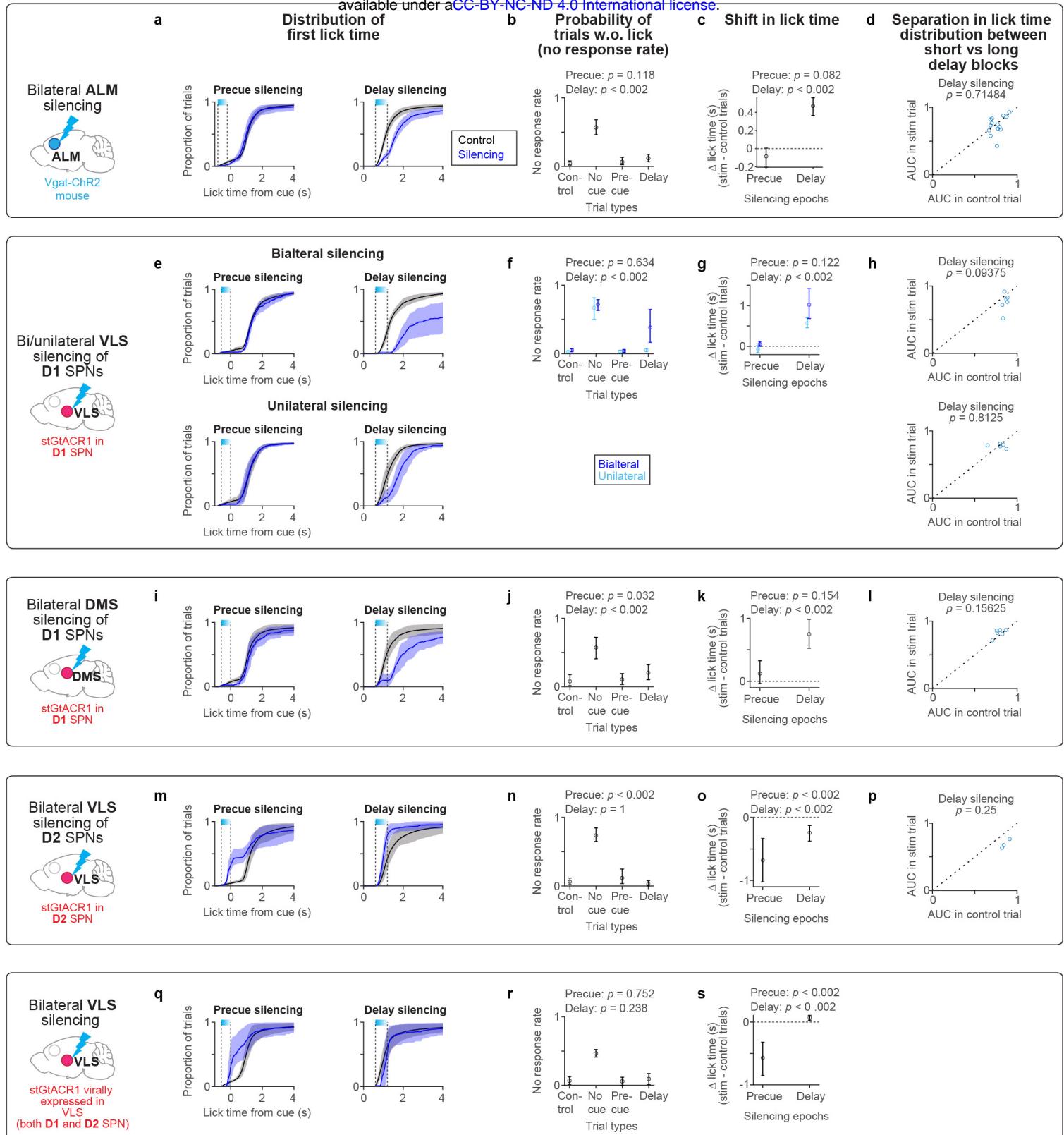
Extended Data Fig. 7

1336 **Extended Data Fig 7. Characterization of optogenetic effect across sessions**

1337 Here, we characterized possible caveats of optogenetic manipulations. First, we measured the post-silencing
1338 rebound activity and lick, over days (**a-c**). We noticed that for ALM silencing, post-silencing rebound
1339 activity increased over days (**a**), accompanied by the increase of post-silencing lick (**b**), which explains the
1340 decrease in the shift of lick timing over sessions (**f-g**). Therefore, we restricted our analysis to data from the
1341 first two days. Second, we confirmed the lack of axonal excitation in both striatum and ALM when we used
1342 stGtACR1^{59,76,77} in D1-SPN (**d-e**). Third, we observed that the behavioral effect of D1-SPN inhibition
1343 showed a drastic decline over sessions, so we focused our analysis on the data from the first manipulation
1344 day (**h-i**). These observations are consistent with the short-lived effect of manipulations observed in other
1345 species and manipulations^{61,62}.

1346

- 1347 a. Mean spike rate of ALM putative pyramidal neurons during ALM silencing (during no cue trials) over
1348 3 consecutive days (spike rate was smoothed by 200 ms boxcar causal filter). Lines, grand mean.
1349 Shaded, SEM (hierarchical bootstrap). Note the increase in the post-silencing rebound activity over
1350 days (blue arrow).
- 1351 b. Post-stim lick rate (Proportion of trials with lick within 600 ms following the photostimulation offset
1352 time in no cue trials) across days for ALM silencing. $*p < 0.001$ (hierarchical bootstrap with *Bonferroni*
1353 correction for multiple comparisons; null hypothesis is that the post-stim lick rate in photostimulation
1354 trials is lower than or equal to that in control trials).
- 1355 c. Same as in **b** but for D1 VLS bilateral inhibition.
- 1356 d. When stGtACR1 exhibits leaky expression at the axon, it can induce short-latency axonal excitation at
1357 the onset of photostimulation^{59,76,77}. Thus, we examined the spiking activity at the onset of D1-SPN
1358 inhibition (during no cue/precue silencing trials) in VLS, which did not show signs of axonal excitation.
1359 Left, spike rate during baseline (20 ms before the photostimulation) vs. spike rate within 20 ms of the
1360 photostimulation onset for individual striatal neurons. *P*-value, signed rank test. Right, mean spike rate
1361 of SPNs (1 ms bin, no smoothing of spike rate). $n = 73$ neurons.
- 1362 e. Same as in **d** but for ALM neurons during bilateral D1 VLS silencing. $n = 255$ neurons. Neither the
1363 striatum (**d**) nor ALM (**e**) showed signs of axonal excitation caused by GtACR1.
- 1364 f. The shift in lick time caused by ALM silencing became weaker over consecutive days with ALM
1365 silencing. Error bars, 95% confidence interval (hierarchical bootstrap). The red dashed line, half of the
1366 effect observed in session 1. *P*-value, bootstrap with a null hypothesis that the effect of delay silencing
1367 on session 1 is smaller than or equal to the subsequent compared day. $n = 14$ mice.
- 1368 g. The change in no response over consecutive days with ALM silencing. Error bar, 95% confidence
1369 interval (hierarchical bootstrap). *P*-value, bootstrap with a null hypothesis that the effect of delay
1370 silencing on session 1 is smaller than or equal to the subsequent compared day.
- 1371 h-i. Same as in **f-g** but for bilateral D1 SPN inhibition in VLS. $n = 6$ mice.



Extended Data Fig. 8

1372 **Extended Data Fig 8. Summary of the behavioral effects observed across optogenetic manipulations**

1373

1374 **a.** Lick time distribution during precue or delay ALM silencing, duplicated from Figure 5a for
1375 comparison. $n = 14$ mice.

1376 **b.** No-response rate in control, no cue, precue silencing, and delay silencing trials (Methods). No cue trial
1377 refers to randomly interleaved trials without a cue, serving to monitor the spontaneous lick rate not
1378 triggered by a cue. This represents the upper bound of the no-response rate. P -value, hierarchical
1379 bootstrap with a null hypothesis that no-response rate in control trials is the same as in silencing trials.
1380 Error bars, 95% confidence interval.

1381 **c.** Shift in median lick time caused by precue or delay silencing. Duplicated from Figure 5b for
1382 comparison.

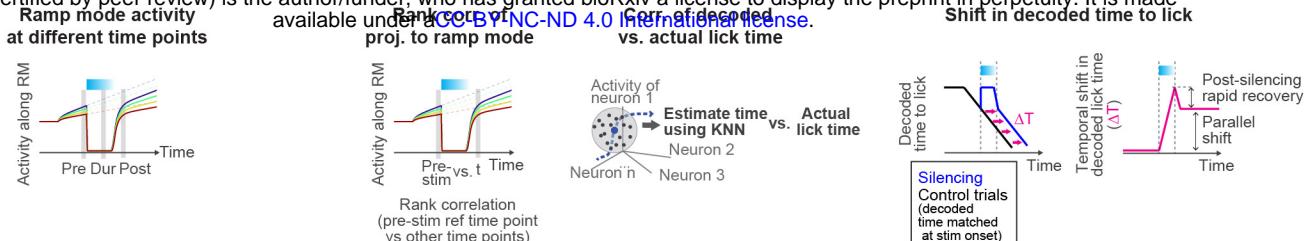
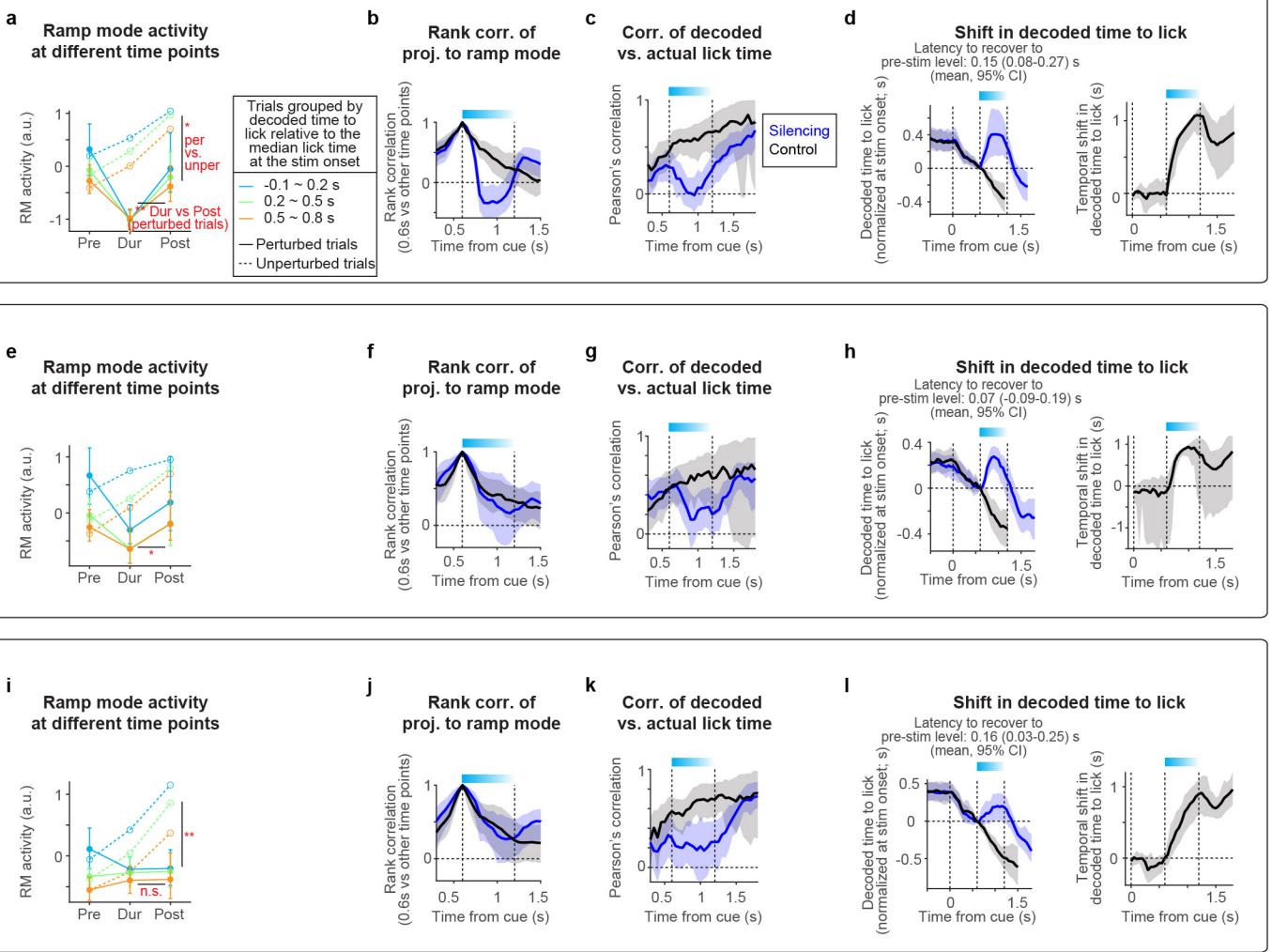
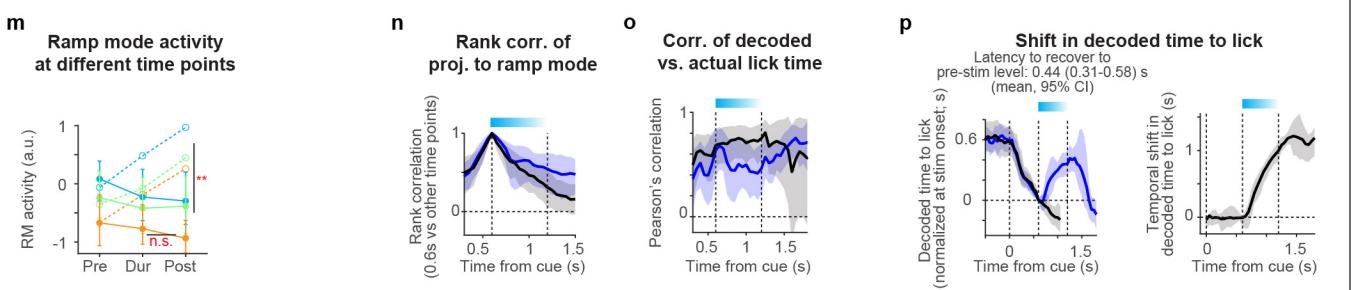
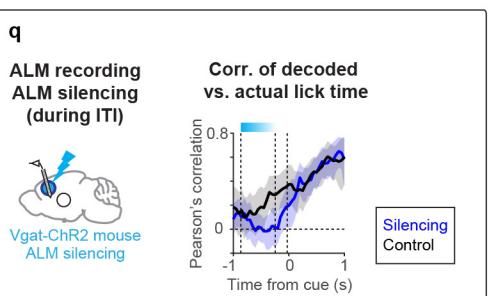
1383 **d.** ALM silencing does not affect the separation in lick time distribution between delay blocks (short vs.
1384 long delay blocks in the switching delay condition). First, we calculated the area under the curve (AUC)
1385 of the ROC analysis comparing lick time distributions between short vs. long delay blocks. Then, we
1386 compared the AUC values (indicating how well the lick time distributions between delay blocks are
1387 separated) between control and photostimulation trials. Circles, individual animals. P value, signed
1388 rank test. The absence of change in the separation of lick time distributions suggests that ALM silencing
1389 does not erase the information of intended lick time, consistent with the recovery of dynamics after the
1390 silencing (Fig. 5).

1391 **e-h.** Same as in **a-d** but for D1 SPN inhibition in VLS. Top, bilateral D1 SPN inhibition in VLS ($n = 6$
1392 mice). Duplicated from Figure 6 for comparison. Bottom, unilateral inhibition ($n = 5$ mice).

1393 **i-l.** Same as in **a-d** for D1 SPN inhibition in DMS. $n = 6$ mice.

1394 **m-p.** Same as in **a-d** for D2 SPN inhibition in VLS. $n = 3$ mice.

1395 **q-s.** Same as in **a-c** for cell-type-nonspecific striatal silencing in VLS. $n = 2$ mice.

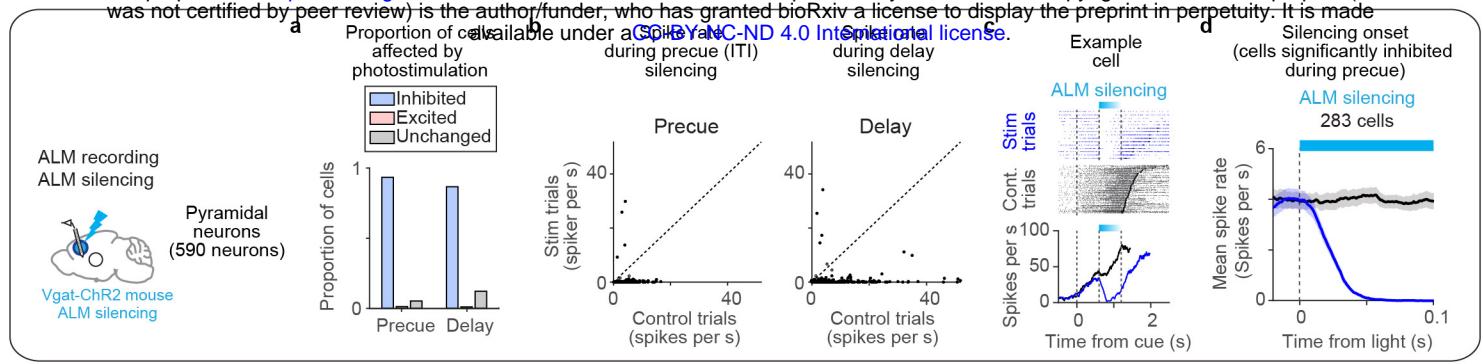
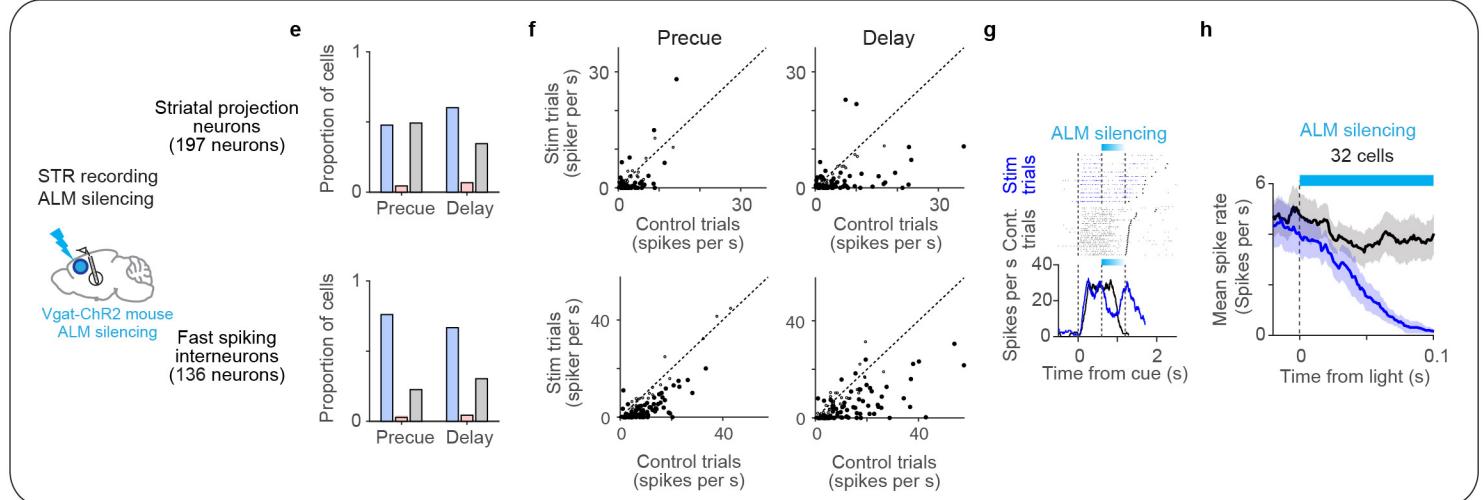
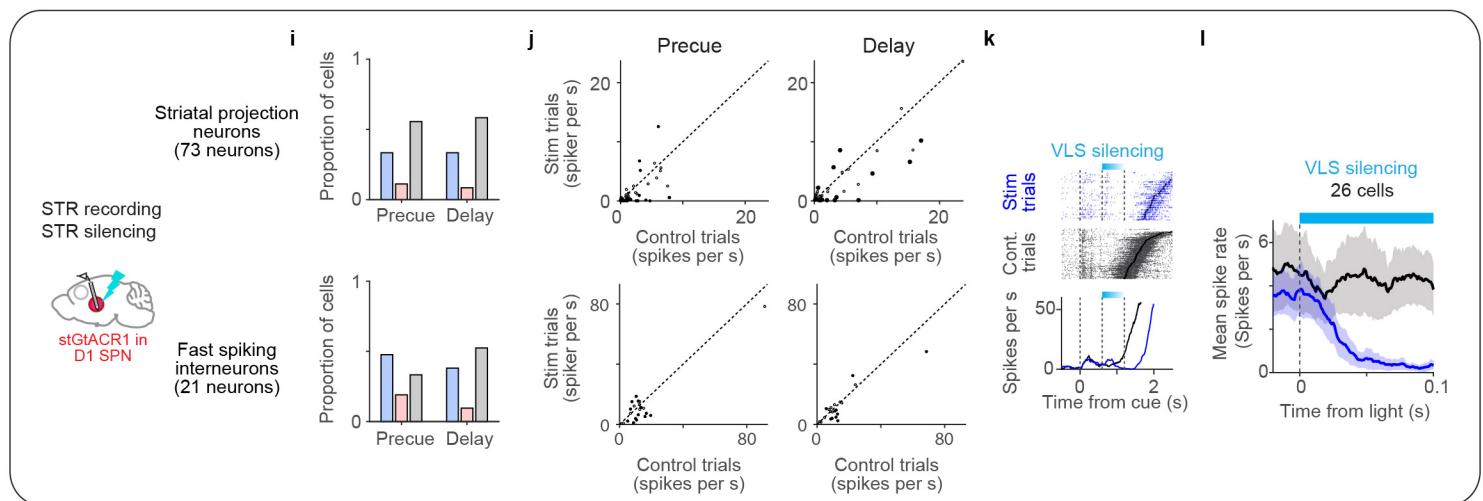
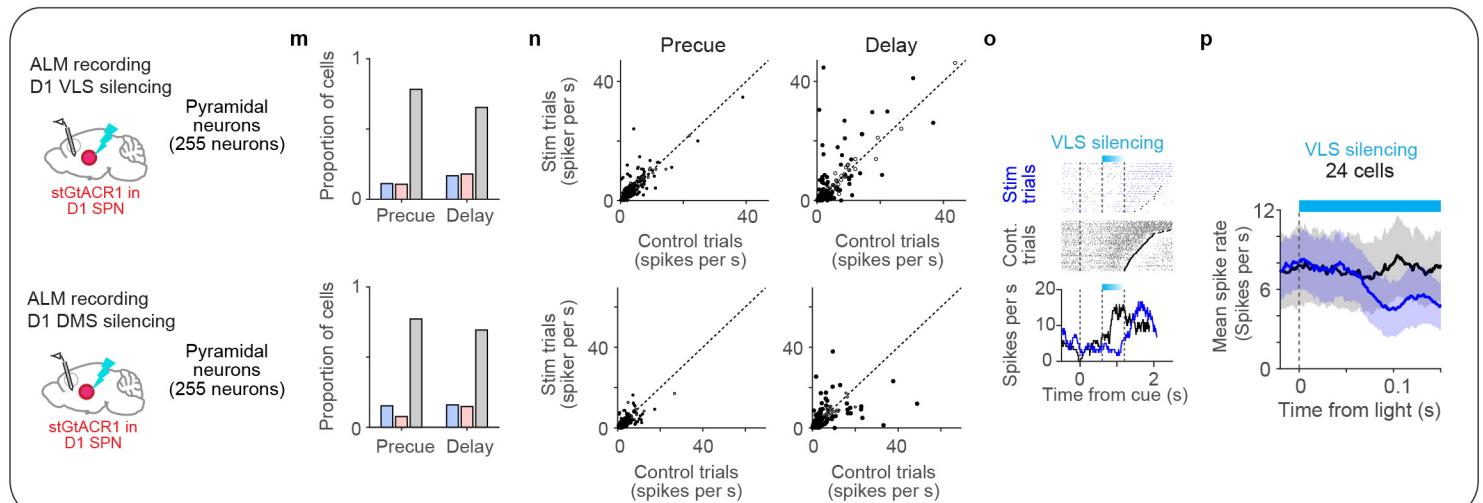


1396 **Extended Data Fig 9. Quantification of timing dynamics across perturbation experiments**

1397 In addition to panels shown in Fig. 5 and 6, here, we present additional quantifications of the timing
1398 dynamics across perturbation experiments. Firstly, we quantified the change in RM activity during and after
1399 transient perturbation. Upon ALM perturbation, the RM activity in both ALM and striatum showed a V-
1400 shaped profile, reflecting rapid silencing and rapid recovery of the activity (**a** and **e**). This contrasts with
1401 the linear decay profile observed in both areas upon D1-SPN inhibition (**i** and **m**). Secondly, the rank
1402 correlation of projection along the ramp mode collapsed in ALM during ALM silencing (**b**), but not in other
1403 conditions (**f, j, and n**). Thirdly, the decodability of lick time (based on kNN decoder) collapsed in ALM
1404 during ALM silencing (**c**), but not in other conditions (**g, k, and o**). Fourthly, the decoded time to lick was
1405 shifted during perturbation and the shift persisted after the perturbation across conditions (**d, h, l, and p**).
1406 In contrast to silencing during the delay epoch, silencing before the cue was followed by a recovery of
1407 decoded lick time (**q**).

1408

- 1409 **a.** Quantification of the change in RM activity during and after ALM silencing. RM activity at before (0.6
1410 s after the cue, 'Pre'), during (0.9 s after the cue, 'Dur'), and after (1.25 s after the cue, 'Post') silencing
1411 is shown. Perturbed and unperturbed trials with matched $T_{\text{to lick}}$ at the silencing onset (0.6 s after the
1412 cue) are shown. Different colors, trials with different decoded $T_{\text{to lick}}$ relative to the median lick time in
1413 each session (to normalize for differences in median lick time across sessions). Dotted lines,
1414 unperturbed trials. Solid lines, perturbed trials. P -values, hierarchical bootstrap. **, $p < 0.005$; *, $p <$
1415 0.05; n.s., non-significant. Circles, grand mean. Error bars, 95% confidence interval (hierarchical
1416 bootstrap).
- 1417 **b.** Rank correlation of ALM activity along the ramp mode across trials. The rank order at the pre-silencing
1418 condition (0.6 s after the cue) is compared with that at other time points. Lines, grand mean. Shades,
1419 95% confidence interval (hierarchical bootstrap). The rank correlation in silenced trials (blue) collapsed
1420 during the silencing but recovered to the control (black) level afterward.
- 1421 **c.** Pearson's correlation of lick time decoded by kNN decoder (based on ALM population activity) vs. the
1422 actual lick time. Lines, grand mean. Shades, 95% confidence interval (hierarchical bootstrap). ALM
1423 activity predicted upcoming lick time before and after the silencing, but such correlation disappeared
1424 during the silencing. **b** and **c** imply that after ALM silencing, the time information recovered.
- 1425 **d.** Decoded $T_{\text{to lick}}$ from each time point based on kNN decoding analysis of population activity (left).
1426 Lines, grand mean. Shades, 95% confidence interval (hierarchical bootstrap). The decoded $T_{\text{to lick}}$ was
1427 normalized by subtracting the decoded $T_{\text{to lick}}$ at stimulus onset to account for different lick times across
1428 trials and sessions. Across conditions, the decoded $T_{\text{to lick}}$ shifted during the perturbation, and the shift
1429 persisted after the perturbation, implying that the decoded $T_{\text{to lick}}$ is shifted in parallel between control
1430 and silencing trials.
- 1431 **e-h.** Same as in **a-d** but for striatum recording during ALM silencing.
- 1432 **i-l.** Same as in **a-d** but for striatum recording during unilateral D1 SPN inhibition in VLS.
- 1433 **m-p.** Same as in **a-d** but for ALM recording during bilateral D1 SPN inhibition in VLS.
- 1434 **q.** Same as in **c** but for ALM recording during ALM precue silencing. Note that the correlation decays
1435 during the silencing, but recovered after the silencing.



Extended Data Fig. 10

1436 **Extended Data Fig 10. Summary of optogenetic effect on spiking activity**

1437 We characterized the effects of different optogenetic manipulations on spiking activity, including the
1438 proportion of inhibited/excited/unaffected cells (**a, e, i, and m**), changes in spike rate (**b, f, j, and n**), and
1439 the onset of the optogenetic effect in significantly inhibited neurons (analyzed during the precue epoch to
1440 avoid confounds caused by behavior-related activity; **d, h, l, and p**).

1441

1442 **a.** The proportion of ALM pyramidal neurons affected by bilateral ALM silencing was assessed. Neurons
1443 were categorized as inhibited or excited ($p < 0.05$) or unchanged ($p > 0.05$) using a rank sum test. Cells
1444 with a mean spike rate higher than 1 Hz in control trials during the photostimulation window were
1445 considered. Duplicated from Figure 5c for comparison. Units from the first two manipulation sessions
1446 were included.

1447 **b.** Spike rate of ALM neurons during precue (left) or delay silencing (right) compared to control
1448 unperturbed trials. Circles, cells. Filled circles, significantly affected cells ($p < 0.05$, rank-sum test).
1449 The spike rate was calculated between 50 - 250 ms from the photostimulation onset.

1450 **c.** An example ALM neuron with a reduced spike rate during delay ALM silencing. Top, spike raster.
1451 Blue, silencing trials. Black, control trials. Bottom, PSTH up to the median lick time for each trial type.
1452 The spike rate was smoothed using a 200 ms boxcar causal filter.

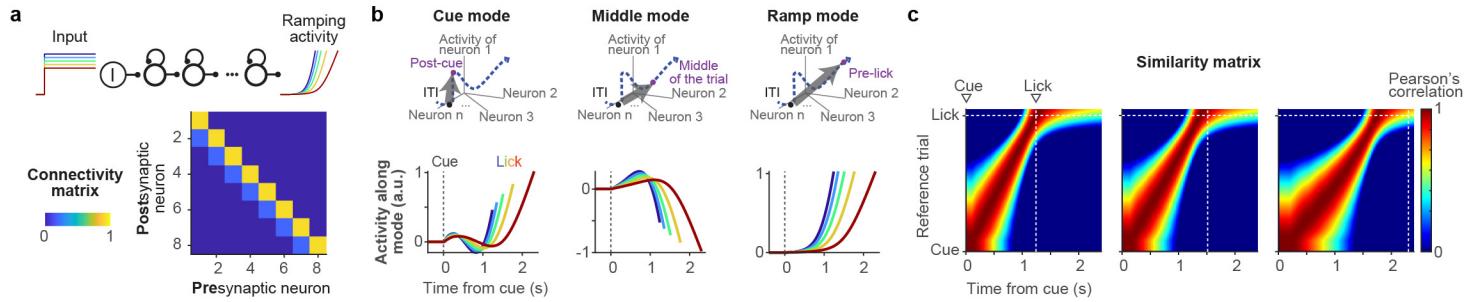
1453 **d.** The onset of the optogenetic effect in ALM neurons with a significant reduction in spike rate during
1454 ALM silencing ($p < 0.05$, rank sum test). We analyzed silencing during the precue epoch to avoid
1455 confounds caused by behavior-related activity. Neurons with more than 10 trials and a spike rate higher
1456 than 1 Hz in the control condition were considered. The spike rate was smoothed using a 30 ms boxcar
1457 causal filter and aligned to the photostimulation onset. Blue, silencing trials. Black, control trials. Lines,
1458 grand mean. Shaded, SEM (hierarchical bootstrap).

1459 **e-h.** Same as in **a-d** but for striatal recording during ALM silencing. Top, striatal projection neurons.
1460 Bottom, striatal fast-spiking interneurons. Units from the first two manipulation sessions were included.

1461 **i-l.** Same as in **a-d** but for striatal recording during D1 SPN unilateral inhibition. Top, striatal projection
1462 neurons. Bottom, striatal fast-spiking interneurons. Data from the first session was included for **i-k**.
1463 However, for **l**, data was pooled across 3 sessions, as the onset of silencing did not appear to change
1464 across days, despite significant behavioral changes likely caused by rebound or other activity changes
1465 after the silencing.

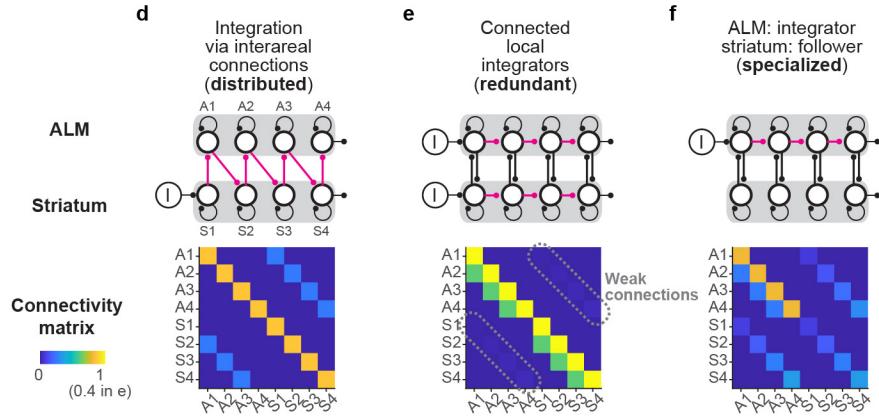
1466 **m-p.** Same as in **a-d** but for ALM recording during D1 silencing in VLS (top), or in DMS (bottom). Units
1467 from the first manipulation session were included.

1468

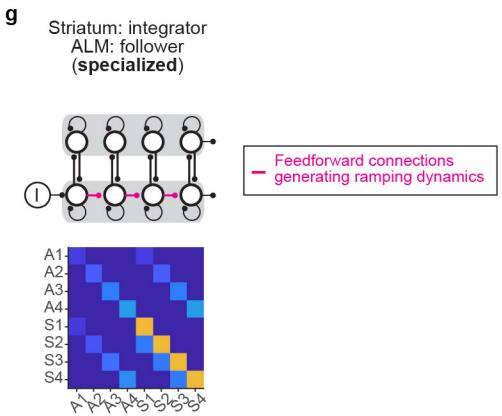
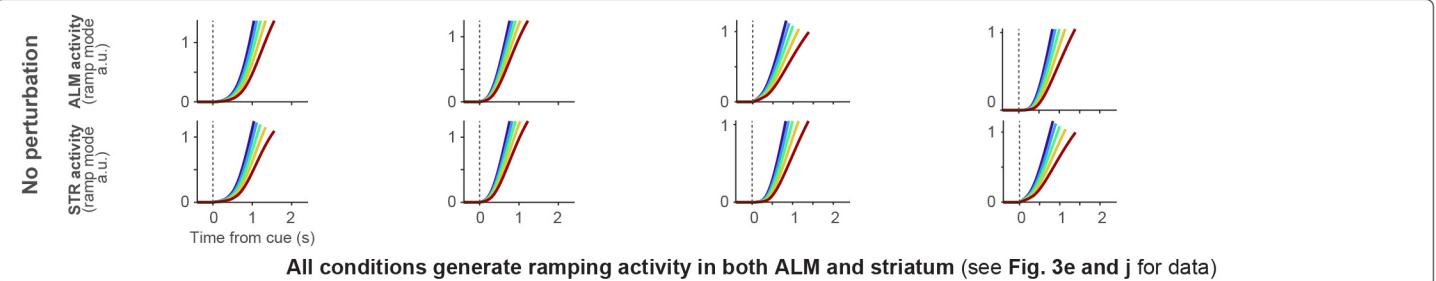


Multi-regional feedforward integrator

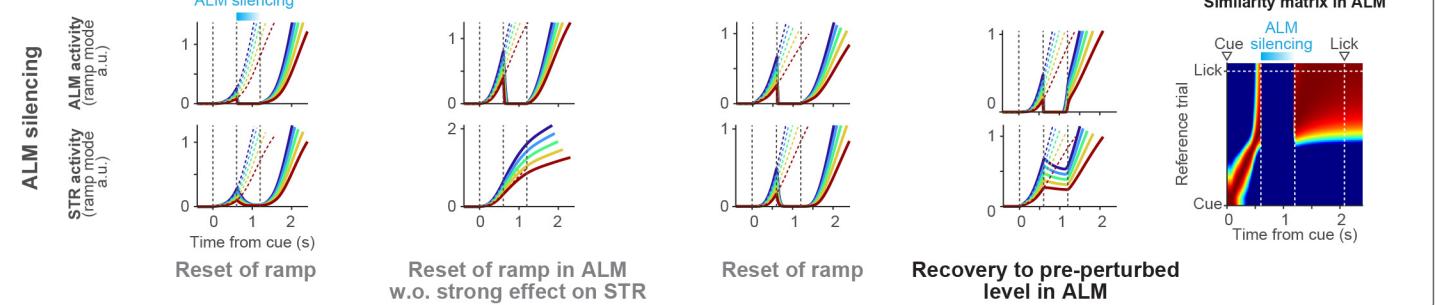
Models inconsistent with data



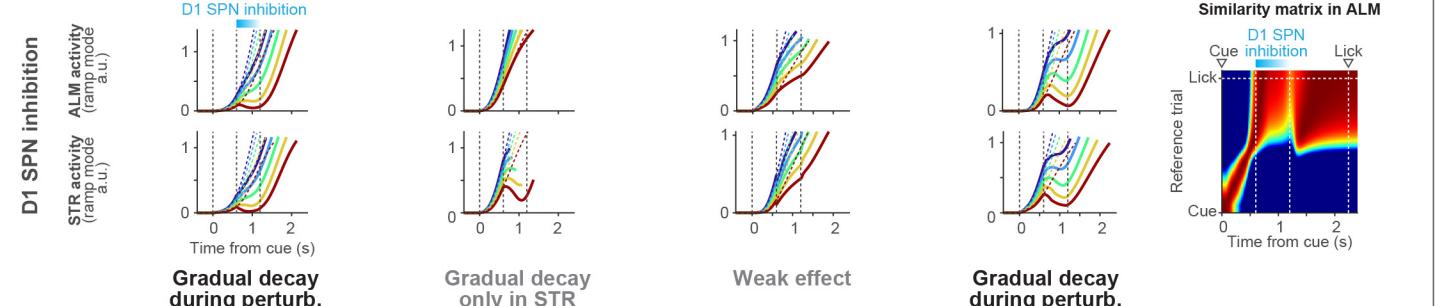
Model consistent with data



Transient ALM silencing: inhibited all ALM neurons (see Fig. 5g and j for data)



Transient striatal inhibition: inhibited S2 & S3 to mimic silencing of D1 SPN (see Fig. 6j and m for data)



1469 **Extended Data Fig 11. Multi-regional feedforward integrator**

1470 Recurrent networks with feedforward connections can temporally integrate step input to generate ramping
1471 activity⁶⁷ (**a**; Methods), similar to an integrator based on positive feedback connections (Extended Data Fig.
1472 1). Activity in this network is high-dimensional and exhibits gradual changes in population activity patterns
1473 over time akin to the data (**b-c**; see Methods). To analyze perturbation effects on the multiregional
1474 feedforward (FF) integrator models with distinct computational roles of ALM and striatum (STR), we
1475 placed FF connections differently (**d-g**). Consistent with the results in the positive feedback integrator
1476 (Extended Data Fig. 1), ALM functioning as an input/follower of the striatal integrator mimics the data,
1477 with a pause and rewind in the representation of time during ALM and striatal inhibition, respectively.
1478

1479 a. Schema and connectivity matrix in the feedforward integrator network.

1480 b. Activity along different modes in the network described in **a**.

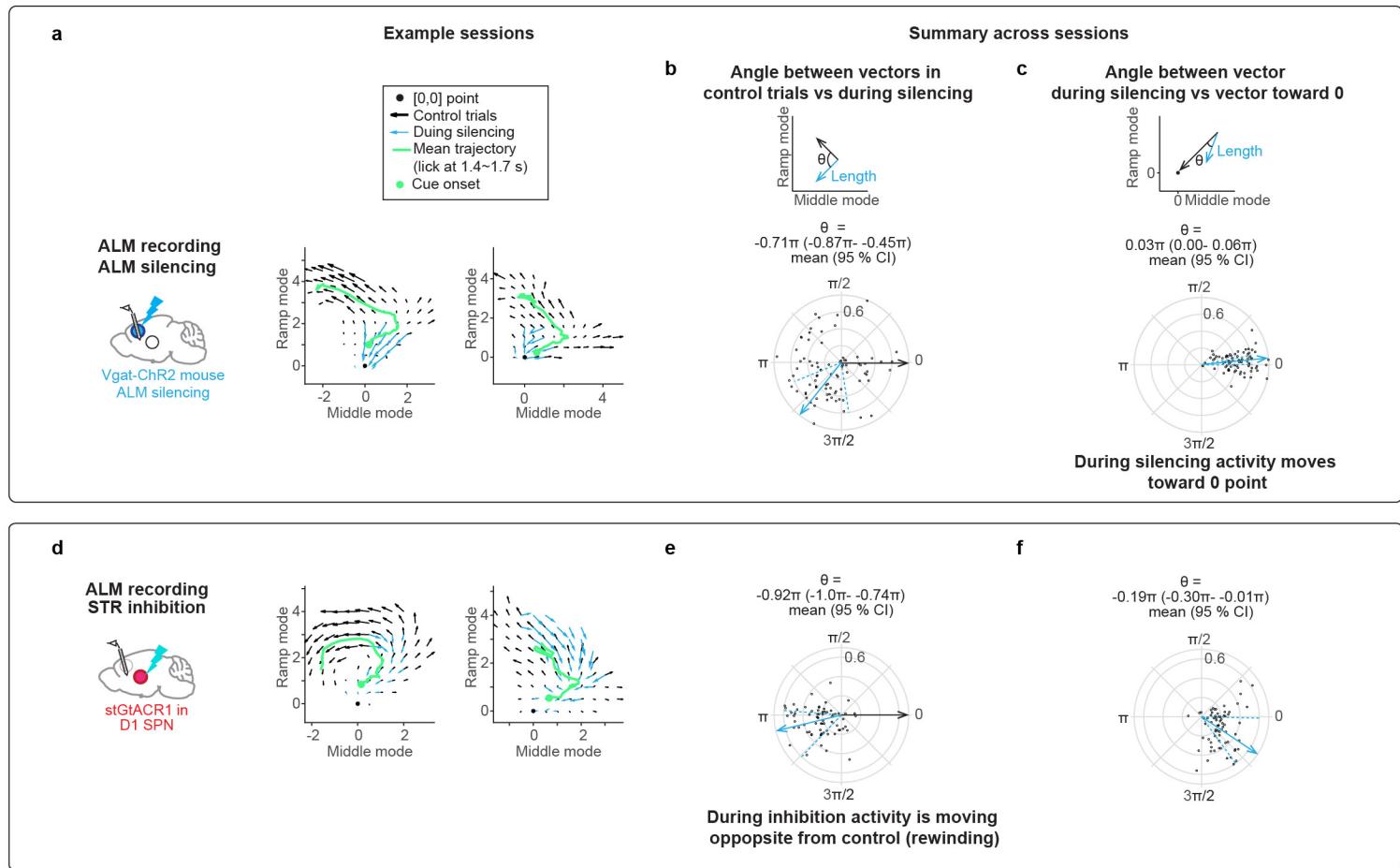
1481 c. Similarity matrix of population activity patterns in the network described in **a**.

1482 d. A multi-regional network where FF connections are distributed both in ALM and STR. The format is
1483 identical to that in Extended Data Fig. 1. In brief, to replicate ALM complete silencing, we injected a
1484 strong negative current into all ALM neurons (a1-a4). To replicate D1-SPN inhibition, we injected
1485 negative currents into half of the STR neurons (s2 and s3). Plots are shown up to the time of the lick
1486 (when ramping activity reaches a threshold level; the threshold was adjusted so that the lick occurs
1487 approximately 1 second after the cue in unperturbed trials).

1488 e. Similar to **c**, but a multi-regional network where two FF integrators in ALM and STR are weakly
1489 coupled. The perturbation of one area has only a weak effect on the representation of time in the other
1490 area.

1491 f. Similar to **c**, but a multi-regional network where FF connections reside in ALM, and STR provides
1492 feedback amplification of the signal. This allows STR to have similar dynamics as ALM, and ALM
1493 dynamics cannot progress without STR's recurrent connection. STR feedback supplies drive for the
1494 ALM FF network to be functional. Perturbation of ALM resets the integration.

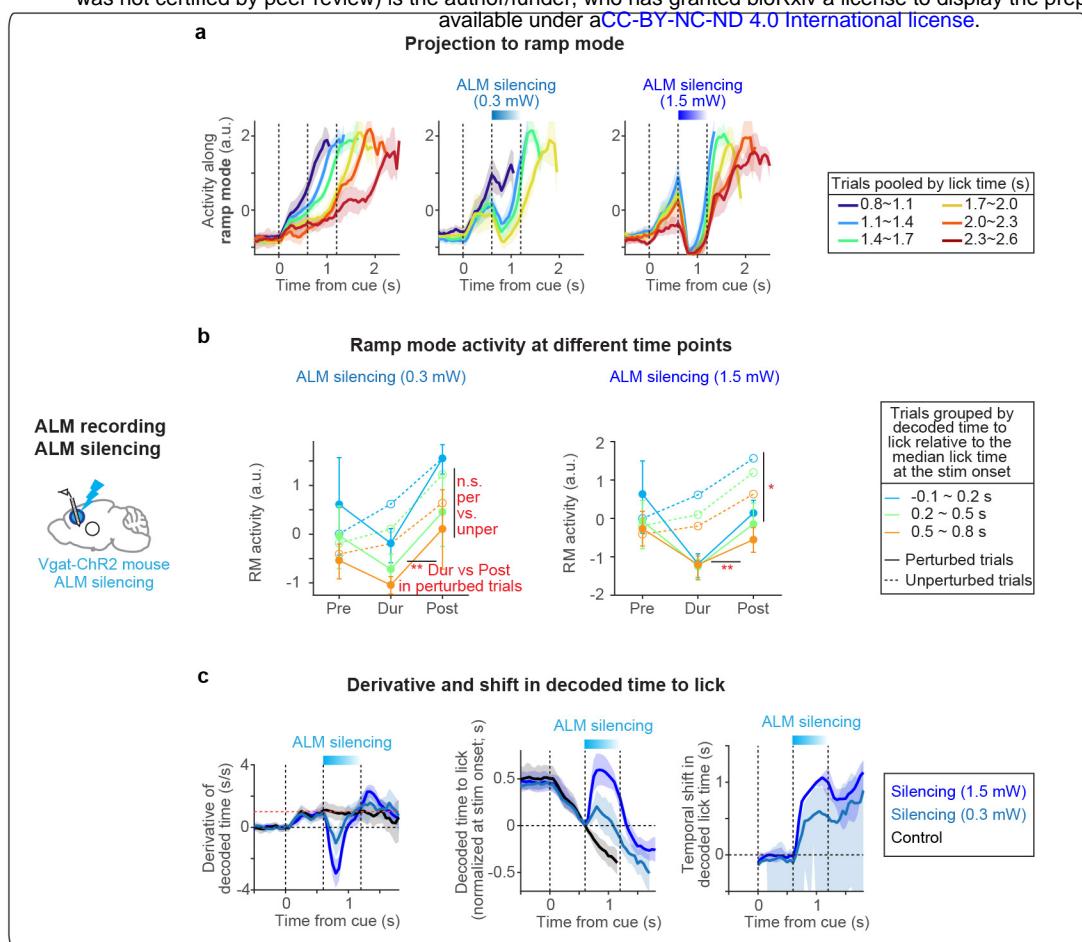
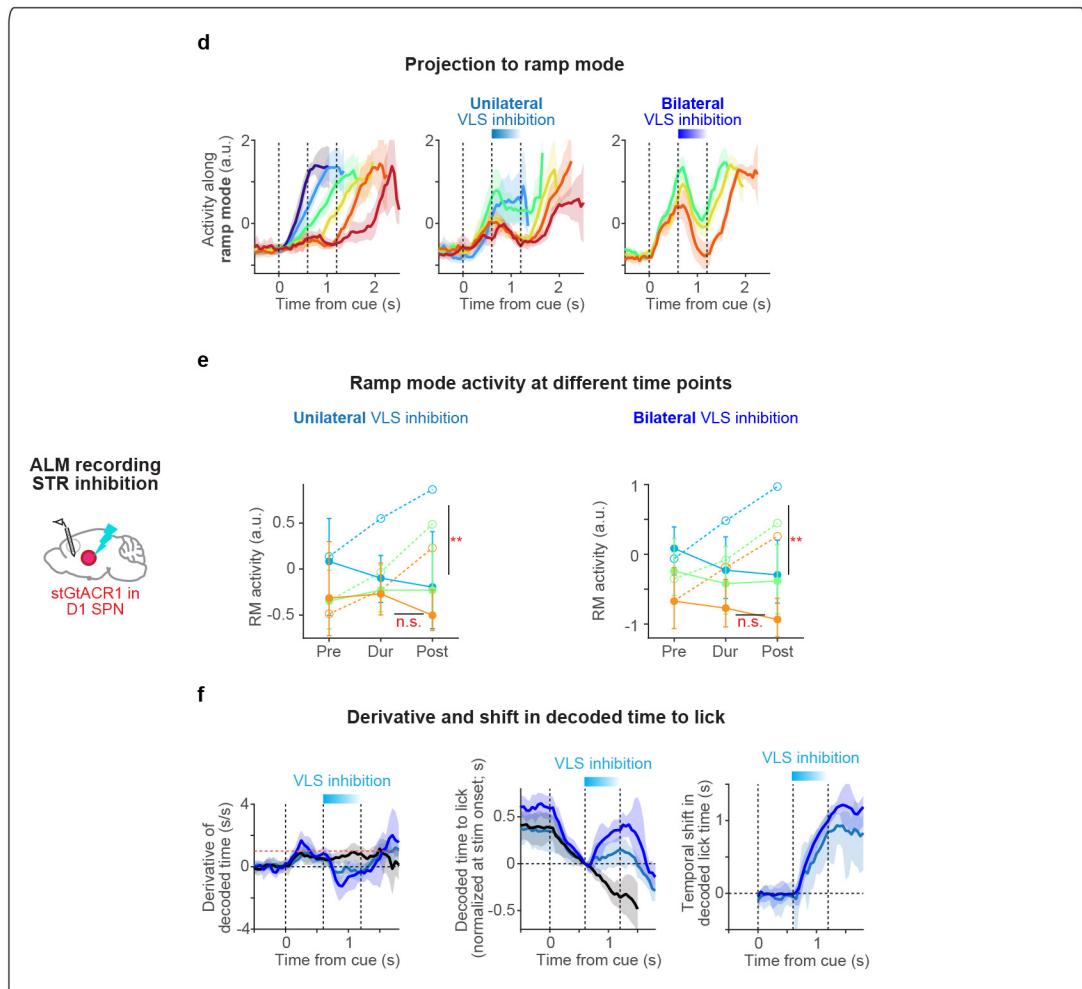
1495 g. Similar to **f**, but with an opposite configuration, i.e., FF connections in STR and ALM mediate feedback
1496 amplification of the signal. As ALM recurrent input supplies drive for the STR FF dynamics to
1497 progress, ALM silencing results in a pause in the representation of time. In contrast, STR inhibition
1498 (targeting half of STR neurons as in the data) rewinds the representation of time.



Extended Data Fig. 12

1499 **Extended Data Fig 12. Rewinding of ALM dynamics during D1-SPN silencing in VLS**

1500 We analyzed how activity evolves in the two-dimensional activity space defined by RM and MM, which
1501 captures a large fraction of task-modulated activity (Extended Data Fig. 5). For each session, we calculated
1502 the direction in which the activity developed from individual activity states. Specifically, we pooled all
1503 activity states (50 ms bin) between cue and lick in unperturbed control trials, calculated the direction of
1504 activity evolution (in the next 50 ms bin), and averaged these to acquire the vector field per session (black
1505 arrows in **a** and **d**; for states with more than 30 data points). Similarly, we acquired the vector field during
1506 inhibition by pooling all activity states during inhibition in silenced trials (cyan arrows; Methods). We then
1507 calculated the angle between vectors in control versus inhibition (**b** and **e**; circles, individual states with
1508 both black and cyan arrows) to test whether activity evolved in the opposite direction from the normal
1509 trajectory during inhibition. Additionally, we calculated the angle between vectors during silencing and the
1510 vector toward the zero point (where the spike rate is 0) to test whether activity evolved toward the zero
1511 point (**c** and **f**). During ALM silencing, the trajectory is better explained by activity moving toward zero
1512 (compare **b** vs. **c**). In contrast, during D1-SPN silencing, the trajectory is better explained by activity moving
1513 in the opposite direction from the normal trajectory (compare **e** vs. **f**).



Extended Data Fig. 13

1514 **Extended Data Fig 13. Graded and persistent effect of perturbations**

1515 We recorded ALM activity while perturbing it with different laser powers (0.3 vs 1.5 mW; **a-c**) or while
1516 unilaterally (ipsilateral) or bilaterally inhibiting D1-SPN in the VLS (**d-f**). In both cases, the perturbation
1517 with different intensities resulted in graded and long-lasting changes in ramping activity and decoded time
1518 beyond the duration of perturbations, consistent with the notion that the perturbation was integrated into
1519 the timing dynamics.

1520

1521 **a.** ALM population activity along the ramp mode in control trials (left) and ALM silencing trials with
1522 different powers (middle, right). Lines, grand mean. Shades, 95% confidence interval (hierarchical
1523 bootstrap). n = 130 cells, 4 mice. Trials with different laser powers were randomly interleaved in the
1524 same sessions.

1525 **b.** Quantification of the change in RM activity during and after ALM silencing. Same format as in
1526 Extended Data Fig. 9a. Left, weak ALM silencing. Right, strong ALM silencing. Note that the plot of
1527 perturbed trials exhibited a V-shaped profile regardless of laser power, whereas in D1-SPN inhibition
1528 (**e**), it showed a linear decay profile regardless of whether the inhibition was unilateral or bilateral.

1529 **c.** Analysis of decoded time based on ALM population activity (using kNN decoder). Left: derivative of
1530 decoded time (computed over a 200 ms window). In control trials (block), the derivative changes from
1531 0 to 1 (red horizontal dashed line) after the cue. In stimulated trials, the derivative becomes negative at
1532 light onset, reflecting rapid decay in activity, and increases after the light, reflecting rapid recovery.
1533 Middle and right: same format as in Extended Data Fig 9d. Lines, grand mean. Shades, 95% confidence
1534 interval.

1535 **d-f.** Same as in **a-c** for unilateral vs. bilateral inhibition of D1-SPNs in VLS. Data from different mice were
1536 combined (bilateral data is duplicated from Extended Data Fig. 9m; unilateral data, n = 113 cells, 4
1537 mice). Unlike ALM silencing, the derivative of decoded time does not show a large change even during
1538 inhibition, reflecting a gradual change in timing dynamics.