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Abstract. Systems consolidation is a common feature of learning and memory systems, in which a long-
term memory initially stored in one brain region becomes persistently stored in another region. We studied
the dynamics of systems consolidation in simple circuit architectures with two sites of plasticity, one in an
early-learning and one in a late-learning brain area. We show that the synaptic dynamics of the circuit
during consolidation of an analog memory can be understood as a temporal integration process, by which
transient changes in activity driven by plasticity in the early-learning area are accumulated into persistent
synaptic changes at the late-learning site. This simple principle naturally leads to a speed-accuracy tradeoff
in systems consolidation and provides insight into how the circuit mitigates the stability-plasticity dilemma
of storing new memories while preserving core features of older ones. Furthermore, it imposes two constraints
on the circuit. First, the plasticity rule at the late-learning site must stably support a continuum of possible
outputs for a given input. We show that this is readily achieved by heterosynaptic but not standard Hebbian
rules. Second, to turn off the consolidation process and prevent erroneous changes at the late-learning site,
neural activity in the early-learning area must be reset to its baseline activity. We propose two biologically
plausible implementations for this reset that suggest novel roles for core elements of the cerebellar circuit.

Significance Statement. How are memories transformed over time? We propose a simple organizing
principle for how long term memories are moved from an initial to a final site of storage. We show that
successful transfer occurs when the late site of memory storage is endowed with synaptic plasticity rules
that stably accumulate changes in activity occurring at the early site of memory storage. We instantiate
this principle in a simple computational model that is representative of brain circuits underlying a variety of
behaviors. The model suggests how a neural circuit can store new memories while preserving core features
of older ones, and suggests novel roles for core elements of the cerebellar circuit.

Introduction

Memory systems transform transiently present information into a more persistent form. In short-
term (working) memory, transient spiking activity of input neurons is transformed into persis-
tent activity in downstream short-term memory-storing circuits (Zylberberg & Strowbridge 2017;
Goldman-Rakic 1995). In long-term memory, memories stored transiently through neural plasticity
at one site may become stored persistently at another site, through a process known as systems

consolidation (Dudai et al. 2015; Squire et al. 2015). Systems consolidation is a common feature
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of learning and memory systems, including declarative memory (Genzel & Wixted 2017), fear con-
ditioning (Do Monte et al. 2016), and motor skill learning (Krakauer & Shadmehr 2006). It is
thought to help memory systems navigate the “stability-plasticity” dilemma (Abraham & Robins
2005; Grossberg 1987)—balancing the need to have capacity for new memories and the tendency of
new memories to overwrite old ones, which could lead to catastrophic forgetting (McClelland et al.
1995; Roxin & Fusi 2013).

In working memory, the transformation of transient representations into a more persistent form
can be characterized by well-established computational principles (Brody et al. 2003; Chaudhuri
& Fiete 2016; Goldman et al. 2009; Major & Tank 2004; Seung 1996; Wang 2001; Zylberberg
& Strowbridge 2017). For the storage of analog (graded or continuous-valued) memories, this
transformation can be accomplished through temporal integration of transient activity in the input
to a circuit into persistent changes in circuit output, with the set of possible stored activity patterns
forming a continuous set of stable patterns.

For systems consolidation, overarching computational principles describing the transformation
of transient into persistent representations are less well established. Qualitatively, the standard
view of systems consolidation suggests that transient plasticity in an early-learning brain area
results in altered neural activity that then triggers the induction of persistent changes in the late-
learning area post-training (Do Monte et al. 2016; Krakauer & Shadmehr 2006; Hardt et al. 2013;
Lesburgueres et al. 2011; Richards & Frankland 2017; Squire et al. 2015). Through this process,
the expression of learning becomes robust to inactivation of the early-learning area (Fig. 14,B).

We investigated the dynamics of systems consolidation in a model of a simple circuit that
captures essential features of the systems consolidation of error-driven learning in brain areas such as
the cerebellum (Cooke et al. 2004; Lisberger 2021; Raymond & Medina 2018), striatum (Andalman
& Fee 2009; Warren et al. 2011; Yin et al. 2009; Makino et al. 2016; Tesileanu et al. 2017; Murray
& Escola 2020), and amygdala (Medina et al. 2002; Do Monte et al. 2016). Building upon previous
models of systems consolidation of oculomotor learning (An et al. 2023; Clopath et al. 2014; Herzfeld
et al. 2020; Medina & Mauk 1999; Menzies et al. 2010; Porrill & Dean 2007; Yamazaki et al. 2015),
we show that systems consolidation can be framed as a process of temporal integration, in which
transient changes at the initial site of plasticity are integrated into changes at the final site. Further,
within the context of cerebellar systems consolidation, our results extend previous proposals for
how molecular layer interneurons and nucleo-olivary pathways, core circuit elements not included in
traditional models, may serve to regulate cerebellar cortical plasticity (Herzfeld et al. 2020; Medina
& Mauk 1999; Kenyon et al. 1998). Specifically, we show how these pathways may be necessary for

stabilizing the dynamics of systems consolidation.
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Figure 1: Schematic of systems consolidation. (A) Learned changes in the response to a sensory input occur first in an
early-learning area, but are transferred over time to a late-learning area that becomes the sole site required for expression of
learning, as revealed by inactivation experiments. (B) Feedback about behavioral errors drives synaptic plasticity in the early-
learning area (1), leading to changes in activity (2) that in turn drive secondary plasticity in the late-learning area (3). Here,
we investigate the dynamical mechanisms underlying this consolidation process and their implications for circuit organization
and function.

Results

A simple circuit model of systems consolidation

We modeled a simple circuit that learns the analog-valued gain of an input-to-output transfor-
mation. This gain is determined jointly by a direct and an indirect pathway through the circuit.
Errors in behavioral performance drive plasticity at an early-learning site in the indirect pathway,
which is then consolidated at a late-learning site in the direct pathway.

To make the analysis more concrete, we consider the specific example of oculomotor learning.
Our focus is not on the intricacies of oculomotor learning specifically but the principles of consol-
idation that recur in circuit architectures throughout the brain. Nevertheless, our model captures
many important features of oculomotor learning. The gain of eye movement responses to vestibular
or visual stimuli can be adaptively modified by learning so as to attain any value within an analog
range (Fig. 2A4; see Materials and Methods, Feedforward sensorimotor circuit model; Broussard
& Kassardjian 2004). Expression of this learned change in the sensory-to-motor transformation
initially depends on the cerebellar cortex, but becomes cerebellum-independent within 24 hours
post-training (Anzai et al. 2010; Jang et al. 2020; Kassardjian et al. 2005; Nagao & Kitazawa 2003;
Shutoh et al. 2006). Learning and consolidation occur over timescales that are long compared to
the eye movement responses to sensory stimuli, hence we modeled the latter as instantaneous.

We first studied a model of the circuit in which the input-to-output transformation was purely
feedforward. In the context of cerebellum-dependent learning, this is consistent with the classical
Marr-Albus-Ito model (Albus 1971; Marr 1969; Ito 1982) and previous computational studies of
the consolidation of oculomotor learning (Clopath et al. 2014; Herzfeld et al. 2020; Porrill & Dean
2007; Yamazaki et al. 2015). We simulated neural activity and changes in synaptic weights in the
feedforward circuit model during a training and post-training period. During the training period,

the model receives instructive signals about behavioral performance, which control the induction
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of plasticity at the early-learning site. For the case of oculomotor learning, these instructive signals
reflect behavioral errors resulting from failures of eye movements to stabilize images on the retina,
carried by the climbing fiber input to the cerebellar cortex. Such signals induce a decrease in the
weight wy at the early-learning site, reducing the inhibitory output from the indirect (cerebellar
cortical) pathway and thereby increasing the overall gain of the sensory-to-motor transformation
(Fig. 2B,C; Boyden et al. 2004; Inoshita & Hirano 2018; Jang et al. 2020; Kimpo et al. 2014).

During the subsequent post-training period, information about behavioral errors is not available
(experimental subject is placed in the dark to eliminate visual feedback about the stabilization of
images on the retina), and we assume wpy decays back to a baseline value of zero (Fig. 20C).
This baseline value of zero for wy can be interpreted as a balance of excitation and inhibition
at the early-learning site. The decay of plasticity at wg is consistent with electrophysiological
measurements (Jang et al. 2020), the experimental observation that memory expression becomes
cerebellum-independent over time (Anzai et al. 2010; Kassardjian et al. 2005; McElligott et al.
1998; Nagao & Kitazawa 2003), and previous models (An et al. 2023; Clopath et al. 2014; Herzfeld
et al. 2020; Yamazaki et al. 2015).

Because the synaptic changes induced at the early-learning site during the training period are
transient, successful consolidation requires the induction of persistent changes at the late-learning
site (An et al. 2023; Clopath et al. 2014; Herzfeld et al. 2020; Medina & Mauk 1999; Menzies et al.
2010; Porrill & Dean 2007). Consolidation is known to depend on neural activity during the post-
training period (Okamoto et al. 2011), which presumably induces the plasticity at the late-learning
site (Jang et al. 2020). To achieve this, we implemented a heterosynaptic plasticity rule for the

late-learning weight v of the form
Av x —MF(PC — PCy),

in which weight changes are driven by the correlation of direct pathway input (in the cerebellar
context: mossy fiber, MF) with early-learning area output (Purkinje cell, PC) relative to baseline
(PCy) (see Materials and Methods, Learning rules, for the full equation), consistent with previous
modeling of oculomotor learning (An et al. 2023; Clopath et al. 2014; Herzfeld et al. 2020; Medina &
Mauk 1999; Menzies et al. 2010; Porrill & Dean 2007). As a result, altered post-training activity at
the early-learning site induced an increase in v to a new steady-state value (Fig. 2C'). This change
persisted even as wy returned to its baseline, supporting a persistent increase in the input-to-output
gain of the circuit (Fig. 2B,C).

Dynamical principles of systems consolidation

To understand the features of the synaptic weight dynamics that support successful systems con-
solidation, we plotted the trajectory describing the joint evolution of the early- and late-learning

weights. Initially, training induces a change at the early-learning site, decreasing the weight wg
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Figure 2: Synaptic weight dynamics in a representative feedforward-architecture circuit model of systems consolidation cor-
respond to a temporal integration process. (A) The microcircuit underlying oculomotor learning alters the amplitude (“gain”)
of the reflexive eye movement response to sensory (vestibular) input. Incorrect eye movement amplitude causes image motion
on the retina (“retinal slip”). Instructive signals carrying information about behavioral errors, i.e., retinal slip, drive changes in
weight, wg, at an early-learning site in the cerebellar cortex (blue shaded area), with wy representing the difference between
excitatory (w};) and inhibitory (wy;) synaptic strengths. Over time, expression of learning becomes dependent only on the
weight v at a late-learning site in the brainstem (red shaded area). Excitatory synapses are represented by open triangles,
inhibitory synapses by filled circles. (B, C) Simulation of model for 30 minutes of training (orange block) to increase the
input-to-output gain of the eye movement response, followed by 23.5 hours post-training in the dark (grey block). During the
post-training period, the model received no information about errors. (B) Change in the gain of the eye movement response
(black line), with shading showing contributions from the early- (blue) and late-learning (red) sites. (C) Change in weights wg
(blue) and v (red). (D) Trajectory of synaptic weights during the training (orange) and post-training (black) periods. Grey
arrows show the analytically calculated, approximate instantaneous direction in which a weight configuration at a given point
will evolve without information about errors. All trajectories tend toward some marginally stable point along the line wg = 0
(thick grey line). A trajectory resulting in perfect consolidation would follow the “constant gain” line (grey dashed line). (E)
Consolidation corresponds to a temporal integration process in which transient changes in activity at the early-learning site,
driven by plasticity at wm, are accumulated into persistent changes in v. Panels show trajectory and dynamics in synaptic
weight space (left) and over time (right) in a simulation of three consecutive days of the training protocol in B-D.
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from its baseline value and moving the weights (wg,v) (Fig. 2D, orange trajectory) to a point
corresponding to an increased input-to-output gain of the eye movement response (Fig. 2D, dashed
“constant gain” line). During the post-training period, the early-learning weight decays to base-
line, but the late-learning weight is driven to a new steady state value that preserves some of the
increase in the input-to-output gain accrued during training (Fig. 2D, black trajectory). A nearly
parallel trajectory will be followed by the evolution of the weights during the post-training period
for any weight configuration reached during training (Fig. 2D, grey arrows), with all trajectories
approaching some steady state value along a line in synaptic weight space (Fig. 2D, dark vertical
line). Because the weight dynamics are at steady state whenever the activity of the early-learning
area is at baseline, which occurs when the early-learning weight wy decays to zero, there is a
continuum of values that can be stably maintained by the late-learning weight v (see SI Text, S1).
Therefore, for a given initial value of v before training, the final value reached after consolidation
varies in a graded manner with the magnitude of the change in the early-learning weight wy during
training. This enables the circuit to learn and maintain any graded amplitude input-to-output gain
across multiple learning events (Fig. 2F, S1; see SI Text, S1).

These dynamics suggest an intuitive computational principle: systems consolidation of analog
memories corresponds to a temporal integration process in which the late-learning weight stably
accumulates changes induced during training at the early-learning site. For the simple feedforward
model we have been examining, this can be visualized directly in the space of synaptic weights as
an integration of transient changes in wy into persistent changes in v (Fig. 2E). More generally,
changes in the output of the early-learning area, driven by plasticity at wgy, are accumulated into
weight changes at the late-learning site (see below for more complex circuit architectures).

To obey this principle, two conditions must be satisfied. First, the rule governing plasticity
at the late-learning site must support the stable accumulation of persistent weight changes and
corresponding continuum of input-to-output gains. Second, the circuit must reset the output of the
early-learning site post-training so that the accumulation in the late-learning weight stops. Here
we lay out the implications of the principle of consolidation as integration, starting with circuit
function. Then, we show how the two simple conditions stated above place strong constraints on

the plasticity rules and circuit features needed to support systems consolidation.

Consolidation exhibits diffusive drift in the absence of information about errors,

suggesting a speed-accuracy tradeoff for consolidation

Because the dynamics of systems consolidation can be understood as temporal integration, systems
consolidation exhibits properties that have been well-characterized in other kinds of integrators,
such as diffusive drift in the value being memorized due to the accumulation of noise, which has
been found in neural integrator circuits implementing working memory (Brody et al. 2003; Burak
& Fiete 2012; Ganguli et al. 2008; Lim & Goldman 2012; Seung 1996). In our model, noise in the

neural activity driving plasticity at the late-learning weight v is accumulated, leading the input-
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to-output gain of the circuit to drift. In the absence of information about behavioral errors (e.g.
during the post-training period), even if the output of the early-learning area is reset on average,
noise in the early-learning weight wg—for example, resulting from noise in the pathway that carries
instructive signals during learning—is integrated into changes in v (Fig. 3A-D; see SI Text, S1, for
analytical derivation of how the noise accumulates). The amplitude of changes in v post-training,
resulting from changes in wp, is defined by the slope of the flow field (Fig. 34,B, grey arrows),
which is proportional to the learning rate of v and inversely proportional to the rate at which the
early-learning site wy is reset to baseline. This implies that a system with fast consolidation will
reach a given level of consolidated learning quickly (i.e., in a small number of training sessions)
but accumulate noise quickly as well. By contrast, a system with slow learning will require many
training sessions to reach the same level of consolidated learning, but will reach this level with a
smaller total level of consolidated noise (Fig. 3E-H). This represents a type of “speed-accuracy”
tradeoff in achieving a given level of consolidated learning, similar to that seen in integration-based
tasks like accumulation of evidence for decision-making (Bogacz et al. 2010; Gold & Shadlen 2007).

Consolidation mitigates the plasticity-plasticity dilemma through averaging

Framing consolidation as integration highlights mechanistically how systems consolidation can ad-
dress the stability-plasticity dilemma (Abraham & Robins 2005; Grossberg 1987), i.e., the tradeoff
between the ability of neural systems to adapt quickly and to not overwrite previous learning.
Within the context of error-driven learning, this tradeoff arises when the optimal, “target” input-
to-output gain of the circuit transformation, as conveyed by the instructive signals guiding learning,
fluctuates across training sessions due to changes in the environment or in the motor plant (e.g.,
due to experimental manipulations, fatigue, injury, or changes in body mass). With one site of
learning, a more plastic circuit that adapts quickly to reduce error during a given training session
will tend to have a bigger initial error at the start of the next training session (Fig. 44-C, “wp
fast”). On the other hand, a more stable circuit, whose gain adapts slowly and approximates the
mean of the fluctuating learning target, will have, on average, smaller initial errors across training
sessions, but will less fully reduce the error during a given training session (Fig. 4A-C, “wp slow”;
SI Text, S2).

With two sites of learning—a fast-learning and fast-forgetting early site of plasticity, and a
slow-learning late site of consolidation—the circuit can mitigate this tradeoff. Slow consolidation
at v stores the long-term average of the fluctuating target gain conveyed by the instructive signals
across training sessions, while fast plasticity at wgy adapts quickly during a single training session
but is reset post-training (Fig. 4D). In this way, the circuit can both minimize the average error at
the start of each training session and respond quickly to reduce errors within a session (Fig. 4F;
ST Text, S2). However, even with two sites of learning, the minimization is not perfect, and there
is a tradeoff in the size of the expected error at the start of the next training session versus the

number of sessions required to consolidate the mean target gain (Fig. 4F). This is another form of
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Figure 3: Diffusive drift of consolidated memory implies a tradeoff between speed of consolidation and sensitivity to noise.
(A, B) Trajectories of synaptic weights in response to periodic random perturbations in the early-learning weight wy when
the learning rate at v is relatively fast (A) or slow (B) (light to dark colors show progression of time). (C) Distribution of
the value of the late-learning weight v at the end of 24 hours of random perturbations of wg for N = 250 simulations (see
Materials and Methods for details), using the slower (open magenta bars) or faster (filled cyan bars) learning rates at v depicted
in panels A and B, respectively. (D) Time course of the variance of the distributions in C. (E, F') Mean trajectories of synaptic
weights during training (orange) and subsequent post-training periods (black) with same perturbations as in 4 and B (N = 250
simulations). Grey band indicates the range of trajectories within one standard deviation of the mean at each time point. The
learning rates in panels F and F' were the same as in panels A and B, respectively. Trajectories in panel F' reach approximately
the same mean level of consolidation as those in panel E after four consecutive days of training. (G) Distribution of v at the
end of training for simulations shown in F (filled cyan bars) and F' (open magenta bars). Vertical bars show standard deviations
of the distributions, ofas; and osiow respectively. (H) Time course of the variance of v due to perturbations for simulations
shown in E (cyan) and F' (magenta). With a slower learning rate at v, the circuit accumulates less noise. The scalloping in the
variance for the simulations in F' is due to the effect of feedback about errors during each training session.
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Figure 4: Consolidation averages over variability in the instructive signal to mitigate the stability-plasticity dilemma. (A)
Learning in a model of a circuit with one site of plasticity that performs a graded amplitude input-to-output transformation is
subject to the stability-plasticity dilemma. During a training session, the instructive signal drives a change in the weight wy,
which is stably remembered post-training. Across training sessions, the externally instructed target value of the input-to-output
gain varies randomly about a mean value. Fast learning at wy (light colors) reduces error more effectively during a training
session compared to slow (dark colors), but increases the size of the expected error at the beginning of the next training session
(distance from orange dashed line). (B) Input-to-output gain over 200 training sessions in a simplified model that simulates
weight changes discretely over sessions (SI Text, S2). Slower learning (black) results in a more stable value of the weight due to
greater averaging over variability in the instructive signal. (C') Expected (mean) squared error (MSE) after a training session in
the simplified model trades off with expected error at start of subsequent session, calculated analytically and normalized to the
variance of the target gain distribution. Dark and light green circles correspond to the learning rates used to generate black and
grey curves in panel B. (D) A circuit with two sites of learning can mitigate the tradeoff in panel C. A persistent, slow-learning
site of consolidation, v, can estimate the mean of the expected gain distribution, while a forgetful, fast-learning early site, wg,
can account for day-to-day variation in the instructive signal. (E) Relationship between normalized expected MSE at the end
versus start of a training session when there are two sites of learning with fast (cyan) or slow (magenta) learning at the late site
v. Grey curve replots the relationship when there is only one site of learning (same as C). (F') Consolidated gain in response to
a change in the mean of the target gain distribution (at session indicated with arrow) for relatively fast (cyan) or slow (magenta)
learning at v (rates same as D, but using the simplified model). Slow consolidation leads to reduced variability in the long run,
but at the cost of larger errors early in training.

the speed-accuracy tradeoff discussed in the previous section (Fig. 3).

Implications for plasticity rules

To support consolidation, the late-learning site must be able to stably accumulate persistent weight
changes over time. This requires that the plasticity rule at the late-learning site support a contin-
uum of stable weight values, so that the synapse can persistently hold any change in the weight.
This is readily achieved by a heterosynaptic plasticity rule (Fig. 2F), because weight changes stop
whenever the activity at the early-learning site returns to its baseline or, more generally, becomes
uncorrelated with the direct pathway input (Dean et al. 2002).

Recent work has alternatively proposed a Hebbian, covariance-like rule for the consolidation of

oculomotor learning (Yamazaki et al. 2015). Here we considered a Hebbian covariance-like rule of
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Figure 5: Hebbian covariance rule cannot support stable consolidation in the presence of time-varying signal or noise. (A)
Evolution of the early- and late-learning weights, wg (blue) and v (red), over time when using a Hebbian covariance rule at
v, during a simulation of 0.5 h of training to increase the input-to-output gain of the circuit, followed by 23.5 h post-training
without information about errors, when time-varying input to the circuit was either present (dark lines) or not present (light
“no input” lines) post-training. (B) Change in the input-to-output gain corresponding to the simulations in A.

the form
Av o MF(MVN — (MVN)),

in which plasticity is proportional to presynaptic activity (mossy fiber, MF) multiplied by the
difference between postsynaptic activity (medial vestibular nucleus, MVN) and a sliding threshold
equal to its recent average (angle brackets) (see Materials and Methods, Learning rules, for the full
equations). Our analysis shows that this covariance-like rule can support a continuum of stable
values, and hence consolidation, if the circuit receives no time-varying input or noise during the
post-training period (Fig. 5A4,B, light lines). However, in the more biologically realistic case that
the circuit does receive time-varying input or noise, the synaptic weight v, and thus the input-to-
output gain, becomes unstable, growing exponentially during the post-training period (Fig. 54, B,
dark lines; SI Text, S3).

The failure of the covariance-like rule reflects an inherent source of instability in Hebbian learn-
ing (Miller & MacKay 1994). In the basic Hebbian rule, correlations between presynaptic and
postsynaptic firing rates drive increases in synaptic weights. These increased synaptic weights in
turn drive postsynaptic activity and thus increased correlations between pre- and postsynaptic fir-
ing, forming a positive feedback loop. For the covariance-like rule considered above, the sliding
threshold counters the increased correlations associated with changes in the average postsynaptic
firing rate, but does not counter the increased correlations associated with fluctuations around the
average (see SI Text, S3; Loewenstein 2008). Other proposed methods for countering this insta-
bility, including weight normalization (Miller & MacKay 1994; Oja 1982) and firing rate-target
homeostasis (Bienenstock et al. 1982; Chistiakova et al. 2015; Turrigiano 2008; Yger & Gilson
2015), also fail to support a continuum of stable values in our model. Rather, they yield dynamics
that drive the late-learning weight to a single stable value (see SI Text, S4). Altogether, this anal-
ysis suggests that either heterosynaptic plasticity, or a different variant of Hebbian rule from those

typically considered, is required to implement systems consolidation of an analog memory.
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A circuit with an internal feedback loop requires an active post-training reset

mechanism at the early-learning site

In addition to constraints on the form of plasticity at the late-learning site, consolidation also
requires that the output of the early-learning area be reset during the post-training period, stopping
the integration at the late-learning site. For the simple feedforward model described above, this
condition is met by the intrinsic decay of the early-learning weight wg to zero, which represents a
balance of excitatory and inhibitory input to the early-learning area.

An active, rather than passive, post-training reset mechanism is necessary for stable consolida-
tion in the more complex case where the input-to-output transformation computed by the circuit
contains an internal feedback loop (Fig. 64). We modeled this case by adding to the model an
internal feedback connection from the late- to the early-learning area. For oculomotor learning, the
internal loop corresponds to an efference copy of the eye movement command (Miles & Lisberger
1981; Lisberger & Sejnowski 1992; Lisberger 1994; Person 2019). Here we describe a model with a
fixed internal feedback weight wg > 0; similar results are obtained if wg is plastic (Fig. S2; SI Text,
S6). As in the feedforward model, the condition that plasticity at the late-learning site support sta-
ble accumulation can be met by a heterosynaptic plasticity rule at v. However, the reset condition
can no longer be met just by the passive decay of the weight wg of the feedforward pathway in the
early-learning area to a fixed baseline, but rather requires that, during the post-training period,
wg returns to a value that depends on v. This is because, due to the internal feedback from the
late- to the early-learning area, changes in v also drive altered activity of the early-learning area.
These changes must be offset post-training by changes in wg so the feedforward sensory input and
the feedback from the late-learning area effectively cancel, eliminating the drive for plasticity at

the late-learning site and enabling v to reach a new steady state.

The reset requirement suggests a role for specific features of the cerebellar circuit

architecture in consolidation

Active reset of the early-learning site could be achieved in at least two ways. First, the feedfor-
ward input to the early-learning area can be decomposed into the sum of a direct excitatory and
disynaptic inhibitory pathway that have weights w;; and wy;, respectively, controlled by separate
plasticity mechanisms (Fig. 6A). We assume that changes in the excitatory weight are driven only
by instructive signals occurring during the training period, with no passive decay. We then find
that, during the post-training period, plasticity in the inhibitory weight can reset the activity of
the early learning area such that it no longer responds to sensory input. This resetting is achieved
when the inhibitory input weight is governed by a Hebbian rule driven by correlations between
presynaptic inhibitory inputs and postsynaptic spiking relative to a sliding threshold (Fig. 6 B-F;
Materials and Methods, Circuit model with internal feedback loop; Vogels et al. 2011). Alternatively,

the reset could be driven by inhibition from the late-learning area onto the source of the instructive
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Figure 6: Circuit mechanisms for post-training reset enable consolidation in the presence of an internal feedback loop. (A-FE)
Reset of early-learning area output via plasticity of inhibitory input onto the early-learning area. (A) Circuit diagram. PFy and
PFg: cerebellar parallel fiber inputs to Purkinje cells (PC) carrying sensory (vestibular) input H and efference copy feedback
of motor output E. MLI: molecular layer interneuron. CF: climbing fiber. R: instructive signal carrying information about
behavioral (retinal slip) errors (B) Change in early-learning excitatory weight wj; (cyan), inhibitory weight wy (purple) and
late-learning weight v (red), during 0.5 h of simulated training (orange block) to increase the input-to-output gain of the circuit,
followed by 23.5 h post-training with no information about errors (grey block). At steady state, the value of wy; has decreased
more than wj;, so that the net change in the net weight wy = w}; — wj is positive (blue arrow). (C) Early-learning area
output (amplitude of Purkinje cell activity relative to moving baseline), which drives consolidation at the late-site. (D) Change
in the gain of the eye movement response (black line) to a sensory input. Blue and red shaded areas show the contribution of
the early- and late-learning areas to the circuit transformation. (F) Trajectory of synaptic weights during the training (orange)
and post-training (black) periods. During training, the net early-learning weight decreases (orange arrow above plot) from
its initial value (dashed black line), but post-training (black arrow) approaches a steady state value that is larger than before
training (blue arrow). Grey arrows show the approximate instantaneous direction in which a weight configuration at a given
point in synaptic weight space will evolve during the post-training period, determined analytically. All trajectories tend toward
a marginally stable point along a line (solid grey line). (F—J) Reset of early-learning area output via inhibition of the pathway
carrying instructive signals to the early-learning site. (F) Circuit diagram. IO: inferior olive. (G) Change in early-learning
weight wg (dark blue) and late-learning weight v (red). The post-training reset drives wg to a steady state value larger than
before training (blue arrow). (H-J) Same as C-E, but for model shown in F.
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signals that control plasticity at the early-learning site (Fig. 6 F—J; Materials and Methods, Cir-
cuit model with internal feedback loop). In the cerebellar context, the first reset mechanism would
correspond to plasticity of molecular layer interneuron-to-Purkinje cell synapses, and the second
could be achieved by the inhibitory pathway from the cerebellar nuclei to the inferior olive (see
Discussion). Thus, a central computational role for these components of the cerebellar circuitry
may be to implement the post-training reset of the rapid, early plasticity in the cerebellar cortex
to support stable consolidation of learning.

Our model predicts that, following consolidation of learning to increase the input-to-output gain
of the circuit, the sensitivity of cells in the early-learning area to feedforward input, wy, will be
higher than the pre-training baseline, as has been suggested based on experimental measurements
(Miles et al. 1980; Lisberger 1994). This can be understood more clearly by plotting the dynamics
of the synaptic weights. During consolidation, the post-training reset dynamics cause the weights
to move along a trajectory to a new steady state along a line in the space of synaptic weights. In
the feedforward model, this line is vertical, so the early-learning weight returns to its pre-training
baseline during the post-training consolidation period (Fig. 2E). When there is an internal feedback
loop, the line has a finite, positive slope, so the net weight wy does not just return to its pre-training
baseline value, but goes to a steady state value that is larger than before training (Fig. 6 F,.J, black
arrows). Thus, our model predicts that, after consolidation, the change in the early-learning weight,
relative to pre-training, will be in the opposite direction from the change in weight during training

(Fig. 6E,J, blue vs orange arrows above plot; Payne et al. 2024).

Discussion

We propose a computational principle governing systems consolidation of analog memories: systems
consolidation is defined by a temporal integration process in which the late-learning weight stably
accumulates changes induced during training at the early-learning site. To obey this principle,
the circuit must have certain properties: First, the synaptic weight at the late-learning site must
be governed by plasticity rules that enable it to stably accumulate and maintain any one of a
continuum of values. We show that this is achieved by a heterosynaptic plasticity rule but not
by standard stabilized Hebbian rules. Second, the output of the early-learning area must be reset
post-training to stop the accumulation of weight changes at the late-learning site.

The accumulation of synaptic weight changes underlying systems consolidation is reminiscent
of the temporal integration of transient spiking activity into persistent spiking activity in neural
circuits that accumulate and store information in working memory, such as that implicated in the
accumulation and storage of neural signals encoding evidence in decision-making tasks (Brody et
al. 2003; Chaudhuri & Fiete 2016; Churchland & Ditterich 2012; Gold & Shadlen 2007; Goldman
et al. 2009; Major & Tank 2004; Usher & McClelland 2001; Wang 2001; Wang 2008; Zylberberg

& Strowbridge 2017). Our model shares distinctive features with such neural integrator circuits,
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arising from their similar underlying dynamics. First, it is well known that integrator circuits
require a fine tuning of parameters for stability of the memory (Chaudhuri & Fiete 2016; Goldman
et al. 2009; Seung 1996; Zylberberg & Strowbridge 2017). This fine tuning occurs in two places:
(1) in the strength of the recurrent connections between neurons, which offsets intrinsic decay of
neural activity; and (2) in the strength of tonic background inputs entering the network. In the
case of systems consolidation, we assume perfect integration (no decay) at the late-learning site, so
only the second type of tuning is required. Specifically, output from the early-learning area must be
reset post-training; otherwise, it will drive incessant weight changes at the late-learning site. This
is analogous to the finding that neural integrator circuits will integrate tonic background spiking
activity unless these inputs are subtracted out or otherwise nullified (Cannon et al. 1983; Goldman
et al. 2009; Seung 1996). Drawing on the neural integrator literature, one proposed solution to this
fine-tuning problem is to turn the continuum of steady states into a set of (many) finely discretized,
robustly stable fixed points (Goldman et al. 2003; Koulakov et al. 2002). This could correspond
to our single “lumped” synaptic weight v being composed of the sum of the binary weights of
individual bistable synapses (O’Connor et al. 2005) that are recruited with different thresholds
(Goldman et al. 2003; Nikitchenko & Koulakov 2008). Second, noisy input causes diffusive drift
that progressively corrupts the stored memory (Fig. 3; Burak & Fiete 2012; Ganguli et al. 2008;
Lim & Goldman 2012). In our model, this led to a tradeoff between the speed of consolidation
and the accuracy of the consolidated memory (Fig. 3; SI Text, S1). This can be interpreted as the
long-term memory analog of the speed-accuracy tradeoff in decision-making tasks (Bogacz et al.
2010; Gold & Shadlen 2007).

The similarities in dynamics between neural integrator circuits and our systems consolidation
model arise from the fact that in both cases, the memory stored in the circuit is analog—in our
case, the amplitude of the circuit’s learned response to a given input is graded. Much of the
previous theoretical work on systems consolidation has instead considered the case of effectively
binary neurons (Alvarez & Squire 1994; Murray & Escola 2020; Remme et al. 2021; Roxin & Fusi
2013; Tomé et al. 2022; Wittenberg et al. 2002), in which memory expression is evaluated with
respect to whether or not a given neuron fires, rather than the graded value of its firing rate. In
such models, Hebbian plasticity typically drives synaptic weights to take either a high (saturated)
or a low value, making individual synaptic dynamics effectively bistable (Dong & Hopfield 1992;
Miller & MacKay 1994). By contrast, in our model, the synaptic weight at the late-learning site
must be able to stably take any analog value within a continuum, which is naturally achieved
by a heterosynaptic plasticity rule. Although such heterosynaptic rules are commonly used in
modeling supervised learning tasks (Dayan & Abbott 2005), they may form a more specialized
class of biological plasticity than Hebbian learning rules. Supporting the continuum of steady
states required for consolidation is more challenging for classical Hebbian rules (see SI Text, S4),
though may be possible with more complex forms of Hebbian plasticity, such as a three-factor
(Kusmierz et al. 2017) or dendritic plasticity rule (Urbanczik & Senn 2014). Alternatively, as noted
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in the previous paragraph, it is possible that the apparent continuum of weight values modeled here
instead reflects a sum of discrete, bistable synaptic contributions.

The framing of systems consolidation as a process of temporal integration provides mechanistic
insight into previous work on how consolidation addresses the stability-plasticity dilemma (Abra-
ham & Robins 2005; Grossberg 1987). In our model, the stability-plasticity dilemma is mitigated
because, in the presence of variability in the instructive signals about behavioral errors, slow in-
tegration (i.e., averaging) at the late-learning site tracks long-timescale behavioral requirements,
while the early-learning site quickly tracks short-timescale changes in these requirements (Fig. 4D;
for a related use of integration to improve deep network training, see Johnson & Zhang 2013). In
this manner, averaging leads to a more general memory at the late-learning site that is constantly
updated by specific but transient memories at the early-learning site (Sekeres et al. 2018; Tse et al.
2007; Lindsey & Litwin-Kumar 2023; Richards & Frankland 2017; Sun et al. 2023). This framing
could also be extended to describe synaptic consolidation, through which transient early plasticity
is consolidated into persistent, graded late plasticity in the same synapse (Jacquerie et al. 2023;
Leimer et al. 2019; Li & Van Rossum 2020). The timescale over which the late-learning site averages
is defined by the relative rates of plasticity at the late- and early-learning sites (Fig. 4F'). This may
suggest that the rate at which the circuit consolidates (i.e., the fraction of learning consolidated
post-training) is tuned so that the timescale of the average is matched to the timescale over which
the mean is expected to change in the world (Kording et al. 2007).

Though systems consolidation appears to be a common feature of learning and memory sys-
tems, the details of how it occurs in each system may be shaped by specific computational needs.
In hippocampus-dependent memory, the early-learning circuit of the hippocampus learns the asso-
ciations between components or features of an episode. Post-training replay of the activity patterns
representing these associations then drives consolidation to the neocortex (Carr et al. 2011; Squire
et al. 2015; Alvarez & Squire 1994; Tomé et al. 2022; Roxin & Fusi 2013; Murre 1996; Wittenberg
et al. 2002). In the system we model, the circuit learns associations between a sensory input and
a behavioral error signal that enforces a desired output. Post-training “replay” of the activity
patterns learned at the early site then drives consolidation of the learned input-to-output transfor-
mation at the late-learning site. Although in both cases the correlations present during training are
recapitulated in the post-training neural activity, hippocampal replay occurs as discrete events with
transient, spontaneous reactivation of representations (e.g., during a sharp wave ripple), whereas

Y

in the cerebellum the “replay” could be driven by ongoing input to the circuit.

Our work extends previous modeling of the consolidation of oculomotor learning (An et al. 2023;
Clopath et al. 2014; Herzfeld et al. 2020; Medina & Mauk 1999; Porrill & Dean 2007; Yamazaki
et al. 2015) in two key ways. First, we analyzed the conditions under which consolidation can
occur successfully. We showed that consolidation requires that plasticity at the late-learning site
support a continuum of steady state weight values, a requirement readily met by a heterosynaptic

plasticity rule. This explains why heterosynaptic rules have been successful in previous work
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(Clopath et al. 2014; Herzfeld et al. 2020; Medina & Mauk 1999; Porrill & Dean 2007), and is
consistent with experimental work suggesting that plasticity at the late-learning site for cerebellum-
dependent learning may be heterosynaptic (Menzies et al. 2010; Pugh & Raman 2006). Second,
we considered an internal feedback loop from the late- to the early-learning area of the circuit,
in contrast to the feedforward architecture used in previous models. This internal feedback loop,
which carries an efference copy of motor commands, has been suggested to be essential for producing
the dynamics of individual eye movement responses (Lisberger & Sejnowski 1992; Lisberger 1994).
We showed that this internal feedback loop also fundamentally changes the dynamics of memory
consolidation, with stable consolidation requiring a circuit mechanism that drives plasticity so as to
reset the activity of the early-learning area post-training (Fig. 6). This post-training reset provides
a possible explanation for the previous suggestion, based on in vivo recordings (Lisberger 1994;
Miles & Lisberger 1981), that the weights of the parallel fiber input pathway to Purkinje cells may
paradoxically undergo potentiation in cases where the standard hypothesis of error-driven cerebellar
cortical plasticity predicts that this pathway undergoes depression. Our work suggests one possible
resolution to this controversy: the initial synaptic changes are governed by depression (Inoshita &
Hirano 2018; Jang et al. 2020), but during consolidation the post-training reset mechanism reverses
the decrease in weight, driving the weight to a larger steady state value relative to pre-training
(Fig. 6E,J; see Payne et al. 2024 for further discussion as well as an alternative solution). Third,
we propose two biologically plausible circuit mechanisms that can perform this reset, suggesting
new functional roles for elements of the cerebellar microcircuit in stabilizing a memory. The first
mechanism, plasticity of the inhibitory feedforward inputs to the early-learning area, could be
implemented by a Hebbian rule at the molecular layer interneuron (MLI)-to-Purkinje cell synapses
(Vogels et al. 2011). Although these synapses are known to be plastic (Hirano 2018; Mapelli et al.
2015), weight changes were believed to be governed by climbing fiber-driven complex spikes in the
postsynaptic Purkinje cell. Our model predicts that weight changes may instead be driven by the
correlation of presynaptic MLI activity with Purkinje cell simple spikes. The second mechanism,
inhibition of instructive signals by the late-learning area, could be implemented by an inhibitory
pathway from the vestibular and cerebellar nuclei targeted by Purkinje cells to the inferior olive
(Najac & Raman 2015; Uusisaari & Knopfel 2011; see Herzfeld et al. 2020 and Kenyon et al. 1998
for related ideas), and might explain nonvisual climbing fiber responses that have been observed in
the oculomotor cerebellum (Fanning et al. 2021; Winkelman & Frens 2006).

Learning and memory systems enable an organism to transform transient experiences into per-
sistent effects. In working memory, neural integrator circuits accumulate and store transient input
signals as persistent spiking activity. Here, we extend the concept of neural integration to the
context of long-term memory by framing systems consolidation as a temporal integration process.
Thus, this work suggests a unifying conceptual framework for describing computations underlying

short- and long-term memory function.
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Materials and methods

Code for simulations, analyses and producing plots for figures can be found at https://github.com/goldman-

lab/consolidation-integration.

Feedforward sensorimotor circuit model

Here we describe the feedforward model of Figures 2—4. The circuit model has parallel pathways
that transform a graded, time-varying input into a response. In particular, we modeled the trans-
formation of a graded, time-varying sensory (vestibular) input into an eye movement response and
its modification by cerebellum-dependent learning. We modeled each node in the circuit with a
single variable representing the average firing rate of a population of cells: mossy fibers, MF(¢);
parallel fibers (granule cell axons), PF(¢); Purkinje cells, PC(¢); medial vestibular nucleus neurons,
MVN(¢); and climbing fibers, CF(t) (Fig. 2A4). Specific values of model parameters used in simula-
tions were taken from the literature, where available, and are summarized in Table S1. For analysis,
unless otherwise stated, all parameters are assumed to be nonnegative.

The firing rate of mossy fibers was modeled as a combination of a spontaneous baseline and a

time-varying component encoding a sensory (vestibular) input driven by head motion H(t),
MF(t) = MFg + 6MF(t) = MFq + kyrH (t), (1)

where we considered the encoding of the sensory input to be linear with sensitivity to head velocity
kvr (Lasker et al. 2008). Rather than explicitly model the mossy fiber to granule cell transfor-
mation, we considered the firing rate of parallel fibers to similarly depend on vestibular input
linearly,

PF(t) = PFy + 6PF(t) = PFo + kppH (1), (2)

where kpp was the firing rate sensitivity to head velocity.
Purkinje cells, in the early-learning area, were modeled as linearly combining direct excita-
tory input from parallel fibers and indirect inhibitory input via a parallel fiber-molecular layer

interneuron pathway (Yamazaki et al. 2015),
PC(t) = PCo + (w};(t) — wy)PF(t) = PCo + wp (t)PE(t), (3)

where w;; and wy; are the total excitatory and inhibitory weights onto the Purkinje cell, so the
early-learning weight wy = w;} — wy is the net weight of the parallel fiber pathway onto Purkinje
cells. For simplicity, the inhibitory weight was not plastic in the model; the dynamics of learning are
driven by the net weight. Equivalently, wg(¢) can be interpreted simply as modeling the dynamics
of the net (excitatory minus inhibitory) weight onto Purkinje cells. The effect of climbing fibers,

which fire at very low rates (~ 1 sp/s), on Purkinje cell output was not modeled here.
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The medial vestibular nucleus, the late-learning area, was modeled as responding linearly to its
excitatory mossy fiber input and inhibitory Purkinje cell input (Bagnall et al. 2008; Beraneck &
Cullen 2007),

MVN(#) = MVNo + o(£)MF(t) — wpcPC(t) (4)
= MVNy — wpcPCqo + ’U(t)MF(t) — wH(t)wpcPF(t),

where v is the late-learning weight of the vestibular mossy fiber input to the medial vestibular
nucleus, wpc is the weight of the Purkinje cell input to the MVN, and MVNj is an offset chosen so
that the spontaneous MVN firing rate matched experimental values (57 sp/s) (Beraneck & Cullen
2007). The initial value of v before training was chosen so that the gain in the dark was 0.4 (Kimpo
et al. 2014; Boyden & Raymond 2003).

Eye movement output, F (t), was modeled as being proportional to the deviation of medial

vestibular nucleus neuron firing from its baseline (Yamazaki et al. 2015; Clopath et al. 2014),
E(t) = —kg(MVN(t) — (MVN(1))-,). (5)

The baseline, (MVN(?)),,

recent past of MVN activity. For any time-varying quantity x(t), its exponential average (z(t)),

was calculated as an exponential (low-pass filtered) average over the

over timescale 7 is defined by
d(z)~
T~ = —(x)r + x(1). (6)

The timescale of the average 74 = 0.017 h (1 min) is long relative to variations in the sensory input,
but is much shorter than the timescales of plasticity (defined below), so that (wpy (t))-, ~ wg(t) and
(v(t))r; = v(t) (Yamazaki et al. 2015). Throughout the paper, we assume that over the timescale

Tf, the sensory input is zero on average,
(H (1)), ~0. (7)

In the specific case of the bidirectional vestibular input to the oculomotor circuit, this corresponds
to the time average of the rightward and leftward head movements being approximately equal.
The input-to-output gain of the circuit, g, is defined as the ratio of eye velocity output to head
velocity input, _
E(t)
g(t) =X /CE(]{?MFU<t) — k:ppwpcwH(t)), (8)
H{(t)
where the negative sign is present because eye movements are oppositely directed from head move-

ments to keep the image of the world stable.
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Learning rules

Plasticity at the early-learning site was driven by feedback about behavioral errors, carried by the
climbing fibers. Climbing fiber firing was represented by the sum of a spontaneous baseline rate

and a time-varying component representing oculomotor errors,
CF(t) = CFg + 0CF(t). (9)

The time-varying component JCF(¢) encodes retinal slip, or a failure of eye movements to stabilize
images on the retina, which occurs when the input-output gain of the circuit is incorrect. During
training, the target output E%' of the circuit is a (negatively) scaled version of the vestibular
input H(t) with gain gtareet,

Etarget (t) _ _gtargetH(t)’ (10)

so, using Eq. (8), the retinal slip error is
R(t) = E5e (1) — B(t) = (g™ — g(1)) H(2). (11)
We model the time-varying component of the climbing fiber firing as
SCF(t) = ko tanh(—Bign 1), (12)

which is a saturating function of retinal slip. We chose the magnitude of the saturation to be
kcr = CFg = 1 Hz, so that when retinal slip errors are large, climbing fiber firing saturates at a
maximum of 2 sp/s and a minimum of 0 sp/s (Guo et al. 2014; Winkelman & Frens 2006). When
retinal slip errors are relatively small (relative to 1/8ignt), CF(t) is approximately linearly related
to negative retinal slip. Thus, if the eye movements are too small so that the gain of the response
needs to be increased, the covariance between the climbing fiber and parallel fiber firing rates is
positive.

Experimentally, coactivation of parallel fibers and climbing fibers causes associative long-term
depression at the early-learning site, whereas activation of parallel fibers alone causes long-term
potentiation (Raymond & Lisberger 1998; Suvrathan et al. 2016; Lev-Ram et al. 2002). Therefore,

plasticity at the early-learning site was modeled as

dw H
dt

Tw

= —(wH(t) + ’U)I_{) + krrp <PF(t)>7—f7w — kLD <PF(t) . CF(t))Tfyw, (13)

where the first term on the right is a passive decay, or forgetting, in the value of w;g (Yamazaki
et al. 2015; Clopath et al. 2014). We chose kprp and kprp so that the steady state value of w;}
when not training was equal to wj, as required for stable consolidation (see SI Text, S1.1, for
details). The time constant of plasticity, 7, was chosen to be relatively fast (0.15 h = 9 min)

during training (Boyden & Raymond 2003) and slower (5 h) during the post-training period (Jang
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et al. 2020; Cooke et al. 2004). The timescale of the averages over inputs, 7¢,,, was chosen to be
the same as 7.
We considered two candidate learning rules for the late-learning site: a heterosynaptic and a

Hebbian covariance-like rule. Heterosynaptic plasticity was modeled as

dv

E = _kv,hetero<MF(t)(PC(t) - PCD)>"'f,v’ (14)
where an increase in v is driven by the anticorrelation between mossy fiber firing and fluctuations
of Purkinje cell activity around baseline (Herzfeld et al. 2020; Clopath et al. 2014; Porrill & Dean

2007; Medina & Mauk 1999; Menzies et al. 2010; Pugh & Raman 2006). Hebbian plasticity was

modeled as
dv
= = kugienn (MF(H)(MVN(t) = 0(t))).,. (15)
do
re g = —0+ MVN(0), (16)

where the synaptic dynamics consist of the “readout” weight v and an internal sliding threshold
variable 6 that calculates a leaky average of postsynaptic activity (Yamazaki et al. 2015). The
threshold is similar to those used in previous studies to counteract the runaway plasticity that
would otherwise result from the inherent positive feedback driven by this kind of correlational rule
(see SI Text, S4; Zenke et al. 2017; Miller & MacKay 1994; Bienenstock et al. 1982). For stability,
the timescale of the sliding threshold was chosen to be fast relative to the rate of plasticity (see SI
Text, S3, for details; Zenke et al. 2013).

Simulation of oculomotor learning

We simulated oculomotor experiments with 0.5 h of training to increase the gain of the eye move-
ment response, followed by a 23.5 h post-training period. During training, vestibular input was
sinusoidal,

H(t) = vpeak sin (27ft), (17)

with peak velocity vpeak = 15 deg/s and rotational frequency f = 1 Hz, which is representative
of experimental protocols (Jang et al. 2020; Kimpo et al. 2014; Nguyen-Vu et al. 2013; Boyden &
Raymond 2003). In all simulations, we chose parameters such that the initial gain of the response
was 0.4. In the simulations shown in Figure 2, we used a target gain value of ¢'¥8* = 2 and
chose wy;, kurp and kprp so that during training, wj; decreased by 51% (Jang et al. 2020) and
the input-to-output gain increased by 30% from baseline (Kimpo et al. 2014; Boyden & Raymond
2003). To understand the stability of the dynamics during training, we also simulated a single 48
h training period to increase the gain to ¢**®* = 1 (Fig. S1; see SI Text, S1.3). All other model

parameters are shown in Table S1.
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During the post-training period, we set R = 0. This models the animal being placed in the
dark after training to eliminate feedback about oculomotor errors (Anzai et al. 2010; Shutoh et al.
2006; Kassardjian et al. 2005; Nagao & Kitazawa 2003; Boyden & Raymond 2003). We considered
both the case in which vestibular input was not present post-training (as in Yamazaki et al. 2015),
as well as the case in which it was present (as in Clopath et al. 2014). In the latter case, we
used the same vestibular input as during training. For the heterosynaptic rule, the presence of
post-training input had little effect on the change in v, unlike for the Hebbian rule (Fig. 5). The
learning rates ky hetero and ky mebh were picked so that approximately 75% of the increase in gain
during the training period was consolidated (Boyden & Raymond 2003).

For the heterosynaptic rule, we studied the robustness of consolidated memories to perturbations
in the early-learning site by adding random values to the early-learning weight wy at regular
intervals (Fig. 3). We initialized the weights to the same baseline as the training simulations
and, every 10 minutes of simulation time, added a value chosen uniformly at random between
—0.1 and 0.1 to wy. We simulated the effect of perturbations either in the absence of (Fig.
3A-D) or in the presence of (Fig. 3E-H) information about errors. For the simulations shown
in Fig. 34 and E, we used the same parameters as for the simulation in Fig. 2 (Table S1), but
with 77, = 7;. For the simulations shown in Fig. 3B and F, we used a smaller learning rate,
Ky hetero = 6.95 x 107¢ (s/sp)2 /h. For Fig. 3F, we simulated four consecutive days of training.
We performed 250 runs of the perturbation simulations with the normal and smaller values of
Ky hetero, With each simulation run for 24 hours of simulation time. The histograms in Fig. 3C
were constructed from the endpoints of the 250 simulations in A and B, and we plotted the time
course of the variances of the corresponding distributions (at the time point immediately before a
perturbation) in Fig. 3D. Similarly to Fig. 3C, the histograms in G were generated from the final
value of v across the 250 simulations in £ and F, and H shows the time courses of the variance of
v calculated in the same manner as for panel D.

All simulations were performed in Python by integrating the differential equations for the learn-
ing rules with the Radau solver (implemented in solve_ivp in the scipy.integrate package).

Time steps in the simulation had a base unit of hours.

Mitigation of stability-plasticity dilemma with two sites of learning

Here we outline some simple analyses we performed to understand how the stability-plasticity
dilemma is addressed in the presence of noisy instructive signals driving learning in the circuit.
We modeled learning across multiple training sessions where, during each session k, the target gain
gtarset — (k) ysed to calculate retinal slip was randomly drawn from a normal distribution. Target
gain values were drawn independently across training sessions. We built simplified versions of the
model with one and two sites of plasticity, in which we ignore the exact time course of the weight
dynamics and instead describe how the weights change discretely across training sessions (SI Text,

S2; Fig. 4B,F). Using these simplified models, we calculated the mean squared error expected
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at the start and end of a typical training session as functions of the learning rates in the circuit
(SI Text, S2.2; Fig. 4C,E). To build intuition for the difference between the one-site and two-site
models more concretely, in Fig. 44 and D we also show the detailed time course of the gain and
the corresponding squared error (retinal slip) of the full, unsimplified one- and two-site models for

two subsequent example training sessions (see SI Text, S2.2, for details).

Circuit model with internal feedback loop

Here we describe the expanded version of the circuit model that includes both a feedforward path-
way carrying the sensory (vestibular) input to the early-learning area (Purkinje cells), as well
as an internal feedback loop carrying the output from the late-learning area (MVN) back to the
early-learning area (Fig. 6A4,F). In the context of oculomotor learning, this internal feedback loop
represents an efference copy of the output motor command. This expanded model has the same
architecture as the Lisberger-Sejnowski model of oculomotor learning (Lisberger & Sejnowski 1992),
but here we model the dynamics of the granule cell pathways as instantaneous. We show two can-
didate circuit mechanisms by which stable consolidation can be achieved when internal feedback is
present.

The vestibular stimulus is carried by mossy fibers, described as before by Eq. (1), and by

vestibular parallel fibers with firing rate

PFy(t) = PFo + kpr a H(1). (18)
The efference copy is carried through a different set of parallel fibers with firing rate

PFp(t) = PFo + kpr,pE(t), (19)

where the eye velocity output, F (t), is defined as before in Eq. (5). The firing rate of Purkinje cells
is then a linear combination of vestibular and efference copy input, with a spontaneous baseline
rate, i.e.,

PC(t) = PCo + wy (t)PF g (t) + wp(t)PF(t). (20)

We assume that both parallel fiber pathways result in monosynaptic excitation and disynaptic

inhibition onto the Purkinje cell, so that

where wlt, and wg are the excitatory weights of the feedforward and feedback parallel fibers and
wy and wy, are the inhibitory weights of the interneurons in each pathway. Thus, as before, we

can interpret wy = 0 and wg = 0 as balanced excitatory and inhibitory weights for each pathway.
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The firing rate of MVN neurons is defined as before in the first line of Eq. (4), except we substitute
the new definition of Purkinje cell activity from Eq. (20). The late-learning weight of the direct
pathway is still called v. Then, following the same reasoning as the derivation leading to Eq. (8),
we can calculate the eye velocity output as

_kp(0(t) — wecwn(t)) ;

B(t) m TSP (0) = ~g(DH (), (23)

defining the prefactor in the second equality as the gain g(t), and where for simplicity we let

3(t) = ke - v (1), (24)
Wy (t) = kpp,g - wh(t), (25)
and ’LT)E(t) = kPF,E . wE(t). (26)

We use modified learning rules for the excitatory weights in the parallel fiber pathways, in which

the weight values do not passively decay,

dw;
& = kirp(PF.(t))r, ., — kLrp (PF.(t) - CE ()7,
~wy o — cl(t), (27)

where x = H or x = F for the head pathway or efference copy pathway respectively, and wE o =
wE,oo = PFo(k‘LTp—k‘LTDCFo) and Cy (t) = kLTD <5PFI(t)5CF(t)>

a fixed nonnegative value for the purpose of visualizing the dynamics, but stable consolidation was

T Here we assumed that wg has
also possible when wg was plastic (Fig. S2; SI Text, S6). So that plasticity is completely controlled
by the correlation between parallel fibers and climbing fibers, we assumed values of k;rp and krp
such that wE « = 0. This condition can be interpreted as the plasticity due to spontaneous PF
activity being offset by spontaneous CF activity (Kenyon et al. 1998).

For the direct pathway weight v, we used a modified version of the heterosynaptic rule in Eq.

(14)7
dv

a =
where the subtraction of the fixed Purkinje cell baseline has been replaced with a sliding threshold

_kv,heter0<MF(t) (PC(t) - <Pc(t)>7f)>7f,u7 (28)

equal to the average PC activity over the recent past, similar to that used in the covariance-like
Hebb rule, Eq. (15). The time constant of the sliding threshold was 7¢, which was slow relative to
variations in the sensory input but fast compared to the rates of plasticity.

As discussed in the main text, stable consolidation in the presence of a feedback loop requires
that the circuit implement an active mechanism to reset early-learning activity post-training. We
considered two such mechanisms. First, stable consolidation can be achieved if the feedforward

inhibitory synapses onto the early-learning area (wy;) are plastic (Fig. 6A4), governed by a Hebbian
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covariance-like rule,
dwy,
dt

Second, stable consolidation can be achieved if, in addition to providing information about behav-

= kinn (PF# (8)(PC(t) — (PC(t)) ) i, (29)

ioral errors, the climbing fiber input at the early-learning site also serves to reset early-learning
activity (Fig. 6F). We modeled climbing fiber activity as being driven by the instructive signal
and inhibited by medial vestibular nucleus cells that receive only Purkinje cell inhibition, which

corresponds to net excitation by PC activity,
6CF(t) = ko tanh (—~Biign R(t) + BresctdPC(1) ) (30)

where 0PC(t) = PC(t) — (PC(1)),-
effective rate of plasticity of v be slower than that of wg (SI Text, S5).

For both mechanisms, stable consolidation requires that the

Simulation of oculomotor learning in the model with feedback

We simulated the same oculomotor experiment as for the model without feedback (see Simulation
of oculomotor learning), with differences in parameters specified in Tables S2 and S3. We used
the same sensory input as for the feedforward model during both the training and post-training
periods. We simulated the model with both the inhibitory plasticity (Fig. 6A—F, S3A4) and inhibition
of instructive signals (Fig. 6 F—J, S3B) reset mechanism, assuming that wg is not plastic. We used

target

a target gain value of g = 2, and initial values w}fm and vg for wE and v, respectively.
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Below, we first provide mathematical analysis of the synaptic learning dynamics of the feed-
forward circuit models with heterosynaptic (§51, §52) or Hebbian (§S3, §54) plasticity rules at the
late-learning site. We then analyze the learning dynamics in recurrent circuit models with either a
fixed-strength (§55) or plastic (§56) internal feedback pathway.

S1 Analysis of synaptic learning dynamics in the feedforward model

To understand the conditions for successful consolidation in the model, we examined the dynamics
of learning analytically. To simplify our analysis, we consider timescales that are relatively long
compared to variation in the sensory input, so that the input is zero on average, Eq. (7), and the

variability of the sensory input, as measured by the time average of the squared input, is constant,

(H(t)*);, ~ oF. (S.1)
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S1.1 Post-training dynamics and conditions for stable consolidation

Using these assumptions, the dynamics of the early-learning site can be described by simplifying
Eq. (13) to

de
At
where w}, = PFo(kLrp — kLrpCFo) depends only on the baseline firing rates of inputs to the
Purkinje cell, and c(t) = kprp(6PF(t)6CF (1)),

fiber-mediated sensory input and climbing fiber feedback about errors. When the circuit is pro-

Tw ~ —(wg(t) + wy) +wi — c(t), (S.2)

is proportional to the covariance of the parallel

ducing behavioral output without error (as we assume is the case before training), or during the
post-training period, when there is no feedback about errors, ¢(t) = 0. As a result, wy tends
toward a baseline value of wi, —wy. If ¢(t) > 0 during training, as was the case in our simulations,
wg decreases from this baseline, increasing the input-output gain of the circuit at the end of the
training period. On the other hand, eye movements that are too large would result in ¢(t) < 0,
causing an increase in wy and a decrease in the gain.

At the late-learning site, the heterosynaptic rule, Eq. (14), can be simplified to

dv

a ~ _kv,hetero(MFO ’ PFO + kMFkPFU%[)wH(t)? (S?’)

where we assume that the timescale of plasticity of wy is significantly longer than 7; (the timescale
of correlations in neural activity to which the learning rule is sensitive) and therefore the value of
wyy is effectively uncorrelated with the sensory input. From the form of Eq. (S.3), the late-learning
weight v is proportional to the temporal integral of the early-learning weight wg .

We can then understand the dynamics of learning as follows. Initially, when errors are large

and correlated with the sensory input, because of the saturation in the CF response, we have
c(t) = kurpkerkcrC, (S.4)

where

C = (Hl)r,.- (S:5)

For sinusoidal sensory input with period of oscillation much shorter than 7,,, C' = 2/7-vpeak, which
is constant for a fixed choice of peak input amplitude. During training, when c¢(t) # 0, wy tends
toward a value that is smaller than baseline by an amount proportional to C' (Fig. S1A,B). This
saturation can be understood as long-term depression driven by error being balanced by the decay
in wy to baseline. As v starts to integrate, this further decreases the magnitude of error. When

errors are decreased enough such that ¢(t) is approximately linear in terms of error magnitude,

c(t) = kurpkprkcr Bight (975 — g(t))oF. (S.6)

In this regime, there is a stable fixed point of the weights that corresponds to the target input-to-

33


https://doi.org/10.1101/2024.03.20.586036
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.20.586036; this version posted July 24, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

output gain (Fig. S1B,C’; see below and §S1.3).

After training ends, wy returns to baseline. v must also go to a steady state in order for the
system to be stable. From Eq. (S.3), this occurs as long as wy has a baseline value of 0, which
from Eq. (S.2) requires that

wl = wy, (S.7)

that is, when at steady state the excitatory and inhibitory weights of the sensory input to the
early-learning site are balanced. As a result, there is a continuum of steady states of the system
in the post-training period, corresponding to a continuum of input-to-output gains of the circuit,
since any weight configuration where wy = 0 is a fixed point of the dynamics, which can be
represented as a line in wp-v space (Fig. 2EF). We note that the stable fixed points of the system

target - also lie along the same line (Fig. S1C).

during training, as determined by the target gain ¢
When the steady-state excitation-inhibition balance condition, Eq. (S.7), is met, any initial set of
weights will evolve toward some fixed point on the line wg = 0. Therefore, wg = 0 is furthermore
a line attractor. This can be visualized by plotting a flow field in wg-v space (Fig. 2D,FE), where a
vector describing the direction of a trajectory at any point is given by x(wg,v) = [dwg /dt, dv/d¢].

The overall dynamics of learning and consolidation can thus be put succinctly: oculomotor errors
drive a change Awpg in the early-learning weight that is temporally integrated into a persistent
change Av in the late-learning weight, as the change in wy decays away. The need to transform
a negative Awp into a positive Av explains why plasticity at v is driven by the anticorrelation
between mossy fiber and Purkinje cell fluctuations in Eq. (14).

A similar analysis for the Hebbian covariance-like rule shows that a line attractor may exist when
there is no variability in the sensory input, U%{ = 0 (Fig. 54, B, light lines), but that the introduction
of variability collapses the line attractor into a single unstable fixed point, which would not allow
the circuit to learn an analog input-to-output gain (Fig. 54, B, dark lines; §53). As discussed in the
main text (Implications for plasticity rules), simple implementations of classic homeostatic Hebbian
learning rules that fix the norm of the weight(s) onto the neuron (Miller & MacKay 1994; Oja 1982)
or attempt to maintain postsynaptic firing rate at a target value (Yger & Gilson 2015; Bienenstock
et al. 1982) also failed to support a continuum of stable weight configurations in the model (see
§54). Our analysis found that a modified Hebbian covariance rule containing a decay could stably
support a continuum of steady states even for U?{ > 0, but this required meeting a fine-tuning

condition that depends on the value of 0% (see §S3).

S1.2 Flow field analysis and diffusive drift

Using the flow field, we can understand how the learning rates at the early- and late-learning sites
control the amount of consolidation after a period of training. We assume that the circuit starts
in a consolidated state before training, so that during the training period wg changes from its

baseline value of 0 by an amount Awpg. We also assume that v does not change much during the
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training period. From Eq. (S.2) and Eq. (S.3), the slope of the vectors x(wp, v) describing the flow

during the post-training period is

dv

=~ kv,heteroTw(MFO -PFo + kMFkPFU%[)' (88)
dwg

In other words, geometrically, the weight configuration moves approximately along a line with slope
given by Eq. (S.8), so that as wy returns to 0, the change in v during the post-training period
is given by Av ~ —dv/dwpy - Awp. Since the slope is proportional to ky peteroTw, @ learning rate
Ky hetero at v that is much smaller than the learning rate 1/7, at wgy would correspond to slow
consolidation, but also a corresponding insensitivity of v to noisy fluctuations in wg during the
post-training period (Fig. 3).

For the circuit to completely consolidate the changes made at the early-learning site during
the training period—i.e., preserve the value of the gain gtrain achieved during training—trajectories
need to follow the line in synaptic weight space corresponding to a constant gain (Eq. (8), with

9(t) = gtrain). This is achieved if the slope of the flow field is close to that of the constant gain line,

wpckpr
ky heteroTw <MF : PF>Tf’,U ~ A (SQ)
MF
(see Fig. 2D, dashed line). In general, we can write the fraction p of the gain change induced during

training that is consolidated post-training as

— ky heteroTw (MFE - PF)
D= YJcons — Jpre _ "w,het < > fv (810)

Gtrain — Jpre wpc - kpr/kvr

where gpre is the gain before training, girain is the gain immediately after training, and geons is the
gain after consolidation. Complete consolidation (i.e., Eq. (S.9)) corresponds to p = 1.

As noted in the main text, because v is integrating, noise is also accumulated. We examined
this by perturbing wy in the absence of training signals from feedback about errors (see Materials
and Methods, Simulation of oculomotor learning). Extending the current analysis to the case of
random perturbations, we can show that, for a sequence of perturbations in wy that are uniformly
distributed over [—a, ], the variance across simulations of the value of v after the kth perturbation
will be

Var(u®)) = %QQ(kwhcmoTw(MF PF),, )2(k+ 1+ A(k)), (S.11)

where A(k) is an exponentially decaying function of the number of perturbations and the time
between perturbations (see §51.4 for definition and derivation). Thus, the variance is asymptotically
linear in k£ and the behavior of v is diffusive on long timescales. This is the key mathematical
observation underlying the “speed-accuracy” tradeoff shown in Fig. 3.

The slope of the flow field is also related to the variability of sensory input o%. In this way, an

input with larger variability would increase the rate of plasticity at v. However, this contribution
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to the rate of plasticity due to stimulus-driven variability is much smaller than that due to the
high baseline firing rates of the mossy fibers MF and parallel fibers PF( (not shown; see Eq. (S.8))

given the parameters we used, which were chosen to match experimental values.

S1.3 Stability during training

During training, we assume that the climbing fiber modulation 6CF(t) is modeled by Eq. (12), i.e.,
it is a saturating function of the oculomotor (retinal slip) error R(t) (Eq. (11)). Then, there is a

fixed point of the weight dynamics corresponding to the point at which the measured gain of the

(wly, v) = <0 g ) . (S.12)

" kpkwyp

system is g = gtareet,

The dynamics of trajectories leading to a steady state can be separated into two regimes. Initially,
the amplitude of oculomotor errors is large, so that éCF saturates, and correspondingly so does
the parallel fiber-climbing fiber covariance c(t). As a result, the weight wy tends toward the value
defined by Eq. (S.4). From the simplified form of the heterosynaptic plasticity rule for v, Eq. (S.3),
this leads to initially linear growth in v. As v increases, eventually the amplitude of oculomotor
errors will decrease, such that 6CF will be a linear function of R, and from Eq. (S.6), ¢(t) will be

a linear function of wy and v, such that

dw H
dt

gtarget _ kEkMF'U 9
Tw —wyg | o

~ —wpy + kurpkprkor Bight kEwpc ( H- (S.13)
kekprwpc

Thus, in the linear regime, the dynamics have eigenvalues

Ap=—g—(1+ kirpkprkor Siign o frkEwpc) -
w

4tk kprk i 2 kpkyrky hetero (MF (£)PF (1))
1$\/1_ TwkLTDkPFACF Blight 0 K ERMF Ko hetero (ME (£)PE (%)) -, , (5.14)

(1 + kurpkdpkcr Bighto i kpwpc)?

Since all of the parameters are strictly positive (during training, 0'%{ > 0), the steady state in Eq.
(S.12) is a stable fixed point of the dynamics.
The approach to the fixed point could involve decaying oscillations in the values of wgy and v

around the steady state. Oscillations do not occur if

(1 + kurpkipker Biighto 3k pwpc)?

ko o MF (t)PF(t
hetero(ME(HPE(?)) 4krpkprkcr Bighto i kpkar

(S.15)

Tro " Tw <
The above inequality places a constraint on the ratio of the rate of plasticity at v relative to the
intrinsic rate of plasticity (1/7,) at wy to avoid oscillations.

The above analysis shows that, even when the size of climbing fiber responses decreases across

learning as a result of decreased errors in the output, stable consolidation is still achieved. Learning
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at the early-learning site decreases in amplitude as consolidation occurs at the late-learning site
until the system reaches desired performance, at which point the early-learning area is no longer
required (Fig. S1).

S1.4 Analysis of drift without error feedback

We noted above that consolidation could be understood as temporal integration at the late-learning
site v of weight changes initially induced in the early-learning weight wy. Drawing on other work
on integrators, we showed that periodically applied random perturbations of wy led to the value of
v random-walking over time (Fig. 3A-D). Here, we derive analytically a formula for the variance
across sample paths of the late-learning weight v as a function of time and the learning rate at v.

We start from the analysis in §51.1 above. As in the simulation of Fig. 3A-D (see Materials
and Methods, Simulation of oculomotor learning), we assumed that the value of wy was perturbed
at a regular interval T', with each perturbation k£ given by an i.i.d. random value Awg) drawn
uniformly over the interval [—«,a]. After the perturbation, the synaptic dynamics cause wgy to
decay toward a baseline value of zero. To model the effect of each perturbation, we assume the
value of wy immediately following the kth perturbation is given by

w® — w*D (k)
Hperturb Hpost + Aw (816)

where the value of wg just prior to the kth perturbation is given by

k—1 k—1 —T/Tw
wl(tl,pogt wgq,pel?turbe T/ ’ (817)

which models the decay in wy between perturbations. We can simplify this recurrence relation as

(k) —T/Tw( (k— )—}-A (k))

W ,post =e Hpost
= efT/T“’(e T/Tw( (k pogt + Aw(kfl)) + Awg;))

_ w1(q ;())St(e—:r/rw)kﬂ + Z Awg’k/)(e_wm)k'“
kl

= wJ(LI [1)())8t(€ T/ruyk+l 4 Z Aw(k UCRAD Lty (S.18)
k/

(=1)

We assume that the system starts in a stable steady state, i.e., wy; post

= 0. The change during
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each post-perturbation period k > 0 is thus

(k) — _ (k) (k) _ (k) -T/
AwH,post = Wi post — WH perturb — wH,perturb(e Y- 1)

k—1
k'=0

k
= (7 T/me — 1) S Awly ) (e T/ )H, (S.19)
k’=0

Then, from Eq. (S.8), the change in v during the kth perturbation period can be approximated as

Aw)

Av(k) ~ kv,heteroTw <MF(t)PF(t)>Tf’” H,post

b , S.20
(1 _ efT/Tw) Z Awgﬂ )(B*T/Tw)kfk/’ ( )

k'=0

= —ky heteroTw (MF (t)PF (1))

Tfw

using the relationship in Eq. (S.19).

We can calculate the overall value of v after the kth perturbation as
k
o) =gy + Z Av(F), (S.21)
k'=0

This has variance

k k
Var(v®)) = Var (vo + Z Av(k/)> = Var (Z Av(k,)>

k'=0 k'=0

k
Z Cov(Av®) ApE")
k'=0k"=0

k k'
=> (2 > Cov(Avt), Ap") — Var(Av<k’>)> . (S.22)
k'=0

k""=0

M=

Thus, to calculate the variance in v*), we need to calculate the variance of Av(*®) and the covariance

between Av®) and Avl). For convenience, define

E=¢T/™ and (S.23)
K = Ey heteroTw (MF(2)PF(2))

Tfw®
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We can write the covariance between the change in v due to perturbations j and k as

min(k,7)
Cov(Av®) AvW)) = (K Z Var(A Ek+i=2K)
1 mln(k,j) ' )
= §a2(K(1 —E)? Y EFT (S.25)
k=0

where, because Awg) is uniformly distributed over [—a, a], Var(Awl(L];)) = 1/3-a?. The variance

of Av®) can be found by taking j = k in Eq. (S.25),

k
Var(Av®)) = Cov(Av®, Av®)) = éaQ(K(l —E))? Z B

_ p2(k+1)
:(K(I—E))2 1a2 L

3 1—E?
L agee LB o
3 K 1 n E( E ). (S.26)
We can then calculate the sum
b 1 1-E &
() _ L 2y01l— (K 1)
>~ Var(Av )—304K71+EZ(1 E )
k'=0 k=0
1 2 ) 1— E2(1 o E2(k+1))
K k+1 S.27
3 <1 + E( +1) - (1+ FE)? ( )

Finally, from Eq. (S.25), we can also calculate the sum of covariances

k/ k”
1" 1 / 1" 11!
(k") < (k' k" —2k""")
ZZCovAv At) = zad( ZZZE
k// 0 k// Ok/// O
1 1  E(-EY)  E3(1 - p2ktD
_ Lkl B )+ ( Ay (S.28)

3 1+ E 1-F (1-E)(1+E)?
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Putting these results together, from Eq. (S.22), the variance of v(*) is

k k!
Var(v'®) = Z (2 Z Cov(Av*), ApF")) — Var(Av(k/))>

k'=0 \ k=0
1 5 o 1-F E%(1 — B2+
=-o'K*( —— 1
3% ( r e g e
o k +1 B E(l _ Ek-i—l) E3(1 _ E2(k’+1))
1+ E 1—E (1-E)1+ E)?
1 5 2E(1 — E¥Y)  E2(1— B2(kHD)
=-o"K*|k+1- 2
3 ( + . + 1= 52 (S.29)
That is, the term A(k) in Eq. (S.11) is given by
2E(1 — Bkt E2(1 — EQ(IH—I)
Ak) = — ( ) ( ) (5.30)

—E | (1-E
S2 Mitigation of stability-plasticity dilemma with two sites of learning

To understand how consolidation helps to mitigate the stability-plasticity dilemma, here we build
and analyze simplified discrete models of the weight dynamics. In the first section below, we show
that consolidation, as an integration process, causes the circuit to effectively average over the noise
in the instructive signal. In the following section, we show that averaging allows the circuit to

mitigate a stability-plasticity tradeoff that would occur if the circuit only had one site of plasticity.

S2.1 Consolidation averages over variability in instructive signals

We begin by considering a simplified version of the full feedforward model of Figs. 2 and 3. We
assume that wp returns to a baseline value of zero after each training period, and that v perfectly
integrates. During a training session k > 0, the model receives a retinal slip error signal corre-
sponding to a target gain value gt#'¢¢t = §(k) that is randomly drawn from a normal distribution,
and learns a fraction ¢ of the change in wy that would fully minimize the error. From Eq. (8) and

Eq. (11), this can be written as

(k) _ _ q s(k) _ (k-1) 1
wyy Ty —— (g kgkyrv >, (S.31)

so that the output of the circuit after training has measured gain
k . _
g‘gra)‘in = qg(k) + (1 - Q)kEkMFU(k 1)7 (832)

where we assume that the change in v during training is negligible, and that ) = wg) =0k =0

for all k < 0. During the subsequent post-training period, the model consolidates a fraction p,, of
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the learned weight change in wg into v,
and wy returns to a baseline value of zero, so the measured gain after consolidation is

B — ko™ (S.34)

gCOIlS

Then, the relative gain change consolidated is

k k—
_ g((:m)ls - géonsl) . pwkMF

k k—1) ’
gt(ra)in - géons ) kPFwPC

(S.35)

and we can rewrite the change in v after consolidation and the measured gain as

5(k)
k) = (1 —pq)v(kfl) + pq g (S.36)
kvmrke

gth) = (1 - pg)gls ) + pag®. (S.37)

To solve the recurrence relation above, we take the unilateral z-transform of Eq. (S.37):

Gihs = (1= pg)2 ' GGl + paG®),

cons
where the capital letters represent z-transformed functions. We can rearrange this as

(2) — pq S(2)
Gcons 1— (1 —pq)z‘l G )

and take the inverse z-transform to find
®), = ((1 — pa)u(k) g““) = g <e’“°g<1pq>u<k> : g<k>), (5.38)

where the star operator represents discrete convolution and the discrete unit step function is defined
to be u(k) =1 for k > 0 and 0 for k£ < 0. Intuitively, we can understand the measured gain after
consolidation as taking a leaky average of the noisy target gain signal §¥) over the recent past with
time constant (in terms of training sessions) approximately —1/log(1 — pq).

Given that §*) is a random variable, we can also understand Eq. (S.37) as an autoregressive

AR(1) process, whose stationary distribution has mean and distribution

Elgoed] = B[] (S.39)
o)y (pa)° .
Var(ggon)s) = anf(g(k))- (S.40)
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That is, the stationary distribution of the measured gain after consolidation has mean equal to the
true mean of the noisy target gain distribution, and variance that is an increasing function of the
consolidation fraction p.

From Eq. (S.38) we can see that a system that consolidates a large fraction of what is learned
during the training period, p — 1, averages over a relatively small amount of the recent past—for
fast early-learning, ¢ = 1, the time constant approaches zero as p — 1. Furthermore, if the mean
of the noisy target gain distribution changes, the approach of the consolidated gain to the new
true mean will be fast. However, as a result, the variance of the measured gain across training
sessions will have a relatively large variance, from Eq. (S.40). On the other hand, a system that
consolidates slowly (p — 0) averages over a longer period, reaching the true mean slowly but with
a lower stationary variance.

These features of the model are illustrated in Figure 4 F. We plotted the value of the consolidated
gain gé’é?ls resulting from simulating the simplified model, Eq. (S.31) and Eq. (S.33), with p = 0.1
(“slow consolidation”, magenta) or p = 0.75 (“fast consolidation”, cyan), in response to the same
set of target gain values. Initial values of wy and v and all other parameters are the same as for
the full model above (Table S1). For the first 50 training sessions, target gain values were drawn
from a distribution with mean 0.4 and standard deviation 0.1, and for the subsequent 150 sessions,

from a distribution with the same standard deviation but with mean 2.

S2.2 Comparing a one-site and two-site model

To see the advantage of the averaging effect described above, we consider a one site version of
the simplified model (effectively, the late-learning weight is constant), with weight wg; and no
consolidation. From Eq. (8), the measured gain of this circuit after each training period k is then
given by

gﬁk) = kg(kymrv — kPFchwg,)l),

where v is fixed at the initial value vg. During each training period, the model again learns a

fraction g of the total weight change in wg,; required to minimize error,

k k—1 * k—1
wipy = wigy )+ g(wf —wi; )

_ (k—1) q ~ (k)
=(1- - — kgk S.41
(1 —qwy, [y — (g E MFU> ; (S.41)

or equivalently in terms of the measured gain,
k k— ~

gg ) _ (1— q)gg D qa®). (S.42)

Note that the weight update, Eq. (S.41), is equivalent to the weight update for the two-site model,
Eq. (S.31), if the weight were reset post-training, i.e., if wgﬁl) = 0 after consolidation. That is,

just as for the two site model, the measured gain of the system is an AR(1) process representing a
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leaky average of the target gain signal with time constant —1/log(1 — ¢). For a sequence of target
gain values drawn from a normal distribution, the stationary distribution of the measured gain of

the circuit will have mean equal to the true mean and variance

2
(o0)y q ~(k
which is minimized as ¢ becomes small (“wg slow” in Fig. 4A-C). For such a small value of ¢, the
measured gain will remain relatively stable across training sessions, but the circuit will be unable

to quickly correct errors. That is, after each training session, the mean squared error of the one-site

model in the stationary limit will be

MSEtrain,1 = lim ]E[(g(k) _ ggk’))Q]
k—ro0

. . (e

= (1—)® Jim E[(§%) — 1" V)?)
—00

= (1 — q)MSE e, (S.44)

where MSE¢ 1 is the mean squared error at the start of each training session,
MSEpre1 = klim E[(g(k) — ggk_l))Z]
— 00

_E[(G™Y] - lim (mm%m[g?“‘”] - E[(ng‘”ﬂ)

k—o0

2
= — A(k:)
5 ¢ Var(g'"). (S.45)

That is, after training to adapt to a target gain experienced during training session k£ — 1, MSEc 1
represents the mean squared error expected at the start of training session k, when a new target gain
value will be drawn. From Eq. (S.44) and Eq. (S.45), we see that the average error after training
is a decreasing function of ¢, whereas the average error at the start of training is an increasing
function of ¢ (for ¢ < 2). Hence, there is a tradeoff between the ability of the circuit to correct
errors quickly during a training session and the size of the expected future error given a noisy target
gain.

Repeating this calculation for the model with two sites of learning, we have

MSEtrain,2 = klir{:oE[(g(k) - gt(fzzin)2]
= (1= lim E[(§" — g5
= (1= q)*MSE e 2, (S.46)
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and
MSEPre,Q = khm E[(g(k) - g((:’cf;sl))Q]
—00

Var(§*)). (S.47)

- 2-pg
Thus, the average error after training can be reduced by fast learning at the early-learning site
(g — 1), and the average error at the start of training can be simultaneously reduced by slow
learning at the late-learning site (p — 0).

In Figure 4 C, E, we plotted the one-site tradeoff curve as functions of the early site learning rate ¢
(“wp slow” and “wp fast” arrows), with MSE;e 1 on the z-axis and MSE¢;ain,1 on the y-axis (black
line in Fig. 4C and grey line in ), normalized by plotting in units of the variance of the target gain
distribution. For the two-site model (Fig. 4E), we plotted the normalized MSE,. 2 on the z-axis

)

, magenta) and p = 0.75 (“v fast”,

cyan), while again varying ¢. In Figure 4B, we plotted the post-training gain ggk) from a simulation

and normalized MSE;ain 2 on the y-axis for p = 0.1 (“v slow’

of the simple one-site model with ¢ = 0.1 (“slow learning”, black) or ¢ = 0.75 (“fast learning”, grey)
over 200 training sessions, where the target gain value for each session was independently drawn
from a normal distribution with mean 0.4 and standard deviation 0.1. The values of MSE¢1 and
MSE¢;ain,1 corresponding to these values of ¢, calculated from Eq. (S.44) and Eq. (S.45), are plotted
in Figure 4C with circles.

To build intuition for the difference between the one-site and two-site models more concretely,
in Figure 4A4,D we show the time course of the gain and the corresponding squared error (retinal
slip) for two subsequent example training sessions. Figure 4D was generated by simulating the full
two-site model with weight dynamics controlled by Eq. (S.2) and Eq. (14). We set the learning
rate at v to Ky petero = 1.29 x 107%(s/ sp)2 /h, which resulted in a fraction of learning consolidated
p =~ 0.13 for the kth and p ~ 0.27 for the (k + 1)th sessions. All other parameters were the same as
those in Table S1, and the initial value of v was set so that the system would have an initial gain of
0.4, as above. To similarly simulate the time course of learning in the one-site model (Fig. 44), we
modified the full two-site model by removing learning at v, and the learning at wy was governed

by
dwy

~qr = Fulkurp(PF@))r;, — ke (PF()CF(¢)) ), (S.48)
where we set the learning rate parameter k, = 0.191 h™! (light colors) or k,, = 1.97 h™! (dark
colors), so that for the two training sessions shown the fraction learned was ¢ ~ 0.10 for the kth
session and ¢ ~ 0.11 for the (k + 1)th session (light colors), or g =~ 0.75 for the kth and ¢ ~ 0.80
for the (k + 1)th sessions (dark colors). Unlike the two-site model, we set krrp = 0.648 s/sp, so
that outside of the training period, dw/dt =~ 0. The model used the same initial values, as well as
all other parameters not specified here, as the two-site model for wg and v. For both models, we
simulated two periods of 0.5 h training followed by 11.5 h post-training without feedback about

behavioral errors (post-training periods clipped for illustrative purposes).
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S3 Consolidation with the Hebbian rule is not robust to noisy input

The failure of the stabilized Hebbian rule, Eq. (15), to successfully consolidate memory from the
early- to late-learning site in the presence of variability in the sensory input (Fig. 5) can be un-
derstood through an analysis similar to the one performed for the heterosynaptic rule (§51). We
again assume that the mean of the sensory input is approximately zero and that the variability
a%{ is constant over the timescales 7, and 7,. We also assume, as before, that the timescale over
which the weights change is much slower than 7¢,,. Using that the threshold 6(t) is the exponential

average of MVN(t), we have
Q(t) = <MVN(7§)>TS ~ MF0<U>TS — U)pcPFO<w>7-S — wpcPCy + MVNjy. (849)

Then, substituting this and the definition of MVN(t), Eq. (4), into the learning rule, Eq. (15)

becomes

dv
T R kv,HebbKMF(t)z)va — wpc<MF(t)PF(t)>TfvaH — MF(Q)US + wpcMFoPFowp 5],  (S.50)
where wy s = (Wh) -, and vy = (V).

In the post-training period, when ¢ — 0, we have that wy — wgp = wl — wy. As wy
approaches this steady state, so will the exponential average, i.e., wy s = wro (see Eq. (6)), so we
can use this quasi-steady state assumption on wg to simplify Eq. (S.50) further to

dv 1

—_— 55U — kv,Hebb[wPCkMFkPFU%IwH,O + MF%’US] for wy, wi,s — Wo, (8.51)
dt  7,(o3)

where the time constant 7, is a function of the variability of the sensory input, 0’%_],

1
kv,Hebb(MF(Z) + kl%/IFU%I) ’

7(0%) = (S.52)

In the case that there is no variability in the sensory input, o%{ = 0, we have that the dynamics of

learning are given by

dv
7(0) 5 R v —vs, (S.53)

dvg
Tsﬁ = —vg + 0. (S.54)

Here, the first eigenvalue of the system is 0, with corresponding eigenvector [1,1] so that any state

along the line v = v, is a fixed point of the system. The second eigenvalue of the dynamics is

-1 (8.55)
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which is decaying if 75 < 7,(0), i.e., the timescale of the sliding average is faster than the timescale
of plasticity (cf. Zenke et al. 2013). Thus, the synaptic learning dynamics contain a line attractor
in the space of v and the internal variable vs that does not depend on wy. Geometrically, when
J%{ = 0, the nullclines for the dynamics of v and vs overlap, creating the line attractor.

If there is variability in the sensory input, 0?{ > 0, the nullclines no longer exactly overlap;
there is now a single fixed point v* = v} = wg . This fixed point is unstable (it is a saddle point

of the dynamics), with eigenvalues

1 1\ 1 Aky Hebb kR0 %
A = — — ). 2|1 1 ;
- <Tv(‘7?{) 7'5) 2 [ i \/ i 7s(1/mo(0f) = 1/75)2 |

implying that one of the eigenvalues will always be positive.

In principle, the instability can be rectified by adding an additional decay term —ev to the
learning rule, so that Eq. (15) is

% — —cu+ (MF(£)(MVN(t) — 0(2))-, .. (S.56)

If we write the decay rate as € = kv,Hobbkl%/[F0'2 in terms of a new variable o2, we can simplify this
equation (as we did for Eq. (S.51)) to

dv
a ~ kv,Hebb[kl%/[F(U]Q'{ — 0'2)'0 + MF(Q)(U — Us) — wpck‘MkaFU%{wo]. (8.57)

If 62 is equal to U%I, the variability of the vestibular input in some period, and if wy o = 0, then
the system will again be described by the dynamics given by Eq. (S.53) and Eq. (S.54). That is,
v = v, will still be a line attractor. If o2 is not exactly equal to U%I, then the weight will either
grow unstably or decay to zero, depending on whether o2 < 0121] or o2 > 0’%_1, respectively. This
can be seen by assuming the threshold 6 moves instantaneously, so that vy ~ v, and noting that
Eq. (S.57) becomes either exponential growth or decay, with time constant inversely proportional
to the degree of mistuning. So, for successful systems consolidation in a circuit using this modified
version of the Hebbian rule, the learning rule must “know” or otherwise measure the variability of
the input O'%I. While a learning rule that accounts for the natural statistics of inputs presents an

interesting possibility, we note that it may be challenging to implement biologically.

S4 Traditional homeostatic Hebbian rules do not readily support consolidation

of analog memories

It has long been recognized that the basic form of the Hebbian learning rule generally leads to un-
stable positive feedback (Miller & MacKay 1994; Zenke et al. 2017; Abbott & Nelson 2000), leading
to the development of rules which contain homeostatic mechanisms that attempt to counter this

instability. The most well-known classes of such homeostatic mechanisms include weight normaliza-
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tion, in which weights are adjusted so that the weight vector for a neuron maintains a given length
(von der Malsburg 1973; Oja 1982; Miller & MacKay 1994), and firing rate-target homeostasis
methods, in which weights are adjusted so that the mean postsynaptic firing rate is maintained
close to a specified target. The latter class of mechanisms includes those commonly called synaptic
scaling (Turrigiano 2008; Yger & Gilson 2015; Tetzlaff et al. 2011). In order to stably consolidate
analog memories, the learning rule at the late-learning site must be able to support a continuum
of stable weight configurations. For the circuit model we developed here, we show below that
Oja’s rule and the BCM rule, prominent examples of weight normalization and firing rate-target
homeostasis rules, respectively, cannot support such a stable weight continuum.

First, we examine Oja’s rule, a form of weight normalization (Oja 1982). We will consider the

Hebbian piece in a “covariance” form,

d

OTZ = n({(SMF(£)SMVN(t)) — (SMVN2)y), (S.58)
where for simplicity, MF(¢) and MVN(t) are baseline-subtracted forms of mossy fiber and MVN
neuron firing. We assume that the timescale of the average indicated by the brackets is slow
compared to variation in the input but faster than the timescale of plasticity of v (as for 7y in the

main text). Both before training and after consolidation, when w — 0, so that PC(t) — PCj,
OMVN(t) = vdMF(t).
Then, the learning rule is at steady state when
v* (SMF?) — v*3(0MF?) = 0 = v* = 0 or v* = 1.

This is because Oja’s rule is designed to maintain the Euclidean length of the weight vector fixed
at 1, and here there is only one input source with a plastic weight. Even in the case where there
are multiple mossy fiber input types with plastic weights, Oja’s rule will drive the weight vector so
that it is parallel (or antiparallel) to the eigenvector of the covariance matrix of the inputs that has
largest eigenvalue (Oja 1982). In our model, in which we do not expect the signals carried by the
mossy fiber inputs to themselves change persistently as a result of training, only one stable weight
configuration can be maintained. Thus, Oja’s rule does not readily support consolidation in our
model.

We next examine the Bienenstock-Cooper-Monroe (BCM) rule (Bienenstock et al. 1982), one
of the most well-known firing rate-target homeostasis rules. The BCM rule consists of a Hebbian

term multiplied by a term that changes the sign of plasticity depending on whether postsynaptic
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activity is greater than or less than a sliding threshold. For our circuit, this takes the form

dv

m S = (ME(MVN() [(MVN(1)) - (1) (5.59)
2
m% =—0+ m- (5.60)

The angle brackets again represent time averages taken over a timescale longer than the variation in
the input, but much shorter than the timescale of plasticity. The system has a fixed point whenever
0= <MVN> = MVNtarget'

There is one fixed point, with steady state weight value

+ _ MVNiarger — MVNo + wpg(PC)
MF

v

The value of v* is determined by parameters of the system that do not change as a result of
learning (MFg, MVNgarget and MVNp), as well as a variable ((PC)) that returns to its pre-training
baseline value during the post-training period. Therefore, the system with one plastic synapse
cannot persistently hold all possible values of v that may be reached after training.

For multiple plastic inputs to the (linear) MVN neuron, the BCM rule is less restrictive than
Oja’s rule: there is a hyperplane—i.e., a continuum—in synaptic weight space of stable weight
configurations for which the homeostatic condition of postsynaptic firing rate reaching a target
is achieved. This opens the possibility that a more complex model of the circuit could allow
consolidation of an analog memory using the BCM rule. However, such a rule would not allow for
the weight of a single input type to change independently of the others, unlike the heterosynaptic

rule.

S5 Analysis of model dynamics with fixed-strength internal feedback loop

In this section, we analyze the dynamics of the model with a fixed-strength internal feedback loop
(Materials and Methods, Circuit model with internal feedback loop). We first show the conditions
under which stable post-training consolidation occurs. We then find conditions under which the

circuit can also stably learn a target input-to-output gain during training.

S5.1 Conditions for stable post-training consolidation

For stable consolidation, we need the late-learning site to stably hold any value of v. Following the
same line of reasoning leading to Eq. (S.3), we can rewrite the heterosynaptic plasticity rule, Eq.
(28), in terms of the weights as

dv kap (Wp (t) — kpwpo(t)) o
— R —ky hetero ~ : S.61
dt ;het 1 — wpckpug o ( )
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Note that, unlike the feedforward model, there must be variability in the post-training input,
J%I > 0, for consolidation to occur. From Eq. (S.61), v is at steady state as long as the feedforward

weight at the early-learning weight is

kpr. H

WH WED, (S5.62)
which defines a line in wy-v space (Fig. 6F,J). Values of wy and v that lie along this line cause
the early-learning area to not respond to sensory input to the circuit, i.e., the reset condition is
satisfied. If wg > 0, this can no longer be achieved in general by a passive decay at wy to zero,
as wy needs to go to a positive steady state value since v is also positive. Below we evaluate the

conditions under which this occurs for the two post-training reset mechanisms.

Inhibitory plasticity-driven resetting In the inhibitory plasticity-driven reset mechanism,
the weight of feedforward inhibition onto the early-learning area is governed by a Hebbian-like

covariance rule, Eq. (29):

dwy;

el kinn (PF g (8) (PC(t) — (PC(£))7;)) 7. -

During the post-training period, the correlation between climbing fibers and the feedforward parallel
fibers is zero, ¢y (t) = 0, so simplifying as for Eq. (S.61), and combining with the learning rule for
the excitatory weight, Eq. (27), we can write the equation for the overall feedforward weight at the

early-learning site as

dwy kiﬂhk%’F,H(f%{ <w kg ~>

at " 1— wpckpds kppa " (S.63)

which has a fixed point that lies along the line in Eq. (S.62), satisfying the reset condition, as long

as
1

—_ S.64
kpr,rwpckr (5:64)

Wg <

To determine whether the fixed point is attractive, it suffices to show that the slope of the tra-
jectory approaching the fixed point is smaller than the slope of the line in Eq. (S.62). Otherwise,
trajectories will move continuously away from the line of fixed points. From Eq. (S.63) and Eq.

(S.61), trajectories have slope
dv ~ kv,heterokMF

~ 9
dwpy Einnkpr, o

(S.65)

whereas from Eq. (5.62) the slope of the line of fixed points is kpp g /(krWgkwmr). Thus, the slope

of trajectories is smaller if

2 ~ 2
kv,heterokMFkEwE B TwH,dark(O'H)
2 - 2
kinhkPF,H Tv(UH)

<1, (S.66)
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where the time constants 7, dark and 7, are defined from Eq. (5.63) and Eq. (S.61) respectively

as functions of the input variability (f%{,

1 — wpckpw
Twy dark(0h) = —— 2 E (S.67)

Freset kl%F,HU%{

1 — wpckpw

2 PCANEWE

_ , S.68
Tv(UH) kv,heterokl\z/[]; k’EQIJEO'%{ ( )

and where, to highlight the similarity of these expressions to the analogous quantities for the other

reset mechanism below, we have defined
Ereset = kinn (inhibitory plasticity reset mechanism).

In other words, the line in Eq. (S.62) is an attractor only if plasticity is faster at the early-learning
site than at the late-learning site.

The inhibitory plasticity here drives wp so that the activity of the early-learning area does
not modulate in response to sensory input. This result is broadly consistent with previous work
showing that Hebbian plasticity of inhibitory synapses tends toward restoring excitatory-inhibitory
balance (Vogels et al. 2011), except here this balance is only in terms of the fluctuating components
of the inputs and not the spontaneous components, because of the sliding threshold term in Eq.
(29). Note that, if O'%{ = 0, early-learning activity will not be reset, but there will also be no

consolidation at v.

Inhibition of instructive signals-driven resetting In the inhibition of instructive signals-
driven reset mechanism, the activity of the pathway carrying instructive signals is inhibited by an

output pathway from the late-learning area (Fig. 6F'; Eq. (30)):
OCF (t) = kicr tanh (—Bign R(E) + BrescrdPC(1) )

where 0PC(t) = PC(t) — (PC(t))r,. When information about errors is not present, R =0, so that
for small errors, the parallel fiber-climbing fiber covariance cy(t) is in the linear regime, and the

learning rule for wy becomes

dwy - kLTDkCFﬁresetk%FyHU%[ kg
dat = 1 — wpckrpWg

kpr H

which has the same fixed points as Eq. (S.63) that satisfy the reset condition if Eq. (S.64) holds.
Similarly, as in Eq. (S.66), the fixed point for a given trajectory is attractive if 7, dark < Tv, Where

Twy dark and 7, are defined as in Eq. (S.67) and Eq. (S.68) but where we now define

Ereset = krDkCFBreset  (inhibition of instructive signals reset mechanism).
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For large errors, the magnitude of §CF will be saturated, and dwg/dt will reach a maximum value,

so the slope of trajectories will be

dv kv,heterokMFU%—[ < kg ~>
H — ’

~ _ S.70
dwg  krrpkcrC(1 — wpckpwE) kpr,H (8:70)

where C'is defined as in Eq. (S.5). That is, the trajectories become increasingly vertical the further
they are from the line of fixed points. For trajectories to converge to a stable fixed point, they

must have slopes shallower than the line of fixed points. This occurs when

kg . il < kurpkcrkpr,aC (1 — wpckpdE)
kPF,H kv,heterokl%/[Fo-%{kEwE

(S.71)

This effectively places a limit on how large a gain change the circuit can learn during the training
period in order for that gain change to be stably consolidated (see §55.2, Inhibition of instructive

signals-driven resetting).

S5.2 Dynamics during training

Here we analyze the dynamics of the synaptic weights in the circuit during training for each mech-
anism, and show that under similar conditions as post-training, both mechanisms are also stable
during training and result in the circuit correctly learning the target input-to-output computation
(Fig. S3).

Local stability of the fixed point during training We first show that both mechanisms have
the same locally stable fixed point, corresponding to the circuit achieving the target gain. For both
mechanisms, the learning rule for the late-learning weight v is identical, Eq. (S.61), and the only
difference comes from the effect on the early-learning feedforward weight wy. We assume that the
weight of the feedback pathway is fixed and that the total feedback strength is less than 1, as in
Eq. (S.64). We also assume that w;}m = 0 and that during training the variability of the head
input is (H 2>Tf = 0% > 0. In our analysis, we make use of the fact that, from Eq. (23), the error

in gain can be expanded as

kpwpckpr, i
target - _ J * — .72
5 = g(0) =~ EEEEI (1 (0l0) = (1), ($72)

and for convenience we use variables with tildes as defined in Eq. (24)-Eq. (26), and where

1 (gtarget
wpckpr,a \ ke

Wit opt (V) = (1 — wpckpip) — kMFv> (S.73)
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is the value of wy that would minimize the error in gain for a fixed choice of v. Similarly, we define
the value of wy that would reset early-learning activity for a fixed choice of v as

kpwgkvpv
w*H,reset (U) = -

S.74
kpr. o (5.74)

For the inhibitory plasticity mechanism (Fig. 64), changes in the excitatory weight wj; are
governed by instructive climbing fiber input driven by the retinal slip signal, Eq. (12), according
to the learning rule in Eq. (27), whereas the inhibitory weight w; tends to drive the activity of the
early-learning area back to its long-term average, as in Eq. (29). More precisely, for a target gain

value ¢''8°t  plasticity at wIJ; is driven by the parallel fiber-climbing fiber covariance

cr(t) = kurn (SPF g (1)5CF(1)-, ,
— kurpkorkpe, i (F(t) tanh [ Brign: (9575 — g(£))H ()]~ - (S.75)

We can combine the learning rules for w;; and the inhibitory weight wj; to write an expression
for the change in the net weight wy = w;} — wy, and simplify using the same logic as for the

post-training period (see §51). This yields

dwy

: kpwpckprH , .
“dr ~ kurpkcrkpr, o <H tanh {Blight]w(wlf,opt (v) — U)H)H] >

Tf’w
12 2
klnhkPF,HU H

1 — wpckpig (wH,reset(v) - wH)’ (876)

using the simplifications in Eqgs. (S.72)—(S.74).
For the inhibition of instructive signals mechanism (Fig. 6F'), the climbing fiber input is both
driven by retinal slip error and inhibited by a pathway carrying Purkinje cell output, Eq. (30),

leading to a parallel fiber-climbing fiber covariance
ci(t) = kurpkerkpr, i (H (t) tanh[Biighe (975 — g(£)) H (£) + Breset OPPC()]) 7., - (S.77)
This yields a simplified learning rule for wg:

dwgy

. kpwpckpr g ,
W ~ k?LTDkCFkPF,H<H tanh[(ﬁlightl—’wPCkEﬂ)E(wH’OPt (U) - UJH)

6reset kPF H .
— = (w} — H . (S5.78
+ 1 — wpckpig (wH,reset (v) wH) . ( )

;W

Both mechanisms have the same fixed point,

k target target
(wiy,v*) = ( PR.EWEY ~ 9 ) (S.79)
kpr.u kekwvr
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at which point the gain is equal to g8t

and wi; = Wiy 0 (V) = Wiy e (v7). Furthermore, the
fixed point lies along the post-training line attractor, Eq. (S.62). Close to the fixed point, the
dynamics for both mechanisms are linear, as the hyperbolic tangent term is in an approximately
linear regime,

dwy N 1

~ — WH — a/w*o v) + ]-_OZU}* s v ) 880
dt TwH,light(O'%{)[ H = (W opi (V) + JWH reset (V)] (S.80)

where we defined

o Kight

- b
klight + kreset

1 —wpckpwg

and (S.81)

2 2
TwHyhght (UH) (khght + kreset)k%F HU%{ ( a)TwHydark(o-H) ( )
with
Fiight = kLrpkcF BightkEwpc, (S.83)
and
kinh for the inhibitory plasticity mechanism
Freset = e . . . (884)
krrpkcrPreset inhibition of instructive signals

From Eq. (S.61) and Eq. (S.80), the Jacobian is

J=

. 0'1211 . (klight + kreset)k%F’H _kMFkPF,HkE(kreseth + kLTDkCF/Blight) (S 85)
1 —wpckpwg S

2 ~
ky heterokMFAPE, H —ky heterokypkEWE

The eigenvalues of the Jacobian are

1 1 1
VIR O S
2\ 1 Twyy light

1 1

To Twyy light

\/1 Yk neterokRyp By g kEkurpkor Bignioy , (S.86)

(1 —wpckpwr)(1/7y — 1/Twy light)?

where for conciseness, we omitted that 7, 1ignt and 7, are functions of O'%{, with the latter defined
as in Eq. (S.68). Since by definition all parameter values are positive, during training 0’%{ > 0, and
we assumed that Eq. (S.64) holds, both eigenvalues have negative real part and the fixed point is

stable if ) ~ .
kv,heterokMFkEwE . 7—wH,lig;ht(O—[-[)

(klight + kreset)k%EH - Ty (U?{)

< 1. (S.87)

Note that if the post-training stability condition, Eq. (S.66), is met, then this stability condition is

also automatically met, because by definition 7, dark > Twy light for all 0% >0 (see Eq. (S.82)).
Outside of the region near the fixed point, the dynamics of the weights differ between the two

mechanisms. In the following sections, we evaluate the stability of the dynamics in this region for

each mechanism.
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Inhibitory plasticity-driven resetting For the inhibitory plasticity mechanism, we can un-
derstand the dynamics by first looking at wy, as defined by the learning rule in Eq. (S.76). During
training to increase the gain, wgy will both be driven by the climbing fiber input away from its
initial value along the post-training attractor, towards the line of points (w; ,.(v),v) (along which
g = g'*8) and by the inhibitory plasticity back towards the attractor (the v-nullcline). Thus, the
nullcline for wy lies in between these two lines. As training continues, the weight trajectory will
cross the wy-nullcline, entering a region in which both v and wgy are increasing. If the slope of
the flow field along the w}‘ELOpt line is shallower than the slope of the line itself, then the trajectory
will stay bounded between the w?{ppt line and the wg-nullcline, reaching the fixed point without
any overshoot in the circuit gain (Fig. S34,B). Otherwise, the trajectory will cross the w}LOpt line,
causing an overshoot in the gain. In this case, the trajectory will still tend toward the fixed point
as long as the post-training stability condition, Eq. (S.66), holds.

First, we determine the conditions under which the trajectory will reach the fixed point without

any overshoot in gain. The slope of the flow field along the w?—[,opt line is

dv . Ky heterokMEF . dv

(S.88)

- )
dwy (W o (0)0) kinnkpr, 1 dwH |ost

i.e., it is equal to the slope of trajectories during the post-training period (see Eq. (S.65)). The

slope of the wj; opt line is

d kpr, HwpPC kpr,H

T (Vo (w0r) = (5.8)

= wpckpUp - 75—,
kmr kpwgkur

where we rearrange Eq. (5.73) to define v3,(wp) as the value of v that satisfies wy; ., = wn.
Note that the second term in the rightmost expression above is the slope of the v-nullcline (i.e., the
post-training attractor). Therefore, following the reasoning leading to the post-training stability
condition in Eq. (S.66), the slope of the flow field along the Wiy opt 1ine will be shallower than the

slope of the line itself if
2
7TwH’dark2(UH) < wpckgWwg, (5.90)
(o)

which can also be written as

ko heterok?
~UheterOTME. - pe. (S.91)

2
kreset kPF, H

Note that, since wpckpwp < 1 (Eq. (S.64)), this is a stricter condition than Eq. (S.66).
If the condition in Eq. (S.90) does not hold, then the trajectory will cross the wj; . line. In
this region, from Eq. (S.61) and Eq. (S.72)-Eq. (S.76), the instantaneous slope of the trajectory is

o4
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given by
dv ko heteroRPE, HRAMEOE (W} oser — WH)
dwpy kinhkl%F,HU%{ (w;I,reset - wH) —CH (t)(l - wPCkE’lIJE)
1 dv
= 1 — CH(t)(l—’wpck‘EwE) ’ de post ’ (892)

2 *
kinhkPF,Ho'H (wH,resetin)

where cp(t) is as defined in Eq. (S.75). Since cy has a saturating nonlinearity, —Ckprpkcrkpr,a <
cg < 0 in the region wy < Wiy ¢ < Wiy et With C as defined by Eq. (S.5). Then, the slope of

trajectories is bounded,

1 dv

1 + Ckurpkerker,n(1-weckpde)  dwy
+ R 2 *
kinnkpr, HO 7 (W oot —WH)

dv dv
<
dwyg — dwgy

, (S.93)

post

post

where the right-hand equality holds along the wj .. line, as we saw above. Therefore, as long
as Eq. (S.66) holds (i.e., the slope of post-training trajectories is shallower than the slope of the
v-nullcline), trajectories during training will also have slope shallower than the v-nullcline and tend

toward the fixed point.

Inhibition of instructive signals-driven resetting For the inhibition of instructive signals
mechanism, we saw above (§S5.1, Inhibition of instructive signals-driven resetting) that post-
training dynamics could become unstable if the change in wgy during the training period was
too large, limiting the maximum change in gain that the circuit could stably consolidate. This was
defined by the slope of trajectories in the region of weight space where the climbing fiber response
was saturated, Eq. (S.70), from which we found a stable region of weight space, Eq. (S.71). As-
suming that before training the weights start at a fixed point and that during training the learned
change in gain initially only comes from changes in wpg, the largest gain change that could be
learned is
Agmax = —mAmeax
1 —wpckpwg

.94
_chk‘%F,HkLTDkCFC (5.94)

kv,heterokl%/[FU%{TDE
where Awp max has value equal to the right hand side of Eq. (S.71). With this largest gain change
in mind, below we examine the weight dynamics during training.

From Eq. (S.78) we can see that for a fixed value of v, dwy/dt = 0 when

Wy = 5lightkEwPC w* (U) + Breset w* (U)
Blight kewpc + Breset Hyopt BlightkEwPC + Breset Hreset
= aw}{,opt(v) + (1 - O‘)w;{,reset (U)’ (895)

where « is defined as in Eq. (S.81). That is, the wy-nullcline is linear and lies between the line

target)

(Wi opt(v),v) (along which g =g and the post-training attractor (v-nullcline). Thus, during
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training to increase the gain, initially wg will decrease from a point on the post-training attractor
toward the wg-nullcline, during which time v will start to grow. The trajectory will then cross
the wy-nullcline. As long as the trajectory does so within the region defined by Eq. (S.71), the
trajectory will tend toward the post-training attractor and eventually the fixed point (Fig. S3D).

However, it is possible that trajectories may cross the wr‘[,opt line, which would correspond to the
gain of the circuit overshooting the target. We can try to ensure that trajectories do not overshoot
by keeping them within the region bounded by w}'ELOpt and the wgy-nullcline. If the w}"q,opt line is
near the wg-nullcline and therefore within the linear regime of the climbing fiber response §CF, the
slope of trajectories along the line is approximately as defined in Eq. (S.89). As for the inhibitory
plasticity reset mechanism, trajectories will therefore stay approximately within the region between
the wy; 4 line and the wy-nullcline if the condition in Eq. (S.90) is met. If the wy . line is far
from the nullcline, and the climbing fiber response is saturated, then the slope of the flow field

along the wy ¢ line is

dv kv kMF g %{

) (wE,reset - w?i,opt)' (896)

dwg | " kurpkorC(1 — wpckpig

Wi opt (V):0)

Then, trajectories will stay bounded by the wy; . line and there will be no overshoot in gain if

dv

d
< ———(Vgpt);
o)) WH

where d/dwp (v5,) is the slope of the wj; . line defined in Eq. (S.89). This directly gives that,
for a given value of v, the distance between the wjy ., line and the v-nullcline w?ireset(v) can be
no larger than

w?{,reset(v) - w}k{opt (’U) < wPCkEwEAwH,max- (897)

S5.3 Effect of post-training reset on weight dynamics

With either the inhibitory plasticity or homeostatic climbing fiber mechanism, two important prop-
erties arise in the model’s dynamics that are also observed experimentally. First, the early-learning
weight wy tends toward a saturation point during training that is not simply the value that would
minimize errors. In the feedforward model, this property was modeled explicitly by including a
decay term in the learning rule Eq. (13) (following previous work), which we do not include in
the model with internal feedback (i.e., in Eq. (27)). Second, during training, the approach of the
early-learning weight to the saturation point occurs over a faster timescale than the subsequent
post-training reset during consolidation (i.e., Eq. (S.82); for the inhibition of instructive signals,
this is true in the linear regime of the CF response). This was also modeled explicitly in the feed-
forward model with two different values of 7,, during the training and post-training periods, but in

the model with internal feedback results from the fact that learning and resetting are being driven
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by two different mechanisms. Note that we could also include either of the reset mechanisms in the
feedforward model (as it is the case of wg = 0), and the resulting dynamics would also have these

properties without having to explicitly model them.

S6 Circuit model with plastic internal feedback

In this section, we extend the feedback model discussed in the previous section (§S5) to the case
in which the weight of the internal feedback pathway to the early-learning area is also plastic.
Plasticity in the excitatory feedforward and feedback weights, wE and wg respectively, is described
by Eq. (27). The plasticity at the late-learning site v is described, as before, by Eq. (S.61). Similar
to the circuits with fixed strength feedback, we can show how changes at the early-learning site
can be successfully consolidated post-training if the circuit either has plasticity at wj, (and/or
wy), or through inhibition of the climbing fiber instructive signal pathway, both of which reset
early-learning activity so that the output of the early-learning area does not modulate in response
to sensory input.

Below, we describe in further detail the implementation of each of these reset mechanisms in
the circuit. Then, we show that the linearized dynamics of the circuit with either reset mechanism
are the same, and determine conditions under which learning and consolidation occur stably. In
general, learning of a target input-output gain and post-training consolidation will be locally stable
around its fixed point as long as the weight of the feedback pathway wg stays within the region
wg < 1/(wpckgkpr,E), so that the strength of the feedback around the loop from early- to late-
learning area and back to the early-learning area is less than 1, and if the rate of plasticity at the

early-learning sites is fast compared to the rate of plasticity at the late-learning site.

S6.1 Model formulation

We implemented the two circuit reset mechanisms by extending the model with non-plastic feedback

(see Materials and Methods, Circuit model with internal feedback loop) as follows.

Inhibitory plasticity-driven resetting For the inhibitory plasticity mechanism we model plas-

ticity in wy; as governed by Eq. (29) and in wy, by

dwg

dt = kinh<PFE(t)5PC(t))>Tinh’ (8'98)

target - plasticity at

where 0PC(t) = PC(t) — (PC(t))r,. During training with a target gain of g
the excitatory weights to the early-learning area is driven by a climbing fiber signal carrying only
retinal slip, Eq. (12). Plasticity at the feedforward excitatory weight wlt, is driven by (negative of)
the feedforward parallel fiber-climbing fiber covariance cg(t), Eq. (S.75), leading to the simplified

learning rule for the net weight wy in Eq. (S.76), where now wy; . and wj; .. are functions of

o7


https://doi.org/10.1101/2024.03.20.586036
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.20.586036; this version posted July 24, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

both wg and v. Similarly, plasticity at wj, is driven by (negative of) the feedback covariance

CE(t) = kLTD <(5PFE(t)CF(t)>7—f,w
~ —kirpkcrkpr g - g(t) (H (1) tanh|Blignt (9" — g(t))H(t)DTf’w. (5.99)

As for the feedforward input, we note that

target

) (W opt (W (£), v(t)) — wE(t)), (S.100)

wpckpkprE - g
gtarget _ g(t) — _
1 — wpckpwg(t

where we define

1

_— k — k S.101
wnchmkor s MFVU — Wpckpr,HWH) | 5 ( )

E
wE,opt(wHa v) = - W(

i.e., the value of wg that would minimize errors for a fixed choice of wy and v. Further defining

kpr HwH

_ _PRHYH $.102
kekpr EkMmEvU ( )

w*E,reset (va U)

we can write a combined learning rule for the net feedback weight wg,

dwE target

a ~ OtrainkLTDACFRPF,E - 9 <H tanh |:Blight

wpckekpr,E - g
1 —wpckgkpr pwE

(Wh opt (Wi, V) — wE) H} >

Tfw

P P
kinnkpp gOF - 9 - kKEAMEU

; ’ - s S.103
1- wPCkEkPF,EwE (wE,reset(wH U) wE) ( )
where Oyain = 1 during training. Post-training, dipain = 0 since R = 0, which implies that ¢ (t) =

cg(t) = 0. Similarly, post-training plasticity at wg is governed by Eq. (S.63).

Inhibition of instructive signals-driven resetting For the inhibition of instructive signals
mechanism, we assume the inhibitory weight is fixed and that plasticity at both w}_} and wg is
governed by the climbing fiber response defined in Eq. (30) (Fig. S2A4). More specifically, plasticity
at wj; is driven by cg(t) as defined in Eq. (S.77), and we can similarly write the feedback parallel

fiber-climbing fiber covariance that drives plasticity at wE as

cp(t) = —kurpkerker, g - 9(t) (H (t) tanh[Serain Blight (975 — g () H () + BresetSPC(1)]) 7y, (S-104)

target

where ¢ is the target gain of the circuit during training, and di;ain = 1 during training and 0

post-training. From this, we can write that plasticity of the net weight wg is governed by
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d'lUE target

W ~ kLTDkCFkPF7E . g<H tanh|:<5trainﬁlight

wpckekpr e - g
1 — wpckgkpr pwE

(W opt (W, v) — wE)

kpr Ekpkvrv .
: : ; ) — H . (S.105
* Breset 1 —wpckgkpr rwE (wE’reset(wH v) wE)) ] >Tf ( )

sw

where wp v and wj, ... are defined by Eq. (5.101) and Eq. (5.102) above.

In Figure S2, we simulated the time evolution of the weights in the circuit implementing this
latter mechanism for a 0.5 h period of training to increase the gain to ¢g'®#°* = 2 followed by a 23.5
h post-training period. The model parameters were the same as for the model without plasticity
of the feedback pathway (Tables S1-S3; see Materials and Methods, Simulation of oculomotor

learning).

S6.2 Stability of shared linearized dynamics

Here we extend the analyses of the model without plastic feedback during the training (§55.2) and
post-training (§55.1) periods to the case of plastic feedback.

Training We consider the system of differential equations for the three synaptic weights wyy,
wg and v from Eq. (S.61) and either Eq. (S.76) and Eq. (S.103) for the inhibitory plasticity reset
mechanism, or Eq. (S.78) and Eq. (S.105) for the inhibition of instructive signals reset mechanism.

For either mechanism, there is a line of steady states (parameterized by s),

W kpr p/kpp m - gt*reet 0
wh | = 1 5+ 0 ) (S.106)
U* 0 gtarget / (kE kMF)

along which wj; = wj;[,opt = w;{,reset and wp = w*Eppt = w*E,reset' This corresponds to the intersec-
tion of the surface in weight space that leads the circuit to produce the target gain ¢'a'¢°* with the
surface defined by Eq. (S.62).

To analyze the stability of the fixed points defined by this line, we calculate the eigenvalues of
the Jacobian of the system of differential equations. We note that the Jacobian has the same form
for both reset mechanisms after substituting the relevant expressions for kieset, as defined in Eq.
(S.84), into the differential equations. Leaving Eq. (S.106) parameterized by wj, (i.e., taking an
arbitrary value of s), we calculate the characteristic polynomial of the Jacobian, which has three
roots. One of the roots is Ay = 0 and corresponds to the direction along the line of steady states.
Dividing this root out, we are left with A\?> 4+ aX + b = 0 for determining the remaining eigenvalues

A9 and A3, where
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ok
=—(A A3) = .
¢ (Ao +2s) 1 —wpckgkpr pwy

[(kreset + klight)(kl%RH + (gtarget)2k12)F7E) - kv,heterokl%/[FkEkPF,EwE] (8107)

(Qtarget)%l%F,E + kI%F,H

*
1 — wpckgkpr pwy,

b= A3 = ky heterok EERFRLTD FCF Blight T 1 : (S.108)

using kiight and kreset as defined in Egs. (S.83) and (S.84). For the eigenvalues to have negative real
parts, we must have a > 0 and b > 0. For wg < 1/(wpckgkpr,E), since all parameters are positive

and 0% > 0 during training, b > 0 is satisfied. a > 0 is satisfied if

1 1 1
+ > —, (S.109)

Twg light Twg,light Ty

where 7., 1ight and 7, are defined as in Egs. (S.82) and (S.68) and depend on the value of w}, that

parameterizes the fixed point as well as on a?{, and where

1 — wpckgkpr Wy
5
reset T klight ) (gtarget kPF,E ) 20

Twp light (077, Wh) = T (S.110)
That is, for stable learning, the sum of the instantaneous effective rates of plasticity of the early-
learning sites wyr and wg should be faster than the instantaneous effective rate of plasticity at the
late-learning site v, extending the result from the fixed-strength feedback case above.

Assuming that w}, is upper-bounded by 1/(wpckpkpr ), and assuming that the circuit is

target

learning only positive gains so that g > 0, we can satisfy Eq. (S.109) for the whole range of

wy, and potential gains with a stricter condition

2
kv,heterokMF
2
kPF,H (klight + kreset)

< wpC. (S.111)

Post-training In the absence of information about errors, we take d¢ran = 0 in Egs. (S.103) and
(S.105). Then, the steady states of the dynamics lie along the surface represented by Eq. (S.62).
Calculating the eigenvalues of the Jacobian at a fixed point (kpw},0*/kpr, g, w}, v*), parameterized
by wy, and v*, we find that there are two zero eigenvalues, corresponding to the surface in Eq. (S.62),
and a third eigenvalue

2

g
A= ——H~* (kreset(kl%F g+ (kPF,Ek;EkMFfU*)Q) - kv,heterokl%/[FkEkPF,EwE‘) ’ (8112)
1 —wpckpuy ’

which is negative if 0% > 0, w} < 1/(wpckgkpr g) and

1 1 1
+ > —, (S.113)

Twyy ,dark Twg,dark To
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where 7., dark and 7, are defined as in Eq. (S.67) and Eq. (S.68) and depend on the value of wj,

that parameterizes the fixed point as well as on 0%{, and where

X
1 — wpckekpr W},
kreset (k‘PF,EkEkMF’U*)2U§{

Twg dark (T3, Wi, v*) = (S.114)
For w}, < 1/(wpckgkpr,E), and assuming v* > 0, we can write a single stricter condition that is
equivalent to Eq. (S.91) to satisfy Eq. (S.113). If this condition is met, then the surface of fixed
points Eq. (S.62) will be locally attractive during the post-training period, and since Eq. (S.111)
will be automatically satisfied, the dynamics during training will be locally stable around the fixed

point as well.
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Figure S1: Synaptic weight dynamics of the feedforward-architecture model during training. (A) Dynamics of weights (top)
and the gain of the circuit (bottom) during 48 h of simulated training to increase the sensory input-to-motor output gain of
the circuit. (B) Trajectory (orange curve) shows the evolution of synaptic weights in A, which approaches the stable fixed
point where the wy- and v-nullclines (light and dark grey lines) cross. For clarity, the orange trajectory is shown as dashed
where it overlaps the wg-nullcline. (C) The nullclines (grey to black lines) and fixed points (orange circles) of the system for
different choices of desired input-to-output gain value (shown by lightness). Any target gain value can be learned by the system,
corresponding to a fixed point lying along the line wy = 0. These points are thus also stable when information about behavioral
errors is not present.

A B Post-train C Post-train E
30% : "

preeessneeny 0%

P Hgﬂ@% wprr -60% -
| i

P l_‘ O"l‘° 30%
«O—O— & !

MVN 0%

1 T 1 6 ,
0 time (h) 24 0 time (h) 24 0 WH

Figure S2: Systems consolidation in a circuit with plastic internal feedback loop. (A) Architecture of circuit with three sites
of plasticity, at the feedforward weight onto the early-learning area, wg (blue), at the weight of the internal feedback pathway,
wg (pink), and at the direct pathway onto the late-learning area, v (red). As in Fig. 6F, the post-training reset was achieved
by inhibition of the pathway carrying instructive signals to the early-learning area. (B) Change in weights during 0.5 h of
simulated training to increase the gain (orange block) followed by 23.5 h post-training with no feedback about behavioral errors
(grey block). (C') Early-learning area output (amplitude of Purkinje cell activity relative to moving baseline), which drives
consolidation at the late-learning site. (D) Change in the gain of the eye movement response (black line). Blue and red shaded
areas show the contributions of the early- and late-learning areas to the circuit transformation. (E) Trajectory of synaptic
weights during the training (orange) and post-training (black) periods. Dashed black lines show the projection of the steady
state reached at the end of training onto the wg-wg plane. Grey arrows show the approximate instantaneous direction in
which a weight configuration at a given point in synaptic weight space will evolve during the post-training period, determined
analytically. Trajectories tend toward a 2-D surface of marginally stable points (solid grey surface).
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Figure S3: Synaptic weight dynamics during training of the model with feedback architecture. (A) Dynamics of weights (top)
and the gain of the circuit (bottom) during 48 h of simulated training to increase the sensory input-to-motor output gain of
the circuit, using the inhibitory plasticity reset mechanism. (B) Trajectory (orange curve) shows the evolution of synaptic
weights in A. All trajectories approach a stable fixed point where the wg- and v-nullclines cross. The second grey line that
the trajectory follows corresponds to the constant gain line for the target gain. (C,D) Same as A,B, but for the inhibition of

instructive signals reset mechanism. In panels B and D, for clarity, the orange trajectory is shown as dashed where it overlaps
the wg-nullcline.
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Table S1: Values and descriptions for parameters of feedforward circuit model. Sources for values taken from the
literature are provided in the right-hand column. Parameters that were calculated based on published values are
indicated as “based on” a source.

Parameter Value Description Source
MF 95 sp/s Mossy fiber (MF') spontaneous baseline rate
0 p/ y fiber (MF) sp Lasker et al. (2008)
kmr 0.14 (sp/s)/(deg/s) MF sensitivity to vestibular input
PFq 14 sp/s Parallel fiber (PF) spontaneous baseline Based on Arenz et al.
rate (2008)
kpr 0.42 (sp/s)/(deg/s) PF sensitivity to vestibular input
PCy 50 sp/s Purkinje cell spontaneous baseline rate Katoh et al. (2015)
MVN, —12 sp/s Correction factor to make medial vestibular gegg%eck & Cullen
nucleus (MVN) spontaneous baseline rate =
57 sp/s
CFy 1sp/s Climbing fiber (CF) spontaneous baseline E.g., Goossens et al.
rate (2004) and Maruta et
al. (2007)
kcp 1sp/s Maximum amplitude of CF response around
baseline
Biight 1 s/deg Scale factor for saturation of CF response
. e . Based on Beraneck &
kg 2.2 (deg/s)/(sp/s) Eye velocity sensitivity to MVN firing Cullen (2007)
krrp 1.005 s/sp Contribution of parallel fiber firing to plas- Basec.l on amgunt of
ticity at early-learning site wg learning in Kimpo
et al. (2014) and
ko 0.648 (s/sp)? Contribution of parallel fiber-climbing fiber ~Boyden & Raymond
coincidence to plasticity at wy (2003)
Tw.train 0.15 h Time constant of plasticity at wgy during Boyden & Raymond
’ . (2003)
training
Based on Cooke et
Tw,post 5h Time constant of plasticity at wy after (2004) and Jang
training et al. (2020)
Ky hetero 2.75 x 1075 (s/sp)?/h  Plasticity rate at late-learning site v for het-
erosynaptic rule
kv Hebb 8 x 1072 (s/sp)?/h Plasticity rate at v for Hebbian rule

Continues on next page
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Table S1 continued.

Parameter Value Description Source

Ty 1 min Timescale of fast average used to calculate eye
movement output

TFw 1 min Timescale of average used in plasticity rule at wgy
1 min (Fig. 2) ) ) o
X Timescale of average used in plasticity rule at v
0.7 h (Fig. 3)
Ts 0.0395 h Timescale of sliding average 6 in Hebbian rule for v
Consistent with
Wy 5 Nonplastic molecular layer interneuron to Purkinje weight change in
cell weight Jang et al. (2020)
w;,o 5 Initial value of early-learning, PF-Purkinje cell
weight wg
WpC 0.05 Purkinje cell to MVN synaptic strength ](32%5165) on Payne et al.
) 1.3 Initial value of late-learning MF-MVN weight v
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Table S2: Values, descriptions and sources for parameters of circuit model with internal efference copy feedback,
using the climbing fiber negative feedback reset mechanism. All other parameters same as in Table S1.

Parameter Value Description Source
kpr,u 0.42 (sp/s)/(deg/s) PF sensitivity to vestibular input Based on Arenz et al.
kpr.E 0.42 (sp/s)/(deg/s)  PF sensitivity to efference copy input (2008)
PCy —75 sp/s Correction factor to make Purkinje cell spon- Katoh et al. (2015)
taneous baseline rate = 50 sp/s
MVNj —9.9 sp/s Correction factor to make MVN spontaneous Beraneck & Cullen
i (2007)
baseline = 57 sp/s
krrp 0.75 (s/sp)?/h Contribution of PF firing to plasticity at
early-learning site wg
krTp 0.75 (s/sp)/h Contribution of PF-CF coincidence to plas-
ticity at wy
Blight 1 s/deg Slope parameter for error-driven plasticity
Breset 0.0125 s/sp Slope parameter for reset plasticity
Ky hetero 3.6 x 1072 (s/sp)?/h  Plasticity rate at v
w[f{,o 2.5 Initial value of excitatory feedforward early-
learning weight w,';
Consistent with
Wy 5 Nonplastic molecular layer interneuron to weight change in
Purkinje cell weight Jang et al. (2020)
wg 8.43 Nonplastic excitatory weight of efference Net weight based on
copy input to Purkinje cell Katoh et al. (2015)
wg 2 Nonplastic inhibitory weight of efference copy
input to Purkinje cell
o 1.26 Initial value of late-learning weight

Table S3: Values and descriptions of parameters of circuit model with internal efference copy feedback, using the
inhibitory plasticity reset mechanism. All other parameters same as in Tables S1 and S2.

Parameter Value Description

Kinh 0.01 (s/sp)?/h Maximum rate of reset plasticity

Ky hetero 3.9 x 1072 (s/sp)?/h  Plasticity rate at v

Tinh 1 min Timescale of sliding average of PC activity
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