

# 1 A Haplotype-resolved, Chromosome-scale Genome

## 2 for *Malus domestica* Borkh. 'WA 38'

3 *Running Title: A high-quality genome for the 'WA 38' apple.*

4

5 Huiting Zhang<sup>1,2,\*</sup>, Itsuhiro Ko<sup>3,4,\*</sup>, Abigail Eaker<sup>3,4,\*</sup>, Sabrina Haney<sup>5</sup>, Ninh Khuu<sup>3</sup>, Kara Ryan<sup>6</sup>,  
6 Aaron B. Appleby<sup>7</sup>, Brendan Hoffmann<sup>8</sup>, Henry Landis<sup>6</sup>, Kenneth Pierro<sup>8</sup>, Noah Willsea<sup>9</sup>, Heidi  
7 Hargarten<sup>2</sup>, Alan Yocca<sup>2,10</sup>, Alex Harkess<sup>10</sup>, Loren Honaas<sup>2</sup>\*\*, Stephen Ficklin<sup>1,11</sup>

8

9 <sup>1</sup> Department of Horticulture, Washington State University, Pullman, WA, 99164

10 <sup>2</sup> USDA Agricultural Research Service, Wenatchee, WA, USA 98801

11 <sup>3</sup> Department of Plant Pathology, Washington State University, Pullman, WA, 99164

12 <sup>4</sup> Program of Molecular Plant Sciences, Washington State University, Pullman, WA, 99164

13 <sup>5</sup> Department of Animal Science, Washington State University, Pullman, WA, 99164

14 <sup>7</sup> Department of Crop and Soil Science, Washington State University, Pullman, WA, 99164

15 <sup>8</sup> Integrated Plant Sciences Program, Washington State University, Pullman, WA, 99164

16 <sup>9</sup> Department of Horticulture, WSU Tree Fruit Research and Extension Center, Wenatchee, WA,  
17 98801

18 <sup>10</sup> HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806

19

20 \* Co-first author.

21 \*\* Corresponding authors.

22 Loren Honaas: [loren.honaas@usda.gov](mailto:loren.honaas@usda.gov)

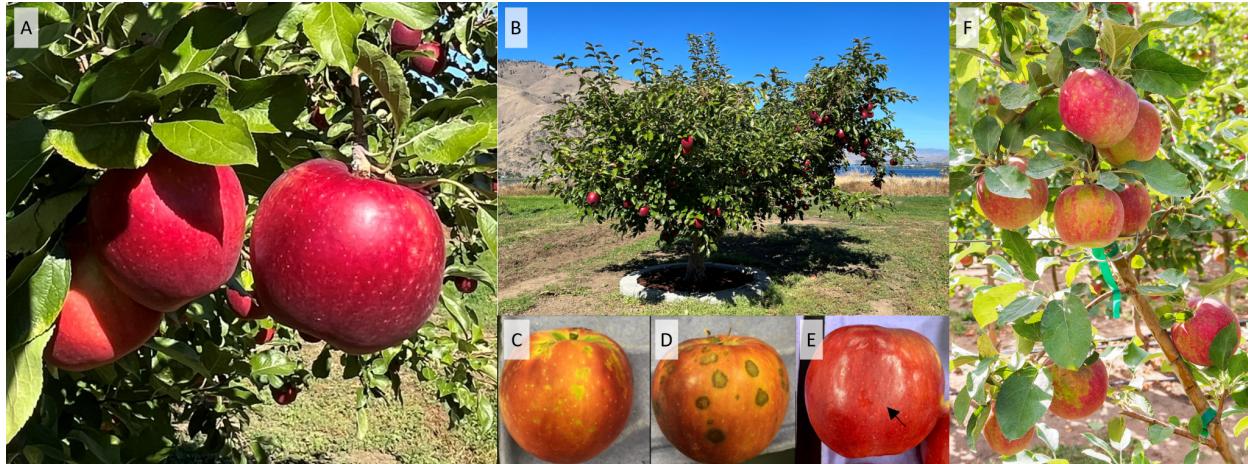
23 Stephen Ficklin: [stephen.ficklin@wsu.edu](mailto:stephen.ficklin@wsu.edu)

24

## 25 Abstract

26 Genome sequencing for agriculturally important Rosaceous crops has made rapid progress  
27 both in completeness and annotation quality. Whole genome sequence and annotation gives  
28 breeders, researchers, and growers information about cultivar specific traits such as fruit quality,  
29 disease resistance, and informs strategies to enhance postharvest storage. Here we present a  
30 haplotype-phased, chromosomal level genome of *Malus domestica*, 'WA 38', a new apple  
31 cultivar released to market in 2017 as Cosmic Crisp ®. Using both short and long read  
32 sequencing data with a k-mer based approach, chromosomes originating from each parent were  
33 assembled and segregated. This is the **first** pome fruit genome fully phased into parental  
34 haplotypes in which chromosomes from each parent are identified and separated into their  
35 unique, respective haplotypes. The two haplome assemblies, 'Honeycrisp' originated HapA and  
36 'Enterprise' originated HapB, are about 650 Megabases each, and both have a BUSCO score of  
37 98.7% complete. A total of 53,028 and 54,235 genes were annotated from HapA and HapB,  
38 respectively. Additionally, we provide genome-scale comparisons to 'Gala', 'Honeycrisp', and  
39 other relevant cultivars highlighting major differences in genome structure and gene family  
40 circumscription. This assembly and annotation was done in collaboration with the American  
41 Campus Tree Genomes project that includes 'WA 38' (Washington State University), 'd'Anjou'  
42 pear (Auburn University), and many more. To ensure transparency, reproducibility, and  
43 applicability for any genome project, our genome assembly and annotation workflow is recorded  
44 in detail and shared under a public GitLab repository. All software is containerized, offering a  
45 simple implementation of the workflow.

46

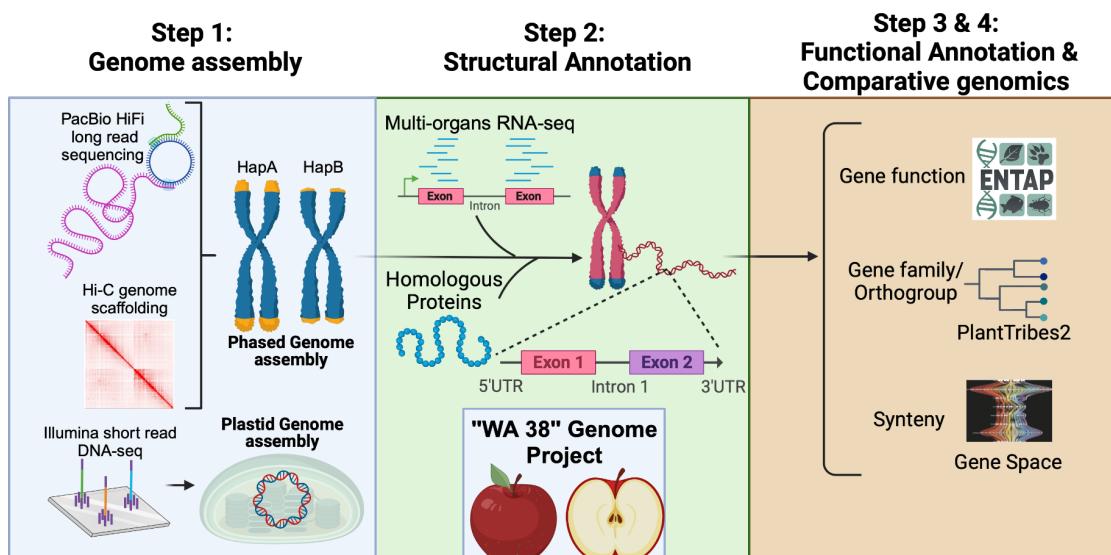

## 47 Keywords

48 Apple genomics, *Malus domestica* 'WA 38', genome sequence, comparative genomics, plant  
49 genomics, haplotype-resolved assembly, genome annotation

50

## 51 Introduction

52 For economically important crop species, having full-resolution reference genomes aids in the  
53 understanding of traits associated with commodity quality, disease resistance, long-term  
54 storage, and shelf life. Apple (*Malus domestica*) is the number one consumed fruit in the United  
55 States, with a Farm-Gate Revenue of \$3.2 billion in the U.S. (USApple, 2024), and \$78 billion  
56 globally (FGN, 2020). There are over 7,000 apple varieties grown world wide (Washington  
57 Apple Commission, 2024), each with unique colors, flavors, and textures (N.C. Cooperative  
58 Extension, n.d. ). Therefore, a single genome is unlikely to capture the complexity of all cultivars  
59 within this highly heterozygous species (Li *et al.* 2022b; Zhang *et al.* 2022). One such cultivar is  
60 'WA 38', commercially released as Cosmic Crisp® in 2017 by the Pome Fruit Breeding Program  
61 at Washington State University's (WSU) Tree Fruit Research and Extension Center (Figure 1 A,  
62 B) and has reached the top 10 best selling apple cultivars in the United States (Truscott, 2023).  
63 'WA 38' is a cross between 'Honeycrisp' and 'Enterprise', made using classical breeding  
64 methods in 1997. One parent, 'Honeycrisp', is well-known for its crisp texture, firmness retention  
65 in storage, disease resistance, and cold hardiness, but is highly susceptible to production and  
66 postharvest issues (Khan *et al.* 2022). The other parent, 'Enterprise', is an easy-to-grow cultivar  
67 that has extended postharvest storage capabilities, however it is not widely cultivated  
68 commercially due to its less desirable eating quality (Crosby *et al.* 1994). Their resulting cross  
69 has been met with favorable reviews for its appealing color, texture, flavor, cold hardiness, long-  
70 term storage capabilities (>1 year), and scab resistance (Evans *et al.* 2012). However, it  
71 inherited undesirable traits as well, such as a propensity for physiological symptoms that may  
72 be related to mineral imbalances (Sallato *et al.* 2021; Sheick *et al.* 2023), maturity at harvest  
73 (Serra *et al* 2023), and an 'off' flavor that has been brought up by consumers that may be the  
74 result of improper picking times, crop load management, handling/packing practices or other  
75 post harvest processes (Mendoza, M., Hanrahan, I., & Bolaños, G., 2020 ). Most  
76 concerning is green spot (Figure 1 C, D, and F), a corking disorder that seems to be unique to  
77 'WA 38', but with etiology similar to disorders associated with mineral imbalances such as bitter  
78 pit and drought spot (Sheick *et al.* 2022, 2023). The propensity for and cause of physiological  
79 disorders often differs on a cultivar-by-cultivar basis (Pareek 2019), and a genetic basis for such  
80 predispositions is likely (Liebhard *et al.* 2003; Johnston and Brookfield 2012; Di Guardo *et al.*  
81 2013; Lum *et al.* 2016). Thus, improved resolution of cultivar-specific genomic differences is  
82 critical for advancing our understanding of how economically important traits, such as  
83 physiological disorders, are inherited and how they can be managed more efficiently.




84

85 *Figure 1. 'WA 38', a cultivar of apple developed by the Washington State University Apple*  
86 *Breeding Program (a cross between 'Honeycrisp' and 'Enterprise'), marketed as Cosmic*  
87 *Crisp®. A) 'WA 38' apples ready for harvest on the mother tree, located at the WSU and USDA-*  
88 *ARS Columbia View Research Orchard near Orondo, WA, USA. B) The 'WA 38' mother tree. C*  
89 *& D) Green spot, a corking disorder which results in green blemishes on the fruit peel and*  
90 *brown, corky cortex tissue. Symptom severity generally increases during fruit maturation and*  
91 *time in storage, resulting in cullage. E) Natural peel greasiness as a result of more advanced*  
92 *maturity at harvest can interfere with artificial waxes applied in the packinghouse after removal*  
93 *from postharvest storage, creating unappealing, dull spots. F) Green Spot symptoms can begin*  
94 *to appear while fruit is still developing on the tree. Photo Credits: A&B: Heidi Hargarten/USDA-*  
95 *ARS; C&D: Bernardita Sallato/WSU; E: Carolina Torres/WSU; F: Ross Courtney/Good Fruit*  
96 *Grower.*

97 To develop full resolution reference genomes of superior quality, having skilled bioinformaticians  
98 is required. To train the next generation of bioinformaticians for agricultural genomic research, a  
99 national effort spearheaded by Auburn University, HudsonAlpha Institute for Biotechnology, and  
100 Washington State University was started in 2021 - The American Campus Tree Genomes  
101 project (ACTG). ACTG aims to break through institutional barriers that have traditionally  
102 prevented many students from accessing valuable, hands-on research projects and experience  
103 in bioinformatics (Sharman, S, n.d.). To accomplish this goal, a course has been developed to  
104 involve students in genome projects from inception, through analysis, to publication (Harkess,  
105 2022). During the course, students learn genome assembly and annotation workflows using the  
106 raw sequence data from genomes of beloved trees (e.g., Toomer's oak and 'd'Anjou' pear  
107 (Yocca et al. 2024) at Auburn University, Sabal palm at University of South Carolina) and are

108 listed as authors on the final publication. The 'WA 38' genome introduced here was developed  
109 through ACTG by students from Washington State University, presenting three major outcomes:  
110 1) a fully annotated, chromosomal level, haplotype-resolved genome of 'WA 38' utilizing PacBio  
111 HiFi, Dovetail Omni-C, and Illumina DNA and RNA sequencing data, 2) identification of unique  
112 regions of interest using a comparative genomics approach with other economically important  
113 *M. domestica* cultivars including 'Gala', 'Fuji', and 'Honeycrisp', and 3) establishment of a  
114 containerized, reproducible, flexible, high performance computing workflow for complete  
115 genome assembly and annotation (Figure 2, Supplemental Figure 1).



116

117 *Figure 2. Schematic chart of 'WA 38' genome project.*

## 118 Methods

119 Workflows developed for each stage of the project and the summary workflow of the whole  
120 project are available in Supplemental Figure S1. Scripts with parameters for each computation  
121 step and methods in markdown format are available in GitLab at: <https://gitlab.com/ficklinlab-public/wa-38-genome>.

## 123 Sample Collection

124 Approximately 20 grams of young leaf material was harvested from the *Malus domestica* 'WA  
125 38' mother tree at the Washington State University and USDA-ARS Columbia View Research  
126 Orchard near Orondo, WA, USA and flash-frozen in liquid nitrogen. Tissue was sent to the

127 HudsonAlpha Institute for Biotechnology in Huntsville, AL, USA for DNA extraction, sequencing  
128 library preparation, and sequencing, following the same protocol (detailed below) used to  
129 generate the 'd'Anjou' pear genome (Yocca *et al.* 2024).

130 To assess heterozygosity and genome size of 'WA 38', DNA was extracted using a standard  
131 CTAB isolation method (Doyle and Doyle 1987). Illumina TruSeq DNA PCR-free libraries were  
132 constructed from 3 ug of input DNA following the manufacturer's instruction, and sequenced on  
133 an Illumina NovaSeq6000.

134 For PacBio HiFi sequencing, high molecular weight DNA was isolated using a Nanobind Plant  
135 Nuclei Big DNA kit (Circulomics-PacBio, Menlo Park, CA), with 4 g of input tissue and a 2-hour  
136 lysis. DNA purity, quantity, and fragment sizes were measured via spectrophotometry, Qubit™  
137 dsDNA Broad Range assay (Invitrogen™), and Femto Pulse system (Agilent, Santa Clara, CA),  
138 respectively. DNA that passed quality control was sheared with a Megaruptor (Diagenode,  
139 Denville, NJ) and size-selected to roughly 25 kb on a BluePippin. The SMRTbell Express  
140 Template Prep Kit 2.0 (PacBio, Menlo Park, CA) was used to construct the PacBio sequencing  
141 library, and HiFi reads were produced using circular consensus sequencing (CCS) mode with  
142 two 8M flow cells on a PacBio Sequel II long-read system.

143 To scaffold PacBio HiFi contigs into chromosome pseudomolecules, a Dovetail Genomics  
144 Omni-C library was generated using 1 g of flash-frozen young leaf material as input following  
145 the manufacturer's instruction (Dovetail Genomics, Scotts Valley, CA), and sequenced on an  
146 Illumina NovaSeq6000 S4 PE150 flow cell.

#### 147 Sequence quality assessment and genome complexity analysis

148 Adapter sequences were trimmed from the raw Illumina shot-gun DNA reads using fastp  
149 (v0.23.2) (Chen *et al.* 2018) with all the other trimming functions disabled. Both the raw and  
150 trimmed Illumina reads, PacBio HiFi reads, and Omni-C Illumina reads were assessed for  
151 quality with FastQC (v0.11.9) (Andrews, 2010). Genome complexity, *i.e.* nuclear genome size  
152 and ploidy, was estimated using Jellyfish (v2.2.10) (Marçais and Kingsford 2011). With trimmed  
153 paired-end Illumina reads as input and a k-mer size set to 21, a k-mer count file was generated  
154 by Jellyfish. The k-mer histogram, also created by Jellyfish, was visualized in GenomeScope  
155 (v1.0) (Vurture *et al.* 2017) with the following parameters: k-mer size = 21, Read length = 151,  
156 and Max k-mer coverage = 1000. A summary statistic report of the sequence quality and  
157 complexity analysis was generated with MultiQC (v1.13a).

158    Genome Assembly

159    Genome assembly and scaffolding

160    Phased haplomes were assembled by Hifiasm (v0.16.1) (Cheng *et al.* 2021) with default  
161    parameters, using both the Omni-C data and the PacBio HiFi long reads. The statistical  
162    summary of the assembly was produced using the assimilation\_stats Perl scripts described in  
163    (Earl *et al.* 2011). Both hifiasm-assembled haplotype unitigs were then sorted by MUMmer  
164    (v3.23) (Kurtz *et al.* 2004) using the ‘nucmer’ function with flag -maxmatch. The resulting files  
165    were uploaded to the Assemblytics web server (<http://assemblytics.com>; Nattestad and Schatz  
166    2016) to visualize structural variations in two haplotype unitigs with the default settings.

167    Following the initial assembly step, bwa (Li and Durbin 2009) was used to index the draft  
168    contigs, and subsequently to align the Hi-C reads to the indexed contigs. The sorted files were  
169    input into Phase Genomics hic\_qc ([https://github.com/phasegenomics/hic\\_qc](https://github.com/phasegenomics/hic_qc);  
170    phasegenomics, n.d.) to validate the overall quality of the library. Both assembled haplomes  
171    were scaffolded into chromosomes with YaHS (Danecek *et al.* 2021; Zhou *et al.* 2022), using  
172    default parameters.

173    Assembly curation, completeness assessment, and telomere identification

174    Hi-C files were generated using YaHS Juicer Pre (v1.2a.2-0) with flag -a allowing manual  
175    curation. The resulting files were used as input for Juicer Tools Pre (v 1.22.01) to generate Hi-C  
176    contact maps (Durand *et al.* 2016; Zhou *et al.* 2022). Juicebox Assembly Tools (v1.11.08) was  
177    used to explore the Hi-C maps for miss-assemblies (Robinson *et al.* 2018). After manual  
178    examination of the Hi-C maps, the final genome assembly was generated by linking remaining  
179    files from YaHS Juicer Pre and original HiFi scaffold, using YaHS Juicer Post (v 1.2a.2-0,  
180    (Durand *et al.* 2016)).

181    For consistency and reproducibility, ‘WA 38’ chromosomes were renamed and reorientated to  
182    match published genomes. First, MUMmer (v3.23) was used to align the ‘WA 38’ assembly to  
183    the ‘Gala’ v1 HapA assembly using the –maxmatch parameter for unique matches (Kurtz *et al.*  
184    2004; Sun *et al.* 2020). Next, Assemblytics dotplot was used to identify ‘WA 38’ scaffolds that  
185    aligned with the ‘Gala’ v1 chromosomes and ‘WA 38’ scaffolds were renamed accordingly. To  
186    determine orientation, each ‘WA 38’ chromosome was aligned to the corresponding ‘Gala’ v1  
187    chromosomes using LASTZ (v 1.02.00) implemented in Geneious (v9.0.5; Harris. 2007) with the

188 'search both strands' option. The chromosomes on the reverse stand were reoriented with the  
189 Reverse Complement (RC) function in Geneious (Supplemental Figure S2). The resulting  
190 assembly was searched against NCBI's RefSeq Plastid database (NCBI Organelle genome  
191 resources, n.d.) using megablast and a custom virus and bacteria database using Kraken  
192 (v2.1.3; Wood and Salzberg, 2014) to identify contaminants. Scaffolds identified as plastid or  
193 microbe contaminants were removed in the assembly.

194 The cleaned assembly was compared to the 'Honeycrisp' genome assembly with a kmer  
195 approach using meryl (v1.4.1, Rhee et al., 2020). Chromosomes with a 'Honeycrisp' origin were  
196 placed in HapA, whereas the others were placed in HapB.

197 The two final haplome assemblies were compared to each other using MUMmer and  
198 Assemblitics as described above to identify structural variants. Benchmarking universal single-  
199 copy gene orthologs (BUSCO, v5.4.3\_cv1) analysis was performed in genome mode with the  
200 eudictos\_odb10 database to assess completeness (Manni et al. 2021).

## 201 Structural and functional annotation

### 202 Repeat annotation

203 Repetitive elements from both haplotypes were annotated using EDTA (v2.0.0; Ou et al. 2019),  
204 with flags 'sensitive=1' and 'anno=1'. The full coding sequence from 'Gala' HapA, obtained from  
205 the Genome Database for Rosaceae (GDR; Jung et al. 2019), was used as reference to aid  
206 repeat finding. The custom transposable element library generated by EDTA was then imported  
207 to RepeatMasker (Smit et al. 2013-2015) to further identify potentially overlooked repetitive  
208 elements and create masked versions of the genome. Three masked versions were generated:  
209 softmasked, N masked, and X masked.

210 Telomeres were identified by tidk (v0.2.41; Brown et al. 2023) with the following parameters:  
211 explore --minimum 2 --maximum 20 and the default database provided by the software.

### 212 Gene Annotation

213 To annotate gene space, a combination of *ab initio* prediction and evidence-based prediction  
214 were performed on the softmasked assemblies with two rounds of BRAKER using transcriptome  
215 and homologous protein evidence. PASA (v2.5.2; Haas et al. 2003) was then used to refine

216 gene models and add UTR annotation. Lastly, a custom script was used for filtering. The  
217 detailed methods are described below.

218 *BRAKER1 - annotation with transcriptome evidence*

219 To perform transcriptome guided annotation, same RNA-seq data from Khan et al. (2022) (eight  
220 tissue types from six pome fruit cultivars including 'WA 38', BioProject: PRJNA791346) were  
221 first aligned to the 'WA 38' haplomes using the STAR aligner implemented in GEMmaker  
222 (v2.1.0) Nextflow workflow (Hadish et al. 2022). The resulting read alignments were used as  
223 extrinsic evidence in BRAKER1 (Hoff et al. 2016) to predict gene models in each softmasked  
224 haplome with the following parameters: --softmasking, --UTR=off, --species=malus\_domestica.

225 *BRAKER2 - annotation with homologous protein evidence*

226 To provide protein evidence data for BRAKER2 (Brúna et al. 2021), protein sequences from  
227 three sources were used: 1) Predicted protein sequences of 13 Rosaceae genomes retrieved  
228 from GDR (*Fragaria vesca* v4a2 (Li et al. 2019), *Malus baccata* v1.0 (Chen et al. 2019), *M.*  
229 *domestica* var.*Gala* v1 (Sun et al. 2020), *M. domestica* var.*GDDH13* v1.1 (Daccord et al. 2017),  
230 *M. domestica* 'Honeycrisp' v1.0 (Khan et al. 2022), *M. sieversii* v1 (Sun et al. 2020), *M.*  
231 *sylvestris* v1 (Sun et al. 2020), *Prunus persica* v2.0.a1 (Verde et al. 2017), *Pyrus betulifolia* v1.0  
232 (Dong et al. 2020), *P. communis* 'd'Anjou' v2.3 (Yocca et al. 2023), *P. pyrifolia* 'Nijisseikiv' v1.0  
233 (Shirasawa et al. 2021), *Rosa chinensis* 'Old Blush' v2.0.a1 (Raymond et al. 2018), and *Rubus*  
234 *occidentalis* v3 (VanBuren et al. 2018)); 2) Peptide sequences predicted from *de novo*  
235 transcriptome assemblies used in the 'Honeycrisp' genome annotation (Khan et al. 2022); and  
236 3) Viridiplantae OrthoDBv11 protein sequences (Kuznetsov et al. 2022). In the same manner as  
237 BRAKER1, the softmasked haplome assemblies were used as input.

238 *TSEBRA - transcript selection*

239 The gene annotation results from BRAKER1 and BRAKER2 were merged and filtered based on  
240 the supporting evidence using TSEBRA (v.1.0.3; Gabriel et al. 2021) with the default  
241 configuration (file obtained in August 2022) provided by TSEBRA developers.

242 *PASA - gene model curation and UTR annotation*

243 Two sources of transcriptome assembly evidence were obtained to facilitate PASA annotation:  
244 1) Transcript sequences predicted from *de novo* transcriptome assemblies used by 'Honeycrisp'  
245 genome annotation; and 2) Reference guided assemblies created with read alignment files from  
246 GEMmaker (see the BRAKER1 section for details) using Trinity (Grabherr et al. 2011) with max

247 intron size set to 10,000. Four rounds of PASA (v2.5.2) curation were performed using the  
248 aforementioned evidence and a starting annotation. The first round of PASA curation used  
249 TSEBRA annotation as the starting annotation, and annotations from the previous round were  
250 used as the starting annotation for rounds two through four. The curation results from each  
251 round were manually inspected using the PASA web portal. No significant improvement was  
252 observed after the fourth round of curation, therefore no further rounds were performed.

253 *Gene model filtering and gene renaming*

254 Repeat and gene model annotations were loaded to IGV (v2.15.1; Robinson *et al.* 2011) for  
255 manual inspection. Three types of erroneous gene models were observed consistently  
256 throughout the annotations. Type 1: Genes overlapping with repeat regions (e.g. transposon  
257 was wrongly annotated as a gene), Type 2: Gene models overlapping with each other on the  
258 same strand (e.g. single gene was wrongly annotated with multiple gene models), and Type 3:  
259 Gene models with splice variants that had no overlap (e.g. different genes were wrongly  
260 annotated as the single gene's splice variants). A custom script was used to address these  
261 errors. The Type 1 error was resolved by removing genes with 90% of its coding region  
262 overlapping with repeat regions. The Type 2 error was resolved by removing the shorter gene of  
263 a pair that overlaps on the same strand. The Type 3 error was resolved by splitting splice  
264 variant models with no overlap into two separate gene models. Finally, custom scripts were  
265 used to generate the final annotation files (gene, mRNA, cds, protein, gff3) and rename genes  
266 to match the naming convention proposed by GDR  
267 (<https://www.rosaceae.org/nomenclature/genome>). The longest isoforms of each transcript were  
268 needed for some downstream analysis and were extracted using a modified version of the  
269 `get_longest_isoform_seq_per_trinity_gene.pl` script provided by Trinity (Grabherr *et al.* 2011).

270 Functional Annotation

271 The final gene sets from both 'WA 38' haplotypes were annotated using EnTAPnf (Hart *et al.*  
272 2020) with Interproscan, Panther, RefSeq, and uniprot\_sprot databases that are automatically  
273 downloaded using the `download.py` script provided by EnTAPnf.

274 Comparative Analysis

275 Synteny analysis

276 A synteny comparison was performed using GENESPACE (Lovell *et al.* 2022) with five *Malus*  
277 *domestica* assemblies and annotations (GDDH13 from Daccord *et al.* 2017), both haplomes of  
278 'Honeycrisp' from Khan *et al.* 2022, and both haplomes from 'WA 38'). Default parameters were  
279 used. Only the longest isoforms were used for 'WA 38'.

280 Gene family analysis

281 Gene family, or orthogroup, analyses were carried out to identify shared and unique gene  
282 families in 'WA 38' and other pome fruit genomes (i.e., *Malus* sp. and *Pyrus* sp. A full list of  
283 genomes analyzed can be found in Supplemental Table S1) following the method described by  
284 (Khan *et al.* 2022). Briefly, predicted protein sequences from the selected pome fruit genomes  
285 were classified into a pre-computed orthogroup database (26Gv2.0) using the 'both HMMscan  
286 and BLASTp' option implemented in the GeneFamilyClassifier tool from PlantTribes2 (Wafula *et*  
287 *al.* 2022). Overlapping orthogroups among *M. domestica* genomes were calculated and  
288 visualized with the UpSet plot function implemented in TBtools v2.030 (Chen *et al.*, 2023).

289 A Core OrthoGroup (CROG) - Rosaceae gene count analysis was carried out following the  
290 method described by (Wafula *et al.* 2022). First, a CROG gene count matrix was created by  
291 counting genes classified into CROGs from each pome fruit genome. Next, the matrix was  
292 visualized as a clustermap using the Seaborn clustermap package (CROGs with standard  
293 deviation of 0 were removed prior to plotting) with rows normalized by z-score. Finally, the  
294 derived z-score of CROGs in each genome was summarized into a boxplot to illustrate z-score  
295 distribution using the boxplot function in Seaborn.

296 Gene evidence source mapping

297 Each gene was screened against the following evidence source: Transcriptome evidence  
298 covering the entire gene (Full support); Transcriptome evidence covering part of the gene (Any  
299 support); Homologous protein evidence covering the entire gene (Full support); Homologous  
300 protein evidence covering part of the gene (Any support); Has a EnTAP functional annotation  
301 from any database; Assignment to a PlantTribes2 Orthogroup. Transcriptome and homologous  
302 protein evidence were mapped to genes by using "selectSupportedSubsets.py" script provided  
303 by BRAKER (Brúna *et al.* 2021) and BEDtools (Quinlan and Hall 2010). Summaries of evidence

304 source mapping are available in Supplemental Table S2 and S3. The following subsets of genes  
305 were extracted and were subject to BUSCO completeness analysis and CROG gene count  
306 analysis: Subset 1, Genes with **full** support from either RNAseq or homologous protein  
307 evidence; Subset 2, Genes with **any** support from either RNAseq or homologous protein  
308 evidence; Subset 3, Genes from Subset 1 plus gene with both EnTAP and PlantTribes2  
309 annotation; Subset 4, Genes from Subset 1 plus genes with either EnTAP or PlantTribes2  
310 annotation.

### 311 Chloroplast & Mitochondria Assembly and Annotation

312 The chloroplast genome was assembled from trimmed Illumina shot-gun DNA reads using  
313 NOVOplasty (v4.3.1; Dierckxsens *et al.* 2017) with the *Malus siversii* chloroplast genome  
314 (NCBI accession ID: MH890570.1; Naizaier *et al.* 2019) as the reference sequence and the  
315 NOVOplasty *Zea mays* *RUBP* gene as the seed sequence. The assembled chloroplast was  
316 annotated using GeSeq Web Server (website accessed on Dec. 19th, 2023; Tillich *et al.* 2017)  
317 with settings for 'circular plastid genomes for land plants' and the following parameters:  
318 annotating plastid inverted repeats and plastid trans-spliced *rps12*. Additionally, annotations  
319 from third party softwares Chloë (v0.1.0) and ARAGORN (v1.2.38), as well as a BLAT (v.35×1)  
320 search against all land plant chloroplast reference sequences (CDS and rRNA), were integrated  
321 with the GeSeq results. Genes identified by multiple tools were manually reviewed to produce  
322 the final, curated annotation. The curated chloroplast annotation was visualized by OGDRAW  
323 (v1.3.1; Greiner *et al.* 2019).

324 The mitochondrial genome sequence was isolated from the Hifiasm assembled contigs using  
325 MitoHifi (v3.2; Uliano-Silva *et al.* 2023). The *M. domestica* mitochondria sequencing from NCBI  
326 (NC\_018554.1; Goremykin *et al.* 2012), which contained 57 genes consisting of 4 rRNAs, 20  
327 tRNAs, and 33 protein-coding genes, was used as the closely related reference sequence.  
328 Briefly, MitoHifi compares the assembled contigs to the reference mitogenome using the BLAST  
329 algorithm. The resulting contigs were manually filtered by size and redundancy and then are  
330 circulated. To increase the annotation quality, GeSeq was deployed in mitochondrial mode with  
331 the *M. domestica* NCBI RefSeq sequence to annotate the 'WA 38' mitochondria assembly.  
332 Fragmented genes from the annotation were manually removed prior to visualization in  
333 OGDRAW (v1.3.1; Greiner *et al.* 2019).

## 334 Results

### 335 A Complete, Reproducible, Publicly-available Workflow

336 To ensure transparency and reproducibility, the 'WA 38' Whole Genome Assembly and  
337 Annotation (WA 38 WGAA) project workflow was made publicly accessible through a GitLab  
338 repository (<https://gitlab.com/ficklinlab-public/wa-38-genome>). This repository contains the  
339 complete manual workflow for assembly and annotation of the genome. It organizes each step  
340 in order of execution, using ordered, numeric directory prefixes where each directory includes  
341 detailed method documentation and scripts that were executed for each analysis. All parameter  
342 settings, as well as any command line manipulation of the files generated are noted in the  
343 scripts or methods. Summary diagrams for the manually executed workflow are available in  
344 Supplemental Figure S1. All software utilized in the project has been containerized and shared  
345 on Docker Hub (<https://hub.docker.com/u/systemsgenetics>). Any user that follows the workflow  
346 can retrieve the public data and repeat the steps to reproduce the results. Leveraging these  
347 resources from the 'WA 38' WGAA project, and as part of our commitment to knowledge  
348 sharing, we have initiated an American Campus Tree Genome (ACTG) course GitHub  
349 organization (<https://github.com/actg-course/>). This organization comprises three main  
350 repositories: 1) wgaa-compute: a generic whole genome assembly and annotation workflow  
351 template, derived from the 'WA 38' WGAA project, that can be adapted for other species; 2)  
352 wgaa-docker: the Docker recipes for all the software employed in the project; and 3) wgaa-doc:  
353 an open-source and editable documentation repository containing teaching materials for current  
354 and future ACTG instructors, providing a collaborative space for instructors to learn from and  
355 contribute to the enhancement of the course materials.

### 356 Nuclear Genome Assembly

#### 357 *Sequence Quality Assessment*

358 Raw sequencing data (Table 1) was assessed for read quality. The Illumina shotgun short read  
359 data consisted of 807.2 million total reads with a mean length of 151bp for a total of 121.9  
360 Gigabases (Gb) of data after adapter trimming. Filtered Illumina data GC content is 38% and  
361 has 91.8% Q20 bases and 83.4% Q30 bases. Duplication rates ranged from 23.3% to 27.8%.  
362 PacBio long read raw data consisted of 3.9 million reads from 85-49,566bp in length for a total  
363 of 60.0 GB. Sequence duplication rates ranged from 2.2% to 2.4%. PacBio sequence GC

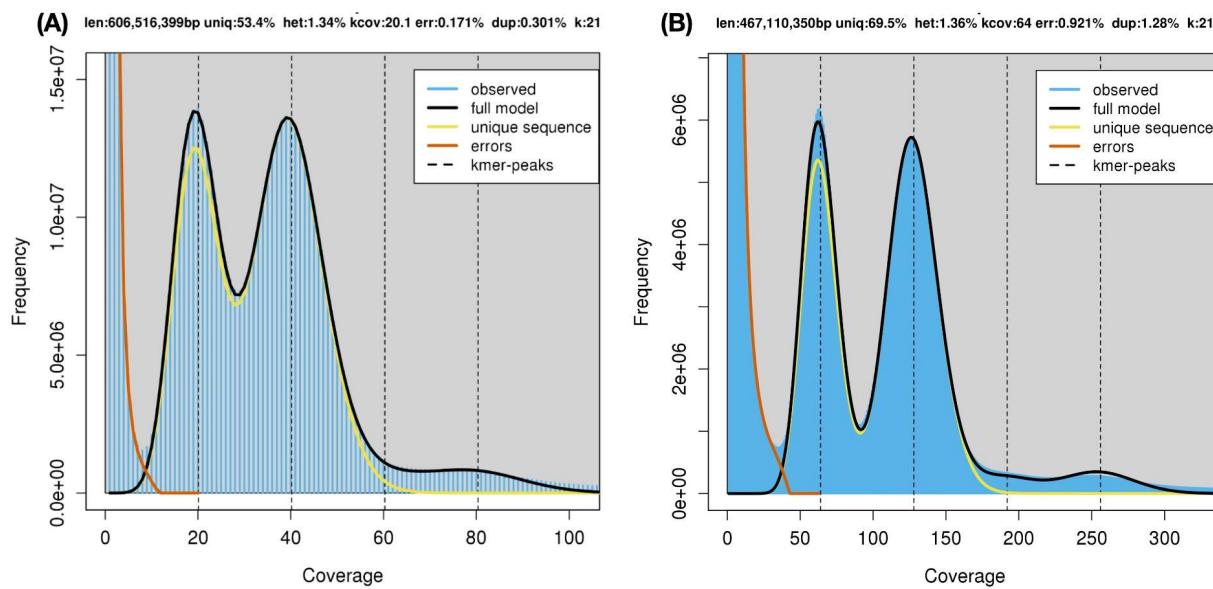
364 content is 38%, same as the Illumina data. In addition, a 402x coverage (201x for each  
365 haplome) of Omni-C data was generated to facilitate the assembly and phasing.

366

367 *Table 1. Yield of Illumina DNA short reads (Shotgun and Omni-C) and PacBio HiFi sequencing*  
368 *reads from young leaf tissues of 'WA 38'.*

|                      | Long Read   | Short Read      |               |
|----------------------|-------------|-----------------|---------------|
|                      | PacBio HiFi | Shotgun DNA seq | OmniC-Seq     |
| Total read number    | 3,870,263   | 807,220,896     | 1,730,268,360 |
| Number of bases (Gb) | 60.0        | 121.9           | 261.3         |
| Coverage*            | 92x         | 188x            | 402x          |
| Average length (bp)  | 15,495      | 151             | 151           |

369 \* calculated with the size of a haploid genome (650 Mb).


### 370 *Genome complexity*

371 Using a *k*-mer frequency approach, genome characteristics such as heterozygosity and genome  
372 size were estimated (Figure 3). Analysis of both short and long reads resulted in an estimated  
373 heterozygosity of ~1.35%, similar to estimates from the 'Honeycrisp' cultivar (1.27%; Khan *et al.*  
374 2022). Estimate genome size was 467Mb from the short reads and 606Mb from the long reads.  
375 These estimates are lower than expected from other apple genomes ('Honeycrisp': 660-674 Mb;  
376 Khan *et al.* 2022 and 'Golden Delicious': ~701 Mb; Li *et al.* 2016) and the final assembly (Table  
377 2). Additionally, the percent of unique sequence was estimated at 69.5% for the short reads and  
378 53.4% for the long reads, with the long read estimate being more consistent with what is  
379 expected from the 'Honeycrisp' (51.7%; Khan *et al.* 2022) and of wild apple species *Malus*  
380 *baccata* (58.6%; Chen *et al.* 2019).

### 381 *Genome assembly, scaffolding, and curation*

382 For initial assembly, scaffolding, and curation, two unsorted, phased haplotypes, called Hap1 and  
383 Hap2, were assembled and scaffolded using both PacBio long reads and Omni-C short reads.  
384 Hi-C maps of the haplome assemblies show no mis-assemblies (Supplemental Figure S3). For  
385 Hap1 and Hap2, a total of 22 joins and 20 joins, respectively, were made in the scaffolding step  
386 to build the final assemblies into 17 chromosomes each, with the remaining scaffolds

387 representing unincorporated contigs. Unincorporated contigs were investigated and found to be  
388 bacterial or other contamination and were removed. After removing contaminants, Hap1 is  
389 645.41 Mb in length with an N50 of 36.1 Mb, while Hap2 is 651.07 Mb in length with an N50 of  
390 37.2 Mb. Additional assembly statistics for both haplomes are included in Supplemental Table  
391 S4. 'WA 38' has a comparable genome size to other previously sequenced apple cultivars,  
392 including its parent 'Honeycrisp' (Khan *et al.* 2022). Notably, the 'WA 38' scaffold N50 is among  
393 the longest across all published apple genomes, indicating high levels of assembly contiguity  
394 (Supplemental Table S5).



395  
396 *Figure 3. Genome complexity of 'WA 38' genome using PacBio long read data (A) and Illumina*  
397 *short read (B). The output figure was generated by GenomeScope (k=21).*

### 398 *Haplotype-binning, Structural Comparison, and Completeness Assessment*

399 The K-mer based binning method identified the origin of chromosomes in each haplome  
400 assembly. Ten out of the 17 chromosomes in Hap1 originated from 'Honeycrisp', while the other  
401 seven were from 'Enterprise'. After reorganizing the chromosomes based on parent  
402 contribution, the haplome containing all the 'Honeycrisp' origin chromosomes is designated as  
403 HapA, whereas the 'Enterprise' originated haplome is designated as HapB. HapA and HapB are  
404 structurally similar; a total of ~44 Mb are affected by structural variants and are mainly  
405 contributed by indels and repeat expansion and contractions (Supplemental Table S6 and  
406 Supplemental Figure S4). Additionally, three large inversions are observed on chromosomes 1,  
407 11, and 13 (Supplemental Figure S5). Based on the BUSCO analysis, both the HapA and HapB  
408 assemblies were 98.7% complete, with only 19 BUSCOs missing and 12 partially detected

409 (Supplemental Table S7). This BUSCO score suggests high genome completeness for both  
410 haplomes, comparable to the 'Fuji' apple genome assemblies, which is most contiguous of all  
411 apple genomes to date (Table 2 and Supplemental Table S5; Li et al., 2024).

412

413 *Table 2. Comparison of genomic features and assembly statistics of the 'WA 38' genome and*  
414 *previously published apple genomes.*

|                                  | 'WA 38'    |        | 'Honeycrisp'     |        | 'Antonovka'        | 'Gala'          | GDDH13              | 'Fuji'          |
|----------------------------------|------------|--------|------------------|--------|--------------------|-----------------|---------------------|-----------------|
|                                  | HapA       | HapB   | HapA             | HapB   |                    |                 |                     |                 |
| Number of Scaffold               | 17         | 17     | 473              | 215    | 168                | 812             | 1,081               | 1,358           |
| Haploid genome size (Mb)         | 645.41     | 651.07 | 674              | 660    | 643.5              | 652.4           | 709.6               | 736.9           |
| N50 (Mb)                         | 36.1       | 37.2   | 31.6             | 32.8   | 35.85              | 23.9            | 5.5                 | 36.8            |
| L50                              | 8          | 8      | 8                | 8      | 8                  | 8               | NA                  | 9               |
| Number of protein-coding genes   | 53,028     | 54,235 | 47,563           | 48,655 | 45,085             | 45,352          | 45,116              | 49,972          |
| Complete BUSCO (%) Assembly      | 98.7       | 98.7   | 98.6             | 98.7   | 97.6               | 97.9            | 98                  | 98.8            |
| Complete BUSCO (%) Annotation    | 98.5       | 98.4   | 96.8             | 97.4   | 97.25              | 95.5            | 96.1                | 97.2            |
| Number of orthogroups in 26Gv2.0 | 10,494     | 10,511 | 10,350           | 10,366 | 10,293             | 10,095          | 10,117              | 10,243          |
| Reference                        | This paper |        | Khan et al. 2022 |        | Švara et al., 2023 | Sun et al. 2021 | Daccord et al. 2017 | Li et al., 2024 |

415 NA: Data not available. For consistency, genome statistics and BUSCO analyses were  
416 performed on the publicly available genomes using the same methods used for 'WA 38', except  
417 for N50 and L50 of GDDH13 as the scaffold assembly is not publicly available. 'Antonovka' data  
418 is the average of the two haplomes. The unphased version of 'Fuji' was used. A more in-depth  
419 comparison is available in Supplemental Table S5.

420 Nuclear Genome Structural Annotation

421 *Repeat annotation*

422 In both haplomes, approximately 58.7% of the assembly was predicted to be repetitive regions  
423 by EDTA (Ou *et al.* 2019; Table 3). RepeatMasker identified an additional 4% repeat elements,  
424 resulting in a total of 62.7% repeat regions in both HapA and HapB, comparable to the  
425 'Honeycrisp' genome (Khan *et al.* 2022). In both haplomes, the most dominant type of repeat  
426 element is long terminal repeat (LTR), followed by Terminal Inverted Repeat (TIR) (Table 3,  
427 Supplemental Table S8), consistent with that in 'Honeycrisp'. We also compared the repeat  
428 landscape of 'WA 38' with 'd'Anjou' pear which was annotated with the same methodology.  
429 While they share the major repeat classes, 'd'Anjou' pear has a much lower percentage of  
430 repeat elements (Table 3).

431 Through telomere search in each haplotype, we discover that telomere repeat regions are  
432 present in almost every chromosome of each haplome. The most enriched telomere repeat unit  
433 is a 7-mer "AAACCCCT" and its reverse complement "AGGGTTT", which has been reported as  
434 overrepresented in the *Arabidopsis thaliana* genome (Choi *et al.* 2021), opposed to "CCCATTT"  
435 and "TTTTAGGG" reported in the most recent T2T 'Golden Delicious' apple genome (Su *et al.*  
436 2024). A list of telomere repeat regions and units for both haplotypes were deposited in  
437 Supplemental Table S9.

438

439 *Table 3. Summary of repetitive element annotation in the 'WA 38' and other apple genomes.*

| Class |         | 'WA 38' (%) |       | 'Honeycrisp' (%) |       | 'd'Anjou' pear (%) |       |
|-------|---------|-------------|-------|------------------|-------|--------------------|-------|
|       |         | HapA        | HapB  | HapA             | HapB  | Hap1               | Hap2  |
| LTR   | Copia   | 9.37        | 10.22 | 9.73             | 9.6   | 5.6                | 5.73  |
|       | Gypsy   | 17.19       | 18.32 | 20.29            | 17.8  | 12.32              | 12.88 |
|       | unknown | 16.37       | 14.52 | 14.89            | 16.86 | 8.46               | 10    |
| TIR   | CACTA   | 1.94        | 2.15  | 2.21             | 1.95  | 1.4                | 1.4   |
|       | Mutator | 3.96        | 4.18  | 4.16             | 4.25  | 3.47               | 3.41  |

|                     |                  |            |       |                  |       |                    |       |
|---------------------|------------------|------------|-------|------------------|-------|--------------------|-------|
|                     | PIF<br>Harbinger | 2.4        | 2.52  | 2.43             | 2.6   | 1.81               | 1.81  |
|                     | Tc1_Mariner      | 0.16       | 0.24  | 0.15             | 0.27  | 0.13               | 0.11  |
|                     | hAT              | 2.15       | 2.37  | 2.3              | 2.31  | 0.58               | 0.84  |
|                     | polinton         | 0          | 0     | 0                | 0.01  | 0                  | 0     |
| nonLTR              | LINE_element     | 0.14       | 0.16  | 0.18             | 0.17  | 0.14               | 0.14  |
|                     | unknown          | 0.11       | 0.09  | 0.09             | 0.18  | 0.06               | 0.06  |
| nonTIR              | helitron         | 3.41       | 2.20  | 2.95             | 3.18  | 1.56               | 1.92  |
| Other repeat region |                  | 1.52       | 1.74  | 2.91             | 2.78  | 3.98               | 4.22  |
| RM*                 |                  | 3.98       | 3.99  | NA               | NA    | NA                 | NA    |
| Total               |                  | 62.71      | 62.71 | 62.43            | 61.97 | 39.78              | 42.52 |
| Reference           |                  | This paper |       | Khan et al. 2022 |       | Yocca et al., 2023 |       |

440 \* repeat regions annotated by RepeatMakser

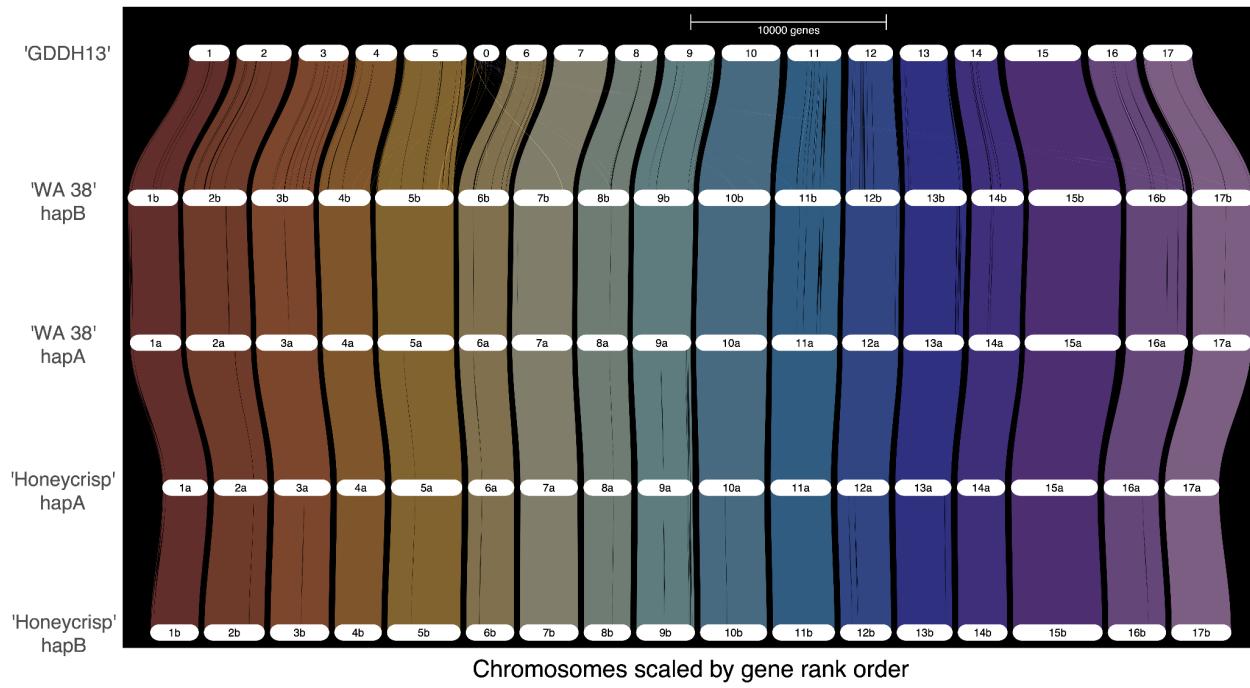
441 *Gene space annotation*

442 To annotate the gene space, we utilized a combination of *ab initio* prediction and evidence-  
443 based prediction with transcriptome and homologous protein, functions implemented in  
444 BRAKER2 (Brúna et al. 2021). However, BRAKER2 was unable to annotate UTR regions and  
445 yielded erroneous gene models and splice variants (Supplemental Figure S6). Therefore, the  
446 gene models were further processed with PASA (Haas et al. 2003) and a custom script. A total  
447 of 53,028 and 54,235 genes were annotated from HapA and HapB, respectively, more than  
448 most published apple genomes (Table 2, Supplemental Table S10). The complete BUSCO  
449 scores for HapA and HapB annotations are 98.5% and 98.4%, respectively, the highest score  
450 among all *M. domestica* genomes sequenced to date (Supplemental Table S5). The average  
451 protein annotated from HapA and HapB contains 361.3 and 356.4 amino acids, respectively,  
452 similar to that of other *M. domestica* annotations (Supplemental Table S11). On average, 1.3

453 splice variants were identified for each gene in both HapA and HapB annotations. The only  
454 other apple genome with splice variant annotation is 'Honeycrisp', and on average, 1.05 splice  
455 variants were annotated per gene (Supplemental Table S11). Additionally, 53.5% and 52.2% of  
456 the annotated transcripts from HapA and HapB, respectively, contain untranslated regions  
457 (UTRs). Notably, 'WA 38' is the only other apple genome besides 'GDDH13' and 'Fuji' that has  
458 more than half of the genes annotated with UTRs.

459 The 'WA 38' genes were named in accordance with the convention following guidance from the  
460 Genome Database for Rosaceae (GDR). This convention was first proposed by our group for  
461 the 'Honeycrisp' genome and was later adopted with modification by GDR (Gene name  
462 example: *drMalDome.wa38.v1a1.ch10A.g00001.t1*). This convention meets recommendations  
463 proposed by the AgBioData consortium to reduce gene ID ambiguity and improve  
464 reproducibility.

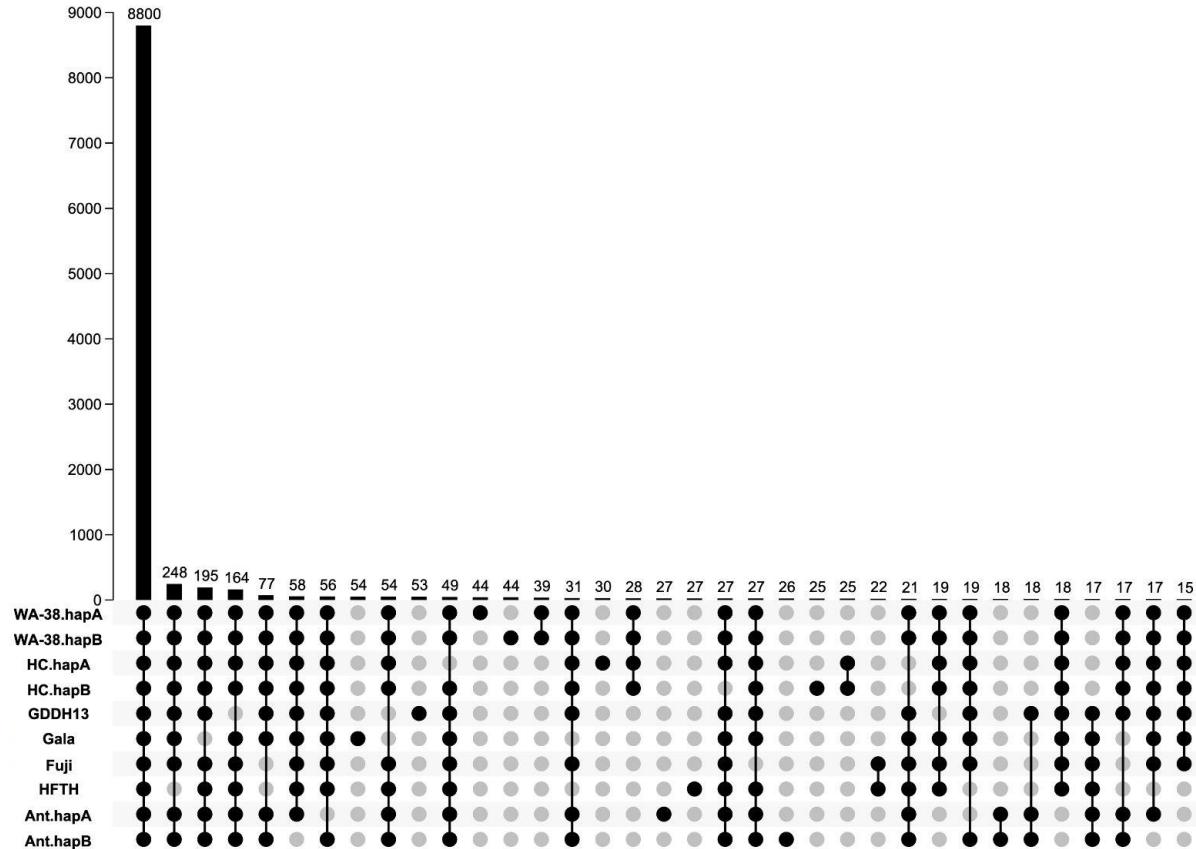
## 465 Nuclear Genome Functional Annotation


466 EnTAP (Hart *et al.* 2020) functional annotation assigned functional terms to 89.5% and 88.8% of  
467 proteins annotated from HapA and HapB, respectively. Specifically, an average of 83% and  
468 55% of all proteins (including both HapA and HapB) have strongly supported hits in the NCBI  
469 RefSeq (O'Leary *et al.* 2016) and UniProt database, respectively, 75% were annotated with an  
470 InterPro term, and 88% have functional annotations from at least one of the databases included  
471 in InterProScan. EggNOG (O'Leary *et al.* 2016; Huerta-Cepas *et al.* 2019) search provided  
472 additional function information: 90% of the annotated proteins were assigned into EggNOG  
473 orthogroups, 84% were annotated with protein domains, 21% were classified into KEGG  
474 pathways, and 63%, 53%, and 61% proteins were annotated with GO biological process,  
475 cellular component, and molecular function terms, respectively (Supplemental Table S12).

## 476 Comparative Analyses

477 Synteny and gene family analyses were performed to investigate the similarity and unique  
478 features of 'WA 38' genome to other closely related species and cultivars.

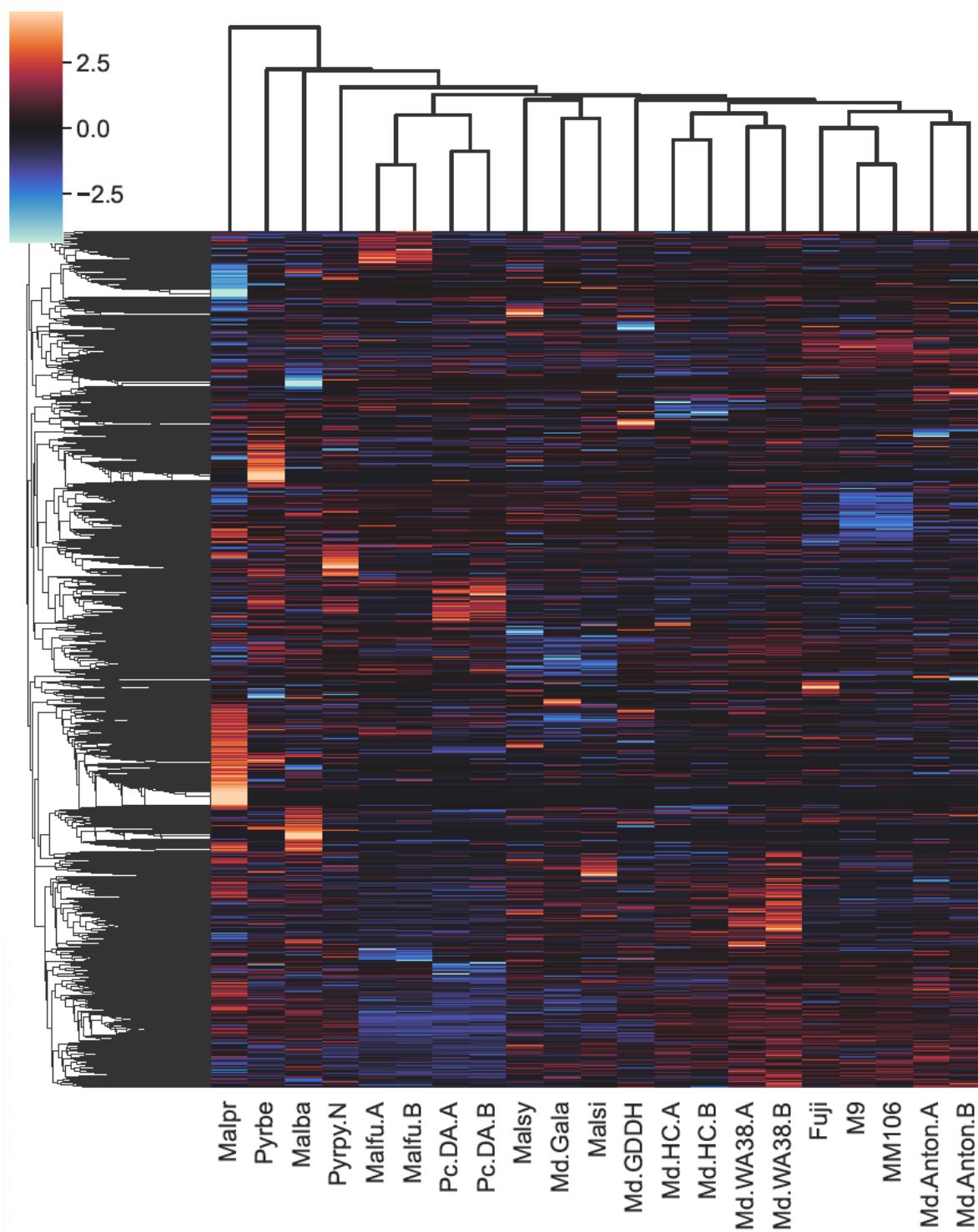
479 Synteny analysis was performed to compare the genomes of 'WA 38', one of its parents,  
480 'Honeycrisp', and the most referenced apple genome, 'GDDH13', using GeneSpace. The two  
481 'WA 38' haplotypes are highly collinear with each other and with the other apples, especially the  
482 two 'Honeycrisp' haplotypes. Although inversions at various scales were observed between the


483 two 'WA 38' haplotypes e.g. large inversions on chromosomes 1, 11, 13 (Supplemental Figure  
484 S5 and S7), they have minor effects on gene order (Figure 4), likely due to the small number of  
485 genes annotated from those inverted regions.



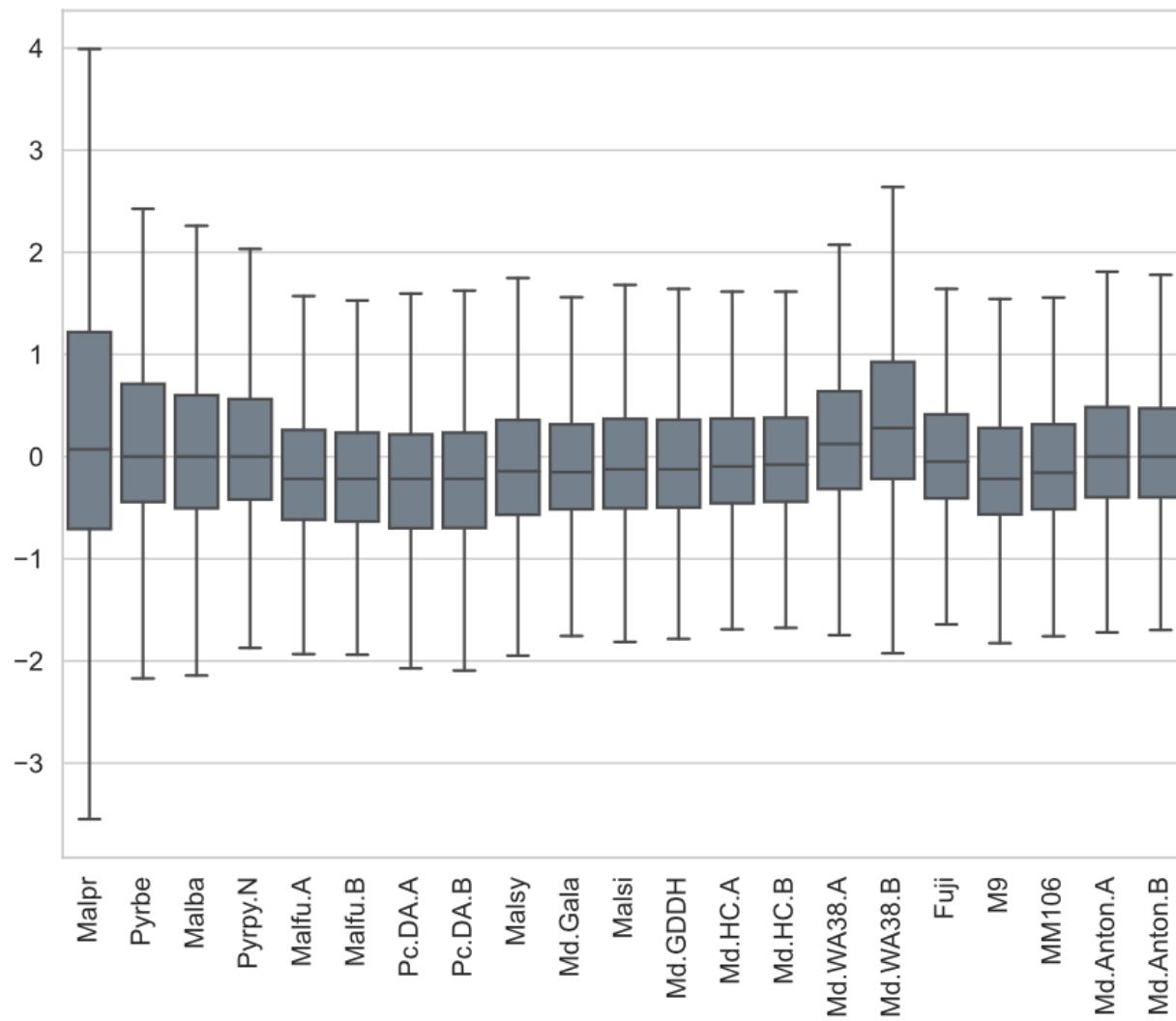
486  
487 *Figure 4. Riparian plot comparing 'WA 38' Haplotype A and B with 'Honeycrisp' Haplotype A*  
488 *and B and 'Golden Delicious' (GDDH13) genomes by gene rank order.*

489 Gene family analysis is performed using PlantTribes2 and the pre-constructed 26Gv2.0 scaffold  
490 orthogroup database (Wafula *et al.* 2022). Out of the 18,110 pre-constructed orthogroups,  
491 proteins from all apple annotations (including 6 published scion cultivar genomes, 2 rootstock  
492 genomes, and the 'WA 38' genome from this work) are found in 11,698 orthogroups. 'Golden  
493 Delicious' Genome v1.0 (Velasco *et al.* 2010) was omitted from this analysis due to poor  
494 annotation quality. Proteins from HapA and HapB of 'WA 38' were classified into 10,494 and  
495 10,511 orthogroups, respectively, similar or slightly higher in number compared to previously  
496 published *M. domestica* genomes, including 'Honeycrisp', 'Gala', and 'GDDH13' (Table 2,  
497 Figure 5). An investigation into shared and unique orthogroups across all the scion genomes  
498 showed that most orthogroups (8,800 or 75%) are shared by all six apple genomes considered.  
499 Additionally, 824 orthogroups are shared by both 'WA 38' haplotypes and the seven other  
500 annotations (each of the two haplotypes from 'Honeycrisp' and 'Antonovka 172670-B' are  
501 counted as unique annotations). 'Honeycrisp' shared the largest number of orthogroups with  
502 'WA 38', as expected due to being a parent of 'WA 38' (Supplemental Table S13). These results


503 indicate that the 'WA 38' annotation captures genes in virtually all *M. domestica* orthogroups.  
504 Additionally, 39 orthogroups were unique to 'WA 38' (i.e. present only in the two 'WA 38'  
505 haplomes) and each haplome of 'WA 38' contains 44 unique orthogroups (Figure 5).



506  
507 *Figure 5. Upset plot of shared and unique orthogroups among Malus domestica genomes.*  
508 *Rows in the bottom of the figure are genomes used for the comparison. Columns (categories, x-*  
509 *axis of the bar graph) are annotated with black or gray dots where black is present and gray is*  
510 *absent. The height of the black bars (y-axis of the bar graph) is scaled to match the number of*  
511 *orthogroup in each category, which are also printed above the bars.*


512 In addition to identifying the shared and unique orthogroup, a CoRe OrthoGroup (CROG) -  
513 Rosaceae analysis was performed to further investigate orthogroup contents. As expected, in  
514 the CROG gene count clustermap (Figure 6), 'WA 38' clustered closely with 'Honeycrisp'. The  
515 'WA 38' + 'Honeycrisp' group is clustered with 'GDDH13', as expected based on pedigree  
516 (Howard *et al.* 2017). Interestingly, a strong 'publication bias', first mentioned by Wafula *et al.*,  
517 2022, is observed: genomes released in the same publication or annotated by the same  
518 researcher clustered together. Such groups are: 'Gala', *Malus sieversii*, and *M. sylvestris* (Sun

519 *et al.*, 2021); ‘Fuji’, ‘M9’, and ‘MM106’ (Li *et al.*, 2024); *M. fusca* (Mansfeld *et al.* 2023) and  
520 *Pyrus communis* ‘d’Anjou’ (Yocca *et al.* 2024); ‘Honeycrisp’ (Khan *et al.* 2022) and ‘WA 38’. The  
521 CROG gene count z-score box plot shows (Figure 7) that the average z-score of ‘WA 38’ gene  
522 counts are slightly higher than expected (with 0 as the perfect score), indicating that there are a  
523 number of CROGs containing more genes from the ‘WA 38’ annotations compared to other  
524 apples.



525

526 *Figure 6. CoRe OrthoGroup (CROG) - Rosaceae gene count clustermap. Each row represents*  
527 *a CROG and each column represents a genomes. Color indicates the number of genes in each*  
528 *cell relative to the row average (z-score). Warmer color indicates more genes. Cooler color*  
529 *indicates fewer genes. The darker a color, the closer the value is to the row average. Genome*  
530 *and annotation abbreviations can be found in Supplemental Table 1.*



531  
532 *Figure 7. Boxplot summarizing z-score distribution of CROG gene counts in selected pome fruit*  
533 *genomes. Genome and annotation abbreviations can be found in Supplemental Table 1.*

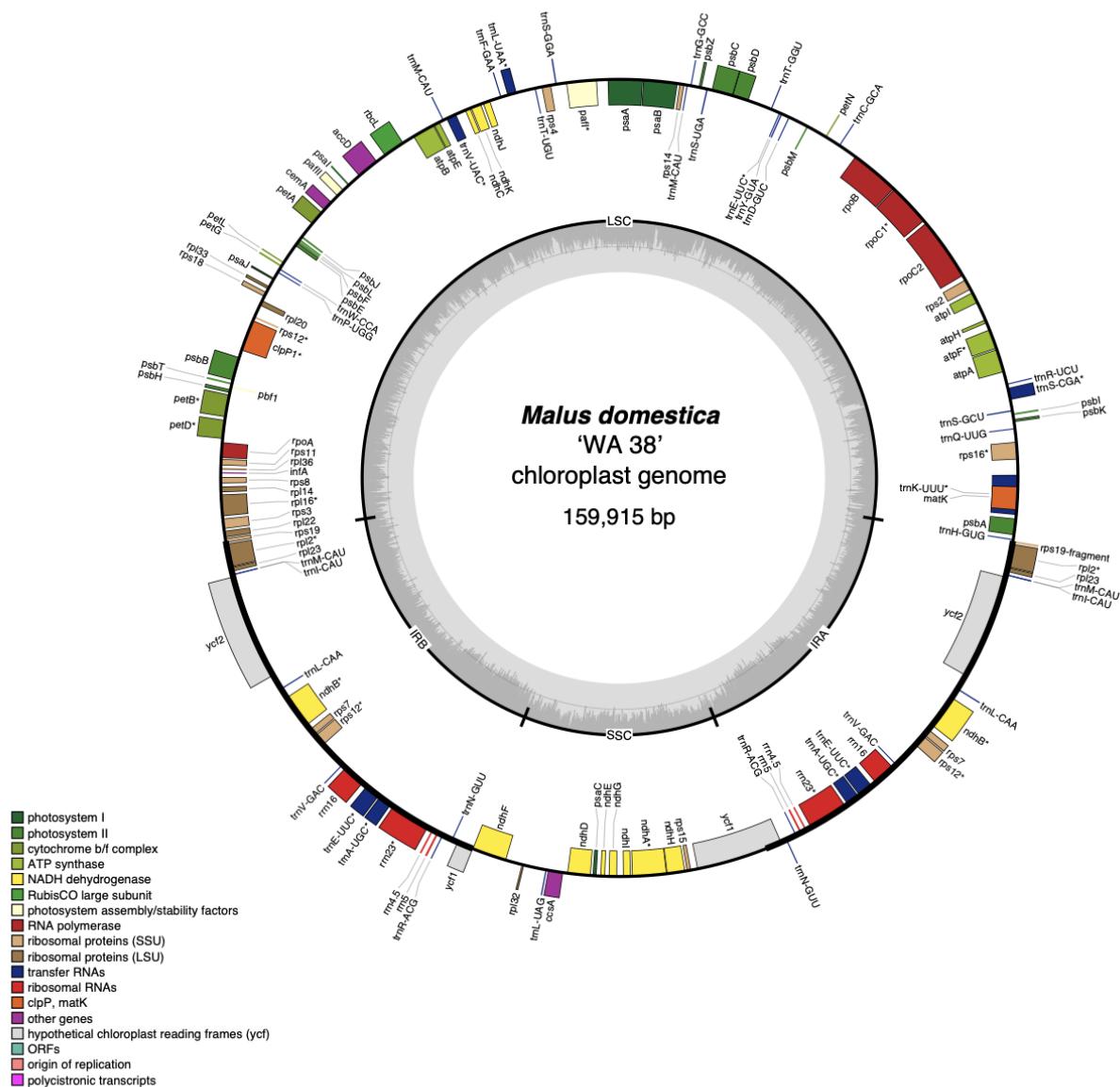
534 Gene model evidence source mapping

535 The final gene model annotation contains *ab initio* prediction and genes with transcript evidence  
536 and/or homologous protein support. Although high BUSCO completeness scores are obtained  
537 from both haplome annotations, their gene numbers are greater than expected (45,000-49,000  
538 based on previous publications). Therefore, we explored evidence supporting a gene model to  
539 be a true positive, including extrinsic evidence (from transcript and homologous protein) used in  
540 gene model annotation and comparative genomic evidence (EnTAP functional annotation and  
541 gene family circumscription), and assessed completeness via a BUSCO analysis (Table 4). The  
542 most stringent filter, the same strategy deployed in the 'Honeycrisp' genome annotation, was to  
543 remove genes without full support from both transcript and homologous protein evidence

544 (Subset 1 in Table 4). This strategy removed ~10,000 genes from both haplomes and left  
545 ~43,000 genes in each annotation. Complete BUSCO score for this gene set decreased by ~1%  
546 compared to the original full gene set. In the other three subsets (2-4) of genes, where less  
547 stringent criteria were applied, ~3,000-4,000 genes were removed and complete BUSCO scores  
548 maintained above 98%. In two of the subsets where the genes with functional and gene family  
549 were taken into consideration (Subset 3 & 4), complete BUSCO scores remained the same as  
550 the original gene set even after removing thousands of genes. CROG gene count analyses  
551 were performed on the original full set, Subset 1 and Subset 3. The CROG gene count  
552 clustermaps from the three gene sets showed highly similar clustering patterns (Figure 6 and  
553 Supplemental Figure S8), indicating that removing genes did not alter the overall gene family  
554 circumscription. The average CROG gene count z-score decreased from 0.330 in the original  
555 full set, to 0.297 in Subset 3, and to 0.008 in Subset 1, indicating values closer to expectation as  
556 more rigorous evidence categories are applied.

557

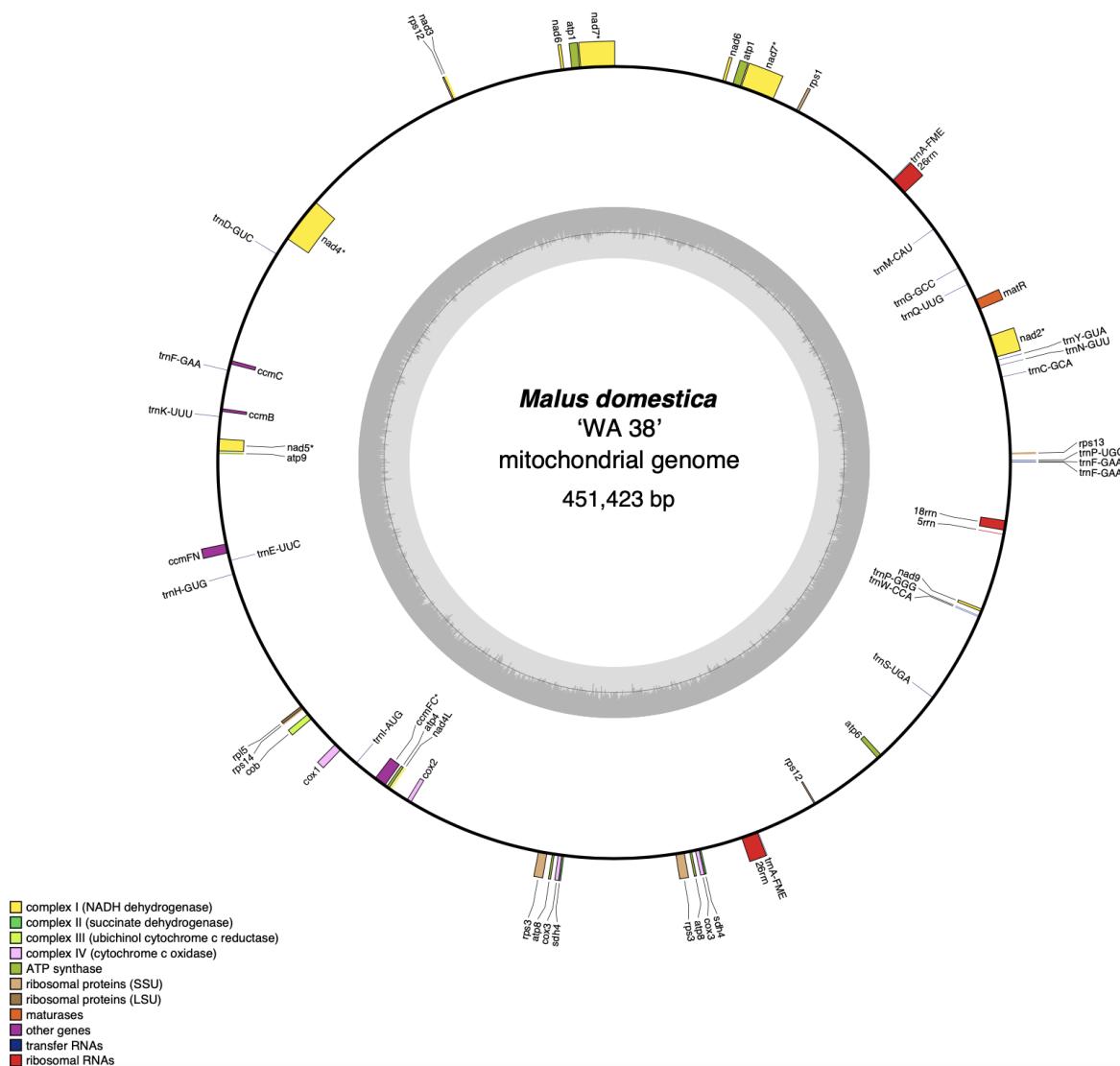
558 *Table 4. Summary of genes mapped with various evidence source and completeness*  
559 *assessments of those gene subsets.*


|                                                  | Number of genes |        | Complete BUSCO (%) |      |
|--------------------------------------------------|-----------------|--------|--------------------|------|
|                                                  | HapA            | HapB   | HapA               | HapB |
| Original full set                                | 53,028          | 54,235 | 98.5               | 98.4 |
| Subset 1. Genes with full support*               | 43,079          | 43,590 | 97.5               | 97.6 |
| Subset 2. Genes with any support*                | 49,829          | 50,861 | 98.2               | 98.2 |
| Subset 3. Genes with full support + EnTAP & PT2  | 49,417          | 50,005 | 98.5               | 98.4 |
| Subset 4. Genes with full support + EnTAP or PT2 | 50,087          | 50,743 | 98.5               | 98.4 |

560 \* Full or any support from either RNA transcriptome or homologous protein evidence.

## 561 Plastid Genomes Assembly and Annotation

562 The chloroplast genome of the 'WA 38' apple is 159,915 bp in length, which is smaller than  
563 most assembled *Malus* chloroplast genomes (Naizaier *et al.* 2019; Yan *et al.* 2019; Zhao *et al.*  
564 2019; Ha *et al.* 2020; Miao *et al.* 2022; Li *et al.* 2022a). The plastome consisted of a typical


565 quadripartite structure with a pair of inverted repeat regions (IR) of the same length (26,352 bp)  
566 separated by a long single copy region (LSC) (88,052 bp) and a short single copy region (SSC)  
567 (19,159 bp). The IR regions and the SSC regions were all similar in length to that of other *Malus*  
568 chloroplasts (Naizaier *et al.* 2019; Yan *et al.* 2019; Zhao *et al.* 2019; Ha *et al.* 2020; Miao *et al.*  
569 2022; Li *et al.* 2022a). A total of 134 unique genes were annotated, including 86 protein-coding  
570 genes, 42 tRNA genes, and 7 rRNA genes. Moreover, eight protein-coding genes (*ycf1*, *ycf2*,  
571 *rpl2*, *rpl23*, *ndhB*, *rps7*, *rps12*, *rps19-fragment*), ten tRNA genes (*trnE-UUC*, *trnI-GAU*, *trnA-*  
572 *UGC*, *trnL-CAA*, *trnM-CAU*, *trnN-GUU*, *trnR-ACG*, *trnI-CAU*, *trnN-GUU*, *trnV-GAC*), all four  
573 rRNA genes (*rrn16*, *rrn23*, *rrn4.5*, *rrn5*) were located wholly within the IR regions (Figure 8).  
574 Twelve protein-coding genes, eight tRNA genes, and one rRNA gene (*rrn16*) contain introns.  
575 The majority of which contained one intron (19 genes), with only two genes (*pafl* and *c/pP1*)  
576 containing two introns.  
  
577 The mitochondrial genome of the 'WA 38' apple is 451,423bp long and contains 64 annotated  
578 genes. This annotation includes 4 rRNA genes (two copies of 26S, and one copy of both 18S  
579 and 5S), 20 tRNA genes (including two copies of *trnA-FME* and three copies of *trnF-GAA*),  
580 and 40 protein-coding genes (including two copies of *atp1*, *apt8*, *cox3*, *nad6*, *nad7*, *rnaseH*,  
581 *rps12*, *rps3*, and *sdh4*). (Figure 9)



582

583 *Figure 8. Chloroplast genome map of 'WA 38' with annotation. The outer circle shows the*  
584 *locations of genes, colored according to their function and biological pathways as shown in the*  
585 *figure legend. Forward-encoded genes are drawn on the outside of the circle, while reverse-*  
586 *encoded genes are on the inside of the circle. The middle circle shows locations of the four*  
587 *major sections of the chloroplast: LSC (long single copy), SSC (short single copy), IRA (inverted*  
588 *repeat A), and IRB (inverted repeat B). The inner gray circle shows GC content across the*  
589 *chloroplast genome.*

590



591  
592 *Figure 9. Mitochondrial genome map of 'WA 38' with annotation. The outer circle shows the*  
593 *locations of genes, colored according to their function and biological pathways as shown in the*  
594 *figure legend. Forward-encoded genes are drawn on the outside of the circle, while reverse-*  
595 *encoded genes are on the inside of the circle. The inner gray circle shows GC content across*  
596 *the mitochondria genome.*

## 597 Discussion

598 Genomes are essential resources for research communities. In order to provide accessible,  
599 hands-on training to the next generation of plant genome scientists, we engaged students in the  
600 construction of a genome for the 'WA 38' (Cosmic Crisp®) apple. Our guiding philosophy is

601 'inclusion and novelty', where we aim to build a high-quality reference genome that is useful to a  
602 wide range of current and future research communities.

603 We emphasized assembly quality by leveraging our recent 'Honeycrisp' genome (Khan *et al.*  
604 2022) to fully resolve haplotypes, *i.e.* the specific genetic contributions of each parent are known  
605 and are represented in each respective haplome. As the first pome fruit genome to achieve this  
606 level of resolution, the 'WA 38' genome provides a unique resource for researchers across  
607 various fields to explore genome-scale genomic signatures that were previously unattainable for  
608 pome fruit research. Examples include a more in-depth understanding of genetic variation and  
609 inheritance, identification of alleles associated with specific traits (paving the way for allele  
610 specific expression experiments), and opportunities to perform trait association analyses with  
611 higher resolution (useful for breeding programs to identify new genetic markers linked to  
612 desirable traits) (Talbot *et al.* 2024).

613 We also emphasized genome annotation quality, aiming to provide a hierarchy of hypothesized  
614 gene models, where we compile a more complete list of putative genes, with increasingly  
615 stringent evidence categories allowing users to access and use the appropriate set of  
616 annotations for their application. By breaking from convention where a single stringency for  
617 genome annotation has historically been set in published genomes, our approach provides an  
618 annotation matrix that allows users to explore gene space as a function of annotation support.  
619 Our original, full gene set contains ~54,000 putative gene models, almost 9,000 more than most  
620 other *Malus* genomes (Supplemental Table S5). Subsequent filtering using various evidence  
621 sources successfully adjusted the gene number closer to expected, although this resulted in  
622 reduced completeness in some cases (Table 4). Subset 1, where only genes with full support  
623 were selected, is the most stringent criteria we used for gene selection. Although the BUSCO  
624 completeness score dropped by ~1%, it's still among the highest in *Malus* annotations and the  
625 average CROG gene count z-score indicates that the overall number of genes in CROG are  
626 very close to expectation (Supplemental Figure S8). However, a collection of 'cold' orthogroups  
627 (containing fewer than expected number of genes compared to the rest annotations) emerged in  
628 the 'Honeycrisp' plus 'WA 38' cluster from the CROG analysis (highlighted with a box in  
629 Supplemental Figure S8). Since these cold spots were not observed in the original full gene set  
630 nor the less rigorously filtered Subset 3, and are unique to the genomes annotated with the  
631 same method and same filtering strategy, they are likely the result of a methodological bias.  
632 This subset, Subset 1, is expected to contain fewer false positives at the cost of also dropping a  
633 small amount of true positives; suitable for analysis that requires high-confidence gene models,

634 such as reconstructing species or pedigree relationship. Subset 3, which contains all genes  
635 from Subset 1 and genes with both EnTAP and PlantTribes2 evidence, has a similar gene  
636 number to the most recently published apple genomes, namely 'Honeycrisp', 'Fuji', 'M9', and  
637 'MM106'. Subset 3 maintained the same BUSCO completeness score and did not have the  
638 'cold' orthogroup observed in Subset 1. Thus, Subset 3 may contain more false positive genes,  
639 but it also retains the most true positives; suitable for most analyses that can tolerate a small  
640 amount of false positive gene models. Furthermore, similar to the 'Honeycrisp' plus 'WA 38'  
641 cluster with shared unique 'cold' orthogroup zones in the Subset 1 CROG analysis, genomes  
642 annotated by the same research group tend to exhibit similar gene count patterns (CROG  
643 analysis - Figure 6), suggesting that methodological bias in a seemingly subjective analysis may  
644 lead to a more similar gene landscape within those annotations. The most surprising examples  
645 are the cluster of 'Gala' with the two wild *Malus* progenitors (i.e. different species), and the  
646 cluster of *Malus fusca* with *Pyrus communis* 'd'Anjou' (i.e. different genera). In addition,  
647 although most of the published *Malus* genome annotations have a similar number of genes  
648 (~45,000, Supplemental Table S5), the CROG analysis identified different collections of  
649 orthogroups with higher (warm color) or lower (cool color) than average gene counts across  
650 clusters. These 'warm' and 'cool' orthogroup spots are not necessarily indicative of gene family  
651 expansions or contractions (a separate analysis would be required), but does provide valuable  
652 insight into the gene space within the context of lineage-specific genome annotations and  
653 highlights potential areas for genome resource improvement. We believe the methodological  
654 bias revealed by the CROG analysis should be addressed or acknowledged before further  
655 analyses of gene family expansions and contractions in *Malus* is performed.

656 Throughout this project, we emphasized community engagement and enforce standardization of  
657 genome resources. The AgBioData Genome Nomenclature working group is dedicated to  
658 providing recommendations for consistent genome and gene model nomenclature that meets  
659 the FAIR data principle (Wilkinson *et al.* 2016). We worked together with this working group and  
660 the Rosaceae community genome database (Genome Database for Rosaceae, GDR, (Jung *et*  
661 *al.* 2019)) to improve the existing nomenclature for Rosaceae genomes. The adoption of  
662 standardized nomenclature for plant genomes represents a significant advancement in the field  
663 of plant genomics as it helps reduce confusion and potential errors, thereby enhancing the  
664 reliability and reproducibility of genomic research. In addition, we followed a previously-  
665 established gene family classification protocol (Wafula *et al.* 2022; Khan *et al.* 2022) that  
666 circumscribed genes into pre-computed orthogroups. Such a practice not only reduces

667 computational resource requirements, but also allows researchers to more easily compare  
668 findings across studies. The uniformity, achieved by taking advantage of the already-existing  
669 community resource, facilitates clearer communication, ensuring that discoveries are accurately  
670 attributed and understood in the context of existing knowledge.

671 Our work emphasized the "reproducibility" of FAIR (Findable, Accessible, Interoperable and  
672 Reproducible) data. All bioinformatics analyses follow some workflow whether it is manually  
673 developed as work progresses by the researcher or is the product of an automated workflow  
674 managed by software tools like Galaxy (The Galaxy Community, 2022) (graphical interface),  
675 Nextflow (di Tommaso *et al.* 2017) or Snakemake (Mölder *et al.* 2021) (command-line interface).  
676 Automated workflows create reproducible analyses because the version and parameters are  
677 easily documented and software is commonly dockerized. For manually developed workflows,  
678 the process is prone to being haphazard and disorganized and difficult to share. Thus, many  
679 workflows are simply reduced to a brief description of software tools in Methods sections of  
680 journal articles with software versions and important parameters often missing. As introduced in  
681 the Results section, we provide a complete set of scripts and dockerized software to completely  
682 recreate every analysis in the assembly and annotation of the WA 38 genome. The  
683 organizational structure of the repository follows the Bioinformatics Notebook protocol  
684 developed by our team (<https://gitlab.com/ficklinlab-public/bioinformatics-notebook/>). The goal of  
685 this protocol is to ensure that complex manually executed workflows can be shared for  
686 reproducibility, the format is readable by others and backups of critical data are supported.  
687 Briefly, the directories are ordered using a numeric prefix indicating the order that analyses  
688 should be performed. Inside each directory are sub-directories with smaller tasks. For each  
689 task all relevant scripts and instructions are provided. All software used by the project is  
690 dockerized and scripts contain the full parameter set used for every step. While there are areas  
691 for improvement, the protocol, when followed, allows for easy sharing of the workflow via a Git  
692 repository. In our view, this approach is a novel contribution towards FAIR data by ensuring that  
693 non-automated workflows can be shared and are fully reproducible.

694 In addition to providing a fully reproducible workflow for the assembly of the 'WA 38' genome.  
695 We generalized the scripts for any genome assembly and shared those as part of the three  
696 ACTG GitHub repositories mentioned in the Results section. The new ACTG general workflow is  
697 designed to provide training that is applicable for a wide range of species. The ACTG  
698 repositories are a work in progress as we seek to create a generic, species-agnostic workflow  
699 that will serve the broader American Campus Tree Genome (ACTG) community.

700

## 701 Availability of source code and requirements

702 Project name: 'WA 38' whole genome assembly and annotation  
703 Project home page: <https://gitlab.com/ficklinlab-public/wa-38-genome>  
704 Operating system(s): Platform independent  
705 Programming language: bash, python, awk, perl  
706 Other requirements: singularity, nextflow, java, python  
707 License: Not applicable  
708 Any restrictions to use by non-academics: No restrictions  
709 RRID: Not applicable

## 710 Data Availability

711 Raw reads generated for this project are publicly available at NCBI under BioProject:  
712 PRJNA1072127. Genome assembly and annotation are available on GDR:  
713 <https://www.rosaceae.org/Analysis/20220983>

## 714 Competing interests

715 The author(s) declare that they have no competing interests.

## 716 Funding

717 This work was supported by the Washington Tree Fruit Research Commission (WTFRC) project  
718 #AP-19-103 and USDA ARS internal appropriation funds.

## 719 Authors' contributions

720 L.H and S.F acquired funding for this project. All authors contributed to data analysis, data  
721 interpretation, and manuscript writing.

## 722 References

723 Andrews. S, 2010 FastQC: A Quality Control Tool for High Throughput Sequence Data [Online].  
724 Available online at: <http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>

725 NC State Extension, n.d. Apples - *Malus domestica*, North Carolina Extension Gardener Plant  
726 Toolbox. Retrieved May 23, 2024 [online] [https://plants.ces.ncsu.edu/plants/malus-](https://plants.ces.ncsu.edu/plants/malus-domestica/common-name/apples/)  
727 [domestica/common-name/apples/](https://plants.ces.ncsu.edu/plants/malus-domestica/common-name/apples/)

728 Brúna, T., K. J. Hoff, A. Lomsadze, M. Stanke, and M. Borodovsky, 2021 BRAKER2: automatic  
729 eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a  
730 protein database. NAR Genom Bioinform 3: lqaa108.

731 Chen C., Wu Y., Li J., Wang X., Zeng Z., Xu J., Liu Y., Feng J., Chen H., He Y., and Xia R.,  
732 2023 TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data  
733 mining. Mol. Plant 16: 1733–1742.

734 Cheng, H., G. T. Concepcion, X. Feng, H. Zhang, and H. Li, 2021 Haplotype-resolved de novo  
735 assembly using phased assembly graphs with hifiasm. Nat. Methods 18: 170–175.

736 Chen, X., S. Li, D. Zhang, M. Han, X. Jin *et al.*, 2019 Sequencing of a Wild Apple (*Malus*  
737 *baccata*) Genome Unravels the Differences Between Cultivated and Wild Apple Species  
738 Regarding Disease Resistance and Cold Tolerance. G3 9: 2051–2060.

739 Chen, S., Y. Zhou, Y. Chen, and J. Gu, 2018 fastp: an ultra-fast all-in-one FASTQ preprocessor.  
740 Bioinformatics 34: i884–i890.

741 Choi, J. Y., L. R. Abdulkina, J. Yin, I. B. Chastukhina, J. T. Lovell *et al.*, 2021 Natural variation in  
742 plant telomere length is associated with flowering time. Plant Cell 33: 1118–1134.

743 Brown, M., P. M. González De la Rosa, and M. Blaxter, (2023). A Telomere Identification Toolkit  
744 (v0.2.41). Zenodo. <https://doi.org/10.5281/zenodo.10091385>

745 Crosby, J. A., J. Janick, P. C. Pecknold, J. C. Goffreda, and S. S. Korban, 1994 ‘Enterprise’  
746 Apple. HortScience 29: 825–826.

747 Daccord, N., J.-M. Celton, G. Linsmith, C. Becker, N. Choisne *et al.*, 2017 High-quality de novo  
748 assembly of the apple genome and methylome dynamics of early fruit development. Nat.  
749 Genet. 49: 1099–1106.

750 Danecek, P., J. K. Bonfield, J. Liddle, J. Marshall, V. Ohan *et al.*, 2021 Twelve years of  
751 SAMtools and BCFtools. Gigascience 10: giab008.

752 di Tommaso, P., M. Chatzou, E. W. Floden, P. P. Barja, E. Palumbo, and C. Notredame, 2017.  
753 Nextflow enables reproducible computational workflows. Nature Biotechnology, 35(4), 316–  
754 319.

755 Dierckxsens, N., P. Mardulyn, and G. Smits, 2017 NOVOPlasty: de novo assembly of organelle  
756 genomes from whole genome data. *Nucleic Acids Res.* 45: e18.

757 Di Guardo, M., A. Tadiello, B. Farneti, G. Lorenz, D. Masuero *et al.*, 2013 A multidisciplinary  
758 approach providing new insight into fruit flesh browning physiology in apple (*Malus x*  
759 *domestica* Borkh.). *PLoS One* 8: e78004.

760 Dong, X., Z. Wang, L. Tian, Y. Zhang, D. Qi *et al.*, 2020 De novo assembly of a wild pear (*Pyrus*  
761 *betuleafolia*) genome. *Plant Biotechnol. J.* 18: 581–595.

762 Doyle, J. J., and J. L. Doyle, 1987 A rapid DNA isolation procedure for small quantities of fresh  
763 leaf tissue: RESEARCH.

764 Durand, N. C., M. S. Shamim, I. Machol, S. S. P. Rao, M. H. Huntley *et al.*, 2016 Juicer  
765 Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. *Cell Syst* 3:  
766 95–98.

767 Earl, D., K. Bradnam, J. St John, A. Darling, D. Lin *et al.*, 2011 Assemblathon 1: a competitive  
768 assessment of de novo short read assembly methods. *Genome Res.* 21: 2224–2241.

769 Evans, K. M., B. H. Barritt, B. S. Konishi, L. J. Brutcher, and C. F. Ross, 2012 “WA 38” Apple.  
770 *HortScience* 47: 1177–1179.

771 FGN, 2020 Global apple market reached \$78B: set to continue moderate growth. *Fruit*  
772 *Growers News*. Retrieved May 23, 2024 [online]  
773 [https://fruitgrowersnews.com/news/global-apple-market-reached-78m-set-to-continue-](https://fruitgrowersnews.com/news/global-apple-market-reached-78m-set-to-continue-moderate-growth/)  
774 [moderate-growth/](https://fruitgrowersnews.com/news/global-apple-market-reached-78m-set-to-continue-moderate-growth/)

775 Gabriel, L., K. J. Hoff, T. Brúna, M. Borodovsky, and M. Stanke, 2021 TSEBRA: transcript  
776 selector for BRAKER. *BMC Bioinformatics* 22: 566.

777 Goremykin, V. V., P. J. Lockhart, R. Viola, and R. Velasco, 2012 The mitochondrial genome of  
778 *Malus domestica* and the import-driven hypothesis of mitochondrial genome expansion in  
779 seed plants. *Plant J.* 71: 615–626.

780 Grabherr, M. G., B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson *et al.*, 2011 Full-length  
781 transcriptome assembly from RNA-Seq data without a reference genome. *Nat. Biotechnol.*  
782 29: 644–652.

783 Greiner, S., P. Lehwerk, and R. Bock, 2019 OrganellarGenomeDRAW (OGDRAW) version  
784 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. *Nucleic Acids*  
785 *Res.* 47: W59–W64.

786 Haas, B. J., A. L. Delcher, S. M. Mount, J. R. Wortman, R. K. Smith Jr *et al.*, 2003 Improving the  
787 *Arabidopsis* genome annotation using maximal transcript alignment assemblies. *Nucleic*  
788 *Acids Res.* 31: 5654–5666.

789 Hadish, J. A., T. D. Biggs, B. T. Shealy, M. R. Bender, C. B. McKnight *et al.*, 2022 GEMmaker:  
790 process massive RNA-seq datasets on heterogeneous computational infrastructure. *BMC*  
791 *Bioinformatics* 23: 1–11.

792 Ha, Y.-H., B. Maisupova, K. Choi, H.-J. Kim, D. Dosmanvetov *et al.*, 2020 Report on a complete  
793 chloroplast genome sequence of wild apple tree, *Malus sieversii* (Lebed.) M. Roem.  
794 *Mitochondrial DNA B Resour.* 5: 1504–1505.

795 Harkess, A., 2022 The American Campus Tree Genomes Documentation. Retrieved  
796 May 23, 2024 [online] <https://actg-wgaa.readthedocs.io/en/latest/index.html>

797 Harris, R.S., 2007 Improved pairwise alignment of genomic DNA. Ph.D. Thesis, The  
798 Pennsylvania State University. Retrieved May 23, 2024 [online]  
799 [https://www.bx.psu.edu/~rsharris/rsharris\\_phd\\_thesis\\_2007.pdf](https://www.bx.psu.edu/~rsharris/rsharris_phd_thesis_2007.pdf)

800 Hart, A. J., S. Ginzburg, M. (sam) Xu, C. R. Fisher, N. Rahmatpour *et al.*, 2020 EnTAP: Bringing  
801 faster and smarter functional annotation to non-model eukaryotic transcriptomes. *Mol. Ecol.*  
802 *Resour.* 20: 591–604.

803 Hoff, K. J., S. Lange, A. Lomsadze, M. Borodovsky, and M. Stanke, 2016 BRAKER1:  
804 Unsupervised RNA-Seq-Based Genome Annotation with GeneMark-ET and AUGUSTUS.  
805 *Bioinformatics* 32: 767–769.

806 Howard, N. P., E. van de Weg, D. S. Bedford, C. P. Peace, S. Vanderzande *et al.*, 2017  
807 Elucidation of the ‘Honeycrisp’ pedigree through haplotype analysis with a multi-family  
808 integrated SNP linkage map and a large apple (*Malus×domestica*) pedigree-connected  
809 SNP data set. *Horticulture Research* 4: 17003.

810 Huerta-Cepas, J., D. Szklarczyk, D. Heller, A. Hernández-Plaza, S. K. Forslund *et al.*, 2019  
811 eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource  
812 based on 5090 organisms and 2502 viruses. *Nucleic Acids Res.* 47: D309–D314.

813 Johnston, J. W., and P. Brookfield, 2012 Delivering postharvest handling protocols for apples  
814 and pears faster: Integrating “omics” and physiology approaches. *Acta Hortic.* 23–28.

815 Jung, S., T. Lee, C.-H. Cheng, K. Buble, P. Zheng *et al.*, 2019 15 years of GDR: New data and  
816 functionality in the Genome Database for Rosaceae. *Nucleic Acids Res.* 47: D1137–D1145.

817 Khan, A., S. B. Carey, A. Serrano, H. Zhang, H. Hargarten *et al.*, 2022 A phased, chromosome-  
818 scale genome of “Honeycrisp” apple (*Malus domestica*). *GigaByte* 2022: gigabyte69.

819 Kurtz, S., A. Phillippy, A. L. Delcher, M. Smoot, M. Shumway *et al.*, 2004 Versatile and open  
820 software for comparing large genomes. *Genome Biol.* 5: R12.

821 Kuznetsov, D., F. Tegenfeldt, M. Manni, M. Seppey, M. Berkeley *et al.*, 2022 OrthoDB v11:  
822 annotation of orthologs in the widest sampling of organismal diversity. *Nucleic Acids Res.*

823 51: D445–D451.

824 Li, X., Z. Ding, H. Miao, J. Bao, and X. Tian, 2022a Complete chloroplast genome studies of  
825 different apple varieties indicated the origin of modern cultivated apples from and. PeerJ  
826 10: e13107.

827 Li, H., and R. Durbin, 2009 Fast and accurate short read alignment with Burrows-Wheeler  
828 transform. *Bioinformatics* 25: 1754–1760.

829 Liebhard, R., M. Kellerhals, W. Pfammatter, M. Jertmini, and C. Gessler, 2003 Mapping  
830 quantitative physiological traits in apple (*Malus x domestica* Borkh.). *Plant Mol. Biol.* 52:  
831 511–526.

832 Li, X., L. Kui, J. Zhang, Y. Xie, L. Wang *et al.*, 2016 Improved hybrid de novo genome assembly  
833 of domesticated apple (*Malus x domestica*). *Gigascience* 5: 35.

834 Li, W., C. Chu, H. Li *et al.*, 2024 Near-gapless and haplotype-resolved apple genomes  
835 provide insights into the genetic basis of rootstock-induced dwarfing. *Nat Genet* 56, 505–  
836 516.

837 Li, W., J. Liu, H. Zhang, Z. Liu, Y. Wang *et al.*, 2022b Plant pan-genomics: recent advances,  
838 new challenges, and roads ahead. *J. Genet. Genomics* 49: 833–846.

839 Li, Y., M. Pi, Q. Gao, Z. Liu, and C. Kang, 2019 Updated annotation of the wild strawberry  
840 *Fragaria vesca* V4 genome. *Horticulture Research* 6: 1–9.

841 Lovell, J. T., A. Sreedasyam, M. Eric Schranz, M. Wilson, J. W. Carlson *et al.*, 2022  
842 GENESPACE tracks regions of interest and gene copy number variation across multiple  
843 genomes.

844 Lum, G. B., B. J. Shelp, J. R. DeEll, and G. G. Bozzo, 2016 Oxidative metabolism is associated  
845 with physiological disorders in fruits stored under multiple environmental stresses. *Plant  
846 Sci.* 245: 143–152.

847 Manni, M., M. R. Berkeley, M. Seppey, F. A. Simão, and E. M. Zdobnov, 2021 BUSCO Update:  
848 Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage  
849 for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. *Mol. Biol. Evol.* 38: 4647–4654.

850 Mansfeld, B. N., A. Yocca, S. Ou, A. Harkess, E. Burchard *et al.*, 2023 A haplotype resolved  
851 chromosome-scale assembly of North American wild apple *Malus fusca* and comparative  
852 genomics of the fire blight Mfu10 locus. *Plant J.* 116: 989–1002.

853 Marçais, G., and C. Kingsford, 2011 A fast, lock-free approach for efficient parallel counting of  
854 occurrences of k-mers. *Bioinformatics* 27: 764–770.

855 Mendoza, M., Hanrahan, I., & Bolaños, G., 2022 2022 Update: Additional WA 38  
856 harvest and storage considerations. Retrieved May 23, 2024 [online]

857 <https://treefruit.wsu.edu/article/2022-update-additional-wa-38-harvest-and-storage-consideration>

858

859 Miao, H., J. Bao, X. Li, Z. Ding, and X. Tian, 2022 Comparative analyses of chloroplast

860 genomes in “Red Fuji” apples: low rate of chloroplast genome mutations. *PeerJ* 10:

861 e12927.

862 Mölder, F., K. P. Jablonski, B. Letcher, M. B. Hall, C. H. Tomkins-Tinch *et al.* 2021

863 Sustainable data analysis with Snakemake [version 2; peer review: 2 approved].

864 F1000Research, 10:33

865 Naizaier, R., Z. Qu, S. Wu, and X. Tian, 2019 The complete chloroplast genome of *Malus*

866 *sieversii* (Rosaceae), a wild apple tree in Xinjiang, China. *Mitochondrial DNA B Resour.* 4:

867 983–984.

868 Nattestad, M., and M. C. Schatz, 2016 Assemblytics: a web analytics tool for the detection of

869 variants from an assembly. *Bioinformatics* 32: 3021–3023.

870 NCBI Organelle genome resources, n.d. Retrieved May 23, 2024 [online]

871 <https://www.ncbi.nlm.nih.gov/genome/organelle/>

872 O’Leary, N. A., M. W. Wright, J. R. Brister, S. Ciufo, D. Haddad *et al.*, 2016 Reference

873 sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional

874 annotation. *Nucleic Acids Res.* 44: D733–45.

875 Ou, S., W. Su, Y. Liao, K. Chougule, J. R. A. Agda *et al.*, 2019 Benchmarking transposable

876 element annotation methods for creation of a streamlined, comprehensive pipeline.

877 *Genome Biol.* 20: 1–18.

878 Pareek, S. T. de F. S., 2019 Postharvest physiological disorders in fruits and vegetables (S.

879 Tonetto de Freitas & S. Pareek, Eds.). CRC Press, Boca Raton : Taylor & Francis, 2018.

880 phasegenomics, n.d. *Hic\_QC*: a (very) simple script to QC Hi-C data. GitHub.

881 [https://github.com/phasegenomics/hic\\_qc](https://github.com/phasegenomics/hic_qc)

882 Quinlan, A. R., and I. M. Hall, 2010 BEDTools: a flexible suite of utilities for comparing genomic

883 features. *Bioinformatics* 26: 841–842.

884 Raymond, O., J. Gouzy, J. Just, H. Badouin, M. Verdenaud *et al.*, 2018 The *Rosa* genome

885 provides new insights into the domestication of modern roses. *Nat. Genet.* 50: 772–777.

886 Rhie, A., Walenz, B.P., Koren, S. *et al.*, 2020 Merqury: reference-free quality,

887 completeness, and phasing assessment for genome assemblies. *Genome Biol* 21, 245.

888 Robinson, J. T., H. Thorvaldsdóttir, W. Winckler, M. Guttman, E. S. Lander *et al.*, 2011

889 Integrative genomics viewer. *Nat. Biotechnol.* 29: 24–26.

890 Robinson, J. T., D. Turner, N. C. Durand, H. Thorvaldsdóttir, J. P. Mesirov *et al.*, 2018

891       Juicebox.js Provides a Cloud-Based Visualization System for Hi-C Data. *Cell Syst* 6: 256–  
892       258.e1.

893       Sallato, B., M. D. Whiting, and J. Munguia, 2021 Rootstock and nutrient imbalance leads to  
894       “Green Spot” development in ‘WA 38’ apples. *HortScience* 56: 1542–1548.

895       Serra, S., Goke, A., Sheick, R., Mendoza, M., Schmidt, T., Hanrahan, I., Ross, C., &  
896       Musacchi, S., 2023 Effects of harvest timing on maturity, fruit quality, and consumer  
897       acceptance of ‘WA 38’ apples. *Acta Horticulturae*, 1366, 61–68.

898       Sharman, S., n.d. Learning from the trees: American Campus Tree Genomes Project  
899       pushes equality in genomic science. Retrieved May 23, 2024 [online]  
900       <https://hudsonalpha.shorthandstories.com/learning-from-the-trees/>

901       Sheick, R., S. Serra, S. Musacchi, and D. Rudell, 2023 Metabolic fingerprint of ‘WA 38’ green  
902       spot symptoms reveals increased production of epicuticular metabolites by parenchyma.  
903       *Sci. Hortic.* 321: 112257.

904       Sheick, R., S. Serra, D. Rudell, and S. Musacchi, 2022 Investigations of multiple approaches to  
905       reduce Green Spot incidence in ‘WA 38’ apple. *Agronomy (Basel)* 12: 2822.

906       Shirasawa, K., A. Itai, and S. Isobe, 2021 Chromosome-scale genome assembly of Japanese  
907       pear (*Pyrus pyrifolia*) variety ‘Nijisseiki’ *DNA Res.* 28:dsab001

908       Smit, AFA, Hubley, R & Green, P., n.d. RepeatMasker Open-4.0.2013-2015 Retrieved  
909       May 23, 2024 [online] <http://www.repeatmasker.org>

910       Sun, X., C. Jiao, H. Schwaninger, C. T. Chao, Y. Ma *et al.*, 2020 Phased diploid genome  
911       assemblies and pan-genomes provide insights into the genetic history of apple  
912       domestication. *Nat. Genet.* 52: 1423–1432.

913       Su, Y., X. Yang, Y. Wang, J. Li, Q. Long *et al.*, 2024 Phased Telomere-to-Telomere Reference  
914       Genome and Pan-genome Reveal an Expansion of Resistance Genes during Apple  
915       Domestication. *Plant Physiol.* kiae258

916       Talbot, S. C., K. J. Vining, J. W. Snelling, J. Clevenger, and S. A. Mehlenbacher, 2024 A  
917       haplotype-resolved chromosome-level assembly and annotation of European hazelnut (*C.*  
918       *avellana* cv. *Jefferson*) provides insight into mechanisms of eastern filbert blight resistance.  
919       G3. jkae021

920       The Galaxy Community, The Galaxy platform for accessible, reproducible and collaborative  
921       biomedical analyses: 2022 update. *Nucleic Acids Research.* 50: W345–W351.

922       Tillich, M., P. Lehwerk, T. Pellizzer, E. S. Ulbricht-Jones, A. Fischer *et al.*, 2017 GeSeq -  
923       versatile and accurate annotation of organelle genomes. *Nucleic Acids Res.* 45: W6–W11.  
924       trinityrnaseq, n.d. *get\_longest\_isoform\_seq\_per\_trinity\_gene.pl*. GitHub. Retrieved May

925 23, 2024 [online]  
926 [https://github.com/trinityrnaseq/trinityrnaseq/blob/master/util/misc/get\\_longest\\_isoform\\_s](https://github.com/trinityrnaseq/trinityrnaseq/blob/master/util/misc/get_longest_isoform_s)  
927 [eq\\_per\\_trinity\\_gene.pl](eq_per_trinity_gene.pl)

928 Truscott, S., 2023 WSU's Cosmic Crisp® joins top 10 bestselling U.S. apple varieties.  
929 CAHNRS News Washington State University. Retrieved May 23, 2024 [online]  
930 <https://news.cahnrs.wsu.edu/article/wsus-cosmic-crisp-joins-top-10-bestselling-u-s-apple-varieties/>

932 Uliano-Silva, M., J. G. R. N. Ferreira, K. Krasheninnikova, G. Formenti, L. Abueg *et al.*, 2023  
933 MitoHiFi: a python pipeline for mitochondrial genome assembly from PacBio high fidelity  
934 reads. *BMC Bioinformatics* 24: 1–13.

935 USAApple, 2024 Industry at a glance Retrieved May 23, 2024 [online],  
936 <https://usapple.org/industry-at-a-glance>

937 VanBuren, R., C. M. Wai, M. Colle, J. Wang, S. Sullivan *et al.*, 2018 A near complete,  
938 chromosome-scale assembly of the black raspberry (*Rubus occidentalis*) genome.  
939 Gigascience 7.:

940 Velasco, R., A. Zharkikh, J. Affourtit, A. Dhingra, A. Cestaro *et al.*, 2010 The genome of the  
941 domesticated apple (*Malus × domestica* Borkh.). *Nat. Genet.* 42: 833–839.

942 Verde, I., J. Jenkins, L. Dondini, S. Micali, G. Pagliarani *et al.*, 2017 The Peach v2.0 release:  
943 high-resolution linkage mapping and deep resequencing improve chromosome-scale  
944 assembly and contiguity. *BMC Genomics* 18: 225.

945 Vrtture, G. W., F. J. Sedlazeck, M. Nattestad, C. J. Underwood, H. Fang *et al.*, 2017  
946 GenomeScope: fast reference-free genome profiling from short reads. *Bioinformatics* 33:  
947 2202–2204.

948 Wafula, E. K., H. Zhang, G. Von Kuster, J. H. Leebens-Mack, L. A. Honaas *et al.*, 2022  
949 PlantTribes2: Tools for comparative gene family analysis in plant genomics. *Front. Plant  
950 Sci.* 13: 1011199.

951 Washington Apple Commission, 2021 Did you know? Apple Facts. Retrieved May 23,  
952 2024 [online] <https://waapple.org/did-you-know/>

953 Wilkinson, M. D., M. Dumontier, I. J. J. Aalbersberg, G. Appleton, M. Axton *et al.*, 2016 The  
954 FAIR Guiding Principles for scientific data management and stewardship. *Sci Data* 3:  
955 160018.

956 Wood, D. E., and S. L. Salzberg., 2014 Kraken: ultrafast metagenomic sequence classification  
957 using exact alignments. *Genome Biol* 15, R46

958 Yan, M., X. Zhao, J. Zhou, Y. Huo, Y. Ding *et al.*, 2019 The complete chloroplast genome of

959 cultivated apple (*Malus domestica* Cv. "Yantai Fuji 8"). Mitochondrial DNA B Resour. 4:  
960 1213–1216.

961 Yocca, A., M. Akinyuwa, N. Bailey, B. Cliver, H. Estes *et al.*, 2024 A chromosome-scale  
962 assembly for 'd'Anjou' pear. G3 14.3, jkae003

963 Zhang, H., E. K. Wafula, J. Eilers, A. E. Harkess, P. E. Ralph *et al.*, 2022 Building a foundation  
964 for gene family analysis in Rosaceae genomes with a novel workflow: A case study in  
965 *Pyrus* architecture genes. Front. Plant Sci. 13: 975942.

966 Zhao, X., M. Yan, Y. Ding, X. Chen, and Z. Yuan, 2019 The complete chloroplast genome of  
967 apple rootstock 'M9.' Mitochondrial DNA B Resour 4: 2187–2188.

968 Zhou, C., S. A. McCarthy, and R. Durbin, 2022 YaHS: yet another Hi-C scaffolding tool.  
969 Bioinformatics 39: btac808.