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Abstract. Systems consolidation is a common feature of learning and memory systems, in which a long-
term memory initially stored in one brain region becomes persistently stored in another region. We studied
the dynamics of systems consolidation in simple circuit architectures with two sites of plasticity, one in an
early-learning and one in a late-learning brain area. We show that the synaptic dynamics of the circuit
during consolidation of an analog memory can be understood as a temporal integration process, by which
transient changes in activity driven by plasticity in the early-learning area are accumulated into persistent
synaptic changes at the late-learning site. This simple principle naturally leads to a speed-accuracy tradeoff
in systems consolidation and provides insight into how the circuit mitigates the stability-plasticity dilemma
of storing new memories while preserving core features of older ones. Furthermore, it imposes two constraints
on the circuit. First, the plasticity rule at the late-learning site must stably support a continuum of possible
outputs for a given input. We show that this is readily achieved by heterosynaptic but not standard Hebbian
rules. Second, to turn off the consolidation process and prevent erroneous changes at the late-learning site,
neural activity in the early-learning area must be reset to its baseline activity. We propose two biologically
plausible implementations for this reset that suggest novel roles for core elements of the cerebellar circuit.

Significance Statement. How are memories transformed over time? We propose a simple organizing
principle for how long term memories are moved from an initial to a final site of storage. We show that
successful transfer occurs when the late site of memory storage is endowed with synaptic plasticity rules
that stably accumulate changes in activity occurring at the early site of memory storage. We instantiate
this principle in a simple computational model that is representative of brain circuits underlying a variety of
behaviors. The model suggests how a neural circuit can store new memories while preserving core features
of older ones, and suggests novel roles for core elements of the cerebellar circuit.

Introduction

Memory systems transform transiently present information into a more persistent form. In short-

term (working) memory, transient spiking activity of input neurons is transformed into persis-

tent activity in downstream short-term memory-storing circuits (Zylberberg & Strowbridge 2017;

Goldman-Rakic 1995). In long-term memory, memories stored transiently through neural plasticity

at one site may become stored persistently at another site, through a process known as systems

consolidation (Dudai et al. 2015; Squire et al. 2015). Systems consolidation is a common feature
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of learning and memory systems, including declarative memory (Genzel & Wixted 2017), fear con-

ditioning (Do Monte et al. 2016), and motor skill learning (Krakauer & Shadmehr 2006). It is

thought to help memory systems navigate the “stability-plasticity” dilemma (Abraham & Robins

2005; Grossberg 1987)—balancing the need to have capacity for new memories and the tendency of

new memories to overwrite old ones, which could lead to catastrophic forgetting (McClelland et al.

1995; Roxin & Fusi 2013).

In working memory, the transformation of transient representations into a more persistent form

can be characterized by well-established computational principles (Brody et al. 2003; Chaudhuri

& Fiete 2016; Goldman et al. 2009; Major & Tank 2004; Seung 1996; Wang 2001; Zylberberg

& Strowbridge 2017). For the storage of analog (graded or continuous-valued) memories, this

transformation can be accomplished through temporal integration of transient activity in the input

to a circuit into persistent changes in circuit output, with the set of possible stored activity patterns

forming a continuous set of stable patterns.

For systems consolidation, overarching computational principles describing the transformation

of transient into persistent representations are less well established. Qualitatively, the standard

view of systems consolidation suggests that transient plasticity in an early-learning brain area

results in altered neural activity that then triggers the induction of persistent changes in the late-

learning area post-training (Do Monte et al. 2016; Krakauer & Shadmehr 2006; Hardt et al. 2013;

Lesburguères et al. 2011; Richards & Frankland 2017; Squire et al. 2015). Through this process,

the expression of learning becomes robust to inactivation of the early-learning area (Fig. 1A,B).

We investigated the dynamics of systems consolidation in a model of a simple circuit that

captures essential features of the systems consolidation of error-driven learning in brain areas such as

the cerebellum (Cooke et al. 2004; Lisberger 2021; Raymond & Medina 2018), striatum (Andalman

& Fee 2009; Warren et al. 2011; Yin et al. 2009; Makino et al. 2016; Teşileanu et al. 2017; Murray

& Escola 2020), and amygdala (Medina et al. 2002; Do Monte et al. 2016). Building upon previous

models of systems consolidation of oculomotor learning (An et al. 2023; Clopath et al. 2014; Herzfeld

et al. 2020; Medina & Mauk 1999; Menzies et al. 2010; Porrill & Dean 2007; Yamazaki et al. 2015),

we show that systems consolidation can be framed as a process of temporal integration, in which

transient changes at the initial site of plasticity are integrated into changes at the final site. Further,

within the context of cerebellar systems consolidation, our results extend previous proposals for

how molecular layer interneurons and nucleo-olivary pathways, core circuit elements not included in

traditional models, may serve to regulate cerebellar cortical plasticity (Herzfeld et al. 2020; Medina

& Mauk 1999; Kenyon et al. 1998). Specifically, we show how these pathways may be necessary for

stabilizing the dynamics of systems consolidation.
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Figure 1: Schematic of systems consolidation. (A) Learned changes in the response to a sensory input occur first in an
early-learning area, but are transferred over time to a late-learning area that becomes the sole site required for expression of
learning, as revealed by inactivation experiments. (B) Feedback about behavioral errors drives synaptic plasticity in the early-
learning area (1), leading to changes in activity (2) that in turn drive secondary plasticity in the late-learning area (3). Here,
we investigate the dynamical mechanisms underlying this consolidation process and their implications for circuit organization
and function.

Results

A simple circuit model of systems consolidation

We modeled a simple circuit that learns the analog-valued gain of an input-to-output transfor-

mation. This gain is determined jointly by a direct and an indirect pathway through the circuit.

Errors in behavioral performance drive plasticity at an early-learning site in the indirect pathway,

which is then consolidated at a late-learning site in the direct pathway.

To make the analysis more concrete, we consider the specific example of oculomotor learning.

Our focus is not on the intricacies of oculomotor learning specifically but the principles of consol-

idation that recur in circuit architectures throughout the brain. Nevertheless, our model captures

many important features of oculomotor learning. The gain of eye movement responses to vestibular

or visual stimuli can be adaptively modified by learning so as to attain any value within an analog

range (Fig. 2A; see Materials and Methods, Feedforward sensorimotor circuit model; Broussard

& Kassardjian 2004). Expression of this learned change in the sensory-to-motor transformation

initially depends on the cerebellar cortex, but becomes cerebellum-independent within 24 hours

post-training (Anzai et al. 2010; Jang et al. 2020; Kassardjian et al. 2005; Nagao & Kitazawa 2003;

Shutoh et al. 2006). Learning and consolidation occur over timescales that are long compared to

the eye movement responses to sensory stimuli, hence we modeled the latter as instantaneous.

We first studied a model of the circuit in which the input-to-output transformation was purely

feedforward. In the context of cerebellum-dependent learning, this is consistent with the classical

Marr-Albus-Ito model (Albus 1971; Marr 1969; Ito 1982) and previous computational studies of

the consolidation of oculomotor learning (Clopath et al. 2014; Herzfeld et al. 2020; Porrill & Dean

2007; Yamazaki et al. 2015). We simulated neural activity and changes in synaptic weights in the

feedforward circuit model during a training and post-training period. During the training period,

the model receives instructive signals about behavioral performance, which control the induction
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of plasticity at the early-learning site. For the case of oculomotor learning, these instructive signals

reflect behavioral errors resulting from failures of eye movements to stabilize images on the retina,

carried by the climbing fiber input to the cerebellar cortex. Such signals induce a decrease in the

weight wH at the early-learning site, reducing the inhibitory output from the indirect (cerebellar

cortical) pathway and thereby increasing the overall gain of the sensory-to-motor transformation

(Fig. 2B,C ; Boyden et al. 2004; Inoshita & Hirano 2018; Jang et al. 2020; Kimpo et al. 2014).

During the subsequent post-training period, information about behavioral errors is not available

(experimental subject is placed in the dark to eliminate visual feedback about the stabilization of

images on the retina), and we assume wH decays back to a baseline value of zero (Fig. 2C ).

This baseline value of zero for wH can be interpreted as a balance of excitation and inhibition

at the early-learning site. The decay of plasticity at wH is consistent with electrophysiological

measurements (Jang et al. 2020), the experimental observation that memory expression becomes

cerebellum-independent over time (Anzai et al. 2010; Kassardjian et al. 2005; McElligott et al.

1998; Nagao & Kitazawa 2003), and previous models (An et al. 2023; Clopath et al. 2014; Herzfeld

et al. 2020; Yamazaki et al. 2015).

Because the synaptic changes induced at the early-learning site during the training period are

transient, successful consolidation requires the induction of persistent changes at the late-learning

site (An et al. 2023; Clopath et al. 2014; Herzfeld et al. 2020; Medina & Mauk 1999; Menzies et al.

2010; Porrill & Dean 2007). Consolidation is known to depend on neural activity during the post-

training period (Okamoto et al. 2011), which presumably induces the plasticity at the late-learning

site (Jang et al. 2020). To achieve this, we implemented a heterosynaptic plasticity rule for the

late-learning weight v of the form

∆v ∝ −MF(PC − PC0),

in which weight changes are driven by the correlation of direct pathway input (in the cerebellar

context: mossy fiber, MF) with early-learning area output (Purkinje cell, PC) relative to baseline

(PC0) (see Materials and Methods, Learning rules, for the full equation), consistent with previous

modeling of oculomotor learning (An et al. 2023; Clopath et al. 2014; Herzfeld et al. 2020; Medina &

Mauk 1999; Menzies et al. 2010; Porrill & Dean 2007). As a result, altered post-training activity at

the early-learning site induced an increase in v to a new steady-state value (Fig. 2C ). This change

persisted even as wH returned to its baseline, supporting a persistent increase in the input-to-output

gain of the circuit (Fig. 2B,C ).

Dynamical principles of systems consolidation

To understand the features of the synaptic weight dynamics that support successful systems con-

solidation, we plotted the trajectory describing the joint evolution of the early- and late-learning

weights. Initially, training induces a change at the early-learning site, decreasing the weight wH
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Figure 2: Synaptic weight dynamics in a representative feedforward-architecture circuit model of systems consolidation cor-
respond to a temporal integration process. (A) The microcircuit underlying oculomotor learning alters the amplitude (“gain”)
of the reflexive eye movement response to sensory (vestibular) input. Incorrect eye movement amplitude causes image motion
on the retina (“retinal slip”). Instructive signals carrying information about behavioral errors, i.e., retinal slip, drive changes in
weight, wH , at an early-learning site in the cerebellar cortex (blue shaded area), with wH representing the difference between
excitatory (w+

H) and inhibitory (w−
H) synaptic strengths. Over time, expression of learning becomes dependent only on the

weight v at a late-learning site in the brainstem (red shaded area). Excitatory synapses are represented by open triangles,
inhibitory synapses by filled circles. (B, C ) Simulation of model for 30 minutes of training (orange block) to increase the
input-to-output gain of the eye movement response, followed by 23.5 hours post-training in the dark (grey block). During the
post-training period, the model received no information about errors. (B) Change in the gain of the eye movement response
(black line), with shading showing contributions from the early- (blue) and late-learning (red) sites. (C ) Change in weights wH

(blue) and v (red). (D) Trajectory of synaptic weights during the training (orange) and post-training (black) periods. Grey
arrows show the analytically calculated, approximate instantaneous direction in which a weight configuration at a given point
will evolve without information about errors. All trajectories tend toward some marginally stable point along the line wH = 0
(thick grey line). A trajectory resulting in perfect consolidation would follow the “constant gain” line (grey dashed line). (E)
Consolidation corresponds to a temporal integration process in which transient changes in activity at the early-learning site,
driven by plasticity at wH , are accumulated into persistent changes in v. Panels show trajectory and dynamics in synaptic
weight space (left) and over time (right) in a simulation of three consecutive days of the training protocol in B–D.

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 24, 2024. ; https://doi.org/10.1101/2024.03.20.586036doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.20.586036
http://creativecommons.org/licenses/by-nc-nd/4.0/


from its baseline value and moving the weights (wH , v) (Fig. 2D, orange trajectory) to a point

corresponding to an increased input-to-output gain of the eye movement response (Fig. 2D, dashed

“constant gain” line). During the post-training period, the early-learning weight decays to base-

line, but the late-learning weight is driven to a new steady state value that preserves some of the

increase in the input-to-output gain accrued during training (Fig. 2D, black trajectory). A nearly

parallel trajectory will be followed by the evolution of the weights during the post-training period

for any weight configuration reached during training (Fig. 2D, grey arrows), with all trajectories

approaching some steady state value along a line in synaptic weight space (Fig. 2D, dark vertical

line). Because the weight dynamics are at steady state whenever the activity of the early-learning

area is at baseline, which occurs when the early-learning weight wH decays to zero, there is a

continuum of values that can be stably maintained by the late-learning weight v (see SI Text, S1).

Therefore, for a given initial value of v before training, the final value reached after consolidation

varies in a graded manner with the magnitude of the change in the early-learning weight wH during

training. This enables the circuit to learn and maintain any graded amplitude input-to-output gain

across multiple learning events (Fig. 2E, S1; see SI Text, S1).

These dynamics suggest an intuitive computational principle: systems consolidation of analog

memories corresponds to a temporal integration process in which the late-learning weight stably

accumulates changes induced during training at the early-learning site. For the simple feedforward

model we have been examining, this can be visualized directly in the space of synaptic weights as

an integration of transient changes in wH into persistent changes in v (Fig. 2E ). More generally,

changes in the output of the early-learning area, driven by plasticity at wH , are accumulated into

weight changes at the late-learning site (see below for more complex circuit architectures).

To obey this principle, two conditions must be satisfied. First, the rule governing plasticity

at the late-learning site must support the stable accumulation of persistent weight changes and

corresponding continuum of input-to-output gains. Second, the circuit must reset the output of the

early-learning site post-training so that the accumulation in the late-learning weight stops. Here

we lay out the implications of the principle of consolidation as integration, starting with circuit

function. Then, we show how the two simple conditions stated above place strong constraints on

the plasticity rules and circuit features needed to support systems consolidation.

Consolidation exhibits diffusive drift in the absence of information about errors,

suggesting a speed-accuracy tradeoff for consolidation

Because the dynamics of systems consolidation can be understood as temporal integration, systems

consolidation exhibits properties that have been well-characterized in other kinds of integrators,

such as diffusive drift in the value being memorized due to the accumulation of noise, which has

been found in neural integrator circuits implementing working memory (Brody et al. 2003; Burak

& Fiete 2012; Ganguli et al. 2008; Lim & Goldman 2012; Seung 1996). In our model, noise in the

neural activity driving plasticity at the late-learning weight v is accumulated, leading the input-
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to-output gain of the circuit to drift. In the absence of information about behavioral errors (e.g.

during the post-training period), even if the output of the early-learning area is reset on average,

noise in the early-learning weight wH—for example, resulting from noise in the pathway that carries

instructive signals during learning—is integrated into changes in v (Fig. 3A–D ; see SI Text, S1, for

analytical derivation of how the noise accumulates). The amplitude of changes in v post-training,

resulting from changes in wH , is defined by the slope of the flow field (Fig. 3A,B, grey arrows),

which is proportional to the learning rate of v and inversely proportional to the rate at which the

early-learning site wH is reset to baseline. This implies that a system with fast consolidation will

reach a given level of consolidated learning quickly (i.e., in a small number of training sessions)

but accumulate noise quickly as well. By contrast, a system with slow learning will require many

training sessions to reach the same level of consolidated learning, but will reach this level with a

smaller total level of consolidated noise (Fig. 3E–H ). This represents a type of “speed-accuracy”

tradeoff in achieving a given level of consolidated learning, similar to that seen in integration-based

tasks like accumulation of evidence for decision-making (Bogacz et al. 2010; Gold & Shadlen 2007).

Consolidation mitigates the plasticity-plasticity dilemma through averaging

Framing consolidation as integration highlights mechanistically how systems consolidation can ad-

dress the stability-plasticity dilemma (Abraham & Robins 2005; Grossberg 1987), i.e., the tradeoff

between the ability of neural systems to adapt quickly and to not overwrite previous learning.

Within the context of error-driven learning, this tradeoff arises when the optimal, “target” input-

to-output gain of the circuit transformation, as conveyed by the instructive signals guiding learning,

fluctuates across training sessions due to changes in the environment or in the motor plant (e.g.,

due to experimental manipulations, fatigue, injury, or changes in body mass). With one site of

learning, a more plastic circuit that adapts quickly to reduce error during a given training session

will tend to have a bigger initial error at the start of the next training session (Fig. 4A–C, “wH

fast”). On the other hand, a more stable circuit, whose gain adapts slowly and approximates the

mean of the fluctuating learning target, will have, on average, smaller initial errors across training

sessions, but will less fully reduce the error during a given training session (Fig. 4A–C, “wH slow”;

SI Text, S2).

With two sites of learning—a fast-learning and fast-forgetting early site of plasticity, and a

slow-learning late site of consolidation—the circuit can mitigate this tradeoff. Slow consolidation

at v stores the long-term average of the fluctuating target gain conveyed by the instructive signals

across training sessions, while fast plasticity at wH adapts quickly during a single training session

but is reset post-training (Fig. 4D). In this way, the circuit can both minimize the average error at

the start of each training session and respond quickly to reduce errors within a session (Fig. 4E ;

SI Text, S2). However, even with two sites of learning, the minimization is not perfect, and there

is a tradeoff in the size of the expected error at the start of the next training session versus the

number of sessions required to consolidate the mean target gain (Fig. 4F ). This is another form of
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Figure 3: Diffusive drift of consolidated memory implies a tradeoff between speed of consolidation and sensitivity to noise.
(A, B) Trajectories of synaptic weights in response to periodic random perturbations in the early-learning weight wH when
the learning rate at v is relatively fast (A) or slow (B) (light to dark colors show progression of time). (C ) Distribution of
the value of the late-learning weight v at the end of 24 hours of random perturbations of wH for N = 250 simulations (see
Materials and Methods for details), using the slower (open magenta bars) or faster (filled cyan bars) learning rates at v depicted
in panels A and B, respectively. (D) Time course of the variance of the distributions in C. (E, F ) Mean trajectories of synaptic
weights during training (orange) and subsequent post-training periods (black) with same perturbations as in A and B (N = 250
simulations). Grey band indicates the range of trajectories within one standard deviation of the mean at each time point. The
learning rates in panels E and F were the same as in panels A and B, respectively. Trajectories in panel F reach approximately
the same mean level of consolidation as those in panel E after four consecutive days of training. (G) Distribution of v at the
end of training for simulations shown in E (filled cyan bars) and F (open magenta bars). Vertical bars show standard deviations
of the distributions, σfast and σslow respectively. (H ) Time course of the variance of v due to perturbations for simulations
shown in E (cyan) and F (magenta). With a slower learning rate at v, the circuit accumulates less noise. The scalloping in the
variance for the simulations in F is due to the effect of feedback about errors during each training session.
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subject to the stability-plasticity dilemma. During a training session, the instructive signal drives a change in the weight wH ,
which is stably remembered post-training. Across training sessions, the externally instructed target value of the input-to-output
gain varies randomly about a mean value. Fast learning at wH (light colors) reduces error more effectively during a training
session compared to slow (dark colors), but increases the size of the expected error at the beginning of the next training session
(distance from orange dashed line). (B) Input-to-output gain over 200 training sessions in a simplified model that simulates
weight changes discretely over sessions (SI Text, S2). Slower learning (black) results in a more stable value of the weight due to
greater averaging over variability in the instructive signal. (C ) Expected (mean) squared error (MSE) after a training session in
the simplified model trades off with expected error at start of subsequent session, calculated analytically and normalized to the
variance of the target gain distribution. Dark and light green circles correspond to the learning rates used to generate black and
grey curves in panel B. (D) A circuit with two sites of learning can mitigate the tradeoff in panel C. A persistent, slow-learning
site of consolidation, v, can estimate the mean of the expected gain distribution, while a forgetful, fast-learning early site, wH ,
can account for day-to-day variation in the instructive signal. (E) Relationship between normalized expected MSE at the end
versus start of a training session when there are two sites of learning with fast (cyan) or slow (magenta) learning at the late site
v. Grey curve replots the relationship when there is only one site of learning (same as C ). (F ) Consolidated gain in response to
a change in the mean of the target gain distribution (at session indicated with arrow) for relatively fast (cyan) or slow (magenta)
learning at v (rates same as D, but using the simplified model). Slow consolidation leads to reduced variability in the long run,
but at the cost of larger errors early in training.

the speed-accuracy tradeoff discussed in the previous section (Fig. 3).

Implications for plasticity rules

To support consolidation, the late-learning site must be able to stably accumulate persistent weight

changes over time. This requires that the plasticity rule at the late-learning site support a contin-

uum of stable weight values, so that the synapse can persistently hold any change in the weight.

This is readily achieved by a heterosynaptic plasticity rule (Fig. 2E ), because weight changes stop

whenever the activity at the early-learning site returns to its baseline or, more generally, becomes

uncorrelated with the direct pathway input (Dean et al. 2002).

Recent work has alternatively proposed a Hebbian, covariance-like rule for the consolidation of

oculomotor learning (Yamazaki et al. 2015). Here we considered a Hebbian covariance-like rule of
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Figure 5: Hebbian covariance rule cannot support stable consolidation in the presence of time-varying signal or noise. (A)
Evolution of the early- and late-learning weights, wH (blue) and v (red), over time when using a Hebbian covariance rule at
v, during a simulation of 0.5 h of training to increase the input-to-output gain of the circuit, followed by 23.5 h post-training
without information about errors, when time-varying input to the circuit was either present (dark lines) or not present (light
“no input” lines) post-training. (B) Change in the input-to-output gain corresponding to the simulations in A.

the form

∆v ∝ MF(MVN − ⟨MVN⟩),

in which plasticity is proportional to presynaptic activity (mossy fiber, MF) multiplied by the

difference between postsynaptic activity (medial vestibular nucleus, MVN) and a sliding threshold

equal to its recent average (angle brackets) (see Materials and Methods, Learning rules, for the full

equations). Our analysis shows that this covariance-like rule can support a continuum of stable

values, and hence consolidation, if the circuit receives no time-varying input or noise during the

post-training period (Fig. 5A,B, light lines). However, in the more biologically realistic case that

the circuit does receive time-varying input or noise, the synaptic weight v, and thus the input-to-

output gain, becomes unstable, growing exponentially during the post-training period (Fig. 5A,B,

dark lines; SI Text, S3).

The failure of the covariance-like rule reflects an inherent source of instability in Hebbian learn-

ing (Miller & MacKay 1994). In the basic Hebbian rule, correlations between presynaptic and

postsynaptic firing rates drive increases in synaptic weights. These increased synaptic weights in

turn drive postsynaptic activity and thus increased correlations between pre- and postsynaptic fir-

ing, forming a positive feedback loop. For the covariance-like rule considered above, the sliding

threshold counters the increased correlations associated with changes in the average postsynaptic

firing rate, but does not counter the increased correlations associated with fluctuations around the

average (see SI Text, S3; Loewenstein 2008). Other proposed methods for countering this insta-

bility, including weight normalization (Miller & MacKay 1994; Oja 1982) and firing rate-target

homeostasis (Bienenstock et al. 1982; Chistiakova et al. 2015; Turrigiano 2008; Yger & Gilson

2015), also fail to support a continuum of stable values in our model. Rather, they yield dynamics

that drive the late-learning weight to a single stable value (see SI Text, S4). Altogether, this anal-

ysis suggests that either heterosynaptic plasticity, or a different variant of Hebbian rule from those

typically considered, is required to implement systems consolidation of an analog memory.
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A circuit with an internal feedback loop requires an active post-training reset

mechanism at the early-learning site

In addition to constraints on the form of plasticity at the late-learning site, consolidation also

requires that the output of the early-learning area be reset during the post-training period, stopping

the integration at the late-learning site. For the simple feedforward model described above, this

condition is met by the intrinsic decay of the early-learning weight wH to zero, which represents a

balance of excitatory and inhibitory input to the early-learning area.

An active, rather than passive, post-training reset mechanism is necessary for stable consolida-

tion in the more complex case where the input-to-output transformation computed by the circuit

contains an internal feedback loop (Fig. 6A). We modeled this case by adding to the model an

internal feedback connection from the late- to the early-learning area. For oculomotor learning, the

internal loop corresponds to an efference copy of the eye movement command (Miles & Lisberger

1981; Lisberger & Sejnowski 1992; Lisberger 1994; Person 2019). Here we describe a model with a

fixed internal feedback weight wE > 0; similar results are obtained if wE is plastic (Fig. S2; SI Text,

S6). As in the feedforward model, the condition that plasticity at the late-learning site support sta-

ble accumulation can be met by a heterosynaptic plasticity rule at v. However, the reset condition

can no longer be met just by the passive decay of the weight wH of the feedforward pathway in the

early-learning area to a fixed baseline, but rather requires that, during the post-training period,

wH returns to a value that depends on v. This is because, due to the internal feedback from the

late- to the early-learning area, changes in v also drive altered activity of the early-learning area.

These changes must be offset post-training by changes in wH so the feedforward sensory input and

the feedback from the late-learning area effectively cancel, eliminating the drive for plasticity at

the late-learning site and enabling v to reach a new steady state.

The reset requirement suggests a role for specific features of the cerebellar circuit

architecture in consolidation

Active reset of the early-learning site could be achieved in at least two ways. First, the feedfor-

ward input to the early-learning area can be decomposed into the sum of a direct excitatory and

disynaptic inhibitory pathway that have weights w+
H and w−

H , respectively, controlled by separate

plasticity mechanisms (Fig. 6A). We assume that changes in the excitatory weight are driven only

by instructive signals occurring during the training period, with no passive decay. We then find

that, during the post-training period, plasticity in the inhibitory weight can reset the activity of

the early learning area such that it no longer responds to sensory input. This resetting is achieved

when the inhibitory input weight is governed by a Hebbian rule driven by correlations between

presynaptic inhibitory inputs and postsynaptic spiking relative to a sliding threshold (Fig. 6B–E ;

Materials and Methods, Circuit model with internal feedback loop; Vogels et al. 2011). Alternatively,

the reset could be driven by inhibition from the late-learning area onto the source of the instructive
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Figure 6: Circuit mechanisms for post-training reset enable consolidation in the presence of an internal feedback loop. (A–E)
Reset of early-learning area output via plasticity of inhibitory input onto the early-learning area. (A) Circuit diagram. PFH and
PFE : cerebellar parallel fiber inputs to Purkinje cells (PC) carrying sensory (vestibular) input Ḣ and efference copy feedback
of motor output Ė. MLI: molecular layer interneuron. CF: climbing fiber. Ṙ: instructive signal carrying information about
behavioral (retinal slip) errors (B) Change in early-learning excitatory weight w+

H (cyan), inhibitory weight w−
H (purple) and

late-learning weight v (red), during 0.5 h of simulated training (orange block) to increase the input-to-output gain of the circuit,
followed by 23.5 h post-training with no information about errors (grey block). At steady state, the value of w−

H has decreased
more than w+

H , so that the net change in the net weight wH = w+
H − w−

H is positive (blue arrow). (C ) Early-learning area
output (amplitude of Purkinje cell activity relative to moving baseline), which drives consolidation at the late-site. (D) Change
in the gain of the eye movement response (black line) to a sensory input. Blue and red shaded areas show the contribution of
the early- and late-learning areas to the circuit transformation. (E) Trajectory of synaptic weights during the training (orange)
and post-training (black) periods. During training, the net early-learning weight decreases (orange arrow above plot) from
its initial value (dashed black line), but post-training (black arrow) approaches a steady state value that is larger than before
training (blue arrow). Grey arrows show the approximate instantaneous direction in which a weight configuration at a given
point in synaptic weight space will evolve during the post-training period, determined analytically. All trajectories tend toward
a marginally stable point along a line (solid grey line). (F–J ) Reset of early-learning area output via inhibition of the pathway
carrying instructive signals to the early-learning site. (F ) Circuit diagram. IO: inferior olive. (G) Change in early-learning
weight wH (dark blue) and late-learning weight v (red). The post-training reset drives wH to a steady state value larger than
before training (blue arrow). (H–J ) Same as C–E, but for model shown in F.
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signals that control plasticity at the early-learning site (Fig. 6F–J ; Materials and Methods, Cir-

cuit model with internal feedback loop). In the cerebellar context, the first reset mechanism would

correspond to plasticity of molecular layer interneuron-to-Purkinje cell synapses, and the second

could be achieved by the inhibitory pathway from the cerebellar nuclei to the inferior olive (see

Discussion). Thus, a central computational role for these components of the cerebellar circuitry

may be to implement the post-training reset of the rapid, early plasticity in the cerebellar cortex

to support stable consolidation of learning.

Our model predicts that, following consolidation of learning to increase the input-to-output gain

of the circuit, the sensitivity of cells in the early-learning area to feedforward input, wH , will be

higher than the pre-training baseline, as has been suggested based on experimental measurements

(Miles et al. 1980; Lisberger 1994). This can be understood more clearly by plotting the dynamics

of the synaptic weights. During consolidation, the post-training reset dynamics cause the weights

to move along a trajectory to a new steady state along a line in the space of synaptic weights. In

the feedforward model, this line is vertical, so the early-learning weight returns to its pre-training

baseline during the post-training consolidation period (Fig. 2E ). When there is an internal feedback

loop, the line has a finite, positive slope, so the net weight wH does not just return to its pre-training

baseline value, but goes to a steady state value that is larger than before training (Fig. 6E,J, black

arrows). Thus, our model predicts that, after consolidation, the change in the early-learning weight,

relative to pre-training, will be in the opposite direction from the change in weight during training

(Fig. 6E,J, blue vs orange arrows above plot; Payne et al. 2024).

Discussion

We propose a computational principle governing systems consolidation of analog memories: systems

consolidation is defined by a temporal integration process in which the late-learning weight stably

accumulates changes induced during training at the early-learning site. To obey this principle,

the circuit must have certain properties: First, the synaptic weight at the late-learning site must

be governed by plasticity rules that enable it to stably accumulate and maintain any one of a

continuum of values. We show that this is achieved by a heterosynaptic plasticity rule but not

by standard stabilized Hebbian rules. Second, the output of the early-learning area must be reset

post-training to stop the accumulation of weight changes at the late-learning site.

The accumulation of synaptic weight changes underlying systems consolidation is reminiscent

of the temporal integration of transient spiking activity into persistent spiking activity in neural

circuits that accumulate and store information in working memory, such as that implicated in the

accumulation and storage of neural signals encoding evidence in decision-making tasks (Brody et

al. 2003; Chaudhuri & Fiete 2016; Churchland & Ditterich 2012; Gold & Shadlen 2007; Goldman

et al. 2009; Major & Tank 2004; Usher & McClelland 2001; Wang 2001; Wang 2008; Zylberberg

& Strowbridge 2017). Our model shares distinctive features with such neural integrator circuits,
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arising from their similar underlying dynamics. First, it is well known that integrator circuits

require a fine tuning of parameters for stability of the memory (Chaudhuri & Fiete 2016; Goldman

et al. 2009; Seung 1996; Zylberberg & Strowbridge 2017). This fine tuning occurs in two places:

(1) in the strength of the recurrent connections between neurons, which offsets intrinsic decay of

neural activity; and (2) in the strength of tonic background inputs entering the network. In the

case of systems consolidation, we assume perfect integration (no decay) at the late-learning site, so

only the second type of tuning is required. Specifically, output from the early-learning area must be

reset post-training; otherwise, it will drive incessant weight changes at the late-learning site. This

is analogous to the finding that neural integrator circuits will integrate tonic background spiking

activity unless these inputs are subtracted out or otherwise nullified (Cannon et al. 1983; Goldman

et al. 2009; Seung 1996). Drawing on the neural integrator literature, one proposed solution to this

fine-tuning problem is to turn the continuum of steady states into a set of (many) finely discretized,

robustly stable fixed points (Goldman et al. 2003; Koulakov et al. 2002). This could correspond

to our single “lumped” synaptic weight v being composed of the sum of the binary weights of

individual bistable synapses (O’Connor et al. 2005) that are recruited with different thresholds

(Goldman et al. 2003; Nikitchenko & Koulakov 2008). Second, noisy input causes diffusive drift

that progressively corrupts the stored memory (Fig. 3; Burak & Fiete 2012; Ganguli et al. 2008;

Lim & Goldman 2012). In our model, this led to a tradeoff between the speed of consolidation

and the accuracy of the consolidated memory (Fig. 3; SI Text, S1). This can be interpreted as the

long-term memory analog of the speed-accuracy tradeoff in decision-making tasks (Bogacz et al.

2010; Gold & Shadlen 2007).

The similarities in dynamics between neural integrator circuits and our systems consolidation

model arise from the fact that in both cases, the memory stored in the circuit is analog—in our

case, the amplitude of the circuit’s learned response to a given input is graded. Much of the

previous theoretical work on systems consolidation has instead considered the case of effectively

binary neurons (Alvarez & Squire 1994; Murray & Escola 2020; Remme et al. 2021; Roxin & Fusi

2013; Tomé et al. 2022; Wittenberg et al. 2002), in which memory expression is evaluated with

respect to whether or not a given neuron fires, rather than the graded value of its firing rate. In

such models, Hebbian plasticity typically drives synaptic weights to take either a high (saturated)

or a low value, making individual synaptic dynamics effectively bistable (Dong & Hopfield 1992;

Miller & MacKay 1994). By contrast, in our model, the synaptic weight at the late-learning site

must be able to stably take any analog value within a continuum, which is naturally achieved

by a heterosynaptic plasticity rule. Although such heterosynaptic rules are commonly used in

modeling supervised learning tasks (Dayan & Abbott 2005), they may form a more specialized

class of biological plasticity than Hebbian learning rules. Supporting the continuum of steady

states required for consolidation is more challenging for classical Hebbian rules (see SI Text, S4),

though may be possible with more complex forms of Hebbian plasticity, such as a three-factor

(Kuśmierz et al. 2017) or dendritic plasticity rule (Urbanczik & Senn 2014). Alternatively, as noted
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in the previous paragraph, it is possible that the apparent continuum of weight values modeled here

instead reflects a sum of discrete, bistable synaptic contributions.

The framing of systems consolidation as a process of temporal integration provides mechanistic

insight into previous work on how consolidation addresses the stability-plasticity dilemma (Abra-

ham & Robins 2005; Grossberg 1987). In our model, the stability-plasticity dilemma is mitigated

because, in the presence of variability in the instructive signals about behavioral errors, slow in-

tegration (i.e., averaging) at the late-learning site tracks long-timescale behavioral requirements,

while the early-learning site quickly tracks short-timescale changes in these requirements (Fig. 4D ;

for a related use of integration to improve deep network training, see Johnson & Zhang 2013). In

this manner, averaging leads to a more general memory at the late-learning site that is constantly

updated by specific but transient memories at the early-learning site (Sekeres et al. 2018; Tse et al.

2007; Lindsey & Litwin-Kumar 2023; Richards & Frankland 2017; Sun et al. 2023). This framing

could also be extended to describe synaptic consolidation, through which transient early plasticity

is consolidated into persistent, graded late plasticity in the same synapse (Jacquerie et al. 2023;

Leimer et al. 2019; Li & Van Rossum 2020). The timescale over which the late-learning site averages

is defined by the relative rates of plasticity at the late- and early-learning sites (Fig. 4F ). This may

suggest that the rate at which the circuit consolidates (i.e., the fraction of learning consolidated

post-training) is tuned so that the timescale of the average is matched to the timescale over which

the mean is expected to change in the world (Körding et al. 2007).

Though systems consolidation appears to be a common feature of learning and memory sys-

tems, the details of how it occurs in each system may be shaped by specific computational needs.

In hippocampus-dependent memory, the early-learning circuit of the hippocampus learns the asso-

ciations between components or features of an episode. Post-training replay of the activity patterns

representing these associations then drives consolidation to the neocortex (Carr et al. 2011; Squire

et al. 2015; Alvarez & Squire 1994; Tomé et al. 2022; Roxin & Fusi 2013; Murre 1996; Wittenberg

et al. 2002). In the system we model, the circuit learns associations between a sensory input and

a behavioral error signal that enforces a desired output. Post-training “replay” of the activity

patterns learned at the early site then drives consolidation of the learned input-to-output transfor-

mation at the late-learning site. Although in both cases the correlations present during training are

recapitulated in the post-training neural activity, hippocampal replay occurs as discrete events with

transient, spontaneous reactivation of representations (e.g., during a sharp wave ripple), whereas

in the cerebellum the “replay” could be driven by ongoing input to the circuit.

Our work extends previous modeling of the consolidation of oculomotor learning (An et al. 2023;

Clopath et al. 2014; Herzfeld et al. 2020; Medina & Mauk 1999; Porrill & Dean 2007; Yamazaki

et al. 2015) in two key ways. First, we analyzed the conditions under which consolidation can

occur successfully. We showed that consolidation requires that plasticity at the late-learning site

support a continuum of steady state weight values, a requirement readily met by a heterosynaptic

plasticity rule. This explains why heterosynaptic rules have been successful in previous work

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 24, 2024. ; https://doi.org/10.1101/2024.03.20.586036doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.20.586036
http://creativecommons.org/licenses/by-nc-nd/4.0/


(Clopath et al. 2014; Herzfeld et al. 2020; Medina & Mauk 1999; Porrill & Dean 2007), and is

consistent with experimental work suggesting that plasticity at the late-learning site for cerebellum-

dependent learning may be heterosynaptic (Menzies et al. 2010; Pugh & Raman 2006). Second,

we considered an internal feedback loop from the late- to the early-learning area of the circuit,

in contrast to the feedforward architecture used in previous models. This internal feedback loop,

which carries an efference copy of motor commands, has been suggested to be essential for producing

the dynamics of individual eye movement responses (Lisberger & Sejnowski 1992; Lisberger 1994).

We showed that this internal feedback loop also fundamentally changes the dynamics of memory

consolidation, with stable consolidation requiring a circuit mechanism that drives plasticity so as to

reset the activity of the early-learning area post-training (Fig. 6). This post-training reset provides

a possible explanation for the previous suggestion, based on in vivo recordings (Lisberger 1994;

Miles & Lisberger 1981), that the weights of the parallel fiber input pathway to Purkinje cells may

paradoxically undergo potentiation in cases where the standard hypothesis of error-driven cerebellar

cortical plasticity predicts that this pathway undergoes depression. Our work suggests one possible

resolution to this controversy: the initial synaptic changes are governed by depression (Inoshita &

Hirano 2018; Jang et al. 2020), but during consolidation the post-training reset mechanism reverses

the decrease in weight, driving the weight to a larger steady state value relative to pre-training

(Fig. 6E,J ; see Payne et al. 2024 for further discussion as well as an alternative solution). Third,

we propose two biologically plausible circuit mechanisms that can perform this reset, suggesting

new functional roles for elements of the cerebellar microcircuit in stabilizing a memory. The first

mechanism, plasticity of the inhibitory feedforward inputs to the early-learning area, could be

implemented by a Hebbian rule at the molecular layer interneuron (MLI)-to-Purkinje cell synapses

(Vogels et al. 2011). Although these synapses are known to be plastic (Hirano 2018; Mapelli et al.

2015), weight changes were believed to be governed by climbing fiber-driven complex spikes in the

postsynaptic Purkinje cell. Our model predicts that weight changes may instead be driven by the

correlation of presynaptic MLI activity with Purkinje cell simple spikes. The second mechanism,

inhibition of instructive signals by the late-learning area, could be implemented by an inhibitory

pathway from the vestibular and cerebellar nuclei targeted by Purkinje cells to the inferior olive

(Najac & Raman 2015; Uusisaari & Knöpfel 2011; see Herzfeld et al. 2020 and Kenyon et al. 1998

for related ideas), and might explain nonvisual climbing fiber responses that have been observed in

the oculomotor cerebellum (Fanning et al. 2021; Winkelman & Frens 2006).

Learning and memory systems enable an organism to transform transient experiences into per-

sistent effects. In working memory, neural integrator circuits accumulate and store transient input

signals as persistent spiking activity. Here, we extend the concept of neural integration to the

context of long-term memory by framing systems consolidation as a temporal integration process.

Thus, this work suggests a unifying conceptual framework for describing computations underlying

short- and long-term memory function.
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Materials and methods

Code for simulations, analyses and producing plots for figures can be found at https://github.com/goldman-

lab/consolidation-integration.

Feedforward sensorimotor circuit model

Here we describe the feedforward model of Figures 2–4. The circuit model has parallel pathways

that transform a graded, time-varying input into a response. In particular, we modeled the trans-

formation of a graded, time-varying sensory (vestibular) input into an eye movement response and

its modification by cerebellum-dependent learning. We modeled each node in the circuit with a

single variable representing the average firing rate of a population of cells: mossy fibers, MF(t);

parallel fibers (granule cell axons), PF(t); Purkinje cells, PC(t); medial vestibular nucleus neurons,

MVN(t); and climbing fibers, CF(t) (Fig. 2A). Specific values of model parameters used in simula-

tions were taken from the literature, where available, and are summarized in Table S1. For analysis,

unless otherwise stated, all parameters are assumed to be nonnegative.

The firing rate of mossy fibers was modeled as a combination of a spontaneous baseline and a

time-varying component encoding a sensory (vestibular) input driven by head motion Ḣ(t),

MF(t) = MF0 + δMF(t) = MF0 + kMFḢ(t), (1)

where we considered the encoding of the sensory input to be linear with sensitivity to head velocity

kMF (Lasker et al. 2008). Rather than explicitly model the mossy fiber to granule cell transfor-

mation, we considered the firing rate of parallel fibers to similarly depend on vestibular input

linearly,

PF(t) = PF0 + δPF(t) = PF0 + kPFḢ(t), (2)

where kPF was the firing rate sensitivity to head velocity.

Purkinje cells, in the early-learning area, were modeled as linearly combining direct excita-

tory input from parallel fibers and indirect inhibitory input via a parallel fiber-molecular layer

interneuron pathway (Yamazaki et al. 2015),

PC(t) = PC0 + (w+
H(t) − w−

H)PF(t) = PC0 + wH(t)PF(t), (3)

where w+
H and w−

H are the total excitatory and inhibitory weights onto the Purkinje cell, so the

early-learning weight wH = w+
H −w−

H is the net weight of the parallel fiber pathway onto Purkinje

cells. For simplicity, the inhibitory weight was not plastic in the model; the dynamics of learning are

driven by the net weight. Equivalently, wH(t) can be interpreted simply as modeling the dynamics

of the net (excitatory minus inhibitory) weight onto Purkinje cells. The effect of climbing fibers,

which fire at very low rates (∼ 1 sp/s), on Purkinje cell output was not modeled here.
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The medial vestibular nucleus, the late-learning area, was modeled as responding linearly to its

excitatory mossy fiber input and inhibitory Purkinje cell input (Bagnall et al. 2008; Beraneck &

Cullen 2007),

MVN(t) = MVN0 + v(t)MF(t) − wPCPC(t) (4)

= MVN0 − wPCPC0 + v(t)MF(t) − wH(t)wPCPF(t),

where v is the late-learning weight of the vestibular mossy fiber input to the medial vestibular

nucleus, wPC is the weight of the Purkinje cell input to the MVN, and MVN0 is an offset chosen so

that the spontaneous MVN firing rate matched experimental values (57 sp/s) (Beraneck & Cullen

2007). The initial value of v before training was chosen so that the gain in the dark was 0.4 (Kimpo

et al. 2014; Boyden & Raymond 2003).

Eye movement output, Ė(t), was modeled as being proportional to the deviation of medial

vestibular nucleus neuron firing from its baseline (Yamazaki et al. 2015; Clopath et al. 2014),

Ė(t) = −kE(MVN(t) − ⟨MVN(t)⟩τf ). (5)

The baseline, ⟨MVN(t)⟩τf , was calculated as an exponential (low-pass filtered) average over the

recent past of MVN activity. For any time-varying quantity x(t), its exponential average ⟨x(t)⟩τ
over timescale τ is defined by

τ
d⟨x⟩τ

dt
= −⟨x⟩τ + x(t). (6)

The timescale of the average τf = 0.017 h (1 min) is long relative to variations in the sensory input,

but is much shorter than the timescales of plasticity (defined below), so that ⟨wH(t)⟩τf ≈ wH(t) and

⟨v(t)⟩τf ≈ v(t) (Yamazaki et al. 2015). Throughout the paper, we assume that over the timescale

τf , the sensory input is zero on average,

⟨Ḣ(t)⟩τf ≈ 0. (7)

In the specific case of the bidirectional vestibular input to the oculomotor circuit, this corresponds

to the time average of the rightward and leftward head movements being approximately equal.

The input-to-output gain of the circuit, g, is defined as the ratio of eye velocity output to head

velocity input,

g(t) = − Ė(t)

Ḣ(t)
≈ kE(kMFv(t) − kPFwPCwH(t)), (8)

where the negative sign is present because eye movements are oppositely directed from head move-

ments to keep the image of the world stable.
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Learning rules

Plasticity at the early-learning site was driven by feedback about behavioral errors, carried by the

climbing fibers. Climbing fiber firing was represented by the sum of a spontaneous baseline rate

and a time-varying component representing oculomotor errors,

CF(t) = CF0 + δCF(t). (9)

The time-varying component δCF(t) encodes retinal slip, or a failure of eye movements to stabilize

images on the retina, which occurs when the input-output gain of the circuit is incorrect. During

training, the target output Ėtarget of the circuit is a (negatively) scaled version of the vestibular

input Ḣ(t) with gain gtarget,

Ėtarget(t) = −gtargetḢ(t), (10)

so, using Eq. (8), the retinal slip error is

Ṙ(t) = Ėtarget(t) − Ė(t) = −(gtarget − g(t))Ḣ(t). (11)

We model the time-varying component of the climbing fiber firing as

δCF(t) = kCF tanh(−βlightṘ), (12)

which is a saturating function of retinal slip. We chose the magnitude of the saturation to be

kCF = CF0 = 1 Hz, so that when retinal slip errors are large, climbing fiber firing saturates at a

maximum of 2 sp/s and a minimum of 0 sp/s (Guo et al. 2014; Winkelman & Frens 2006). When

retinal slip errors are relatively small (relative to 1/βlight), δCF(t) is approximately linearly related

to negative retinal slip. Thus, if the eye movements are too small so that the gain of the response

needs to be increased, the covariance between the climbing fiber and parallel fiber firing rates is

positive.

Experimentally, coactivation of parallel fibers and climbing fibers causes associative long-term

depression at the early-learning site, whereas activation of parallel fibers alone causes long-term

potentiation (Raymond & Lisberger 1998; Suvrathan et al. 2016; Lev-Ram et al. 2002). Therefore,

plasticity at the early-learning site was modeled as

τw
dwH

dt
= −(wH(t) + w−

H) + kLTP⟨PF(t)⟩τf,w − kLTD⟨PF(t) · CF(t)⟩τf,w , (13)

where the first term on the right is a passive decay, or forgetting, in the value of w+
H (Yamazaki

et al. 2015; Clopath et al. 2014). We chose kLTP and kLTD so that the steady state value of w+
H

when not training was equal to w−
H , as required for stable consolidation (see SI Text, S1.1, for

details). The time constant of plasticity, τw, was chosen to be relatively fast (0.15 h = 9 min)

during training (Boyden & Raymond 2003) and slower (5 h) during the post-training period (Jang
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et al. 2020; Cooke et al. 2004). The timescale of the averages over inputs, τf,w, was chosen to be

the same as τf .

We considered two candidate learning rules for the late-learning site: a heterosynaptic and a

Hebbian covariance-like rule. Heterosynaptic plasticity was modeled as

dv

dt
= −kv,hetero⟨MF(t)(PC(t) − PC0)⟩τf,v , (14)

where an increase in v is driven by the anticorrelation between mossy fiber firing and fluctuations

of Purkinje cell activity around baseline (Herzfeld et al. 2020; Clopath et al. 2014; Porrill & Dean

2007; Medina & Mauk 1999; Menzies et al. 2010; Pugh & Raman 2006). Hebbian plasticity was

modeled as

dv

dt
= kv,Hebb⟨MF(t)(MVN(t) − θ(t))⟩τf,v , (15)

τs
dθ

dt
= −θ + MVN(t), (16)

where the synaptic dynamics consist of the “readout” weight v and an internal sliding threshold

variable θ that calculates a leaky average of postsynaptic activity (Yamazaki et al. 2015). The

threshold is similar to those used in previous studies to counteract the runaway plasticity that

would otherwise result from the inherent positive feedback driven by this kind of correlational rule

(see SI Text, S4; Zenke et al. 2017; Miller & MacKay 1994; Bienenstock et al. 1982). For stability,

the timescale of the sliding threshold was chosen to be fast relative to the rate of plasticity (see SI

Text, S3, for details; Zenke et al. 2013).

Simulation of oculomotor learning

We simulated oculomotor experiments with 0.5 h of training to increase the gain of the eye move-

ment response, followed by a 23.5 h post-training period. During training, vestibular input was

sinusoidal,

Ḣ(t) = vpeak sin (2πft), (17)

with peak velocity vpeak = 15 deg/s and rotational frequency f = 1 Hz, which is representative

of experimental protocols (Jang et al. 2020; Kimpo et al. 2014; Nguyen-Vu et al. 2013; Boyden &

Raymond 2003). In all simulations, we chose parameters such that the initial gain of the response

was 0.4. In the simulations shown in Figure 2, we used a target gain value of gtarget = 2, and

chose w−
H , kLTP and kLTD so that during training, w+

H decreased by 51% (Jang et al. 2020) and

the input-to-output gain increased by 30% from baseline (Kimpo et al. 2014; Boyden & Raymond

2003). To understand the stability of the dynamics during training, we also simulated a single 48

h training period to increase the gain to gtarget = 1 (Fig. S1; see SI Text, S1.3). All other model

parameters are shown in Table S1.
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During the post-training period, we set Ṙ ≡ 0. This models the animal being placed in the

dark after training to eliminate feedback about oculomotor errors (Anzai et al. 2010; Shutoh et al.

2006; Kassardjian et al. 2005; Nagao & Kitazawa 2003; Boyden & Raymond 2003). We considered

both the case in which vestibular input was not present post-training (as in Yamazaki et al. 2015),

as well as the case in which it was present (as in Clopath et al. 2014). In the latter case, we

used the same vestibular input as during training. For the heterosynaptic rule, the presence of

post-training input had little effect on the change in v, unlike for the Hebbian rule (Fig. 5). The

learning rates kv,hetero and kv,Hebb were picked so that approximately 75% of the increase in gain

during the training period was consolidated (Boyden & Raymond 2003).

For the heterosynaptic rule, we studied the robustness of consolidated memories to perturbations

in the early-learning site by adding random values to the early-learning weight wH at regular

intervals (Fig. 3). We initialized the weights to the same baseline as the training simulations

and, every 10 minutes of simulation time, added a value chosen uniformly at random between

−0.1 and 0.1 to wH . We simulated the effect of perturbations either in the absence of (Fig.

3A–D) or in the presence of (Fig. 3E–H ) information about errors. For the simulations shown

in Fig. 3A and E, we used the same parameters as for the simulation in Fig. 2 (Table S1), but

with τf,v = τf . For the simulations shown in Fig. 3B and F, we used a smaller learning rate,

kv,hetero = 6.95 × 10−6 (s/sp)2/h. For Fig. 3F, we simulated four consecutive days of training.

We performed 250 runs of the perturbation simulations with the normal and smaller values of

kv,hetero, with each simulation run for 24 hours of simulation time. The histograms in Fig. 3C

were constructed from the endpoints of the 250 simulations in A and B, and we plotted the time

course of the variances of the corresponding distributions (at the time point immediately before a

perturbation) in Fig. 3D. Similarly to Fig. 3C, the histograms in G were generated from the final

value of v across the 250 simulations in E and F, and H shows the time courses of the variance of

v calculated in the same manner as for panel D.

All simulations were performed in Python by integrating the differential equations for the learn-

ing rules with the Radau solver (implemented in solve ivp in the scipy.integrate package).

Time steps in the simulation had a base unit of hours.

Mitigation of stability-plasticity dilemma with two sites of learning

Here we outline some simple analyses we performed to understand how the stability-plasticity

dilemma is addressed in the presence of noisy instructive signals driving learning in the circuit.

We modeled learning across multiple training sessions where, during each session k, the target gain

gtarget = ĝ(k) used to calculate retinal slip was randomly drawn from a normal distribution. Target

gain values were drawn independently across training sessions. We built simplified versions of the

model with one and two sites of plasticity, in which we ignore the exact time course of the weight

dynamics and instead describe how the weights change discretely across training sessions (SI Text,

S2; Fig. 4B,F ). Using these simplified models, we calculated the mean squared error expected
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at the start and end of a typical training session as functions of the learning rates in the circuit

(SI Text, S2.2; Fig. 4C,E ). To build intuition for the difference between the one-site and two-site

models more concretely, in Fig. 4A and D we also show the detailed time course of the gain and

the corresponding squared error (retinal slip) of the full, unsimplified one- and two-site models for

two subsequent example training sessions (see SI Text, S2.2, for details).

Circuit model with internal feedback loop

Here we describe the expanded version of the circuit model that includes both a feedforward path-

way carrying the sensory (vestibular) input to the early-learning area (Purkinje cells), as well

as an internal feedback loop carrying the output from the late-learning area (MVN) back to the

early-learning area (Fig. 6A,F ). In the context of oculomotor learning, this internal feedback loop

represents an efference copy of the output motor command. This expanded model has the same

architecture as the Lisberger-Sejnowski model of oculomotor learning (Lisberger & Sejnowski 1992),

but here we model the dynamics of the granule cell pathways as instantaneous. We show two can-

didate circuit mechanisms by which stable consolidation can be achieved when internal feedback is

present.

The vestibular stimulus is carried by mossy fibers, described as before by Eq. (1), and by

vestibular parallel fibers with firing rate

PFH(t) = PF0 + kPF,HḢ(t). (18)

The efference copy is carried through a different set of parallel fibers with firing rate

PFE(t) = PF0 + kPF,EĖ(t), (19)

where the eye velocity output, Ė(t), is defined as before in Eq. (5). The firing rate of Purkinje cells

is then a linear combination of vestibular and efference copy input, with a spontaneous baseline

rate, i.e.,

PC(t) = PC0 + wH(t)PFH(t) + wE(t)PFE(t). (20)

We assume that both parallel fiber pathways result in monosynaptic excitation and disynaptic

inhibition onto the Purkinje cell, so that

wH(t) = w+
H(t) − w−

H , (21)

wE(t) = w+
E(t) − w−

E , (22)

where w+
H and w+

E are the excitatory weights of the feedforward and feedback parallel fibers and

w−
H and w−

E are the inhibitory weights of the interneurons in each pathway. Thus, as before, we

can interpret wH = 0 and wE = 0 as balanced excitatory and inhibitory weights for each pathway.
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The firing rate of MVN neurons is defined as before in the first line of Eq. (4), except we substitute

the new definition of Purkinje cell activity from Eq. (20). The late-learning weight of the direct

pathway is still called v. Then, following the same reasoning as the derivation leading to Eq. (8),

we can calculate the eye velocity output as

Ė(t) ≈ −kE(ṽ(t) − wPCw̃H(t))

1 − wPCkEw̃E(t)
Ḣ(t) = −g(t)Ḣ(t), (23)

defining the prefactor in the second equality as the gain g(t), and where for simplicity we let

ṽ(t) = kMF · v(t), (24)

w̃H(t) = kPF,H · wH(t), (25)

and w̃E(t) = kPF,E · wE(t). (26)

We use modified learning rules for the excitatory weights in the parallel fiber pathways, in which

the weight values do not passively decay,

dw+
x

dt
= kLTP⟨PFx(t)⟩τf,w − kLTD⟨PFx(t) · CF(t)⟩τf,w

≈ w+
x,∞ − cx(t), (27)

where x = H or x = E for the head pathway or efference copy pathway respectively, and w+
H,∞ =

w+
E,∞ = PF0(kLTP−kLTDCF0) and cx(t) = kLTD⟨δPFx(t)δCF(t)⟩τf,w . Here we assumed that wE has

a fixed nonnegative value for the purpose of visualizing the dynamics, but stable consolidation was

also possible when wE was plastic (Fig. S2; SI Text, S6). So that plasticity is completely controlled

by the correlation between parallel fibers and climbing fibers, we assumed values of kLTD and kLTP

such that w+
H,∞ = 0. This condition can be interpreted as the plasticity due to spontaneous PF

activity being offset by spontaneous CF activity (Kenyon et al. 1998).

For the direct pathway weight v, we used a modified version of the heterosynaptic rule in Eq.

(14),
dv

dt
= −kv,hetero⟨MF(t)(PC(t) − ⟨PC(t)⟩τf )⟩τf,v , (28)

where the subtraction of the fixed Purkinje cell baseline has been replaced with a sliding threshold

equal to the average PC activity over the recent past, similar to that used in the covariance-like

Hebb rule, Eq. (15). The time constant of the sliding threshold was τf , which was slow relative to

variations in the sensory input but fast compared to the rates of plasticity.

As discussed in the main text, stable consolidation in the presence of a feedback loop requires

that the circuit implement an active mechanism to reset early-learning activity post-training. We

considered two such mechanisms. First, stable consolidation can be achieved if the feedforward

inhibitory synapses onto the early-learning area (w−
H) are plastic (Fig. 6A), governed by a Hebbian
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covariance-like rule,
dw−

H

dt
= kinh⟨PFH(t)(PC(t) − ⟨PC(t)⟩τf )⟩τinh . (29)

Second, stable consolidation can be achieved if, in addition to providing information about behav-

ioral errors, the climbing fiber input at the early-learning site also serves to reset early-learning

activity (Fig. 6F ). We modeled climbing fiber activity as being driven by the instructive signal

and inhibited by medial vestibular nucleus cells that receive only Purkinje cell inhibition, which

corresponds to net excitation by PC activity,

δCF(t) = kCF tanh
(
−βlightṘ(t) + βresetδPC(t)

)
, (30)

where δPC(t) = PC(t) − ⟨PC(t)⟩τf . For both mechanisms, stable consolidation requires that the

effective rate of plasticity of v be slower than that of wH (SI Text, S5).

Simulation of oculomotor learning in the model with feedback

We simulated the same oculomotor experiment as for the model without feedback (see Simulation

of oculomotor learning), with differences in parameters specified in Tables S2 and S3. We used

the same sensory input as for the feedforward model during both the training and post-training

periods. We simulated the model with both the inhibitory plasticity (Fig. 6A–E, S3A) and inhibition

of instructive signals (Fig. 6F–J, S3B) reset mechanism, assuming that wE is not plastic. We used

a target gain value of gtarget = 2, and initial values w+
H,0 and v0 for w+

H and v, respectively.
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Below, we first provide mathematical analysis of the synaptic learning dynamics of the feed-

forward circuit models with heterosynaptic (§S1, §S2) or Hebbian (§S3, §S4) plasticity rules at the

late-learning site. We then analyze the learning dynamics in recurrent circuit models with either a

fixed-strength (§S5) or plastic (§S6) internal feedback pathway.

S1 Analysis of synaptic learning dynamics in the feedforward model

To understand the conditions for successful consolidation in the model, we examined the dynamics

of learning analytically. To simplify our analysis, we consider timescales that are relatively long

compared to variation in the sensory input, so that the input is zero on average, Eq. (7), and the

variability of the sensory input, as measured by the time average of the squared input, is constant,

⟨Ḣ(t)2⟩τf ≈ σ2
H . (S.1)

32

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 24, 2024. ; https://doi.org/10.1101/2024.03.20.586036doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.20.586036
http://creativecommons.org/licenses/by-nc-nd/4.0/


S1.1 Post-training dynamics and conditions for stable consolidation

Using these assumptions, the dynamics of the early-learning site can be described by simplifying

Eq. (13) to

τw
dwH

dt
≈ −(wH(t) + w−

H) + w+
∞ − c(t), (S.2)

where w+
∞ = PF0(kLTP − kLTDCF0) depends only on the baseline firing rates of inputs to the

Purkinje cell, and c(t) = kLTD⟨δPF(t)δCF(t)⟩τf is proportional to the covariance of the parallel

fiber-mediated sensory input and climbing fiber feedback about errors. When the circuit is pro-

ducing behavioral output without error (as we assume is the case before training), or during the

post-training period, when there is no feedback about errors, c(t) ≡ 0. As a result, wH tends

toward a baseline value of w+
∞−w−

H . If c(t) > 0 during training, as was the case in our simulations,

wH decreases from this baseline, increasing the input-output gain of the circuit at the end of the

training period. On the other hand, eye movements that are too large would result in c(t) < 0,

causing an increase in wH and a decrease in the gain.

At the late-learning site, the heterosynaptic rule, Eq. (14), can be simplified to

dv

dt
≈ −kv,hetero(MF0 · PF0 + kMFkPFσ

2
H)wH(t), (S.3)

where we assume that the timescale of plasticity of wH is significantly longer than τf (the timescale

of correlations in neural activity to which the learning rule is sensitive) and therefore the value of

wH is effectively uncorrelated with the sensory input. From the form of Eq. (S.3), the late-learning

weight v is proportional to the temporal integral of the early-learning weight wH .

We can then understand the dynamics of learning as follows. Initially, when errors are large

and correlated with the sensory input, because of the saturation in the CF response, we have

c(t) ≈ kLTDkPFkCFC, (S.4)

where

C = ⟨|Ḣ|⟩τf,w . (S.5)

For sinusoidal sensory input with period of oscillation much shorter than τf,w, C ≈ 2/π ·vpeak, which

is constant for a fixed choice of peak input amplitude. During training, when c(t) ̸= 0, wH tends

toward a value that is smaller than baseline by an amount proportional to C (Fig. S1A,B). This

saturation can be understood as long-term depression driven by error being balanced by the decay

in wH to baseline. As v starts to integrate, this further decreases the magnitude of error. When

errors are decreased enough such that c(t) is approximately linear in terms of error magnitude,

c(t) ≈ kLTDkPFkCFβlight(g
target − g(t))σ2

H . (S.6)

In this regime, there is a stable fixed point of the weights that corresponds to the target input-to-
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output gain (Fig. S1B,C ; see below and §S1.3).

After training ends, wH returns to baseline. v must also go to a steady state in order for the

system to be stable. From Eq. (S.3), this occurs as long as wH has a baseline value of 0, which

from Eq. (S.2) requires that

w+
∞ = w−

H , (S.7)

that is, when at steady state the excitatory and inhibitory weights of the sensory input to the

early-learning site are balanced. As a result, there is a continuum of steady states of the system

in the post-training period, corresponding to a continuum of input-to-output gains of the circuit,

since any weight configuration where wH = 0 is a fixed point of the dynamics, which can be

represented as a line in wH -v space (Fig. 2E ). We note that the stable fixed points of the system

during training, as determined by the target gain gtarget, also lie along the same line (Fig. S1C ).

When the steady-state excitation-inhibition balance condition, Eq. (S.7), is met, any initial set of

weights will evolve toward some fixed point on the line wH = 0. Therefore, wH = 0 is furthermore

a line attractor. This can be visualized by plotting a flow field in wH -v space (Fig. 2D,E ), where a

vector describing the direction of a trajectory at any point is given by x(wH , v) = [dwH/dt, dv/dt].

The overall dynamics of learning and consolidation can thus be put succinctly: oculomotor errors

drive a change ∆wH in the early-learning weight that is temporally integrated into a persistent

change ∆v in the late-learning weight, as the change in wH decays away. The need to transform

a negative ∆wH into a positive ∆v explains why plasticity at v is driven by the anticorrelation

between mossy fiber and Purkinje cell fluctuations in Eq. (14).

A similar analysis for the Hebbian covariance-like rule shows that a line attractor may exist when

there is no variability in the sensory input, σ2
H = 0 (Fig. 5A,B, light lines), but that the introduction

of variability collapses the line attractor into a single unstable fixed point, which would not allow

the circuit to learn an analog input-to-output gain (Fig. 5A,B, dark lines; §S3). As discussed in the

main text (Implications for plasticity rules), simple implementations of classic homeostatic Hebbian

learning rules that fix the norm of the weight(s) onto the neuron (Miller & MacKay 1994; Oja 1982)

or attempt to maintain postsynaptic firing rate at a target value (Yger & Gilson 2015; Bienenstock

et al. 1982) also failed to support a continuum of stable weight configurations in the model (see

§S4). Our analysis found that a modified Hebbian covariance rule containing a decay could stably

support a continuum of steady states even for σ2
H > 0, but this required meeting a fine-tuning

condition that depends on the value of σ2
H (see §S3).

S1.2 Flow field analysis and diffusive drift

Using the flow field, we can understand how the learning rates at the early- and late-learning sites

control the amount of consolidation after a period of training. We assume that the circuit starts

in a consolidated state before training, so that during the training period wH changes from its

baseline value of 0 by an amount ∆wH . We also assume that v does not change much during the
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training period. From Eq. (S.2) and Eq. (S.3), the slope of the vectors x(wH , v) describing the flow

during the post-training period is

dv

dwH
≈ kv,heteroτw(MF0 · PF0 + kMFkPFσ

2
H). (S.8)

In other words, geometrically, the weight configuration moves approximately along a line with slope

given by Eq. (S.8), so that as wH returns to 0, the change in v during the post-training period

is given by ∆v ≈ −dv/dwH · ∆wH . Since the slope is proportional to kv,heteroτw, a learning rate

kv,hetero at v that is much smaller than the learning rate 1/τw at wH would correspond to slow

consolidation, but also a corresponding insensitivity of v to noisy fluctuations in wH during the

post-training period (Fig. 3).

For the circuit to completely consolidate the changes made at the early-learning site during

the training period—i.e., preserve the value of the gain gtrain achieved during training—trajectories

need to follow the line in synaptic weight space corresponding to a constant gain (Eq. (8), with

g(t) ≡ gtrain). This is achieved if the slope of the flow field is close to that of the constant gain line,

kv,heteroτw⟨MF · PF⟩τf,v ≈ wPCkPF
kMF

, (S.9)

(see Fig. 2D, dashed line). In general, we can write the fraction p of the gain change induced during

training that is consolidated post-training as

p =
gcons − gpre
gtrain − gpre

=
kv,heteroτw⟨MF · PF⟩τf,v

wPC · kPF/kMF
, (S.10)

where gpre is the gain before training, gtrain is the gain immediately after training, and gcons is the

gain after consolidation. Complete consolidation (i.e., Eq. (S.9)) corresponds to p = 1.

As noted in the main text, because v is integrating, noise is also accumulated. We examined

this by perturbing wH in the absence of training signals from feedback about errors (see Materials

and Methods, Simulation of oculomotor learning). Extending the current analysis to the case of

random perturbations, we can show that, for a sequence of perturbations in wH that are uniformly

distributed over [−α, α], the variance across simulations of the value of v after the kth perturbation

will be

Var(v(k)) =
1

3
α2(kv,heteroτw⟨MF · PF⟩τf,v)2(k + 1 + A(k)), (S.11)

where A(k) is an exponentially decaying function of the number of perturbations and the time

between perturbations (see §S1.4 for definition and derivation). Thus, the variance is asymptotically

linear in k and the behavior of v is diffusive on long timescales. This is the key mathematical

observation underlying the “speed-accuracy” tradeoff shown in Fig. 3.

The slope of the flow field is also related to the variability of sensory input σ2
H . In this way, an

input with larger variability would increase the rate of plasticity at v. However, this contribution
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to the rate of plasticity due to stimulus-driven variability is much smaller than that due to the

high baseline firing rates of the mossy fibers MF0 and parallel fibers PF0 (not shown; see Eq. (S.8))

given the parameters we used, which were chosen to match experimental values.

S1.3 Stability during training

During training, we assume that the climbing fiber modulation δCF(t) is modeled by Eq. (12), i.e.,

it is a saturating function of the oculomotor (retinal slip) error Ṙ(t) (Eq. (11)). Then, there is a

fixed point of the weight dynamics corresponding to the point at which the measured gain of the

system is g = gtarget,

(w∗
H , v∗) =

(
0,

gtarget

kEkMF

)
. (S.12)

The dynamics of trajectories leading to a steady state can be separated into two regimes. Initially,

the amplitude of oculomotor errors is large, so that δCF saturates, and correspondingly so does

the parallel fiber-climbing fiber covariance c(t). As a result, the weight wH tends toward the value

defined by Eq. (S.4). From the simplified form of the heterosynaptic plasticity rule for v, Eq. (S.3),

this leads to initially linear growth in v. As v increases, eventually the amplitude of oculomotor

errors will decrease, such that δCF will be a linear function of Ṙ, and from Eq. (S.6), c(t) will be

a linear function of wH and v, such that

τw
dwH

dt
≈ −wH + kLTDk

2
PFkCFβlightkEwPC

(
gtarget − kEkMFv

kEkPFwPC
− wH

)
σ2
H . (S.13)

Thus, in the linear regime, the dynamics have eigenvalues

λ± = − 1

2τw
(1 + kLTDk

2
PFkCFβlightσ

2
HkEwPC) ·1 ∓

√
1 −

4τwkLTDkPFkCFβlightσ
2
HkEkMFkv,hetero⟨MF(t)PF(t)⟩τf,v

(1 + kLTDk2PFkCFβlightσ
2
HkEwPC)2

 . (S.14)

Since all of the parameters are strictly positive (during training, σ2
H > 0), the steady state in Eq.

(S.12) is a stable fixed point of the dynamics.

The approach to the fixed point could involve decaying oscillations in the values of wH and v

around the steady state. Oscillations do not occur if

kv,hetero⟨MF(t)PF(t)⟩τf,v · τw <
(1 + kLTDk

2
PFkCFβlightσ

2
HkEwPC)2

4kLTDkPFkCFβlightσ
2
HkEkMF

. (S.15)

The above inequality places a constraint on the ratio of the rate of plasticity at v relative to the

intrinsic rate of plasticity (1/τw) at wH to avoid oscillations.

The above analysis shows that, even when the size of climbing fiber responses decreases across

learning as a result of decreased errors in the output, stable consolidation is still achieved. Learning
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at the early-learning site decreases in amplitude as consolidation occurs at the late-learning site

until the system reaches desired performance, at which point the early-learning area is no longer

required (Fig. S1).

S1.4 Analysis of drift without error feedback

We noted above that consolidation could be understood as temporal integration at the late-learning

site v of weight changes initially induced in the early-learning weight wH . Drawing on other work

on integrators, we showed that periodically applied random perturbations of wH led to the value of

v random-walking over time (Fig. 3A–D). Here, we derive analytically a formula for the variance

across sample paths of the late-learning weight v as a function of time and the learning rate at v.

We start from the analysis in §S1.1 above. As in the simulation of Fig. 3A–D (see Materials

and Methods, Simulation of oculomotor learning), we assumed that the value of wH was perturbed

at a regular interval T , with each perturbation k given by an i.i.d. random value ∆w
(k)
H drawn

uniformly over the interval [−α, α]. After the perturbation, the synaptic dynamics cause wH to

decay toward a baseline value of zero. To model the effect of each perturbation, we assume the

value of wH immediately following the kth perturbation is given by

w
(k)
H,perturb = w

(k−1)
H,post + ∆w

(k)
H , (S.16)

where the value of wH just prior to the kth perturbation is given by

w
(k−1)
H,post = w

(k−1)
H,perturbe

−T/τw , (S.17)

which models the decay in wH between perturbations. We can simplify this recurrence relation as

w
(k)
H,post = e−T/τw(w

(k−1)
H,post + ∆w

(k)
H )

= e−T/τw(e−T/τw(w
(k−2)
H,post + ∆w

(k−1)
H ) + ∆w

(k)
H )

= w
(−1)
H,post(e

−T/τw)k+1 +

k∑
k′=0

∆w
(k−k′)
H (e−T/τw)k

′+1

= w
(−1)
H,post(e

−T/τw)k+1 +
k∑

k′=0

∆w
(k′)
H (e−T/τw)k−k′+1. (S.18)

We assume that the system starts in a stable steady state, i.e., w
(−1)
H,post = 0. The change during
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each post-perturbation period k ≥ 0 is thus

∆w
(k)
H,post = w

(k)
H,post − w

(k)
H,perturb = w

(k)
H,perturb(e−T/τw − 1)

=

( k−1∑
k′=0

∆w
(k′)
H (e−T/τw)k−k′ + ∆w

(k)
H

)
(e−T/τw − 1)

= (e−T/τw − 1)
k∑

k′=0

∆w
(k′)
H (e−T/τw)k−k′ . (S.19)

Then, from Eq. (S.8), the change in v during the kth perturbation period can be approximated as

∆v(k) ≈ kv,heteroτw⟨MF(t)PF(t)⟩τf,v∆w
(k)
H,post

= −kv,heteroτw⟨MF(t)PF(t)⟩τf,v(1 − e−T/τw)
k∑

k′=0

∆w
(k′)
H (e−T/τw)k−k′ ,

(S.20)

using the relationship in Eq. (S.19).

We can calculate the overall value of v after the kth perturbation as

v(k) = v0 +

k∑
k′=0

∆v(k
′). (S.21)

This has variance

Var(v(k)) = Var

(
v0 +

k∑
k′=0

∆v(k
′)

)
= Var

(
k∑

k′=0

∆v(k
′)

)

=
k∑

k′=0

k∑
k′′=0

Cov(∆v(k
′),∆v(k

′′))

=

k∑
k′=0

(
2

k′∑
k′′=0

Cov(∆v(k
′),∆v(k

′′)) − Var(∆v(k
′))

)
. (S.22)

Thus, to calculate the variance in v(k), we need to calculate the variance of ∆v(k) and the covariance

between ∆v(k) and ∆v(j). For convenience, define

E = e−T/τw , and (S.23)

K = kv,heteroτw⟨MF(t)PF(t)⟩τf,v . (S.24)
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We can write the covariance between the change in v due to perturbations j and k as

Cov(∆v(k),∆v(j)) = (K(1 − E))2
min(k,j)∑
k′=0

Var(∆w
(k′)
H )E(k+j−2k′)

=
1

3
α2(K(1 − E))2

min(k,j)∑
k′=0

E(k+j−2k′). (S.25)

where, because ∆w
(k)
H is uniformly distributed over [−α, α], Var(∆w

(k)
H ) = 1/3 · α2. The variance

of ∆v(k) can be found by taking j = k in Eq. (S.25),

Var(∆v(k)) = Cov(∆v(k),∆v(k)) =
1

3
α2(K(1 − E))2

k∑
k′=0

E2k′

= (K(1 − E))2 · 1

3
α2 · 1 − E2(k+1)

1 − E2

=
1

3
α2K2 · 1 − E

1 + E
(1 − E2(k+1)). (S.26)

We can then calculate the sum

k∑
k′=0

Var(∆v(k
′)) =

1

3
α2K2 1 − E

1 + E

k∑
k′=0

(1 − E2(k′+1))

=
1

3
α2K2

(
1 − E

1 + E
(k + 1) − E2(1 − E2(k+1))

(1 + E)2

)
(S.27)

Finally, from Eq. (S.25), we can also calculate the sum of covariances

k∑
k′=0

k′∑
k′′=0

Cov(∆v(k
′),∆v(k

′′)) =
1

3
α2(K(1 − E))2

k∑
k′=0

k′∑
k′′=0

k′′∑
k′′′=0

E(k′+k′′−2k′′′)

=
1

3
α2K2

(
k + 1

1 + E
− E(1 − Ek+1)

1 − E
+

E3(1 − E2(k+1))

(1 − E)(1 + E)2

)
. (S.28)
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Putting these results together, from Eq. (S.22), the variance of v(k) is

Var(v(k)) =
k∑

k′=0

(
2

k′∑
k′′=0

Cov(∆v(k
′),∆v(k

′′)) − Var(∆v(k
′))

)

=
1

3
α2K2

(
−1 − E

1 + E
(k + 1) +

E2(1 − E2(k+1))

(1 + E)2

+ 2

[
k + 1

1 + E
− E(1 − Ek+1)

1 − E
+

E3(1 − E2(k+1))

(1 − E)(1 + E)2

])

=
1

3
α2K2

(
k + 1 − 2E(1 − Ek+1)

1 − E
+

E2(1 − E2(k+1))

(1 − E2)

)
. (S.29)

That is, the term A(k) in Eq. (S.11) is given by

A(k) = −2E(1 − Ek+1)

1 − E
+

E2(1 − E2(k+1))

(1 − E2)
. (S.30)

S2 Mitigation of stability-plasticity dilemma with two sites of learning

To understand how consolidation helps to mitigate the stability-plasticity dilemma, here we build

and analyze simplified discrete models of the weight dynamics. In the first section below, we show

that consolidation, as an integration process, causes the circuit to effectively average over the noise

in the instructive signal. In the following section, we show that averaging allows the circuit to

mitigate a stability-plasticity tradeoff that would occur if the circuit only had one site of plasticity.

S2.1 Consolidation averages over variability in instructive signals

We begin by considering a simplified version of the full feedforward model of Figs. 2 and 3. We

assume that wH returns to a baseline value of zero after each training period, and that v perfectly

integrates. During a training session k ≥ 0, the model receives a retinal slip error signal corre-

sponding to a target gain value gtarget = ĝ(k) that is randomly drawn from a normal distribution,

and learns a fraction q of the change in wH that would fully minimize the error. From Eq. (8) and

Eq. (11), this can be written as

w
(k)
H = − q

kEkPFwPC

(
ĝ(k) − kEkMFv

(k−1)

)
, (S.31)

so that the output of the circuit after training has measured gain

g
(k)
train = qĝ(k) + (1 − q)kEkMFv

(k−1), (S.32)

where we assume that the change in v during training is negligible, and that ĝ(k) = w
(k)
H = v(k) = 0

for all k < 0. During the subsequent post-training period, the model consolidates a fraction pw of
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the learned weight change in wH into v,

v(k) = v(k−1) − pww
(k)
H , (S.33)

and wH returns to a baseline value of zero, so the measured gain after consolidation is

g(k)cons = kEkMFv
(k). (S.34)

Then, the relative gain change consolidated is

p =
g
(k)
cons − g

(k−1)
cons

g
(k)
train − g

(k−1)
cons

=
pwkMF

kPFwPC
, (S.35)

and we can rewrite the change in v after consolidation and the measured gain as

v(k) = (1 − pq)v(k−1) + pq

(
ĝ(k)

kMFkE

)
(S.36)

g(k)cons = (1 − pq)g(k−1)
cons + pqĝ(k). (S.37)

To solve the recurrence relation above, we take the unilateral z-transform of Eq. (S.37):

G(z)
cons = (1 − pq)z−1G(z)

cons + pqĜ(z),

where the capital letters represent z-transformed functions. We can rearrange this as

G(z)
cons =

pq

1 − (1 − pq)z−1
Ĝ(z),

and take the inverse z-transform to find

g(k)cons =

(
(1 − pq)ku(k) ∗ ĝ(k)

)
= pq

(
ek log(1−pq)u(k) ∗ ĝ(k)

)
, (S.38)

where the star operator represents discrete convolution and the discrete unit step function is defined

to be u(k) = 1 for k ≥ 0 and 0 for k < 0. Intuitively, we can understand the measured gain after

consolidation as taking a leaky average of the noisy target gain signal ĝ(k) over the recent past with

time constant (in terms of training sessions) approximately −1/ log(1 − pq).

Given that ĝ(k) is a random variable, we can also understand Eq. (S.37) as an autoregressive

AR(1) process, whose stationary distribution has mean and distribution

E[g(∞)
cons] = E[ĝ(k)] (S.39)

Var(g(∞)
cons) =

(pq)2

1 − (1 − pq)2
Var(ĝ(k)). (S.40)
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That is, the stationary distribution of the measured gain after consolidation has mean equal to the

true mean of the noisy target gain distribution, and variance that is an increasing function of the

consolidation fraction p.

From Eq. (S.38) we can see that a system that consolidates a large fraction of what is learned

during the training period, p → 1, averages over a relatively small amount of the recent past—for

fast early-learning, q = 1, the time constant approaches zero as p → 1. Furthermore, if the mean

of the noisy target gain distribution changes, the approach of the consolidated gain to the new

true mean will be fast. However, as a result, the variance of the measured gain across training

sessions will have a relatively large variance, from Eq. (S.40). On the other hand, a system that

consolidates slowly (p → 0) averages over a longer period, reaching the true mean slowly but with

a lower stationary variance.

These features of the model are illustrated in Figure 4F. We plotted the value of the consolidated

gain g
(k)
cons resulting from simulating the simplified model, Eq. (S.31) and Eq. (S.33), with p = 0.1

(“slow consolidation”, magenta) or p = 0.75 (“fast consolidation”, cyan), in response to the same

set of target gain values. Initial values of wH and v and all other parameters are the same as for

the full model above (Table S1). For the first 50 training sessions, target gain values were drawn

from a distribution with mean 0.4 and standard deviation 0.1, and for the subsequent 150 sessions,

from a distribution with the same standard deviation but with mean 2.

S2.2 Comparing a one-site and two-site model

To see the advantage of the averaging effect described above, we consider a one site version of

the simplified model (effectively, the late-learning weight is constant), with weight wH,1 and no

consolidation. From Eq. (8), the measured gain of this circuit after each training period k is then

given by

g
(k)
1 = kE(kMFv − kPFwPCw

(k)
H,1),

where v is fixed at the initial value v0. During each training period, the model again learns a

fraction q of the total weight change in wH,1 required to minimize error,

w
(k)
H,1 = w

(k−1)
H,1 + q(w∗

1 − w
(k−1)
H,1 )

= (1 − q)w
(k−1)
H,1 − q

kEkPFwPC

(
ĝ(k) − kEkMFv

)
, (S.41)

or equivalently in terms of the measured gain,

g
(k)
1 = (1 − q)g

(k−1)
1 + qĝ(k). (S.42)

Note that the weight update, Eq. (S.41), is equivalent to the weight update for the two-site model,

Eq. (S.31), if the weight were reset post-training, i.e., if w
(k−1)
H,1 = 0 after consolidation. That is,

just as for the two site model, the measured gain of the system is an AR(1) process representing a
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leaky average of the target gain signal with time constant −1/ log(1 − q). For a sequence of target

gain values drawn from a normal distribution, the stationary distribution of the measured gain of

the circuit will have mean equal to the true mean and variance

Var(g
(∞)
1 ) =

q2

1 − (1 − q)2
Var(ĝ(k)) (S.43)

which is minimized as q becomes small (“wH slow” in Fig. 4A–C ). For such a small value of q, the

measured gain will remain relatively stable across training sessions, but the circuit will be unable

to quickly correct errors. That is, after each training session, the mean squared error of the one-site

model in the stationary limit will be

MSEtrain,1 = lim
k→∞

E[(ĝ(k) − g
(k)
1 )2]

= (1 − q)2 lim
k→∞

E[(ĝ(k) − ĝ
(k−1)
1 )2]

= (1 − q)2MSEpre,1, (S.44)

where MSEpre,1 is the mean squared error at the start of each training session,

MSEpre,1 = lim
k→∞

E[(ĝ(k) − g
(k−1)
1 )2]

= E[(ĝ(k))2] − lim
k→∞

(
2E[ĝ(k)]E[g

(k−1)
1 ] − E[(g

(k−1)
1 )2]

)
=

2

2 − q
Var(ĝ(k)). (S.45)

That is, after training to adapt to a target gain experienced during training session k−1, MSEpre,1

represents the mean squared error expected at the start of training session k, when a new target gain

value will be drawn. From Eq. (S.44) and Eq. (S.45), we see that the average error after training

is a decreasing function of q, whereas the average error at the start of training is an increasing

function of q (for q < 2). Hence, there is a tradeoff between the ability of the circuit to correct

errors quickly during a training session and the size of the expected future error given a noisy target

gain.

Repeating this calculation for the model with two sites of learning, we have

MSEtrain,2 = lim
k→∞

E[(ĝ(k) − g
(k)
train)2]

= (1 − q)2 lim
k→∞

E[(ĝ(k) − g(k−1)
cons )2]

= (1 − q)2MSEpre,2, (S.46)
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and
MSEpre,2 = lim

k→∞
E[(ĝ(k) − g(k−1)

cons )2]

=
2

2 − pq
Var(ĝ(k)). (S.47)

Thus, the average error after training can be reduced by fast learning at the early-learning site

(q → 1), and the average error at the start of training can be simultaneously reduced by slow

learning at the late-learning site (p → 0).

In Figure 4C,E, we plotted the one-site tradeoff curve as functions of the early site learning rate q

(“wH slow” and “wH fast” arrows), with MSEpre,1 on the x-axis and MSEtrain,1 on the y-axis (black

line in Fig. 4C and grey line in E ), normalized by plotting in units of the variance of the target gain

distribution. For the two-site model (Fig. 4E ), we plotted the normalized MSEpre,2 on the x-axis

and normalized MSEtrain,2 on the y-axis for p = 0.1 (“v slow”, magenta) and p = 0.75 (“v fast”,

cyan), while again varying q. In Figure 4B, we plotted the post-training gain g
(k)
1 from a simulation

of the simple one-site model with q = 0.1 (“slow learning”, black) or q = 0.75 (“fast learning”, grey)

over 200 training sessions, where the target gain value for each session was independently drawn

from a normal distribution with mean 0.4 and standard deviation 0.1. The values of MSEpre,1 and

MSEtrain,1 corresponding to these values of q, calculated from Eq. (S.44) and Eq. (S.45), are plotted

in Figure 4C with circles.

To build intuition for the difference between the one-site and two-site models more concretely,

in Figure 4A,D we show the time course of the gain and the corresponding squared error (retinal

slip) for two subsequent example training sessions. Figure 4D was generated by simulating the full

two-site model with weight dynamics controlled by Eq. (S.2) and Eq. (14). We set the learning

rate at v to kv,hetero = 1.29 × 10−6(s/sp)2/h, which resulted in a fraction of learning consolidated

p ≈ 0.13 for the kth and p ≈ 0.27 for the (k + 1)th sessions. All other parameters were the same as

those in Table S1, and the initial value of v was set so that the system would have an initial gain of

0.4, as above. To similarly simulate the time course of learning in the one-site model (Fig. 4A), we

modified the full two-site model by removing learning at v, and the learning at wH was governed

by
dwH

dt
= kw(kLTP⟨PF(t)⟩τf,w − kLTD⟨PF(t)CF(t)⟩τf,w), (S.48)

where we set the learning rate parameter kw = 0.191 h−1 (light colors) or kw = 1.97 h−1 (dark

colors), so that for the two training sessions shown the fraction learned was q ≈ 0.10 for the kth

session and q ≈ 0.11 for the (k + 1)th session (light colors), or q ≈ 0.75 for the kth and q ≈ 0.80

for the (k + 1)th sessions (dark colors). Unlike the two-site model, we set kLTP = 0.648 s/sp, so

that outside of the training period, dw/dt ≈ 0. The model used the same initial values, as well as

all other parameters not specified here, as the two-site model for wH and v. For both models, we

simulated two periods of 0.5 h training followed by 11.5 h post-training without feedback about

behavioral errors (post-training periods clipped for illustrative purposes).
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S3 Consolidation with the Hebbian rule is not robust to noisy input

The failure of the stabilized Hebbian rule, Eq. (15), to successfully consolidate memory from the

early- to late-learning site in the presence of variability in the sensory input (Fig. 5) can be un-

derstood through an analysis similar to the one performed for the heterosynaptic rule (§S1). We

again assume that the mean of the sensory input is approximately zero and that the variability

σ2
H is constant over the timescales τf,v and τs. We also assume, as before, that the timescale over

which the weights change is much slower than τf,v. Using that the threshold θ(t) is the exponential

average of MVN(t), we have

θ(t) = ⟨MVN(t)⟩τs ≈ MF0⟨v⟩τs − wPCPF0⟨w⟩τs − wPCPC0 + MVN0. (S.49)

Then, substituting this and the definition of MVN(t), Eq. (4), into the learning rule, Eq. (15)

becomes

dv

dt
≈ kv,Hebb[⟨MF(t)2⟩τf,vv − wPC⟨MF(t)PF(t)⟩τf,vwH − MF2

0vs + wPCMF0PF0wH,s], (S.50)

where wH,s = ⟨wH⟩τs and vs = ⟨v⟩τs .
In the post-training period, when c → 0, we have that wH → wH,0 = w+

∞ − w−
H . As wH

approaches this steady state, so will the exponential average, i.e., wH,s → wH,0 (see Eq. (6)), so we

can use this quasi-steady state assumption on wH to simplify Eq. (S.50) further to

dv

dt
≈ 1

τv(σ2
H)

v − kv,Hebb[wPCkMFkPFσ
2
HwH,0 + MF2

0vs] for wH , wH,s → w0, (S.51)

where the time constant τv is a function of the variability of the sensory input, σ2
H ,

τv(σ2
H) =

1

kv,Hebb(MF2
0 + k2MFσ

2
H)

. (S.52)

In the case that there is no variability in the sensory input, σ2
H = 0, we have that the dynamics of

learning are given by

τv(0)
dv

dt
≈ v − vs, (S.53)

τs
dvs
dt

= −vs + v. (S.54)

Here, the first eigenvalue of the system is 0, with corresponding eigenvector [1, 1] so that any state

along the line v = vs is a fixed point of the system. The second eigenvalue of the dynamics is

λ =
1

τv(0)
− 1

τs
, (S.55)
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which is decaying if τs < τv(0), i.e., the timescale of the sliding average is faster than the timescale

of plasticity (cf. Zenke et al. 2013). Thus, the synaptic learning dynamics contain a line attractor

in the space of v and the internal variable vs that does not depend on w0. Geometrically, when

σ2
H = 0, the nullclines for the dynamics of v and vs overlap, creating the line attractor.

If there is variability in the sensory input, σ2
H > 0, the nullclines no longer exactly overlap;

there is now a single fixed point v∗ = v∗s = wH,0. This fixed point is unstable (it is a saddle point

of the dynamics), with eigenvalues

λ± =

(
1

τv(σ2
H)

− 1

τs

)
· 1

2

[
1 ∓

√
1 +

4kv,Hebbk
2
MFσ

2
H

τs(1/τv(σ2
H) − 1/τs)2

]
,

implying that one of the eigenvalues will always be positive.

In principle, the instability can be rectified by adding an additional decay term −εv to the

learning rule, so that Eq. (15) is

dv

dt
= −εv + ⟨MF(t)(MVN(t) − θ(t))⟩τf,v . (S.56)

If we write the decay rate as ε = kv,Hebbk
2
MFσ

2 in terms of a new variable σ2, we can simplify this

equation (as we did for Eq. (S.51)) to

dv

dt
≈ kv,Hebb[k2MF(σ2

H − σ2)v + MF2
0(v − vs) − wPCkMFkPFσ

2
Hw0]. (S.57)

If σ2 is equal to σ2
H , the variability of the vestibular input in some period, and if wH,0 = 0, then

the system will again be described by the dynamics given by Eq. (S.53) and Eq. (S.54). That is,

v = vs will still be a line attractor. If σ2 is not exactly equal to σ2
H , then the weight will either

grow unstably or decay to zero, depending on whether σ2 < σ2
H or σ2 > σ2

H , respectively. This

can be seen by assuming the threshold θ moves instantaneously, so that vs ≈ v, and noting that

Eq. (S.57) becomes either exponential growth or decay, with time constant inversely proportional

to the degree of mistuning. So, for successful systems consolidation in a circuit using this modified

version of the Hebbian rule, the learning rule must “know” or otherwise measure the variability of

the input σ2
H . While a learning rule that accounts for the natural statistics of inputs presents an

interesting possibility, we note that it may be challenging to implement biologically.

S4 Traditional homeostatic Hebbian rules do not readily support consolidation

of analog memories

It has long been recognized that the basic form of the Hebbian learning rule generally leads to un-

stable positive feedback (Miller & MacKay 1994; Zenke et al. 2017; Abbott & Nelson 2000), leading

to the development of rules which contain homeostatic mechanisms that attempt to counter this

instability. The most well-known classes of such homeostatic mechanisms include weight normaliza-
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tion, in which weights are adjusted so that the weight vector for a neuron maintains a given length

(von der Malsburg 1973; Oja 1982; Miller & MacKay 1994), and firing rate-target homeostasis

methods, in which weights are adjusted so that the mean postsynaptic firing rate is maintained

close to a specified target. The latter class of mechanisms includes those commonly called synaptic

scaling (Turrigiano 2008; Yger & Gilson 2015; Tetzlaff et al. 2011). In order to stably consolidate

analog memories, the learning rule at the late-learning site must be able to support a continuum

of stable weight configurations. For the circuit model we developed here, we show below that

Oja’s rule and the BCM rule, prominent examples of weight normalization and firing rate-target

homeostasis rules, respectively, cannot support such a stable weight continuum.

First, we examine Oja’s rule, a form of weight normalization (Oja 1982). We will consider the

Hebbian piece in a “covariance” form,

dv

dt
= η(⟨δMF(t)δMVN(t)⟩ − ⟨δMVN2⟩v), (S.58)

where for simplicity, δMF(t) and δMVN(t) are baseline-subtracted forms of mossy fiber and MVN

neuron firing. We assume that the timescale of the average indicated by the brackets is slow

compared to variation in the input but faster than the timescale of plasticity of v (as for τf in the

main text). Both before training and after consolidation, when w → 0, so that PC(t) → PC0,

δMVN(t) = vδMF(t).

Then, the learning rule is at steady state when

v∗⟨δMF2⟩ − v∗3⟨δMF2⟩ = 0 ⇒ v∗ = 0 or v∗ = ±1.

This is because Oja’s rule is designed to maintain the Euclidean length of the weight vector fixed

at 1, and here there is only one input source with a plastic weight. Even in the case where there

are multiple mossy fiber input types with plastic weights, Oja’s rule will drive the weight vector so

that it is parallel (or antiparallel) to the eigenvector of the covariance matrix of the inputs that has

largest eigenvalue (Oja 1982). In our model, in which we do not expect the signals carried by the

mossy fiber inputs to themselves change persistently as a result of training, only one stable weight

configuration can be maintained. Thus, Oja’s rule does not readily support consolidation in our

model.

We next examine the Bienenstock-Cooper-Monroe (BCM) rule (Bienenstock et al. 1982), one

of the most well-known firing rate-target homeostasis rules. The BCM rule consists of a Hebbian

term multiplied by a term that changes the sign of plasticity depending on whether postsynaptic
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activity is greater than or less than a sliding threshold. For our circuit, this takes the form

τv
dv

dt
= ⟨MF(t)MVN(t)⟩[⟨MVN(t)⟩ − θ(t)], (S.59)

τθ
dθ

dt
= −θ +

⟨MVN(t)⟩2

MVNtarget
. (S.60)

The angle brackets again represent time averages taken over a timescale longer than the variation in

the input, but much shorter than the timescale of plasticity. The system has a fixed point whenever

θ = ⟨MVN⟩ = MVNtarget.

There is one fixed point, with steady state weight value

v∗ =
MVNtarget − MVN0 + wPC⟨PC⟩

MF0
.

The value of v∗ is determined by parameters of the system that do not change as a result of

learning (MF0,MVNtarget and MVN0), as well as a variable (⟨PC⟩) that returns to its pre-training

baseline value during the post-training period. Therefore, the system with one plastic synapse

cannot persistently hold all possible values of v that may be reached after training.

For multiple plastic inputs to the (linear) MVN neuron, the BCM rule is less restrictive than

Oja’s rule: there is a hyperplane—i.e., a continuum—in synaptic weight space of stable weight

configurations for which the homeostatic condition of postsynaptic firing rate reaching a target

is achieved. This opens the possibility that a more complex model of the circuit could allow

consolidation of an analog memory using the BCM rule. However, such a rule would not allow for

the weight of a single input type to change independently of the others, unlike the heterosynaptic

rule.

S5 Analysis of model dynamics with fixed-strength internal feedback loop

In this section, we analyze the dynamics of the model with a fixed-strength internal feedback loop

(Materials and Methods, Circuit model with internal feedback loop). We first show the conditions

under which stable post-training consolidation occurs. We then find conditions under which the

circuit can also stably learn a target input-to-output gain during training.

S5.1 Conditions for stable post-training consolidation

For stable consolidation, we need the late-learning site to stably hold any value of v. Following the

same line of reasoning leading to Eq. (S.3), we can rewrite the heterosynaptic plasticity rule, Eq.

(28), in terms of the weights as

dv

dt
≈ −kv,hetero

kMF(w̃H(t) − kEw̃E ṽ(t))

1 − wPCkEw̃E
σ2
H . (S.61)
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Note that, unlike the feedforward model, there must be variability in the post-training input,

σ2
H > 0, for consolidation to occur. From Eq. (S.61), v is at steady state as long as the feedforward

weight at the early-learning weight is

wH =
kE

kPF,H
w̃E ṽ, (S.62)

which defines a line in wH -v space (Fig. 6E,J ). Values of wH and v that lie along this line cause

the early-learning area to not respond to sensory input to the circuit, i.e., the reset condition is

satisfied. If wE > 0, this can no longer be achieved in general by a passive decay at wH to zero,

as wH needs to go to a positive steady state value since v is also positive. Below we evaluate the

conditions under which this occurs for the two post-training reset mechanisms.

Inhibitory plasticity-driven resetting In the inhibitory plasticity-driven reset mechanism,

the weight of feedforward inhibition onto the early-learning area is governed by a Hebbian-like

covariance rule, Eq. (29):

dw−
H

dt
= kinh⟨PFH(t)(PC(t) − ⟨PC(t)⟩τf )⟩τinh .

During the post-training period, the correlation between climbing fibers and the feedforward parallel

fibers is zero, cH(t) ≡ 0, so simplifying as for Eq. (S.61), and combining with the learning rule for

the excitatory weight, Eq. (27), we can write the equation for the overall feedforward weight at the

early-learning site as

dwH

dt
≈ −

kinhk
2
PF,Hσ2

H

1 − wPCkEw̃E

(
wH − kE

kPF,H
w̃E ṽ

)
, (S.63)

which has a fixed point that lies along the line in Eq. (S.62), satisfying the reset condition, as long

as

wE <
1

kPF,EwPCkE
. (S.64)

To determine whether the fixed point is attractive, it suffices to show that the slope of the tra-

jectory approaching the fixed point is smaller than the slope of the line in Eq. (S.62). Otherwise,

trajectories will move continuously away from the line of fixed points. From Eq. (S.63) and Eq.

(S.61), trajectories have slope
dv

dwH
≈

kv,heterokMF

kinhkPF,H
, (S.65)

whereas from Eq. (S.62) the slope of the line of fixed points is kPF,H/(kEw̃EkMF). Thus, the slope

of trajectories is smaller if

kv,heterok
2
MFkEw̃E

kinhk
2
PF,H

=
τwH ,dark(σ2

H)

τv(σ2
H)

< 1, (S.66)
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where the time constants τwH ,dark and τv are defined from Eq. (S.63) and Eq. (S.61) respectively

as functions of the input variability σ2
H ,

τwH ,dark(σ2
H) =

1 − wPCkEw̃E

kresetk2PF,Hσ2
H

(S.67)

τv(σ2
H) =

1 − wPCkEw̃E

kv,heterok
2
MFkEw̃Eσ2

H

, (S.68)

and where, to highlight the similarity of these expressions to the analogous quantities for the other

reset mechanism below, we have defined

kreset = kinh (inhibitory plasticity reset mechanism).

In other words, the line in Eq. (S.62) is an attractor only if plasticity is faster at the early-learning

site than at the late-learning site.

The inhibitory plasticity here drives wH so that the activity of the early-learning area does

not modulate in response to sensory input. This result is broadly consistent with previous work

showing that Hebbian plasticity of inhibitory synapses tends toward restoring excitatory-inhibitory

balance (Vogels et al. 2011), except here this balance is only in terms of the fluctuating components

of the inputs and not the spontaneous components, because of the sliding threshold term in Eq.

(29). Note that, if σ2
H = 0, early-learning activity will not be reset, but there will also be no

consolidation at v.

Inhibition of instructive signals-driven resetting In the inhibition of instructive signals-

driven reset mechanism, the activity of the pathway carrying instructive signals is inhibited by an

output pathway from the late-learning area (Fig. 6F ; Eq. (30)):

δCF(t) = kCF tanh
(
−βlightṘ(t) + βresetδPC(t)

)
,

where δPC(t) = PC(t) − ⟨PC(t)⟩τf . When information about errors is not present, Ṙ ≡ 0, so that

for small errors, the parallel fiber-climbing fiber covariance cH(t) is in the linear regime, and the

learning rule for wH becomes

dwH

dt
≈ −

kLTDkCFβresetk
2
PF,Hσ2

H

1 − wPCkEw̃E

(
wH − kE

kPF,H
w̃E ṽ

)
, (S.69)

which has the same fixed points as Eq. (S.63) that satisfy the reset condition if Eq. (S.64) holds.

Similarly, as in Eq. (S.66), the fixed point for a given trajectory is attractive if τwH ,dark < τv, where

τwH ,dark and τv are defined as in Eq. (S.67) and Eq. (S.68) but where we now define

kreset = kLTDkCFβreset (inhibition of instructive signals reset mechanism).
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For large errors, the magnitude of δCF will be saturated, and dwH/dt will reach a maximum value,

so the slope of trajectories will be

dv

dwH
≈

kv,heterokMFσ
2
H

kLTDkCFC(1 − wPCkEw̃E)

(
wH − kE

kPF,H
w̃E ṽ

)
, (S.70)

where C is defined as in Eq. (S.5). That is, the trajectories become increasingly vertical the further

they are from the line of fixed points. For trajectories to converge to a stable fixed point, they

must have slopes shallower than the line of fixed points. This occurs when∣∣∣∣wH − kE
kPF,H

w̃E ṽ

∣∣∣∣ < kLTDkCFkPF,HC(1 − wPCkEw̃E)

kv,heterok
2
MFσ

2
HkEw̃E

. (S.71)

This effectively places a limit on how large a gain change the circuit can learn during the training

period in order for that gain change to be stably consolidated (see §S5.2, Inhibition of instructive

signals-driven resetting).

S5.2 Dynamics during training

Here we analyze the dynamics of the synaptic weights in the circuit during training for each mech-

anism, and show that under similar conditions as post-training, both mechanisms are also stable

during training and result in the circuit correctly learning the target input-to-output computation

(Fig. S3).

Local stability of the fixed point during training We first show that both mechanisms have

the same locally stable fixed point, corresponding to the circuit achieving the target gain. For both

mechanisms, the learning rule for the late-learning weight v is identical, Eq. (S.61), and the only

difference comes from the effect on the early-learning feedforward weight wH . We assume that the

weight of the feedback pathway is fixed and that the total feedback strength is less than 1, as in

Eq. (S.64). We also assume that w+
H,∞ = 0 and that during training the variability of the head

input is ⟨Ḣ2⟩τf = σ2
H > 0. In our analysis, we make use of the fact that, from Eq. (23), the error

in gain can be expanded as

gtarget − g(t) = −
kEwPCkPF,H

1 − wPCkEw̃E
(w∗

H,opt(v(t)) − wH(t)), (S.72)

and for convenience we use variables with tildes as defined in Eq. (24)–Eq. (26), and where

w∗
H,opt(v) = − 1

wPCkPF,H

(
gtarget

kE
(1 − wPCkEw̃E) − kMFv

)
(S.73)
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is the value of wH that would minimize the error in gain for a fixed choice of v. Similarly, we define

the value of wH that would reset early-learning activity for a fixed choice of v as

w∗
H,reset(v) =

kEw̃EkMFv

kPF,H
. (S.74)

For the inhibitory plasticity mechanism (Fig. 6A), changes in the excitatory weight w+
H are

governed by instructive climbing fiber input driven by the retinal slip signal, Eq. (12), according

to the learning rule in Eq. (27), whereas the inhibitory weight w−
H tends to drive the activity of the

early-learning area back to its long-term average, as in Eq. (29). More precisely, for a target gain

value gtarget, plasticity at w+
H is driven by the parallel fiber-climbing fiber covariance

cH(t) = kLTD⟨δPFH(t)δCF(t)⟩τf,w
= kLTDkCFkPF,H⟨Ḣ(t) tanh[βlight(g

target − g(t))Ḣ(t)]⟩τf,w . (S.75)

We can combine the learning rules for w+
H and the inhibitory weight w−

H to write an expression

for the change in the net weight wH = w+
H − w−

H , and simplify using the same logic as for the

post-training period (see §S1). This yields

dwH

dt
≈ kLTDkCFkPF,H

〈
Ḣ tanh

[
βlight

kEwPCkPF,H
1 − wPCkEw̃E

(w∗
H,opt(v) − wH)Ḣ

]〉
τf,w

+
kinhk

2
PF,Hσ2

H

1 − wPCkEw̃E
(w∗

H,reset(v) − wH), (S.76)

using the simplifications in Eqs. (S.72)–(S.74).

For the inhibition of instructive signals mechanism (Fig. 6F ), the climbing fiber input is both

driven by retinal slip error and inhibited by a pathway carrying Purkinje cell output, Eq. (30),

leading to a parallel fiber-climbing fiber covariance

cH(t) = kLTDkCFkPF,H⟨Ḣ(t) tanh[βlight(g
target − g(t))Ḣ(t) + βresetδPC(t)]⟩τf,w . (S.77)

This yields a simplified learning rule for wH :

dwH

dt
≈ kLTDkCFkPF,H

〈
Ḣ tanh

[(
βlight

kEwPCkPF,H
1 − wPCkEw̃E

(w∗
H,opt(v) − wH)

+
βresetkPF,H

1 − wPCkEw̃E
(w∗

H,reset(v) − wH)

)
Ḣ

]〉
τf,w

. (S.78)

Both mechanisms have the same fixed point,

(w∗
H , v∗) =

(
kPF,EwEg

target

kPF,H
,
gtarget

kEkMF

)
, (S.79)
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at which point the gain is equal to gtarget and w∗
H = w∗

H,opt(v
∗) = w∗

H,reset(v
∗). Furthermore, the

fixed point lies along the post-training line attractor, Eq. (S.62). Close to the fixed point, the

dynamics for both mechanisms are linear, as the hyperbolic tangent term is in an approximately

linear regime,

dwH

dt
≈ − 1

τwH ,light(σ
2
H)

[wH − (αw∗
H,opt(v) + (1 − α)w∗

H,reset(v))]. (S.80)

where we defined

α =
klight

klight + kreset
, and (S.81)

τwH ,light(σ
2
H) =

1 − wPCkEw̃E

(klight + kreset)k2PF,Hσ2
H

= (1 − α)τwH ,dark(σ2
H), (S.82)

with

klight = kLTDkCFβlightkEwPC, (S.83)

and

kreset =

{
kinh for the inhibitory plasticity mechanism

kLTDkCFβreset inhibition of instructive signals
. (S.84)

From Eq. (S.61) and Eq. (S.80), the Jacobian is

J = −
σ2
H

1 − wPCkEw̃E
·

(
(klight + kreset)k

2
PF,H −kMFkPF,HkE(kresetw̃E + kLTDkCFβlight)

kv,heterokMFkPF,H −kv,heterok
2
MFkEw̃E

)
. (S.85)

The eigenvalues of the Jacobian are

λ± =
1

2

 1

τv
− 1

τwH ,light
±
∣∣∣∣ 1

τv
− 1

τwH ,light

∣∣∣∣
√

1 −
4kv,heterok

2
MFk

2
PF,HkEkLTDkCFβlightσ

4
H

(1 − wPCkEw̃E)(1/τv − 1/τwH ,light)2

 , (S.86)

where for conciseness, we omitted that τwH ,light and τv are functions of σ2
H , with the latter defined

as in Eq. (S.68). Since by definition all parameter values are positive, during training σ2
H > 0, and

we assumed that Eq. (S.64) holds, both eigenvalues have negative real part and the fixed point is

stable if
kv,heterok

2
MFkEw̃E

(klight + kreset)k2PF,H
=

τwH ,light(σ
2
H)

τv(σ2
H)

< 1. (S.87)

Note that if the post-training stability condition, Eq. (S.66), is met, then this stability condition is

also automatically met, because by definition τwH ,dark > τwH ,light for all σ2
H > 0 (see Eq. (S.82)).

Outside of the region near the fixed point, the dynamics of the weights differ between the two

mechanisms. In the following sections, we evaluate the stability of the dynamics in this region for

each mechanism.
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Inhibitory plasticity-driven resetting For the inhibitory plasticity mechanism, we can un-

derstand the dynamics by first looking at wH , as defined by the learning rule in Eq. (S.76). During

training to increase the gain, wH will both be driven by the climbing fiber input away from its

initial value along the post-training attractor, towards the line of points (w∗
H,opt(v), v) (along which

g = gtarget), and by the inhibitory plasticity back towards the attractor (the v-nullcline). Thus, the

nullcline for wH lies in between these two lines. As training continues, the weight trajectory will

cross the wH -nullcline, entering a region in which both v and wH are increasing. If the slope of

the flow field along the w∗
H,opt line is shallower than the slope of the line itself, then the trajectory

will stay bounded between the w∗
H,opt line and the wH -nullcline, reaching the fixed point without

any overshoot in the circuit gain (Fig. S3A,B). Otherwise, the trajectory will cross the w∗
H,opt line,

causing an overshoot in the gain. In this case, the trajectory will still tend toward the fixed point

as long as the post-training stability condition, Eq. (S.66), holds.

First, we determine the conditions under which the trajectory will reach the fixed point without

any overshoot in gain. The slope of the flow field along the w∗
H,opt line is

dv

dwH

∣∣∣∣
(w∗

H,opt(v),v)

=
kv,heterokMF

kinhkPF,H
=

dv

dwH

∣∣∣∣
post

, (S.88)

i.e., it is equal to the slope of trajectories during the post-training period (see Eq. (S.65)). The

slope of the w∗
H,opt line is

d

dwH
(v∗opt(wH)) =

kPF,HwPC

kMF
= wPCkEw̃E ·

kPF,H
kEw̃EkMF

, (S.89)

where we rearrange Eq. (S.73) to define v∗opt(wH) as the value of v that satisfies w∗
H,opt = wH .

Note that the second term in the rightmost expression above is the slope of the v-nullcline (i.e., the

post-training attractor). Therefore, following the reasoning leading to the post-training stability

condition in Eq. (S.66), the slope of the flow field along the w∗
H,opt line will be shallower than the

slope of the line itself if
τwH ,dark(σ2

H)

τv(σ2
H)

< wPCkEw̃E , (S.90)

which can also be written as
kv,heterok

2
MF

kresetk2PF,H
< wPC. (S.91)

Note that, since wPCkEw̃E < 1 (Eq. (S.64)), this is a stricter condition than Eq. (S.66).

If the condition in Eq. (S.90) does not hold, then the trajectory will cross the w∗
H,opt line. In

this region, from Eq. (S.61) and Eq. (S.72)–Eq. (S.76), the instantaneous slope of the trajectory is
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given by

dv

dwH
≈

kv,heterokPF,HkMFσ
2
H(w∗

H,reset − wH)

kinhk
2
PF,Hσ2

H(w∗
H,reset − wH) − cH(t)(1 − wPCkEw̃E)

=
1

1 − cH(t)(1−wPCkEw̃E)
kinhkPF,Hσ2

H(w∗
H,reset−wH)

· dv

dwH

∣∣∣∣
post

, (S.92)

where cH(t) is as defined in Eq. (S.75). Since cH has a saturating nonlinearity, −CkLTDkCFkPF,H <

cH ≤ 0 in the region wH ≤ w∗
H,opt ≤ w∗

H,reset, with C as defined by Eq. (S.5). Then, the slope of

trajectories is bounded,

1

1 +
CkLTDkCFkPF,H(1−wPCkEw̃E)

kinhkPF,Hσ2
H(w∗

H,reset−wH)

· dv

dwH

∣∣∣∣
post

<
dv

dwH
≤ dv

dwH

∣∣∣∣
post

, (S.93)

where the right-hand equality holds along the w∗
H,opt line, as we saw above. Therefore, as long

as Eq. (S.66) holds (i.e., the slope of post-training trajectories is shallower than the slope of the

v-nullcline), trajectories during training will also have slope shallower than the v-nullcline and tend

toward the fixed point.

Inhibition of instructive signals-driven resetting For the inhibition of instructive signals

mechanism, we saw above (§S5.1, Inhibition of instructive signals-driven resetting) that post-

training dynamics could become unstable if the change in wH during the training period was

too large, limiting the maximum change in gain that the circuit could stably consolidate. This was

defined by the slope of trajectories in the region of weight space where the climbing fiber response

was saturated, Eq. (S.70), from which we found a stable region of weight space, Eq. (S.71). As-

suming that before training the weights start at a fixed point and that during training the learned

change in gain initially only comes from changes in wH , the largest gain change that could be

learned is

∆gmax = −
wPCkEkPF,H

1 − wPCkEw̃E
∆wH,max

= −
wPCk

2
PF,HkLTDkCFC

kv,heterok
2
MFσ

2
Hw̃E

,

(S.94)

where ∆wH,max has value equal to the right hand side of Eq. (S.71). With this largest gain change

in mind, below we examine the weight dynamics during training.

From Eq. (S.78) we can see that for a fixed value of v, dwH/dt = 0 when

wH =
βlightkEwPC

βlightkEwPC + βreset
w∗
H,opt(v) +

βreset
βlightkEwPC + βreset

w∗
H,reset(v)

= αw∗
H,opt(v) + (1 − α)w∗

H,reset(v), (S.95)

where α is defined as in Eq. (S.81). That is, the wH -nullcline is linear and lies between the line

(w∗
H,opt(v), v) (along which g = gtarget) and the post-training attractor (v-nullcline). Thus, during
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training to increase the gain, initially wH will decrease from a point on the post-training attractor

toward the wH -nullcline, during which time v will start to grow. The trajectory will then cross

the wH -nullcline. As long as the trajectory does so within the region defined by Eq. (S.71), the

trajectory will tend toward the post-training attractor and eventually the fixed point (Fig. S3D).

However, it is possible that trajectories may cross the w∗
H,opt line, which would correspond to the

gain of the circuit overshooting the target. We can try to ensure that trajectories do not overshoot

by keeping them within the region bounded by w∗
H,opt and the wH -nullcline. If the w∗

H,opt line is

near the wH -nullcline and therefore within the linear regime of the climbing fiber response δCF, the

slope of trajectories along the line is approximately as defined in Eq. (S.89). As for the inhibitory

plasticity reset mechanism, trajectories will therefore stay approximately within the region between

the w∗
H,opt line and the wH -nullcline if the condition in Eq. (S.90) is met. If the w∗

H,opt line is far

from the nullcline, and the climbing fiber response is saturated, then the slope of the flow field

along the w∗
H,opt line is

dv

dwH

∣∣∣∣
(w∗

H,opt(v),v)

≈
kvkMFσ

2
H

kLTDkCFC(1 − wPCkEw̃E)
(w∗

H,reset − w∗
H,opt). (S.96)

Then, trajectories will stay bounded by the w∗
H,opt line and there will be no overshoot in gain if

dv

dwH

∣∣∣∣
(w∗

H,opt(v),v)

<
d

dwH
(v∗opt),

where d/dwH(v∗opt) is the slope of the w∗
H,opt line defined in Eq. (S.89). This directly gives that,

for a given value of v, the distance between the w∗
H,opt line and the v-nullcline w∗

H,reset(v) can be

no larger than

w∗
H,reset(v) − w∗

H,opt(v) < wPCkEw̃E∆wH,max. (S.97)

S5.3 Effect of post-training reset on weight dynamics

With either the inhibitory plasticity or homeostatic climbing fiber mechanism, two important prop-

erties arise in the model’s dynamics that are also observed experimentally. First, the early-learning

weight wH tends toward a saturation point during training that is not simply the value that would

minimize errors. In the feedforward model, this property was modeled explicitly by including a

decay term in the learning rule Eq. (13) (following previous work), which we do not include in

the model with internal feedback (i.e., in Eq. (27)). Second, during training, the approach of the

early-learning weight to the saturation point occurs over a faster timescale than the subsequent

post-training reset during consolidation (i.e., Eq. (S.82); for the inhibition of instructive signals,

this is true in the linear regime of the CF response). This was also modeled explicitly in the feed-

forward model with two different values of τw during the training and post-training periods, but in

the model with internal feedback results from the fact that learning and resetting are being driven
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by two different mechanisms. Note that we could also include either of the reset mechanisms in the

feedforward model (as it is the case of wE = 0), and the resulting dynamics would also have these

properties without having to explicitly model them.

S6 Circuit model with plastic internal feedback

In this section, we extend the feedback model discussed in the previous section (§S5) to the case

in which the weight of the internal feedback pathway to the early-learning area is also plastic.

Plasticity in the excitatory feedforward and feedback weights, w+
H and w+

E respectively, is described

by Eq. (27). The plasticity at the late-learning site v is described, as before, by Eq. (S.61). Similar

to the circuits with fixed strength feedback, we can show how changes at the early-learning site

can be successfully consolidated post-training if the circuit either has plasticity at w−
H (and/or

w−
E), or through inhibition of the climbing fiber instructive signal pathway, both of which reset

early-learning activity so that the output of the early-learning area does not modulate in response

to sensory input.

Below, we describe in further detail the implementation of each of these reset mechanisms in

the circuit. Then, we show that the linearized dynamics of the circuit with either reset mechanism

are the same, and determine conditions under which learning and consolidation occur stably. In

general, learning of a target input-output gain and post-training consolidation will be locally stable

around its fixed point as long as the weight of the feedback pathway wE stays within the region

wE < 1/(wPCkEkPF,E), so that the strength of the feedback around the loop from early- to late-

learning area and back to the early-learning area is less than 1, and if the rate of plasticity at the

early-learning sites is fast compared to the rate of plasticity at the late-learning site.

S6.1 Model formulation

We implemented the two circuit reset mechanisms by extending the model with non-plastic feedback

(see Materials and Methods, Circuit model with internal feedback loop) as follows.

Inhibitory plasticity-driven resetting For the inhibitory plasticity mechanism we model plas-

ticity in w−
H as governed by Eq. (29) and in w−

E by

dw−
E

dt
= kinh⟨PFE(t)δPC(t))⟩τinh , (S.98)

where δPC(t) = PC(t) − ⟨PC(t)⟩τf . During training with a target gain of gtarget, plasticity at

the excitatory weights to the early-learning area is driven by a climbing fiber signal carrying only

retinal slip, Eq. (12). Plasticity at the feedforward excitatory weight w+
H is driven by (negative of)

the feedforward parallel fiber-climbing fiber covariance cH(t), Eq. (S.75), leading to the simplified

learning rule for the net weight wH in Eq. (S.76), where now w∗
H,opt and w∗

H,reset are functions of
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both wE and v. Similarly, plasticity at w+
E is driven by (negative of) the feedback covariance

cE(t) = kLTD⟨δPFE(t)CF(t)⟩τf,w
≈ −kLTDkCFkPF,E · g(t)⟨Ḣ(t) tanh[βlight(g

target − g(t))Ḣ(t)]⟩τf,w . (S.99)

As for the feedforward input, we note that

gtarget − g(t) =
wPCkEkPF,E · gtarget

1 − wPCkEw̃E(t)
(w∗

E,opt(wH(t), v(t)) − wE(t)), (S.100)

where we define

w∗
E,opt(wH , v) =

1

wPCkEkPF,E

[
1 − kE

gtarget
(kMFv − wPCkPF,HwH)

]
, (S.101)

i.e., the value of wE that would minimize errors for a fixed choice of wH and v. Further defining

w∗
E,reset(wH , v) =

kPF,HwH

kEkPF,EkMFv
, (S.102)

we can write a combined learning rule for the net feedback weight wE ,

dwE

dt
≈ δtrainkLTDkCFkPF,E · g

〈
Ḣ tanh

[
βlight

wPCkEkPF,E · gtarget

1 − wPCkEkPF,EwE

(
w∗
E,opt(wH , v) − wE

)
Ḣ

]〉
τf,w

+
kinhk

2
PF,Eσ

2
H · g · kEkMFv

1 − wPCkEkPF,EwE

(
w∗
E,reset(wH , v) − wE

)
, (S.103)

where δtrain = 1 during training. Post-training, δtrain = 0 since Ṙ ≡ 0, which implies that cH(t) =

cE(t) ≡ 0. Similarly, post-training plasticity at wH is governed by Eq. (S.63).

Inhibition of instructive signals-driven resetting For the inhibition of instructive signals

mechanism, we assume the inhibitory weight is fixed and that plasticity at both w+
H and w+

E is

governed by the climbing fiber response defined in Eq. (30) (Fig. S2A). More specifically, plasticity

at w+
H is driven by cH(t) as defined in Eq. (S.77), and we can similarly write the feedback parallel

fiber-climbing fiber covariance that drives plasticity at w+
E as

cE(t) ≈ −kLTDkCFkPF,E ·g(t)⟨Ḣ(t) tanh[δtrainβlight(g
target−g(t))Ḣ(t) +βresetδPC(t)]⟩τf,w , (S.104)

where gtarget is the target gain of the circuit during training, and δtrain = 1 during training and 0

post-training. From this, we can write that plasticity of the net weight wE is governed by
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dwE

dt
≈ kLTDkCFkPF,E · g

〈
Ḣ tanh

[(
δtrainβlight

wPCkEkPF,E · gtarget

1 − wPCkEkPF,EwE

(
w∗
E,opt(wH , v) − wE

)
+ βreset

kPF,EkEkMFv

1 − wPCkEkPF,EwE

(
w∗
E,reset(wH , v) − wE

))
Ḣ

]〉
τf,w

, (S.105)

where w∗
E,opt and w∗

E,reset are defined by Eq. (S.101) and Eq. (S.102) above.

In Figure S2, we simulated the time evolution of the weights in the circuit implementing this

latter mechanism for a 0.5 h period of training to increase the gain to gtarget = 2 followed by a 23.5

h post-training period. The model parameters were the same as for the model without plasticity

of the feedback pathway (Tables S1–S3; see Materials and Methods, Simulation of oculomotor

learning).

S6.2 Stability of shared linearized dynamics

Here we extend the analyses of the model without plastic feedback during the training (§S5.2) and

post-training (§S5.1) periods to the case of plastic feedback.

Training We consider the system of differential equations for the three synaptic weights wH ,

wE and v from Eq. (S.61) and either Eq. (S.76) and Eq. (S.103) for the inhibitory plasticity reset

mechanism, or Eq. (S.78) and Eq. (S.105) for the inhibition of instructive signals reset mechanism.

For either mechanism, there is a line of steady states (parameterized by s),
w∗
H

w∗
E

v∗

 =


kPF,E/kPF,H · gtarget

1

0

 s +


0

0

gtarget/(kEkMF)

 , (S.106)

along which w∗
H = w∗

H,opt = w∗
H,reset and w∗

E = w∗
E,opt = w∗

E,reset. This corresponds to the intersec-

tion of the surface in weight space that leads the circuit to produce the target gain gtarget with the

surface defined by Eq. (S.62).

To analyze the stability of the fixed points defined by this line, we calculate the eigenvalues of

the Jacobian of the system of differential equations. We note that the Jacobian has the same form

for both reset mechanisms after substituting the relevant expressions for kreset, as defined in Eq.

(S.84), into the differential equations. Leaving Eq. (S.106) parameterized by w∗
E (i.e., taking an

arbitrary value of s), we calculate the characteristic polynomial of the Jacobian, which has three

roots. One of the roots is λ1 = 0 and corresponds to the direction along the line of steady states.

Dividing this root out, we are left with λ2 + aλ + b = 0 for determining the remaining eigenvalues

λ2 and λ3, where
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a = −(λ2 + λ3) =
σ2
H

1 − wPCkEkPF,Ew∗
E

·[
(kreset + klight)(k

2
PF,H + (gtarget)2k2PF,E) − kv,heterok

2
MFkEkPF,Ew

∗
E

]
(S.107)

b = λ2λ3 = kv,heterokEk
2
MFkLTDkCFβlightσ

4
H

(gtarget)2k2PF,E + k2PF,H
1 − wPCkEkPF,Ew∗

E

, (S.108)

using klight and kreset as defined in Eqs. (S.83) and (S.84). For the eigenvalues to have negative real

parts, we must have a > 0 and b > 0. For wE < 1/(wPCkEkPF,E), since all parameters are positive

and σ2
H > 0 during training, b > 0 is satisfied. a > 0 is satisfied if

1

τwH ,light
+

1

τwE ,light
>

1

τv
, (S.109)

where τwH ,light and τv are defined as in Eqs. (S.82) and (S.68) and depend on the value of w∗
E that

parameterizes the fixed point as well as on σ2
H , and where

τwE ,light(σ
2
H , w∗

E) =
1 − wPCkEkPF,Ew

∗
E

(kreset + klight)(gtargetkPF,E)2σ2
H

. (S.110)

That is, for stable learning, the sum of the instantaneous effective rates of plasticity of the early-

learning sites wH and wE should be faster than the instantaneous effective rate of plasticity at the

late-learning site v, extending the result from the fixed-strength feedback case above.

Assuming that w∗
E is upper-bounded by 1/(wPCkEkPF,E), and assuming that the circuit is

learning only positive gains so that gtarget > 0, we can satisfy Eq. (S.109) for the whole range of

w∗
E and potential gains with a stricter condition

kv,heterok
2
MF

k2PF,H(klight + kreset)
< wPC. (S.111)

Post-training In the absence of information about errors, we take δtrain = 0 in Eqs. (S.103) and

(S.105). Then, the steady states of the dynamics lie along the surface represented by Eq. (S.62).

Calculating the eigenvalues of the Jacobian at a fixed point (kEw̃
∗
E ṽ

∗/kPF,H , w∗
E , v

∗), parameterized

by w∗
E and v∗, we find that there are two zero eigenvalues, corresponding to the surface in Eq. (S.62),

and a third eigenvalue

λ = −
σ2
H

1 − wPCkEw̃∗
E

(
kreset(k

2
PF,H + (kPF,EkEkMFv

∗)2) − kv,heterok
2
MFkEkPF,Ew

∗
E

)
, (S.112)

which is negative if σ2
H > 0, w∗

E < 1/(wPCkEkPF,E) and

1

τwH ,dark
+

1

τwE ,dark
>

1

τv
, (S.113)
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where τwH ,dark and τv are defined as in Eq. (S.67) and Eq. (S.68) and depend on the value of w∗
E

that parameterizes the fixed point as well as on σ2
H , and where

τwE ,dark(σ2
H , w∗

E , v
∗) =

1 − wPCkEkPF,Ew
∗
E

kreset(kPF,EkEkMFv∗)2σ2
H

. (S.114)

For w∗
E < 1/(wPCkEkPF,E), and assuming v∗ > 0, we can write a single stricter condition that is

equivalent to Eq. (S.91) to satisfy Eq. (S.113). If this condition is met, then the surface of fixed

points Eq. (S.62) will be locally attractive during the post-training period, and since Eq. (S.111)

will be automatically satisfied, the dynamics during training will be locally stable around the fixed

point as well.
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Figure S1: Synaptic weight dynamics of the feedforward-architecture model during training. (A) Dynamics of weights (top)
and the gain of the circuit (bottom) during 48 h of simulated training to increase the sensory input-to-motor output gain of
the circuit. (B) Trajectory (orange curve) shows the evolution of synaptic weights in A, which approaches the stable fixed
point where the wH - and v-nullclines (light and dark grey lines) cross. For clarity, the orange trajectory is shown as dashed
where it overlaps the wH -nullcline. (C ) The nullclines (grey to black lines) and fixed points (orange circles) of the system for
different choices of desired input-to-output gain value (shown by lightness). Any target gain value can be learned by the system,
corresponding to a fixed point lying along the line wH = 0. These points are thus also stable when information about behavioral
errors is not present.
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Figure S2: Systems consolidation in a circuit with plastic internal feedback loop. (A) Architecture of circuit with three sites
of plasticity, at the feedforward weight onto the early-learning area, wH (blue), at the weight of the internal feedback pathway,
wE (pink), and at the direct pathway onto the late-learning area, v (red). As in Fig. 6F, the post-training reset was achieved
by inhibition of the pathway carrying instructive signals to the early-learning area. (B) Change in weights during 0.5 h of
simulated training to increase the gain (orange block) followed by 23.5 h post-training with no feedback about behavioral errors
(grey block). (C ) Early-learning area output (amplitude of Purkinje cell activity relative to moving baseline), which drives
consolidation at the late-learning site. (D) Change in the gain of the eye movement response (black line). Blue and red shaded
areas show the contributions of the early- and late-learning areas to the circuit transformation. (E) Trajectory of synaptic
weights during the training (orange) and post-training (black) periods. Dashed black lines show the projection of the steady
state reached at the end of training onto the wH -wE plane. Grey arrows show the approximate instantaneous direction in
which a weight configuration at a given point in synaptic weight space will evolve during the post-training period, determined
analytically. Trajectories tend toward a 2-D surface of marginally stable points (solid grey surface).
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Figure S3: Synaptic weight dynamics during training of the model with feedback architecture. (A) Dynamics of weights (top)
and the gain of the circuit (bottom) during 48 h of simulated training to increase the sensory input-to-motor output gain of
the circuit, using the inhibitory plasticity reset mechanism. (B) Trajectory (orange curve) shows the evolution of synaptic
weights in A. All trajectories approach a stable fixed point where the wH - and v-nullclines cross. The second grey line that
the trajectory follows corresponds to the constant gain line for the target gain. (C,D) Same as A,B, but for the inhibition of
instructive signals reset mechanism. In panels B and D, for clarity, the orange trajectory is shown as dashed where it overlaps
the wH -nullcline.
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Table S1: Values and descriptions for parameters of feedforward circuit model. Sources for values taken from the
literature are provided in the right-hand column. Parameters that were calculated based on published values are
indicated as “based on” a source.

Parameter Value Description Source

MF0 55 sp/s Mossy fiber (MF) spontaneous baseline rate
Lasker et al. (2008)

kMF 0.14 (sp/s)/(deg/s) MF sensitivity to vestibular input

PF0 14 sp/s Parallel fiber (PF) spontaneous baseline
rate

Based on Arenz et al.
(2008)

kPF 0.42 (sp/s)/(deg/s) PF sensitivity to vestibular input

PC0 50 sp/s Purkinje cell spontaneous baseline rate Katoh et al. (2015)

MVN0 −12 sp/s Correction factor to make medial vestibular
nucleus (MVN) spontaneous baseline rate =
57 sp/s

Beraneck & Cullen
(2007)

CF0 1 sp/s Climbing fiber (CF) spontaneous baseline
rate

E.g., Goossens et al.
(2004) and Maruta et
al. (2007)

kCF 1 sp/s Maximum amplitude of CF response around
baseline

βlight 1 s/deg Scale factor for saturation of CF response

kE 2.2 (deg/s)/(sp/s) Eye velocity sensitivity to MVN firing
Based on Beraneck &
Cullen (2007)

kLTP 1.005 s/sp Contribution of parallel fiber firing to plas-
ticity at early-learning site wH

Based on amount of
learning in Kimpo
et al. (2014) and
Boyden & Raymond
(2003)

kLTD 0.648 (s/sp)2 Contribution of parallel fiber-climbing fiber
coincidence to plasticity at wH

τw,train 0.15 h Time constant of plasticity at wH during
training

Boyden & Raymond
(2003)

τw,post 5 h Time constant of plasticity at wH after
training

Based on Cooke et
al. (2004) and Jang
et al. (2020)

kv,hetero 2.75 × 10−5 (s/sp)2/h Plasticity rate at late-learning site v for het-
erosynaptic rule

kv,Hebb 8 × 10−3 (s/sp)2/h Plasticity rate at v for Hebbian rule

Continues on next page
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Table S1 continued.

Parameter Value Description Source

τf 1 min Timescale of fast average used to calculate eye
movement output

τf,w 1 min Timescale of average used in plasticity rule at wH

τf,v
1 min (Fig. 2)

Timescale of average used in plasticity rule at v
0.7 h (Fig. 3)

τs 0.0395 h Timescale of sliding average θ in Hebbian rule for v

w−
H 5 Nonplastic molecular layer interneuron to Purkinje

cell weight

Consistent with
weight change in
Jang et al. (2020)

w+
H,0 5 Initial value of early-learning, PF-Purkinje cell

weight wH

wPC 0.05 Purkinje cell to MVN synaptic strength
Based on Payne et al.
(2019)

v0 1.3 Initial value of late-learning MF-MVN weight v
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Table S2: Values, descriptions and sources for parameters of circuit model with internal efference copy feedback,
using the climbing fiber negative feedback reset mechanism. All other parameters same as in Table S1.

Parameter Value Description Source

kPF,H 0.42 (sp/s)/(deg/s) PF sensitivity to vestibular input Based on Arenz et al.
(2008)kPF,E 0.42 (sp/s)/(deg/s) PF sensitivity to efference copy input

PC0 −75 sp/s Correction factor to make Purkinje cell spon-
taneous baseline rate = 50 sp/s

Katoh et al. (2015)

MVN0 −9.9 sp/s Correction factor to make MVN spontaneous
baseline = 57 sp/s

Beraneck & Cullen
(2007)

kLTD 0.75 (s/sp)2/h Contribution of PF firing to plasticity at
early-learning site wH

kLTP 0.75 (s/sp)/h Contribution of PF-CF coincidence to plas-
ticity at wH

βlight 1 s/deg Slope parameter for error-driven plasticity

βreset 0.0125 s/sp Slope parameter for reset plasticity

kv,hetero 3.6 × 10−3 (s/sp)2/h Plasticity rate at v

w+
H,0 2.5 Initial value of excitatory feedforward early-

learning weight w+
H

w−
H 5 Nonplastic molecular layer interneuron to

Purkinje cell weight

Consistent with
weight change in
Jang et al. (2020)

w+
E 8.43 Nonplastic excitatory weight of efference

copy input to Purkinje cell
Net weight based on
Katoh et al. (2015)

w−
E 2 Nonplastic inhibitory weight of efference copy

input to Purkinje cell

v0 1.26 Initial value of late-learning weight

Table S3: Values and descriptions of parameters of circuit model with internal efference copy feedback, using the
inhibitory plasticity reset mechanism. All other parameters same as in Tables S1 and S2.

Parameter Value Description

kinh 0.01 (s/sp)2/h Maximum rate of reset plasticity

kv,hetero 3.9 × 10−3 (s/sp)2/h Plasticity rate at v

τinh 1 min Timescale of sliding average of PC activity
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