

1

2 PVN-mPFC OT projections modulates pup-directed pup 3 care or attacking in virgin mandarin voles

4 Lu Li, Yin Li, Caihong Huang, Wenjuan Hou, Zijian Lv, Lizi Zhang, Yishan Qu,
5 Yahan Sun, Kaizhe Huang, Xiao Han, Zhixiong He*, Fadao Tai*.

6 * co-corresponding author

7 hezhixiong@snnu.edu.cn

8 taifadao@snnu.edu.cn

9 Shaanxi Normal University, China

10 **Abstract**

11 In many species, adult animals may exhibit caregiving or aggression towards
12 conspecific offspring. The neural mechanisms underlying the infanticide and pup care
13 remain poorly understood. Here, using monogamous virgin mandarin voles (*Microtus*
14 *mandarinus*) that may exhibit pup care or infanticide, we found that more oxytocin
15 (OT) neurons in the paraventricular nucleus (PVN) were activated during pup caring
16 than infanticide. Optogenetic activation of OT neurons in the PVN facilitated
17 pup-caring in male and female mandarin voles. In infanticide voles, optogenetic
18 activation of PVN OT cells prolonged latency to approach and attack pups, whereas
19 inhibition of these OT neurons facilitated approach and infanticide. In addition, OT
20 release in the medial prefrontal cortex (mPFC) in pup-care voles increased upon
21 approaching and retrieving pups, and decreased in infanticide voles upon attacking
22 pups. Optogenetic activation of PVN OT neuron projections to the mPFC shortened
23 the latency to approach and retrieve pups and facilitated the initiation of pup care,
24 whereas inhibition of these projections had little effect. For pup-care females, neither
25 activation nor inhibition of the fibers affected their behavior towards pups. In
26 infanticide male and female voles, optogenetic activation of PVN-mPFC OT
27 projection fibers prolonged the latency to approach and attack pups and suppressed
28 the initiation of infanticide, whereas inhibition of these projections promoted
29 approach and infanticide. Finally, we found that intraperitoneal injection of OT
30 promoted pup care and inhibited infanticide behavior. It is suggested that the OT
31 system, especially PVN OT neurons projecting to mPFC, modulates pup-directed
32 behaviors and OT can be used to treat abnormal behavioral responses associated with
33 some psychological diseases such as depression and psychosis.

34

35 **Introduction**

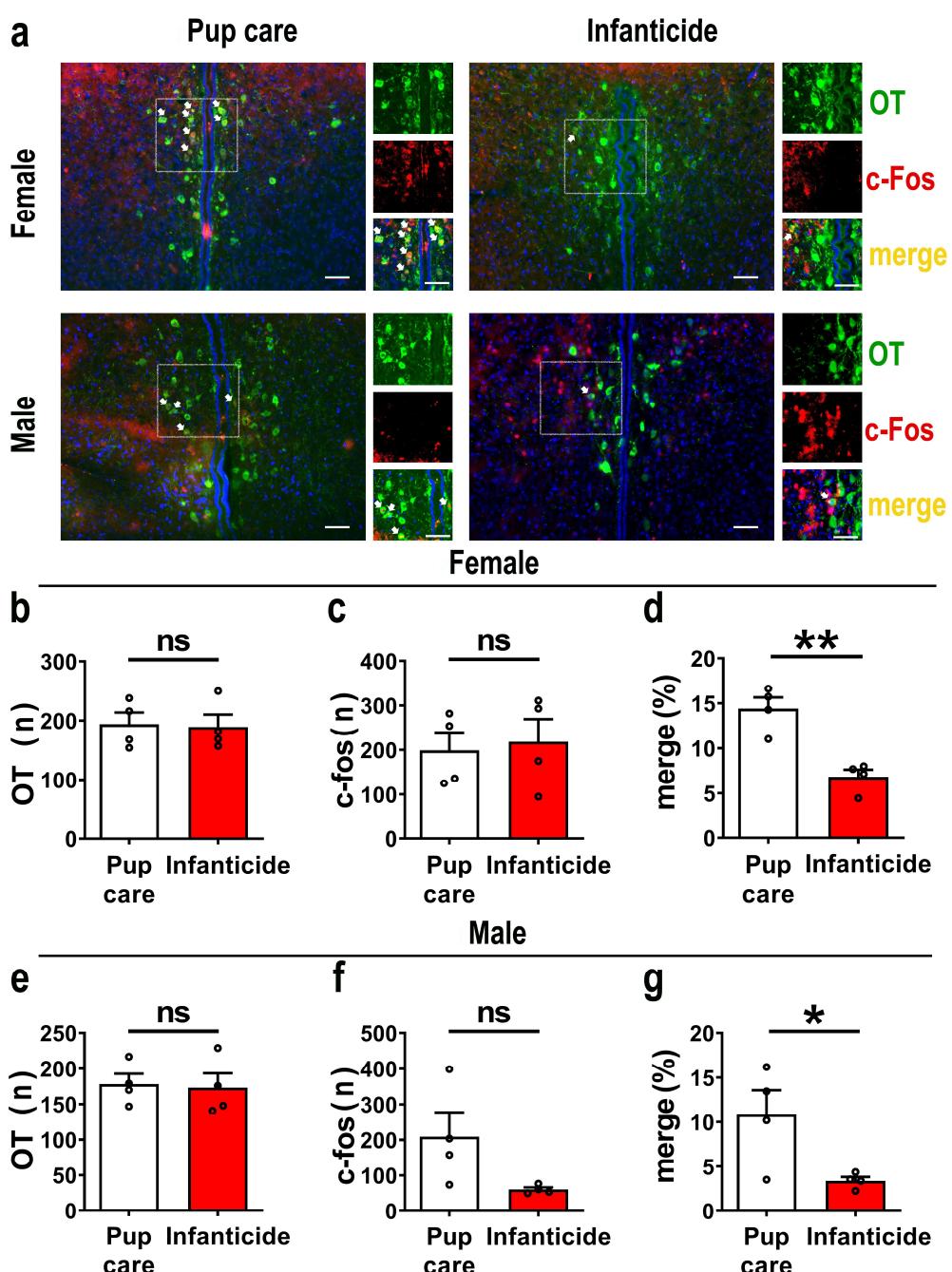
36 Both paternal and maternal care are critical to the survival as well as the physical
37 and mental well-being of the offspring (He et al., 2019). Although we know a great
38 deal about the neural mechanisms underlying maternal care, the neural substrates of
39 paternal behavior remain elusive because of lacking ideal animal model of paternal

40 care. Only in some monogamous rodents (e.g. prairie voles), canids and primates, do
41 males assist and spend a great deal of energy caring for pups (Malcolm, 2015;
42 Mendoza & Mason, 1986; Rosenfeld, Johnson, Ellersieck, & Roberts, 2013).
43 However, some male rodents without reproductive experience also show paternal care
44 toward alien pups, while some others ignore or even attack alien pups (Dai et al.,
45 2022). These different pup-directed behavioral responses are based on their
46 physiological and environmental states, and the killing of young of the conspecifics
47 by sexually inexperienced mammals is a widespread phenomenon among different
48 animal taxa (Lukas & Huchard, 2014). Infanticide is thought to benefit the infanticide
49 by promoting their own reproduction (Hrdy, 1974). In laboratory mice, male mice
50 without pairing experience typically display infanticide (Svare & Mann, 1981), but
51 males are able to shift from infanticide to pup care when they have the opportunity to
52 encounter their own offspring (Elwood, 1977). Compared to our extensive
53 understanding of the maternal circuit, little is known about the neural substrates
54 underlying female infanticide. The virgin mandarin voles (*Microtus mandarinus*)
55 naturally exhibit biparental care and infanticide in both female and male that provide
56 ideal animal model to reveal mechanism underlying paternal care in male and
57 infanticide in females.

58 OT is well-known as a key hormone for initiating and maintaining maternal care
59 (Yoshihara, Numan, & Kuroda, 2018), which is primarily synthesized in the PVN and
60 supraoptic nucleus (SON), among which the PVN plays an important role in initiating
61 maternal care in rats (Munetomo, Ishii, Miyamoto, Sakuma, & Kondo, 2016). There is
62 evidence to suggest that OT not only regulates maternal motivation, but also mediates
63 paternal behavior (Bales, Kim, Lewis-Reese, & Sue Carter, 2004). When mouse
64 fathers were exposed to their pups, OT neurons in the PVN were specifically activated
65 and they also showed more aggression towards intruders to protect the own pups
66 (Shabalova et al., 2020). Compared with rodents, similar neuropeptides and hormones
67 are involved in paternal behavior in non-human primates (Woller et al., 2012). Similar
68 to other mammals, paternal care only exists in a few primate species (Dulac,
69 O'Connell, & Wu, 2014; Woller et al., 2012). A study on marmoset monkeys showed
70 that fathers have higher levels of OT secretion in the hypothalamus than non-fathers
71 (Woller et al., 2012), and intraventricular infusion of OT reduces the tendency of
72 marmoset fathers to refuse to transfer food to their young offspring (Saito &
73 Nakamura, 2011). However, where and how pathways of OT neurons regulate pup
74 care and infanticide behavior remain largely unknown.

75 The mPFC is involved in attention switching, decision-making, behavioral
76 flexibility and planning, making it potentially crucial for rapidly expressing pup care
77 or infanticide behavior. A study on virgin male and female mice found that the mPFC
78 lesion (targeting the prelimbic cortex) significantly affected number of females and
79 males showing pup cares and infanticide. 50% females in lesioned group exhibited
80 maternal while 100% of sham operated groups show maternal care, whereas the 100%
81 lesioned males exhibited infanticide, 83% of control males showed infanticide
82 (Alsina-Llanes & Olazábal, 2021). It has been reported that the mPFC is highly
83 activated in human mothers when they hear cry from their babies (Lorberbaum et al.,

84 2002). The mPFC is also activated when rat mother contacts their pups first time
85 (Fleming & Korsmit, 1996), while the damage of the mPFC disrupts pup retrieving
86 and grooming behavior in rats (Afonso, Sison, Lovic, & Fleming, 2007). In rodents
87 and humans, the mPFC was activated during the process of caring offspring
88 (Hernández-González, Navarro-Meza, Prieto-Beracoechea, & Guevara, 2005; Seifritz
89 et al., 2003). A study in rat mothers indicated that inactivation or inhibition of neurons
90 in the mPFC largely reduced pup retrieval and grouping (Febo, Felix-Ortiz, &
91 Johnson, 2010). In a subsequent study on firing patterns in the mPFC of rat mother
92 suggested that sensory-motor processing carried out in the mPFC may affect decision
93 making of maternal care to their pups (Febo, 2012). Examining different regions of
94 the mPFC (anterior cingulate (Cg1), prelimbic (PrL), infralimbic (IL)) of new mother
95 identified a role for the IL cortex in biased preference decision-making in favour of
96 the offspring (Pereira & Morrell, 2020). A study on rats suggests that the IL and Cg1
97 subregion in mPFC are the motivating circuits for pup-specific biases in the early
98 postpartum period (Pereira & Morrell, 2011), while the PrL subregion, are recruited
99 and contribute to the expression of maternal behaviors in the late postpartum period
100 (Pereira & Morrell, 2011). In addition, a large number of neurons in the mPFC
101 express oxytocin receptors (OTRs) (Smeltzer, Curtis, Aragona, & Wang, 2006). OT in
102 the circulation of mice can act on the medial prefrontal cortex (mPFC) to increase
103 social interaction and maternal behavior (Munesue et al., 2021). Although there are
104 some studies on the role of the mPFC in pup care, the involvement of mPFC OT
105 projections in pup cares and infanticide requires further research. Thus, we
106 hypothesized that PVN OT neurons projections to mPFC may causally control
107 paternal or infanticide behaviors.


108 Based on the potential antagonistic effects between pup care and infanticide
109 behavior in neural mechanisms (Dulac et al., 2014; Kohl, Autry, & Dulac, 2017; Mei,
110 Yan, Yin, Sullivan, & Lin, 2023), as well as the potential role of PVN-to-mPFC OT
111 projections in pup care and infanticide. Here, a combination of methods, including
112 immunohistochemistry, optogenetics, fiber photometry and intraperitoneal injection of
113 OT were used to reveal neural mechanisms underlying paternal care and infanticide.
114 We found that PVN OT neurons regulated the expression of pup care and infanticide,
115 and further identified the involvement of PVN-to-mPFC OT projections in paternal
116 care and infanticide. Collectively, these findings establish a regulatory role for
117 PVN-to-mPFC OT neurons in the expression of pup-directed behaviors and suggest
118 potential targets for the future development of intervention strategies against
119 psychiatric disorders associated with infanticide such as depression and psychosis.

120 Results

121 Pup care behavior activate more OT⁺ cells than infanticide in PVN

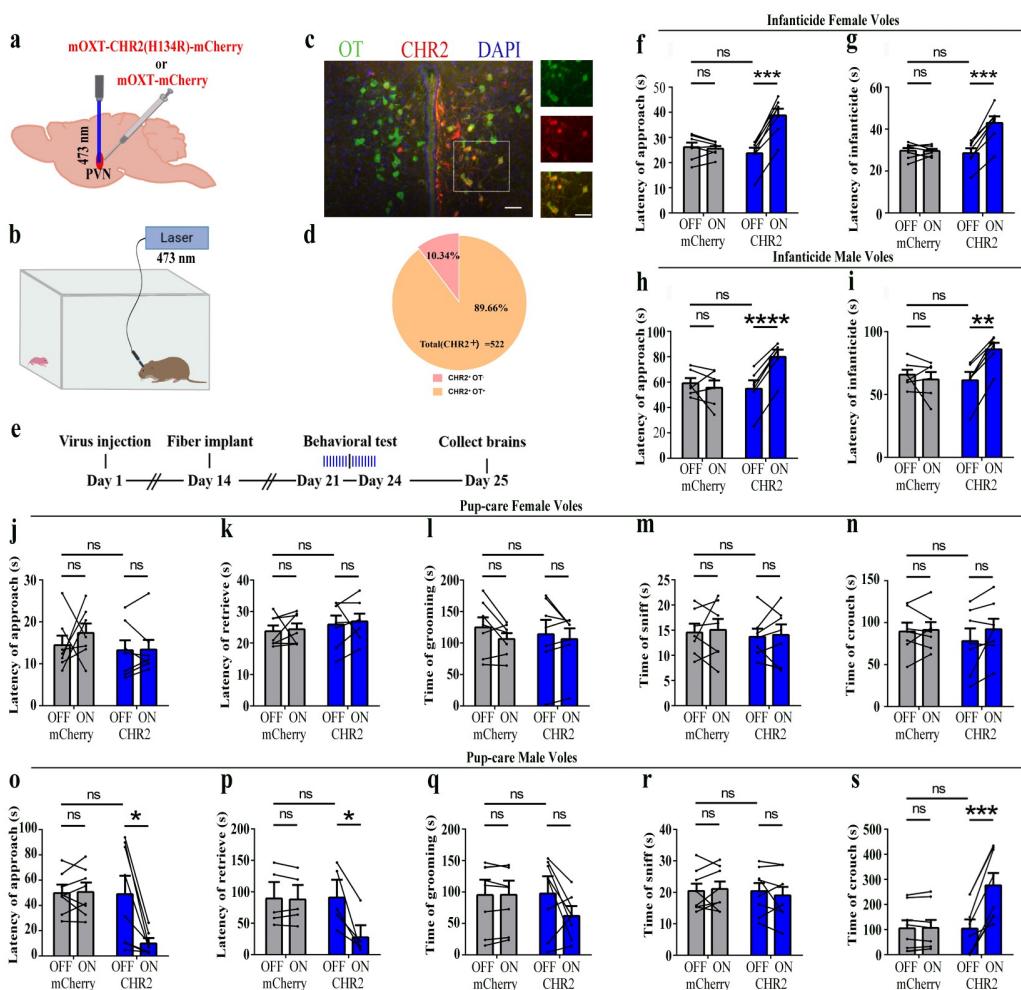
122 In order to observe the activated OT neurons in virgin voles during pup care and
123 infanticide behaviors, we co-stained OT and c-Fos on brain slices from voles
124 exhibiting different behaviors using immunofluorescence method (Fig. 1a).
125 Histological analysis showed no difference in the number of OT or c-Fos positive
126 cells between the pup care and infanticide groups of female (Fig. 1b,c, Fig. 1-source

127 data 1) and male (Fig. 1e,f, Fig. 1-source data 1) voles. Approximately 11% (male)
128 and 14% (female) of OT cells expressed c-Fos during pup caring, whereas only about
129 3% (males) and 7% (females) of OT neurons were labeled by c-Fos during infanticide
130 (female: $t (6) = 5.173, P < 0.01$, $d = 3.658$, Fig. 1d, Fig. 1-source data 1; male: $t (6)$
131 = 2.607, $P < 0.05$, $d = 1.907$, Fig. 1g, Fig. 1-source data 1). In male and female voles,
132 more OT neurons were activated during pup-caring than infanticide (Fig. 1d, g). In
133 addition, females displaying pup care and infanticide showed higher merge rates of
134 OT and c-Fos than males displaying the same behaviors ($F(1,12) = 5.002, P = 0.045$,
135 $\eta^2 = 0.294$, Fig. 1d, g, Fig. 1-source data 1).

136

137 Figure 1: Activated OT neurons in the PVN of mandarin voles during pup care (n =4) and

138 infanticide (n = 4).
139 a. Representative histological images of OT (green) and c-Fos (red) positive cells in PVN: Blue,
140 DAPI: Yellow, merged cells. Enlarged views of the boxed area were shown to the right of each
141 image, white arrows indicated the overlap of OT and c-fos positive cells. Objective: 20x. Scale
142 bars, 50 μ m. b. Number of OT positive cells in pup care and infanticide female voles. c. Number
143 of c-Fos positive cells in pup care and infanticide female voles. d. Percentage of c-Fos-expressing
144 cells in OT cells of PVN from pup care and infanticide female voles. ** P < 0.01. Independent
145 sample t-tests. e. Number of OT cells in pup care and infanticide male voles. f. Number of c-Fos
146 cells in pup care and infanticide male voles. g. Percentage of c-Fos-expressing cells in OT cells of
147 PVN from pup care and infanticide male voles. * P < 0.05. Independent sample t-tests. Error bars
148 indicate SEM.


149 Figure 1-source data 1.

150 Statistical results of the number of OT-positive cells, the number of c-Fos-positive
151 cells, and the percentage of OT and c-Fos merged neurons in the total PVN OT
152 neurons in female and male pup-care and infanticide voles.

153

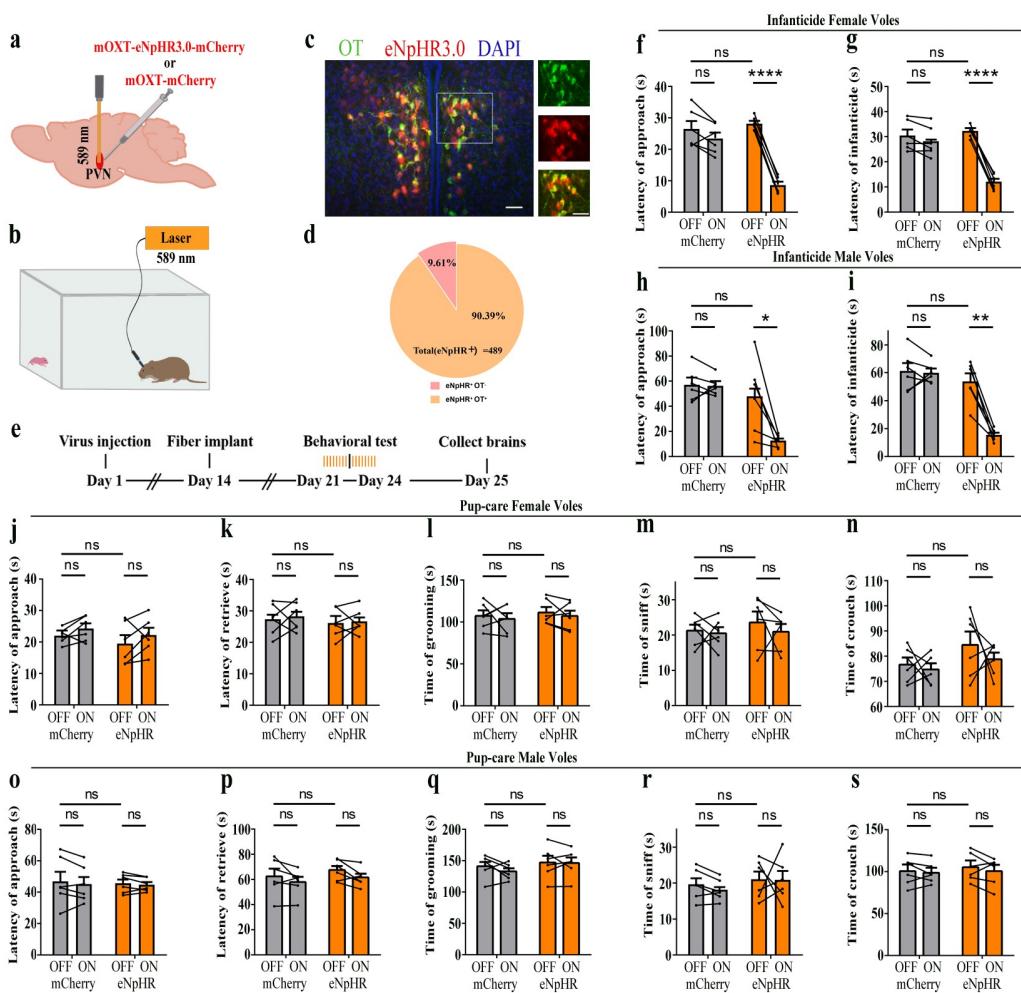
154 **Effects of optogenetic activation of PVN OT neurons on pup-directed behaviors**

155 To reveal causal role of PVN OT neuron in regulation of pup-care and infanticide
156 behaviors, effects of optogenetic activation of PVN OT neurons on pup-directed
157 behaviors were investigated (Fig. 2 a,b,c). Over 89% of CHR2 expression overlapped
158 with OT neurons indicating high specificity of CHR2 virus (Fig. 2d, Figure 2-source
159 data 1). 473 nm light stimulation increased c-Fos expression in CHR2 virus infected
160 brain region that validated the effect of optogenetic activation (Supplementary Data
161 Fig. 1a-c). We found that optogenetic activation of PVN OT cells significantly reduced
162 latency to approach (CHR2: off vs on F (1, 7) = 11.374, P < 0.05, OFF/ON: η^2 =
163 0.592, Fig. 2o, Figure 2-source data 1) and retrieve pups (CHR2: off vs on F (1, 4) =
164 14.755, P < 0.05, OFF/ON: η^2 = 0.156, Fig. 2p, Figure 2-source data 1) and prolonged
165 crouching time (CHR2: off vs on F (1, 7) = 60.585, P < 0.001, OFF/ON: η^2 = 0.419,
166 Fig. 2s, Figure 2-source data 1) in pup-care males, but had no effect on females (Fig.
167 2j-n, Figure 2-source data 1), nor in control virus group. Optogenetic activation of
168 these neurons significantly reduced the latency to approach and attack pups in male
169 (approach: CHR2: off vs on F (1, 5) = 185.509, P < 0.0001, OFF/ON: η^2 = 0.552, Fig.
170 2h, Figure 2-source data 1; infanticide: CHR2: off vs on F (1, 5) = 59.877, P < 0.01,
171 OFF/ON: η^2 = 0.526, Fig. 2i, Figure 2-source data 1) and female voles (approach:
172 CHR2: off vs on F (1, 6) = 64.810, P < 0.001, OFF/ON: η^2 = 0.915, Fig. 2f, Figure
173 2-source data 1; infanticide: CHR2: off vs on F (1, 6) = 75.729, P < 0.001, OFF/ON:
174 η^2 = 0.940, Fig. 2g, Figure 2-source data 1) displaying infanticide behaviors whereas
175 had no effect on control virus group (Fig. 2f-I, Figure 2-source data 1). Further, we
176 conducted a two-way rmANOVA on the CHR2 data set for both sexes and found that
177 pup-care females exhibited shorter latencies to approach (OFF: gender simple effect
178 F(1,13) = 5.735, P = 0.032, η^2 = 0.306, Fig. 2j, o) and retrieve pups (OFF: gender
179 simple effect F(1,10) = 13.040, P = 0.005, η^2 = 0.566, Fig. 2k, p) than males (Figure
180 2-source data 1). These results suggest that activation of PVN OT neurons facilitate
181 pup care behavior and significantly inhibit infanticide behavior.

182

183

Fig.2 Effects of optogenetic activation of PVN OT neurons on pup-directed behaviors


184 a. Schematic of virus injection and optical fiber implantation. b. Schematic diagram of the
 185 behavioral test. c. Representative histologic images of CHR2 (red) expression and OT staining
 186 (green), enlarged view of the boxed area is on the right side. Blue, DAPI. Objective: 20x. Scale
 187 bars, 50 μ m. d. Statistics on the specificity of CHR2 expression in 3 voles, more than 89% of
 188 CHR2 positive neurons overlapped with OT positive neurons. e. Time line of the experiment. f-i,
 189 Approach (f, h) and infanticide (g, i) latency of infanticide 7 female and 6 male voles in mCherry
 190 (control virus group) and CHR2 groups. ** P < 0.01 vs. CHR2 OFF; *** P < 0.001 vs. CHR2 OFF;
 191 **** P < 0.0001 vs. CHR2 OFF. Two-way rmANOVA (factors: treatment \times stimulus). j-n, Latency
 192 to approach (j), latency to retrieve (k), grooming time (l), sniffing time (m) and crouching time (n)
 193 of 7 pup-care female voles in female control virus and CHR2 groups. o-s, Latency to approach (o),
 194 latency to retrieve (p), grooming time (q), sniffing time (r) and crouching time (s) of 8 pup-care
 195 male voles in male control virus and CHR2 groups. * P < 0.05 vs. CHR2 OFF, *** P < 0.001 vs.
 196 CHR2 OFF. Two-way rmANOVA (factors: treatment \times stimulus). Error bars indicate SEM.

197 Figure 2-source data 1.

198 Statistical results of the number of cells expressing only CHR2 and co-expressing
 199 CHR2 and OT in the PVN of 3 voles with injection of optogenetic virus, the latency
 200 to approach and attack pups in infanticide voles, and the latency to approach, retrieve,
 201 duration of grooming, sniffing, and crouching in pup-care voles.

202 **Effects of optogenetic inhibition of PVN OT neurons on pup-directed behaviors**

203 To further verify the roles of PVN OT neurons on pup-induced behavior, we
204 optogenetically inhibited OT cells by eNpHR virus and tested pup-directed behaviors
205 (Fig. 3a,b,c). More than 90% of neurons expressing eNpHR overlapped with OT
206 positive neurons indicating high specificity of eNpHR virus infection (Fig. 3d,
207 Figure 3-source data 1). 589 nm light stimulation to eNpHR virus infected brain
208 regions reduced c-Fos expression verifying the effectiveness of optogenetic
209 inhibition via eNpHR virus (Supplementary Data Fig. 1d-f). Inhibition of PVN OT
210 neurons showed no significant effect on pup care behavior in male and female voles
211 that spontaneously exhibited pup caregiving behaviors (Fig. 3j-s, Figure 3-source data
212 1). For both male and female voles in the infanticide group, optogenetic inhibition
213 significantly shortened the latency to approach (female: $F(1, 5) = 1331.434, P <$
214 0.0001, OFF/ON: $\eta^2 = 0.980$, Fig. 3f, Figure 3-source data 1; male: $F(1, 5) = 10.472,$
215 $P < 0.05$, OFF/ON: $\eta^2 = 0.690$, Fig. 3h, Figure 3-source data 1) and attack pups
216 (female: $F(1, 5) = 291.606, P < 0.0001$, OFF/ON: $\eta^2 = 0.991$, Fig. 3g, Figure
217 3-source data 1; male: $F(1, 5) = 46.901, P < 0.01$, OFF/ON: $\eta^2 = 0.837$, Fig. 3i,
218 Figure 3-source data 1). In addition, we performed a two-way rmANOVA on the
219 eNpHR group data for both sexes and found that pup-care females exhibited shorter
220 latency to approach (gender main effect $F(1,10) = 62.131, P < 0.0001, \eta^2 = 0.861$, Fig.
221 3j, o) and retrieve (gender main effect $F(1,10) = 137.393, P < 0.0001, \eta^2 = 0.932$, Fig.
222 3k, p) than males (Figure 3-source data 1). These results suggest that inhibition of OT
223 neurons in the PVN significantly facilitates infanticide behavior.

224

225 Fig. 3 Effects of optogenetic inhibition of PVN OT neurons on pup-directed behaviors
226 a. Schematic of virus injection and optical fiber implantation. b. Schematic diagram of the
227 behavior test. c. Representative histological images of OT staining (green) and eNpHR (red)
228 expression, enlarged view of the boxed area is shown on the right side. Blue, DAPI. Objective:
229 20x. Scale bars, 50 μ m. d. Statistics on the specificity of CHR2 expression in 3 voles, more than
230 90% of eNpHR expression overlapped with OT. e. Time line of the experiment. f-i, Approach (f, h)
231 and infanticide (g, i) latency in 6 female (f, g) and 6 male (h, i) infanticide voles. *P < 0.05 vs.
232 eNpHR OFF; **P < 0.01 vs. eNpHR OFF; ****P < 0.0001 vs. eNpHR OFF. Two-way
233 rmANOVA (factors: treatment \times stimulus). j-n, Approach latency (j), retrieval latency (k),
234 grooming time (l), sniffing time (m) and crouching time (n) in 6 control mCherry and eNpHR
235 group of pup-care female voles. o-s, Approach latency (o), retrieval latency (p), grooming time (q),
236 sniffing time (r) and crouching time (s) in 6 control mCherry and eNpHR group of pup-care male
237 voles. Error bars indicate SEM.

238 Figure 3-source data 1.

239 Statistical results of the number of cells expressing only eNpHR and co-expressing
240 eNpHR and OT in the PVN of 3 voles with injection of optogenetic virus, the latency
241 to approach and attack pups in infanticide voles, and the latency to approach, retrieve
242 pups, duration of grooming, sniffing, and crouching in pup-care voles.

243

244 **Changes in OT release upon pup-directed behaviors**

245 The results of the optogenetic manipulation demonstrated that PVN OT neurons
246 regulated pup-induced behavior. We next detected the OT release in the mPFC during
247 pup-induced behavior by OT1.0 sensor (Fig. 4a-c). Pup-caring female and male voles
248 showed a significant increase (female: $F(1.958, 13.708) = 45.042, P < 0.001, \eta^2 =$
249 0.865; male: $F(5, 35) = 24.057, P < 0.01, \eta^2 = 0.775$) in the signal for OT1.0 sensors
250 upon approaching (female: $P < 0.01$; male: $P < 0.05$) and retrieving (female: $P < 0.01$;
251 male: $P < 0.05$), whereas there was no significant difference in the signal at the onset
252 of other behaviors compared with the signal before the introduction of the pups (Fig.
253 4f-m, Figure 4-source data 1). In addition, we compared the signals of OT1.0 sensors
254 in the pup-caring voles upon the first, second and third approaches to the pups (female:
255 $F(2, 14) = 10.917, P < 0.01, \eta^2 = 0.609$; male: $F(2, 14) = 13.351, P < 0.01, \eta^2 =$
256 0.656), OT release peaked at the first approach and tended to decrease thereafter (Fig.
257 4d,e, Figure 4-source data 1). In infanticide female and male voles, OT release
258 decreased upon attacking in infanticide males ($F(1.117, 7.822) = 85.803, P < 0.001,$
259 $\eta^2 = 0.838$) and females ($F(1.068, 7.479) = 36.336, P < 0.001, \eta^2 = 0.925$) (Fig. 4n-r,
260 Figure 4-source data 1). In addition, no significant changes in signals were detected
261 from the individuals with control AAV2/9-hSyn-OTmut during pup-directed
262 behaviors (Supplementary Data Fig. 2). In addition, no changes in OT release were
263 detected while subjects were exposed to object with similar size and shape as the pup
264 (Supplementary Data Fig. 3). Besides, we found that pup-care females showed higher
265 AUC per second than males during approaching (gender simple effect $F(1,14) =$
266 27.740, $P = 0.000119, \eta^2 = 0.665$, Fig. 4l, m, Figure 4-source data 1) and retrieving
267 (gender simple effect $F(1,14) = 11.695, P = 0.004, \eta^2 = 0.455$, Fig. 4l, m, Figure
268 4-source data 1) the pups. These results indicate that mPFC OT release significantly
269 increased upon approaching and retrieving in pup-care voles, but decreased upon
270 attacking pups in infanticide voles.

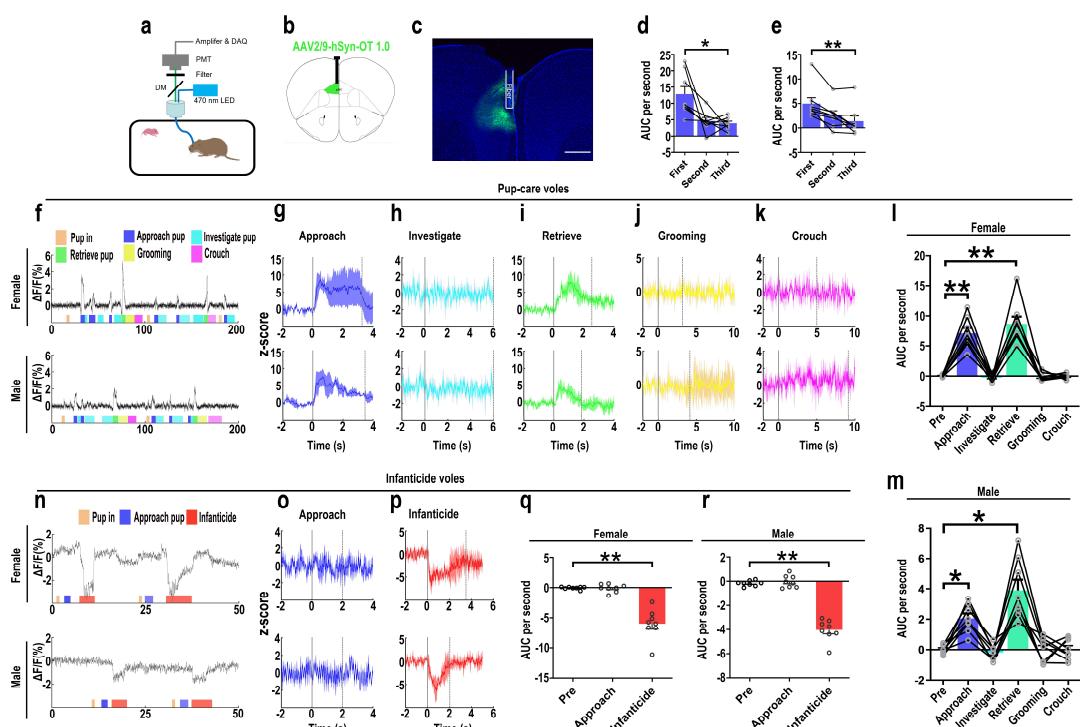
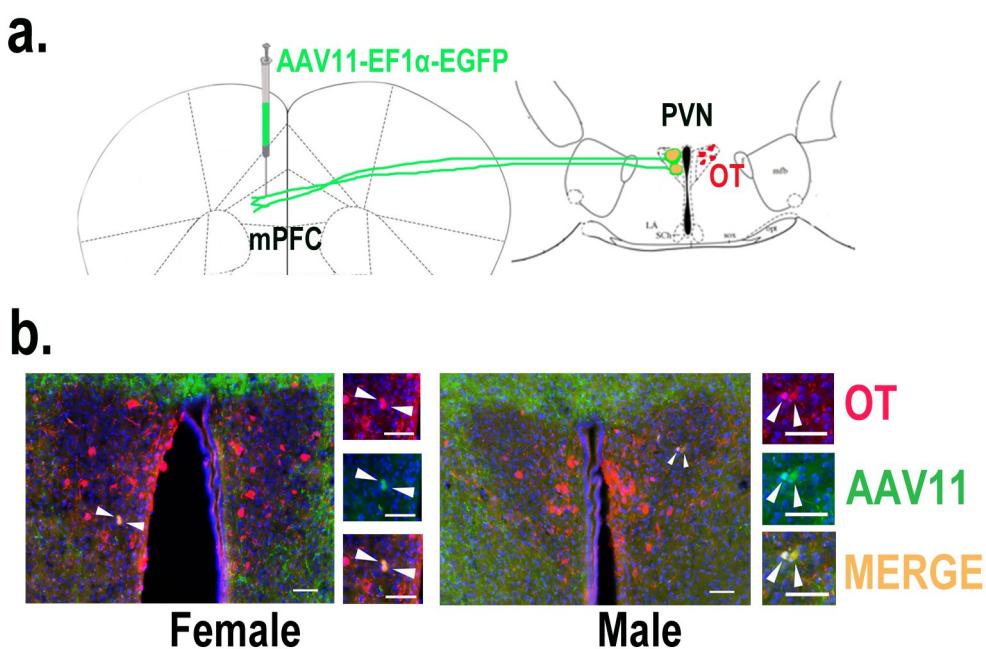
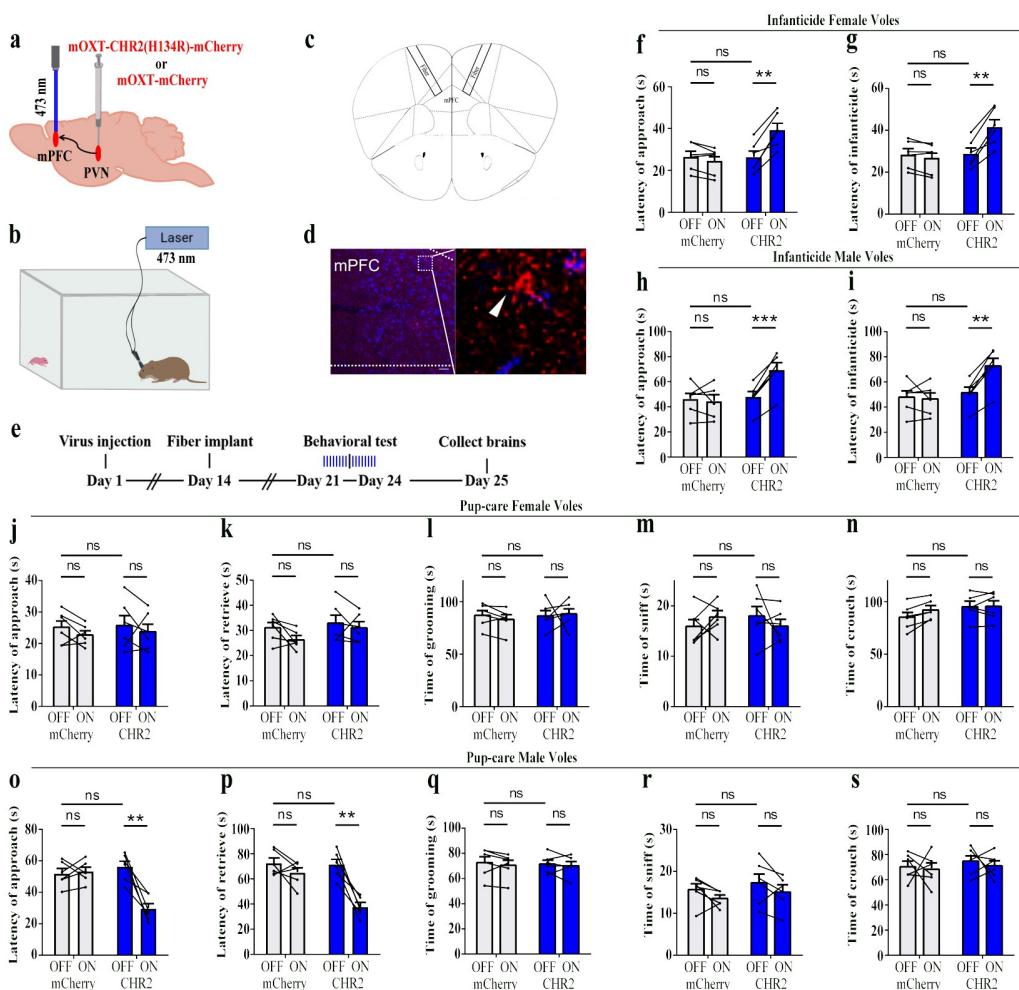


Fig. 4 OT release in the mPFC upon pup-directed behaviors

a. Recording instrument settings. b. Illustrations of viral expression and optical fibre location. c. Representative histological image of OT1.0 sensor (green) and optical fibre locations. Blue, DAPI. Objective: 4x. Scale bars, 500 μ m. d, e, Area under the curve (AUC) per second for pup-care female (d) and male (e) voles approaching pups for the first, second and third time ($n = 8$). * $P < 0.05$ vs. first. ** $P < 0.01$ vs. first. One-way rmANOVA. f. Representative $\Delta F/F$ traces in pup-care female (f, top) and male (f, bottom) voles during interaction with pups. g-k, Post-event histograms (PETHs) of z-score of OT1.0 sensor for the following pup-directed behaviors: approach (g), investigate (h), retrieve (i), grooming (j) and crouch (k). l,m, The mean AUC of z-scores for pup-care female (l) and male (m) voles across various pup-directed behaviors ($n = 8$). Female: ** $P < 0.01$ vs approach. $P < 0.01$ vs retrieve. Male: * $P < 0.05$ vs approach. $P < 0.05$ vs retrieve. One-way rmANOVA. n. Representative $\Delta F/F$ traces in infanticide female (n, top) and male (n, bottom) voles during interaction with pups. o,p, PETHs of z-score of OT1.0 sensor for approach and infanticide in infanticide voles. q,r, The mean AUC of z-score of OT1.0 sensor for pre-pup exposure, approach and infanticide in infanticide female (q) and male (r) voles ($n = 8$). ** $P < 0.01$ vs infanticide. One-way rmANOVA. Error bars indicate SEM.


Figure 4-source data 1.


Area under the curve per second for pre-pup exposure, approach, and infanticide behaviors in infanticide voles and area under the curve per second for first, second, and third approaches to pups, as well as pre-pup exposure, approach, investigation, retrieval, grooming, and crouching behaviors in pup-care voles.

Effects of optogenetic activation of PVN OT neurons fibers in the mPFC on pup-directed behaviors

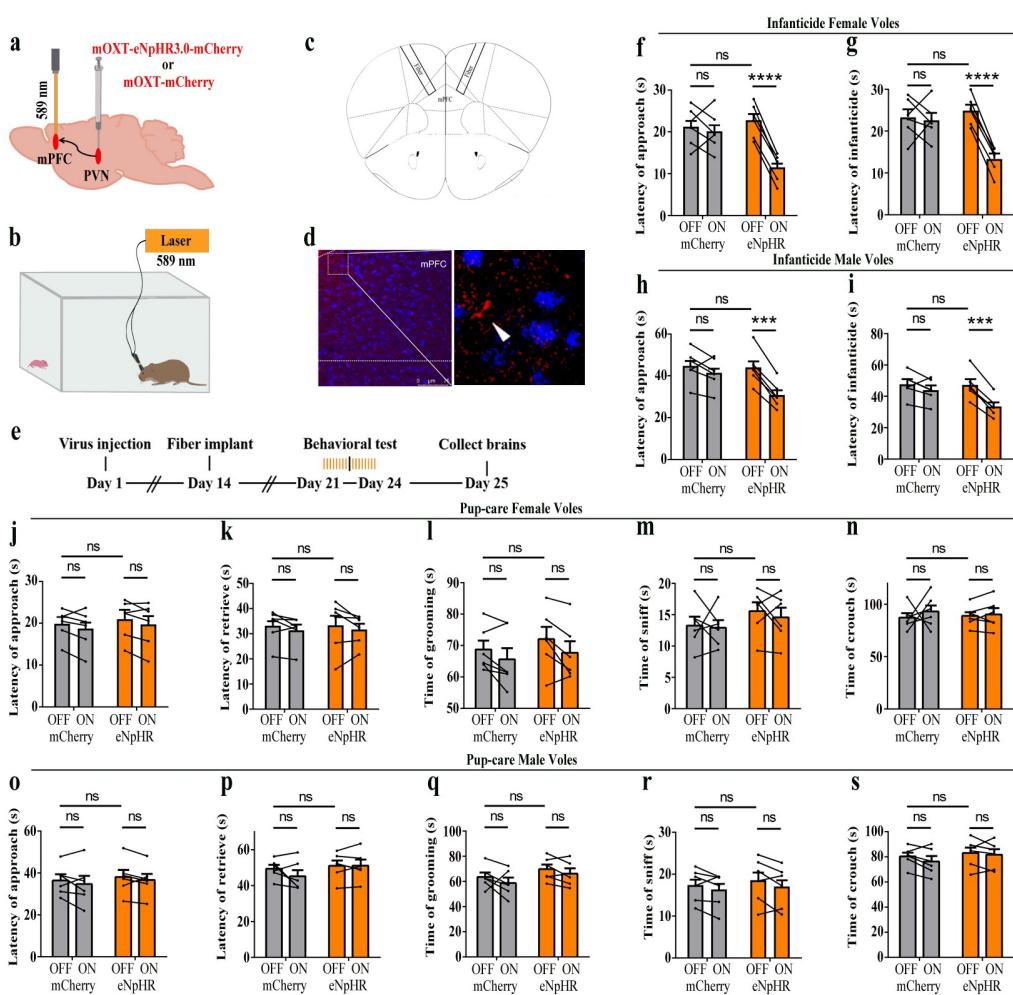
Previous experiment found that OT release in the mPFC changed upon pup-directed behavior. To manipulate the neural circuit, we first verified oxytocin

298 projections from PVN to the mPFC. We injected retrogradely labeled virus in the
 299 mPFC and observed the overlap of virus with OT in the PVN (Fig. 5), and we also
 300 counted the PVN OT neurons projecting to mPFC and found that approximately
 301 45.16% and 40.79% of cells projecting from PVN to the mPFC were OT-positive, and
 302 approximately 18.48% and 18.89% of OT cells in the PVN projected to the mPFC
 303 in females and males, respectively (Supplementary Data Fig. 4). Then, we tested
 304 whether optogenetic activation of the PVN OT neuron projection fibers in the mPFC
 305 affects pup-induced behaviors (Fig. 6a-d). Similar to previous results, in the pup
 306 caring group, activation of the fibers facilitated approaching ($F(1,5) = 23.915, P <$
 307 0.01, OFF/ON: $\eta^2 = 0.760$) and retrieving ($F(1,5) = 39.664, P < 0.01, \text{OFF/ON: } \eta^2 =$
 308 0.907) in male voles (Fig. 6o-s, Figure 6-source data 1), but had no effect on females
 309 (Fig. 6j-n, Figure 6-source data 1). In male and female infanticide group voles,
 310 optogenetic activation of the PVN OT neuron projection fibers prolonged latency to
 311 approach (female: $F(1,5) = 37.094, P < 0.01, \text{OFF/ON: } \eta^2 = 0.875$; male: $F(1,5) =$
 312 74.718, $P < 0.001, \text{OFF/ON: } \eta^2 = 0.889$) and attack pups (female: $F(1,5) = 38.347, P <$
 313 0.01, OFF/ON: $\eta^2 = 0.877$; male: $F(1,5) = 61.589, P < 0.01, \text{OFF/ON: } \eta^2 = 0.910$)
 314 (Fig. 6f-i, Figure 6-source data 1). These results suggest that activation of the PVN
 315 OT neurons to mPFC projection promoted the onset of pup care behavior in pup-care
 316 male voles and inhibited the onset of infanticide behavior in infanticide voles.

322

323 Fig. 6 Effects of optogenetic activation of the PVN OT neuron projection fibers on pup-directed
324 behaviors

325 a. Schematic of virus injection and optical fiber implantation. b. Schematic diagram of the
326 behavior test. c. Illustration of optical fiber implantation in the target brain region. d.
327 Representative histological pictures of the fiber position and projection fibers. Blue, DAPI.
328 Objective: 20x. Scale bars, 50 μ m. e. Time line of the experiment. f-i, Changes in approach
329 latency (f, h) and infanticide latency (g, i) of female (f, g) and male (h, i) infanticide voles in
330 CHR2 and control mCherry group before and after delivery of light (n = 6). **P < 0.01 vs. CHR2
331 OFF; ***P < 0.001 vs. CHR2 OFF. Two-way ANOVA (factors: treatment \times stimulus). j-n,
332 Approach latency (j), retrieval latency (k), grooming time (l), sniffing time (m) and crouching time
333 (n) in control mCherry and CHR2 group of pup-care female voles (n = 6). o-s, Approach latency
334 (o), retrieval latency (p), grooming time (q), sniffing time (r) and crouching time (s) in control
335 mCherry and CHR2 group of pup-care male voles (n = 6). **P < 0.01 vs. CHR2 OFF. Two-way
336 rmANOVA (factors: treatment \times stimulus). Error bars indicate SEM.


337 Figure 6-source data 1.

338 Statistical results of the latency to approach and attack pups in infanticide voles, and
339 the latency to approach, retrieve pups, duration of grooming, sniffing, and crouching
340 in pup-care voles.

341

342 **Optogenetic inhibition of the PVN OT neuron projection fibers promoted**
 343 **infanticide**

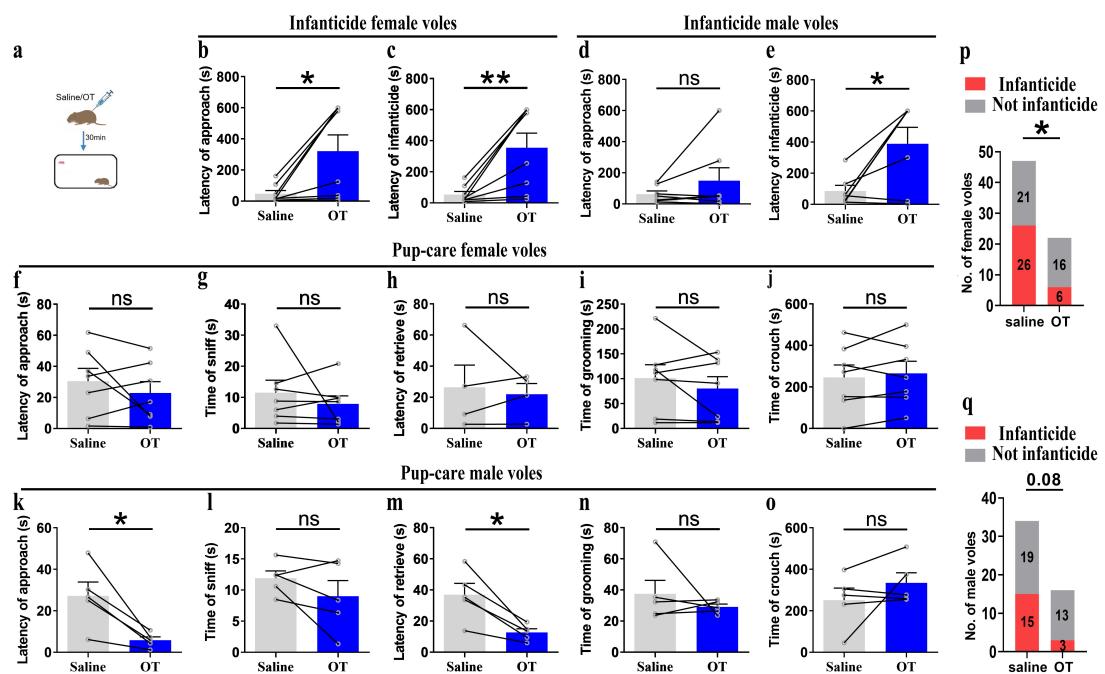
344 We then optogenetically suppressed the projection fibers from PVN OT neurons
 345 to mPFC and observed changes in pup-directed behaviors (Fig. 7a-d). Similar to the
 346 results of the PVN OT neurons inhibition, we found that optogenetic inhibition of
 347 the PVN OT neuron projection fibers promoted approach ($F(1,5) = 119.093, P <$
 348 0.001 , OFF/ON: $\eta^2 = 0.877$) and infanticide ($F(1,5) = 112.501, P < 0.001$, OFF/ON:
 349 $\eta^2 = 0.885$) in infanticide male (Fig. 7h,i, Figure 7-source data 1) and female voles
 350 (approach: $F(1,5) = 280.031, P < 0.0001$, OFF/ON: $\eta^2 = 0.853$; infanticide: $F(1,5) =$
 351 $268.694, P < 0.0001$, OFF/ON: $\eta^2 = 0.838$) (Fig. 7f,g, Figure 7-source data 1). For
 352 pup-care male and female voles, inhibition of these fibers did not significantly affect
 353 their pup care behaviors (Fig. 7j-s, Figure 7-source data 1). To validate the effectiveness
 354 of fiber optogenetic inhibition, we combined optogenetic inhibition with OT1.0
 355 sensors and recorded a decrease in OT release upon inhibition of fibers
 356 (Supplementary Data Fig. 5). These results suggest that optogenetic inhibition of the
 357 PVN OT neuron projection fibers promotes the onset of infanticide behavior in
 358 infanticide voles.

359

360 Fig. 7 Optogenetic inhibition of the PVN OT neuron projection fibers promoted the onset of
 361 infanticide

362 a. Illustration of virus injection and optical fiber implantation. b. Schematic of the behavior test. c.
363 Diagram of optical fiber implantation in the target brain region. d. Representative histological
364 pictures of the fiber location and projection fibers. Blue, DAPI. Objective: 20x. Scale bars, 75 μ m.
365 e. Time line of the experiment. f-i, Changes in approach (f, h) and infanticide (g, i) latency of
366 female and male infanticide voles in eNpHR ($n = 6$) and control mCherry groups ($n = 6$) before
367 and after light delivery. *** $P < 0.001$ vs. eNpHR OFF. **** $P < 0.0001$ vs. eNpHR OFF.
368 Two-way rmANOVA (factors: treatment \times stimulus). j-n, Approach latency (j), retrieval latency
369 (k), grooming time (l), sniffing time (m) and crouching time (n) in control mCherry ($n = 6$) and
370 eNpHR ($n = 6$) group of pup-care female voles. o-s, Approach latency (o), retrieval latency (p),
371 grooming time (q), sniffing time (r) and crouching time (s) in control mCherry ($n = 6$) and eNpHR
372 group ($n = 6$) of pup-care male voles. Error bars indicate SEM.

373 Figure 7-source data 1.


374 Statistical results of the latency to approach and attack pups in infanticide voles, and
375 the latency to approach and retrieve pups, duration of grooming, sniffing, and
376 crouching in pup-care voles.

377

378 **Intraperitoneal injection of OT**

379 For pre-clinic purpose, we tested the effect of peripheral administration of OT on
380 pup-directed behavior (Fig. 8a). Delivery of OT promoted approach ($t(4) = 3.737, P < 0.05, d = 1.335$) and retrieval ($t(4) = 4.190, P < 0.05, d = 2.04$) in pup-care male
381 voles (Fig. 8k, m), while it had no significant effect on the pup-directed behaviors in
382 females (Fig. 8f-j). For infanticide voles, there was not significant prolongation of
383 approach latency (Fig. 8d), but a significant extension of infanticide latency in males
384 after delivery of OT ($t(6) = -2.988, P < 0.05, d = 1.345$, Fig. 8e). In infanticide female
385 voles, both the latency to approach ($Z = -2.380, P < 0.05, d = 5.891$, Fig. 8b) and
386 attack pups ($t(7) = -3.626, P < 0.01, d = 1.063$, Fig. 8c) were significantly prolonged
387 by the delivery of OT. In addition, we integrated data from our pre-test of effects of
388 OT on numbers of infanticide voles and we found that intraperitoneal injection of OT
389 significantly reduced the number of infanticide female ($\chi^2 = 4.740, P < 0.05$, odds
390 ratio: OR = 0.303, Fig. 8p) and male voles ($\chi^2 = 3.039, P = 0.081$, OR = 0.292, Fig.
391 8q). These results indicate that peripheral delivery of OT can promote the onset of pup
392 care behavior in pup-care male voles and can significantly suppress the infanticide in
393 both sexes. This provides a basis for the application of OT in clinic and wild life
394 management.

396

397

Fig. 8 Pup-directed behaviors before and after intraperitoneal delivery of OT

398 a. Diagram of intraperitoneal OT delivery. b,c, Approach (b) and infanticide latency (c) of
399 infanticide female voles ($n = 8$). * $P < 0.05$. Paired-samples t-test. ** $P < 0.01$. Wilcoxon signed
400 ranks test. d,e, Approach (d) and infanticide latency (e) of infanticide male voles ($n = 7$). * $P <$
401 0.05. Paired-samples t-test. f-j, Approach latency (f, $n = 7$), sniffing time (g, $n = 7$), latency to
402 retrieve (h, $n = 4$), grooming time (i, $n = 7$) and crouching time (j, $n = 7$) before and after delivery
403 of OT in pup-care female voles. k-o, Approach latency (k), sniffing time (l), latency to retrieve (m),
404 grooming time (n) and crouching time (o) before and after delivery of OT in pup-care male voles
405 ($n = 5$). * $P < 0.05$. Paired-samples t-test. p,q Changes in infanticide rates in female (p) and male (q)
406 voles after administration of saline and OT. * $P < 0.05$. Pearson chi-square test. Error bars
407 indicate SEM.

408

Figure 8-source data 1.

409 Statistical results of the latency to approach and attack pups in infanticide voles, and
410 the latency to approach and retrieve pups, duration of grooming, sniffing, and
411 crouching in pup-care voles. Statistical results on the number of infanticide or non
412 infanticide voles induced by injection of saline and OT.

413

Discussion

414

415 In this study, we used monogamous, highly social mandarin voles to explore the
416 role of PVN OT neurons and PVN^{OT}-mPFC projections in the modulation of pup care
417 and infanticide behaviors. More OT neurons in the PVN were activated during pup
418 care than infanticide behaviors. Optogenetic activation of the OT neurons in the PVN
419 or OT neuron fibers in the mPFC promoted pup care and inhibited infanticide
420 behavior, whereas inhibition of these neurons and their fibers in the mPFC promoted
421 infanticide. In addition, intraperitoneal administration of OT promoted approach and
422 retrieval of pups in pup care male voles, and inhibited infanticide in both male and
423 female voles. The present study revealed that the PVN to mPFC OT neural

0.08

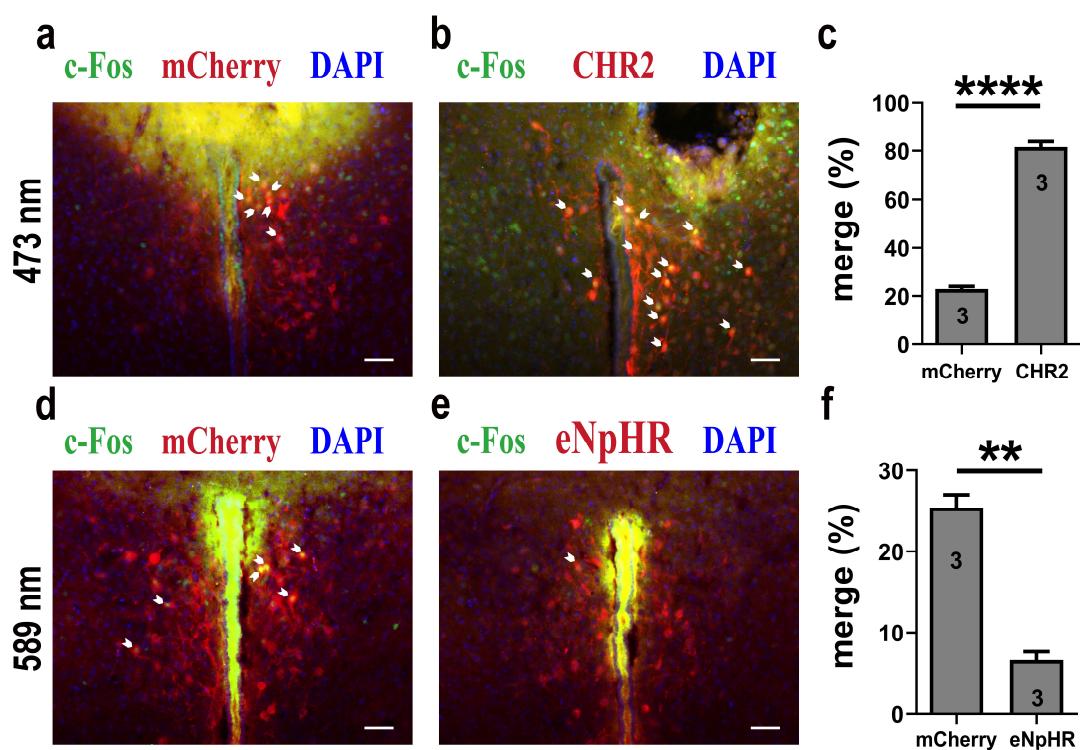
423 projections regulate pup care and infanticide behavior in virgin mandarin voles.

424 Firstly, we found that more OT neurons in the PVN were activated during pup
425 care than infanticide behaviors, which is consistent with the well-established prosocial
426 role of OT and its ability to promote pup care behavior (Bosch & Young, 2018). In a
427 previous study on virgin male prairie voles, OT and Fos colabeled neurons in PVN
428 increased after exposure to conspecific pups and experiencing paternal care (Kenkel
429 et al., 2012). In another study of prairie voles, OT and c-Fos colabeled neurons in the
430 PVN significantly increased after becoming parents, which may be due to a shift from
431 virgin to parents (Kelly, Hiura, Saunders, & Ophir, 2017). Meanwhile, we found that
432 activation of OT neurons in the PVN facilitated pup care behaviors such as approach,
433 retrieval and crouching in pup-care male voles; whereas inhibition of OT had no
434 effect on paternal behavior; activation and inhibition of OT neurons in the PVN had
435 no significant effect on pup care behaviors in pup-care females; and activation of OT
436 neurons in the PVN inhibited pup killing in infanticide voles, whereas the
437 corresponding inhibition of OT neurons in the PVN facilitated infanticide. This
438 finding is consistent with previous report that silencing OT neurons delayed the
439 retrieval behavior in virgin mice (Carcea et al., 2021). Further study found that simply
440 observing dams retrieve pups through a transparent barrier could increase retrieval
441 behavior and PVN OT neuron activity of virgin females (Carcea et al., 2021). If OTR
442 knockout mice are used, no pup retrieval occurs after observation, and these results
443 suggest that activation of PVN OT neurons in virgin mice induced by visual signals
444 promoted pup care behaviors (Carcea et al., 2021). In addition, this study further
445 demonstrated that OT in the PVN facilitated the retrieval behavior by modulating the
446 plasticity of the left auditory cortex and amplifying the response of mice to the pup's
447 call (Carcea et al., 2021). In our another study, we found that the OT neurons in the
448 PVN projecting to the VTA as well as to the Nac brain region regulate pup-directed
449 behaviors, which may also be accompanied by dopamine release (He et al., 2021).
450 This studies also support finding from optogenetic activation of OT neurons in the
451 PVN in the present study. The results of the present study are also supported by a
452 recent study that chemogenetic activation OT neurons in the PVN increase pup care
453 and reduce infanticide (Inada et al., 2022).

454 However, manipulation of OT neurons in the PVN produced no significant effect
455 on pup caring in pup-care females. This may be due to the fact that female voles have
456 inherently higher OT neural activity (Häussler, Jirikowski, & Caldwell, 1990), and
457 female mice have more OT neurons and OT axon projections than males (Häussler et
458 al., 1990), and that there are also significant differences in OTR expression between
459 two sexes (Insel, Gelhard, & Shapiro, 1991; Uhl-Bronner, Waltisperger,
460 Martínez-Lorenzana, Condes Lara, & Freund-Mercier, 2005) that possibly shows
461 ceiling effects of the OT system. In the present study, we found that females have
462 more activated OT neurons (Figure1, d, g) and released higher levels of OT into the
463 mPFC (Figure 4 d, e) than males. This sex difference has been reported in other study
464 that activation of OT neurons in the PVN activated noradrenergic neurons in the locus
465 coeruleus by co-releasing OT and glutamate, increased attention to novel objects in
466 male rats, and that this neurotransmission was greater in males than in females (Wang,

467 Escobar, & Mendelowitz, 2021). In a study on virgin female mice, pup exposure was
468 found to activate oxytocin and oxytocin receptor expressing neurons (Okabe et al.,
469 2017). Virgin female mice repeatedly exposed to pups showed shorter retrieval
470 latencies and greater c-Fos expression in the preoptic area (POA), concentrations of
471 OT in the POA were also significantly increased, and the facilitation of alloparental
472 behavior by repeated exposure to pups occurred through the organization of the OT
473 system (Okabe et al., 2017). In the present study, we also observed that optogenetic
474 activation of OT neurons in PVN increased crouching behavior in the pup-care male
475 voles, but did not affect grooming time possibly via increase of OT release. This result
476 is in line with a previous study that injection of an OTR antagonist into the MPOA of
477 male voles significantly reduced the total duration of pup care behavior and increased
478 the latency to approach pups and initiate paternal behavior in male voles (Yuan et al.,
479 2019). This finding suggests that the results of peripherally administered OT and
480 optogenetically activated PVN OT neurons in the present study may also have the
481 involvement of OT-OTR interactions in MPOA. Parturition in experimental animals is
482 accompanied by a decrease in infanticide and the emergence of pup-care behavior,
483 and along with this process OTR expression increased not only on mammary
484 contractile cells, but also in various regions of the brain, such as MPOA, VTA, and
485 OB, which are all considered to be important brain regions related to the onset and
486 maintenance of pup care behaviors (Bosch & Neumann, 2012; Shahrokh, Zhang,
487 Diorio, Gratton, & Meaney, 2010; Yu, Kaba, Okutani, Takahashi, & Higuchi, 1996).
488 For example, in a OB study, intra-OB injection of OT antagonist significantly delayed
489 the onset of pup care behaviors such as retrieving pups, crouching, and nesting in
490 female rats, whereas intra-OB injection of OT in virgin females induced 50% of
491 females to show intact pup care behaviors (Yu et al., 1996). Therefore, the effects of
492 activation of PVN OT neurons may be a result of actions on multiple brain regions
493 involved in the expression of pup care behavior. Which brain regions that PVN OT
494 neurons project to are involved in pups caring or infanticide needs further studies.
495 Although we used a virus strategy to specifically activate or inhibit PVN OT neurons,
496 other neurochemical may also be released during optogenetic manipulations because
497 OT neurons may also release other neurochemicals. In one of our previous studies,
498 activation of the OT neuron projections from the PVN the VTA as well as to the Nac
499 brain also altered pup-directed behaviors, which may also be accompanied by
500 dopamine release (He et al., 2021). In addition, back-propagation of action potentials
501 during optogenetic manipulations may also causes the same behavioral effect as direct
502 stimulation of PVN OT cells. These indirect effects on pup-directed behaviors should
503 also be investigated further in the future study.

504 Optogenetic activation of the OT neural projection fibers from the PVN to the
505 mPFC facilitated the onset of pup care behaviors, such as approach and retrieval, in
506 pup-care male voles, whereas inhibition of this circuit had no effect; neither activation
507 nor inhibition had a significant effect in pup-care females; and activation of this
508 neural circuit inhibited infanticide in infanticide voles, whereas the corresponding
509 inhibition of this circuit facilitated infanticide. In addition, we have demonstrated an
510 increase in OT release in pup-care voles upon approaching and retrieving pups, and a


511 decrease in OT release in infanticide voles when infanticide occurs, as recorded by
512 OT sensors in the mPFC. There is some evidence indicating that the mPFC may be an
513 important brain region for OT to exert its effects. In addition to expressing OTRs in
514 the mPFC (W. Liu, Pappas, & Carter, 2005; Smeltzer et al., 2006), the mPFC contains
515 OT-sensitive neurons (Ninan, 2011) and receives projections of OT neurons from the
516 hypothalamus (Knobloch et al., 2012; Sofroniew, 1983). It has been further shown
517 that blocking OTR in the mPFC of postnatal rats by an OTR antagonist delayed the
518 retrieval of pups and reduced the number of pups retrieved by rats, impaired the care
519 of pups, and decreased the latency to attack intruders, increased the number of attacks,
520 and increased anxiety in postnatal rats but had no effect on the level of anxiety in
521 virgin rats (Sabihi, Dong, Durosko, & Leuner, 2014). These results further suggest
522 that OT in the mPFC is involved in the regulation of pup care behavior and support
523 the results of this study in pup care voles and infanticide voles from an OTR
524 perspective. Previous studies have shown that optical activation of the mPFC
525 maintains aggression within an appropriate range, with activation of this brain region
526 suppressing aggression between male mice and inhibition of the mPFC resulted in
527 quantitative and qualitative escalation of aggression (Takahashi, Nagayasu, Nishitani,
528 Kaneko, & Koide, 2014), which is similar to our findings with infanticide voles. For
529 pup care behavior it has been reported that the mPFC brain region may be involved in
530 the rapid initiation of pup care behavior in mice without pairing experience
531 (Alsina-Llanes & Olazábal, 2020), which supported the experimental results of
532 pup-care male voles in the present study, but the present study further suggested that
533 OT neurons projecting to mPFC regulated pup-caring and infanticide behavior
534 possibly via increase of OT release in the mPFC. We must also mention the function
535 of the mPFC subregion. In the present study, virus were injected into the PrL. The PrL
536 and IL regions of the mPFC play different roles in different social interaction contexts
537 (Bravo-Rivera, Roman-Ortiz, Brignoni-Perez, Sotres-Bayon, & Quirk, 2014;
538 Moscarello & LeDoux, 2013). A study has shown that the PrL region of the mPFC
539 contributes to active avoidance in situations where conflict needs to be mitigated, but
540 also contributes to the retention of conflict responses for reward (Capuzzo & Floresco,
541 2020). This may reveal that the suppression of infanticide by PVN to mPFC OT
542 projections is a behavioral consequence of active conflict avoidance. In a study of
543 pain in rats, OT projections from the PVN to the PrL were found to increase the
544 responsiveness of cell populations in the PrL, suggesting that OT may act by altering
545 the local excitation-inhibition (E/I) balance in the PrL (Y. Liu et al., 2023). A study of
546 anxiety-related behaviors in male rats suggests that the anxiolytic effects of OT in the
547 mPFC are PL-specific and that this is achieved primarily through the engagement of
548 GABAergic neurons, which ultimately modulate downstream anxiety-related brain
549 regions, including the amygdala (Sabihi, Dong, Maurer, Post, & Leuner, 2017). This
550 may provide possible downstream pathways for further research.

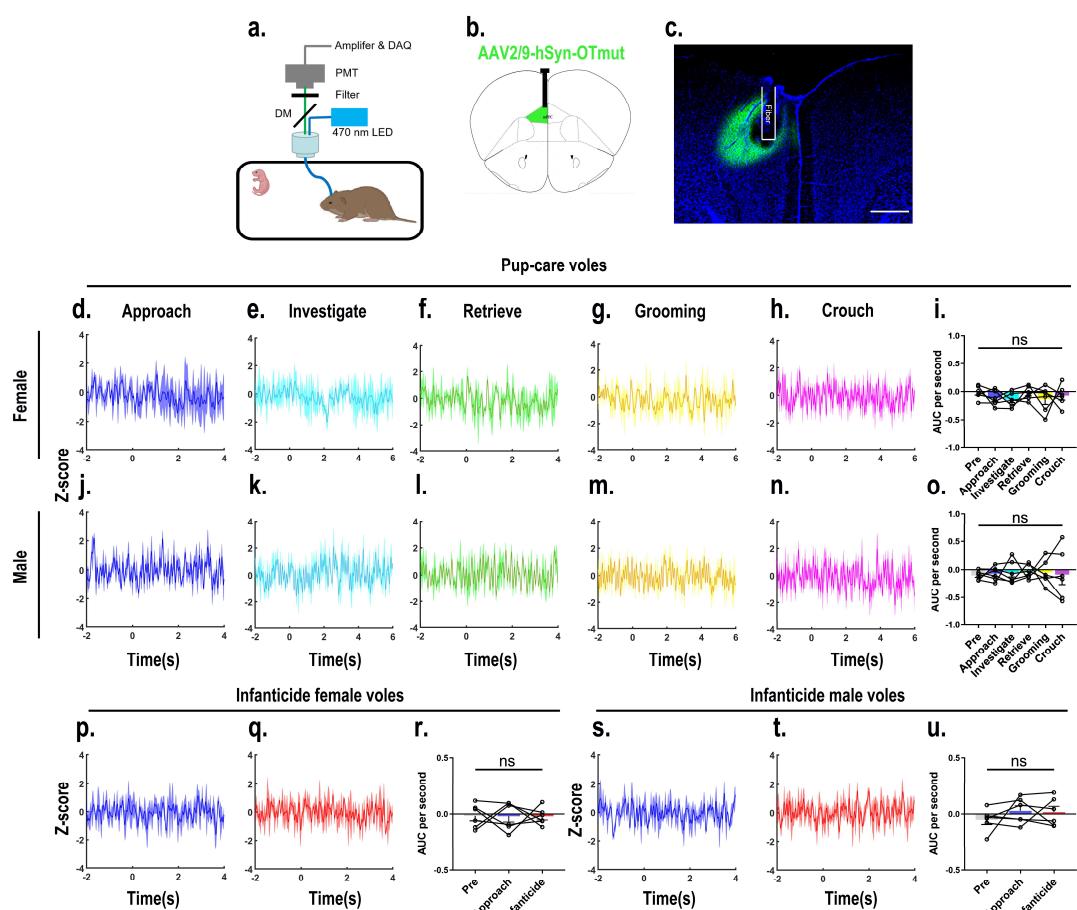
551 Another interesting finding is that peripheral OT administration promoted pup
552 care behavior in male voles, such as approaching and retrieving pups, but had no
553 significant effect on pup care behaviors in female voles. This result was supported by
554 previous study that OT administered peripherally inhibited infanticide in pregnant and

555 reproductively inexperienced females and promoted pup caring in pregnant females
556 (McCarthy, Bare, & vom Saal, 1986). Further research has demonstrated that OT in
557 the central nervous system also inhibited infanticide in female house mice (McCarthy,
558 1990). In addition, peripheral administration of OT inhibits infanticide in male mice
559 without pairing experience (Nakahara et al., 2020). Moreover, the experience of
560 pairing facilitated the retrieval of pups by increasing peripheral OT levels in both
561 male and female mice (Lopatina et al., 2011). This is similar to the findings of
562 pup-care males in the present study, whereas the absence of similar results in females
563 may be due to differences in OT levels between the sexes (Tamborski, Mintz, &
564 Caldwell, 2016). Pup-care female voles in this study already showed short latency to
565 approach and retrieve pups before peripheral administration of OT. We also found that
566 peripheral OT administration suppressed infanticide behavior in both male and female
567 voles. It is consistent with previous study that infanticide in female house mice with
568 no pairing experience and pregnant females with pre-existing infanticide was
569 effectively suppressed by subcutaneous injection of OT, while injection of OT also
570 helped pregnant females to show care for strange pups (McCarthy et al., 1986).
571 Unpaired male mice's aggression towards pups was accompanied by changes in the
572 activity of the vomeronasal neurons, and as males were paired with females and lived
573 together, the activity of these neurons decreased, accompanied by a shift from
574 infanticide to pup care behavior (Nakahara et al., 2020). The OTR expresses
575 throughout the vomeronasal epithelium that allows OT to potentially inhibit
576 infanticide by reducing vomeronasal activity. The previous study found that
577 intraperitoneal injection of OT reduced the activity of the vomeronasal, and further
578 validated that OT modulates the activity of vomeronasal neurons by acting on the
579 sensory epithelium to produce behavioral changes by intraperitoneal injection of an
580 OTR antagonist that cannot cross the blood-brain barrier (Nakahara et al., 2020). It
581 has recently been shown that peripheral OT was able to cross the blood-brain barrier
582 into the central nervous system to act (Yamamoto et al., 2019), meaning that delivery
583 of OT via the periphery may have increased central OT levels and thus exerted an
584 effect. A recent study demonstrated that the secretion of OT in the brain of male mice
585 with no pairing experience facilitated the performance of pup care behaviors and
586 inhibited infanticide (Inada et al., 2022), which also supported the results of the
587 present study. Similar to rodents and non-human primates, there is evidence to suggest
588 that OT contributes to paternal care (Feldman & Bakermans-Kranenburg, 2017).
589 Fathers with partners have higher plasma OT levels than non-fathers without partners
590 (Mascaro, Hackett, & Rilling, 2014). Intranasal OT treatment increases fathers' play,
591 touch, and social interaction with their children (Weisman, Zagoory-Sharon, &
592 Feldman, 2012). Our result provide possible application of OT in reduction of
593 abnormality in pup-direct behavior associated with psychological diseases in human
594 such as depression and psychosis (Milia & Noonan, 2022; Naviaux, Janne, & Gourdin,
595 2020) and increases of well being of wild life.

596 In summary, these results indicate that the PVN to mPFC OT neural projection is
597 involved in the regulation of pup care and infanticide behavior in virgin mandarin
598 voles. These data provide new insights into the neural circuits underlying

599 OT-mediated pup-directed behaviors.

600

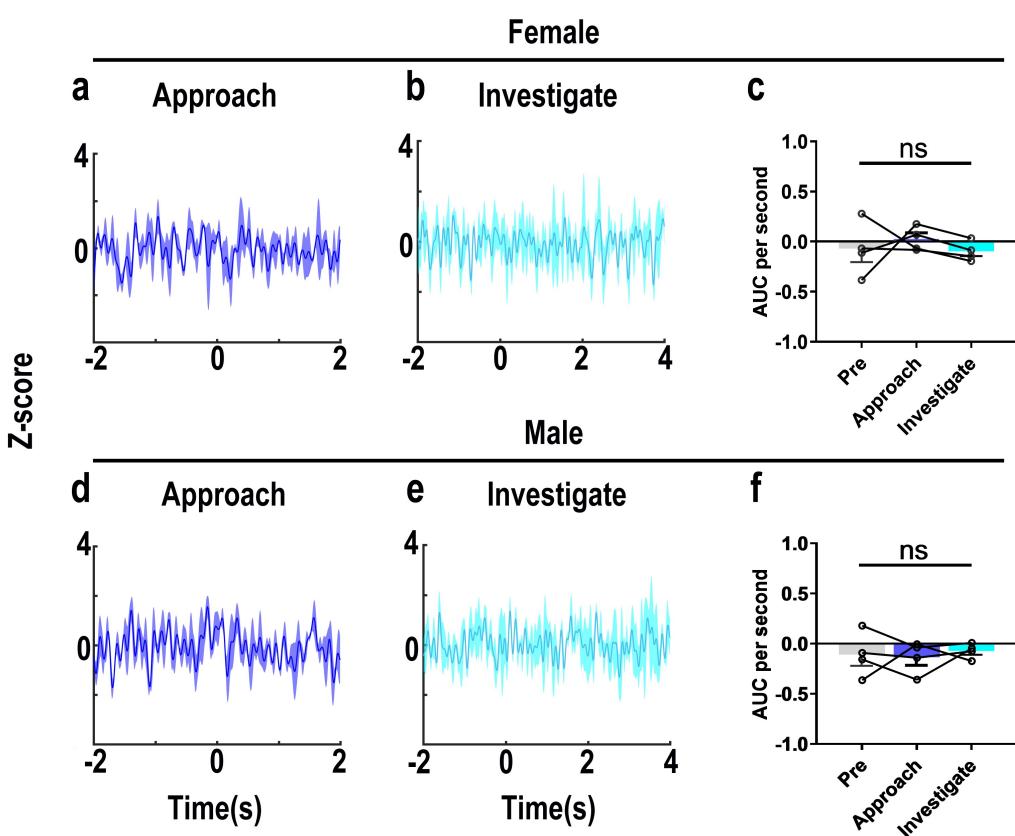

601 Supplementary Data Fig. 1 Light-induced c-Fos expression overlapping with mCherry, CHR2 or
602 eNpHR

603 a, 473 nm light-induced c-Fos (green) expression overlapping with mCherry (red). Blue, DAPI.
604 Objective: 20x. Scale bars, 50 μ m. b. 473 nm light-induced c-Fos (green) expression overlapping
605 with CHR2 (red). Blue, DAPI. Objective: 20x. Scale bars, 50 μ m. c, 473 nm light induced more
606 c-fos expression in CHR2, which indicated the effectiveness of CHR2 (n = 3). ****P < 0.0001.
607 Independent-samples t-test. d, 589 nm light-induced c-Fos (green) expression overlapping with
608 mCherry (red). Blue, DAPI. Objective: 20x. Scale bars, 50 μ m. e, 589 nm light-induced c-Fos
609 (green) expression overlapping with eNpHR (red). Blue, DAPI. Objective: 20x. Scale bars, 50 μ m.
610 f, 589 nm light induced less c-fos expression in eNpHR, which indicated the effectiveness of
611 eNpHR (n = 3). **P < 0.01. Independent-samples t-test. Error bars indicate SEM. For c,f, n = 3
612 per group, data are mean \pm s.e.m. Statistical analysis was performed using independent-samples T
613 test (c,f). **P < 0.01, ****P < 0.0001. Details of the statistical analyses are as follows: c, t (4) =
614 -23.139, P = 0.000021, f, t (4) = 10.136, P = 0.001.

615 Supplementary Data Fig. 1-source data 1

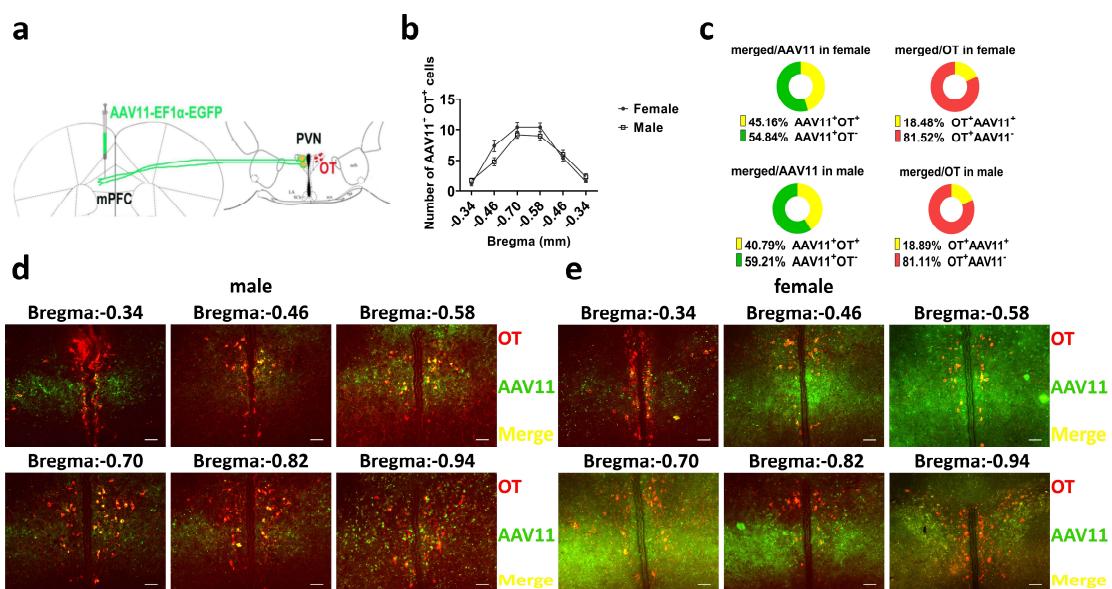
616 Statistical results of light-induced c-Fos expression overlapping with mCherry, CHR2
617 or eNpHR.

618

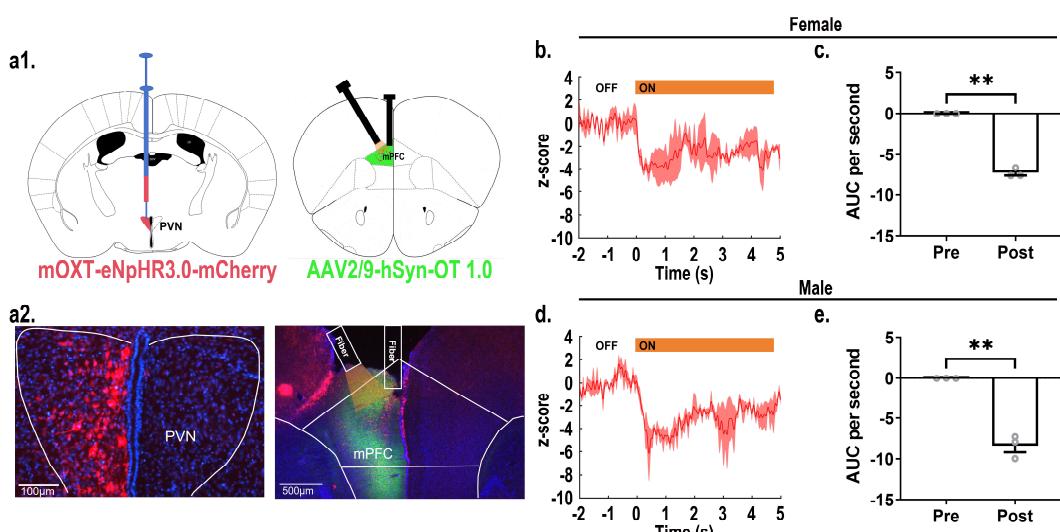


619

620 Supplementary Data Fig. 2 Recordings of OTmut sensor signals in the mPFC on OT release
 621 a. Recording instrument settings. b. Illustrations of viral expression and optical fibre location. c.
 622 Representative histological image of OTmut sensor (green) and optical fibre locations. Blue,
 623 DAPI. Objective: 4x. Scale bars, 500 μ m. d-h,j-n, PETHs of z-score of OTmut sensor signals for
 624 the following pup-directed behaviors: approach (d,j), investigate (e,k), retrieve (f,l), grooming
 625 (g,m) and crouch (h,n). i,o, AUC per second of z-scores for pup-care female (n = 6, i) and male (n
 626 = 6, o) voles across various pup-directed behaviors. p,q,s,t, PETHs of z-score of OTmut sensor
 627 signals for approach and infanticide in infanticide voles. r,u, AUC per second of z-score of OTmut
 628 sensor signals for pre-pup exposure, approach and infanticide in infanticide female (n = 6, r) and
 629 male (n = 6, u) voles. Error bars indicate SEM. For i,o,r,u, n = 6 per group, data are mean \pm s.e.m.
 630 Statistical analysis was performed using one-way rmANOVA (i,o,r and u). Details of the statistical
 631 analyses are as follows: i, F (5, 25) = 0.680, P = 0.643; o, F (2, 25) = 0.074, P = 0.996; r, F (2, 10)
 632 = 0.002, P = 0.998; u, F (2, 10) = 0.665, P = 0.536.


633 Supplementary Data Fig. 2-source data 1

634 Area under the curve per second for pre-pup exposure, approach, and infanticide
 635 behaviors in infanticide voles and area under the curve per second for pre-pup
 636 exposure, approach, investigation, retrieval, grooming, and crouching behaviors in
 637 pup-care voles.



638

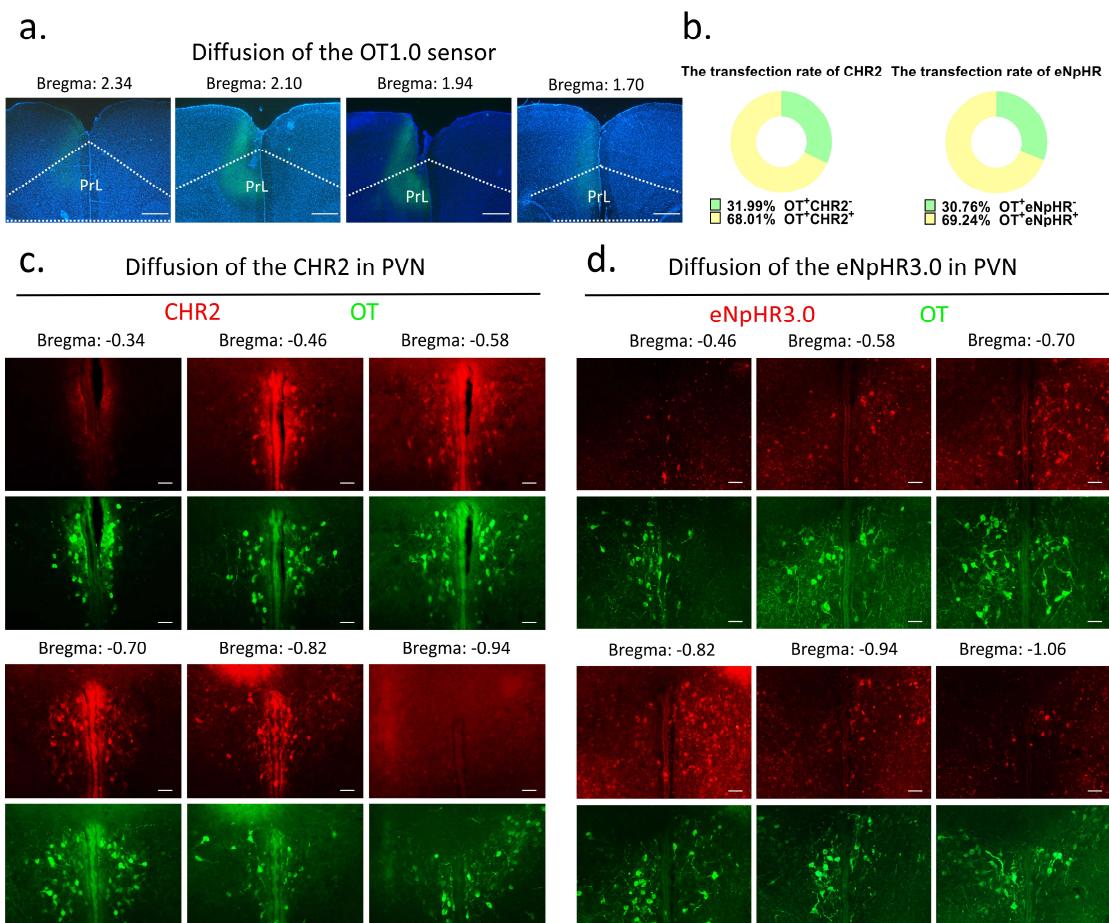
639 Supplementary Data Fig. 3 Recordings of OT1.0 sensor signals for investigating object
640 a,b,d,e, Post-event histograms (PETHs) of z-score of OT1.0 sensor for approaching and
641 investigating object (a,b) and male (d,e) voles. c,f, AUC per second of z-scores for pre
642 object, approaching and investigating behaviors in female (n = 4, c) and male (n = 4, f) voles.
643 Error bars indicate SEM. For c,f, n = 4 per group, data are mean \pm s.e.m. Statistical analysis was
644 performed using one-way rmANOVA. Details of the statistical analyses are as follows: c, F (1.016,
645 3.047) = 0.346, P = 0.601; f, F (2,6) = 0.183, P = 0.838.
646 Supplementary Data Fig. 3-source data 1
647 Area under the curve per second for pre-object exposure, approach, and investigating
648 in female and male voles.

649
650 Supplementary Data Fig. 4 Number of PVN OT neurons projecting to mPFC
651 a. Schematic diagram of virus injection and immunohistological staining. b. Statistics of PVN to
652 mPFC OT projection extent. c. Percentage of OT positive cells in PVN projecting to mPFC and
653 percentage of OT cells in PVN that project to mPFC. d. e. Representative histologic images of
654 male and female. Red, OT. Green, AAV11. Yellow, merged. Objective: 20x. Scale bars, 50 μ m.
655 Supplementary Data Fig. 4-source data 1
656 Counts of AAV11, OT and co-expressed cells.

657
658 Supplementary Data Fig. 5 Recordings of OT release during optogenetic inhibition of OT fibers in
659 the mPFC
660 a1. Schematic diagram of virus injection and optical fiber implanting. a2. Representative
661 histological images of viruses infection and fibers placement. Left: Red: eNpHR3.0, Blue: DAPI,
662 objective: 20x, scale bars: 100 μ m; Right: Red: eNpHR3.0, Green: OT1.0 sensors, Blue: DAPI,
663 objective: 4x, scale bars: 500 μ m. b. Representative histogram of OT release in female at 589 nm
664 light. c. AUC per second of OT1.0 sensors pre and post inhibition of optogenetics in females (n =
665 3). **P < 0.01, Paired-samples t-test. d. Representative histogram of OT release in male at 589 nm

666 light. e. AUC per second of OT release pre and post optogenetic inhibition in males (n = 3). ** $P <$
667 0.01, Paired-samples t-test.

668 **Supplementary Data Fig. 5-source data 1**


669 Statistics of AUC before and after optogenetic inhibition.

670
671 **Supplementary Data Fig. 6 Effects of optogenetic manipulations on locomotion of the subjects**
672 a. b. Total distance traveled by the subject before and after activation or inhibition of the PVN OT
673 neurons. c. d. Total distance traveled by the subject before and after activation or inhibition of the
674 PVN OT neurons projections to the mPFC.

675 **Supplementary Data Fig. 6-source data 1**

676 Statistics of distance traveled before and after optogenetic manipulation.

677

678 Supplementary Data Fig. 7 Diffusion of centrally injected agents

679 a. Diffusion of OT1.0 sensor in PrL. Green: OT1.0 sensors, Blue: DAPI, Objective: 4x. Scale bars:
680 500 μ m. b. The transfection rate of chr2 and eNpHR3.0 in OT cells. c. Diffusion of CHR2 in PVN.
681 Green: OT, Red: CHR2, Objective: 20x. Scale bars: 50 μ m. d. Diffusion of eNpHR3.0 in PVN. Green:
682 OT, Red: eNpHR3.0, Objective: 20x. Scale bars: 50 μ m.

683 Supplementary Data Fig. 7-source data 1

684 Counting of CHR2 and eNpHR3.0 virus-transfected OT cells.

685 Methods

686 Animals

687 Mandarin voles were captured from the wild in Henan, China. The experimental
688 protocols were approved by the Animal Care and Use Committee of Shaanxi Normal
689 University, and was conducted in accordance with the ethical principles of animal use
690 and care of China. The virgin Mandarin voles (*Microtus mandarinus*) used in this
691 study were F2 generations that were bred in Animal Center of Shaanxi Normal
692 University and were kept at 24°C under a 12h light-dark cycle (lights on at 8 a.m.)
693 with food and water provided ad libitum. Before the experiments, we expose the
694 animals to pups, and subjects may exhibit pup care, infanticide, or neglect; we group
695 subjects according to their behavioral responses to pups, and individuals who neglect
696 pups are excluded. The stereotactic surgery was performed at the age of 8 weeks of
697 voles. After surgery, voles were housed with their cage mates. Behavioral tests were

698 carried out 3 weeks after surgery for animal recovery and the viral infection, and 1-5
699 days old pups were from other breeders. In case the pups were attacked, we removed
700 them immediately to avoid unnecessary injuries, and injured pups were euthanized.

701 **Viruses**

702 AAV2/9-mOXT: Promoter-hCHR2(H134R)-mCherry-ER2-WPRE-pA (8.41×10^{12}
703 $\mu\text{g/ml}$) and AAV2/9-mOXT: Promoter-mCherry-pA (1.21×10^{13} $\mu\text{g/ml}$) were
704 purchased from Shanghai Taitool Bioscience LTD.
705 AAV2/9-mOXT-eNpHR3.0-mCherry-WPRE-hGH-pA (2.27×10^{12} $\mu\text{g/ml}$) were
706 purchased from BrainVTA (Wuhan, China) LTD. AAV2/9-hSyn-OT 1.0 (2.06×10^{12}
707 $\mu\text{g/ml}$), AAV2/9-hSyn-OTmut (2.10×10^{12} $\mu\text{g/ml}$) and AAV11-EF1 α -EGFP (5.00×10^{12}
708 $\mu\text{g/ml}$) were purchased from Brain Case Biotechnology LTD. The details about the
709 construction of CHR2 and mCherry viruses used in optogenetic manipulation can
710 refer to a previous study in which they constructed an rAAV-expressing Venus from a
711 2.6 kb region upstream of OT exon 1, which is conserved in mammalian species
712 (Knobloch et al., 2012). The details about construction of the eNpHR 3.0 virus can
713 refer to one study in which expression of the vector is driven by the mouse OXT
714 promoter, a 1kb promoter upstream of exon 1 of the OXT gene, which has been
715 shown to induce cell type-specific expression in OXT cells (Peñagarikano et al.,
716 2015). Details about the construction of OT 1.0 sensor can be referred to the research
717 of Professor Li's group (Qian et al., 2023). All viruses were dispensed and stored at
718 -80°C.

719 **Immunohistochemistry**

720 After behavioral tests, serial brain sections were harvested for histological analysis.
721 Anesthetized voles were perfused with 40ml of PBS and 20ml of 4%
722 paraformaldehyde. After perfusion, brains were excised and post-fixed by immersion
723 in 4% paraformaldehyde overnight at 4°C. Brains were dehydrated in 20% and then
724 30% sucrose for 24h respectively before they were embedded in OCT and
725 cryosectioned into 40 μm slices. Brain slices were rinsed with PBS (10 min) and
726 PBST (PBS and 0.1% Triton X-100, 20 min), blocked in ready-to-use goat serum
727 (Boster, AR0009) for 30 minutes at room temperature (RT), and then incubated
728 overnight at 4°C with primary antibody in PBST. The primary antibodies used were:
729 mouse anti-OT (1:7000, Millipore, MAB5296), rabbit anti-c-Fos (1:1000, Abcam,
730 ab190289). Following PBST washing (3×5 min), sections were incubated with
731 secondary antibodies in PBST for 2h (RT) and stained with DAPI, and then washed
732 once more with PBS (3×5 min). The secondary antibodies used were: goat anti-mouse
733 Alexa Fluor 488 (1:200, Jackson ImmunoResearch, 115-545-062), goat anti-rabbit
734 Alexa Fluor 488 (1:200, Jackson ImmunoResearch, 111-545-003), goat anti-rabbit
735 TRITC(1:200, Jackson ImmunoResearch, 111-025-003) and ready-to-use DAPI
736 staining solution (Boster, AR1177). Finally, the brain slices were sealed with an
737 anti-fluorescent attenuation sealer.

738 Images were captured with a fluorescent microscope (Nikon) to confirm the viral
739 expression, placements of optic fiber and viruses, and also the number of c-Fos, OT
740 and virus positive cells. To analyze the activity of OT neurons (co-expression of c-Fos
741 and OT) among different behaviors and the specificity of viral expression

742 (co-expression of viruses and OT) in the PVN brain region, Brain slices of 40 μ m
743 were collected consecutively on 4 slides, each slide had 6 brain slices spaced 160 μ m
744 apart from each other, and counting was performed on one of the slides. Positive cells
745 in the PVN were manually counted based on the Allen Mouse Brain Atlas and our
746 previous studies.

747 **Stereotaxic Surgery**

748 For optogenetic manipulation experiments, CHR2, eNpHR and mCherry-expressing
749 control virus were stereoaxically injected into the PVN (AP: -0.4 mm, ML: 0.2 mm,
750 DV: 5.3mm) bilaterally through a Hamilton needle using nanoinjector (Reward Life
751 Technology, KDS LEGATO 130) at 100 nl/min. For optogenetic manipulation, optic
752 fibers (2.5 mm O.D., Reward Life Technology, China) with an appropriate fiber
753 length (PVN: 6 mm, mPFC: 3 mm) were implanted ~100 μ m above the PVN and
754 mPFC (AP: 2.2 mm ML: 0.9, DV: 1.89 with a 20° angle lateral to middle) and secured
755 with dental cement (Changshu ShangChi Dental Materials Co., Ltd.,202005). For
756 fiber optometry experiment, optic fibers were inserted ~100 μ m above the mPFC (AP:
757 2.2 mm ML: 0.3, DV: 1.8) after injecting the OT1.0 sensor viruses. The stereotaxic
758 coordinates were determined from three-dimensional brain atlas (Chan, Kovacević,
759 Ho, Henkelman, & Henderson, 2007) and the adjusted coordinates in our lab. The
760 stereotaxic coordinates were determined by the Allen Mouse Brain Atlas and
761 laboratory-corrected data used for voles. Individuals with appropriate viral expression
762 and optical fiber embedding location were included in the statistical analysis,
763 otherwise excluded. The diffusion of central optogenetic viruses and OT1.0 sensors
764 are shown in the supplemental figure (Supplementary Data Fig. 7).

765 **Optogenetic**

766 Test animals were injected with 300 nL AAV2/9-mOXT: Promoter-hCHR2(H134R)-mCherry-ER2-WPRE-pA or
767 rAAV-mOXT-eNpHR3.0-mCherry-WPRE-hGH-pA bilaterally into the PVN at 100
768 nl/min. Control animals were injected with AAV2/9-mOXT: Promoter-mCherry-pA in
769 the same condition. Two weeks later, an optic fiber was implanted ~100 μ m above the
770 PVN and mPFC bilaterally and was secured using dental cement. After surgery,
771 animals were housed with their cage mates as before. Before the behavioral test, each
772 implanted fiber was connected to a light laser (NewdoonInc., Aurora 300, 473 nm for
773 activation, 589 nm for inhibition) with a 400 μ m patch cord and then we introduced
774 the test animal into center of test arena. After the test animal acclimated to the arena
775 for at least 20 min and settled down, we placed a pup in the farthest corner away from
776 the test animal and immediately began recording and applying light stimulation.

777 In pup-directed pup care behavioral test, light stimulation lasted for 11 min.
778 Parameters used in optogenetic manipulation of PVN OT neurons were ~ 3 mW, 20
779 Hz, 20 ms, 8 s ON and 2 s OFF and parameters used in optogenetic manipulation of
780 PVN OT neurons projecting to mPFC were ~ 10 mW, 20 Hz, 20 ms, 8 s ON and 2 s
781 OFF to cover the entire interaction. In the infanticide behavioral test, the stimulation
782 lasted until the pup was removed. Each vole was tested twice successively, more than
783 30 min apart, once with the stimulation OFF, once ON. The effect of optogenetic
784 manipulation induced locomotion on behavioral responses to pups was excluded by
785

786 recording the total distance traveled by voles without and with light stimulation for 5
787 minutes, respectively (Supplementary Data Fig. 6).

788 To confirm that ChR2 or eNpHR3.0 stimulation indeed induced neural activation or
789 inhibition, we used light to stimulate the brain through an optical fiber when voles
790 were alone in their home cage, and subsequently determined neural activation or
791 inhibition by c-Fos staining one and a half hours after light stimulation .

792 **Fiber photometry**

793 To record the fluorescence signals of the OT1.0 sensor during various pup-directed
794 behaviors. Virgin voles were anesthetized with 1-2% isoflurane and immobilized on a
795 stereotaxic device (RWD, China). Then, 300 nl AAV9-hSyn-OT1.0 or
796 AAV9-hSyn-OTmut virus was injected into the left side of mPFC (AP: 2.2 mm ML:
797 0.3, DV: 1.8). After the injection, a 200 μ m optical fiber was implanted \sim 100 μ m
798 above the injection site and fixed with dental cement. After 2 weeks of recovery, the
799 optic fiber was connected to the fiber photometry system (QAXK-FPS-LED,
800 ThinkerTech, Nanjing, China) through a patch cable. This system can automatically
801 exclude motion artifacts by simultaneously recording signals stimulated by a 405 nm
802 light source. To avoid bleaching the sensor, the 470 nm laser power at the tip of the
803 fiber was adjusted to 50 μ W. Voles were placed in test cages and allowed to move
804 freely for at least 20 minutes to acclimate to the environment. Then, a pup was placed
805 in the cage at a distance from the testing vole. If the vole ignored the pup completely
806 or attacked the pup, gently removed the pup and introduced another pup \sim 60 seconds
807 later to stimulate more interaction. This process was repeated 3-6 times, and then the
808 vole exhibiting pup care behavior was allowed to freely interact with the last
809 introduced pup until the vole crouched over the pup for more than 10 s, after which
810 the pups were removed for about 60 s and reintroduced. This latter process was
811 repeated 3-4 times. After the pup test, we subsequently placed an object (a vole-sized
812 plastic toy) into the cage and recorded 4 voles that investigated the object 3-6 times.

813 Videos were recorded with screen-recoding software to synchronize the OT1.0
814 fluorescence signals and pup-directed behaviors. Fluorescence signals were recorded
815 into MATLAB mat files and analyzed with customized MATLAB code. Data were
816 matched to a variety of behaviors towards pups based on individual trials. The change
817 in signal was displayed as z-scored $\Delta F/F$, which was measured by $(V_{\text{signal}} - \text{mean}$
818 $(V_{\text{basal}})) / \text{std} (V_{\text{basal}})$. The V_{signa} and V_{basal} refer to the recorded values at each time point
819 and the recorded values during the baseline period before the stimuli. The AUC (area
820 under the curve) was calculated based on z-scored $\Delta F/F$ matching the duration of the
821 behavior, and the AUC per second was used to compare the different fluorescence
822 signals of behaviors and the baseline.

823 For the combination of optogenetic inhibition and fiber optometry experiment,
824 optogenetic virus and OT1.0 sensor were injected as described above, optic fibers
825 were inserted above the mPFC (OT1.0 fibers: AP: 2.2 mm ML: 0.2, DV: 1.7;
826 optogenetic fibers: AP: 2.2 mm ML: 2.0, DV: 2.4 with a 45° angle lateral to middle).
827 The signals of OT1.0 sensor were recorded while neurons were optogenetically
828 inhibited.

829 **Behavioral paradigm and analysis**

830 Animal behaviors in optogenetic experiments were recorded by a camera from the
831 side of a transparent cage. ‘Approach pup’ was defined as the testing vole faced and
832 walked right up to pup, and the latency to approach was the period from the time the
833 pup was placed in the cage until the vole began to approach the pup. ‘Investigate pup’
834 was defined as the vole’s nose came into close contact with any part of the pup’s body.
835 ‘Attack pup’ was defined as the vole attacked or bit a pup which can be recognized by
836 the wound, and the latency to attack was the period from the time the pup was placed
837 in the cage until the vole launched an attack. ‘Retrieve pup’ was defined as from the
838 time a vole picked up a pup using its jaws to the time it dropped the pup at or around
839 the nest, and the latency of retrieval was the time between the pup was put in the cage
840 and the time the vole picked up the pup in its jaws. ‘Groom pup’ was defined as a vole
841 combed the pup’s body surface with its muzzle, accompanied by a rhythmic
842 up-and-down bobbing of the vole’s head and displacement of the pup. ‘Crouch’ was
843 defined as the vole squatted quietly over the pup with no apparent movement.
844 Pup-directed behaviors in optogenetic experiments were scored and analyzed by
845 JWatcher.

846 **OT treatments**

847 Test virgin voles were acclimatized in their cages for 20 min before being injected
848 intraperitoneally with 0.9% NaCl (1 ml/kg) and pups were introduced 30 min later.
849 The behavioral responses were recorded from the side using a video camera. Thirty
850 mins after the first record, voles were re-injected intraperitoneally OT 1 mg/kg
851 (Leuner, Caponiti, & Gould, 2012) (Bachem, 50-56-6), and pups were introduced 30
852 min later and behavioral responses were recorded. All behaviors were scored and
853 analyzed using JWatcher.

854 **Statistics**

855 Parametric tests were used to analyze normally distributed data, and nonparametric
856 tests were used for data that is not normally distributed according to
857 Kolmogorov–Smirnov tests. Independent samples t-tests (two-tailed) were performed
858 to assess number of OT, c-fos and merge rate of OT & c-fos during different
859 pup-directed behaviors (Pup-care vs. Infanticide) and the number of c-fos-IR positive
860 neurons (mCherry vs. CHR2; mCherry vs. eNpHR 3.0). The behavioral changes
861 following optogenetic activation and inhibition (factors: treatment × stimulus) of PVN
862 and mPFC were analyzed by two-way repeated-measures ANOVA. One way ANOVA
863 were used to analyze the AUC changes recorded by the OT sensors in different
864 behaviors. Paired-samples t-test (two-tailed) and Wilcoxon signed ranks test were used
865 to analyze changes in pup-directed behaviors before and after intraperitoneal injection
866 of OT. The Pearson chi-square test was used to compare the difference in the number
867 of infanticide voles between the saline and OT groups. All data were presented as
868 mean ± SEM, statistical analyses of data were performed using MATLAB and SPSS
869 22.0 software.

870 **Conflict of interest**

871 The authors declare no conflict of interest.

872 **Fundings**

873 This research was funded by the STI2030-Majior Projects grant number
874 2022ZD0205101, the National Natural Science Foundation of China grants numbers
875 32270510 and 31901082, Natural Science Foundation of Shaanxi Province, China
876 grant number 2020JQ-412, China Postdoctoral Science Foundation grant number
877 2019M653534 and Fundamental Research Funds for Central University grants
878 numbers GK202301012.

879 **References**

- 880 Afonso, V. M., Sison, M., Lovic, V., & Fleming, A. S. (2007). Medial prefrontal cortex lesions in the
881 female rat affect sexual and maternal behavior and their sequential organization. *Behav
882 Neurosci*, 121(3), 515-526. doi:10.1037/0735-7044.121.3.515
- 883 Alsina-Llanes, M., & Olazábal, D. E. (2020). Prefrontal cortex is associated with the rapid onset of
884 parental behavior in inexperienced adult mice (C57BL/6). *Behav Brain Res*, 385, 112556.
885 doi:10.1016/j.bbr.2020.112556
- 886 Alsina-Llanes, M., & Olazábal, D. E. (2021). NMDA lesions in the prefrontal cortex delay the onset of
887 maternal, but not infanticidal behavior in pup-naïve adult mice (C57BL/6). *Behav Neurosci*,
888 135(3), 402-414. doi:10.1037/bne0000427
- 889 Bales, K. L., Kim, A. J., Lewis-Reese, A. D., & Sue Carter, C. (2004). Both oxytocin and vasopressin may
890 influence alloparental behavior in male prairie voles. *Horm Behav*, 45(5), 354-361.
891 doi:10.1016/j.yhbeh.2004.01.004
- 892 Bosch, O. J., & Neumann, I. D. (2012). Both oxytocin and vasopressin are mediators of maternal care
893 and aggression in rodents: from central release to sites of action. *Horm Behav*, 61(3), 293-303.
894 doi:10.1016/j.yhbeh.2011.11.002
- 895 Bosch, O. J., & Young, L. J. (2018). Oxytocin and Social Relationships: From Attachment to Bond
896 Disruption. *Curr Top Behav Neurosci*, 35, 97-117. doi:10.1007/7854_2017_10
- 897 Bravo-Rivera, C., Roman-Ortiz, C., Brignoni-Perez, E., Sotres-Bayon, F., & Quirk, G. J. (2014). Neural
898 structures mediating expression and extinction of platform-mediated avoidance. *J Neurosci*,
899 34(29), 9736-9742. doi:10.1523/jneurosci.0191-14.2014
- 900 Capuzzo, G., & Floresco, S. B. (2020). Prelimbic and Infralimbic Prefrontal Regulation of Active and
901 Inhibitory Avoidance and Reward-Seeking. *J Neurosci*, 40(24), 4773-4787.
902 doi:10.1523/jneurosci.0414-20.2020
- 903 Carcea, I., Caraballo, N. L., Marlin, B. J., Ooyama, R., Riceberg, J. S., Mendoza Navarro, J. M., . . .
904 Froemke, R. C. (2021). Oxytocin neurons enable social transmission of maternal behaviour.
905 *Nature*, 596(7873), 553-557. doi:10.1038/s41586-021-03814-7
- 906 Chan, E., Kovacevíc, N., Ho, S. K., Henkelman, R. M., & Henderson, J. T. (2007). Development of a high
907 resolution three-dimensional surgical atlas of the murine head for strains 129S1/SvImJ and
908 C57Bl/6J using magnetic resonance imaging and micro-computed tomography. *Neuroscience*,
909 144(2), 604-615. doi:10.1016/j.neuroscience.2006.08.080
- 910 Dai, B., Sun, F., Tong, X., Ding, Y., Kuang, A., Osakada, T., . . . Lin, D. (2022). Responses and functions of
911 dopamine in nucleus accumbens core during social behaviors. *Cell Rep*, 40(8), 111246.
912 doi:10.1016/j.celrep.2022.111246
- 913 Dulac, C., O'Connell, L. A., & Wu, Z. (2014). Neural control of maternal and paternal behaviors. *Science*,
914 345(6198), 765-770. doi:10.1126/science.1253291
- 915 Elwood, R. W. (1977). Changes in the responses of male and female gerbils (*Meriones unguiculatus*)

- 916 towards test pups during the pregnancy of the female. *Animal Behaviour*, 25, 46-51.
917 doi:[https://doi.org/10.1016/0003-3472\(77\)90066-5](https://doi.org/10.1016/0003-3472(77)90066-5)
- 918 Febo, M. (2012). Firing patterns of maternal rat prelimbic neurons during spontaneous contact with
919 pups. *Brain Res Bull*, 88(5), 534-542. doi:10.1016/j.brainresbull.2012.05.012
- 920 Febo, M., Felix-Ortiz, A. C., & Johnson, T. R. (2010). Inactivation or inhibition of neuronal activity in the
921 medial prefrontal cortex largely reduces pup retrieval and grouping in maternal rats. *Brain Res*,
922 1325, 77-88. doi:10.1016/j.brainres.2010.02.027
- 923 Feldman, R., & Bakermans-Kranenburg, M. J. (2017). Oxytocin: a parenting hormone. *Current Opinion
924 in Psychology*, 15, 13-18. doi:<https://doi.org/10.1016/j.copsyc.2017.02.011>
- 925 Fleming, A. S., & Korsmit, M. (1996). Plasticity in the maternal circuit: effects of maternal experience
926 on Fos-Lir in hypothalamic, limbic, and cortical structures in the postpartum rat. *Behav
927 Neurosci*, 110(3), 567-582. doi:10.1037/0735-7044.110.3.567
- 928 Häussler, H. U., Jirikowski, G. F., & Caldwell, J. D. (1990). Sex differences among
929 oxytocin-immunoreactive neuronal systems in the mouse hypothalamus. *J Chem Neuroanat*,
930 3(4), 271-276.
- 931 He, Z., Young, L., Ma, X. M., Guo, Q., Wang, L., Yang, Y., . . . Tai, F. (2019). Increased anxiety and
932 decreased sociability induced by paternal deprivation involve the PVN-PrL OTergic pathway.
933 *Elife*, 8. doi:10.7554/elife.44026
- 934 He, Z., Zhang, L., Hou, W., Zhang, X., Young, L. J., Li, L., . . . Tai, F. (2021). Paraventricular Nucleus
935 Oxytocin Subsystems Promote Active Paternal Behaviors in Mandarin Voles. *J Neurosci*,
936 41(31), 6699-6713. doi:10.1523/jneurosci.2864-20.2021
- 937 Hernández-González, M., Navarro-Meza, M., Prieto-Beracoechea, C. A., & Guevara, M. A. (2005).
938 Electrical activity of prefrontal cortex and ventral tegmental area during rat maternal behavior.
939 *Behav Processes*, 70(2), 132-143. doi:10.1016/j.beproc.2005.06.002
- 940 Hrdy, S. B. (1974). Male-male competition and infanticide among the langurs (*Presbytis entellus*) of
941 Abu, Rajasthan. *Folia Primatol (Basel)*, 22(1), 19-58. doi:10.1159/000155616
- 942 Inada, K., Hagihara, M., Tsujimoto, K., Abe, T., Konno, A., Hirai, H., . . . Miyamichi, K. (2022). Plasticity of
943 neural connections underlying oxytocin-mediated parental behaviors of male mice. *Neuron*,
944 110(12), 2009-2023.e2005. doi:10.1016/j.neuron.2022.03.033
- 945 Insel, T. R., Gelhard, R., & Shapiro, L. E. (1991). The comparative distribution of forebrain receptors for
946 neurohypophyseal peptides in monogamous and polygamous mice. *Neuroscience*, 43(2-3),
947 623-630. doi:10.1016/0306-4522(91)90321-e
- 948 Kelly, A. M., Hiura, L. C., Saunders, A. G., & Ophir, A. G. (2017). Oxytocin Neurons Exhibit Extensive
949 Functional Plasticity Due To Offspring Age in Mothers and Fathers. *Integr Comp Biol*, 57(3),
950 603-618. doi:10.1093/icb/icx036
- 951 Kenkel, W. M., Paredes, J., Yee, J. R., Pournajafi-Nazarloo, H., Bales, K. L., & Carter, C. S. (2012).
952 Neuroendocrine and behavioural responses to exposure to an infant in male prairie voles. *J
953 Neuroendocrinol*, 24(6), 874-886. doi:10.1111/j.1365-2826.2012.02301.x
- 954 Knobloch, H. S., Charlet, A., Hoffmann, L. C., Eliava, M., Khrulev, S., Cetin, A. H., . . . Grinevich, V. (2012).
955 Evoked axonal oxytocin release in the central amygdala attenuates fear response. *Neuron*,
956 73(3), 553-566. doi:10.1016/j.neuron.2011.11.030
- 957 Kohl, J., Autry, A. E., & Dulac, C. (2017). The neurobiology of parenting: A neural circuit perspective.
958 *Bioessays*, 39(1), 1-11. doi:10.1002/bies.201600159
- 959 Leuner, B., Caponiti, J. M., & Gould, E. (2012). Oxytocin stimulates adult neurogenesis even under

- 960 conditions of stress and elevated glucocorticoids. *Hippocampus*, 22(4), 861-868.
961 doi:10.1002/hipo.20947
- 962 Liu, W., Pappas, G. D., & Carter, C. S. (2005). Oxytocin receptors in brain cortical regions are reduced in
963 haploinsufficient (+/-) reeler mice. *Neurol Res*, 27(4), 339-345. doi:10.1179/016164105x35602
- 964 Liu, Y., Li, A., Bair-Marshall, C., Xu, H., Jee, H. J., Zhu, E., . . . Wang, J. (2023). Oxytocin promotes
965 prefrontal population activity via the PVN-PFC pathway to regulate pain. *Neuron*, 111(11),
966 1795-1811.e1797. doi:10.1016/j.neuron.2023.03.014
- 967 Lopatina, O., Inzhutova, A., Pichugina, Y. A., Okamoto, H., Salmina, A. B., & Higashida, H. (2011).
968 Reproductive experience affects parental retrieval behaviour associated with increased
969 plasma oxytocin levels in wild-type and CD38-knockout mice. *J Neuroendocrinol*, 23(11),
970 1125-1133. doi:10.1111/j.1365-2826.2011.02136.x
- 971 Lorberbaum, J. P., Newman, J. D., Horwitz, A. R., Dubno, J. R., Lydiard, R. B., Hamner, M. B., . . . George,
972 M. S. (2002). A potential role for thalamocingulate circuitry in human maternal behavior. *Biol
973 Psychiatry*, 51(6), 431-445. doi:10.1016/s0006-3223(01)01284-7
- 974 Lukas, D., & Huchard, E. (2014). Sexual conflict. The evolution of infanticide by males in mammalian
975 societies. *Science*, 346(6211), 841-844. doi:10.1126/science.1257226
- 976 Malcolm, J. R. (2015). Paternal Care in Canids. *American Zoologist*, 25(3), 853-856.
977 doi:10.1093/icb/25.3.853
- 978 Mascaro, J. S., Hackett, P. D., & Rilling, J. K. (2014). Differential neural responses to child and sexual
979 stimuli in human fathers and non-fathers and their hormonal correlates.
980 *Psychoneuroendocrinology*, 46, 153-163. doi:10.1016/j.psyneuen.2014.04.014
- 981 McCarthy, M. M. (1990). Oxytocin inhibits infanticide in female house mice (*Mus domesticus*). *Horm
982 Behav*, 24(3), 365-375. doi:10.1016/0018-506x(90)90015-p
- 983 McCarthy, M. M., Bare, J. E., & vom Saal, F. S. (1986). Infanticide and parental behavior in wild female
984 house mice: effects of ovariectomy, adrenalectomy and administration of oxytocin and
985 prostaglandin F2 alpha. *Physiol Behav*, 36(1), 17-23. doi:10.1016/0031-9384(86)90066-1
- 986 Mei, L., Yan, R., Yin, L., Sullivan, R. M., & Lin, D. (2023). Antagonistic circuits mediating infanticide and
987 maternal care in female mice. *Nature*, 618(7967), 1006-1016.
988 doi:10.1038/s41586-023-06147-9
- 989 Mendoza, S. P., & Mason, W. A. (1986). Parental division of labour and differentiation of attachments
990 in a monogamous primate (*Callicebus moloch*). *Animal Behaviour*, 34(5), 1336-1347.
991 doi:[https://doi.org/10.1016/S0003-3472\(86\)80205-6](https://doi.org/10.1016/S0003-3472(86)80205-6)
- 992 Milia, G., & Noonan, M. (2022). Experiences and perspectives of women who have committed
993 neonaticide, infanticide and filicide: A systematic review and qualitative evidence synthesis. *J
994 Psychiatr Ment Health Nurs*, 29(6), 813-828. doi:10.1111/jpm.12828
- 995 Moscarello, J. M., & LeDoux, J. E. (2013). Active avoidance learning requires prefrontal suppression of
996 amygdala-mediated defensive reactions. *J Neurosci*, 33(9), 3815-3823.
997 doi:10.1523/jneurosci.2596-12.2013
- 998 Munesue, S. I., Liang, M., Harashima, A., Zhong, J., Furuhara, K., Boitsova, E. B., . . . Higashida, H.
999 (2021). Transport of oxytocin to the brain after peripheral administration by
1000 membrane-bound or soluble forms of receptors for advanced glycation end-products. *J
1001 Neuroendocrinol*, 33(3), e12963. doi:10.1111/jne.12963
- 1002 Munetomo, A., Ishii, H., Miyamoto, T., Sakuma, Y., & Kondo, Y. (2016). Puerperal and parental
1003 experiences alter rat preferences for pup odors via changes in the oxytocin system. *J Reprod*

- 1004 1004 *Dev*, 62(1), 17-27. doi:10.1262/jrd.2015-046
- 1005 1005 Nakahara, T. S., Camargo, A. P., Magalhães, P. H. M., Souza, M. A. A., Ribeiro, P. G., Martins-Netto, P.
- 1006 1006 H., . . . Papes, F. (2020). Peripheral oxytocin injection modulates vomeronasal sensory activity
- 1007 1007 and reduces pup-directed aggression in male mice. *Sci Rep*, 10(1), 19943.
- 1008 1008 doi:10.1038/s41598-020-77061-7
- 1009 1009 Naviaux, A. F., Janne, P., & Gourdin, M. (2020). Psychiatric Considerations on Infanticide: Throwing the
- 1010 1010 Baby out with the Bathwater. *Psychiatr Danub*, 32(Suppl 1), 24-28.
- 1011 1011 Ninan, I. (2011). Oxytocin suppresses basal glutamatergic transmission but facilitates
- 1012 1012 activity-dependent synaptic potentiation in the medial prefrontal cortex. *J Neurochem*, 119(2),
- 1013 1013 324-331. doi:10.1111/j.1471-4159.2011.07430.x
- 1014 1014 Okabe, S., Tsuneoka, Y., Takahashi, A., Ooyama, R., Watarai, A., Maeda, S., . . . Kikusui, T. (2017). Pup
- 1015 1015 exposure facilitates retrieving behavior via the oxytocin neural system in female mice.
- 1016 1016 *Psychoneuroendocrinology*, 79, 20-30. doi:10.1016/j.psyneuen.2017.01.036
- 1017 1017 Peñagarikano, O., Lázaro, M. T., Lu, X. H., Gordon, A., Dong, H., Lam, H. A., . . . Geschwind, D. H. (2015).
- 1018 1018 Exogenous and evoked oxytocin restores social behavior in the Cntnap2 mouse model of
- 1019 1019 autism. *Sci Transl Med*, 7(271), 271ra278. doi:10.1126/scitranslmed.3010257
- 1020 1020 Pereira, M., & Morrell, J. I. (2011). Functional mapping of the neural circuitry of rat maternal
- 1021 1021 motivation: effects of site-specific transient neural inactivation. *J Neuroendocrinol*, 23(11),
- 1022 1022 1020-1035. doi:10.1111/j.1365-2826.2011.02200.x
- 1023 1023 Pereira, M., & Morrell, J. I. (2020). Infralimbic Cortex Biases Preference Decision Making for Offspring
- 1024 1024 over Competing Cocaine-Associated Stimuli in New Mother Rats. *eNeuro*, 7(4).
- 1025 1025 doi:10.1523/eneuro.0460-19.2020
- 1026 1026 Qian, T., Wang, H., Wang, P., Geng, L., Mei, L., Osakada, T., . . . Li, Y. (2023). A genetically encoded
- 1027 1027 sensor measures temporal oxytocin release from different neuronal compartments. *Nat*
- 1028 1028 *Biotechnol*, 41(7), 944-957. doi:10.1038/s41587-022-01561-2
- 1029 1029 Rosenfeld, C. S., Johnson, S. A., Ellersieck, M. R., & Roberts, R. M. (2013). Interactions between parents
- 1030 1030 and parents and pups in the monogamous California mouse (*Peromyscus californicus*). *PLoS*
- 1031 1031 *One*, 8(9), e75725. doi:10.1371/journal.pone.0075725
- 1032 1032 Sabihi, S., Dong, S. M., Durosko, N. E., & Leuner, B. (2014). Oxytocin in the medial prefrontal cortex
- 1033 1033 regulates maternal care, maternal aggression and anxiety during the postpartum period.
- 1034 1034 *Front Behav Neurosci*, 8, 258. doi:10.3389/fnbeh.2014.00258
- 1035 1035 Sabihi, S., Dong, S. M., Maurer, S. D., Post, C., & Leuner, B. (2017). Oxytocin in the medial prefrontal
- 1036 1036 cortex attenuates anxiety: Anatomical and receptor specificity and mechanism of action.
- 1037 1037 *Neuropharmacology*, 125, 1-12. doi:10.1016/j.neuropharm.2017.06.024
- 1038 1038 Saito, A., & Nakamura, K. (2011). Oxytocin changes primate paternal tolerance to offspring in food
- 1039 1039 transfer. *J Comp Physiol A Neuroethol Sens Neural Behav Physiol*, 197(4), 329-337.
- 1040 1040 doi:10.1007/s00359-010-0617-2
- 1041 1041 Seifritz, E., Esposito, F., Neuhoff, J. G., Lüthi, A., Mustovic, H., Dammann, G., . . . Di Salle, F. (2003).
- 1042 1042 Differential sex-independent amygdala response to infant crying and laughing in parents
- 1043 1043 versus nonparents. *Biol Psychiatry*, 54(12), 1367-1375. doi:10.1016/s0006-3223(03)00697-8
- 1044 1044 Shabalova, A. A., Liang, M., Zhong, J., Huang, Z., Tsuji, C., Shnayder, N. A., . . . Higashida, H. (2020).
- 1045 1045 Oxytocin and CD38 in the paraventricular nucleus play a critical role in paternal aggression in
- 1046 1046 mice. *Horm Behav*, 120, 104695. doi:10.1016/j.yhbeh.2020.104695
- 1047 1047 Shahrokh, D. K., Zhang, T. Y., Diorio, J., Gratton, A., & Meaney, M. J. (2010). Oxytocin-dopamine

- 1048 interactions mediate variations in maternal behavior in the rat. *Endocrinology*, 151(5),
1049 2276-2286. doi:10.1210/en.2009-1271
- 1050 Smeltzer, M. D., Curtis, J. T., Aragona, B. J., & Wang, Z. (2006). Dopamine, oxytocin, and vasopressin
1051 receptor binding in the medial prefrontal cortex of monogamous and promiscuous voles.
1052 *Neurosci Lett*, 394(2), 146-151. doi:10.1016/j.neulet.2005.10.019
- 1053 Sofroniew, M. V. (1983). Morphology of vasopressin and oxytocin neurones and their central and
1054 vascular projections. *Prog Brain Res*, 60, 101-114. doi:10.1016/s0079-6123(08)64378-2
- 1055 Svare, B., & Mann, M. (1981). Infanticide: genetic, developmental and hormonal influences in mice.
1056 *Physiol Behav*, 27(5), 921-927. doi:10.1016/0031-9384(81)90062-7
- 1057 Takahashi, A., Nagayasu, K., Nishitani, N., Kaneko, S., & Koide, T. (2014). Control of intermale
1058 aggression by medial prefrontal cortex activation in the mouse. *PLoS One*, 9(4), e94657.
1059 doi:10.1371/journal.pone.0094657
- 1060 Tamborski, S., Mintz, E. M., & Caldwell, H. K. (2016). Sex Differences in the Embryonic Development of
1061 the Central Oxytocin System in Mice. *J Neuroendocrinol*, 28(4). doi:10.1111/jne.12364
- 1062 Uhl-Bronner, S., Waltisperger, E., Martínez-Lorenzana, G., Condes Lara, M., & Freund-Mercier, M. J.
1063 (2005). Sexually dimorphic expression of oxytocin binding sites in forebrain and spinal cord of
1064 the rat. *Neuroscience*, 135(1), 147-154. doi:10.1016/j.neuroscience.2005.05.025
- 1065 Wang, X., Escobar, J. B., & Mendelowitz, D. (2021). Sex Differences in the Hypothalamic Oxytocin
1066 Pathway to Locus Coeruleus and Augmented Attention with Chemogenetic Activation of
1067 Hypothalamic Oxytocin Neurons. *Int J Mol Sci*, 22(16). doi:10.3390/ijms22168510
- 1068 Weisman, O., Zagoory-Sharon, O., & Feldman, R. (2012). Oxytocin administration to parent enhances
1069 infant physiological and behavioral readiness for social engagement. *Biol Psychiatry*, 72(12),
1070 982-989. doi:10.1016/j.biopsych.2012.06.011
- 1071 Woller, M. J., Sosa, M. E., Chiang, Y., Prudom, S. L., Keelty, P., Moore, J. E., & Ziegler, T. E. (2012).
1072 Differential hypothalamic secretion of neurocrines in male common marmosets: parental
1073 experience effects? *J Neuroendocrinol*, 24(3), 413-421.
1074 doi:10.1111/j.1365-2826.2011.02252.x
- 1075 Yamamoto, Y., Liang, M., Munesue, S., Deguchi, K., Harashima, A., Furuhashi, K., . . . Higashida, H.
1076 (2019). Vascular RAGE transports oxytocin into the brain to elicit its maternal bonding
1077 behaviour in mice. *Commun Biol*, 2, 76. doi:10.1038/s42003-019-0325-6
- 1078 Yoshihara, C., Numan, M., & Kuroda, K. O. (2018). Oxytocin and Parental Behaviors. *Curr Top Behav
1079 Neurosci*, 35, 119-153. doi:10.1007/7854_2017_11
- 1080 Yu, G. Z., Kaba, H., Okutani, F., Takahashi, S., & Higuchi, T. (1996). The olfactory bulb: a critical site of
1081 action for oxytocin in the induction of maternal behaviour in the rat. *Neuroscience*, 72(4),
1082 1083-1088. doi:10.1016/0306-4522(95)00600-1
- 1083 Yuan, W., He, Z., Hou, W., Wang, L., Li, L., Zhang, J., . . . Tai, F. (2019). Role of oxytocin in the medial
1084 preoptic area (MPOA) in the modulation of paternal behavior in mandarin voles. *Horm Behav*,
1085 110, 46-55. doi:10.1016/j.yhbeh.2019.02.014
- 1086