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Abstract

RNA viruses exhibit vast phylogenetic diversity and can significantly impact public health and
agriculture. However, current bioinformatics tools for viral discovery from metagenomic data
frequently generate false positive virus results, overestimate viral diversity, and misclassify
virus sequences. Additionally, current tools often fail to determine virus-host associations,
which hampers investigation of the potential threat posed by a newly detected virus. To address
these issues we developed VirlD, a software tool specifically designed for the discovery and
characterization of RNA viruses from metagenomic data. The basis of VirlD is a
comprehensive RNA-dependent RNA polymerase (RdRP) database to enhance a workflow that
includes RNA virus discovery, phylogenetic analysis, and phylogeny-based virus
characterization. Benchmark tests on a simulated data set demonstrated that VirID had high
accuracy in profiling viruses and estimating viral richness. In evaluations with real-world
samples, VirID was able to identity RNA viruses of all type, but also provided accurate
estimations of viral genetic diversity and virus classification, as well as comprehensive insights
into virus associations with humans, animals, and plants. VirID therefore offers a robust tool
for virus discovery and serves as a valuable resource in basic virological studies, pathogen

surveillance, and early warning systems for infectious disease outbreaks.
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Introduction

RNA viruses are renowned for their genetic and phenotypic diversity and ability to infect hosts

ranging from animals, plants, fungi, to microbial organisms, sometimes with devastating health

and economic consequences (Nicaise 2014). RNA viruses have caused human epidemics for

millennia, with notable recent examples including human immunodeficiency virus (HIV; 1981)

(Fauci 1988), SARS-CoV (2002) (Zhong, et al. 2003), pandemic HINI1 influenza (2009)

(Smith, et al. 2009), MERS-CoV (2012) (Assiri, et al. 2013), Ebola virus (Western Africa, 2013)
(Team 2014), Zika virus (2015) (Musso and Gubler 2016) and most recently SARS-CoV-2

(2019) (Zhu, et al. 2020). Importantly, approximately 70% of these pandemic-causing viral

pathogens originate from wildlife animals or utilize arthropod vectors (Chan, et al. 2013), and

many evaded surveillance systems before their emergence in human populations (Claas, et al.

1998; Ergoniil 2006; Peiris, et al. 2007; Martina, et al. 2009). Additionally, RNA viruses pose

significant threats to agriculture, particularly as epidemics in domestic animals and crops can

jeopardize global food security (Mackenzie, et al. 2004; Untiveros, et al. 2007; Scholthof, et al.

2011; Lee 2015; Robilotti, et al. 2015; He and Krainer 2020). Understanding the diversity of
RNA viruses and enhancing surveillance of those that pose threats to humans and economically

important species are therefore endeavors of utmost importance (Carroll, et al. 2018;

Lefrancois, et al. 2023).

Meta-transcriptomics (i.e., total RNA sequencing) provides a potentially unbiased survey
of the genetic information from all types of organisms in biological samples and has
transformed the detection and characterization of RNA viruses (Simmonds, et al. 2017;
Greninger 2018; Shi, Lin, et al. 2018; Shi, Zhang, et al. 2018; Zhang, et al. 2019). This method
provides efficiency and breadth in virus discovery compared to traditional cultivation
techniques (Shi, et al. 2016; Chen, et al. 2022; Zayed, et al. 2022), which are often restricted
by their reliance on cell culture growth (Huhtamo, et al. 2012; Shi, Lin, et al. 2018), and to
PCR-based approaches that depend on prior knowledge of existing viral diversity (Culley, et
al. 2003). As a consequence, meta-transcriptomics has become the primary tool for discovering
RNA viruses (Greninger 2018), with the highly conserved RNA-dependent RNA polymerase

(RdRP) that is essential for RNA virus replication serving a powerful universal genetic marker
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80  (Holmes 2009; Li, Shi, et al. 2015; Lam, et al. 2020; Edgar, et al. 2022; Mifsud, et al. 2022;

81  Shi, et al. 2023).

82 As well as sequencing, the bioinformatics tools for detecting and characterizing virus

83  sequences within metagenomic data sets have experienced major improvements. Initial

84  workflow tools like ViromeScan (Rampelli, et al. 2016) and Taxonomer (Flygare, et al. 2016)

85  detected viruses in samples by analyzing sequencing reads. Subsequent tools, such as Vipie

86  (Lin, etal.2017), ID-seq (Kalantar, et al. 2020), Lazypipe2 (Plyusnin, et al. 2023), and ViWrap

87  (Zhou, et al. 2023), use contigs from de novo assemblies for virus identification, enhancing the

88 length of query sequences and aiding the discovery of divergent viruses. With the advent of

89  machine learning and deep learning, tools such as PhiSpy (Akhter, et al. 2012), VirSorter (Roux,

90 etal. 2015), VirSorter2 (Guo, et al. 2021), and VIBRANT (Kieft, et al. 2020) were developed

91 to differentiate viral from microbial sequences by analyzing gene and/or genomic sequences

92  and features. Furthermore, methods like VirFinder (Ren, et al. 2017) and DeepVirFinder (Ren,

93 et al. 2020) utilize the frequency of consecutive nucleotides (k-mers) in known viral and

94  cellular genomes to identify DNA bacteriophage. More recently, specialized RNA virus

95  discovery software such as VirBot (Chen, Tang, et al. 2023) have been developed. VirBot

96  constructs databases of RNA virus protein families and employs profile Hidden Markov

97  Models (pHMM) to identify distantly related viral sequences, exhibiting superior performance

98  to other virus classification tools.

99 Despite these advancements, the bioinformatics tools for virus discovery continue to
100  confront major challenges, such as a high false positive rate, the overestimation of viral
101 diversity, and inaccurate virus classification (Dutilh, et al. 2021; Hegarty, et al. 2024). These
102 1issues are particularly problematic for RNA viruses due to their highly divergent genomes and
103 distinct genomic structures which complicate identification using basic annotation methods
104  (Drake 1993; Simon-Loriere and Holmes 2011). Additionally, current bioinformatics tools
105  often lack the capability for the in-depth characterization of viruses, including the accurate
106  identification of host associations, which impedes an understanding of their potential threat to
107  public health and agricultural systems.

108 In response to these challenges, we developed VirID — a comprehensive and user-friendly
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109  software tool tailored for the discovery and characterization of RNA viruses from metagenomic
110  data. VirID features a robust database of RARP sequences and comprises three core modules:
111 (i) RNA virus discovery, (i) phylogenetic analysis, and (iii)) phylogeny-based virus
112 characterization. Benchmark tests on simulated data set revealed VirID's high accuracy in
113 profiling and classifying RNA viruses. In practical applications with real-world data sets, VirID

114  demonstrated its capacity for virus discovery and for conducting thorough virome analyses.
115

116  Materials and Methods

117  RdRP Database

118 We established a database of 7080 representative RARP protein sequences for RNA virus
119  discovery and characterization. The RARP sequences were derived from three independent
120  sources, including a “backbone RARP data set” (N = 5,384) (Shi, et al. 2016; Shi, Lin, et al.
121 2018), the NCBI RefSeq database (viral RARP associated, N = 19,574), and the NCBI GenBank
122 database (viral RARP associated, N = 5,710,331). RdRPs from the RefSeq and GenBank
123 databases were initially identified based on key annotation terms, including “RdRP”, “RNA-
124 dependent RNA polymerase” and “polymerase” under the taxonomy “Riboviria”. Highly
125  divergent RdRPs derived from environmental samples (Edgar, et al. 2022; Zayed, et al. 2022;
126  Hou, et al. 2023) were excluded due to lack of confirmation. The RARPs from NCBI were then
127  compared to the backbone RARP data set using Diamond v2.1.4 (Buchfink, et al. 2015), with
128  an e-value threshold of 1e-5 and the '--ultra-sensitive' parameter, and sequences with BLAST
129 hit results were retained. The presence of key RARP domains, specifically the highly conserved
130 A, B and C sequence motifs, were examined using palmscan v1.0.i86linux64 (Babaian and
131  Edgar 2022). The remaining sequences were clustered using CD-HIT v4.8.1 (Fu, et al. 2012)
132 at 80% amino acid identity, with a representative then selected from each cluster. CD-HIT's
133 default parameters chose the longest sequences, which were then reviewed and corrected for
134  any errors. This resulted in a final reference database of 7080 sequences that were then
135  systematically organized into 24 RNA virus “superclades” based on broad phylogenetic
136  relationships (Figure 1A)(Shi, et al. 2016; Shi, Lin, et al. 2018), and subsequently into 5 phyla,
137 20 classes, 28 orders, and 112 families based on both the phylogenetic relationships and ICTV

138  taxonomy (Figure 1B, Supplementary Table S1).
6
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139 For each of the RARP sequences, information on host organism was initially retrieved from
140  the Virus-Host Database (Mihara, et al. 2016) and confirmed by checking the original
141  publications. Based on the host information and phylogenetic relationships, we categorized the
142 RdRP sequences into four broad groups: (i) those infecting humans (including vector-borne
143 viruses, N = 188), (ii) those infecting vertebrate animals (N =363), (i1) those infecting plants
144 (N=325), and (iv) all other host associations (Figure 1C). This information, together with virus
145  phylogenetic relationships, was used to define specific host groups on phylogenetic trees
146  (Figure 1D, Supplementary Figure S1) from which the host-association of the newly identified
147 RdRP sequences could be inferred (See below).

148

149  Processing and Assembly of Sequencing Reads

150 VirlD performs an initial processing of the input read sequences. The quality control of
151  reads was conducted using bbduk.sh (Bushnell 2014). To remove host and microbial ribosomal
152 RNA (rRNA) sequences, the reads were then mapped, using Bowtie2 v 2.5.1 (Langmead and
153 Salzberg 2012), against a reference rRNA database that contained a total of 505,405 rRNA non-
154  repetitive sequences obtained from SILVA database v138.1 (Quast, et al. 2012) and the RDP-
155 Il database (Cole, et al. 2007). The remaining reads were assembled de novo into contigs using
156  MEGAHIT v1.2.9 (Li, Liu, et al. 2015) and under default parameters. Only contigs longer than
157  600bp were retained for subsequent virus discovery and characterization.

158

159  Discovery and Quality Control of RNA Virus Contigs

160 VirID discovers RNA viral contigs through a homology-based search approach. The
161  assembled contigs were first compared against the RARP reference database using the Diamond
162  BLASTX program v2.1.4 with the e-value threshold of 1e—4 to identify potential RNA viral
163  sequences. To remove false positives, potential viral contigs were subsequently compared
164  against the NCBI Non-Redundant Protein Database (NR) with the e-value threshold of 1e—4
165  and the hits were annotated using TaxonKit v0.14.2 (Shen and Ren 2021). Contigs with only
166  non-viral hits were removed, and the top hits of the remaining contigs were used to provide an

167  initial taxonomic annotation for the viral contigs.
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168 In addition to the standard quality control steps described above, VirID employs extra
169  procedures to identify and remove false positives and erroneous sequences. To filter out
170  potential endogenous virus elements (EVEs) with disrupted ORFs, we removed contigs whose
171  RdRP-associated open reading frames (ORFs) were predicted to contain less than 200 amino
172 acids by scanning the viral sequence in six possible reading frames. For ORF prediction, we
173 included an option for 26 genetic code sets available in the NCBI database, with the standard
174  code set as the default. To identify and control for misassembled contigs that contained both
175  viral and non-viral sequences, the sequence was first compared using BLASTn (Camacho, et
176  al. 2009) against a “non-viral” database, specifically a sub-set of NCBI Nucleotide Sequence
177  Database (NT) that excludes viral sequences. Based on the position and length of hit, the target
178  contigs were either partially corrected (i.e., in scenarios when “non-viral” regions appeared at
179  either end of the contigs and were shorter than the “viral” region) or completely removed (all
180  other cases).

181

182  RNA Virus Species Identification and Quantification

183 For viral species identification, the RdRP-associated contigs were clustered using the all-
184  to-all BLASTn method (Nayfach, et al. 2021), employing an 80% sequence identity and a 40%
185  sequence length threshold to define approximate species-level taxonomic units. For each
186  species-level group, the predicted RARPs were compared against the NR database, and those
187  with >90% identity and 70% coverage to existing RNA viral species were denoted “known”
188  viral species, whereas those below these thresholds were considered as “new” viral species.
189 The sequence Reads Per Million (RPM) metric was used to evaluate the relative abundance
190  of virus species within the sample. Clean reads are first mapped to all contigs associated with
191  a virus species using Bowtie2 v2.5.1(Langmead and Salzberg 2012). The number of mapped

192 reads is multiplied by 10° and divided by the total number of reads to give the RPM value.

MappedReads * 10°
193 RPM = TotalReads

194
195  Viral Sequence Alignment at the Superclade Level

196 For newly identified viral sequences, multiple alignment was performed before subsequent

8
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197  phylogenetic placement. Viral RARP sequences were first classified into 24 superclades for
198  sequence alignment and phylogenetic analysis, based on BLASTx comparisons (Camacho, et
199  al. 2009) against the RARP reference database. To accelerate the analysis of the Picorna-Calici
200  superclade, we excluded contigs encoding proteins with fewer than 400 amino acids before
201  alignment. This was necessary due to the Picorna-Calici superclade containing 533 reference
202  sequences, which made each alignment iteration time-consuming. VirID utilizes the Amino
203  Acid Consistency (AAC) index to quantify the similarity between two aligned amino acid
204  sequences. AAC is calculated by dividing the number of identical amino acids (excluding gaps)
205 by the total length of the aligned amino acid sequence.

206 To ensure the accuracy of multiple sequence alignments, we employed an iterative
207  approach with Mafft v7.520 (Katoh and Standley 2013), followed by the removal of
208  ambiguously aligned regions using trimAl v1.4 (Capella-Gutiérrez, et al. 2009). In each
209  iteration, for each reference sequence (RY), its amino acid identity 7' is determined by the
210  highest amino acid identity value compared to other reference sequences. For each potential
211  viral sequence (Q%), its amino acid identity q' is set as the maximum value when compared
212 toall reference sequences. If q' falls below the minimum value of R across the entire reference
213 sequence set, the sequence Q! is removed as a poor-quality sequence, and the alignment
214  process is repeated. The pseudocode for eliminating false positives through multiple sequence

215  alignment is provided in Supplementary Figure S2.

216 rt = max AAC(R, R))
i#j
i — i pK
217 T M AACCRD)
218

219  Phylogenetic Placement

220 To optimize phylogenetic tree inference, we implemented an approach based on reference
221  trees. We first estimated reference maximum likelihood trees in RaxML v7 (Stamatakis, et al.
222 2008), using the best fit amino acid substitution model (i.e., PROTGAMMALGF) selected by
223 ProtTest (Abascal, et al. 2005). Subsequently, new sequences were integrated into these pre-
224  built reference trees based on the alignment using the LG model in pplacer v1.1 (Matsen, et al.

225  2010), which accurately identifies their most likely topological positions. The output from
9
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226  pplacer, provided in JSON format, is then converted into the Newick tree format using guppy
227  vl.1 (Matsen, et al. 2010), facilitating further phylogenetic analyses.

228 To evaluate the reliability of our phylogenetic placement, we performed leave-one-out
229  cross-validation, focusing on tree recall, which measures the proportion of correctly recovered
230  branches. For this analysis, we only included branches supported by a bootstrap confidence
231  value exceeding 90%. We observed that the distribution of recall rates varied across superclades,
232 likely influenced by the number of reference sequences and their similarity. In superclades
233 containing more than 50 sequences, recall rates for most clades tended to concentrate around
234 0.75, with few deviations (Supplementary Figure S3). Additionally, in virus clades with a high
235  density of sequences, such as Picorna-Calici and Partiti-Picobirna, this placement method
236  maintained the fundamental stability of the tree structure, demonstrating robustness despite the

237  addition of numerous new sequences.

238
Ed
239 Tree recall = _=%9Cbotn
Ed.gereference
240

241  Classification and Host Association Inference Based on Phylogenetic Analysis

242 The classification and host association of a query genome were inferred based on its
243 placement within each RARP superclade tree. We systematically annotated the evolutionary
244  tree by traversing from the leaf nodes upwards, adhering to the principle that sibling nodes
245  share the same labels. The labeling process for each leaf node followed the following criteria:
246 (i) if the node corresponds to a known sequence, its label is assigned based on the existing
247  annotation; (i1) if its sibling node is a known sequence, the leaf node inherits the label of its
248  sibling; and (iii) if its sibling node is an internal node, we iteratively determined the label of
249  that internal node before assigning it to the leaf node. For internal nodes, we conducted a
250  systematic top-down traversal of all their daughter nodes. If all daughter nodes carry identical
251  labels, the internal node adopts the same label as its descendants. However, if the daughter
252 nodes have differing labels, the internal node is categorized under the lowest common
253  taxonomic label for all those leaf nodes in this superclade. This structured approach ensures

254  consistent and logical assignment of labels throughout each superclade tree.

10
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255 Each potential viral sequence is assigned two types of labels: a taxonomic label that spans
256  superclade-taxon to ICTV hierarchical classification and eventually down to the species level,
257  and ahost association label that categorizes the virus as related to humans, vertebrates, or plants.
258  During the phylogenetic tree annotation, host association tags (represented as 0 or 1) are
259  assigned to sequences. Specifically, if a viral sequence's sibling node is identified as a human
260  pathogen, the sequence is considered potentially relevant to humans only if the similarity
261  exceeds 80%. For the ICTV classification within the phylogenetic tree, each internal node is
262  labeled according to the lowest common taxonomic level of its descendant nodes. For
263  sequences that remain unclassified, a default taxonomic hierarchy is assigned within the
264  corresponding superclade. This classification system effectively categorizes potential viral
265  sequences up to the genus level. For well-documented viruses, species-level classification is
266  determined using the NCBI annotation file derived from comparisons within the NR database.
267  This rigorous approach ensures accurate and detailed categorization of viral sequences across
268  various levels of taxonomic and host associations.

269

270  Benchmarking Preliminary Viral Contig Screening on Simulated Data Set

271 To evaluate the performance of VirID in the preliminary screening of RNA viral sequences,
272 we constructed a simulated short-read shotgun metagenomic data set for benchmarking using
273  CAMISIM (Fritz, et al. 2019). This data set included 15 samples from three categories: 'known
274  RNA viruses', 'new RNA viruses', and 'others', with each category comprising 15 species. The
275  'known RNA viruses' and 'others' data sets were derived from 463 complete RNA virus
276  genomes and 55 complete non-RNA virus genomes available in the NCBI RefSeq database,
277  respectively (Supplementary Figure S4). The 'new RNA viruses' were subdivided into three
278  levels based on their sequence similarity to the reference database and containing five species
279  each: 'new RNA virus L1', 'new RNA virus L2', and new RNA virus L3', with similarity
280  thresholds set at 0.70 < similarity (L1) < 0.90, 0.40 < similarity (L2) < 0.70, and 0.20 <
281  similarity (L3) < 0.40, respectively. The sequences used to simulate 'new RNA viruses' were

282  sourced from 299 high-quality RNA virus sequences obtained from recent publications (Feng,

11
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283 et al. 2022; Cui, et al. 2023; Hou, et al. 2023; Wang, et al. 2023), ensuring a comprehensive
284  and challenging test environment.

285 The individual simulated data samples are provided in pair-end fastq format, with each
286  file approximately 20 GB in size and each read 150 base pairs long. The distribution of the
287  three data types within each sample is maintained at a consistent ratio of 1:1:1. Unlike other
288  tools that require contigs, VirID accepts reads directly as input. To ensure consistent data
289  standards across all tools, the contigs generated from VirlD's intermediate outputs are used as
290  input for the other tools. Additionally, for uniformity in evaluation metrics, all tools have
291  adopted VirID's criterion of using contigs longer than 600bp.

292 We assessed the performance of three different RNA viral detection tools—VirSorter2,
293  VirBot, and VirID—on a simulated data set using accuracy, precision, recall, and F1 score.
294  These metrics focus on the number of correctly identified species in the tool's output, rather
295  than the number of sequences. The accuracy of each tool reflects the proportion of RNA viral
296  species correctly identified from the total number of species. Recall measures the tool's
297  sensitivity by calculating the proportion of RNA viral species detected relative to the total
298  number of RNA viral species in the data set. Precision indicates the specificity of the tool,
299  defined as the proportion of RNA viral species detected out of the total number of species
300 identified by the tool. The F1 score, the harmonic mean of precision and recall, provides a
301  balanced measure of a tool's overall effectiveness.

302

303 Metagenomic Data Sets

304 To demonstrate VirID's visualization capabilities, we analyzed 20 SRA libraries from a
305 large scale animal study conducted in China (Cui, et al. 2023) that comprised 14 animal species
306  across five provinces. In addition, we assessed the versatility of VirID through the analysis of
307 192 public libraries from seven studies, which included a wide range of samples from human
308  swabs (Graf, et al. 2016) and diverse animal tissues (Chang, et al. 2020; He, Wang, et al. 2022;
309  Shi, et al. 2022), as well as arthropod (Pettersson, et al. 2020), plant (Elmore, et al. 2022), and
310  soil samples (Bender, et al. 2021). The public metagenomes utilized in this analysis were

311  sourced from NCBI, with details provided in Supplementary Table S2, S3.

12


https://doi.org/10.1101/2024.07.05.602175
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.05.602175; this version posted September 22, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

312

313  Benchmark on Real Metagenomics Data Set

314 To evaluate the performance of VirID and VirBot for real-world data sets, we conducted a
315  benchmark analysis using 20 wildlife sequencing libraries (Supplementary Table S2). VirBot
316  utilized intermediate assembled contigs from VirlD as input. For the contigs identified by VirID
317  and VirBot, ORFs were translated using standard genetic code and annotated based on aligning
318  predicted amino acid sequences to hidden Markov models (HMMs) from the Pfam-A database
319  (https://pfam-legacy.xfam.org/) using HMMER’s hmmscan (http://hmmer.org/), with a
320  minimum score threshold of 25. ORFs without hits in Pfam-A were further annotated using
321 BLASTp against the NR protein database with an e-value threshold of le-4. We then
322 categorized the top hit annotations of ORFs into three groups: (i) those contained RdRP protein,
323  and those did not contain RARP, but contained (ii) non-structural proteins other than RARP, and
324  (iii) structural proteins. To further compare the taxonomic classification performance of VirID
325  and VirBot, we compared the classifications of contigs identified by VirID. We calculated the
326  percentage of sequences classified at each of the seven taxonomic levels, from realm to genus.
327 We benchmarked the runtime of VirID, VirBot, and VirSorter2 using 5 real-world
328 sequencing samples with sequencing data size ranging from 2.6GB to 15.8GB (see
329  Supplementary Table S4 for details). All runtime estimations were conducted in an
330  environment running Ubuntu 22.04.2 LTS (GNU/Linux 5.15.0-116-generic x86 64) with four
331  AMD EPYC 7643 48-core processors and 1.0 TB of memory. The programs were restricted to
332 32 threads, with no memory limitations. VirID used sequencing reads in '.fastq.gz' format as
333  input, while VirBot and VirSorter2 used intermediate assembled contigs from VirlD,
334  comprising sequences longer than 300 bp. To ensure a fair comparison, we used contigs as the
335  starting material when performing comparisons among the three methods. Additionally, we
336  estimated the computational runtime for the unique steps in the VirlID analysis pipeline,
337  including (i) read assembly and (ii) phylogenetic inference, recognizing that these steps could
338  not be directly compared with the other methods due to the absence of equivalent processes.
339

340  Parameters and Visualizations
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341 VirID offers three user-selectable modes: 'end to end', 'assembly and basic annotation', and
342 'phylogenetic analysis'. The 'end to end' mode executes both 'assembly and basic annotation'
343  and 'phylogenetic analysis' sequentially. The 'assembly and basic annotation' mode processes
344  sequencing data up to the point of producing annotated contigs, but it does not include
345  phylogenetic analyses. Conversely, the 'phylogenetic analysis' mode begins with contigs and
346  carries out subsequent processing from there.

347 During the 'assembly and basic annotation' stage, users can opt to remove mis-assembled
348  portion of a virus contig, a process that may require longer time and significant memory
349  resources. Additionally, an ultrasensitive mode is available for analyzing RARP libraries that
350  enhances the detection of a broader range of potential viral sequences. In the 'phylogenetic
351 analysis' phase, users can choose to eliminate redundant sequences and customize the amino
352 acid length thresholds for specific superclade of interest. VirID employs several tools for
353  visualizations: sankey diagrams, stacked histograms, and phylogenetic tree diagrams are
354  generated using the R packages networkD3 (Allaire, et al. 2017), ggtree (Yu, et al. 2017), and
355 ggplot2 (Wickham 2011), respectively. Further visualizations are created using Matplotlib
356 v3.7.4 (Hunter 2007) and Seaborn v0.13.0 (Waskom 2021), enabling comprehensive graphical
357  representations of the data.

358

359  Results

360  VirID Workflow

361 VirID is a user-friendly command-line tool designed for the detection and detailed
362  characterization of RNA viruses from metagenomic data. The workflow is divided into three
363  stages: RNA virus discovery, phylogenetic analysis, and phylogeny-based virus
364  characterization (Figure 2). In the first stage, putative RNA virus genomes containing the RARP
365 gene are identified through a homology approach, checked for false positives and
366  contamination, and clustered based on sequence similarity at the species level. This process
367 yields high-quality genomic sequences and related information such as sequence length, closest
368 relatives, and abundance levels. In the second stage, VirID conducts high-quality sequence

369  alignment and comprehensive evolutionary analysis across the full diversity of the RNA
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370  virosphere: this further removes low-quality sequences and reveals the phylogenetic position
371  ofall newly discovered viruses. In the final stage, based on these evolutionary analyses, VirID
372  provides precise classification information and predicts potential viral associations with
373  humans, vertebrates, and plants.

374

375  Analysis Results Output in VirID

376 VirID conducts thorough data analyses and offers robust visualization tools, enabling an
377  intuitive and comprehensive presentation of results. VirID organizes its output into three main
378  folders: (i) 'assembly and basic annotation' for intermediate files related to RNA virus
379  discovery, (ii) 'phylogenetic analysis' containing well-labelled trees for various superclades,
380 and (iii) 'results' for other figures and tables. It generates tables, fasta format sequences files,
381  web files, and figure files (pdf format) to suit various analytical needs. We demonstrated these
382  features here using a data set from 20 wildlife sequencing libraries that includes bats,
383  insectivores, pangolins, pika and rodent samples (Cui, et al. 2023) (Figure 3, Supplementary
384  Table S2). In the RNA virus discovery segment, VirID estimates Reads Per Million (RPM)
385  values for each potential viral species to assess their relative abundance. These values are
386  displayed in a sankey plot on an HTML webpage, illustrating RPM distributions across RARP
387  superclades and NCBI taxonomy at multiple taxonomy levels—phylum, class, order, family,
388  genus, and species (Figure 3A). VirlD also categorizes potential viral sequences into one or
389  two of four host-association groups: human, vertebrate, plants, and others (Figure 3B). This
390 information is provided in color-coded trees that contain information on both phylogenetic
391 relationships and potential host associations (Figure 3C). Additionally, VirID outputs high-
392  quality viral genome sequences in fasta format (Figure 3D) and all other relevant information,
393  including sequence length, highest BLASTx match, virus classification, association with
394  principal hosts, in multidimensional tables (Figure 3E, Supplementary Table S5, S6).

395 In the example of the 20 wildlife sequencing libraries VirID identified 129 potential RNA
396  viral contigs belonging to 107 various species, including 87 new virus species, spanning 26
397  families and 15 superclades (Supplementary Figure S5A). Overall, 54 of these species can be

398  assigned at the family level, with the remainder falling outside known families. Eleven of these
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399  species are potentially relevant to humans, including Wufeng Niviventer niviventer
400  orthohantavirus 1, Severe acute respiratory syndrome-related coronavirus, Rotavirus A, and
401  Pangolin respirovirus (Supplementary Figure S5B, Supplementary Figure S6). Additionally,
402  several viral species associated with vertebrate infections were identified, including those
403  within the genera Alphacoronavirus, Alphainfluenzavirus, and Mammarenavirus. The
404  remaining 88 viral species are most likely derived from diet, parasites, and other microbial
405  cellular organisms within the principal host, because they were identified as plant viruses (e.g.
406  members of the Tombunsviridae) or closely related to arthropod (e.g. Iflaviridae) or fungal
407  viruses (e.g. Mitoviridae).

408

409  Benchmarking VirID using Simulated Data

410 We initially evaluated VirID alongside two other tools—VirSorter2, VirBot—using a
411  collection of simulated samples (N = 15) that included a diverse mix of RNA viruses and other
412 species. These read data samples were generated using the CAMISIM simulator, drawing on
413 source genomes and sequences from both the NCBI RefSeq database and recent studies. The
414  RNA viruses in the CAMISIM pool were comprised of four categories: 'known RNA viruses',
415 'mew RNA virus L1', new RNA virus L2', and 'new RNA virus L3', representing different
416  similarity levels to the reference database sequences.

417 Three tools were compared across 15 data samples, including the average accuracy,
418  precision, recall, and F1 score metrics (Figure 4A). VirID achieved the highest F1 score of
419  0.9334, with a standard error of £0.0180. Its recall, at 0.8822 with a standard error of £0.0301,
420  was close to VirBot (0.8822 + 0.0247). Notably, VirID's precision was perfect across all 15
421  samples, with an absence of false positives. The three tools were further evaluated for their
422  performance on 'new RNA viruses' that shared less than 90% amino acid identity with those
423 described in NCBI database (Figure 4B) and 'known RNA viruses'. VirID continued to perform
424 well in identifying 'new RNA viruses', again with zero false positives (Supplementary Figure
425  S7).

426 We also analyzed whether the number of viral sequences or species revealed by each tool

427  matched that of expected species count in the simulated data (Figure 4C). VirID's estimation
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428  of contigs (39, average) and species (27, average) were the most closely aligned with the 30
429  true species samples, followed by VirSorter2 (average of 45 contigs and 26 species) and then
430  VirBot (53 contigs and 27 species). VirlD achieved a ratio of 1.47 for the number of estimated
431  sequences relative to the number of true species. This ratio was the lowest among all tools,
432  indicating that VirID's output most accurately reflect the actual number of virus species.

433 The integrity of the RNA viral sequences revealed and processed by VirlD was assessed
434  using the CAMISIM simulator's 'gold standard' contigs as a benchmark. These standard contigs
435  represent idealized assembly results of the simulated reads, providing a baseline for evaluating
436  the detected virus sequences. We aligned the putative viral contigs with these 'gold standard'
437  contigs, selecting the best matches based on coverage and identity. The average completeness
438  for contigs in 10 samples exceeded 90%, with an overall average completeness of 90.80%
439  across all 15 samples (Figure 4D). This meets CheckV's criterion for 'high quality
440  completeness' (Nayfach, et al. 2021).

441

442  Benchmarking VirID on Real-world Sequencing Libraries

443 We conducted a benchmark analysis of the VirID and VirBot RNA discovery tools using
444  the 20 wildlife sequencing libraries described above (Supplementary Figure S8). VirID and
445  VirBot both identified 212 contigs (Supplementary Figure S8A). VirBot detected an additional
446 438 unique contigs, of which 240 were short contigs (<200 amino acids) and the remainder
447  primarily encoded non-RdRp proteins. In contrast, VirID identified 23 additional contigs, all
448  of which encoded RdRPs (Supplementary Figure S8B). This suggests that VirBot identifies
449  more viral contigs overall, while VirID gives a more accurate representation of viral richness.
450  Additionally, we compared the percentage of annotated contigs from the final 129 contigs
451  obtained by VirID. Since VirID uses phylogenetic analysis for classification, it achieved more
452  detailed viral classification across various taxonomic levels (Supplementary Figure S8C).

453 In regard to computational runtime estimation based on 32 threads of the AMD EPYC
454 7643 CPU, VirID (median 15.7 minutes, 11.3 - 28.4 minutes) and VirBot (median 5.2 minutes,
455 1 -14.1 minutes) demonstrated similar performance, while VirSorter2 (median 141.9 minutes,

456 3.4 -216.8 minutes) was significantly slower (Supplementary Figure S8E). For the unique steps

17


https://doi.org/10.1101/2024.07.05.602175
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.05.602175; this version posted September 22, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

457  in VirlID, read assembly took a median of 92.5 minutes (4.5 — 126.2 minutes), with runtime
458  positively correlated with the sequencing depth of the sample (Supplementary Figure S8D).
459  Phylogenetic inference had a median runtime of 1.3 hours (0.3 — 16.9 hours), with the longest
460  time spent on sequence alignment (Supplementary Figure S8F). The longest runtimes (16.3
461 and 16.9 hours) were observed in data sets containing members of the Picorna-Calici clade,
462  which included a total of 533 reference viral sequences. The CPU runtime for phylogenetic
463  inference could be significantly reduced by improving the speed of sequence alignment.

464

465 A Re-Analyses of Previously Published Data Sets

466 We next assessed the performance of VirID by analyzing 192 meta-transcriptomic SRA
467  libraries from seven distinct virome studies, covering a range of sample types including clinical
468  (human), wild birds, Malayan pangolins, Qinghai voles, seabird ticks (Ixodes uriae), soybean
469  fields, and peat soil samples (Supplementary Table S3). VirID significantly improved viral
470  discovery. A total of 1,283 RNA viral species were identified in these data sets, with the soil
471  samples displaying the highest average virus species richness at 88.5 species per sample,
472 followed by Qinghai vole at 2, and then seabird tick at 1.9. Importantly, 1,202 novel RNA viral
473  species were identified. Among these, the highest number of novel viruses (N = 740) was found
474  in the soil samples, with 56% of these viruses categorized within the Narna-Levi superclade.
475 At the family level, the Picobirnaviridae contained the most viral species (N = 164), followed
476 by the Tombusviridae (N = 83) and Mitoviridae (N = 69), although many virus species (54.5%)
477  could not be assigned at family level (Figure 5A).

478 We next evaluated the number of families identified and compared these with previous
479  studies, omitting any with incomplete classification information. Our analysis revealed an
480  average increase of five viral families, with notable differences particularly observed in the
481 vole and soybean data sets (Figure 5B). In addition, VirID provided a more precise
482  classification system for the target viruses. For instance, viruses that were previously classified
483  only at the kingdom level, such as Bulatov virus, Fennes virus, Ronne virus, and Vovk virus

484  from the seabird tick data set, were now classified at the genus level (Supplementary Table S7).
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485 VirID also provides information on whether the viruses observed are associated with
486  vertebrates, plants, or have the potential to infect humans. For example, in the Qinghai vole
487  data set we identified 180 species that were likely associated with voles, including
488  Mamastrovirus (N = 1), Hepacivirus (N = 5), Pegivirus (N = 2), Arteriviridae (N = I), and
489  Picobirnaviridae (N =164), although the host association for the Picobirnaviridae remains
490  uncertain (Sadiq, et al. 2024). Additionally, 250 virus species were likely associated with food
491  sources, parasites, and symbionts within these hosts, including Narna-Levi (N = 163), Partiti-
492 Picobirna (N = 74) and Toti-Chryso (N = 6) (Figure 6A). Overall, vertebrate-associated viruses
493 accounted for a median of 66% of the total non-ribosomal RNA in host samples, ranging from
494 30.2-73.6%, while other viruses accounted for 23.3%, with a range of 10.5-67.9% (Figure 6B).
495  Notably, we identified two species, Hepatovirus D and Rotavirus A, that are potential human
496  pathogens. Hepatovirus D was described in the original publication (He, Wang, et al. 2022),
497  while Rotavirus A was newly identified here. These viruses were discovered because they
498  cluster with known human pathogens at over 80% sequence identity with these viral contigs.
499 Similarly, we identified 17 potential human pathogens, primarily within the clinical sample
500 data set. This included potential human pathogens such as Pangolin coronavirus HKU4,
501  Rotavirus A, and Pangolin Respirovirus identified in pangolins, as well as the vector-borne
502  Gadgets Gully virus, Okhotskiy virus, and Neke harbour virus from the seabird tick samples.
503  This is consistent with previous publications. Additionally, plant-infecting viruses were
504  identified in the vole (N = 3, likely diet-related), soybean (N = 6), and soil (N = 24) samples
505  (Figure 6C, Supplementary Table S8). In the Soybean field data set, we detected 79 contigs
506  from six viral species associated with plants, constituting about 74.5% of the total non-
507  ribosomal RNA, including tobacco streak virus, soybean dwarf virus, pepper mild mottle virus,
508  bean pod mottle virus, and alfalfa mosaic virus (Figure 6D).

509

510  Discussion

511 Herein, we present VirID, an RNA virus discovery platform specifically designed for
512 Linux servers. VirID integrates phylogenetic analysis into the identification and

513  characterization of RNA viruses, thereby substantially improving virus discovery. The platform
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514  employs an iterative scoring strategy in its alignment processes to minimize false positives and
515  incorporates a phylogenetic placement algorithm for the rapid and stable phylogenetic tree
516 inference. As a result, users can accurately estimate RNA virus diversity, classify each
517  identified virus with high precision, at the same time obtaining insights into host associations
518  which enable the potential threat to human, animal and plant health to be evaluated. The wealth
519  of information generated by this platform will be invaluable for researchers involved in early
520  warning of infectious diseases across diverse settings.

521 Our results show that VirID provides the most precise estimation of viral species
522 composition, while other programs tend to overestimate genetic diversity. This overestimation
523 may occur because some methods consider all virus-associated contigs, including those with
524  low coverage and fragmented genomes, potentially counting them as multiple species. To
525  depict diversity more accurately, it is essential to focus on regions of the genome shared by the
526  majority of viruses, thereby minimizing overestimation (Beerenwinkel, et al. 2012; Garcia-
527  Loépez, et al. 2015). The RARP gene is an excellent candidate for several reasons. First, all RNA
528  viruses, with the exception of RNA satellite viruses, contain the RARP (Shi, et al. 2016; Shi,
529  Lin, et al. 2018; Zayed, et al. 2022). Second, the RARP protein is the most conserved gene in
530 the RNA virus genome, and often comparable across different virus classes or even phyla
531  (Venkataraman, et al. 2018; Monttinen, et al. 2021). Therefore, focusing solely on RdRP
532  contigs is key to accurately determining viral diversity within a sample.

533 Compared to other virus discovery programs, the phylogenetic analysis feature of VirID
534  provides a central analytical component. In particular, it provides an automated and reliable
535  method for accurately classifying previously undescribed RNA viruses, especially those that
536  are highly divergent in sequence. Traditionally, the approach to classifying new viruses
537 involved BLAST analyses and assigning taxonomic position based on the closest related hits
538  (Lin, et al. 2017; Zhao, et al. 2017; Plyusnin, et al. 2023). However, this method may counter
539  the guidelines laid down by the International Committee on Taxonomy of Viruses (ICTV) who
540  apply varying criteria for virus taxonomy at the species and genus levels (King, et al. 2012;
541  Simmonds, et al. 2017; Lefkowitz, et al. 2018). Additionally, the lack of a clear definition of

542  what levels of genetic similarity differentiate higher taxonomic ranks complicates the
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543  assignment of viruses to new families or orders when protein identity is below 40%. More
544  importantly, some reference sequences are incorrectly classified, which can introduce errors
545 into the classification process. For instance, a sequence from soil metagenomic data
546  (MNO035928), from a divergent member within the order Bunyavirales, was mistakenly labeled
547  as belonging to the genus Arenavirus within the Arenaviridae (Starr, et al. 2019). As a
548  consequence, subsequent discoveries of similar viruses (0Q715420)(Chen, Hu, et al. 2023)
549  were also mislabeled as Arenaviridae. Such misclassifications could be avoided with robust
550  and reliable phylogenetic analyses.

551 Phylogenetic analysis is also central to the inference of host associations. Viruses from
552  similar host categories tend to cluster together, forming what is known as a phylogenetic
553  monophyly, indicative of host structure in virus phylogeny (Kitchen, et al. 2011; Shi, et al.
554 2016; Shi, Lin, et al. 2018; French, et al. 2023). This pattern holds true across different types
555  of viruses, such as vertebrate-specific viruses, arthropod-borne viruses, and plant viruses, in
556 which host-associated phylogenetic monophyletic groups are identifiable at various taxonomic
557 levels—ranging from the family level (e.g., Picornaviridae) to the genus level (e.g.,
558  Alphavirus), and even within specific genetic lineages in a single genus (e.g., mosquito-borne
559  and tick-borne virus groups within genus Flavivirus). Due to the varying scales and complexity
560  of these host-associated groups, phylogenetic analysis serves as a valuable tool for exploring
561  these relationships (Shi, et al. 2022; Cui, et al. 2023; Wang, et al. 2023). However, assigning
562  viruses to other host groups such as arthropods, nematodes, and even basal eukaryotes (such
563  as parasites) remains challenging due to the scarcity of relevant virus data on these hosts. In
564  addition, a limitation to all virus discovery tools, including VirID, is that they may not identify
565  vertebrate-associated viruses if they occupy phylogenetic positions not previously linked to
566  vertebrate hosts.

567 The ability to infer host associations is highly relevant in disease monitoring programs in
568  which emerging pathogens are continuously identified and evaluated (Carroll, et al. 2018;
569  Carlson, et al. 2022; Ko, et al. 2022). Numerous viruses are discovered in sequencing efforts,
570  but not all are relevant to the infection of principal host or impact health. Indeed, those relevant

571  to disease often constitute only a small fraction (Liang and Bushman 2021). For example, in a
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572  survey of over 1941 game animals across China, more than 1000 viruses were identified, yet
573  only 102 were linked to mammalian infections, and even fewer (N = 21) were considered to
574  pose a significant risk of infecting humans or other animal species (He, Hou, et al. 2022).
575  Similarly, a recent meta-transcriptomics study of 2438 mosquitoes in China revealed that
576 ~ among the 564 RNA virus species detected, 393 were likely associated with mosquitoes, but
577 only 7 were linked to mammalian infections (i.e., arboviruses) (Pan, et al. 2024). Thus,
578  discerning potential host associations is crucial for assessing the public health or economic
579  impact of discovered viruses (Rahman, et al. 2020; Bernstein, et al. 2022; Lefrancois, et al.
580  2023).

581 Our study is subject to several limitations. First, while the phylogenetic placement method
582  has accelerated the estimation of evolutionary trees, the self-iterative multi-sequence alignment
583  process remains time-consuming. Second, VirID primarily relies on the RARP to denote
584  homology and is therefore unable to identify sequences that do not contain RARP sequences or
585  that are too divergent to be detected in homology-based searches (Telesnitsky and Goft 2011;
586  Hu and Hughes 2012). Consequently, for segmented viruses, the full genome assembly may be
587  incomplete. Third, VirID does not provide strain or genotype level typing which often depend
588  on more variable parts of viral genomes (Yang, et al. 2020; Liao, et al. 2022). Finally, the RARP
589  database is continuously expanding, particularly with the addition of data from environmental
590  samples (Wolf, et al. 2020; Chen, et al. 2022; Edgar, et al. 2022; Zayed, et al. 2022; Hou, et al.
591  2023). However, since these environmental RARP data are unverified, and this study focuses
592  on human, animal, and plant health, they are currently excluded from our database.
593  Nevertheless, given the flexibility of our RARP database structure, these data can be readily
594  incorporated to facilitate future broader scale analyses.

595

596  Data Availability

597  VirlD is freely available as an open-source Python code at

598  https://github.com/ZiyueYang01/VirID. And the newly identified virus sequences from this
599  study are available under the link:

600  https://github.com/ZiyueYang01/VirID/blob/main/data res/Novel RNA viral.fasta
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602  Supplementary Data

603  Supplementary Data are available at MBE Online.
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911  Figure 1. Overview of the RARP reference database.

912  (A) Compilation of representative RARP sequences into 24 RNA virus superclades, categorized

913  based on phylogenetic analysis.
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914  (B) Alignment of viral superclades with the ICTV taxonomic system, spanning virus class,
915  order, and family levels. Numbers reflect the count of ICTV classifications mapped to each
916  RdRP superclade, with specific ICTV representative mapping details provided.

917  (C) The distribution of viral sequences across superclades and ICTV taxonomy, highlighting
918 551 vertebrate-related and 325 plant-related sequences.

919 (D) Using the Reoviridae as a case study, the diagram presents a phylogenetic tree in which
920  branch colors indicate taxonomy and background hues denote host association. Reference
921  sequences are clearly annotated based on their positions within the phylogenetic tree.

922

923  Figure 2. VirID framework for identifying RNA viruses from sequencing samples.

924  The VirID framework for automated RNA virus detection, which comprises three main stages:
925 (i) RNA virus discovery, (ii) phylogenetic analysis, and (iii) phylogeny-based virus
926  characterization. It produces outputs that include viral sequences, phylogenetic trees, and
927  comprehensive information including sequence length, best match of BLASTx comparison,
928  virus classification, and host association.

929

930  Figure 3. Visualization of outputs from VirID.

931  (A) Distribution of Reads Per Million (RPM) of potential viral sequences from SRA sample
932  SRR22936818, categorized by RARP superclades and corresponding NCBI taxonomic ranks.
933  (B) The host associations of all identified virus sequences based on their placement in the
934  phylogenetic tree.

935  (C) A phylogenetic tree is used to distinguish different viral lineages and colour-coded by
936  taxonomic group. In this case, newly identified virus sequences in the Nido superclade are
937  highlighted in red at the end of the branches, emphasizing their significance.

938 (D) Complete nucleic acid sequences for detailed analysis and verification.

939  (E) Detailed information for each identified viral sequence, including host association,
940  genomic details, and taxonomic classification.

941

942  Figure 4. Benchmarking of three tools for virus discovery using simulated data.
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943  (A) Performance of three bioinformatics tools — VirID, VirBot, and VirSorter2 — across 15
944  simulated samples, evaluating average accuracy, precision, recall, and F1 score. Error bars
945  represent standard errors. Notably, the training data sets for VirSorter2 and VirBot are
946  primarily based on all viral genomes in the NCBI RefSeq database and a curated collection of
947  viral proteomes, respectively.

948  (B) The three bioinformatics tools were further assessed for their specific ability to identify
949  'new RNA viruses' at various levels of classification.

950  (C) Effectiveness of each tool in identifying RNA virus sequences across 15 simulated samples.
951  Yellow dots represent the number of RNA virus sequences identified, while green dots indicate
952 the number of corresponding species-level taxa.

953 (D) Ratio of the lengths of sequences identified by VirID in various simulated data samples
954  compared to the length of the corresponding gold standard sequence. Only sequences that
955  uniquely correspond to gold standard sequences are considered.

956

957  Figure 5. Reclassification of viruses using VirID on real-world data.

958  (A) Distribution of virus species across different superclades and families identified by VirID
959  inpreviously published data sets, including human swabs (Graf, et al. 2016), wild birds (Chang,
960 et al. 2020), Malayan pangolins (Shi, et al. 2022), Qinghai voles (He, Wang, et al. 2022),
961  seabird ticks (Pettersson, et al. 2020), soybean fields (Elmore, et al. 2022), and soil samples
962  (Bender, et al. 2021).

963  (B) The utility of VirID across a broader spectrum of RNA virus families. Virus families
964  documented in the original publications are displayed on the left, while those identified in this
965  study are shown on the right.

966

967  Figure 6. Virus-Host associations revealed by VirlD.

968  (A) Number of known and unknown virus sequences related to viruses of humans, vertebrates,
969  plants, and other hosts as identified by VirID in the Qinghai vole case study.

970  (B) Count of virus sequences associated with different hosts in various tissue and fecal samples

971  from voles identified by VirID.

33


https://doi.org/10.1101/2024.07.05.602175
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.05.602175; this version posted September 22, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

972  (C) Number and taxonomy of virus sequences related to different hosts in various real-world
973  samples identified by VirID.
974 (D) Number of virus sequences related to viruses of different hosts in a variety of real-world

975  samples identified by VirID.
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Figure 3
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